text
stringlengths
0
1.05M
meta
dict
"""2D and 3D vector classes. These are used to represent points in 2D and 3D, as well as directions for translations. """ from typing import Any, Iterable, Iterator, List, Optional, Sized, Tuple, Union # noqa import numpy as np from six.moves import zip if False: from .polygons import Polygon3D # noqa class Vector2D(Sized, Iterable): """Two dimensional point.""" def __init__(self, *args): # type: (*Any) -> None self.args = list(args) self.x = float(args[0]) self.y = float(args[1]) self.z = 0.0 def __iter__(self): # type: () -> Iterator return (i for i in self.args) def __repr__(self): # type: () -> str class_name = type(self).__name__ return "{}({!r}, {!r})".format(class_name, *self.args) def __eq__(self, other): for a, b in zip(self, other): if a != b: return False return True def __sub__(self, other): # type: (Any) -> Union[Vector2D, Vector3D] return self.__class__(*[self[i] - other[i] for i in range(len(self))]) def __add__(self, other): # type: (Any) -> Union[Vector2D, Vector3D] return self.__class__(*[self[i] + other[i] for i in range(len(self))]) def __neg__(self): # type: () -> Union[Vector2D, Vector3D] return self.__class__(*inverse_vector(self)) def __len__(self): # type: () -> int return len(self.args) def __getitem__(self, key): # type: (Union[int, slice]) -> Union[Any, List[Any]] return self.args[key] def __setitem__(self, key, value): self.args[key] = value def __hash__(self): return hash(self.x) ^ hash(self.y) def dot(self, other): # type: (Vector3D) -> np.float64 return np.dot(self, other) def cross(self, other): # type: (Union[Vector2D, Vector3D]) -> np.ndarray return np.cross(self, other) @property def length(self): # type: () -> float """The length of a vector.""" length = sum(x ** 2 for x in self.args) ** 0.5 return length def closest(self, poly): # type: (Polygon3D) -> Optional[Any] """Find the closest vector in a polygon. :param poly: Polygon or Polygon3D """ min_d = float("inf") closest_pt = None for pt2 in poly: direction = self - pt2 sq_d = sum(x ** 2 for x in direction) if sq_d < min_d: min_d = sq_d closest_pt = pt2 return closest_pt def normalize(self): # type: () -> Union[Vector2D, Vector3D] return self.set_length(1.0) def set_length(self, new_length): # type: (float) -> Union[Vector2D, Vector3D] current_length = self.length multiplier = new_length / current_length self.args = [i * multiplier for i in self.args] return self def invert(self): # type: () -> Union[Vector2D, Vector3D] return -self def as_array(self, dims=3): # type: (Union[Vector2D, Vector3D], int) -> np.ndarray """Convert a point to a numpy array. Converts a Vector3D to a numpy.array([x,y,z]) or a Vector2D to a numpy.array([x,y]). Ensures all values are floats since some other types cause problems in pyclipper (notably where sympy.Zero is used to represent 0.0). :param pt: The point to convert. :param dims: Number of dimensions {default : 3}. :returns: Vector as a Numpy array. """ # handle Vector3D if dims == 3: return np.array([float(self.x), float(self.y), float(self.z)]) # handle Vector2D elif dims == 2: return np.array([float(self.x), float(self.y)]) else: raise ValueError("%s-dimensional vectors are not supported." % dims) def as_tuple(self, dims=3): # type: (Union[Vector2D, Vector3D, int]) -> Union[Tuple[float, float], Tuple[float, float, float]] """Convert a point to a numpy array. Convert a Vector3D to an (x,y,z) tuple or a Vector2D to an (x,y) tuple. Ensures all values are floats since some other types cause problems in pyclipper (notably where sympy.Zero is used to represent 0.0). :param pt: The point to convert. :param dims: Number of dimensions {default : 3}. :returns: Vector as a tuple. """ # handle Vector3D if dims == 3: return float(self.x), float(self.y), float(self.z) # handle Vector2D elif dims == 2: return float(self.x), float(self.y) else: raise ValueError("%s-dimensional vectors are not supported." % dims) def relative_distance(self, v2): # type: (Vector3D) -> float """A distance function for sorting vectors by distance. This only provides relative distance, not actual distance since we only use it for sorting. :param v2: Another vector. :returns: Relative distance between two point vectors. """ direction = self - v2 return sum(x ** 2 for x in direction) class Vector3D(Vector2D): """Three dimensional point.""" def __init__( self, x, # type: Union[float, np.float64] y, # type: Union[float, np.float64] z=0, # type: Union[float, np.float64] ): # type: (...) -> None super(Vector3D, self).__init__(x, y, z) self.z = float(z) self.args = [self.x, self.y, self.z] def __repr__(self): # type: () -> str class_name = type(self).__name__ return "{}({!r}, {!r}, {!r})".format(class_name, *self.args) def __hash__(self): # type: () -> int return hash(self.x) ^ hash(self.y) ^ hash(self.z) def inverse_vector(v): # type: (Union[Vector2D, Vector3D]) -> List[float] """Convert a vector to the same vector but in the opposite direction :param v: The vector. :returns: The vector reversed. """ return [-i for i in v]
{ "repo_name": "jamiebull1/geomeppy", "path": "geomeppy/geom/vectors.py", "copies": "1", "size": "6139", "license": "mit", "hash": -1382481578784702200, "line_mean": 29.0931372549, "line_max": 117, "alpha_frac": 0.5541619156, "autogenerated": false, "ratio": 3.615429917550059, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46695918331500585, "avg_score": null, "num_lines": null }
## 2. Data cleaning ## import pandas as pd columns = ["mpg", "cylinders", "displacement", "horsepower", "weight", "acceleration", "model year", "origin", "car name"] cars = pd.read_table("auto-mpg.data", delim_whitespace=True, names=columns) filtered_cars = cars[cars['horsepower']!='?'] filtered_cars['horsepower'] = filtered_cars['horsepower'].astype('float') ## 3. Data Exploration ## import matplotlib.pyplot as plt filtered_cars.plot('horsepower', 'mpg', kind='scatter', c='red') filtered_cars.plot('weight', 'mpg', kind='scatter', c='blue') plt.show() ## 4. Fitting a model ## import sklearn from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(filtered_cars[['horsepower']],filtered_cars['mpg']) predictions = lr.predict(filtered_cars[['horsepower']]) print(predictions[:5]) print(filtered_cars['mpg'].head()) ## 5. Plotting the predictions ## plt.scatter(filtered_cars[['horsepower']],predictions,c = 'b') plt.scatter(filtered_cars[['horsepower']],filtered_cars['mpg'],c = 'r') plt.show() ## 6. Error metrics ## from sklearn.metrics import mean_squared_error mse = mean_squared_error(filtered_cars['mpg'],predictions) rmse = mse ** .5
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Machine learning Beginner/Challenge_ Machine Learning Basics-205.py", "copies": "1", "size": "1179", "license": "mit", "hash": 7889563487431483000, "line_mean": 31.7777777778, "line_max": 122, "alpha_frac": 0.7048346056, "autogenerated": false, "ratio": 3.0703125, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.9194683463490853, "avg_score": 0.01609272842182942, "num_lines": 36 }
"""2D backpropagation algorithm""" import numpy as np import scipy.ndimage from . import util def backpropagate_2d(uSin, angles, res, nm, lD=0, coords=None, weight_angles=True, onlyreal=False, padding=True, padval=0, count=None, max_count=None, verbose=0): r"""2D backpropagation with the Fourier diffraction theorem Two-dimensional diffraction tomography reconstruction algorithm for scattering of a plane wave :math:`u_0(\mathbf{r}) = u_0(x,z)` by a dielectric object with refractive index :math:`n(x,z)`. This method implements the 2D backpropagation algorithm :cite:`Mueller2015arxiv`. .. math:: f(\mathbf{r}) = -\frac{i k_\mathrm{m}}{2\pi} \sum_{j=1}^{N} \! \Delta \phi_0 D_{-\phi_j} \!\! \left \{ \text{FFT}^{-1}_{\mathrm{1D}} \left \{ \left| k_\mathrm{Dx} \right| \frac{\text{FFT}_{\mathrm{1D}} \left \{ u_{\mathrm{B},\phi_j}(x_\mathrm{D}) \right \} }{u_0(l_\mathrm{D})} \exp \! \left[i k_\mathrm{m}(M - 1) \cdot (z_{\phi_j}-l_\mathrm{D}) \right] \right \} \right \} with the forward :math:`\text{FFT}_{\mathrm{1D}}` and inverse :math:`\text{FFT}^{-1}_{\mathrm{1D}}` 1D fast Fourier transform, the rotational operator :math:`D_{-\phi_j}`, the angular distance between the projections :math:`\Delta \phi_0`, the ramp filter in Fourier space :math:`|k_\mathrm{Dx}|`, and the propagation distance :math:`(z_{\phi_j}-l_\mathrm{D})`. Parameters ---------- uSin: (A,N) ndarray Two-dimensional sinogram of line recordings :math:`u_{\mathrm{B}, \phi_j}(x_\mathrm{D})` divided by the incident plane wave :math:`u_0(l_\mathrm{D})` measured at the detector. angles: (A,) ndarray Angular positions :math:`\phi_j` of `uSin` in radians. res: float Vacuum wavelength of the light :math:`\lambda` in pixels. nm: float Refractive index of the surrounding medium :math:`n_\mathrm{m}`. lD: float Distance from center of rotation to detector plane :math:`l_\mathrm{D}` in pixels. coords: None [(2,M) ndarray] Computes only the output image at these coordinates. This keyword is reserved for future versions and is not implemented yet. weight_angles: bool If `True`, weights each backpropagated projection with a factor proportional to the angular distance between the neighboring projections. .. math:: \Delta \phi_0 \longmapsto \Delta \phi_j = \frac{\phi_{j+1} - \phi_{j-1}}{2} .. versionadded:: 0.1.1 onlyreal: bool If `True`, only the real part of the reconstructed image will be returned. This saves computation time. padding: bool Pad the input data to the second next power of 2 before Fourier transforming. This reduces artifacts and speeds up the process for input image sizes that are not powers of 2. padval: float The value used for padding. This is important for the Rytov approximation, where an approximate zero in the phase might translate to 2πi due to the unwrapping algorithm. In that case, this value should be a multiple of 2πi. If `padval` is `None`, then the edge values are used for padding (see documentation of :func:`numpy.pad`). count, max_count: multiprocessing.Value or `None` Can be used to monitor the progress of the algorithm. Initially, the value of `max_count.value` is incremented by the total number of steps. At each step, the value of `count.value` is incremented. verbose: int Increment to increase verbosity. Returns ------- f: ndarray of shape (N,N), complex if `onlyreal` is `False` Reconstructed object function :math:`f(\mathbf{r})` as defined by the Helmholtz equation. :math:`f(x,z) = k_m^2 \left(\left(\frac{n(x,z)}{n_m}\right)^2 -1\right)` See Also -------- odt_to_ri: conversion of the object function :math:`f(\mathbf{r})` to refractive index :math:`n(\mathbf{r})` radontea.backproject: backprojection based on the Fourier slice theorem Notes ----- Do not use the parameter `lD` in combination with the Rytov approximation - the propagation is not correctly described. Instead, numerically refocus the sinogram prior to converting it to Rytov data (using e.g. :func:`odtbrain.sinogram_as_rytov`) with a numerical focusing algorithm (available in the Python package :py:mod:`nrefocus`). """ ## ## # TODO: # - combine the 2nd filter and the rotation in the for loop # to save memory. However, memory is not a big issue in 2D. ## ## A = angles.shape[0] if max_count is not None: max_count.value += A + 2 # Check input data assert len(uSin.shape) == 2, "Input data `uB` must have shape (A,N)!" assert len(uSin) == A, "`len(angles)` must be equal to `len(uSin)`!" if coords is not None: raise NotImplementedError("Output coordinates cannot yet be set " + + "for the 2D backrpopagation algorithm.") # Cut-Off frequency # km [1/px] km = (2 * np.pi * nm) / res # Here, the notation defines # a wave propagating to the right as: # # u0(x) = exp(ikx) # # However, in physics usually we use the other sign convention: # # u0(x) = exp(-ikx) # # In order to be consistent with programs like Meep or our # scattering script for a dielectric cylinder, we want to use the # latter sign convention. # This is not a big problem. We only need to multiply the imaginary # part of the scattered wave by -1. # Perform weighting if weight_angles: weights = util.compute_angle_weights_1d(angles).reshape(-1, 1) sinogram = uSin * weights else: sinogram = uSin # Size of the input data ln = sinogram.shape[1] # We perform padding before performing the Fourier transform. # This gets rid of artifacts due to false periodicity and also # speeds up Fourier transforms of the input image size is not # a power of 2. order = max(64., 2**np.ceil(np.log(ln * 2.1) / np.log(2))) if padding: pad = order - ln else: pad = 0 padl = int(np.ceil(pad / 2)) padr = int(pad - padl) if padval is None: sino = np.pad(sinogram, ((0, 0), (padl, padr)), mode="edge") if verbose > 0: print("......Padding with edge values.") else: sino = np.pad(sinogram, ((0, 0), (padl, padr)), mode="linear_ramp", end_values=(padval,)) if verbose > 0: print("......Verifying padding value: {}".format(padval)) # zero-padded length of sinogram. lN = sino.shape[1] # Ask for the filter. Do not include zero (first element). # # Integrals over ϕ₀ [0,2π]; kx [-kₘ,kₘ] # - double coverage factor 1/2 already included # - unitary angular frequency to unitary ordinary frequency # conversion performed in calculation of UB=FT(uB). # # f(r) = -i kₘ / ((2π)^(3/2) a₀) (prefactor) # * iint dϕ₀ dkx (prefactor) # * |kx| (prefactor) # * exp(-i kₘ M lD ) (prefactor) # * UBϕ₀(kx) (dependent on ϕ₀) # * exp( i (kx t⊥ + kₘ (M - 1) s₀) r ) (dependent on ϕ₀ and r) # # (r and s₀ are vectors. In the last term we perform the dot-product) # # kₘM = sqrt( kₘ² - kx² ) # t⊥ = ( cos(ϕ₀), sin(ϕ₀) ) # s₀ = ( -sin(ϕ₀), cos(ϕ₀) ) # # The filter can be split into two parts # # 1) part without dependence on the z-coordinate # # -i kₘ / ((2π)^(3/2) a₀) # * iint dϕ₀ dkx # * |kx| # * exp(-i kₘ M lD ) # # 2) part with dependence of the z-coordinate # # exp( i (kx t⊥ + kₘ (M - 1) s₀) r ) # # The filter (1) can be performed using the classical filter process # as in the backprojection algorithm. # # if count is not None: count.value += 1 # Corresponding sample frequencies fx = np.fft.fftfreq(lN) # 1D array # kx is a 1D array. kx = 2 * np.pi * fx # Differentials for integral dphi0 = 2 * np.pi / A # We will later multiply with phi0. # a, x kx = kx.reshape(1, -1) # Low-pass filter: # less-than-or-equal would give us zero division error. filter_klp = (kx**2 < km**2) # Filter M so there are no nans from the root M = 1. / km * np.sqrt((km**2 - kx**2) * filter_klp) prefactor = -1j * km / (2 * np.pi) prefactor *= dphi0 prefactor *= np.abs(kx) * filter_klp # new in version 0.1.4: # We multiply by the factor (M-1) instead of just (M) # to take into account that we have a scattered # wave that is normalized by u0. prefactor *= np.exp(-1j * km * (M-1) * lD) # Perform filtering of the sinogram projection = np.fft.fft(sino, axis=-1) * prefactor # # filter (2) must be applied before rotation as well # exp( i (kx t⊥ + kₘ (M - 1) s₀) r ) # # t⊥ = ( cos(ϕ₀), sin(ϕ₀) ) # s₀ = ( -sin(ϕ₀), cos(ϕ₀) ) # # This filter is effectively an inverse Fourier transform # # exp(i kx xD) exp(i kₘ (M - 1) yD ) # # xD = x cos(ϕ₀) + y sin(ϕ₀) # yD = - x sin(ϕ₀) + y cos(ϕ₀) # Everything is in pixels center = ln / 2.0 x = np.arange(lN) - center + .5 # Meshgrid for output array yv = x.reshape(-1, 1) Mp = M.reshape(1, -1) filter2 = np.exp(1j * yv * km * (Mp - 1)) # .reshape(1,lN,lN) projection = projection.reshape(A, 1, lN) # * filter2 # Prepare complex output image if onlyreal: outarr = np.zeros((ln, ln)) else: outarr = np.zeros((ln, ln), dtype=np.dtype(complex)) if count is not None: count.value += 1 # Calculate backpropagations for i in np.arange(A): # Create an interpolation object of the projection. # interpolation of the rotated fourier transformed projection # this is already tiled onto the entire image. sino_filtered = np.fft.ifft(projection[i] * filter2, axis=-1) # Resize filtered sinogram back to original size sino = sino_filtered[:ln, padl:padl + ln] rotated_projr = scipy.ndimage.interpolation.rotate( sino.real, -angles[i] * 180 / np.pi, reshape=False, mode="constant", cval=0) # Append results outarr += rotated_projr if not onlyreal: outarr += 1j * scipy.ndimage.interpolation.rotate( sino.imag, -angles[i] * 180 / np.pi, reshape=False, mode="constant", cval=0) if count is not None: count.value += 1 return outarr
{ "repo_name": "paulmueller/ODTbrain", "path": "odtbrain/_alg2d_bpp.py", "copies": "2", "size": "11346", "license": "bsd-3-clause", "hash": -6058115727231118000, "line_mean": 33.463190184, "line_max": 77, "alpha_frac": 0.5732977303, "autogenerated": false, "ratio": 3.28029197080292, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48535897011029194, "avg_score": null, "num_lines": null }
"""2D canvas style graphics functionality backed by Qt's QGraphicsView.""" from PyQt5 import QtCore, QtGui, QtWidgets class Canvas(QtWidgets.QGraphicsView): """A 2D canvas interface implemented using a QGraphicsView. This view essentially just holds a QGraphicsScene that grows to fit the size of the view, keeping the aspect ratio square. The scene is displayed with a gray (by default) border. See Qt's documentation for more information about working with QGraphicsView (https://doc.qt.io/Qt-5/qgraphicsview.html). """ scaler = 1 border_width = 0.01 default_border_color = '#444444' default_bg_color = '#dddddd' def __init__(self, draw_border=True, bg_color=None, border_color=None, parent=None, invert_x=False, invert_y=False): super(Canvas, self).__init__(parent=parent) if bg_color is None: bg_color = self.default_bg_color self.bg_color = bg_color if border_color is None: border_color = self.default_border_color self.border_color = border_color self.invert_x = invert_x self.invert_y = invert_y self._init_scene() if draw_border: self._init_border() def _init_scene(self): scene = QtWidgets.QGraphicsScene() # x, y, width, height scene.setSceneRect(-self.scaler, -self.scaler, self.scaler*2, self.scaler*2) self.setScene(scene) if self.invert_x: self.scale(-1, 1) # Qt is positive downward, so invert logic for y inversion if not self.invert_y: self.scale(1, -1) self.setRenderHint(QtGui.QPainter.Antialiasing) self.setBackgroundBrush(QtGui.QColor(self.bg_color)) def _init_border(self): rect = self.scene().sceneRect() pen = QtGui.QPen(QtGui.QColor(self.border_color), self.border_width) lines = [ QtCore.QLineF(rect.topLeft(), rect.topRight()), QtCore.QLineF(rect.topLeft(), rect.bottomLeft()), QtCore.QLineF(rect.topRight(), rect.bottomRight()), QtCore.QLineF(rect.bottomLeft(), rect.bottomRight()) ] for line in lines: self.scene().addLine(line, pen) def add_item(self, item): """Add an item to the canvas. Parameters ---------- item : Item or QGraphicsItem The item to add to the canvas. This can be either one of AxoPy's built-in items (:class:`Circle`, :class:`Text`, etc.) or any QGraphicsItem. """ if isinstance(item, Item): self.scene().addItem(item.qitem) else: self.scene().addItem(item) def resizeEvent(self, event): # override resize event to keep the scene rect intact (everything # scales with the window changing size, aspect ratio is preserved) super().resizeEvent(event) self.fitInView(self.sceneRect(), QtCore.Qt.KeepAspectRatio) class Item(object): """Canvas item base class. This is simply a wrapper around any kind of ``QGraphicsItem``, adding the ability to set some properties of the underlying item with a more Pythonic API. You can always access the ``QGraphicsItem`` with the ``qitem`` attribute. Once you know what kind of ``QGraphicsItem`` is being wrapped, you can use the corresponding Qt documentation to make use of more complete functionality. Attributes ---------- qitem : QGraphicsItem The QGraphicsItem being wrapped. You can use this attribute to access methods and properties of the item not exposed by the wrapper class. If you find yourself routinely using a method of the QGraphicsItem, consider recommending it for addition to AxoPy. """ def __init__(self, qitem): self.qitem = qitem @property def x(self): """X coordinate of the item in the canvas.""" return self.qitem.x() @x.setter def x(self, x): self.qitem.setX(x) @property def y(self): """Y coordinate of the item in the canvas.""" return self.qitem.y() @y.setter def y(self, y): self.qitem.setY(y) @property def pos(self): """Both X and Y coordinates of the item in the canvas.""" return self.x, self.y @pos.setter def pos(self, pos): self.qitem.setPos(*pos) @property def visible(self): """Visibility of the item.""" return self.qitem.isVisible() @visible.setter def visible(self, visible): self.qitem.setVisible(visible) @property def opacity(self): """Opacity of the item (between 0 and 1).""" self.qitem.opacity() @opacity.setter def opacity(self, opacity): self.qitem.setOpacity(opacity) @property def color(self): """Color of the item.""" return self.qitem.brush().color().getRgb() @color.setter def color(self, color): self.qitem.setBrush(QtGui.QColor(color)) def show(self): """Set the item to visible.""" self.qitem.show() def hide(self): """Set the item to invisible.""" self.qitem.hide() def set(self, **kwargs): """Set any properties of the underlying QGraphicsItem.""" for prop, val in kwargs.items(): self._qmeth(prop)(val) def get(self, prop, *args, **kwargs): """Get any property of the underlying QGraphicsItem.""" self._qmeth(prop)(*args, **kwargs) def collides_with(self, item): """Determine if the item intersects with another item.""" return self.qitem.collidesWithItem(item.qitem) def _qmeth(self, prop): return getattr(self.qitem, _to_camel_case(prop)) def _to_camel_case(snake_str): components = snake_str.split('_') return components[0] + ''.join(x.title() for x in components[1:]) class Circle(Item): """Circular item. The coordinates of this item correspond to the center of the circle. Parameters ---------- dia : float Diameter of the circle with respect to the scene coordinate system. color : str Hex string to set the color of the circle. You can use the underlying ``qitem`` attribute to get the underlying QGraphicsEllipseItem to set stroke color vs. fill color, etc. if needed. """ def __init__(self, diameter, color='#333333'): qitem = QtWidgets.QGraphicsEllipseItem(-diameter/2, -diameter/2, diameter, diameter) qitem.setPen(QtGui.QPen(QtGui.QBrush(), 0)) super(Circle, self).__init__(qitem) self.color = color class Cross(Item): """Collection of two lines oriented as a "plus sign". The coordinates of this item correspond to the center of the cross. This item's ``qitem`` attribute is a ``QGraphicsItemGroup`` (a group of two lines). Parameters ---------- size : float The size is the length of each line making up the cross. linewidth : float Thickness of each line making up the cross. color : str Color of the lines making up the cross. """ def __init__(self, size=0.05, linewidth=0.01, color='#333333'): qitem = QtWidgets.QGraphicsItemGroup() self._lh = Line(-size/2, 0, size/2, 0, width=linewidth, color=color) self._lv = Line(0, -size/2, 0, size/2, width=linewidth, color=color) qitem.addToGroup(self._lh.qitem) qitem.addToGroup(self._lv.qitem) super(Cross, self).__init__(qitem) @property def color(self): """Color of the lines in the cross.""" return self._lv.color @color.setter def color(self, color): self._lh.color = color self._lv.color = color class Line(Item): """Line item.""" def __init__(self, x1, y1, x2, y2, width=0.01, color='#333333'): self.width = width qitem = QtWidgets.QGraphicsLineItem(x1, y1, x2, y2) super(Line, self).__init__(qitem) self.color = color @property def color(self): return self.qitem.pen().color().getRgb() @color.setter def color(self, color): self.qitem.setPen(QtGui.QPen(QtGui.QBrush(QtGui.QColor(color)), self.width, cap=QtCore.Qt.FlatCap)) class Text(Item): """Text item.""" def __init__(self, text, color='#333333'): qitem = QtWidgets.QGraphicsSimpleTextItem(text) super(Text, self).__init__(qitem) self.color = color # invert because Canvas is inverted self.qitem.scale(0.01, -0.01) self._center() def _center(self): scene_bounds = self.qitem.sceneBoundingRect() self.pos = -scene_bounds.width() / 2, scene_bounds.height() / 2 class Rectangle(Item): """Rectangular item. This is a filled retangle that allows you to set the size, color, position, etc. By default, the item's position is its *center*. """ def __init__(self, width, height, x=0, y=0, color='#333333', penwidth=0.01): self.penwidth = penwidth qitem = QtWidgets.QGraphicsRectItem(x, y, width, height) qitem.setTransformOriginPoint(width/2, height/2) qitem.setTransform(QtGui.QTransform().translate(-width/2, -height/2)) super(Rectangle, self).__init__(qitem) self.pos = x, y self.color = color @property def color(self): """Color of the rectangle.""" return self.qitem.pen().color().getRgb() @color.setter def color(self, color): """Color of the rectangle.""" br = QtGui.QBrush(QtGui.QColor(color)) self.qitem.setBrush(br) self.qitem.setPen(QtGui.QPen(br, self.penwidth, cap=QtCore.Qt.FlatCap)) @property def width(self): return self.qitem.rect().width() @width.setter def width(self, width): p = self.pos rect = self.qitem.rect() rect.setWidth(width) self.qitem.setRect(rect) self.pos = p
{ "repo_name": "ucdrascal/hcibench", "path": "axopy/gui/canvas.py", "copies": "2", "size": "10191", "license": "mit", "hash": -1388182486694122800, "line_mean": 29.150887574, "line_max": 79, "alpha_frac": 0.6024923953, "autogenerated": false, "ratio": 3.8283245679939895, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.543081696329399, "avg_score": null, "num_lines": null }
# 2D channel example # ================== # # .. highlight:: python # # This example demonstrates a depth-averaged 2D simulation in a closed # rectangular domain, where the flow is forced by an initial pertubation in the # water elevation field. # # We begin by importing Thetis and creating a rectangular mesh with :py:func:`~.firedrake.utility_meshes.RectangleMesh`. # The domain is 40 km long and 2 km wide. # We generate 25 elements in the along-channel direction and 2 in the # cross-channel direction:: from thetis import * lx = 40e3 ly = 2e3 nx = 25 ny = 2 mesh2d = RectangleMesh(nx, ny, lx, ly) # Next we define a bathymetry function in the 2D mesh, using continuous linear # elements. In this example we set the bathymetry to constant 20 m depth:: P1_2d = FunctionSpace(mesh2d, 'CG', 1) bathymetry_2d = Function(P1_2d, name='Bathymetry') depth = 20.0 bathymetry_2d.assign(depth) # .. note:: # # See # `Firedrake manual <http://firedrakeproject.org/variational-problems.html>`_ # for more information on mesh generation, functions and function spaces. # # We are now ready to create a 2D solver object, and set some options:: # total duration in seconds t_end = 2 * 3600 # export interval in seconds t_export = 100.0 solver_obj = solver2d.FlowSolver2d(mesh2d, bathymetry_2d) options = solver_obj.options options.simulation_export_time = t_export options.simulation_end_time = t_end # Here we simply define the total duration of the run, and the # export interval. See :py:class:`~.ModelOptions` for more information about the # available options. # # Next we define the used time integrator, and set the time step:: options.timestepper_type = 'CrankNicolson' options.timestep = 50.0 # Because Crank-Nicolson is an uncondionally stable method, we can set # the time step freely. # # We then define the initial condition for elevation. We begin by creating a # function (in the same linear continous function space):: elev_init = Function(P1_2d, name='initial elevation') # We then need to define an analytical expression the the x,y coordinates of the # mesh. To this end, we use # :py:class:`~.ufl.classes.SpatialCoordinate` and define a `UFL <http://fenics-ufl.readthedocs.io/en/latest/>`_ expression (see # `Firedrake's interpolation manual <http://firedrakeproject.org/interpolation.html>`_ # for more information):: xy = SpatialCoordinate(mesh2d) gauss_width = 4000. gauss_ampl = 2.0 gauss_expr = gauss_ampl * exp(-((xy[0]-lx/2)/gauss_width)**2) # This defines a 2 m tall Gaussian hill in the x-direction in the middle on the # domain. We can then interpolate this expression on the function:: elev_init.interpolate(gauss_expr) # and set this function as an initial condition to the elevation field:: solver_obj.assign_initial_conditions(elev=elev_init) # Model setup is now complelete. We run the model by issuing:: solver_obj.iterate() # While the model is running, Thetis prints some statistics on the command line: # # .. code-block:: none # # 0 0 T= 0.00 eta norm: 6251.2574 u norm: 0.0000 0.00 # 1 2 T= 100.00 eta norm: 5905.0262 u norm: 1398.1128 0.76 # 2 4 T= 200.00 eta norm: 5193.5227 u norm: 2377.8512 0.03 # 3 6 T= 300.00 eta norm: 4656.5334 u norm: 2856.5165 0.03 # ... # # The first column is the export index, the second one the number of executed # time steps, followed by the simulation time. ``eta norm`` and ``u norm`` are # the L2 norms of the elevation and depth averaged velocity fields, respectively. # The last column stands for the (approximate) wall-clock time between exports. # # The simulation terminates once the end time is reached. # See :doc:`outputs and visualization <../outputs_and_visu>` page on how to # visualize the results. # # This tutorial can be dowloaded as a Python script `here <demo_2d_channel.py>`__.
{ "repo_name": "tkarna/cofs", "path": "demos/demo_2d_channel.py", "copies": "2", "size": "3870", "license": "mit", "hash": 5646640883570143000, "line_mean": 34.504587156, "line_max": 127, "alpha_frac": 0.719379845, "autogenerated": false, "ratio": 3.1695331695331697, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48889130145331694, "avg_score": null, "num_lines": null }
# 2D channel with time-dependent boundary conditions # ================================================== # # .. highlight:: python # # Here we extend the :doc:`2D channel example <demo_2d_channel.py>` by adding constant and time # dependent boundary conditions. # # We begin by defining the domain and solver as before:: from thetis import * lx = 40e3 ly = 2e3 nx = 25 ny = 2 mesh2d = RectangleMesh(nx, ny, lx, ly) P1_2d = FunctionSpace(mesh2d, 'CG', 1) bathymetry_2d = Function(P1_2d, name='Bathymetry') depth = 20.0 bathymetry_2d.assign(depth) # total duration in seconds t_end = 12 * 3600 # export interval in seconds t_export = 300.0 solver_obj = solver2d.FlowSolver2d(mesh2d, bathymetry_2d) options = solver_obj.options options.simulation_export_time = t_export options.simulation_end_time = t_end options.timestepper_type = 'CrankNicolson' options.timestep = 50.0 # We will force the model with a constant volume flux at the right boundary # (x=40 km) and impose a tidal volume flux on the left boundary (x=0 km). # Note that we have increased ``t_end`` and ``t_export`` to better illustrate # tidal dynamics. # # Boundary condtitions are defined for each external boundary using their ID. # In this example we are using a # :py:func:`~.firedrake.utility_meshes.RectangleMesh` which assigns IDs 1, 2, 3, # and 4 for the four sides of the rectangle:: left_bnd_id = 1 right_bnd_id = 2 # At each boundary we need to define the external value of the prognostic # variables, i.e. in this case the water elevation and velocity. # The value should be either a Firedrake :py:class:`~.firedrake.constant.Constant` or # :py:class:`~.firedrake.function.Function` (in case the boundary condition is not uniform in space). # # We store the boundary conditions in a dictionary:: swe_bnd = {} in_flux = 1e3 swe_bnd[right_bnd_id] = {'elev': Constant(0.0), 'flux': Constant(-in_flux)} # Above we set the water elevation to zero and prescribe a constant volume flux. # The volume flux is defined as outward normal flux, i.e. a negative value stands # for flow into the domain. # Alternatively we could also prescribe the normal velocity (with key ``'un'``) # or the 2D velocity vector (``'uv'``). # For all supported boundary conditions, see module :py:mod:`~.shallowwater_eq`. # # In order to set time-dependent boundary conditions we first define a python # function that evaluates the time dependent variable:: def timedep_flux(simulation_time): """Time-dependent flux function""" tide_amp = -2e3 tide_t = 12 * 3600. flux = tide_amp*sin(2 * pi * simulation_time / tide_t) + in_flux return flux # We then create a Constant object with the initial value, # and assign it to the left boundary:: tide_flux_const = Constant(timedep_flux(0)) swe_bnd[left_bnd_id] = {'flux': tide_flux_const} # Boundary conditions are now complete, and we assign them to the solver # object:: solver_obj.bnd_functions['shallow_water'] = swe_bnd # Note that if boundary conditions are not assigned for some boundaries # (the lateral boundaries 3 and 4 in this case), Thetis assumes impermeable land # conditions. # # The only missing piece is to add a mechanism that re-evaluates the boundary # condition as the simulation progresses. # For this purpose we use the optional ``update_forcings`` argument of the # :py:meth:`~.FlowSolver2d.iterate` method. # ``update_forcings`` is a python function that updates all time dependent # :py:class:`~.firedrake.constant.Constant`\s or # :py:class:`~.firedrake.function.Function`\s used to force the model. # In this case we only need to update ``tide_flux_const``:: def update_forcings(t_new): """Callback function that updates all time dependent forcing fields""" tide_flux_const.assign(timedep_flux(t_new)) # and finally pass this callback to the time iterator:: solver_obj.iterate(update_forcings=update_forcings) # # This tutorial can be dowloaded as a Python script `here <demo_2d_channel_bnd.py>`__.
{ "repo_name": "tkarna/cofs", "path": "demos/demo_2d_channel_bnd.py", "copies": "2", "size": "3996", "license": "mit", "hash": -4719998112690868000, "line_mean": 35, "line_max": 101, "alpha_frac": 0.7187187187, "autogenerated": false, "ratio": 3.256723716381418, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9860825422664152, "avg_score": 0.022923402483453096, "num_lines": 111 }
# 2D Discrete Fourier Transform (DFT) and its inverse # Warning: Computation is slow so only suitable for thumbnail size images! # FB - 20150102 from PIL import Image import cmath pi2 = cmath.pi * 2.0 def DFT2D(image): global M, N (M, N) = image.size # (imgx, imgy) dft2d_red = [[0.0 for k in range(M)] for l in range(N)] dft2d_grn = [[0.0 for k in range(M)] for l in range(N)] dft2d_blu = [[0.0 for k in range(M)] for l in range(N)] pixels = image.load() for k in range(M): for l in range(N): sum_red = 0.0 sum_grn = 0.0 sum_blu = 0.0 for m in range(M): for n in range(N): (red, grn, blu, alpha) = pixels[m, n] e = cmath.exp(- 1j * pi2 * (float(k * m) / M + float(l * n) / N)) sum_red += red * e sum_grn += grn * e sum_blu += blu * e dft2d_red[l][k] = sum_red / M / N dft2d_grn[l][k] = sum_grn / M / N dft2d_blu[l][k] = sum_blu / M / N return (dft2d_red, dft2d_grn, dft2d_blu) def IDFT2D(dft2d): (dft2d_red, dft2d_grn, dft2d_blu) = dft2d global M, N image = Image.new("RGB", (M, N)) pixels = image.load() for m in range(M): for n in range(N): sum_red = 0.0 sum_grn = 0.0 sum_blu = 0.0 for k in range(M): for l in range(N): e = cmath.exp(1j * pi2 * (float(k * m) / M + float(l * n) / N)) sum_red += dft2d_red[l][k] * e sum_grn += dft2d_grn[l][k] * e sum_blu += dft2d_blu[l][k] * e red = int(sum_red.real + 0.5) grn = int(sum_grn.real + 0.5) blu = int(sum_blu.real + 0.5) pixels[m, n] = (red, grn, blu) return image # TEST # Recreate input image from 2D DFT results to compare to input image image = IDFT2D(DFT2D(Image.open("input.png"))) image.save("output.png", "PNG")
{ "repo_name": "ActiveState/code", "path": "recipes/Python/578997_2D_Discrete_Fourier_Transform/recipe-578997.py", "copies": "1", "size": "2049", "license": "mit", "hash": -5047564682141014000, "line_mean": 34.9473684211, "line_max": 85, "alpha_frac": 0.4782820888, "autogenerated": false, "ratio": 2.7356475300400533, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8670880961448435, "avg_score": 0.008609731478323775, "num_lines": 57 }
# 2 DECIMAL POINT #9-3-17 # Initialize resistor colors BLACK = ['black', 0, 0, 0, 1, None] BROWN = ['brown', 1, 1, 1, 10, "1%"] RED = ['red', 2, 2, 2, 100, "2%"] ORANGE = ['orange', 3, 3, 3, 1000, "3%"] YELLOW = ['yellow', 4, 4, 4, 10000, "4%"] GREEN = ['green', 5, 5, 5, 100000, "0.5%"] BLUE = ['blue', 6, 6, 6, 1000000, "0.25"] PURPLE = ['purple', 7, 7, 7, 10000000, "0.15%"] GREY = ['grey', 8, 8, 8, None, "0.05%"] WHITE = ['white', 9, 9, 9, None, None] GOLD = ['gold', None, None, None, 0.1, "5%"] SILVER = ['silver', None, None, None, 0.01, "10%"] RESISTORCOLORS = [BLACK, BROWN, RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE, GREY, WHITE, GOLD, SILVER] currentColorBandDict = {} newResistorValueList = [] # Ask for user input of resistor value, number of bands, and tolerance value userInputResistorValue = float(input("Enter the resistor value: ")) #userInputNumBands = int(input("Enter the number of bands: ")) userInputNumBands = 5 print ("Tolerance Values: 0.05% | 0.1% | 0.25% | 0.5% | 1% | 2% | 5% | 10% | 20%") #userInputToleranceValue = str(input("Enter the tolerance value: ")) userInputToleranceValue = '5%' # Add each digit in userInputResistorValue to string in a list oldResistorValueList = list(str(userInputResistorValue)) # Add a '0' to fix input values less than 1 rounded to 1 decimal place if userInputResistorValue < 10 and (len(oldResistorValueList) == 3 or len(oldResistorValueList) == 4): oldResistorValueList.append('0') # Create a new list with digits other than 0 and a decimal point # Determine if userInputResistorValue is a decimal number for item in oldResistorValueList: if item == '.': if newResistorValueList[0] == 0: del newResistorValueList[0] else: newResistorValueList.append(int(item)) # Executes if 4 band color code is requested if userInputNumBands == 5: i = 0 # first band iterator j = 0 # second band iterator k = 0 # third band iterator l = 0 # multiplier iterator m = 0 # tolerance iterator # Get firstBandNum and firstBandColor while i <= 11: if RESISTORCOLORS[i][1] == newResistorValueList[0]: currentColorBandDict['firstBandColor'] = RESISTORCOLORS[i][0] #if DECIMAL == True and userInputResistorValue < 1: if userInputResistorValue < 1: firstBandNum = oldResistorValueList[2] else: firstBandNum = oldResistorValueList[0] i += 1 # Get secondBandNum and secondBandColor while j <= 11: if RESISTORCOLORS[j][2] == newResistorValueList[1]: currentColorBandDict['secondBandColor'] = RESISTORCOLORS[j][0] if userInputResistorValue < 1: secondBandNum = oldResistorValueList[3] elif userInputResistorValue >= 1 and userInputResistorValue < 10: secondBandNum = oldResistorValueList[2] else: secondBandNum = oldResistorValueList[1] j += 1 # Get thirdBandNum and thirdBandColor while k <= 11: if RESISTORCOLORS[k][3] == newResistorValueList[2]: currentColorBandDict['thirdBandColor'] = RESISTORCOLORS[k][0] if oldResistorValueList[2] == '.': thirdBandNum = oldResistorValueList[3] else: thirdBandNum = oldResistorValueList[2] k += 1 # Calculate multiplier value firstSecondAndThirdBandNum = float(firstBandNum + secondBandNum + thirdBandNum) multiplier = round((userInputResistorValue / firstSecondAndThirdBandNum), 3) # Get fourthBandColor while l <= 11: if RESISTORCOLORS[l][4] == multiplier: currentColorBandDict['fourthBandColor'] = RESISTORCOLORS[l][0] l += 1 # Get fifthBandColor while m <= 11: if RESISTORCOLORS[m][5] == userInputToleranceValue: currentColorBandDict['tolerance'] = RESISTORCOLORS[m][0] m += 1 # Display current color band in the terminal print (currentColorBandDict)
{ "repo_name": "dgaiero/Resistor-Band-Picture-Creator", "path": "Test Scripts/resistorAlgorithm5Band.py", "copies": "1", "size": "4016", "license": "mit", "hash": 279273345368002000, "line_mean": 37.6153846154, "line_max": 102, "alpha_frac": 0.6389442231, "autogenerated": false, "ratio": 3.217948717948718, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4356892941048718, "avg_score": null, "num_lines": null }
## 2. Defining custom classes ## print(header) class Player(): # The special __init__ function is run whenever a class is instantiated. # The init function can take arguments, but self is always the first one. # Self is just a reference to the instance of the class. It is automatically # passed in when you instantiate an instance of the class. def __init__(self, data_row): self.player_name = data_row[0] self.position = data_row[1] self.age = data_row[2] self.team = data_row[3] # Initialize a player using the first row of our dataset first_player = Player(nba[0]) # Implement the Team class class Team(): def __init__(self,name): self.team_name = name spurs = Team('San Antonio Spurs') ## 3. More interesting instance properties ## class Player(): # The special __init__ function is run whenever a class is instantiated. # The init function can take arguments, but self is always the first one. # Self is just a reference to the instance of the class. It is automatically # passed in when you instantiate an instance of the class. def __init__(self, data_row): self.player_name = data_row[0] self.position = data_row[1] self.age = int(data_row[2]) self.team = data_row[3] # Initialize a player using the first row of our dataset first_player = Player(nba[0]) class Team(): def __init__(self, team_name): self.team_name = team_name # Team roster initially empty self.roster = [] # Find the players for the roster in the dataset for row in nba: if row[3] == team_name: self.roster.append(Player(row)) spurs = Team('San Antonio Spurs') ## 4. Instance Methods ## class Player(): # The special __init__ function is run whenever a class is instantiated. # The init function can take arguments, but self is always the first one. # Self is just a reference to the instance of the class. It is automatically # passed in when you instantiate an instance of the class. def __init__(self, data_row): self.player_name = data_row[0] self.position = data_row[1] self.age = int(data_row[2]) self.team = data_row[3] class Team(): def __init__(self, team_name): self.team_name = team_name # Team roster initially empty self.roster = [] # Find the players for the roster in the dataset for row in nba: if row[3] == self.team_name: self.roster.append(Player(row)) def num_players(self): count = 0 for player in self.roster: count += 1 return count # Implement the average_age instance method def average_age(self): age = 0 for player in self.roster: age += player.age return age/self.num_players() spurs = Team("San Antonio Spurs") spurs_num_players = spurs.num_players() spurs_avg_age = spurs.average_age() ## 5. Class Methods ## import math class Player(): # The special __init__ function is run whenever a class is instantiated. # The init function can take arguments, but self is always the first one. # Self is just a reference to the instance of the class. It is automatically # passed in when you instantiate an instance of the class. def __init__(self, data_row): self.player_name = data_row[0] self.position = data_row[1] self.age = int(data_row[2]) self.team = data_row[3] class Team(): def __init__(self, team_name): self.team_name = team_name self.roster = [] for row in nba: if row[3] == self.team_name: self.roster.append(Player(row)) def num_players(self): count = 0 for player in self.roster: count += 1 return count def average_age(self): return math.fsum([player.age for player in self.roster]) / self.num_players() @classmethod def older_team(self, team1, team2): if team1.average_age()>team2.average_age(): return team1 else: return team2 old_team = Team.older_team(Team("New York Knicks"), Team("Miami Heat")) ## 7. Overriding ## class Player(object): # The special __init__ function is run whenever a class is instantiated. # The init function can take arguments, but self is always the first one. # Self is just a reference to the instance of the class. It is automatically # passed in when you instantiate an instance of the class. def __init__(self, data_row): self.player_name = data_row[0] self.position = data_row[1] self.age = int(data_row[2]) self.team = data_row[3] def __lt__(self, other): return self.age < other.age # Implement the rest of the comparison operators here def __gt__(self, other): return self.age > other.age def __le__(self, other): return self.age <= other.age def __ge__(self, other): return self.age >= other.age def __eq__(self, other): return self.age == other.age def __ne__(self, other): return self.age != other.age carmelo = Player(nba[17]) kobe = Player(nba[68]) result = carmelo != kobe ## 9. Oldest NBA Team ## import math class Team(object): def __init__(self, team_name): self.team_name = team_name self.roster = [] for row in nba: if row[3] == self.team_name: self.roster.append(Player(row)) def num_players(self): count = 0 for player in self.roster: count += 1 return count def average_age(self): return math.fsum([player.age for player in self.roster]) / self.num_players() def __lt__(self, other): return self.average_age() < other.average_age() def __gt__(self, other): return self.average_age() > other.average_age() def __le__(self, other): return self.average_age() <= other.average_age() def __ge__(self, other): return self.average_age() >= other.average_age() def __eq__(self, other): return self.average_age() == other.average_age() def __ne__(self, other): return self.average_age() != other.average_age() team_names = ["Boston Celtics", "Brooklyn Nets", "New York Knicks", "Philadelphia 76ers", "Toronto Raptors", "Chicago Bulls", "Cleveland Cavaliers", "Detroit Pistons", "Indiana Pacers", "Milwaukee Bucks", "Atlanta Hawks", "Charlotte Hornets", "Miami Heat", "Orlando Magic", "Washington Wizards", "Dallas Mavericks", "Houston Rockets", "Memphis Grizzlies", "New Orleans Pelicans", "San Antonio Spurs", "Denver Nuggets", "Minnesota Timberwolves", "Oklahoma City Thunder", "Portland Trail Blazers", "Utah Jazz", "Golden State Warriors", "Los Angeles Clippers", "Los Angeles Lakers", "Phoenix Suns", "Sacramento Kings"] # Alter this list comprehension teams = [Team(name) for name in team_names] oldest_team = max(teams) youngest_team = min(teams) sorted_teams = sorted(teams)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Python Programming Advanced/Object-oriented programming-108.py", "copies": "1", "size": "7191", "license": "mit", "hash": -6317349503392777000, "line_mean": 34.0829268293, "line_max": 116, "alpha_frac": 0.6136837714, "autogenerated": false, "ratio": 3.5146627565982405, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.462834652799824, "avg_score": null, "num_lines": null }
# 2D example of viewing aggregates from SA using VTK from pyamg.aggregation import standard_aggregation from pyamg.vis import vis_coarse, vtk_writer from pyamg.gallery import load_example from pyamg import * from scipy import * # retrieve the problem data = load_example('unit_square') A = data['A'].tocsr() V = data['vertices'] E2V = data['elements'] # perform smoothed aggregation ml = smoothed_aggregation_solver(A,keep=True,max_coarse=10) b = sin(pi*V[:,0])*sin(pi*V[:,1]) x = ml.solve(b) # create the vtk file of aggregates vis_coarse.vis_aggregate_groups(Verts=V, E2V=E2V, Agg=ml.levels[0].AggOp, mesh_type='tri', output='vtk', fname='output_aggs.vtu') # create the vtk file for mesh and solution vtk_writer.write_basic_mesh(Verts=V, E2V=E2V, pdata = x, mesh_type='tri', fname='output_mesh.vtu') # to use Paraview: # start Paraview: Paraview --data=output_mesh.vtu # apply # under display in the object inspector: # select wireframe representation # select a better solid color # open file: output_aggs.vtu # under display in the object inspector: # select surface with edges representation # select a better solid color # increase line width and point size to see these aggs (if present)
{ "repo_name": "pombreda/pyamg", "path": "Examples/WorkshopCopper11/task2.3.py", "copies": "2", "size": "1357", "license": "bsd-3-clause", "hash": 5867146414176847000, "line_mean": 32.925, "line_max": 77, "alpha_frac": 0.6595431098, "autogenerated": false, "ratio": 3.3423645320197046, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5001907641819705, "avg_score": null, "num_lines": null }
# 2D example of viewing aggregates from SA using VTK from pyamg.aggregation import standard_aggregation from pyamg.vis import vis_coarse, vtk_writer from pyamg.gallery import load_example # retrieve the problem data = load_example('unit_square') A = data['A'].tocsr() V = data['vertices'] E2V = data['elements'] # perform smoothed aggregation Agg = standard_aggregation(A) # create the vtk file of aggregates vis_coarse.vis_aggregate_groups(Verts=V, E2V=E2V, Agg=Agg, \ mesh_type='tri', output='vtk', \ fname='output_aggs.vtu') # create the vtk file for a mesh vtk_writer.write_basic_mesh(Verts=V, E2V=E2V, \ mesh_type='tri', \ fname='output_mesh.vtu') # to use Paraview: # start Paraview: Paraview --data=output_mesh.vtu # apply # under display in the object inspector: # select wireframe representation # select a better solid color # open file: output_aggs.vtu # under display in the object inspector: # select surface with edges representation # select a better solid color # increase line width and point size to see these aggs (if present)
{ "repo_name": "pombreda/pyamg", "path": "Examples/VisualizingAggregation/demo1.py", "copies": "1", "size": "1224", "license": "bsd-3-clause", "hash": -5113691601155100000, "line_mean": 33.9714285714, "line_max": 77, "alpha_frac": 0.6454248366, "autogenerated": false, "ratio": 3.5789473684210527, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9702812376533836, "avg_score": 0.004311965697443154, "num_lines": 35 }
# 2D Fluid Simulation using FHP LGCA (Lattice Gas Cellular Automata) # Simulates fluid flow in a circular channel. # Particles go out from right side and enter back from left. # Reference: # Lattice Gas Cellular Automata and Lattice Boltzmann Models by Wolf-Gladrow # FB - 20140818 import math import random from PIL import Image imgx = 512; imgy = 512 # image size image = Image.new("RGB", (imgx, imgy)) pixels = image.load() # simulation parameters: tilesX = 32 tilesY = 32 n = 8 # coarse graining tile size is n by n timeSteps = 300 nodesX = tilesX * n nodesY = tilesY * n nodes = [[[0 for x in range(nodesX)] for y in range(nodesY)] for z in range(6)] obstacle = [[0 for x in range(nodesX)] for y in range(nodesY)] # insert a square obstacle in the middle for y in range(nodesY / 4): for x in range(nodesX / 4): obstacle[y + nodesY / 2 - nodesY / 8][x + nodesX / 2 - nodesX / 8] = 1 # fill-up with fluid flowing towards right for y in range(1, nodesY - 1): # do not include top/bottom walls for x in range(nodesX): if obstacle[y][x] != 1: nodes[0][y][x] = 1 for t in range(timeSteps): # run the simulation # HANDLE COLLISIONS # collisions at non-boundary nodes for y in range(1, nodesY - 1): # do not include top/bottom walls for x in range(nodesX): if obstacle[y][x] != 1: cell = [nodes[z][y][x] for z in range(6)] numParticles = sum(cell) # only 2 or 3 symmetric particle collisions implemented here if numParticles == 3: if cell[0] == cell[2] and cell[2] == cell[4]: # invert the cell contents for z in range(6): nodes[z][y][x] = 1 - cell[z] elif numParticles == 2: # find the cell of one of the particles p = cell.index(1) # its diametric opposite must occupied as well if p > 2: pass elif cell[p + 3] == 0: pass else: # randomly rotate the particle pair clockwise or # counterclockwise if random.randint(0, 1) == 0: # counterclockwise nodes[0][y][x] = cell[5] nodes[1][y][x] = cell[0] nodes[2][y][x] = cell[1] nodes[3][y][x] = cell[2] nodes[4][y][x] = cell[3] nodes[5][y][x] = cell[4] else: # clockwise nodes[0][y][x] = cell[1] nodes[1][y][x] = cell[2] nodes[2][y][x] = cell[3] nodes[3][y][x] = cell[4] nodes[4][y][x] = cell[5] nodes[5][y][x] = cell[0] # collisions along top/bottom walls (no-slip) for x in range(nodesX): cell = [nodes[z][0][x] for z in range(6)] nodes[0][0][x] = cell[3] nodes[1][0][x] = cell[4] nodes[2][0][x] = cell[5] nodes[3][0][x] = cell[0] nodes[4][0][x] = cell[1] nodes[5][0][x] = cell[2] cell = [nodes[z][nodesY - 1][x] for z in range(6)] nodes[0][nodesY - 1][x] = cell[3] nodes[1][nodesY - 1][x] = cell[4] nodes[2][nodesY - 1][x] = cell[5] nodes[3][nodesY - 1][x] = cell[0] nodes[4][nodesY - 1][x] = cell[1] nodes[5][nodesY - 1][x] = cell[2] # collisions at obstacle points (no-slip) for y in range(nodesY): for x in range(nodesX): if obstacle[y][x] == 1: cell = [nodes[z][y][x] for z in range(6)] nodes[0][y][x] = cell[3] nodes[1][y][x] = cell[4] nodes[2][y][x] = cell[5] nodes[3][y][x] = cell[0] nodes[4][y][x] = cell[1] nodes[5][y][x] = cell[2] # HANDLE MOVEMENTS nodesNew = [[[0 for x in range(nodesX)] for y in range(nodesY)] for z in range(6)] for y in range(nodesY): for x in range(nodesX): cell = [nodes[z][y][x] for z in range(6)] # propagation in the 0-direction neighbor_y = y if x == nodesX - 1: neighbor_x = 0 else: neighbor_x = x + 1 nodesNew[0][neighbor_y][neighbor_x] = cell[0] # propagation in the 1-direction if y != nodesY - 1: neighbor_y = y + 1 if y % 2 == 1: if x == nodesX - 1: neighbor_x = 1 else: neighbor_x = x + 1 else: neighbor_x = x nodesNew[1][neighbor_y][neighbor_x] = cell[1] # propagation in the 2-direction if y != nodesY - 1: neighbor_y = y + 1 if y % 2 == 0: if x == 0: neighbor_x = nodesX - 1 else: neighbor_x = x - 1 else: neighbor_x = x nodesNew[2][neighbor_y][neighbor_x] = cell[2] # propagation in the 3-direction neighbor_y = y if x == 0: neighbor_x = nodesX - 1 else: neighbor_x = x - 1 nodesNew[3][neighbor_y][neighbor_x] = cell[3] # propagation in the 4-direction if y != 0: neighbor_y = y - 1 if y % 2 == 0: if x == 0: neighbor_x = nodesX - 1 else: neighbor_x = x - 1 else: neighbor_x = x nodesNew[4][neighbor_y][neighbor_x] = cell[4] # propagation in the 5-direction if y != 0: neighbor_y = y - 1 if y % 2 == 1: if x == nodesX - 1: neighbor_x = 0 else: neighbor_x = x + 1 else: neighbor_x = x nodesNew[5][neighbor_y][neighbor_x] = cell[5] nodes = nodesNew print '%' + str(100 * t / timeSteps) # show progress # Create an image from the final state # Calculate average velocity vectors for tiles aveVelocityVectorMag = [[0.0 for x in range(tilesX)] for y in range(tilesY)] aveVelocityVectorAng = [[0.0 for x in range(tilesX)] for y in range(tilesY)] pi2 = math.pi * 2.0 dx = [math.cos(i * pi2 / 6.0) for i in range(6)] dy = [math.sin(i * pi2 / 6.0) for i in range(6)] for ty in range(tilesY): for tx in range(tilesX): vx = 0.0 vy = 0.0 for cy in range(n): for cx in range(n): for z in range(6): if nodes[z][ty * n + cy][tx * n + cx] == 1 \ and obstacle[ty * n + cy][tx * n + cx] == 0: vx += dx[z] vy += dy[z] aveVelocityVectorMag[ty][tx] = math.hypot(vx, vy) / n ** 2.0 aveVelocityVectorAng[ty][tx] = (math.atan2(vy, vx) + pi2) % pi2 for ky in range(imgy): iy = nodesY * ky / imgy jy = tilesY * ky / imgy for kx in range(imgx): ix = nodesX * kx / imgx jx = tilesX * kx / imgx if obstacle[iy][ix] == 1: # paint the obstacle(s) red = 0 grn = 0 blu = 255 else: # use vector magnitude and angle for coloring aveVelVecMag = aveVelocityVectorMag[jy][jx] aveVelVecAng = aveVelocityVectorAng[jy][jx] red = int(aveVelVecMag * 255) grn = int(aveVelVecAng / pi2 * 255) blu = 0 pixels[kx, ky] = (red, grn, blu) image.save("FHP_LGCA_2DFluidSim.png", "PNG")
{ "repo_name": "ActiveState/code", "path": "recipes/Python/578924_2D_Fluid_Simulatiusing_FHP/recipe-578924.py", "copies": "1", "size": "8116", "license": "mit", "hash": 808702404464751400, "line_mean": 35.7239819005, "line_max": 86, "alpha_frac": 0.4499753573, "autogenerated": false, "ratio": 3.525629887054735, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44756052443547345, "avg_score": null, "num_lines": null }
"""2D Fourier mapping""" import numpy as np import scipy.interpolate as intp def fourier_map_2d(uSin, angles, res, nm, lD=0, semi_coverage=False, coords=None, count=None, max_count=None, verbose=0): r"""2D Fourier mapping with the Fourier diffraction theorem Two-dimensional diffraction tomography reconstruction algorithm for scattering of a plane wave :math:`u_0(\mathbf{r}) = u_0(x,z)` by a dielectric object with refractive index :math:`n(x,z)`. This function implements the solution by interpolation in Fourier space. Parameters ---------- uSin: (A,N) ndarray Two-dimensional sinogram of line recordings :math:`u_{\mathrm{B}, \phi_j}(x_\mathrm{D})` divided by the incident plane wave :math:`u_0(l_\mathrm{D})` measured at the detector. angles: (A,) ndarray Angular positions :math:`\phi_j` of `uSin` in radians. res: float Vacuum wavelength of the light :math:`\lambda` in pixels. nm: float Refractive index of the surrounding medium :math:`n_\mathrm{m}`. lD: float Distance from center of rotation to detector plane :math:`l_\mathrm{D}` in pixels. semi_coverage: bool If set to `True`, it is assumed that the sinogram does not necessarily cover the full angular range from 0 to 2π, but an equidistant coverage over 2π can be achieved by inferring point (anti)symmetry of the (imaginary) real parts of the Fourier transform of f. Valid for any set of angles {X} that result in a 2π coverage with the union set {X}U{X+π}. coords: None [(2,M) ndarray] Computes only the output image at these coordinates. This keyword is reserved for future versions and is not implemented yet. count, max_count: multiprocessing.Value or `None` Can be used to monitor the progress of the algorithm. Initially, the value of `max_count.value` is incremented by the total number of steps. At each step, the value of `count.value` is incremented. verbose: int Increment to increase verbosity. Returns ------- f: ndarray of shape (N,N), complex if `onlyreal` is `False` Reconstructed object function :math:`f(\mathbf{r})` as defined by the Helmholtz equation. :math:`f(x,z) = k_m^2 \left(\left(\frac{n(x,z)}{n_m}\right)^2 -1\right)` See Also -------- backpropagate_2d: implementation by backpropagation odt_to_ri: conversion of the object function :math:`f(\mathbf{r})` to refractive index :math:`n(\mathbf{r})` Notes ----- Do not use the parameter `lD` in combination with the Rytov approximation - the propagation is not correctly described. Instead, numerically refocus the sinogram prior to converting it to Rytov data (using e.g. :func:`odtbrain.sinogram_as_rytov`) with a numerical focusing algorithm (available in the Python package :py:mod:`nrefocus`). The interpolation in Fourier space (which is done with :func:`scipy.interpolate.griddata`) may be unstable and lead to artifacts if the data to interpolate contains sharp spikes. This issue is not handled at all by this method (in fact, a test has been removed in version 0.2.6 because ``griddata`` gave different results on Windows and Linux). """ ## ## # TODO: # - zero-padding as for backpropagate_2D - However this is not # necessary as Fourier interpolation is not parallelizable with # multiprocessing and thus unattractive. Could be interesting for # specific environments without the Python GIL. # - Deal with oversampled data. Maybe issue a warning. ## ## A = angles.shape[0] if max_count is not None: max_count.value += 4 # Check input data assert len(uSin.shape) == 2, "Input data `uSin` must have shape (A,N)!" assert len(uSin) == A, "`len(angles)` must be equal to `len(uSin)`!" if coords is not None: raise NotImplementedError("Output coordinates cannot yet be set" + "for the 2D backrpopagation algorithm.") # Cut-Off frequency # km [1/px] km = (2 * np.pi * nm) / res # Fourier transform of all uB's # In the script we used the unitary angular frequency (uaf) Fourier # Transform. The discrete Fourier transform is equivalent to the # unitary ordinary frequency (uof) Fourier transform. # # uof: f₁(ξ) = int f(x) exp(-2πi xξ) # # uaf: f₃(ω) = (2π)^(-n/2) int f(x) exp(-i ωx) # # f₁(ω/(2π)) = (2π)^(n/2) f₃(ω) # ω = 2πξ # # Our Backpropagation Formula is with uaf convention of the Form # # F(k) = 1/sqrt(2π) U(kD) # # If we convert now to uof convention, we get # # F(k) = U(kD) # # This means that if we divide the Fourier transform of the input # data by sqrt(2π) to convert f₃(ω) to f₁(ω/(2π)), the resulting # value for F is off by a factor of 2π. # # Instead, we can just multiply *UB* by sqrt(2π) and calculate # everything in uof. # UB = np.fft.fft(np.fft.ifftshift(uSin, axes=-1))/np.sqrt(2*np.pi) # # # Furthermore, we define # a wave propagating to the right as: # # u0(x) = exp(ikx) # # However, in physics usually we use the other sign convention: # # u0(x) = exp(-ikx) # # In order to be consistent with programs like Meep or our # scattering script for a dielectric cylinder, we want to use the # latter sign convention. # This is not a big problem. We only need to multiply the imaginary # part of the scattered wave by -1. UB = np.fft.fft(np.fft.ifftshift(uSin, axes=-1)) * np.sqrt(2 * np.pi) # Corresponding sample frequencies fx = np.fft.fftfreq(len(uSin[0])) # 1D array # kx is a 1D array. kx = 2 * np.pi * fx if count is not None: count.value += 1 # Undersampling/oversampling? # Determine if the resolution of the image is too low by looking # at the maximum value for kx. This is no comparison between # Nyquist and Rayleigh frequency. if verbose and np.max(kx**2) <= km**2: # Detector is not set up properly. Higher resolution # can be achieved. print("......Measurement data is undersampled.") else: print("......Measurement data is oversampled.") # raise NotImplementedError("Oversampled data not yet supported."+ # " Please rescale xD-axis of the input data.") # DEAL WITH OVERSAMPLED DATA? # lenk = len(kx) # kx = np.fft.ifftshift(np.linspace(-np.sqrt(km), # np.sqrt(km), # len(fx), endpoint=False)) # # F(kD-kₘs₀) = - i kₘ sqrt(2/π) / a₀ * M exp(-i kₘ M lD) * UB(kD) # kₘM = sqrt( kₘ² - kx² ) # s₀ = ( -sin(ϕ₀), cos(ϕ₀) ) # # We create the 2D interpolation object F # - We compute the real coordinates (krx,kry) = kD-kₘs₀ # - We set as grid points the right side of the equation # # The interpolated griddata may go up to sqrt(2)*kₘ for kx and ky. kx = kx.reshape(1, -1) # a0 should have same shape as kx and UB # a0 = np.atleast_1d(a0) # a0 = a0.reshape(1,-1) filter_klp = (kx**2 < km**2) M = 1. / km * np.sqrt(km**2 - kx**2) # Fsin = -1j * km * np.sqrt(2/np.pi) / a0 * M * np.exp(-1j*km*M*lD) # new in version 0.1.4: # We multiply by the factor (M-1) instead of just (M) # to take into account that we have a scattered # wave that is normalized by u0. Fsin = -1j * km * np.sqrt(2 / np.pi) * M * np.exp(-1j * km * (M-1) * lD) # UB has same shape (len(angles), len(kx)) Fsin = Fsin * UB * filter_klp ang = angles.reshape(-1, 1) if semi_coverage: Fsin = np.vstack((Fsin, np.conj(Fsin))) ang = np.vstack((ang, ang + np.pi)) if count is not None: count.value += 1 # Compute kxl and kyl (in rotated system ϕ₀) kxl = kx kyl = np.sqrt((km**2 - kx**2) * filter_klp) - km # rotate kxl and kyl to where they belong krx = np.cos(ang) * kxl + np.sin(ang) * kyl kry = - np.sin(ang) * kxl + np.cos(ang) * kyl Xf = krx.flatten() Yf = kry.flatten() Zf = Fsin.flatten() # DEBUG: plot kry vs krx # from matplotlib import pylab as plt # plt.figure() # for i in range(len(krx)): # plt.plot(krx[i],kry[i],"x") # plt.axes().set_aspect('equal') # plt.show() # interpolation on grid with same resolution as input data kintp = np.fft.fftshift(kx.reshape(-1)) Fcomp = intp.griddata((Xf, Yf), Zf, (kintp[None, :], kintp[:, None])) if count is not None: count.value += 1 # removed nans Fcomp[np.where(np.isnan(Fcomp))] = 0 # Filter data kinx, kiny = np.meshgrid(np.fft.fftshift(kx), np.fft.fftshift(kx)) Fcomp[np.where((kinx**2 + kiny**2) > np.sqrt(2) * km)] = 0 # Fcomp[np.where(kinx**2+kiny**2<km)] = 0 # Fcomp is centered at K = 0 due to the way we chose kintp/coords f = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(Fcomp))) if count is not None: count.value += 1 return f[::-1]
{ "repo_name": "RI-imaging/ODTbrain", "path": "odtbrain/_alg2d_fmp.py", "copies": "2", "size": "9369", "license": "bsd-3-clause", "hash": 4093693129342112000, "line_mean": 34.6283524904, "line_max": 76, "alpha_frac": 0.6084525218, "autogenerated": false, "ratio": 3.2054463977938643, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4813898919593864, "avg_score": null, "num_lines": null }
# 2d grid posterior approximation to N(x|mu,sigma^2) N(mu) Cauchy(sigma) # https://www.ritchievink.com/blog/2019/06/10/bayesian-inference-how-we-are-able-to-chase-the-posterior/ import numpy as np import matplotlib.pyplot as plt from scipy import stats figdir = "../figures" import os def save_fig(fname): if figdir: plt.savefig(os.path.join(figdir, fname)) data = np.array([195, 182]) # lets create a grid of our two parameters mu = np.linspace(150, 250) sigma = np.linspace(0, 15)[::-1] mm, ss = np.meshgrid(mu, sigma) # just broadcasted parameters # Likeliohood likelihood = stats.norm(mm, ss).pdf(data[0]) * stats.norm(mm, ss).pdf(data[1]) aspect = mm.max() / ss.max() / 3 extent = [mm.min(), mm.max(), ss.min(), ss.max()] # extent = left right bottom top plt.figure() plt.imshow(likelihood, cmap='Reds', aspect=aspect, extent=extent) plt.xlabel(r'$\mu$') plt.ylabel(r'$\sigma$') plt.title('Likelihood') save_fig('posteriorGridLik.pdf') plt.show() # Prior prior = stats.norm(200, 15).pdf(mm) * stats.cauchy(0, 10).pdf(ss) plt.figure() plt.imshow(prior, cmap='Greens', aspect=aspect, extent=extent) plt.xlabel(r'$\mu$') plt.ylabel(r'$\sigma$') plt.title('Prior') save_fig('posteriorGridPrior.pdf') plt.show() # Posterior - grid unnormalized_posterior = prior * likelihood posterior = unnormalized_posterior / np.nan_to_num(unnormalized_posterior).sum() plt.figure() plt.imshow(posterior, cmap='Blues', aspect=aspect, extent=extent) plt.xlabel(r'$\mu$') plt.ylabel(r'$\sigma$') plt.title('Posterior') save_fig('posteriorGridPost.pdf') plt.show()
{ "repo_name": "probml/pyprobml", "path": "scripts/posteriorGrid2d.py", "copies": "1", "size": "1566", "license": "mit", "hash": -2924953730165457400, "line_mean": 26, "line_max": 104, "alpha_frac": 0.7056194125, "autogenerated": false, "ratio": 2.76678445229682, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.39724038647968196, "avg_score": null, "num_lines": null }
"""2D histograms """ import pylab import pandas as pd import numpy as np from .core import VizInput2D __all__ = ["Hist2D"] class Hist2D(VizInput2D): """2D histogram .. plot:: :include-source: :width: 80% from numpy import random from biokit.viz import hist2d X = random.randn(10000) Y = random.randn(10000) h = hist2d.Hist2D(X,Y) h.plot(bins=100, contour=True) """ def __init__(self, x, y=None, verbose=False): """.. rubric:: constructor :param x: an array for X values. See :class:`~biokit.viz.core.VizInput2D` for details. :param y: an array for Y values. See :class:`~biokit.viz.core.VizInput2D` for details. """ super(Hist2D, self).__init__(x=x, y=y, verbose=verbose) def plot(self, bins=100, cmap="hot_r", fontsize=10, Nlevels=4, xlabel=None, ylabel=None, norm=None, range=None, normed=False, colorbar=True, contour=True, grid=True, **kargs): """plots histogram of mean across replicates versus coefficient variation :param int bins: binning for the 2D histogram (either a float or list of 2 binning values). :param cmap: a valid colormap (defaults to hot_r) :param fontsize: fontsize for the labels :param int Nlevels: must be more than 2 :param str xlabel: set the xlabel (overwrites content of the dataframe) :param str ylabel: set the ylabel (overwrites content of the dataframe) :param norm: set to 'log' to show the log10 of the values. :param normed: normalise the data :param range: as in pylab.Hist2D : a 2x2 shape [[-3,3],[-4,4]] :param contour: show some contours (default to True) :param bool grid: Show unerlying grid (defaults to True) If the input is a dataframe, the xlabel and ylabel will be populated with the column names of the dataframe. """ X = self.df[self.df.columns[0]].values Y = self.df[self.df.columns[1]].values if len(X) > 10000: print("Computing 2D histogram. Please wait") pylab.clf() if norm == 'log': from matplotlib import colors res = pylab.hist2d(X, Y, bins=bins, normed=normed, cmap=cmap, norm=colors.LogNorm()) else: res = pylab.hist2d(X, Y, bins=bins, cmap=cmap, normed=normed, range=range) if colorbar is True: pylab.colorbar() if contour: try: bins1 = bins[0] bins2 = bins[1] except: bins1 = bins bins2 = bins X, Y = pylab.meshgrid(res[1][0:bins1], res[2][0:bins2]) if contour: if res[0].max().max() < 10 and norm == 'log': pylab.contour(X, Y, res[0].transpose()) else: levels = [round(x) for x in pylab.logspace(0, pylab.log10(res[0].max().max()), Nlevels)] pylab.contour(X, Y, res[0].transpose(), levels[2:]) #pylab.clabel(C, fontsize=fontsize, inline=1) if ylabel is None: ylabel = self.df.columns[1] if xlabel is None: xlabel = self.df.columns[0] pylab.xlabel(xlabel, fontsize=fontsize) pylab.ylabel(ylabel, fontsize=fontsize) if grid is True: pylab.grid(True) return res
{ "repo_name": "biokit/biokit", "path": "biokit/viz/hist2d.py", "copies": "1", "size": "3513", "license": "bsd-2-clause", "hash": 4153284619454772700, "line_mean": 30.9363636364, "line_max": 94, "alpha_frac": 0.559920296, "autogenerated": false, "ratio": 3.6978947368421053, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47578150328421054, "avg_score": null, "num_lines": null }
"""2D plots of sound fields etc.""" import matplotlib as _mpl import matplotlib.pyplot as _plt from mpl_toolkits import axes_grid1 as _axes_grid1 import numpy as _np from . import default as _default from . import util as _util def _register_cmap_clip(name, original_cmap, alpha): """Create a color map with "over" and "under" values.""" from matplotlib.colors import LinearSegmentedColormap cdata = _plt.cm.datad[original_cmap] if isinstance(cdata, dict): cmap = LinearSegmentedColormap(name, cdata) else: cmap = LinearSegmentedColormap.from_list(name, cdata) cmap.set_over([alpha * c + 1 - alpha for c in cmap(1.0)[:3]]) cmap.set_under([alpha * c + 1 - alpha for c in cmap(0.0)[:3]]) _plt.cm.register_cmap(cmap=cmap) # The 'coolwarm' colormap is based on the paper # "Diverging Color Maps for Scientific Visualization" by Kenneth Moreland # http://www.sandia.gov/~kmorel/documents/ColorMaps/ _register_cmap_clip('coolwarm_clip', 'coolwarm', 0.7) def _register_cmap_transparent(name, color): """Create a color map from a given color to transparent.""" from matplotlib.colors import colorConverter, LinearSegmentedColormap red, green, blue = colorConverter.to_rgb(color) cdict = {'red': ((0, red, red), (1, red, red)), 'green': ((0, green, green), (1, green, green)), 'blue': ((0, blue, blue), (1, blue, blue)), 'alpha': ((0, 0, 0), (1, 1, 1))} cmap = LinearSegmentedColormap(name, cdict) _plt.cm.register_cmap(cmap=cmap) _register_cmap_transparent('blacktransparent', 'black') def virtualsource(xs, ns=None, type='point', *, ax=None): """Draw position/orientation of virtual source.""" xs = _np.asarray(xs) ns = _np.asarray(ns) if ax is None: ax = _plt.gca() if type == 'point': vps = _plt.Circle(xs, .05, edgecolor='k', facecolor='k') ax.add_artist(vps) for n in range(1, 3): vps = _plt.Circle(xs, .05+n*0.05, edgecolor='k', fill=False) ax.add_artist(vps) elif type == 'plane': ns = 0.2 * ns ax.arrow(xs[0], xs[1], ns[0], ns[1], head_width=0.05, head_length=0.1, fc='k', ec='k') def reference(xref, *, size=0.1, ax=None): """Draw reference/normalization point.""" xref = _np.asarray(xref) if ax is None: ax = _plt.gca() ax.plot((xref[0]-size, xref[0]+size), (xref[1]-size, xref[1]+size), 'k-') ax.plot((xref[0]-size, xref[0]+size), (xref[1]+size, xref[1]-size), 'k-') def secondary_sources(x0, n0, *, size=0.05, grid=None): """Simple visualization of secondary source locations. Parameters ---------- x0 : (N, 3) array_like Loudspeaker positions. n0 : (N, 3) or (3,) array_like Normal vector(s) of loudspeakers. size : float, optional Size of loudspeakers in metres. grid : triple of array_like, optional If specified, only loudspeakers within the *grid* are shown. """ x0 = _np.asarray(x0) n0 = _np.asarray(n0) ax = _plt.gca() # plot only secondary sources inside simulated area if grid is not None: x0, n0 = _visible_secondarysources(x0, n0, grid) # plot symbols for x00 in x0: ss = _plt.Circle(x00[0:2], size, edgecolor='k', facecolor='k') ax.add_artist(ss) def loudspeakers(x0, n0, a0=0.5, *, size=0.08, show_numbers=False, grid=None, ax=None): """Draw loudspeaker symbols at given locations and angles. Parameters ---------- x0 : (N, 3) array_like Loudspeaker positions. n0 : (N, 3) or (3,) array_like Normal vector(s) of loudspeakers. a0 : float or (N,) array_like, optional Weighting factor(s) of loudspeakers. size : float, optional Size of loudspeakers in metres. show_numbers : bool, optional If ``True``, loudspeaker numbers are shown. grid : triple of array_like, optional If specified, only loudspeakers within the *grid* are shown. ax : Axes object, optional The loudspeakers are plotted into this `matplotlib.axes.Axes` object or -- if not specified -- into the current axes. """ x0 = _util.asarray_of_rows(x0) n0 = _util.asarray_of_rows(n0) a0 = _util.asarray_1d(a0).reshape(-1, 1) # plot only secondary sources inside simulated area if grid is not None: x0, n0 = _visible_secondarysources(x0, n0, grid) # normalized coordinates of loudspeaker symbol (see IEC 60617-9) codes, coordinates = zip(*( (_mpl.path.Path.MOVETO, [-0.62, 0.21]), (_mpl.path.Path.LINETO, [-0.31, 0.21]), (_mpl.path.Path.LINETO, [0, 0.5]), (_mpl.path.Path.LINETO, [0, -0.5]), (_mpl.path.Path.LINETO, [-0.31, -0.21]), (_mpl.path.Path.LINETO, [-0.62, -0.21]), (_mpl.path.Path.CLOSEPOLY, [0, 0]), (_mpl.path.Path.MOVETO, [-0.31, 0.21]), (_mpl.path.Path.LINETO, [-0.31, -0.21]), )) coordinates = _np.column_stack([coordinates, _np.zeros(len(coordinates))]) coordinates *= size patches = [] for x00, n00 in _util.broadcast_zip(x0, n0): # rotate and translate coordinates R = _util.rotation_matrix([1, 0, 0], n00) transformed_coordinates = _np.inner(coordinates, R) + x00 patches.append(_mpl.patches.PathPatch(_mpl.path.Path( transformed_coordinates[:, :2], codes))) # add collection of patches to current axis p = _mpl.collections.PatchCollection( patches, edgecolor='0', facecolor=_np.tile(1 - a0, 3)) if ax is None: ax = _plt.gca() ax.add_collection(p) if show_numbers: for idx, (x00, n00) in enumerate(_util.broadcast_zip(x0, n0)): x, y = x00[:2] - 1.2 * size * n00[:2] ax.text(x, y, idx + 1, horizontalalignment='center', verticalalignment='center', clip_on=True) def _visible_secondarysources(x0, n0, grid): """Determine secondary sources which lie within *grid*.""" x, y = _util.as_xyz_components(grid[:2]) idx = _np.where((x0[:, 0] > x.min()) & (x0[:, 0] < x.max()) & (x0[:, 1] > y.min()) & (x0[:, 1] < x.max())) idx = _np.squeeze(idx) return x0[idx, :], n0[idx, :] def amplitude(p, grid, *, xnorm=None, cmap='coolwarm_clip', vmin=-2.0, vmax=2.0, xlabel=None, ylabel=None, colorbar=True, colorbar_kwargs={}, ax=None, **kwargs): """Two-dimensional plot of sound field (real part). Parameters ---------- p : array_like Sound pressure values (or any other scalar quantity if you like). If the values are complex, the imaginary part is ignored. Typically, *p* is two-dimensional with a shape of *(Ny, Nx)*, *(Nz, Nx)* or *(Nz, Ny)*. This is the case if `sfs.util.xyz_grid()` was used with a single number for *z*, *y* or *x*, respectively. However, *p* can also be three-dimensional with a shape of *(Ny, Nx, 1)*, *(1, Nx, Nz)* or *(Ny, 1, Nz)*. This is the case if :func:`numpy.meshgrid` was used with a scalar for *z*, *y* or *x*, respectively (and of course with the default ``indexing='xy'``). .. note:: If you want to plot a single slice of a pre-computed "full" 3D sound field, make sure that the slice still has three dimensions (including one singleton dimension). This way, you can use the original *grid* of the full volume without changes. This works because the grid component corresponding to the singleton dimension is simply ignored. grid : triple or pair of numpy.ndarray The grid that was used to calculate *p*, see `sfs.util.xyz_grid()`. If *p* is two-dimensional, but *grid* has 3 components, one of them must be scalar. xnorm : array_like, optional Coordinates of a point to which the sound field should be normalized before plotting. If not specified, no normalization is used. See `sfs.util.normalize()`. Returns ------- AxesImage See :func:`matplotlib.pyplot.imshow`. Other Parameters ---------------- xlabel, ylabel : str Overwrite default x/y labels. Use ``xlabel=''`` and ``ylabel=''`` to remove x/y labels. The labels can be changed afterwards with :func:`matplotlib.pyplot.xlabel` and :func:`matplotlib.pyplot.ylabel`. colorbar : bool, optional If ``False``, no colorbar is created. colorbar_kwargs : dict, optional Further colorbar arguments, see `add_colorbar()`. ax : Axes, optional If given, the plot is created on *ax* instead of the current axis (see :func:`matplotlib.pyplot.gca`). cmap, vmin, vmax, **kwargs All further parameters are forwarded to :func:`matplotlib.pyplot.imshow`. See Also -------- sfs.plot2d.level """ p = _np.asarray(p) grid = _util.as_xyz_components(grid) # normalize sound field wrt xnorm if xnorm is not None: p = _util.normalize(p, grid, xnorm) if p.ndim == 3: if p.shape[2] == 1: p = p[:, :, 0] # first axis: y; second axis: x plotting_plane = 'xy' elif p.shape[1] == 1: p = p[:, 0, :].T # first axis: z; second axis: y plotting_plane = 'yz' elif p.shape[0] == 1: p = p[0, :, :].T # first axis: z; second axis: x plotting_plane = 'xz' else: raise ValueError("If p is 3D, one dimension must have length 1") elif len(grid) == 3: if grid[2].ndim == 0: plotting_plane = 'xy' elif grid[1].ndim == 0: plotting_plane = 'xz' elif grid[0].ndim == 0: plotting_plane = 'yz' else: raise ValueError( "If p is 2D and grid is 3D, one grid component must be scalar") else: # 2-dimensional case plotting_plane = 'xy' if plotting_plane == 'xy': x, y = grid[[0, 1]] elif plotting_plane == 'xz': x, y = grid[[0, 2]] elif plotting_plane == 'yz': x, y = grid[[1, 2]] dx = 0.5 * x.ptp() / p.shape[0] dy = 0.5 * y.ptp() / p.shape[1] if ax is None: ax = _plt.gca() # see https://github.com/matplotlib/matplotlib/issues/10567 if _mpl.__version__.startswith('2.1.'): p = _np.clip(p, -1e15, 1e15) # clip to float64 range im = ax.imshow(_np.real(p), cmap=cmap, origin='lower', extent=[x.min()-dx, x.max()+dx, y.min()-dy, y.max()+dy], vmax=vmax, vmin=vmin, **kwargs) if xlabel is None: xlabel = plotting_plane[0] + ' / m' if ylabel is None: ylabel = plotting_plane[1] + ' / m' ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if colorbar: add_colorbar(im, **colorbar_kwargs) return im def level(p, grid, *, xnorm=None, power=False, cmap=None, vmax=3, vmin=-50, **kwargs): """Two-dimensional plot of level (dB) of sound field. Takes the same parameters as `sfs.plot2d.amplitude()`. Other Parameters ---------------- power : bool, optional See `sfs.util.db()`. """ # normalize before converting to dB! if xnorm is not None: p = _util.normalize(p, grid, xnorm) L = _util.db(p, power=power) return amplitude(L, grid=grid, xnorm=None, cmap=cmap, vmax=vmax, vmin=vmin, **kwargs) def particles(x, *, trim=None, ax=None, xlabel='x (m)', ylabel='y (m)', edgecolors=None, marker='.', s=15, **kwargs): """Plot particle positions as scatter plot. Parameters ---------- x : triple or pair of array_like x, y and optionally z components of particle positions. The z components are ignored. If the values are complex, the imaginary parts are ignored. Returns ------- Scatter See :func:`matplotlib.pyplot.scatter`. Other Parameters ---------------- trim : array of float, optional xmin, xmax, ymin, ymax limits for which the particles are plotted. ax : Axes, optional If given, the plot is created on *ax* instead of the current axis (see :func:`matplotlib.pyplot.gca`). xlabel, ylabel : str Overwrite default x/y labels. Use ``xlabel=''`` and ``ylabel=''`` to remove x/y labels. The labels can be changed afterwards with :func:`matplotlib.pyplot.xlabel` and :func:`matplotlib.pyplot.ylabel`. edgecolors, markr, s, **kwargs All further parameters are forwarded to :func:`matplotlib.pyplot.scatter`. """ XX, YY = [_np.real(c) for c in x[:2]] if trim is not None: xmin, xmax, ymin, ymax = trim idx = _np.where((XX > xmin) & (XX < xmax) & (YY > ymin) & (YY < ymax)) XX = XX[idx] YY = YY[idx] if ax is None: ax = _plt.gca() if xlabel: ax.set_xlabel(xlabel) if ylabel: ax.set_ylabel(ylabel) return ax.scatter(XX, YY, edgecolors=edgecolors, marker=marker, s=s, **kwargs) def vectors(v, grid, *, cmap='blacktransparent', headlength=3, headaxislength=2.5, ax=None, clim=None, **kwargs): """Plot a vector field in the xy plane. Parameters ---------- v : triple or pair of array_like x, y and optionally z components of vector field. The z components are ignored. If the values are complex, the imaginary parts are ignored. grid : triple or pair of array_like The grid that was used to calculate *v*, see `sfs.util.xyz_grid()`. Any z components are ignored. Returns ------- Quiver See :func:`matplotlib.pyplot.quiver`. Other Parameters ---------------- ax : Axes, optional If given, the plot is created on *ax* instead of the current axis (see :func:`matplotlib.pyplot.gca`). clim : pair of float, optional Limits for the scaling of arrow colors. See :func:`matplotlib.pyplot.quiver`. cmap, headlength, headaxislength, **kwargs All further parameters are forwarded to :func:`matplotlib.pyplot.quiver`. """ v = _util.as_xyz_components(v[:2]).apply(_np.real) X, Y = _util.as_xyz_components(grid[:2]) speed = _np.linalg.norm(v) with _np.errstate(invalid='ignore'): U, V = v.apply(_np.true_divide, speed) if ax is None: ax = _plt.gca() if clim is None: v_ref = 1 / (_default.rho0 * _default.c) # reference particle velocity clim = 0, 2 * v_ref return ax.quiver(X, Y, U, V, speed, cmap=cmap, pivot='mid', units='xy', angles='xy', headlength=headlength, headaxislength=headaxislength, clim=clim, **kwargs) def add_colorbar(im, *, aspect=20, pad=0.5, **kwargs): r"""Add a vertical color bar to a plot. Parameters ---------- im : ScalarMappable The output of `sfs.plot2d.amplitude()`, `sfs.plot2d.level()` or any other `matplotlib.cm.ScalarMappable`. aspect : float, optional Aspect ratio of the colorbar. Strictly speaking, since the colorbar is vertical, it's actually the inverse of the aspect ratio. pad : float, optional Space between image plot and colorbar, as a fraction of the width of the colorbar. .. note:: The *pad* argument of :meth:`matplotlib.figure.Figure.colorbar` has a slightly different meaning ("fraction of original axes")! \**kwargs All further arguments are forwarded to :meth:`matplotlib.figure.Figure.colorbar`. See Also -------- matplotlib.pyplot.colorbar """ ax = im.axes divider = _axes_grid1.make_axes_locatable(ax) width = _axes_grid1.axes_size.AxesY(ax, aspect=1/aspect) pad = _axes_grid1.axes_size.Fraction(pad, width) current_ax = _plt.gca() cax = divider.append_axes("right", size=width, pad=pad) _plt.sca(current_ax) return ax.figure.colorbar(im, cax=cax, orientation='vertical', **kwargs)
{ "repo_name": "sfstoolbox/sfs-python", "path": "sfs/plot2d.py", "copies": "1", "size": "16320", "license": "mit", "hash": -32249871491684236, "line_mean": 33.8717948718, "line_max": 79, "alpha_frac": 0.5824754902, "autogenerated": false, "ratio": 3.4503171247357294, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9530488929038294, "avg_score": 0.00046073717948717953, "num_lines": 468 }
## 2. Drawing lines ## import matplotlib.pyplot as plt import numpy as np x = [0, 1, 2, 3, 4, 5] # Going by our formula, every y value at a position is the same as the x-value in the same position. # We could write y = x, but let's write them all out to make this more clear. y = [0, 1, 2, 3, 4, 5] # As you can see, this is a straight line that passes through the points (0,0), (1,1), (2,2), and so on. plt.plot(x, y) plt.show() # Let's try a slightly more ambitious line. # What if we did y = x + 1? # We'll make x an array now, so we can add 1 to every element more easily. x = np.asarray([0, 1, 2, 3, 4, 5]) y = x + 1 # y is the same as x, but every element has 1 added to it. print(y) # This plot passes through (0,1), (1,2), and so on. # It's the same line as before, but shifted up 1 on the y-axis. plt.plot(x, y) plt.show() # By adding 1 to the line, we moved what's called the y-intercept -- where the line intersects with the y-axis. # Moving the intercept can shift the whole line up (or down when we subtract). plt.plot(x,x-1) plt.show() plt.plot(x,x+10) plt.show() ## 3. Working with slope ## import matplotlib.pyplot as plt import numpy as np x = np.asarray([0, 1, 2, 3, 4, 5]) # Let's set the slope of the line to 2. y = 2 * x # See how this line is "steeper" than before? The larger the slope is, the steeper the line becomes. # On the flipside, fractional slopes will create a "shallower" line. # Negative slopes will create a line where y values decrease as x values increase. plt.plot(x, y) plt.show() plt.plot(x,4*x) plt.show() plt.plot(x,0.5*x) plt.show() plt.plot(x, (-2*x)) plt.show() ## 4. Starting out with linear regression ## # The wine quality data is loaded into wine_quality from numpy import cov slope_density = cov(wine_quality['density'],wine_quality['quality']) ## 5. Finishing linear regression ## from numpy import cov # This function will take in two columns of data, and return the slope of the linear regression line. def calc_slope(x, y): return cov(x, y)[0, 1] / x.var() intercept_density = wine_quality["quality"].mean() - (calc_slope(wine_quality["density"], wine_quality["quality"]) * wine_quality["density"].mean()) ## 6. Making predictions ## from numpy import cov def calc_slope(x, y): return cov(x, y)[0, 1] / x.var() # Calculate the intercept given the x column, y column, and the slope def calc_intercept(x, y, slope): return y.mean() - (slope * x.mean()) def predicted(x): return x * slope + intercept slope = calc_slope(wine_quality["density"], wine_quality["quality"]) intercept = calc_intercept(wine_quality["density"], wine_quality["quality"], slope) predicted_quality = wine_quality["density"].apply(predicted) ## 7. Finding error ## from scipy.stats import linregress # We've seen the r_value before -- we'll get to what p_value and stderr_slope are soon -- for now, don't worry about them. slope, intercept, r_value, p_value, stderr_slope = linregress(wine_quality["density"], wine_quality["quality"]) # As you can see, these are the same values we calculated (except for slight rounding differences) print(slope) print(intercept) def pred(x): return x*slope + intercept pred_d = wine_quality['density'].apply(pred) rss = 0 for i in range(len(pred_d)): rss += (wine_quality['quality'][i] - pred_d[i])**2 ## 8. Standard error ## from scipy.stats import linregress import numpy as np # We can do our linear regression # Sadly, the stderr_slope isn't the standard error, but it is the standard error of the slope fitting only # We'll need to calculate the standard error of the equation ourselves slope, intercept, r_value, p_value, stderr_slope = linregress(wine_quality["density"], wine_quality["quality"]) predicted_y = np.asarray([slope * x + intercept for x in wine_quality["density"]]) residuals = (wine_quality["quality"] - predicted_y) ** 2 rss = sum(residuals) stderr = (rss / (len(wine_quality["quality"]) - 2)) ** .5 def within_percentage(y, predicted_y, stderr, error_count): within = stderr * error_count differences = abs(predicted_y - y) lower_differences = [d for d in differences if d <= within] within_count = len(lower_differences) return within_count / len(y) within_one = within_percentage(wine_quality["quality"], predicted_y, stderr, 1) within_two = within_percentage(wine_quality["quality"], predicted_y, stderr, 2) within_three = within_percentage(wine_quality["quality"], predicted_y, stderr, 3)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Probability Statistics Beginner/Linear regression-15.py", "copies": "1", "size": "4449", "license": "mit", "hash": -6005366155877097000, "line_mean": 30.7857142857, "line_max": 148, "alpha_frac": 0.6970105642, "autogenerated": false, "ratio": 3.119915848527349, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43169264127273493, "avg_score": null, "num_lines": null }
"""2D Refocusing of an HL60 cell The data show a live HL60 cell imaged with quadriwave lateral shearing interferometry (SID4Bio, Phasics S.A., France). The diameter of the cell is about 20µm. """ import matplotlib.pylab as plt import numpy as np import unwrap import nrefocus from example_helper import load_cell # load initial cell cell1 = load_cell("HL60_field.zip") # refocus to two different positions cell2 = nrefocus.refocus(cell1, 15, 1, 1) # forward cell3 = nrefocus.refocus(cell1, -15, 1, 1) # backward # amplitude range vmina = np.min(np.abs(cell1)) vmaxa = np.max(np.abs(cell1)) ampkw = {"cmap": plt.get_cmap("gray"), "vmin": vmina, "vmax": vmaxa} # phase range cell1p = unwrap.unwrap(np.angle(cell1)) cell2p = unwrap.unwrap(np.angle(cell2)) cell3p = unwrap.unwrap(np.angle(cell3)) vminp = np.min(cell1p) vmaxp = np.max(cell1p) phakw = {"cmap": plt.get_cmap("coolwarm"), "vmin": vminp, "vmax": vmaxp} # plots fig, axes = plt.subplots(2, 3, figsize=(8, 4.5)) axes = axes.flatten() for ax in axes: ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) # titles axes[0].set_title("focused backward") axes[1].set_title("original image") axes[2].set_title("focused forward") # data mapamp = axes[0].imshow(np.abs(cell3), **ampkw) axes[1].imshow(np.abs(cell1), **ampkw) axes[2].imshow(np.abs(cell2), **ampkw) mappha = axes[3].imshow(cell3p, **phakw) axes[4].imshow(cell1p, **phakw) axes[5].imshow(cell2p, **phakw) # colobars cbkwargs = {"fraction": 0.045} plt.colorbar(mapamp, ax=axes[0], label="amplitude [a.u.]", **cbkwargs) plt.colorbar(mapamp, ax=axes[1], label="amplitude [a.u.]", **cbkwargs) plt.colorbar(mapamp, ax=axes[2], label="amplitude [a.u.]", **cbkwargs) plt.colorbar(mappha, ax=axes[3], label="phase [rad]", **cbkwargs) plt.colorbar(mappha, ax=axes[4], label="phase [rad]", **cbkwargs) plt.colorbar(mappha, ax=axes[5], label="phase [rad]", **cbkwargs) plt.tight_layout() plt.show()
{ "repo_name": "RI-imaging/nrefocus", "path": "examples/refocus_cell.py", "copies": "2", "size": "1999", "license": "bsd-3-clause", "hash": -6772581231595450000, "line_mean": 27.9565217391, "line_max": 70, "alpha_frac": 0.6861861862, "autogenerated": false, "ratio": 2.6289473684210525, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9315133554621053, "avg_score": 0, "num_lines": 69 }
# 2D Semantic Segmentation # License John Lambert # Stanford University from scipy.misc import imread, imresize import numpy as np #from '/Applications/MATLAB_R2016a.app/extern/engines/python/build/lib/matlab/engine' import matlab.engine import os.path import time import tensorflow as tf import os, sys import csv import os.path from sys import argv from os.path import exists import matplotlib.pyplot as plt from datetime import datetime import scipy.io import h5py import matplotlib def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def getImages( maxZSlice): #maxZSlice = 39 dir_path = 'June_6_2011_415-5_Series008/' images = np.zeros( (maxZSlice , 1024, 1024, 3) ) for idx in xrange( maxZSlice ): zSliceNumber = str( idx ) if len( zSliceNumber ) == 1: zSliceNumber = '0' + zSliceNumber imageName = 'June_6_2011__415-5__Series008_z0%s_ch00.tif' % ( zSliceNumber ) if os.path.isfile( os.path.join(dir_path, imageName ) ): imagePath = os.path.join( dir_path, imageName ) testIm = imread( imagePath ) #print testIm.shape images[idx] = imread( imagePath ) images = images.astype( np.float32 ) return images def getDendriticSpineData(): print 'Data will be retrieved:' Z_SLICE_DEPTH = 39 IMAGE_SIZE = (1024,1024,3) NUM_CLASSES = 2 #NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 25 #NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 25 # I DUNNO #eng = matlab.engine.start_matlab() #labelsObject = eng.GenerateDendriticSpineVoxels() # should specify folders here, etc. # for property, value in vars(labelsObject).iteritems(): # print property #, ": ", value #labelsPythonArray = getattr( labelsObject, '_data' ) #python_type = getattr( labelsObject, '_python_type' ) #sizeOfArray = getattr( labelsObject, '_size' ) #startOfArray = getattr( labelsObject, '_start' ) #labels = np.asarray( labelsPythonArray , dtype=np.float64 ) #labels = np.frombuffer( labelsPythonArray, dtype=np.float64 ) #print 'Buffered Labels shape', labels.shape #labels = np.reshape( labels, (1024,1024, Z_SLICE_DEPTH )) # labels is of shape 1024 x 1024 x 47 f = h5py.File('/Users/johnlambert/Documents/Stanford_2015-2016/SpringQuarter_2015-2016/CS_231A/FinalProject/dendriticSpines.mat','r') data = f.get('voxels') # Get a certain dataset h5pyLabels = np.array(data) print 'h5pylabels shape', h5pyLabels.shape #rint 'Previous Labels shape', labels.shape h5pyLabels = np.transpose( h5pyLabels , ( 0, 2 , 1) ) # or should it be ( 2 , 1, 0 ) ? IS X OR Y FIRST? print 'h5pylabels shape', h5pyLabels.shape #labelsToPlot = labels[:,:,8] # labelsToPlot = h5pyLabels[:,:,8] # plt.subplot(1, 1, 1) # plt.imshow( labelsToPlot.astype('uint8') , cmap='Greys_r') # plt.axis('off') # plt.gcf().set_size_inches(10, 10) # plt.title( 'Segmentation GT') # plt.show() labels = h5pyLabels labels = np.reshape( labels, (Z_SLICE_DEPTH, 1024,1024, 1) ) # MAX_POOL needs batch, height, width, channels print 'New Labels shape', labels.shape images = getImages( Z_SLICE_DEPTH ) labels = 1 - labels return images, labels #_activation_summary(h_conv1) # pool1 #bias = tf.nn.bias_add(conv, biases) # norm1 #norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') # conv2 #biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) #_activation_summary(conv2) # norm2 #norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # pool2 # two dimensions are the patch size, the next is the number of input channels, # and the last is the number of output channels. def inference( images ): print 'Running network forward, performing inference' with tf.variable_scope('conv1') as scope: weight_conv1 = weight_variable([7, 7, 3, 64]) # I use 32 Filters of size (3 x 3). Later try ( 5 x 5 ) conv1_output = tf.nn.conv2d( images, weight_conv1 , strides=[1, 1, 1, 1], padding='SAME') bias_conv1 = bias_variable([64]) conv1_output_wBias = tf.nn.bias_add( conv1_output , bias_conv1 ) conv1_activation = tf.nn.relu( conv1_output_wBias ) pool1 = tf.nn.max_pool( conv1_activation , ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') with tf.variable_scope('conv2') as scope: weight_conv2 = weight_variable([7, 7, 64, 2]) # kernel_size: 2 , stride: 2 #stddev=1e-4, wd=0.0) conv2_output = tf.nn.conv2d( pool1 , weight_conv2, strides=[1, 1, 1, 1], padding='SAME') bias_conv2 = bias_variable([2]) conv2_output_wBias = tf.nn.bias_add( conv2_output, bias_conv2 ) conv2_activation = tf.nn.relu( conv2_output_wBias ) pool2 = tf.nn.max_pool( conv2_activation , ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') return pool2 # try putting on fc layer at the end? # or end with 2 filters as 2 class buckets? # For sparse_softmax_cross_entropy_with_logits, labels must have the shape [batch_size] # and the dtype int64. Each label is an int in range [0, num_classes). def computeLoss(logits, labels, batch_size ): batch_size = 256 * 256 print 'computing loss' # NEED A 4-D TENSOR IN ORDER TO DO MAX-POOLING. (Z_SLICE_DEPTH, 1024,1024, 1) # `logits` must have the shape `[batch_size, num_classes]` and dtype `float32` or `float64`. logits = tf.reshape( logits, [batch_size, -1]) labels = tf.cast(labels, tf.float32) firstPooledLabels = tf.nn.max_pool( labels, ksize=[1,4,4,1], strides=[1,4,4,1], padding='SAME') # equivalent to 1,4,4,1 ? #pooledLabels2 = tf.nn.max_pool( pooledLabels1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # Sparse means we write the index of the class ( not one-hot) # Calculate the average cross entropy loss across the batch. # `labels` must have the shape `[batch_size]` and dtype `int32` or `int64` pooledLabels = tf.reshape( firstPooledLabels, [ batch_size ] ) # [ -1 ] pooledLabels = tf.cast( pooledLabels , tf.int64) # USE WEIGHTS # tf.nn.weighted_cross_entropy_with_logits(logits, targets, pos_weight, name=None) predictions = tf.nn.softmax( tf.cast( logits, 'float64') ) # logits is float32, float64. 2-D with shape [batch_size, num_classes]. cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, pooledLabels, name='cross_entropy_per_pixel_example') cross_entropy_sum = tf.reduce_sum(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_sum) #cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') #tf.add_to_collection('losses', cross_entropy_mean) # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss'), predictions, firstPooledLabels # def computeLoss( logits, labels, batch_size ): # weighted version # batch_size = 256 * 256 # print 'computing loss' # #NEED A 4-D TENSOR IN ORDER TO DO MAX-POOLING. (Z_SLICE_DEPTH, 1024,1024, 1) # #`logits` must have the shape `[batch_size, num_classes]` and dtype `float32` or `float64`. # logits = tf.reshape( logits, [batch_size, -1]) # labels = tf.cast(labels, tf.float32) # firstPooledLabels = tf.nn.max_pool( labels, ksize=[1,4,4,1], strides=[1,4,4,1], padding='SAME') # equivalent to 1,4,4,1 ? # #pooledLabels2 = tf.nn.max_pool( pooledLabels1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # #Sparse means we write the index of the class ( not one-hot) # #Calculate the average cross entropy loss across the batch. # #`labels` must have the shape `[batch_size]` and dtype `int32` or `int64` # pooledLabels = tf.reshape( firstPooledLabels, [ batch_size ] ) # [ -1 ] # pooledLabels = tf.cast( pooledLabels , tf.int64) # #USE WEIGHTS # predictions = tf.nn.softmax( tf.cast( logits, 'float64') ) # logits is float32, float64. 2-D with shape [batch_size, num_classes]. # num_labels = 2 # label_batch = tf.cast( pooledLabels , tf.int32 ) # sparse_labels = tf.reshape( label_batch, [-1, 1]) # derived_size = tf.shape(label_batch)[0] # indices = tf.reshape(tf.range(0, derived_size, 1), [-1, 1]) # concated = tf.concat(1, [indices, sparse_labels]) # outshape = tf.pack([derived_size, num_labels]) # oneHotLabels = tf.sparse_to_dense( concated, outshape, 1.0, 0.0) # cross_entropy = tf.nn.weighted_cross_entropy_with_logits( logits, oneHotLabels, 200, name='weighted_CE_per_pixel') # pos_weight = 2 # cross_entropy_sum = tf.reduce_sum(cross_entropy, name='cross_entropy') # tf.add_to_collection('losses', cross_entropy_sum) # # cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') # # tf.add_to_collection('losses', cross_entropy_mean) # # The total loss is defined as the cross entropy loss plus all of the weight # # decay terms (L2 loss). # return tf.add_n(tf.get_collection('losses'), name='total_loss'), predictions, firstPooledLabels def trainNetwork( total_loss, global_step ): print 'Training Network' #num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size lr = 0.000001 train_op = tf.train.GradientDescentOptimizer( lr ).minimize( total_loss ) return train_op def sampleMinibatch( images, labels, batch_size=1 ): full_data_size = images.shape[0] mask = np.random.choice( full_data_size, batch_size ) mask = [9] # for now print 'ImageSlice# ', mask minibatchImages = images[ mask ] minibatchLabels = labels[ mask ] return (minibatchImages, minibatchLabels) def test_ConvNet(): print 'Begin Test of ConvNet' with tf.Graph().as_default(): train_dir = '/Users/johnlambert/Documents/Stanford_2015-2016/SpringQuarter_2015-2016/CS_231A/FinalProject' batch_size = 1 max_epochs = 1000 #with tf.Graph().as_default(): global_step = tf.Variable( 0 , trainable = False ) images, labels = getDendriticSpineData() # print images.shape # print images.dtype # print labels.shape # print labels.dtype inputX_placeholder = tf.placeholder( tf.float32, shape=[ batch_size, 1024, 1024, 3 ], name="imagesForSeg" ) gtY_placeholder = tf.placeholder( tf.float64, shape=[ batch_size, 1024, 1024, 1 ], name="labelsForSeg") #minibatch = sampleMinibatch( images, labels, 1 ) #minibatchImages, minibatchLabels = minibatch # this is one image logits = inference( inputX_placeholder ) loss, predictions, pooledLabels = computeLoss( logits, gtY_placeholder, batch_size ) train_op = trainNetwork( loss, global_step ) #correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) #accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver(tf.all_variables()) init = tf.initialize_all_variables() with tf.Session() as session: #session = tf.InteractiveSession() session.run(init) summary_writer = tf.train.SummaryWriter( train_dir, session.graph ) for step in xrange( 1, max_epochs, 1 ): start_time = time.time() minibatch = sampleMinibatch( images, labels, 1 ) minibatchImages, minibatchLabels = minibatch # this is one image #rescale from -1 to 1 minibatchImages -= 127 minibatchImages /= 255.0 print 'minibatchImages.shape',minibatchImages.shape # ( should be 1 x 1024 x 1024 x 1) print 'Sum of all of the labels at full size', np.sum( minibatchLabels ) #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) feed = { inputX_placeholder: minibatchImages, gtY_placeholder: minibatchLabels } loss_value , y_pred, logits_vals, pooledLabelsVals , _ = session.run( [ loss, predictions, logits, pooledLabels, train_op ], feed_dict=feed) print 'Sum of all of the labels at 1/4 by 1/4 size', np.sum( pooledLabelsVals ) print 'y_pred.shape',y_pred.shape # print 'logits_vals.shape', logits_vals.shape # print # summary_str = sess.run(summary_op) # summary_writer.add_summary(summary_str, step) if step%10 == 0: # or %100 imagesToPlot = np.reshape( minibatchImages , (1024,1024,3) ) #plt.subplot(1, 1, 1) plt.imshow( imagesToPlot.astype('uint8') ) #.transpose(2,1,0) ) #plt.axis('off') #plt.gcf().set_size_inches(10, 10) plt.rcParams["axes.titlesize"] = 8 plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' plt.gca().axis('off') plt.axis('off') plt.title( 'Segmentation Input Image') plt.savefig('input_image%d.png' % (step) ) #plt.show() print 'minibatchLabels.shape',minibatchLabels.shape labelsToPlot = np.reshape( minibatchLabels , (1024,1024) ) #plt.subplot(1, 1, 1) plt.imshow( labelsToPlot.astype('uint8') , cmap='Greys_r') plt.axis('off') plt.gcf().set_size_inches(10, 10) plt.title( 'Segmentation GT') plt.savefig('gt_label_Seg%d.png' % (step) ) #plt.show() y_pred = np.argmax( y_pred, axis=1) y_pred = np.reshape( y_pred, (256,256) ) #plt.subplot(1, 1, 1) plt.imshow( y_pred.astype('uint8') , cmap='Greys_r') plt.axis('off') plt.gcf().set_size_inches(10, 10) plt.title( 'Segmentation prediction') plt.savefig('segmentation_prediction%d.png' % (step) ) pooledLabelsVals = np.reshape( pooledLabelsVals, (256,256) ) #plt.subplot(1, 1, 1) plt.imshow( pooledLabelsVals.astype('uint8') , cmap='Greys_r') plt.axis('off') plt.gcf().set_size_inches(10, 10) plt.title( 'gt downsampled') plt.savefig('gt_Downsampled_max_pool_%d.png' % (step) ) #plt.show() #if i%100 == 0: # train_accuracy = accuracy.eval(feed_dict={ # x:batch[0], y_: batch[1], keep_prob: 1.0}) # print("step %d, training accuracy %g"%(i, train_accuracy)) # print("test accuracy %g"%accuracy.eval(feed_dict={ # x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' #if step % 10 == 0: num_examples_per_step = 1 #FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) # if step % 100 == 0: # summary_str = session.run(summary_op) # summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == max_epochs: #FLAGS.max_steps: checkpoint_path = os.path.join( train_dir, 'model_5005epochs.ckpt') saver.save(session, checkpoint_path, global_step=step) # cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) # train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) # accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # sess.run(tf.initialize_all_variables()) # for i in range(20000): # batch = mnist.train.next_batch(50) # if i%100 == 0: # train_accuracy = accuracy.eval(feed_dict={ # x:batch[0], y_: batch[1], keep_prob: 1.0}) # print("step %d, training accuracy %g"%(i, train_accuracy)) # train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # print("test accuracy %g"%accuracy.eval(feed_dict={ # x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) if __name__ == "__main__": test_ConvNet()
{ "repo_name": "johnwlambert/DendriticSpineSegmentationAndDetection", "path": "2DFullyConvSegmentationConvNet_v4WeightedSigmoidCE.py", "copies": "1", "size": "15564", "license": "mit", "hash": -1183719267047980300, "line_mean": 39.0128534704, "line_max": 145, "alpha_frac": 0.6786815729, "autogenerated": false, "ratio": 2.8134490238611716, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.39921305967611714, "avg_score": null, "num_lines": null }
"""2D slow integration""" import numpy as np def integrate_2d(uSin, angles, res, nm, lD=0, coords=None, count=None, max_count=None, verbose=0): r"""(slow) 2D reconstruction with the Fourier diffraction theorem Two-dimensional diffraction tomography reconstruction algorithm for scattering of a plane wave :math:`u_0(\mathbf{r}) = u_0(x,z)` by a dielectric object with refractive index :math:`n(x,z)`. This function implements the solution by summation in real space, which is extremely slow. Parameters ---------- uSin: (A,N) ndarray Two-dimensional sinogram of line recordings :math:`u_{\mathrm{B}, \phi_j}(x_\mathrm{D})` divided by the incident plane wave :math:`u_0(l_\mathrm{D})` measured at the detector. angles: (A,) ndarray Angular positions :math:`\phi_j` of `uSin` in radians. res: float Vacuum wavelength of the light :math:`\lambda` in pixels. nm: float Refractive index of the surrounding medium :math:`n_\mathrm{m}`. lD: float Distance from center of rotation to detector plane :math:`l_\mathrm{D}` in pixels. coords: None or (2,M) ndarray] Computes only the output image at these coordinates. This keyword is reserved for future versions and is not implemented yet. count, max_count: multiprocessing.Value or `None` Can be used to monitor the progress of the algorithm. Initially, the value of `max_count.value` is incremented by the total number of steps. At each step, the value of `count.value` is incremented. verbose: int Increment to increase verbosity. Returns ------- f: ndarray of shape (N,N), complex if `onlyreal` is `False` Reconstructed object function :math:`f(\mathbf{r})` as defined by the Helmholtz equation. :math:`f(x,z) = k_m^2 \left(\left(\frac{n(x,z)}{n_m}\right)^2 -1\right)` See Also -------- backpropagate_2d: implementation by backprojection fourier_map_2d: implementation by Fourier interpolation odt_to_ri: conversion of the object function :math:`f(\mathbf{r})` to refractive index :math:`n(\mathbf{r})` Notes ----- This method is not meant for production use. The computation time is very long and the reconstruction quality is bad. This function is included in the package, because of its educational value, exemplifying the backpropagation algorithm. Do not use the parameter `lD` in combination with the Rytov approximation - the propagation is not correctly described. Instead, numerically refocus the sinogram prior to converting it to Rytov data (using e.g. :func:`odtbrain.sinogram_as_rytov`) with a numerical focusing algorithm (available in the Python package :py:mod:`nrefocus`). """ if coords is None: lx = uSin.shape[1] x = np.linspace(-lx/2, lx/2, lx, endpoint=False) xv, yv = np.meshgrid(x, x) coords = np.zeros((2, lx**2)) coords[0, :] = xv.flat coords[1, :] = yv.flat if max_count is not None: max_count.value += coords.shape[1] + 1 # Cut-Off frequency km = (2 * np.pi * nm) / res # Fourier transform of all uB's # In the script we used the unitary angular frequency (uaf) Fourier # Transform. The discrete Fourier transform is equivalent to the # unitary ordinary frequency (uof) Fourier transform. # # uof: f₁(ξ) = int f(x) exp(-2πi xξ) # # uaf: f₃(ω) = (2π)^(-n/2) int f(x) exp(-i ωx) # # f₁(ω/(2π)) = (2π)^(n/2) f₃(ω) # ω = 2πξ # # We have a one-dimensional (n=1) Fourier transform and UB in the # script is equivalent to f₃(ω). Because we are working with the # uaf, we divide by sqrt(2π) after computing the fft with the uof. # # We calculate the fourier transform of uB further below. This is # necessary for memory control. # Corresponding sample frequencies fx = np.fft.fftfreq(uSin[0].shape[0]) # 1D array # kx is a 1D array. kx = 2 * np.pi * fx # Undersampling/oversampling? # Determine if the resolution of the image is too low by looking # at the maximum value for kx. This is no comparison between # Nyquist and Rayleigh frequency. if np.max(kx**2) <= 2 * km**2: # Detector is not set up properly. Higher resolution # can be achieved. if verbose: print("......Measurement data is undersampled.") else: if verbose: print("......Measurement data is oversampled.") raise NotImplementedError("Oversampled data not yet supported." + " Please rescale input data") # Differentials for integral dphi0 = 2 * np.pi / len(angles) dkx = kx[1] - kx[0] # We will later multiply with phi0. # Make sure we are using correct shapes kx = kx.reshape(1, kx.shape[0]) # Low-pass filter: # less-than-or-equal would give us zero division error. filter_klp = (kx**2 < km**2) # a0 will be multiplied with kx # a0 = np.atleast_1d(a0) # a0 = a0.reshape(1,-1) # Create the integrand # Integrals over ϕ₀ [0,2π]; kx [-kₘ,kₘ] # - double coverage factor 1/2 already included # - unitary angular frequency to unitary ordinary frequency # conversion performed in calculation of UB=FT(uB). # # f(r) = -i kₘ / ((2π)^(3/2) a₀) (prefactor) # * iint dϕ₀ dkx (prefactor) # * |kx| (prefactor) # * exp(-i kₘ M lD ) (prefactor) # * UBϕ₀(kx) (dependent on ϕ₀) # * exp( i (kx t⊥ + kₘ (M - 1) s₀) r ) (dependent on ϕ₀ and r) # # (r and s₀ are vectors. In the last term we perform the dot-product) # # kₘM = sqrt( kₘ² - kx² ) # t⊥ = ( cos(ϕ₀), sin(ϕ₀) ) # s₀ = ( -sin(ϕ₀), cos(ϕ₀) ) # # # everything that is not dependent on phi0: # # Filter M so there are no nans from the root M = 1. / km * np.sqrt((km**2 - kx**2) * filter_klp) prefactor = -1j * km / ((2 * np.pi)**(3. / 2)) prefactor *= dphi0 * dkx # Also filter the prefactor, so nothing outside the required # low-pass contributes to the sum. prefactor *= np.abs(kx) * filter_klp # new in version 0.1.4: # We multiply by the factor (M-1) instead of just (M) # to take into account that we have a scattered # wave that is normalized by u0. prefactor *= np.exp(-1j * km * (M-1) * lD) # Initiate function f f = np.zeros(len(coords[0]), dtype=np.complex128) lenf = len(f) lenu0 = len(uSin[0]) # lenu0 = len(kx[0]) # Initiate vector r that corresponds to calculating a value of f. r = np.zeros((2, 1, 1)) # Everything is normal. # Get the angles ϕ₀. phi0 = angles.reshape(-1, 1) # Compute the Fourier transform of uB. # This is true: np.fft.fft(UB)[0] == np.fft.fft(UB[0]) # because axis -1 is always used. # # # Furthermore, The notation in the our optical tomography script for # a wave propagating to the right is: # # u0(x) = exp(ikx) # # However, in physics usually usethe other sign convention: # # u0(x) = exp(-ikx) # # In order to be consisten with programs like Meep or our scattering # script for a dielectric cylinder, we want to use the latter sign # convention. # This is not a big problem. We only need to multiply the imaginary # part of the scattered wave by -1. UB = np.fft.fft(np.fft.ifftshift(uSin, axes=-1)) / np.sqrt(2 * np.pi) UBi = UB.reshape(len(angles), lenu0) if count is not None: count.value += 1 for j in range(lenf): # Get r (We compute f(r) in this for-loop) r[0][:] = coords[0, j] # x r[1][:] = coords[1, j] # y # Integrand changes with r, so we have to create a new # array: integrand = prefactor * UBi # We save memory by directly applying the following to # the integrand: # # Vector along which we measured # s0 = np.zeros((2, phi0.shape[0], kx.shape[0])) # s0[0] = -np.sin(phi0) # s0[1] = +np.cos(phi0) # Vector perpendicular to s0 # t_perp_kx = np.zeros((2, phi0.shape[0], kx.shape[1])) # # t_perp_kx[0] = kx*np.cos(phi0) # t_perp_kx[1] = kx*np.sin(phi0) # # term3 = np.exp(1j*np.sum(r*( t_perp_kx + (gamma-km)*s0 ), axis=0)) # integrand* = term3 # # Reminder: # f(r) = -i kₘ / ((2π)^(3/2) a₀) (prefactor) # * iint dϕ₀ dkx (prefactor) # * |kx| (prefactor) # * exp(-i kₘ M lD ) (prefactor) # * UB(kx) (dependent on ϕ₀) # * exp( i (kx t⊥ + kₘ(M - 1) s₀) r ) (dependent on ϕ₀ and r) # # (r and s₀ are vectors. In the last term we perform the dot-product) # # kₘM = sqrt( kₘ² - kx² ) # t⊥ = ( cos(ϕ₀), sin(ϕ₀) ) # s₀ = ( -sin(ϕ₀), cos(ϕ₀) ) integrand *= np.exp(1j * ( r[0] * (kx * np.cos(phi0) - km * (M - 1) * np.sin(phi0)) + r[1] * (kx * np.sin(phi0) + km * (M - 1) * np.cos(phi0)))) # Calculate the integral for the position r # integrand.sort() f[j] = np.sum(integrand) # free memory del integrand if count is not None: count.value += 1 return f.reshape(lx, lx)
{ "repo_name": "paulmueller/ODTbrain", "path": "odtbrain/_alg2d_int.py", "copies": "2", "size": "9866", "license": "bsd-3-clause", "hash": -4585641611240731000, "line_mean": 34.9225092251, "line_max": 77, "alpha_frac": 0.5715459682, "autogenerated": false, "ratio": 3.140322580645161, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47118685488451617, "avg_score": null, "num_lines": null }
# 2D Vector import math class Vector(object): @staticmethod def add(v1, v2): """Adds two vectors and returns the product. """ return Vector(v1._x + v2._x, v1._y + v2._y) @staticmethod def sub(v1, v2): """Subtracts v2 from v1 and returns the product.""" return Vector(v1._x - v2._x, v1._y - v2._y) @staticmethod def project(v1, v2): """Projects one vector (v1) onto another (v2)""" return v1.clone().scale(v1.dot(v2) / v1.mag_squared()) def __init__(self, x=0.0, y=0.0): """Creates a new Vector instance.""" self._x, self._y = x, y def set(self, x, y): """Sets the components of this vector.""" self._x, self._y = x, y return self def add(self, v): """Add a vector to this one.""" self._x += v._x self._y += v._y return self def sub(self, v): """Subtracts a vector from this one.""" self._x -= v._x self._y -= v._y return self def scale(self, f): """Scales this vector by a value.""" self._x *= f self._y *= f return self def dot(self, v): """Computes the dot product between vectors.""" return self._x * v._x + self._y * v._y def cross(self, v): """# Computes the cross product between vectors.""" return (self._x * v._y) - (self._y * v._x) def mag(self): """Computes the magnitude (length).""" return math.sqrt(self._x ** 2 + self._y ** 2) def mag_squared(self): """Computes the squared magnitude (length).""" return self._x ** 2 + self._y ** 2 def dist(self, v): """Computes the distance to another vector.""" dx = v._x - self._x dy = v._y - self._y return math.sqrt(dx * dx + dy * dy) def dist_squared(self, v): """# Computes the squared distance to another vector.""" dx = v._x - self._x dy = v._y - self._y return dx * dx + dy * dy def norm(self): """# Normalises the vector, making it a unit vector (of length 1).""" m = math.sqrt(self._x ** 2 + self._y ** 2) self._x /= m self._y /= m return self def limit(self, limit): """# Limits the vector length to a given amount.""" m_sq = self._x ** 2 + self._y ** 2 if m_sq > limit**2: m = math.sqrt(m_sq) self._x /= m self._y /= m self._x *= limit self._y *= limit def copy(self, v): """# Copies components from another vector.""" self._x = v._x self._y = v._y return self def clone(self): """# Clones this vector to a new identical one.""" return Vector(self._x, self._y) def clear(self): """# Resets the vector to zero.""" self._x = 0.0 self._y = 0.0
{ "repo_name": "gregroper/Pycipia", "path": "lwmath/Vector.py", "copies": "1", "size": "2920", "license": "mit", "hash": 3995369033671237000, "line_mean": 26.2897196262, "line_max": 77, "alpha_frac": 0.4917808219, "autogenerated": false, "ratio": 3.5436893203883497, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4535470142288349, "avg_score": null, "num_lines": null }
# 2-electron VMC code for 2dim quantum dot with importance sampling # No Coulomb interaction # Using gaussian rng for new positions and Metropolis- Hastings # Energy minimization using standard gradient descent # Common imports import os # Where to save the figures and data files PROJECT_ROOT_DIR = "Results" FIGURE_ID = "Results/FigureFiles" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(FIGURE_ID): os.makedirs(FIGURE_ID) def image_path(fig_id): return os.path.join(FIGURE_ID, fig_id) def save_fig(fig_id): plt.savefig(image_path(fig_id) + ".png", format='png') from math import exp, sqrt from random import random, seed, normalvariate import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import sys from numba import jit from scipy.optimize import minimize import multiprocessing as mp # Trial wave function for the 2-electron quantum dot in two dims def WaveFunction(r,alpha): r1 = r[0,0]**2 + r[0,1]**2 r2 = r[1,0]**2 + r[1,1]**2 return exp(-0.5*alpha*(r1+r2)) # Local energy for the 2-electron quantum dot in two dims, using analytical local energy def LocalEnergy(r,alpha): r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha # Derivate of wave function ansatz as function of variational parameters def DerivativeWFansatz(r,alpha): r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) WfDer = -0.5*(r1+r2) return WfDer # Setting up the quantum force for the two-electron quantum dot, recall that it is a vector def QuantumForce(r,alpha): qforce = np.zeros((NumberParticles,Dimension), np.double) qforce[0,:] = -2*r[0,:]*alpha qforce[1,:] = -2*r[1,:]*alpha return qforce # Computing the derivative of the energy and the energy # jit decorator tells Numba to compile this function. # The argument types will be inferred by Numba when function is called. @jit def EnergyMinimization(alpha): NumberMCcycles= 1000 # Parameters in the Fokker-Planck simulation of the quantum force D = 0.5 TimeStep = 0.05 # positions PositionOld = np.zeros((NumberParticles,Dimension), np.double) PositionNew = np.zeros((NumberParticles,Dimension), np.double) # Quantum force QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double) QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double) # seed for rng generator seed() energy = 0.0 DeltaE = 0.0 EnergyDer = 0.0 DeltaPsi = 0.0 DerivativePsiE = 0.0 #Initial position for i in range(NumberParticles): for j in range(Dimension): PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep) wfold = WaveFunction(PositionOld,alpha) QuantumForceOld = QuantumForce(PositionOld,alpha) #Loop over MC MCcycles for MCcycle in range(NumberMCcycles): #Trial position moving one particle at the time for i in range(NumberParticles): for j in range(Dimension): PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\ QuantumForceOld[i,j]*TimeStep*D wfnew = WaveFunction(PositionNew,alpha) QuantumForceNew = QuantumForce(PositionNew,alpha) GreensFunction = 0.0 for j in range(Dimension): GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\ (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\ PositionNew[i,j]+PositionOld[i,j]) GreensFunction = 1.0#exp(GreensFunction) ProbabilityRatio = GreensFunction*wfnew**2/wfold**2 #Metropolis-Hastings test to see whether we accept the move if random() <= ProbabilityRatio: for j in range(Dimension): PositionOld[i,j] = PositionNew[i,j] QuantumForceOld[i,j] = QuantumForceNew[i,j] wfold = wfnew DeltaE = LocalEnergy(PositionOld,alpha) DerPsi = DerivativeWFansatz(PositionOld,alpha) DeltaPsi +=DerPsi energy += DeltaE DerivativePsiE += DerPsi*DeltaE # We calculate mean values energy /= NumberMCcycles DerivativePsiE /= NumberMCcycles DeltaPsi /= NumberMCcycles EnergyDer = 2*(DerivativePsiE-DeltaPsi*energy) return energy, EnergyDer #Here starts the main program with variable declarations NumberParticles = 2 Dimension = 2 # guess for variational parameters x0 = 0.5 # Set up iteration using stochastic gradient method Energy =0 ; EnergyDer = 0 pool = mp.Pool(processes=2) Energy, EnergyDer = EnergyMinimization(x0) # No adaptive search for a minimum eta = 0.5 Niterations = 50 Energies = np.zeros(Niterations) EnergyDerivatives = np.zeros(Niterations) AlphaValues = np.zeros(Niterations) Totiterations = np.zeros(Niterations) for iter in range(Niterations): gradients = EnergyDer x0 -= eta*gradients Energy, EnergyDer = EnergyMinimization(x0) Energies[iter] = Energy EnergyDerivatives[iter] = EnergyDer AlphaValues[iter] = x0 Totiterations[iter] = iter plt.subplot(2, 1, 1) plt.plot(Totiterations, Energies, 'o-') plt.title('Energy and energy derivatives') plt.ylabel('Dimensionless energy') plt.subplot(2, 1, 2) plt.plot(Totiterations, EnergyDerivatives, '.-') plt.xlabel(r'$\mathrm{Iterations}$', fontsize=15) plt.ylabel('Energy derivative') save_fig("QdotNonint") plt.show() #nice printout with Pandas import pandas as pd from pandas import DataFrame data ={'Alpha':AlphaValues, 'Energy':Energies,'Derivative':EnergyDerivatives} frame = pd.DataFrame(data) print(frame)
{ "repo_name": "CompPhysics/ComputationalPhysics2", "path": "doc/src/MCsummary/src/mpqdot.py", "copies": "1", "size": "5905", "license": "cc0-1.0", "hash": -2267066061847252700, "line_mean": 31.8055555556, "line_max": 92, "alpha_frac": 0.6758679086, "autogenerated": false, "ratio": 3.225013653741125, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9302620591892358, "avg_score": 0.019652194089753508, "num_lines": 180 }
# 2-electron VMC code for 2dim quantum dot with importance sampling # Using gaussian rng for new positions and Metropolis- Hastings # Added energy minimization # Common imports from math import exp, sqrt from random import random, seed, normalvariate import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import sys # Trial wave function for the 2-electron quantum dot in two dims def WaveFunction(r,alpha,beta): r1 = r[0,0]**2 + r[0,1]**2 r2 = r[1,0]**2 + r[1,1]**2 r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = r12/(1+beta*r12) return exp(-0.5*alpha*(r1+r2)+deno) # Local energy for the 2-electron quantum dot in two dims, using analytical local energy def LocalEnergy(r,alpha,beta): r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) deno2 = deno*deno return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12) # Derivate of wave function ansatz as function of variational parameters def DerivativeWFansatz(r,alpha,beta): WfDer = np.zeros((2), np.double) r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) deno2 = deno*deno WfDer[0] = -0.5*(r1+r2) WfDer[1] = -r12*r12*deno2 return WfDer # Setting up the quantum force for the two-electron quantum dot, recall that it is a vector def QuantumForce(r,alpha,beta): qforce = np.zeros((NumberParticles,Dimension), np.double) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12 qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12 return qforce # Computing the derivative of the energy and the energy def EnergyMinimization(alpha, beta): NumberMCcycles= 10000 # Parameters in the Fokker-Planck simulation of the quantum force D = 0.5 TimeStep = 0.05 # positions PositionOld = np.zeros((NumberParticles,Dimension), np.double) PositionNew = np.zeros((NumberParticles,Dimension), np.double) # Quantum force QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double) QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double) # seed for rng generator seed() energy = 0.0 DeltaE = 0.0 EnergyDer = np.zeros((2), np.double) DeltaPsi = np.zeros((2), np.double) DerivativePsiE = np.zeros((2), np.double) #Initial position for i in range(NumberParticles): for j in range(Dimension): PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep) wfold = WaveFunction(PositionOld,alpha,beta) QuantumForceOld = QuantumForce(PositionOld,alpha, beta) #Loop over MC MCcycles for MCcycle in range(NumberMCcycles): #Trial position moving one particle at the time for i in range(NumberParticles): for j in range(Dimension): PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\ QuantumForceOld[i,j]*TimeStep*D wfnew = WaveFunction(PositionNew,alpha,beta) QuantumForceNew = QuantumForce(PositionNew,alpha, beta) GreensFunction = 0.0 for j in range(Dimension): GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\ (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\ PositionNew[i,j]+PositionOld[i,j]) GreensFunction = exp(GreensFunction) ProbabilityRatio = GreensFunction*wfnew**2/wfold**2 #Metropolis-Hastings test to see whether we accept the move if random() <= ProbabilityRatio: for j in range(Dimension): PositionOld[i,j] = PositionNew[i,j] QuantumForceOld[i,j] = QuantumForceNew[i,j] wfold = wfnew DeltaE = LocalEnergy(PositionOld,alpha,beta) DerPsi = DerivativeWFansatz(PositionOld,alpha,beta) DeltaPsi += DerPsi energy += DeltaE DerivativePsiE += DerPsi*DeltaE # We calculate mean values energy /= NumberMCcycles DerivativePsiE /= NumberMCcycles DeltaPsi /= NumberMCcycles EnergyDer = 2*(DerivativePsiE-DeltaPsi*energy) return energy, EnergyDer #Here starts the main program with variable declarations NumberParticles = 2 Dimension = 2 # guess for variational parameters alpha = 0.95 beta = 0.3 # Set up iteration using stochastic gradient method Energy = 0 EDerivative = np.zeros((2), np.double) # Learning rate eta, max iterations, need to change to adaptive learning rate eta = 0.01 MaxIterations = 50 iter = 0 Energies = np.zeros(MaxIterations) EnergyDerivatives1 = np.zeros(MaxIterations) EnergyDerivatives2 = np.zeros(MaxIterations) AlphaValues = np.zeros(MaxIterations) BetaValues = np.zeros(MaxIterations) while iter < MaxIterations: Energy, EDerivative = EnergyMinimization(alpha,beta) alphagradient = EDerivative[0] betagradient = EDerivative[1] alpha -= eta*alphagradient beta -= eta*betagradient Energies[iter] = Energy EnergyDerivatives1[iter] = EDerivative[0] EnergyDerivatives2[iter] = EDerivative[1] AlphaValues[iter] = alpha BetaValues[iter] = beta iter += 1 #nice printout with Pandas import pandas as pd from pandas import DataFrame pd.set_option('max_columns', 6) data ={'Alpha':AlphaValues,'Beta':BetaValues,'Energy':Energies,'Alpha Derivative':EnergyDerivatives1,'Beta Derivative':EnergyDerivatives2} frame = pd.DataFrame(data) print(frame)
{ "repo_name": "CompPhysics/ComputationalPhysics2", "path": "doc/src/MCsummary/src/qdoteminim.py", "copies": "2", "size": "5916", "license": "cc0-1.0", "hash": 5398027345953398000, "line_mean": 35.2944785276, "line_max": 138, "alpha_frac": 0.6512846518, "autogenerated": false, "ratio": 3.0076258261311644, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46589104779311646, "avg_score": null, "num_lines": null }
# 2-electron VMC code for 2dim quantum dot with importance sampling # Using gaussian rng for new positions and Metropolis- Hastings # Added energy minimization from math import exp, sqrt from random import random, seed, normalvariate import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from scipy.optimize import minimize import sys import os # Where to save data files PROJECT_ROOT_DIR = "Results" DATA_ID = "Results/EnergyMin" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(DATA_ID): os.makedirs(DATA_ID) def data_path(dat_id): return os.path.join(DATA_ID, dat_id) outfile = open(data_path("Energies.dat"),'w') # Trial wave function for the 2-electron quantum dot in two dims def WaveFunction(r,alpha,beta): r1 = r[0,0]**2 + r[0,1]**2 r2 = r[1,0]**2 + r[1,1]**2 r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = r12/(1+beta*r12) return exp(-0.5*alpha*(r1+r2)+deno) # Local energy for the 2-electron quantum dot in two dims, using analytical local energy def LocalEnergy(r,alpha,beta): r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) deno2 = deno*deno return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12) # Derivate of wave function ansatz as function of variational parameters def DerivativeWFansatz(r,alpha,beta): WfDer = np.zeros((2), np.double) r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) deno2 = deno*deno WfDer[0] = -0.5*(r1+r2) WfDer[1] = -r12*r12*deno2 return WfDer # Setting up the quantum force for the two-electron quantum dot, recall that it is a vector def QuantumForce(r,alpha,beta): qforce = np.zeros((NumberParticles,Dimension), np.double) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12 qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12 return qforce # Computing the derivative of the energy and the energy def EnergyDerivative(x0): # Parameters in the Fokker-Planck simulation of the quantum force D = 0.5 TimeStep = 0.05 # positions PositionOld = np.zeros((NumberParticles,Dimension), np.double) PositionNew = np.zeros((NumberParticles,Dimension), np.double) # Quantum force QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double) QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double) energy = 0.0 DeltaE = 0.0 alpha = x0[0] beta = x0[1] EnergyDer = 0.0 DeltaPsi = 0.0 DerivativePsiE = 0.0 #Initial position for i in range(NumberParticles): for j in range(Dimension): PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep) wfold = WaveFunction(PositionOld,alpha,beta) QuantumForceOld = QuantumForce(PositionOld,alpha, beta) #Loop over MC MCcycles for MCcycle in range(NumberMCcycles): #Trial position moving one particle at the time for i in range(NumberParticles): for j in range(Dimension): PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\ QuantumForceOld[i,j]*TimeStep*D wfnew = WaveFunction(PositionNew,alpha,beta) QuantumForceNew = QuantumForce(PositionNew,alpha, beta) GreensFunction = 0.0 for j in range(Dimension): GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\ (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\ PositionNew[i,j]+PositionOld[i,j]) GreensFunction = exp(GreensFunction) ProbabilityRatio = GreensFunction*wfnew**2/wfold**2 #Metropolis-Hastings test to see whether we accept the move if random() <= ProbabilityRatio: for j in range(Dimension): PositionOld[i,j] = PositionNew[i,j] QuantumForceOld[i,j] = QuantumForceNew[i,j] wfold = wfnew DeltaE = LocalEnergy(PositionOld,alpha,beta) DerPsi = DerivativeWFansatz(PositionOld,alpha,beta) DeltaPsi += DerPsi energy += DeltaE DerivativePsiE += DerPsi*DeltaE # We calculate mean values energy /= NumberMCcycles DerivativePsiE /= NumberMCcycles DeltaPsi /= NumberMCcycles EnergyDer = 2*(DerivativePsiE-DeltaPsi*energy) return EnergyDer # Computing the expectation value of the local energy def Energy(x0): # Parameters in the Fokker-Planck simulation of the quantum force D = 0.5 TimeStep = 0.05 # positions PositionOld = np.zeros((NumberParticles,Dimension), np.double) PositionNew = np.zeros((NumberParticles,Dimension), np.double) # Quantum force QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double) QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double) energy = 0.0 DeltaE = 0.0 alpha = x0[0] beta = x0[1] #Initial position for i in range(NumberParticles): for j in range(Dimension): PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep) wfold = WaveFunction(PositionOld,alpha,beta) QuantumForceOld = QuantumForce(PositionOld,alpha, beta) #Loop over MC MCcycles for MCcycle in range(NumberMCcycles): #Trial position moving one particle at the time for i in range(NumberParticles): for j in range(Dimension): PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\ QuantumForceOld[i,j]*TimeStep*D wfnew = WaveFunction(PositionNew,alpha,beta) QuantumForceNew = QuantumForce(PositionNew,alpha, beta) GreensFunction = 0.0 for j in range(Dimension): GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\ (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\ PositionNew[i,j]+PositionOld[i,j]) GreensFunction = exp(GreensFunction) ProbabilityRatio = GreensFunction*wfnew**2/wfold**2 #Metropolis-Hastings test to see whether we accept the move if random() <= ProbabilityRatio: for j in range(Dimension): PositionOld[i,j] = PositionNew[i,j] QuantumForceOld[i,j] = QuantumForceNew[i,j] wfold = wfnew DeltaE = LocalEnergy(PositionOld,alpha,beta) energy += DeltaE if Printout: outfile.write('%f\n' %(energy/(MCcycle+1.0))) # We calculate mean values energy /= NumberMCcycles return energy #Here starts the main program with variable declarations NumberParticles = 2 Dimension = 2 # seed for rng generator seed() # Monte Carlo cycles for parameter optimization Printout = False NumberMCcycles= 10000 # guess for variational parameters x0 = np.array([0.9,0.2]) # Using Broydens method to find optimal parameters res = minimize(Energy, x0, method='BFGS', jac=EnergyDerivative, options={'gtol': 1e-4,'disp': True}) x0 = res.x # Compute the energy again with the optimal parameters and increased number of Monte Cycles NumberMCcycles= 2**19 Printout = True FinalEnergy = Energy(x0) EResult = np.array([FinalEnergy,FinalEnergy]) outfile.close() #nice printout with Pandas import pandas as pd from pandas import DataFrame data ={'Optimal Parameters':x0, 'Final Energy':EResult} frame = pd.DataFrame(data) print(frame)
{ "repo_name": "CompPhysics/ComputationalPhysics2", "path": "doc/Programs/BoltzmannMachines/VMC/python/qdotBroyden.py", "copies": "2", "size": "8051", "license": "cc0-1.0", "hash": -5736781454099594000, "line_mean": 34.6238938053, "line_max": 105, "alpha_frac": 0.6337100981, "autogenerated": false, "ratio": 3.1266019417475728, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9637944236428164, "avg_score": 0.024473560683881578, "num_lines": 226 }
# 2-electron VMC code for 2dim quantum dot with importance sampling # Using gaussian rng for new positions and Metropolis- Hastings # No energy minimization from math import exp, sqrt from random import random, seed, normalvariate import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import sys from numba import jit from scipy.optimize import minimize # Trial wave function for the 2-electron quantum dot in two dims def WaveFunction(r,alpha): r1 = r[0,0]**2 + r[0,1]**2 r2 = r[1,0]**2 + r[1,1]**2 return exp(-0.5*alpha*(r1+r2)) # Local energy for the 2-electron quantum dot in two dims, using analytical local energy def LocalEnergy(r,alpha): r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha # Derivate of wave function ansatz as function of variational parameters def DerivativeWFansatz(r,alpha): r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) WfDer = -0.5*(r1+r2) return WfDer # Setting up the quantum force for the two-electron quantum dot, recall that it is a vector def QuantumForce(r,alpha): qforce = np.zeros((NumberParticles,Dimension), np.double) qforce[0,:] = -2*r[0,:]*alpha qforce[1,:] = -2*r[1,:]*alpha return qforce # Computing the derivative of the energy and the energy # jit decorator tells Numba to compile this function. # The argument types will be inferred by Numba when function is called. @jit def EnergyMinimization(alpha): NumberMCcycles= 1000 # Parameters in the Fokker-Planck simulation of the quantum force D = 0.5 TimeStep = 0.05 # positions PositionOld = np.zeros((NumberParticles,Dimension), np.double) PositionNew = np.zeros((NumberParticles,Dimension), np.double) # Quantum force QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double) QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double) # seed for rng generator seed() energy = 0.0 DeltaE = 0.0 EnergyDer = 0.0 DeltaPsi = 0.0 DerivativePsiE = 0.0 #Initial position for i in range(NumberParticles): for j in range(Dimension): PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep) wfold = WaveFunction(PositionOld,alpha) QuantumForceOld = QuantumForce(PositionOld,alpha) #Loop over MC MCcycles for MCcycle in range(NumberMCcycles): #Trial position moving one particle at the time for i in range(NumberParticles): for j in range(Dimension): PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\ QuantumForceOld[i,j]*TimeStep*D wfnew = WaveFunction(PositionNew,alpha) QuantumForceNew = QuantumForce(PositionNew,alpha) GreensFunction = 0.0 for j in range(Dimension): GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\ (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\ PositionNew[i,j]+PositionOld[i,j]) GreensFunction = 1.0#exp(GreensFunction) ProbabilityRatio = GreensFunction*wfnew**2/wfold**2 #Metropolis-Hastings test to see whether we accept the move if random() <= ProbabilityRatio: for j in range(Dimension): PositionOld[i,j] = PositionNew[i,j] QuantumForceOld[i,j] = QuantumForceNew[i,j] wfold = wfnew DeltaE = LocalEnergy(PositionOld,alpha) DerPsi = DerivativeWFansatz(PositionOld,alpha) DeltaPsi +=DerPsi energy += DeltaE DerivativePsiE += DerPsi*DeltaE # We calculate mean, variance and error (no blocking applied) energy /= NumberMCcycles DerivativePsiE /= NumberMCcycles DeltaPsi /= NumberMCcycles EnergyDer = 2*(DerivativePsiE-DeltaPsi*energy) print(energy, DerivativePsiE, DeltaPsi*energy) return energy, EnergyDer #Here starts the main program with variable declarations NumberParticles = 2 Dimension = 2 # guess for variational parameters x0 = 0.9 # Set up iteration using stochastic gradient method Energy =0 ; EnergyDer = 0 Energy, EnergyDer = EnergyMinimization(x0) eta = 0.5 Niterations = 100 for iter in range(Niterations): gradients = EnergyDer x0 -= eta*gradients Energy, EnergyDer = EnergyMinimization(x0) print(Energy, EnergyDer) print(x0)
{ "repo_name": "CompPhysics/ComputationalPhysics2", "path": "doc/Programs/ConjugateGradient/python/qdotnint.py", "copies": "1", "size": "4670", "license": "cc0-1.0", "hash": 8638217723136608000, "line_mean": 34.3787878788, "line_max": 92, "alpha_frac": 0.6582441113, "autogenerated": false, "ratio": 3.3120567375886525, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4470300848888652, "avg_score": null, "num_lines": null }
# 2-electron VMC for quantum dot system in two dimensions # Brute force Metropolis, no importance sampling and no energy minimization from math import exp, sqrt from random import random, seed import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import sys from numba import jit #Read name of output file from command line if len(sys.argv) == 2: outfilename = sys.argv[1] else: print('\nError: Name of output file must be given as command line argument.\n') outfile = open(outfilename,'w') # Trial wave function for the 2-electron quantum dot in two dims def WaveFunction(r,alpha,beta): r1 = r[0,0]**2 + r[0,1]**2 r2 = r[1,0]**2 + r[1,1]**2 r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = r12/(1+beta*r12) return exp(-0.5*alpha*(r1+r2)+deno) # Local energy for the 2-electron quantum dot in two dims, using analytical local energy def LocalEnergy(r,alpha,beta): r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) deno2 = deno*deno return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12) # The Monte Carlo sampling with the Metropolis algo # The jit decorator tells Numba to compile this function. # The argument types will be inferred by Numba when the function is called. @jit def MonteCarloSampling(): NumberMCcycles= 100000 StepSize = 1.0 # positions PositionOld = np.zeros((NumberParticles,Dimension), np.double) PositionNew = np.zeros((NumberParticles,Dimension), np.double) # seed for rng generator seed() # start variational parameter alpha = 0.9 for ia in range(MaxVariations): alpha += .025 AlphaValues[ia] = alpha beta = 0.2 for jb in range(MaxVariations): beta += .01 BetaValues[jb] = beta energy = energy2 = 0.0 DeltaE = 0.0 #Initial position for i in range(NumberParticles): for j in range(Dimension): PositionOld[i,j] = StepSize * (random() - .5) wfold = WaveFunction(PositionOld,alpha,beta) #Loop over MC MCcycles for MCcycle in range(NumberMCcycles): #Trial position moving one particle at the time for i in range(NumberParticles): for j in range(Dimension): PositionNew[i,j] = PositionOld[i,j] + StepSize * (random() - .5) wfnew = WaveFunction(PositionNew,alpha,beta) #Metropolis test to see whether we accept the move if random() < wfnew**2 / wfold**2: for j in range(Dimension): PositionOld[i,j] = PositionNew[i,j] wfold = wfnew DeltaE = LocalEnergy(PositionOld,alpha,beta) energy += DeltaE energy2 += DeltaE**2 #We calculate mean, variance and error ... energy /= NumberMCcycles energy2 /= NumberMCcycles variance = energy2 - energy**2 error = sqrt(variance/NumberMCcycles) Energies[ia,jb] = energy outfile.write('%f %f %f %f %f\n' %(alpha,beta,energy,variance,error)) return Energies, AlphaValues, BetaValues #Here starts the main program with variable declarations NumberParticles = 2 Dimension = 2 MaxVariations = 10 Energies = np.zeros((MaxVariations,MaxVariations)) AlphaValues = np.zeros(MaxVariations) BetaValues = np.zeros(MaxVariations) (Energies, AlphaValues, BetaValues) = MonteCarloSampling() outfile.close() # Prepare for plots fig = plt.figure() ax = fig.gca(projection='3d') # Plot the surface. X, Y = np.meshgrid(AlphaValues, BetaValues) surf = ax.plot_surface(X, Y, Energies,cmap=cm.coolwarm,linewidth=0, antialiased=False) # Customize the z axis. zmin = np.matrix(Energies).min() zmax = np.matrix(Energies).max() ax.set_zlim(zmin, zmax) ax.set_xlabel(r'$\alpha$') ax.set_ylabel(r'$\beta$') ax.set_zlabel(r'$\langle E \rangle$') ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) plt.show()
{ "repo_name": "CompPhysics/ComputationalPhysics2", "path": "doc/Programs/ConjugateGradient/python/qdotmetropolis.py", "copies": "1", "size": "4473", "license": "cc0-1.0", "hash": 7610836137299340000, "line_mean": 35.3658536585, "line_max": 105, "alpha_frac": 0.6295551084, "autogenerated": false, "ratio": 3.2578295702840494, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4387384678684049, "avg_score": null, "num_lines": null }
## 2. Enumerate ## ships = ["Andrea Doria", "Titanic", "Lusitania"] cars = ["Ford Edsel", "Ford Pinto", "Yugo"] for i,item in enumerate(ships): print(item) print(cars[i]) ## 3. Adding Columns ## things = [["apple", "monkey"], ["orange", "dog"], ["banana", "cat"]] trees = ["cedar", "maple", "fig"] for i, item in enumerate(things): item.append(trees[i]) ## 4. List Comprehensions ## apple_prices = [100, 101, 102, 105] apple_prices_doubled = [(item*2) for item in apple_prices] apple_prices_lowered = [(item-100) for item in apple_prices] ## 5. Counting Female Names ## name_counts = {} for item in legislators: if item[3] == 'F' and item[7] > 1940: name = item[1] if name in name_counts: name_counts[name] +=1 else: name_counts[name]=1 ## 7. Comparing with None ## values = [None, 10, 20, 30, None, 50] checks = [] for item in values: status = (item != None and item > 30) checks.append(status) ## 8. Highest Female Name Count ## max_value = None for item in name_counts.keys(): count = name_counts[item] if (max_value == None or count > max_value): max_value = count ## 9. The Items Method ## plant_types = {"orchid": "flower", "cedar": "tree", "maple": "tree"} for item,val in plant_types.items(): print(item) print(val) ## 10. Finding the Most Common Female Names ## top_female_names = [] for item in name_counts.keys(): if name_counts[item]==2: top_female_names.append(item) ## 11. Finding the Most Common Male Names ## top_male_names = [] male_name_counts ={} highest_male_count = None for item in legislators: if item[3] == 'M' and item[7] > 1940: name = item[1] if name in male_name_counts: male_name_counts[name] +=1 else: male_name_counts[name]=1 for item in male_name_counts.keys(): count = male_name_counts[item] if (highest_male_count == None or count > highest_male_count): highest_male_count = count for item in male_name_counts.keys(): if male_name_counts[item]==highest_male_count: top_male_names.append(item)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Python Programming Intermediate/List Comprehensions-16.py", "copies": "1", "size": "2151", "license": "mit", "hash": 5531344968793942000, "line_mean": 24.9277108434, "line_max": 68, "alpha_frac": 0.6052998605, "autogenerated": false, "ratio": 2.9465753424657533, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.900594904781693, "avg_score": 0.009185231029764497, "num_lines": 83 }
## 2. Extract Line Numbers ## raw_hamlet = sc.textFile("hamlet.txt") split_hamlet = raw_hamlet.map(lambda line: line.split('\t')) split_hamlet.take(5) def format_id(x): id = x[0].split('@')[1] results = list() results.append(id) if len(x) > 1: for y in x[1:]: results.append(y) return results hamlet_with_ids = split_hamlet.map(lambda line: format_id(line)) hamlet_with_ids.take(10) ## 3. Remove Blank Values ## hamlet_with_ids.take(5) real_text = hamlet_with_ids.filter(lambda line: len(line) > 1) hamlet_text_only = real_text.map(lambda line: [l for l in line if l != '']) hamlet_text_only.take(10) ## 4. Remove Pipe Characters ## hamlet_text_only.take(10) def fix_pipe(line): results = list() for l in line: if l == "|": pass elif "|" in l: fmtd = l.replace("|", "") results.append(fmtd) else: results.append(l) return results clean_hamlet = hamlet_text_only.map(lambda line: fix_pipe(line))
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "pySpark/Challenge_ Transforming Hamlet into a Data Set-124.py", "copies": "1", "size": "1025", "license": "mit", "hash": -3681280010474772500, "line_mean": 24.65, "line_max": 75, "alpha_frac": 0.5980487805, "autogenerated": false, "ratio": 3.014705882352941, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.906717156482826, "avg_score": 0.009116619604936302, "num_lines": 40 }
## 2. Finding correlations ## correlations = combined.corr() correlations = correlations["sat_score"] print(correlations) ## 3. Plotting enrollment ## import matplotlib.pyplot as plt combined.plot.scatter(x='total_enrollment', y='sat_score') plt.show() ## 4. Exploring schools with low SAT scores and enrollment ## low_enrollment = combined[(combined['total_enrollment']<1000) & (combined['sat_score'] < 1000)] print(low_enrollment['School Name']) ## 5. Plotting language learning percentage ## combined.plot.scatter(x='ell_percent',y='sat_score') plt.show() ## 6. Mapping the schools ## from mpl_toolkits.basemap import Basemap m = Basemap( projection='merc', llcrnrlat=40.496044, urcrnrlat=40.915256, llcrnrlon=-74.255735, urcrnrlon=-73.700272, resolution='i' ) m.drawmapboundary(fill_color='#85A6D9') m.drawcoastlines(color='#6D5F47', linewidth=.4) m.drawrivers(color='#6D5F47', linewidth=.4) longitudes = combined["lon"].tolist() latitudes = combined["lat"].tolist() m.scatter(longitudes, latitudes, s=20, zorder=2, latlon=True) plt.show() ## 7. Plotting out statistics ## from mpl_toolkits.basemap import Basemap m = Basemap( projection='merc', llcrnrlat=40.496044, urcrnrlat=40.915256, llcrnrlon=-74.255735, urcrnrlon=-73.700272, resolution='i' ) m.drawmapboundary(fill_color='#85A6D9') m.drawcoastlines(color='#6D5F47', linewidth=.4) m.drawrivers(color='#6D5F47', linewidth=.4) longitudes = combined["lon"].tolist() latitudes = combined["lat"].tolist() m.scatter(longitudes, latitudes, s=20, zorder=2, latlon=True,cmap = "summer",c=combined["ell_percent"]) plt.show() ## 8. Calculating district level statistics ## import numpy districts = combined.groupby('school_dist').agg(numpy.mean) districts.reset_index(inplace = True) print(districts.head(2)) ## 9. Plotting ell_percent by district ## from mpl_toolkits.basemap import Basemap m = Basemap( projection='merc', llcrnrlat=40.496044, urcrnrlat=40.915256, llcrnrlon=-74.255735, urcrnrlon=-73.700272, resolution='i' ) m.drawmapboundary(fill_color='#85A6D9') m.drawcoastlines(color='#6D5F47', linewidth=.4) m.drawrivers(color='#6D5F47', linewidth=.4) longitudes = combined["lon"].tolist() latitudes = combined["lat"].tolist() m.scatter(longitudes, latitudes, s=50, zorder=2, latlon=True,cmap = "summer",c=combined["ell_percent"]) plt.show()
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Data Exploration/Data Cleaning Walkthrough_ Analyzing And Visualizing The Data-210.py", "copies": "1", "size": "2405", "license": "mit", "hash": 6963367545178510000, "line_mean": 24.5957446809, "line_max": 103, "alpha_frac": 0.7097713098, "autogenerated": false, "ratio": 2.754868270332188, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.3964639580132188, "avg_score": null, "num_lines": null }
# 2. fn/names_text # Parameters: text (required), engine (optional) import sys, os, unittest, json, codecs sys.path.append('./') sys.path.append('../') import webapp service = webapp.get_service(5004, 'fn/names_text') the_sample = None def get_sample(): global the_sample if the_sample == None: with codecs.open(webapp.find_resource('text-sample'), 'r', 'latin-1') as infile: the_sample = infile.read() return the_sample class TestFnNamesText(webapp.WebappTestCase): @classmethod def get_service(self): return service def test_no_parameter(self): """No parameters. Should yield some kind of error.""" request = service.get_request('GET', {}) x = self.start_request_tests(request) self.assertTrue(x.status_code >= 400) self.assertTrue(u'text' in x.json()[u'message'], 'error message from service is not informative: %s' % x.json()[u'message']) def test_large_input(self): """Test large input. 40000 characters fails; 30000 succeeds. N.b. the input is copied to the output (u'input_text' result field). That seems like a bad idea. TBD: design issue.""" request = service.get_request('GET', {u'text': get_sample()[0:30000]}) x = self.start_request_tests(request) self.assert_success(x) self.assertTrue(len(x.json()[u'scientificNames']) > 10) self.assertTrue(u'Papilio' in x.json()[u'scientificNames']) def test_engines(self): """It looks like engines 6, 7, and 8 are all the same. 3 and 4 are the same as well. Maybe inadequate error checking? In any case, there is *no* documentation of the engine parameter (in the old documentation). TBD: issue.""" for engine in range(0, 8): request = service.get_request('GET', {u'engine': engine, u'text': get_sample()[0:30000]}) x = self.start_request_tests(request) # TBD: if range > ?? then x.status_code should be >= 400 self.assert_success(x) self.assertTrue(len(x.json()[u'scientificNames']) > 10) self.assertTrue(u'Scolopendrella' in x.json()[u'scientificNames']) # Insert here: edge case tests # Insert here: inputs out of range, leading to error or long delay # Insert here: error-generating conditions # (See ../README.md) def test_example_4(self): x = self.start_request_tests(example_4) self.assert_success(x) # Insert: whether result is what it should be according to docs def test_example_5(self): x = self.start_request_tests(example_5) self.assert_success(x) # Insert: whether result is what it should be according to docs null=None; false=False; true=True example_5 = service.get_request('GET', {u'text': u'Formica polyctena is a species of European red wood ant in the genus Formica. The pavement ant, Tetramorium caespitum is an ant native to Europe. Pseudomyrmex is a genus of stinging, wasp-like ants. Adetomyrma venatrix is an endangered species of ants endemic to Madagascar. Carebara diversa is a species of ants in the subfamily Formicinae. It is found in many Asian countries.'}) example_4 = service.get_request('GET', {u'engine': u'2', u'text': u'The lemon dove (Columba larvata) is a species of bird in the pigeon family Columbidae found in montane forests of sub-Saharan Africa.'}) if __name__ == '__main__': webapp.main()
{ "repo_name": "jar398/tryphy", "path": "tests/test_fn_names_text.py", "copies": "1", "size": "3503", "license": "bsd-2-clause", "hash": -2101260319275050500, "line_mean": 41.2048192771, "line_max": 432, "alpha_frac": 0.6488723951, "autogenerated": false, "ratio": 3.4444444444444446, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9566159868268607, "avg_score": 0.005431394255167686, "num_lines": 83 }
# 2 Gold Stars # One way search engines rank pages # is to count the number of times a # searcher clicks on a returned link. # This indicates that the person doing # the query thought this was a useful # link for the query, so it should be # higher in the rankings next time. # (In Unit 6, we will look at a different # way of ranking pages that does not depend # on user clicks.) # Modify the index such that for each url in a # list for a keyword, there is also a number # that counts the number of times a user # clicks on that link for this keyword. # The result of lookup(index,keyword) should # now be a list of url entries, where each url # entry is a list of a url and a number # indicating the number of times that url # was clicked for this query keyword. # You should define a new procedure to simulate # user clicks for a given link: # record_user_click(index,word,url) # that modifies the entry in the index for # the input word by increasing the count associated # with the url by 1. # You also will have to modify add_to_index # in order to correctly create the new data # structure, and to prevent the repetition of # entries as in homework 4-5. index = [['chicken',[['url1',3],['url2',2],['url3',3]]]] #print index[0][1][0][1] def record_user_click(index,keyword,url): for entry in index: if entry[0] == keyword: for combo in entry[1]: if combo[0] == url: combo[1] = combo[1] + 1 def add_to_index(index, keyword, url): for entry in index: if entry[0] == keyword: for combo in entry[1]: if url == combo[0]: return entry[1].append([url,0]) return # not found, add new keyword to index index.append([keyword, [[url,0]]]) def get_page(url): try: import urllib return urllib.urlopen(url).read() except: return "failed" def union(a, b): for e in b: if e not in a: a.append(e) def get_next_target(page): start_link = page.find('<a href=') if start_link == -1: return None, 0 start_quote = page.find('"', start_link) end_quote = page.find('"', start_quote + 1) url = page[start_quote + 1:end_quote] return url, end_quote def get_all_links(page): links = [] while True: url, endpos = get_next_target(page) if url: links.append(url) page = page[endpos:] else: break return links def crawl_web(seed): tocrawl = [seed] crawled = [] index = [] while tocrawl: page = tocrawl.pop() if page not in crawled: content = get_page(page) add_page_to_index(index, page, content) union(tocrawl, get_all_links(content)) crawled.append(page) return index def add_page_to_index(index, url, content): words = content.split() for word in words: add_to_index(index, word, url) def lookup(index, keyword): for entry in index: if entry[0] == keyword: return entry[1] return None index = crawl_web('http://www.udacity.com/cs101x/index.html') #Here is an example showing a sequence of interactions: index = crawl_web('http://www.udacity.com/cs101x/index.html') print lookup(index, 'good') #>>> [['http://www.udacity.com/cs101x/index.html', 0], #>>> ['http://www.udacity.com/cs101x/crawling.html', 0]] record_user_click(index, 'good', 'http://www.udacity.com/cs101x/crawling.html') print lookup(index, 'good') #>>> [['http://www.udacity.com/cs101x/index.html', 0], #>>> ['http://www.udacity.com/cs101x/crawling.html', 1]]
{ "repo_name": "W0mpRat/IntroToComputerScience", "path": "Lesson4/CountingClicks.py", "copies": "1", "size": "3668", "license": "unlicense", "hash": 5053235345235291000, "line_mean": 27.6640625, "line_max": 79, "alpha_frac": 0.6199563795, "autogenerated": false, "ratio": 3.343664539653601, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4463620919153601, "avg_score": null, "num_lines": null }
## 2. Implementing an Algorithm ## # When the algorithm finds Kobe in the data set, store his position in Kobe_position kobe_position = "" # Find Kobe in the data set for item in nba: if item[0]== 'Kobe Bryant': kobe_position = item[1] ## 4. Linear Search with Modular Code ## # player_age returns the age of a player in our NBA data set def player_age(name): for row in nba: if row[0] == name: return row[2] return -1 allen_age = player_age('Ray Allen') durant_age = player_age('Kevin Durant') shaq_age = player_age('Shaquille O\'Neal') ## 7. Exercise: Recognizing Constant Time Algorithms ## # Implementation A: Convert degrees Celcius to degrees Fahrenheit def celcius_to_fahrenheit(degrees): step_1 = degrees * 1.8 step_2 = step_1 + 32 return step_2 # Implementation B: Reverse a list def reverse(ls): length = len(ls) new_list = [] for i in range(length): new_list[i] = ls[length - i] return new_list # Implementation C: Print a blastoff message after a countdown def blastoff(message): count = 10 for i in range(count): print(count - i) print(message) not_constant = "B" ## 10. Some Other Algorithms ## # Find the length of a list def length(ls): count = 0 for elem in ls: count = count + 1 length_time_complexity = "linear" # Check whether a list is empty -- Implementation 1 def is_empty_1(ls): if length(ls) == 0: return True else: return False is_empty_1_complexity = "linear" # Check whether a list is empty -- Implementation 2 def is_empty_2(ls): for element in ls: return False return True is_empty_2_complexity = "constant"
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Data Structures & Algorithms/Algorithms-92.py", "copies": "1", "size": "1702", "license": "mit", "hash": -4694796253325890000, "line_mean": 23.3285714286, "line_max": 84, "alpha_frac": 0.6498237368, "autogenerated": false, "ratio": 3.199248120300752, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43490718571007514, "avg_score": null, "num_lines": null }
""" 2-input XOR example using Izhikevich's spiking neuron model. """ from __future__ import print_function import multiprocessing import os from matplotlib import patches from matplotlib import pylab as plt import visualize import neat # Network inputs and expected outputs. xor_inputs = ((0, 0), (0, 1), (1, 0), (1, 1)) xor_outputs = (0, 1, 1, 0) # Maximum amount of simulated time (in milliseconds) to wait for the network to produce an output. max_time_msec = 20.0 def compute_output(t0, t1): """Compute the network's output based on the "time to first spike" of the two output neurons.""" if t0 is None or t1 is None: # If neither of the output neurons fired within the allotted time, # give a response which produces a large error. return -1.0 else: # If the output neurons fire within 1.0 milliseconds of each other, # the output is 1, and if they fire more than 11 milliseconds apart, # the output is 0, with linear interpolation between 1 and 11 milliseconds. response = 1.1 - 0.1 * abs(t0 - t1) return max(0.0, min(1.0, response)) def simulate(genome, config): # Create a network of "fast spiking" Izhikevich neurons. net = neat.iznn.IZNN.create(genome, config) dt = net.get_time_step_msec() sum_square_error = 0.0 simulated = [] for idata, odata in zip(xor_inputs, xor_outputs): neuron_data = {} for i, n in net.neurons.items(): neuron_data[i] = [] # Reset the network, apply the XOR inputs, and run for the maximum allowed time. net.reset() net.set_inputs(idata) t0 = None t1 = None v0 = None v1 = None num_steps = int(max_time_msec / dt) net.set_inputs(idata) for j in range(num_steps): t = dt * j output = net.advance(dt) # Capture the time and neuron membrane potential for later use if desired. for i, n in net.neurons.items(): neuron_data[i].append((t, n.current, n.v, n.u, n.fired)) # Remember time and value of the first output spikes from each neuron. if t0 is None and output[0] > 0: t0, I0, v0, u0, f0 = neuron_data[net.outputs[0]][-2] if t1 is None and output[1] > 0: t1, I1, v1, u1, f0 = neuron_data[net.outputs[1]][-2] response = compute_output(t0, t1) sum_square_error += (response - odata) ** 2 #print(genome) #visualize.plot_spikes(neuron_data[net.outputs[0]], False) #visualize.plot_spikes(neuron_data[net.outputs[1]], True) simulated.append((idata, odata, t0, t1, v0, v1, neuron_data)) return sum_square_error, simulated def eval_genome(genome, config): sum_square_error, simulated = simulate(genome, config) return 10.0 - sum_square_error def eval_genomes(genomes, config): for genome_id, genome in genomes: genome.fitness = eval_genome(genome, config) def run(config_path): # Load the config file, which is assumed to live in # the same directory as this script. config = neat.Config(neat.iznn.IZGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_path) # For this network, we use two output neurons and use the difference between # the "time to first spike" to determine the network response. There are # probably a great many different choices one could make for an output encoding, # and this choice may not be the best for tackling a real problem. config.output_nodes = 2 pop = neat.population.Population(config) # Add a stdout reporter to show progress in the terminal. pop.add_reporter(neat.StdOutReporter(True)) stats = neat.StatisticsReporter() pop.add_reporter(stats) pe = neat.ParallelEvaluator(multiprocessing.cpu_count(), eval_genome) winner = pop.run(pe.evaluate, 3000) # Display the winning genome. print('\nBest genome:\n{!s}'.format(winner)) node_names = {-1:'A', -2: 'B'} visualize.draw_net(config, winner, True, node_names=node_names) visualize.plot_stats(stats, ylog=False, view=True) visualize.plot_species(stats, view=True) # Show output of the most fit genome against training data, and create # a plot of the traces out to the max time for each set of inputs. print('\nBest network output:') plt.figure(figsize=(12, 12)) sum_square_error, simulated = simulate(winner, config) for r, (inputData, outputData, t0, t1, v0, v1, neuron_data) in enumerate(simulated): response = compute_output(t0, t1) print("{0!r} expected {1:.3f} got {2:.3f}".format(inputData, outputData, response)) axes = plt.subplot(4, 1, r + 1) plt.title("Traces for XOR input {{{0:.1f}, {1:.1f}}}".format(*inputData), fontsize=12) for i, s in neuron_data.items(): if i in [0, 1]: t, I, v, u, fired = zip(*s) plt.plot(t, v, "-", label="neuron {0:d}".format(i)) # Circle the first peak of each output. circle0 = patches.Ellipse((t0, v0), 1.0, 10.0, color='r', fill=False) circle1 = patches.Ellipse((t1, v1), 1.0, 10.0, color='r', fill=False) axes.add_artist(circle0) axes.add_artist(circle1) plt.ylabel("Potential (mv)", fontsize=10) plt.ylim(-100, 50) plt.tick_params(labelsize=8) plt.grid() plt.xlabel("Time (in ms)", fontsize=10) plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) plt.savefig("traces.png", dpi=90) plt.show() if __name__ == '__main__': local_dir = os.path.dirname(__file__) run(os.path.join(local_dir, 'config-spiking'))
{ "repo_name": "CodeReclaimers/neat-python", "path": "examples/xor/evolve-spiking.py", "copies": "1", "size": "5782", "license": "bsd-3-clause", "hash": -1212478639902887200, "line_mean": 35.3647798742, "line_max": 100, "alpha_frac": 0.6240055344, "autogenerated": false, "ratio": 3.349942062572422, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9466854705101662, "avg_score": 0.0014185783741521379, "num_lines": 159 }
""" 2-input XOR example using Izhikevich's spiking neuron model. """ from __future__ import print_function import os from matplotlib import pylab as plt from matplotlib import patches import neat import visualize # Network inputs and expected outputs. xor_inputs = ((0, 0), (0, 1), (1, 0), (1, 1)) xor_outputs = (0, 1, 1, 0) # Maximum amount of simulated time (in milliseconds) to wait for the network to produce an output. max_time_msec = 20.0 def compute_output(t0, t1): '''Compute the network's output based on the "time to first spike" of the two output neurons.''' if t0 is None or t1 is None: # If neither of the output neurons fired within the allotted time, # give a response which produces a large error. return -1.0 else: # If the output neurons fire within 1.0 milliseconds of each other, # the output is 1, and if they fire more than 11 milliseconds apart, # the output is 0, with linear interpolation between 1 and 11 milliseconds. response = 1.1 - 0.1 * abs(t0 - t1) return max(0.0, min(1.0, response)) def simulate(genome, config): # Create a network of "fast spiking" Izhikevich neurons. net = neat.iznn.IZNN.create(genome, config) dt = net.get_time_step_msec() sum_square_error = 0.0 simulated = [] for idata, odata in zip(xor_inputs, xor_outputs): neuron_data = {} for i, n in net.neurons.items(): neuron_data[i] = [] # Reset the network, apply the XOR inputs, and run for the maximum allowed time. net.reset() net.set_inputs(idata) t0 = None t1 = None v0 = None v1 = None num_steps = int(max_time_msec / dt) net.set_inputs(idata) for j in range(num_steps): t = dt * j output = net.advance(dt) # Capture the time and neuron membrane potential for later use if desired. for i, n in net.neurons.items(): neuron_data[i].append((t, n.current, n.v, n.u, n.fired)) # Remember time and value of the first output spikes from each neuron. if t0 is None and output[0] > 0: t0, I0, v0, u0, f0 = neuron_data[net.outputs[0]][-2] if t1 is None and output[1] > 0: t1, I1, v1, u1, f0 = neuron_data[net.outputs[1]][-2] response = compute_output(t0, t1) sum_square_error += (response - odata) ** 2 #print(genome) #visualize.plot_spikes(neuron_data[net.outputs[0]], False) #visualize.plot_spikes(neuron_data[net.outputs[1]], True) simulated.append((idata, odata, t0, t1, v0, v1, neuron_data)) return sum_square_error, simulated def eval_genome(genome, config): sum_square_error, simulated = simulate(genome, config) return 10.0 - sum_square_error def eval_genomes(genomes, config): for genome_id, genome in genomes: genome.fitness = eval_genome(genome, config) def run(config_path): # Load the config file, which is assumed to live in # the same directory as this script. config = neat.Config(neat.iznn.IZGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_path) # For this network, we use two output neurons and use the difference between # the "time to first spike" to determine the network response. There are # probably a great many different choices one could make for an output encoding, # and this choice may not be the best for tackling a real problem. config.output_nodes = 2 pop = neat.population.Population(config) # Add a stdout reporter to show progress in the terminal. pop.add_reporter(neat.StdOutReporter(True)) stats = neat.StatisticsReporter() pop.add_reporter(stats) if 0: winner = pop.run(eval_genomes, 3000) else: pe = neat.ParallelEvaluator(6, eval_genome) winner = pop.run(pe.evaluate, 3000) # Display the winning genome. print('\nBest genome:\n{!s}'.format(winner)) node_names = {-1:'A', -2: 'B'} visualize.draw_net(config, winner, True, node_names=node_names) visualize.plot_stats(stats, ylog=False, view=True) visualize.plot_species(stats, view=True) # Show output of the most fit genome against training data, and create # a plot of the traces out to the max time for each set of inputs. print('\nBest network output:') plt.figure(figsize=(12, 12)) sum_square_error, simulated = simulate(winner, config) for r, (inputData, outputData, t0, t1, v0, v1, neuron_data) in enumerate(simulated): response = compute_output(t0, t1) print("{0!r} expected {1:.3f} got {2:.3f}".format(inputData, outputData, response)) axes = plt.subplot(4, 1, r + 1) plt.title("Traces for XOR input {{{0:.1f}, {1:.1f}}}".format(*inputData), fontsize=12) for i, s in neuron_data.items(): if i in [0, 1]: t, I, v, u, fired = zip(*s) plt.plot(t, v, "-", label="neuron {0:d}".format(i)) # Circle the first peak of each output. circle0 = patches.Ellipse((t0, v0), 1.0, 10.0, color='r', fill=False) circle1 = patches.Ellipse((t1, v1), 1.0, 10.0, color='r', fill=False) axes.add_artist(circle0) axes.add_artist(circle1) plt.ylabel("Potential (mv)", fontsize=10) plt.ylim(-100, 50) plt.tick_params(labelsize=8) plt.grid() plt.xlabel("Time (in ms)", fontsize=10) plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) plt.savefig("traces.png", dpi=90) plt.show() if __name__ == '__main__': local_dir = os.path.dirname(__file__) run(os.path.join(local_dir, 'config-spiking'))
{ "repo_name": "drallensmith/neat-python", "path": "examples/xor/evolve-spiking.py", "copies": "1", "size": "5804", "license": "bsd-3-clause", "hash": -8673809357334075000, "line_mean": 35.5031446541, "line_max": 100, "alpha_frac": 0.6200895934, "autogenerated": false, "ratio": 3.3375503162737203, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.445763990967372, "avg_score": null, "num_lines": null }
## 2. Introduction to the Data ## import csv nfl_suspensions = list(csv.reader(open('nfl_suspensions_data.csv','r')))[1:] #nfl_suspensions = [item[1:] for item in nfl_suspensions] years = {} for item in nfl_suspensions: if item[5] in years: years[item[5]] +=1 else: years[item[5]] = 1 print(years) ## 3. Unique Values ## unique_teams,unique_games= [],[] for item in nfl_suspensions: unique_teams.append(item[1]) unique_games.append(item[2]) unique_teams = set(unique_teams) unique_games = set(unique_games) print(unique_teams) print(unique_games) ## 4. Suspension Class ## class Suspension(): def __init__(self,data): self.name = data[0] self.team = data[1] self.games = data[2] self.year = data[5] print(nfl_suspensions[2]) third_suspension = Suspension(nfl_suspensions[2]) ## 5. Tweaking the Suspension Class ## class Suspension(): def __init__(self,row): self.name = row[0] self.team = row[1] self.games = row[2] try: self.year = int(row[5]) except Exception: self.year = 0 def get_year(self): return(self.year) missing_year = Suspension(nfl_suspensions[22]) twenty_third_year = missing_year.get_year()
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Python Programming Intermediate/Challenge_ Modules, Classes, Error Handling, and List Comprehensions-186.py", "copies": "1", "size": "1273", "license": "mit", "hash": 2018127548106726100, "line_mean": 23.9803921569, "line_max": 76, "alpha_frac": 0.6135113904, "autogenerated": false, "ratio": 2.873589164785553, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3987100555185553, "avg_score": null, "num_lines": null }
## 2. Introduction to the Data ## import pandas as pd all_ages = pd.read_csv('all-ages.csv') recent_grads = pd.read_csv('recent-grads.csv') print(all_ages.head()) print(recent_grads.head()) ## 3. Summarizing Major Categories ## # Unique values in Major_category column. print(all_ages['Major_category'].unique()) aa_cat_counts = dict() rg_cat_counts = dict() def cat_summary(data,category): subset = data[data['Major_category']==category] total = subset['Total'].sum() return(total) for cat in all_ages['Major_category'].unique(): aa_cat_counts[cat] = cat_summary(all_ages,cat) for cat in recent_grads['Major_category'].unique(): rg_cat_counts[cat] = cat_summary(recent_grads,cat) ## 4. Low-Wage Job Rates ## low_wage_percent = 0.0 low_wage_percent = recent_grads['Low_wage_jobs'].sum()/recent_grads['Total'].sum() ## 5. Comparing Data Sets ## # All majors, common to both DataFrames majors = recent_grads['Major'].unique() rg_lower_count = 0 for item in majors: grad_subset = recent_grads[recent_grads['Major']==item] all_subset = all_ages[all_ages['Major']==item] if(grad_subset['Unemployment_rate'].values[0] < all_subset['Unemployment_rate'].values[0]): rg_lower_count +=1 print(rg_lower_count)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Data Analysis with Pandas Intermediate/Challenge_ Summarizing Data-112.py", "copies": "1", "size": "1259", "license": "mit", "hash": 3571526071365128000, "line_mean": 29.7317073171, "line_max": 95, "alpha_frac": 0.6783161239, "autogenerated": false, "ratio": 2.9693396226415096, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.414765574654151, "avg_score": null, "num_lines": null }
## 2. Introduction to the data ## import pandas as pd import matplotlib.pyplot as plt admissions = pd.read_csv('admissions.csv') plt.scatter(admissions['gpa'],admissions['admit']) plt.show() ## 4. Logit function ## import numpy as np # Logit Function def logit(x): # np.exp(x) raises x to the exponential power, ie e^x. e ~= 2.71828 return np.exp(x) / (1 + np.exp(x)) # Generate 50 real values, evenly spaced, between -6 and 6. x = np.linspace(-6,6,50, dtype=float) # Transform each number in t using the logit function. y = logit(x) # Plot the resulting data. plt.plot(x, y) plt.ylabel("Probability") plt.show() ## 5. Training a logistic regression model ## from sklearn.linear_model import LinearRegression, LogisticRegression linear_model = LinearRegression() linear_model.fit(admissions[["gpa"]], admissions["admit"]) logistic_model = LogisticRegression() logistic_model.fit(admissions[['gpa']],admissions['admit']) ## 6. Plotting probabilities ## logistic_model = LogisticRegression() logistic_model.fit(admissions[["gpa"]], admissions["admit"]) pred_probs = logistic_model.predict_proba(admissions[['gpa']]) plt.scatter(admissions[['gpa']],pred_probs[:,1]) ## 7. Predict labels ## logistic_model = LogisticRegression() logistic_model.fit(admissions[["gpa"]], admissions["admit"]) fitted_labels = logistic_model.predict(admissions[["gpa"]]) plt.scatter(admissions["gpa"], fitted_labels) print(fitted_labels[:10])
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Machine learning Beginner/Logistic regression-56.py", "copies": "1", "size": "1444", "license": "mit", "hash": 3952839229870808000, "line_mean": 27.9, "line_max": 71, "alpha_frac": 0.7174515235, "autogenerated": false, "ratio": 3.159737417943107, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4377188941443107, "avg_score": null, "num_lines": null }
## 2. Introduction To The Data ## import pandas as pd import matplotlib.pyplot as plt women_degrees = pd.read_csv('percent-bachelors-degrees-women-usa.csv') plt.plot(women_degrees['Year'],women_degrees['Biology']) plt.show() ## 3. Visualizing The Gender Gap ## plt.plot(women_degrees['Year'],women_degrees['Biology'], c = 'blue', label = 'Women') plt.plot(women_degrees['Year'],100 - women_degrees['Biology'], c = 'green', label = 'Men') plt.title('Percentage of Biology Degrees Awarded By Gender') plt.legend(loc = 'upper right') plt.show() ## 5. Hiding Tick Marks ## plt.plot(women_degrees['Year'],women_degrees['Biology'], c = 'blue', label = 'Women') plt.plot(women_degrees['Year'],100 - women_degrees['Biology'], c = 'green', label = 'Men') plt.title('Percentage of Biology Degrees Awarded By Gender') plt.tick_params(bottom = 'off', top = 'off', left = 'off', right = 'off') plt.legend(loc = 'upper right') plt.show() ## 6. Hiding Spines ## fig, ax = plt.subplots() ax.plot(women_degrees['Year'], women_degrees['Biology'], label='Women') ax.plot(women_degrees['Year'], 100-women_degrees['Biology'], label='Men') ax.tick_params(bottom="off", top="off", left="off", right="off") # Add your code here for key,spine in ax.spines.items(): spine.set_visible(False) ax.legend(loc='upper right') ax.set_title('Percentage of Biology Degrees Awarded By Gender') plt.show() ## 7. Comparing Gender Gap Across Degree Categories ## major_cats = ['Biology', 'Computer Science', 'Engineering', 'Math and Statistics'] fig = plt.figure(figsize=(12, 12)) for sp in range(0,4): ax = fig.add_subplot(2,2,sp+1) ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c='blue', label='Women') ax.plot(women_degrees['Year'], 100-women_degrees[major_cats[sp]], c='green', label='Men') # Add your code here. ax.set_xlim(1968,2011) ax.set_ylim(0,100) ax.set_title(major_cats[sp]) ax.tick_params(bottom="off", top="off", left="off", right="off") for key,spine in ax.spines.items(): spine.set_visible(False) # Calling pyplot.legend() here will add the legend to the last subplot that was created. plt.legend(loc='upper right') plt.show()
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Storytelling Data Visualization/Improving Plot Aesthetics-220.py", "copies": "1", "size": "2180", "license": "mit", "hash": 4422019673359032000, "line_mean": 35.9661016949, "line_max": 93, "alpha_frac": 0.6811926606, "autogenerated": false, "ratio": 2.725, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8816468628660274, "avg_score": 0.017944806387945284, "num_lines": 59 }
## 2. Introduction to the data ## import pandas as pd reviews = pd.read_csv('fandango_scores.csv') cols = ['FILM', 'RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars'] norm_reviews = reviews[cols] print(norm_reviews[:1]) ## 4. Creating Bars ## import matplotlib.pyplot as plt from numpy import arange num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars'] bar_heights = norm_reviews.ix[0, num_cols].values bar_positions = arange(5) + 0.75 fig, ax = plt.subplots() ax.bar(bar_positions, bar_heights, 0.5) plt.show() ## 5. Aligning Axis Ticks And Labels ## num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars'] bar_heights = norm_reviews.ix[0, num_cols].values bar_positions = arange(5) + 0.75 tick_positions = range(1,6) fig, ax = plt.subplots() ax.bar(bar_positions, bar_heights, 0.5) ax.set_xticks(tick_positions) ax.set_xticklabels(num_cols, rotation=90) ax.set_xlabel('Rating Source') ax.set_ylabel('Average Rating') ax.set_title('Average User Rating For Avengers: Age of Ultron (2015)') plt.show() ## 6. Horizontal Bar Plot ## import matplotlib.pyplot as plt from numpy import arange num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars'] bar_widths = norm_reviews.ix[0, num_cols].values bar_positions = arange(5) + 0.75 tick_positions = range(1,6) fig, ax = plt.subplots() ax.barh(bar_positions,bar_widths,0.5) ax.set_yticks(tick_positions) ax.set_yticklabels(num_cols) plt.xlabel('Average Rating') plt.ylabel('Rating Source') plt.title('Average User Rating for Avengers: Age of Ultron (2015)') plt.show() ## 7. Scatter plot ## fig, ax = plt.subplots() ax.scatter(norm_reviews['Fandango_Ratingvalue'], norm_reviews['RT_user_norm']) ax.set_xlabel('Fandango') ax.set_ylabel('Rotten Tomatoes') plt.show() ## 8. Switching axes ## fig = plt.figure(figsize=(5,10)) ax1 = fig.add_subplot(2,1,1) ax2 = fig.add_subplot(2,1,2) ax1.scatter(norm_reviews['Fandango_Ratingvalue'], norm_reviews['RT_user_norm']) ax1.set_xlabel('Fandango') ax1.set_ylabel('Rotten Tomatoes') ax2.scatter(norm_reviews['RT_user_norm'], norm_reviews['Fandango_Ratingvalue']) ax2.set_xlabel('Rotten Tomatoes') ax2.set_ylabel('Fandango') plt.show() ## 9. Benchmarking correlation ## import matplotlib.pyplot as plt fig = plt.figure(figsize=(5,10)) ax1 = fig.add_subplot(3,1,1) ax2 = fig.add_subplot(3,1,2) ax3 = fig.add_subplot(3,1,3) ax1.scatter(norm_reviews['Fandango_Ratingvalue'], norm_reviews['RT_user_norm']) ax1.set_xlabel('Fandango') ax1.set_ylabel('Rotten Tomatoes') ax1.set_xlim(0,5) ax1.set_ylim(0,5) ax2.scatter(norm_reviews['Fandango_Ratingvalue'], norm_reviews['Metacritic_user_nom']) ax2.set_xlabel('Fandango') ax2.set_ylabel('Metacritic') ax2.set_xlim(0,5) ax2.set_ylim(0,5) ax3.scatter(norm_reviews['Fandango_Ratingvalue'], norm_reviews['IMDB_norm']) ax3.set_xlabel('Fandango') ax3.set_ylabel('IMDB') ax3.set_xlim(0,5) ax3.set_ylim(0,5) plt.show()
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Exploratory Data Visualization/Bar Plots And Scatter Plots-217.py", "copies": "1", "size": "3043", "license": "mit", "hash": 1026446975846338700, "line_mean": 29.44, "line_max": 109, "alpha_frac": 0.7183700296, "autogenerated": false, "ratio": 2.5295095594347465, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.37478795890347466, "avg_score": null, "num_lines": null }
## 2. Lists of lists ## import csv world_alcohol = list(csv.reader(open('world_alcohol.csv','r'))) years= [int(item[0]) for item in world_alcohol[1:]] total = sum(years) avg_year = total/len(years) ## 4. Using NumPy ## import numpy world_alcohol = numpy.genfromtxt("world_alcohol.csv", delimiter=",") print(type(world_alcohol)) ## 5. Creating arrays ## vector = numpy.array([10,20,30]) matrix = numpy.array([[5, 10, 15], [20, 25, 30], [35, 40, 45]]) ## 6. Array shape ## vector = numpy.array([10, 20, 30]) matrix = numpy.array([[5, 10, 15], [20, 25, 30], [35, 40, 45]]) vector_shape = vector.shape matrix_shape = matrix.shape ## 7. Data types ## world_alcohol_dtype = world_alcohol.dtype ## 9. Reading in the data properly ## world_alcohol = numpy.genfromtxt('world_alcohol.csv',skip_header = 1,dtype = 'U75',delimiter = ',') print(world_alcohol) ## 10. Indexing arrays ## uruguay_other_1986 = world_alcohol[1,4] third_country = world_alcohol[2,2] ## 11. Slicing arrays ## countries = world_alcohol[:,2] alcohol_consumption= world_alcohol[:,4] ## 12. Slicing one dimension ## first_two_columns = world_alcohol[:,:2] first_ten_years= world_alcohol[:10,0] first_ten_rows= world_alcohol[:10,:] ## 13. Slicing arrays ## first_twenty_regions = world_alcohol[:20,1:3]
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Data Analysis with Pandas Intermediate/Getting started with NumPy-6.py", "copies": "1", "size": "1281", "license": "mit", "hash": 8424053905647226000, "line_mean": 22.7407407407, "line_max": 99, "alpha_frac": 0.669008587, "autogenerated": false, "ratio": 2.6036585365853657, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3772667123585366, "avg_score": null, "num_lines": null }
## 2. Looking at the data ## import pandas as pd submissions = pd.read_csv("sel_hn_stories.csv") submissions.columns = ["submission_time", "upvotes", "url", "headline"] submissions = submissions.dropna() ## 3. Tokenization ## tokenized_headlines = [] for value in submissions["headline"]: tokenized_headlines.append(value.split(" ")) ## 4. Preprocessing ## punctuation = [",", ":", ";", ".", "'", '"', "’", "?", "/", "-", "+", "&", "(", ")"] clean_tokenized = [] for item in tokenized_headlines: tokens = [] for token in item: token = token.lower() for punc in punctuation: token = token.replace(punc, "") tokens.append(token) clean_tokenized.append(tokens) ## 5. Assembling a matrix ## import numpy as np unique_tokens = [] single_tokens = [] for tokens in clean_tokenized: for token in tokens: if token not in single_tokens: single_tokens.append(token) elif token not in unique_tokens: unique_tokens.append(token) counts = pd.DataFrame(0, index = np.arange(len(clean_tokenized)), columns = unique_tokens) ## 6. Counting tokens ## # clean_tokenized and counts have been loaded in. for i, item in enumerate(clean_tokenized): for token in item: if token in unique_tokens: counts.iloc[i][token] += 1 ## 7. Removing extraneous columns ## # clean_tokenized and counts have been loaded in word_counts = counts.sum(axis=0) counts = counts.loc[:,(word_counts >= 5) & (word_counts <= 100)] ## 8. Splitting the data ## from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(counts, submissions["upvotes"], test_size=0.2, random_state=1) ## 9. Making predictions ## from sklearn.linear_model import LinearRegression clf = LinearRegression() clf.fit(X_train, y_train) predictions = clf.predict(X_test) ## 10. Calculating error ## mse = sum((y_test - predictions) ** 2) / len(predictions)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Natural Language Processing/Introduction to natural language processing-158.py", "copies": "1", "size": "1972", "license": "mit", "hash": -7699341085713866000, "line_mean": 25.6351351351, "line_max": 114, "alpha_frac": 0.6487309645, "autogenerated": false, "ratio": 3.3389830508474576, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9451798326615274, "avg_score": 0.0071831377464367605, "num_lines": 74 }
## 2. Looking at the data ## # We can use the pandas library in python to read in the csv file. # This creates a pandas dataframe and assigns it to the titanic variable. titanic = pandas.read_csv("titanic_train.csv") # Print the first 5 rows of the dataframe. print(titanic.head(5)) print(titanic.describe()) ## 3. Missing data ## # The titanic variable is available here. titanic["Age"] = titanic["Age"].fillna(titanic["Age"].median()) ## 5. Converting the Sex column ## # Find all the unique genders -- the column appears to contain only male and female. print(titanic["Sex"].unique()) # Replace all the occurences of male with the number 0. titanic.loc[titanic["Sex"] == "male", "Sex"] = 0 titanic.loc[titanic["Sex"] == "female", "Sex"] = 1 ## 6. Converting the Embarked column ## # Find all the unique values for "Embarked". print(titanic["Embarked"].unique()) titanic["Embarked"] = titanic["Embarked"].fillna('S') titanic.loc[titanic["Embarked"] == "S", "Embarked"] = 0 titanic.loc[titanic["Embarked"] == "C", "Embarked"] = 1 titanic.loc[titanic["Embarked"] == "Q", "Embarked"] = 2 ## 9. Making predictions ## # Import the linear regression class from sklearn.linear_model import LinearRegression # Sklearn also has a helper that makes it easy to do cross validation from sklearn.cross_validation import KFold # The columns we'll use to predict the target predictors = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"] # Initialize our algorithm class alg = LinearRegression() # Generate cross validation folds for the titanic dataset. It return the row indices corresponding to train and test. # We set random_state to ensure we get the same splits every time we run this. kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: # The predictors we're using the train the algorithm. Note how we only take the rows in the train folds. train_predictors = (titanic[predictors].iloc[train,:]) # The target we're using to train the algorithm. train_target = titanic["Survived"].iloc[train] # Training the algorithm using the predictors and target. alg.fit(train_predictors, train_target) # We can now make predictions on the test fold test_predictions = alg.predict(titanic[predictors].iloc[test,:]) predictions.append(test_predictions) ## 10. Evaluating error ## import numpy as np # The predictions are in three separate numpy arrays. Concatenate them into one. # We concatenate them on axis 0, as they only have one axis. predictions = np.concatenate(predictions, axis=0) # Map predictions to outcomes (only possible outcomes are 1 and 0) predictions[predictions > .5] = 1 predictions[predictions <=.5] = 0 accuracy = sum(predictions[predictions == titanic["Survived"]]) / len(predictions) ## 11. Logistic regression ## from sklearn import cross_validation # Initialize our algorithm alg = LogisticRegression(random_state=1) # Compute the accuracy score for all the cross validation folds. (much simpler than what we did before!) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic["Survived"], cv=3) # Take the mean of the scores (because we have one for each fold) print(scores.mean()) ## 12. Processing the test set ## titanic_test = pandas.read_csv("titanic_test.csv") titanic_test["Age"] = titanic_test["Age"].fillna(titanic["Age"].median()) titanic_test["Fare"] = titanic_test["Fare"].fillna(titanic_test["Fare"].median()) titanic_test.loc[titanic_test["Sex"] == "male", "Sex"] = 0 titanic_test.loc[titanic_test["Sex"] == "female", "Sex"] = 1 titanic_test["Embarked"] = titanic_test["Embarked"].fillna("S") titanic_test.loc[titanic_test["Embarked"] == "S", "Embarked"] = 0 titanic_test.loc[titanic_test["Embarked"] == "C", "Embarked"] = 1 titanic_test.loc[titanic_test["Embarked"] == "Q", "Embarked"] = 2 ## 13. Generating a submission file ## # Initialize the algorithm class alg = LogisticRegression(random_state=1) # Train the algorithm using all the training data alg.fit(titanic[predictors], titanic["Survived"]) # Make predictions using the test set. predictions = alg.predict(titanic_test[predictors]) # Create a new dataframe with only the columns Kaggle wants from the dataset. submission = pandas.DataFrame({ "PassengerId": titanic_test["PassengerId"], "Survived": predictions })
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Kaggle Competitions/Getting started with Kaggle-73.py", "copies": "1", "size": "4368", "license": "mit", "hash": -5394495463459755000, "line_mean": 37.3245614035, "line_max": 118, "alpha_frac": 0.7184065934, "autogenerated": false, "ratio": 3.111111111111111, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4329517704511111, "avg_score": null, "num_lines": null }
## 2. Mutability ## class Counter(): def __init__(self): self.count = 0 def increment(self): self.count += 1 def get_count(self): return self.count def count_up_100000(counter): for i in range(100000): counter.increment() class Counter(): def __init__(self): self.count = 0 def increment(self): self.count += 1 def get_count(self): return self.count def count_up_100000(counter): for i in range(100000): counter.increment() counter = Counter() initial_count = counter.get_count() count_up_100000(counter) final_count = counter.get_count() ## 3. Multithreading ## import threading counter = Counter() count_thread = threading.Thread(target=count_up_100000, args=[counter]) count_thread.start() count_thread.join() counter = Counter() count_thread = threading.Thread(target=count_up_100000, args=[counter]) count_thread.start() count_thread.join() after_join = counter.get_count() print(after_join) ## 4. Determinism ## import threading def conduct_trial(): counter = Counter() count_thread = threading.Thread(target=count_up_100000, args=[counter]) count_thread.start() # Take measurement here count_thread.join() def conduct_trial(): counter = Counter() count_thread = threading.Thread(target=count_up_100000, args=[counter]) count_thread.start() intermediate_value = counter.get_count() count_thread.join() return intermediate_value trial1 = conduct_trial() print(trial1) trial2 = conduct_trial() print(trial2) trial3 = conduct_trial() print(trial3) ## 5. Enforcing determinism ## import threading def count_up_100000(counter, lock): for i in range(10000): for i in range(10): counter.increment() def conduct_trial(): counter = Counter() lock = threading.Lock() count_thread = threading.Thread(target=count_up_100000, args=[counter, lock]) count_thread.start() intermediate_value = counter.get_count() count_thread.join() return intermediate_value trial1 = conduct_trial() print(trial1) trial2 = conduct_trial() print(trial2) trial3 = conduct_trial() print(trial3) def count_up_100000(counter, lock): for i in range(10000): lock.acquire() for i in range(10): counter.increment() lock.release() def conduct_trial(): counter = Counter() lock = threading.Lock() count_thread = threading.Thread(target=count_up_100000, args=[counter, lock]) count_thread.start() lock.acquire() intermediate_value = counter.get_count() lock.release() count_thread.join() return intermediate_value trial1 = conduct_trial() print(trial1) trial2 = conduct_trial() print(trial2) trial3 = conduct_trial() print(trial3) ## 6. Counting twice ## def count_up_100000(counter): for i in range(100000): counter.increment() counter = Counter() def count_up_100000(counter): for i in range(100000): counter.increment() counter = Counter() count_up_100000(counter) count_up_100000(counter) final_count = counter.get_count() print(final_count) ## 7. Splitting our count into two threads. ## import threading def count_up_100000(counter): for i in range(100000): counter.increment() def count_up_100000(counter): for i in range(100000): counter.increment() def conduct_trial(): counter = Counter() count_thread1 = threading.Thread(target=count_up_100000, args=[counter]) count_thread2 = threading.Thread(target=count_up_100000, args=[counter]) count_thread1.start() count_thread2.start() # Join the threads here count_thread1.join() count_thread2.join() final_count = counter.get_count() return final_count trial1 = conduct_trial() print(trial1) trial2 = conduct_trial() print(trial2) trial3 = conduct_trial() print(trial3) ## 8. Atomicity ## import threading class Counter(): def __init__(self): self.count = 0 self.lock = threading.Lock() def increment(self): self.lock.acquire() old_count = self.count self.count = old_count + 1 self.lock.release() def get_count(self): return self.count def count_up_100000(counter): for i in range(100000): counter.increment() def conduct_trial(): counter = Counter() count_thread1 = threading.Thread(target=count_up_100000, args=[counter]) count_thread2 = threading.Thread(target=count_up_100000, args=[counter]) count_thread1.start() count_thread2.start() count_thread1.join() count_thread2.join() final_count = counter.get_count() return final_count trial1 = conduct_trial() print(trial1) trial2 = conduct_trial() print(trial2) trial3 = conduct_trial() print(trial3)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Python Programming Advanced/Parallel Processing-171.py", "copies": "1", "size": "4804", "license": "mit", "hash": 894002071476223900, "line_mean": 21.6650943396, "line_max": 81, "alpha_frac": 0.664029975, "autogenerated": false, "ratio": 3.443727598566308, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4607757573566308, "avg_score": null, "num_lines": null }
# 2 # 5 3 # 1 2 4 5 6 # 5 3 # 1 2 4 5 7 n = 5 K = 3 dp = [[0 for i in xrange(2**n)] for k in xrange(K+1)] a = [1,2,4,5,6] # a = [1,2,4,5,7] x = int(sum(a) / K) dp[0][0] = 1 for k in xrange(K): for bitmask in xrange(2**n): if not dp[k][bitmask]: continue s = 0 for i in xrange(n): if (bitmask & (1 << i)): s += a[i] s -= (k * x) for i in xrange(n): if (bitmask & (1 << i)): continue new_mask = bitmask | (1 << i) if (s + a[i]) == x: dp[k + 1][new_mask] = 1 elif (s + a[i]) < x: dp[k][new_mask] = 1 if dp[K][2**n - 1] == 1: print "yes" else: print "no" # Try running this locally. def send_simple_message(): import requests return requests.post( "https://api.mailgun.net/v2/samples.mailgun.org/messages", auth=("api", "key-3ax6xnjp29jd6fds4gc373sgvjxteol0"), data={"from": "sanskar.com", "to": ["parin2092@gmail.com"], "subject": "Hello", "text": "Testing some Mailgun awesomeness!"}) print send_simple_message()
{ "repo_name": "parinck/cook", "path": "codechef/sanskar.py", "copies": "2", "size": "1181", "license": "mit", "hash": -914744041901318400, "line_mean": 21.3018867925, "line_max": 66, "alpha_frac": 0.4580863675, "autogenerated": false, "ratio": 2.8119047619047617, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.924291216364655, "avg_score": 0.005415793151642208, "num_lines": 53 }
"""2nd database upgrade Revision ID: d440fe2187fa Revises: None Create Date: 2016-06-05 21:55:18.797000 """ # revision identifiers, used by Alembic. revision = 'd440fe2187fa' down_revision = None from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('activated', sa.Boolean(), nullable=True)) op.add_column('users', sa.Column('password_hash', sa.String(length=128), nullable=True)) op.create_index(op.f('ix_users_email'), 'users', ['email'], unique=True) op.create_index(op.f('ix_users_username'), 'users', ['username'], unique=False) op.drop_index('email', table_name='users') op.drop_column('users', 'password') ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('password', mysql.VARCHAR(collation=u'utf8_unicode_ci', length=64), nullable=True)) op.create_index('email', 'users', ['email'], unique=True) op.drop_index(op.f('ix_users_username'), table_name='users') op.drop_index(op.f('ix_users_email'), table_name='users') op.drop_column('users', 'password_hash') op.drop_column('users', 'activated') ### end Alembic commands ###
{ "repo_name": "zlasd/flaskr_exercise", "path": "migrations/versions/d440fe2187fa_2nd_database_upgrade.py", "copies": "1", "size": "1331", "license": "mit", "hash": 5903061786855625000, "line_mean": 35.9722222222, "line_max": 120, "alpha_frac": 0.6784372652, "autogenerated": false, "ratio": 3.2945544554455446, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4472991720645545, "avg_score": null, "num_lines": null }
# 2nd-order accurate finite-volume implementation of linear advection with # piecewise linear slope reconstruction # # We are solving a_t + u a_x = 0 # # M. Zingale (2013-03-24) import numpy import pylab import math class ccFVgrid: def __init__(self, nx, ng, xmin=0.0, xmax=1.0): self.xmin = xmin self.xmax = xmax self.ng = ng self.nx = nx # python is zero-based. Make easy intergers to know where the # real data lives self.ilo = ng self.ihi = ng+nx-1 # physical coords -- cell-centered, left and right edges self.dx = (xmax - xmin)/(nx) self.x = xmin + (numpy.arange(nx+2*ng)-ng+0.5)*self.dx self.xl = xmin + (numpy.arange(nx+2*ng)-ng)*self.dx self.xr = xmin + (numpy.arange(nx+2*ng)-ng+1.0)*self.dx # storage for the solution self.a = numpy.zeros((nx+2*ng), dtype=numpy.float64) def period(self, u): """ return the period for advection with velocity u """ return (self.xmax - self.xmin)/u def scratchArray(self): """ return a scratch array dimensioned for our grid """ return numpy.zeros((self.nx+2*self.ng), dtype=numpy.float64) def fillBCs(self): """ fill all single ghostcell with periodic boundary conditions """ # left boundary n = 0 while (n < self.ng): self.a[self.ilo-1-n] = self.a[self.ihi-n] n += 1 # right boundary n = 0 while (n < self.ng): self.a[self.ihi+1+n] = self.a[self.ilo+n] n += 1 def initCond(self, type="tophat"): if type == "tophat": self.a[numpy.logical_and(self.x >= 0.333, self.x <= 0.666)] = 1.0 elif type == "sine": self.a[:] = numpy.sin(2.0*math.pi*self.x/(self.xmax-self.xmin)) elif type == "gaussian": self.a[:] = 1.0 + numpy.exp(-60.0*(self.x - 0.5)**2) self.ainit = self.a.copy() def norm(self, e): """ return the norm of quantity e which lives on the grid """ if not len(e) == (2*self.ng + self.nx): return None return numpy.sqrt(self.dx*numpy.sum(e[self.ilo:self.ihi+1]**2)) #----------------------------------------------------------------------------- # advection-specific routines def timestep(g, C, u): return C*g.dx/u def states(g, dt, u): """ compute the left and right interface states """ # compute the piecewise linear slopes slope = g.scratchArray() i = g.ilo-1 while (i <= g.ihi+1): slope[i] = 0.5*(g.a[i+1] - g.a[i-1])/g.dx i += 1 # loop over all the interfaces. Here, i refers to the left # interface of the zone. Note that thre are 1 more interfaces # than zones al = g.scratchArray() ar = g.scratchArray() i = g.ilo while (i <= g.ihi+1): # left state on the current interface comes from zone i-1 al[i] = g.a[i-1] + 0.5*g.dx*(1.0 - u*dt/g.dx)*slope[i-1] # right state on the current interface comes from zone i ar[i] = g.a[i] - 0.5*g.dx*(1.0 + u*dt/g.dx)*slope[i] i += 1 return al, ar def riemann(u, al, ar): """ Riemann problem for advection -- this is simply upwinding, but we return the flux """ if u > 0.0: return u*al else: return u*ar def update(g, dt, flux): """ conservative update """ anew = g.scratchArray() anew[g.ilo:g.ihi+1] = g.a[g.ilo:g.ihi+1] + \ dt/g.dx * (flux[g.ilo:g.ihi+1] - flux[g.ilo+1:g.ihi+2]) return anew def evolve(nx, C, u, numPeriods, ICname): ng = 2 # create the grid g = ccFVgrid(nx, ng) t = 0.0 tmax = numPeriods*g.period(u) # initialize the data g.initCond(ICname) # main evolution loop while (t < tmax): # fill the boundary conditions g.fillBCs() # get the timestep dt = timestep(g, C, u) if (t + dt > tmax): dt = tmax - t # get the interface states al, ar = states(g, dt, u) # solve the Riemann problem at all interfaces flux = riemann(u, al, ar) # do the conservative update anew = update(g, dt, flux) g.a[:] = anew[:] t += dt return g #----------------------------------------------------------------------------- u = 1.0 nx = 64 C = 0.8 g = evolve(nx, C, u, 5, "tophat") pylab.plot(g.x[g.ilo:g.ihi+1], g.a[g.ilo:g.ihi+1], color="r") pylab.plot(g.x[g.ilo:g.ihi+1], g.ainit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.savefig("fv-advect.png") #----------------------------------------------------------------------------- # convergence test problem = "gaussian" N = [32, 64, 128, 256] u = 1.0 C = 0.8 err = [] for nx in N: g = evolve(nx, C, u, 5, problem) # compute the error err.append(g.norm(g.a - g.ainit)) print g.dx, nx, err[-1] pylab.clf() N = numpy.array(N, dtype=numpy.float64) err = numpy.array(err) pylab.scatter(N, err, color="r") pylab.plot(N, err[len(N)-1]*(N[len(N)-1]/N)**2, color="k") ax = pylab.gca() ax.set_xscale('log') ax.set_yscale('log') pylab.savefig("plm-converge.png")
{ "repo_name": "bt3gl/Numerical-Methods-for-Physics", "path": "others/advection/fv_advection.py", "copies": "1", "size": "5211", "license": "apache-2.0", "hash": -6059247351424842000, "line_mean": 21.364806867, "line_max": 78, "alpha_frac": 0.5248512761, "autogenerated": false, "ratio": 3.0051903114186853, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4030041587518685, "avg_score": null, "num_lines": null }
# 2nd-order accurate finite-volume implementation of the inviscid Burger's equation # with piecewise linear slope reconstruction # # We are solving u_t + u u_x = 0 with outflow boundary conditions # # M. Zingale (2013-03-26) import numpy import pylab import math import sys class ccFVgrid: def __init__(self, nx, ng, xmin=0.0, xmax=1.0): self.xmin = xmin self.xmax = xmax self.ng = ng self.nx = nx # python is zero-based. Make easy intergers to know where the # real data lives self.ilo = ng self.ihi = ng+nx-1 # physical coords -- cell-centered, left and right edges self.dx = (xmax - xmin)/(nx) self.x = xmin + (numpy.arange(nx+2*ng)-ng+0.5)*self.dx self.xl = xmin + (numpy.arange(nx+2*ng)-ng)*self.dx self.xr = xmin + (numpy.arange(nx+2*ng)-ng+1.0)*self.dx # storage for the solution self.u = numpy.zeros((nx+2*ng), dtype=numpy.float64) def period(self, u): """ return the period for advection with velocity u """ return (self.xmax - self.xmin)/u def scratchArray(self): """ return a scratch array dimensioned for our grid """ return numpy.zeros((self.nx+2*self.ng), dtype=numpy.float64) def fillBCs(self): """ fill all ghostcells with outflow """ # left boundary self.u[0:self.ilo] = self.u[self.ilo] # right boundary self.u[self.ihi+1:] = self.u[self.ihi] def initCond(self, type="tophat"): if type == "tophat": self.u[numpy.logical_and(self.x >= 0.333, self.x <= 0.666)] = 1.0 elif type == "sine": self.u[:] = 1.0 index = numpy.logical_and(self.x >= 0.333, self.x <= 0.666) self.u[index] += 0.5*numpy.sin(2.0*math.pi*(self.x[index]-0.333)/0.333) elif type == "rarefaction": self.u[:] = 1.0 self.u[self.x > 0.5] = 2.0 self.uinit = self.u.copy() def norm(self, e): """ return the norm of quantity e which lives on the grid """ if not len(e) == (2*self.ng + self.nx): return None return numpy.sqrt(self.dx*numpy.sum(e[self.ilo:self.ihi+1]**2)) #----------------------------------------------------------------------------- # advection-specific routines def timestep(g, C): return C*g.dx/max(abs(g.u[g.ilo:g.ihi+1])) def states(g, dt, slopeType): """ compute the left and right interface states """ # compute the piecewise linear slopes slope = g.scratchArray() if slopeType == "godunov": # piecewise constant = 0 slopes slope[:] = 0.0 elif slopeType == "centered": # unlimited centered difference slopes i = g.ilo-1 while (i <= g.ihi+1): slope[i] = 0.5*(g.u[i+1] - g.u[i-1])/g.dx i += 1 elif slopeType == "minmod": # minmod limited slope i = g.ilo-1 while (i <= g.ihi+1): slope[i] = minmod( (g.u[i] - g.u[i-1])/g.dx, (g.u[i+1] - g.u[i])/g.dx ) i += 1 elif slopeType == "MC": # MC limiter i = g.ilo-1 while (i <= g.ihi+1): slope[i] = minmod(minmod( 2.0*(g.u[i] - g.u[i-1])/g.dx, 2.0*(g.u[i+1] - g.u[i])/g.dx ), 0.5*(g.u[i+1] - g.u[i-1])/g.dx) i += 1 elif slopeType == "superbee": # superbee limiter i = g.ilo-1 while (i <= g.ihi+1): A = minmod( (g.u[i+1] - g.u[i])/g.dx, 2.0*(g.u[i] - g.u[i-1])/g.dx ) B = minmod( (g.u[i] - g.u[i-1])/g.dx, 2.0*(g.u[i+1] - g.u[i])/g.dx ) slope[i] = maxmod(A, B) i += 1 # loop over all the interfaces. Here, i refers to the left # interface of the zone. Note that thre are 1 more interfaces # than zones ul = g.scratchArray() ur = g.scratchArray() i = g.ilo while (i <= g.ihi+1): # left state on the current interface comes from zone i-1 ul[i] = g.u[i-1] + 0.5*g.dx*(1.0 - g.u[i-1]*dt/g.dx)*slope[i-1] # right state on the current interface comes from zone i ur[i] = g.u[i] - 0.5*g.dx*(1.0 + g.u[i]*dt/g.dx)*slope[i] i += 1 return ul, ur def riemann(g, ul, ur): """ Riemann problem for advection -- this is simply upwinding, but we return the flux """ f = g.scratchArray() i = g.ilo while (i <= g.ihi+1): if ul[i] > ur[i]: # shock S = 0.5*(ul[i] + ur[i]) if (S > 0): us = ul[i] elif (S < 0): us = ur[i] else: f[i] = 0.0 else: # rarefaction if ul[i] >= 0.0: us = ul[i] elif ur[i] <= 0.0: us = ur[i] else: f[i] = 0.0 f[i] = 0.5*us*us i += 1 return f def update(g, dt, flux): """ conservative update """ anew = g.scratchArray() anew[g.ilo:g.ihi+1] = g.u[g.ilo:g.ihi+1] + \ dt/g.dx * (flux[g.ilo:g.ihi+1] - flux[g.ilo+1:g.ihi+2]) return anew def evolve(nx, C, u, numPeriods, ICname, slopeType="centered"): ng = 2 # create the grid g = ccFVgrid(nx, ng) t = 0.0 tmax = numPeriods*g.period(u) # initialize the data g.initCond(ICname) # main evolution loop while (t < tmax): # fill the boundary conditions g.fillBCs() # get the timestep dt = timestep(g, C) if (t + dt > tmax): dt = tmax - t # get the interface states ul, ur = states(g, dt, slopeType) # solve the Riemann problem at all interfaces flux = riemann(g, ul, ur) # do the conservative update unew = update(g, dt, flux) g.u[:] = unew[:] t += dt return g def minmod(a, b): if (abs(a) < abs(b) and a*b > 0.0): return a elif (abs(b) < abs(a) and a*b > 0.0): return b else: return 0.0 def maxmod(a, b): if (abs(a) > abs(b) and a*b > 0.0): return a elif (abs(b) > abs(a) and a*b > 0.0): return b else: return 0.0 #----------------------------------------------------------------------------- # sine u = 1.0 nx = 128 C = 0.8 pylab.clf() for i in range(0,10): tend = (i+1)*0.02 g = evolve(nx, C, u, tend, "sine", slopeType="MC") c = 1.0 - (0.1 + i*0.1) pylab.plot(g.x[g.ilo:g.ihi+1], g.u[g.ilo:g.ihi+1], color=`c`) pylab.plot(g.x[g.ilo:g.ihi+1], g.uinit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.savefig("fv-burger-sine.png") #----------------------------------------------------------------------------- # rarefaction u = 1.0 nx = 128 C = 0.8 pylab.clf() for i in range(0,10): tend = (i+1)*0.02 g = evolve(nx, C, u, tend, "rarefaction", slopeType="MC") c = 1.0 - (0.1 + i*0.1) pylab.plot(g.x[g.ilo:g.ihi+1], g.u[g.ilo:g.ihi+1], color=`c`) pylab.plot(g.x[g.ilo:g.ihi+1], g.uinit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.savefig("fv-burger-rarefaction.png")
{ "repo_name": "bt3gl/Numerical-Methods-for-Physics", "path": "others/advection/fv_burgers.py", "copies": "1", "size": "7293", "license": "apache-2.0", "hash": -1460346586849891600, "line_mean": 21.8620689655, "line_max": 83, "alpha_frac": 0.4768956534, "autogenerated": false, "ratio": 2.911377245508982, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.884358155008459, "avg_score": 0.008938269764878319, "num_lines": 319 }
# 2nd-order accurate finite-volume implementation of the inviscid Burger's # equation with piecewise linear slope reconstruction # # We are solving u_t + u u_x = 0 with outflow boundary conditions # # M. Zingale (2013-03-26) import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import sys mpl.rcParams['mathtext.fontset'] = 'cm' mpl.rcParams['mathtext.rm'] = 'serif' mpl.rcParams['font.size'] = 12 mpl.rcParams['legend.fontsize'] = 'large' mpl.rcParams['figure.titlesize'] = 'medium' class Grid1d(object): def __init__(self, nx, ng, xmin=0.0, xmax=1.0, bc="outflow"): self.nx = nx self.ng = ng self.xmin = xmin self.xmax = xmax self.bc=bc # python is zero-based. Make easy intergers to know where the # real data lives self.ilo = ng self.ihi = ng+nx-1 # physical coords -- cell-centered, left and right edges self.dx = (xmax - xmin)/(nx) self.x = xmin + (np.arange(nx+2*ng)-ng+0.5)*self.dx # storage for the solution self.u = np.zeros((nx+2*ng), dtype=np.float64) def scratch_array(self): """ return a scratch array dimensioned for our grid """ return np.zeros((self.nx+2*self.ng), dtype=np.float64) def fill_BCs(self): """ fill all ghostcells as periodic """ if self.bc == "periodic": # left boundary self.u[0:self.ilo] = self.u[self.ihi-self.ng+1:self.ihi+1] # right boundary self.u[self.ihi+1:] = self.u[self.ilo:self.ilo+self.ng] elif self.bc == "outflow": # left boundary self.u[0:self.ilo] = self.u[self.ilo] # right boundary self.u[self.ihi+1:] = self.u[self.ihi] else: sys.exit("invalid BC") def norm(self, e): """ return the norm of quantity e which lives on the grid """ if len(e) != 2*self.ng + self.nx: return None return np.sqrt(self.dx*np.sum(e[self.ilo:self.ihi+1]**2)) class Simulation(object): def __init__(self, grid): self.grid = grid self.t = 0.0 def init_cond(self, type="tophat"): if type == "tophat": self.grid.u[np.logical_and(self.grid.x >= 0.333, self.grid.x <= 0.666)] = 1.0 elif type == "sine": self.grid.u[:] = 1.0 index = np.logical_and(self.grid.x >= 0.333, self.grid.x <= 0.666) self.grid.u[index] += \ 0.5*np.sin(2.0*np.pi*(self.grid.x[index]-0.333)/0.333) elif type == "rarefaction": self.grid.u[:] = 1.0 self.grid.u[self.grid.x > 0.5] = 2.0 def timestep(self, C): return C*self.grid.dx/max(abs(self.grid.u[self.grid.ilo: self.grid.ihi+1])) def states(self, dt): """ compute the left and right interface states """ g = self.grid # compute the piecewise linear slopes -- 2nd order MC limiter # we pick a range of cells that includes 1 ghost cell on either # side ib = g.ilo-1 ie = g.ihi+1 u = g.u # this is the MC limiter from van Leer (1977), as given in # LeVeque (2002). Note that this is slightly different than # the expression from Colella (1990) dc = g.scratch_array() dl = g.scratch_array() dr = g.scratch_array() dc[ib:ie+1] = 0.5*(u[ib+1:ie+2] - u[ib-1:ie ]) dl[ib:ie+1] = u[ib+1:ie+2] - u[ib :ie+1] dr[ib:ie+1] = u[ib :ie+1] - u[ib-1:ie ] # these where's do a minmod() d1 = 2.0*np.where(np.fabs(dl) < np.fabs(dr), dl, dr) d2 = np.where(np.fabs(dc) < np.fabs(d1), dc, d1) ldeltau = np.where(dl*dr > 0.0, d2, 0.0) # now the interface states. Note that there are 1 more interfaces # than zones ul = g.scratch_array() ur = g.scratch_array() # are these indices right? # # --+-----------------+------------------+ # ^ i ^ ^ i+1 # ur(i) ul(i+1) ur(i+1) # ur[ib:ie+2] = u[ib:ie+2] - \ 0.5*(1.0 + u[ib:ie+2]*dt/self.grid.dx)*ldeltau[ib:ie+2] ul[ib+1:ie+2] = u[ib:ie+1] + \ 0.5*(1.0 - u[ib:ie+1]*dt/self.grid.dx)*ldeltau[ib:ie+1] return ul, ur def riemann(self, ul, ur): """ Riemann problem for Burgers' equation. """ S = 0.5*(ul + ur) ushock = np.where(S > 0.0, ul, ur) ushock = np.where(S == 0.0, 0.0, ushock) # rarefaction solution urare = np.where(ur <= 0.0, ur, 0.0) urare = np.where(ul >= 0.0, ul, urare) us = np.where(ul > ur, ushock, urare) return 0.5*us*us def update(self, dt, flux): """ conservative update """ g = self.grid unew = g.scratch_array() unew[g.ilo:g.ihi+1] = g.u[g.ilo:g.ihi+1] + \ dt/g.dx * (flux[g.ilo:g.ihi+1] - flux[g.ilo+1:g.ihi+2]) return unew def evolve(self, C, tmax): self.t = 0.0 g = self.grid # main evolution loop while (self.t < tmax): # fill the boundary conditions g.fill_BCs() # get the timestep dt = self.timestep(C) if (self.t + dt > tmax): dt = tmax - self.t # get the interface states ul, ur = self.states(dt) # solve the Riemann problem at all interfaces flux = self.riemann(ul, ur) # do the conservative update unew = self.update(dt, flux) self.grid.u[:] = unew[:] self.t += dt if __name__ == "__main__": #----------------------------------------------------------------------------- # sine xmin = 0.0 xmax = 1.0 nx = 256 ng = 2 g = Grid1d(nx, ng, bc="periodic") # maximum evolution time based on period for unit velocity tmax = (xmax - xmin)/1.0 C = 0.8 plt.clf() s = Simulation(g) for i in range(0, 10): tend = (i+1)*0.02*tmax s.init_cond("sine") uinit = s.grid.u.copy() s.evolve(C, tend) c = 1.0 - (0.1 + i*0.1) g = s.grid plt.plot(g.x[g.ilo:g.ihi+1], g.u[g.ilo:g.ihi+1], color=str(c)) g = s.grid plt.plot(g.x[g.ilo:g.ihi+1], uinit[g.ilo:g.ihi+1], ls=":", color="0.9", zorder=-1) plt.xlabel("$x$") plt.ylabel("$u$") plt.savefig("fv-burger-sine.pdf") #----------------------------------------------------------------------------- # rarefaction xmin = 0.0 xmax = 1.0 nx = 256 ng = 2 g = Grid1d(nx, ng, bc="outflow") # maximum evolution time based on period for unit velocity tmax = (xmax - xmin)/1.0 C = 0.8 plt.clf() s = Simulation(g) for i in range(0, 10): tend = (i+1)*0.02*tmax s.init_cond("rarefaction") uinit = s.grid.u.copy() s.evolve(C, tend) c = 1.0 - (0.1 + i*0.1) plt.plot(g.x[g.ilo:g.ihi+1], g.u[g.ilo:g.ihi+1], color=str(c)) plt.plot(g.x[g.ilo:g.ihi+1], uinit[g.ilo:g.ihi+1], ls=":", color="0.9", zorder=-1) plt.xlabel("$x$") plt.ylabel("$u$") plt.savefig("fv-burger-rarefaction.pdf")
{ "repo_name": "zingale/hydro_examples", "path": "burgers/burgers.py", "copies": "1", "size": "7466", "license": "bsd-3-clause", "hash": -4261778056769246000, "line_mean": 23.803986711, "line_max": 86, "alpha_frac": 0.4902223413, "autogenerated": false, "ratio": 3.022672064777328, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4012894406077328, "avg_score": null, "num_lines": null }
# 2nd-order accurate finite-volume implementation of the inviscid Burger's # equation with piecewise linear slope reconstruction # # We are solving u_t + u u_x = 0 with outflow boundary conditions # # M. Zingale (2013-03-26) import numpy import pylab import math import sys class Grid1d: def __init__(self, nx, ng, xmin=0.0, xmax=1.0): self.nx = nx self.ng = ng self.xmin = xmin self.xmax = xmax # python is zero-based. Make easy intergers to know where the # real data lives self.ilo = ng self.ihi = ng+nx-1 # physical coords -- cell-centered, left and right edges self.dx = (xmax - xmin)/(nx) self.x = xmin + (numpy.arange(nx+2*ng)-ng+0.5)*self.dx # storage for the solution self.u = numpy.zeros((nx+2*ng), dtype=numpy.float64) def scratch_array(self): """ return a scratch array dimensioned for our grid """ return numpy.zeros((self.nx+2*self.ng), dtype=numpy.float64) def fill_BCs(self): """ fill all ghostcells with outflow """ # left boundary self.u[0:self.ilo] = self.u[self.ilo] # right boundary self.u[self.ihi+1:] = self.u[self.ihi] class Simulation: def __init__(self, grid): self.grid = grid self.t = 0.0 def init_cond(self, type="tophat"): if type == "tophat": self.grid.u[numpy.logical_and(self.grid.x >= 0.333, self.grid.x <= 0.666)] = 1.0 elif type == "sine": self.grid.u[:] = 1.0 index = numpy.logical_and(self.grid.x >= 0.333, self.grid.x <= 0.666) self.grid.u[index] += \ 0.5*numpy.sin(2.0*math.pi*(self.grid.x[index]-0.333)/0.333) elif type == "rarefaction": self.grid.u[:] = 1.0 self.grid.u[self.grid.x > 0.5] = 2.0 def timestep(self, C): return C*self.grid.dx/max(abs(self.grid.u[self.grid.ilo: self.grid.ihi+1])) def states(self, dt): """ compute the left and right interface states """ # compute the piecewise linear slopes -- 2nd order MC limiter # we pick a range of cells that includes 1 ghost cell on either # side ib = self.grid.ilo-1 ie = self.grid.ihi+1 u = self.grid.u # this is the MC limiter from van Leer (1977), as given in # LeVeque (2002). Note that this is slightly different than # the expression from Colella (1990) dc = self.grid.scratch_array() dl = self.grid.scratch_array() dr = self.grid.scratch_array() dc[ib:ie+1] = 0.5*(u[ib+1:ie+2] - u[ib-1:ie ]) dl[ib:ie+1] = u[ib+1:ie+2] - u[ib :ie+1] dr[ib:ie+1] = u[ib :ie+1] - u[ib-1:ie ] # these where's do a minmod() d1 = 2.0*numpy.where(numpy.fabs(dl) < numpy.fabs(dr), dl, dr) d2 = numpy.where(numpy.fabs(dc) < numpy.fabs(d1), dc, d1) ldeltau = numpy.where(dl*dr > 0.0, d2, 0.0) # now the interface states. Note that there are 1 more interfaces # than zones ul = g.scratch_array() ur = g.scratch_array() # are these indices right? # # --+-----------------+------------------+ # ^ i ^ ^ i+1 # ur(i) ul(i+1) ur(i+1) # ur[ib:ie+1] = u[ib:ie+1] - \ 0.5*(1.0 + u[ib:ie+1]*dt/self.grid.dx)*ldeltau[ib:ie+1] ul[ib+1:ie+2] = u[ib:ie+1] + \ 0.5*(1.0 - u[ib:ie+1]*dt/self.grid.dx)*ldeltau[ib:ie+1] return ul, ur def riemann(self, ul, ur): """ Riemann problem for Burgers' equation. """ S = 0.5*(ul + ur) ushock = numpy.where(S > 0.0, ul, ur) ushock = numpy.where(S == 0.0, 0.0, ushock) # rarefaction solution urare = numpy.where(ur <= 0.0, ur, 0.0) urare = numpy.where(ul >= 0.0, ul, urare) us = numpy.where(ul > ur, ushock, urare) return 0.5*us*us def update(self, dt, flux): """ conservative update """ g = self.grid unew = g.scratch_array() unew[g.ilo:g.ihi+1] = g.u[g.ilo:g.ihi+1] + \ dt/g.dx * (flux[g.ilo:g.ihi+1] - flux[g.ilo+1:g.ihi+2]) return unew def evolve(self, C, tmax): self.t = 0.0 # main evolution loop while (self.t < tmax): # fill the boundary conditions g.fill_BCs() # get the timestep dt = self.timestep(C) if (self.t + dt > tmax): dt = tmax - self.t # get the interface states ul, ur = self.states(dt) # solve the Riemann problem at all interfaces flux = self.riemann(ul, ur) # do the conservative update unew = self.update(dt, flux) self.grid.u[:] = unew[:] self.t += dt #----------------------------------------------------------------------------- # sine xmin = 0.0 xmax = 1.0 nx = 256 ng = 2 g = Grid1d(nx, ng) # maximum evolution time based on period for unit velocity tmax = (xmax - xmin)/1.0 C = 0.8 pylab.clf() s = Simulation(g) for i in range(0,10): tend = (i+1)*0.02*tmax s.init_cond("sine") uinit = s.grid.u.copy() s.evolve(C, tend) c = 1.0 - (0.1 + i*0.1) g = s.grid pylab.plot(g.x[g.ilo:g.ihi+1], g.u[g.ilo:g.ihi+1], color=`c`) g = s.grid pylab.plot(g.x[g.ilo:g.ihi+1], uinit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.xlabel("$x$") pylab.ylabel("$u$") pylab.savefig("fv-burger-sine.png") pylab.savefig("fv-burger-sine.eps") #----------------------------------------------------------------------------- # rarefaction xmin = 0.0 xmax = 1.0 nx = 256 ng = 2 g = Grid1d(nx, ng) # maximum evolution time based on period for unit velocity tmax = (xmax - xmin)/1.0 C = 0.8 pylab.clf() s = Simulation(g) for i in range(0,10): tend = (i+1)*0.02*tmax s.init_cond("rarefaction") uinit = s.grid.u.copy() s.evolve(C, tend) c = 1.0 - (0.1 + i*0.1) pylab.plot(g.x[g.ilo:g.ihi+1], g.u[g.ilo:g.ihi+1], color=`c`) pylab.plot(g.x[g.ilo:g.ihi+1], uinit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.xlabel("$x$") pylab.ylabel("$u$") pylab.savefig("fv-burger-rarefaction.png") pylab.savefig("fv-burger-rarefaction.eps")
{ "repo_name": "JeffDestroyerOfWorlds/hydro_examples", "path": "burgers/burgers.py", "copies": "1", "size": "6543", "license": "bsd-3-clause", "hash": 6555722672691561000, "line_mean": 23.1439114391, "line_max": 79, "alpha_frac": 0.5052728106, "autogenerated": false, "ratio": 2.940674157303371, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8891245681384714, "avg_score": 0.010940257303731183, "num_lines": 271 }
import numpy as np from sympy import symbols, sin, cos, lambdify from shenfun import * import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter # pylint: disable=multiple-statements from mpltools import annotation pa = {'fill': False, 'edgecolor': 'black'} ta = {'fontsize': 10} pex = lambda *args: print(*args) + exit(0) x, y, t = symbols("x, y, t", real=True) # Define the initial solution uex = (sin(np.pi*x)**2)*sin(2*np.pi*y)*sin(t) uey = -sin(2*np.pi*x)*(sin(np.pi*y)**2)*sin(t) pe = cos(np.pi*x)*cos(np.pi*y)*sin(t) fex = -uex.diff(x, 2) - uex.diff(y, 2) + pe.diff(x, 1) + uex.diff(t, 1) \ + uex*uex.diff(x, 1) + uey*uex.diff(y, 1) fey = -uey.diff(x, 2) - uey.diff(y, 2) + pe.diff(y, 1) + uey.diff(t, 1) \ + uex*uey.diff(x, 1) + uey*uey.diff(y, 1) he = uex.diff(x, 1) + uey.diff(y, 1) uexf, ueyf, pef, fexf, feyf = map(lambda v: lambdify((x, y, t), v), (uex, uey, pe, fex, fey)) def main(n): # number of modes in x and y direction N = (32, 32) # basis function for velocity components in x and y directions: P_{N} D0X = FunctionSpace(N[0], 'Legendre', quad='GL', dtype='d', bc=(0, 0)) D0Y = FunctionSpace(N[1], 'Legendre', quad='GL', dtype='d', bc=(0, 0)) # basis function for pressure: P_{N-2} PX = FunctionSpace(N[0], 'Legendre', quad='GL') PY = FunctionSpace(N[1], 'Legendre', quad='GL') PX.slice = lambda: slice(0, N[0]-2) PY.slice = lambda: slice(0, N[1]-2) # define a multi-dimensional tensor product basis Vs = TensorProductSpace(comm, (D0X, D0Y)) Ps = TensorProductSpace(comm, (PX, PY), modify_spaces_inplace=True) # Create vector space for velocity Ws = VectorSpace([Vs, Vs]) Cs = TensorSpace([Ws, Ws]) # cauchy stress tensor # Create test and trial spaces for velocity and pressure u = TrialFunction(Ws); v = TestFunction(Ws) p = TrialFunction(Ps); q = TestFunction(Ps) X = Vs.local_mesh(True) # Define the initial solution on quadrature points at t=0 U = Array(Ws, buffer=(uex.subs(t, 0), uey.subs(t, 0))) P = Array(Ps); P.fill(0) F = Array(Ws, buffer=(fex.subs(t, 0), fey.subs(t, 0))) U0 = U.copy() # Define the coefficient vector U_hat = Function(Ws); U_hat = Ws.forward(U, U_hat) P_hat = Function(Ps); P_hat = Ps.forward(P, P_hat) F_hat = Function(Ws); F_hat = Ws.forward(F, F_hat) # Initial time, time step, final time ti, dt, tf = 0., 5e-3/n, 5e-2 nsteps = np.int(np.ceil((tf - ti)/dt)) dt = (tf - ti)/nsteps X = Ws.local_mesh(True) # Define the implicit operator for BDF-2 Lb1 = BlockMatrix(inner(v, u*(1.5/dt)) + inner(grad(v), grad(u))) Lb2 = BlockMatrix(inner(-grad(q), grad(p))) # Define the implicit operator for Euler Le1 = BlockMatrix(inner(v, u*(1./dt)) + inner(grad(v), grad(u))) Le2 = BlockMatrix(inner(-grad(q), grad(p))) # Define the implicit operator for updating Lu1 = BlockMatrix([inner(v, u)]) Lu2 = BlockMatrix([inner(q, p)]) # temporary storage rhsU, rhsP = Function(Ws), Function(Ps) U0_hat = Function(Ws); U0_hat = Ws.forward(U, U0_hat) Ut_hat = Function(Ws); Ut_hat = Ws.forward(U, Ut_hat) P0_hat = Function(Ps); P0_hat = Ps.forward(P, P0_hat) Phi_hat = Function(Ps); Phi_hat = Ps.forward(P, Phi_hat) # Create work arrays for nonlinear part UiUj = Array(Cs) UiUj_hat = Function(Cs) # integrate in time time = ti # storage rhsU, rhsP = rhsU, rhsP u_hat, p_hat = U_hat, P_hat u0_hat, p0_hat = U0_hat, P0_hat ut_hat, phi_hat = Ut_hat, Phi_hat # Euler time-step # evaluate the forcing function F[0] = fexf(X[0], X[1], time+dt) F[1] = feyf(X[0], X[1], time+dt) # Solve (9.102) rhsU.fill(0) rhsU += -inner(v, grad(p_hat)) rhsU += inner(v, F) rhsU += inner(v, u_hat/dt) U = Ws.backward(U_hat, U) UiUj = outer(U, U, UiUj) UiUj_hat = UiUj.forward(UiUj_hat) rhsU += -inner(v, div(UiUj_hat)) ut_hat = Le1.solve(rhsU, u=ut_hat) # Solve (9.107) rhsP.fill(0) rhsP += (1/dt)*inner(q, div(ut_hat)) phi_hat = Le2.solve(rhsP, u=phi_hat, constraints=((0, 0, 0),)) # Update for next time step u0_hat[:] = u_hat; p0_hat[:] = p_hat # Update (9.107) rhsU.fill(0) rhsU += inner(v, ut_hat) - inner(v, dt*grad(phi_hat)) u_hat = Lu1.solve(rhsU, u=u_hat) # Update (9.105) rhsP.fill(0) rhsP += inner(q, phi_hat) + inner(q, p_hat) - inner(q, div(ut_hat)) p_hat = Lu2.solve(rhsP, u=p_hat, constraints=((0, 0, 0),)) time += dt # BDF time step for step in range(2, nsteps+1): # evaluate the forcing function F[0] = fexf(X[0], X[1], time+dt) F[1] = feyf(X[0], X[1], time+dt) # Solve (9.102) rhsU.fill(0) rhsU += -inner(v, grad(p_hat)) rhsU += inner(v, F) rhsU += inner(v, u_hat*2/dt) - inner(v, u0_hat*0.5/dt) U = Ws.backward(U_hat, U) UiUj = outer(U, U, UiUj) UiUj_hat = UiUj.forward(UiUj_hat) rhsU += -2*inner(v, div(UiUj_hat)) U0 = Ws.backward(U0_hat, U0) UiUj = outer(U0, U0, UiUj) UiUj_hat = UiUj.forward(UiUj_hat) rhsU += inner(v, div(UiUj_hat)) ut_hat = Lb1.solve(rhsU, u=ut_hat) # Solve (9.107) rhsP.fill(0) rhsP += 1.5/dt*inner(q, div(ut_hat)) phi_hat = Lb2.solve(rhsP, u=phi_hat, constraints=((0, 0, 0),)) # update for next time step u0_hat[:] = u_hat; p0_hat[:] = p_hat # Update (9.107, 9.105) rhsU.fill(0) rhsU += inner(v, ut_hat) - inner(v, ((2.*dt/3))*grad(phi_hat)) u_hat = Lu1.solve(rhsU, u=u_hat) rhsP.fill(0) rhsP += inner(q, phi_hat) + inner(q, p_hat) - inner(q, div(ut_hat)) p_hat = Lu2.solve(rhsP, u=p_hat, constraints=((0, 0, 0),)) # increment time time += dt # Transform the solution to physical space UP = [*U_hat.backward(U), P_hat.backward(P)] # compute error Ue = Array(Ws, buffer=(uex.subs(t, tf), uey.subs(t, tf))) Pe = Array(Ps, buffer=(pe.subs(t, tf))) UPe = [*Ue, Pe] l2_error = list(map(np.linalg.norm, [u-ue for u, ue in zip(UP, UPe)])) return l2_error if __name__ == "__main__": N = 2**np.arange(0, 4) E = np.zeros((3, len(N))) for (j, n) in enumerate(N): E[:, j] = main(n) fig = plt.figure(figsize=(5.69, 4.27)) ax = plt.gca() marks = ('or', '-g', '-ob') vars = (r'$u_x$', r'$u_y$', r'$p$') for i in range(3): plt.loglog(N, E[i, :], marks[i], label=vars[i]) slope, intercept = np.polyfit(np.log(N[-2:]), np.log(E[i, -2:]), 1) if i != 1: annotation.slope_marker((N[-2], E[i, -2]), ("{0:.2f}".format(slope), 1), ax=ax, poly_kwargs=pa, text_kwargs=ta) plt.text(N[0], 2e-5, r"$\Delta t=5 \times 10^{-3},\; N=32^2$") plt.text(N[0], 1e-5, r"Final Time = $5 \times 10^{-2}$") plt.title(r"Navier-Stokes: $2^{nd}$-order Rotational Pressure-Correction") plt.legend(); plt.autoscale() plt.ylabel(r'$|Error|_{L^2}$') plt.xticks(N) ax.get_xaxis().set_minor_formatter(NullFormatter()) fmt = lambda v: r"$\Delta t/{0}$".format(v) if v!=1 else r"$\Delta t$" plt.gca().set_xticklabels(list(map(fmt, N))) #plt.savefig("navier-stokes.pdf", orientation='portrait') plt.show()
{ "repo_name": "spectralDNS/shenfun", "path": "demo/NavierStokesPC.py", "copies": "1", "size": "7513", "license": "bsd-2-clause", "hash": 6916785474719700000, "line_mean": 32.0969162996, "line_max": 84, "alpha_frac": 0.5659523493, "autogenerated": false, "ratio": 2.5313342318059298, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.35972865811059296, "avg_score": null, "num_lines": null }
import numpy as np from sympy import symbols, sin, cos, lambdify from shenfun import * import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter, ScalarFormatter from mpltools import annotation pa = {'fill': False, 'edgecolor': 'black'} ta = {'fontsize': 10} pex = lambda *args: print(*args) + exit(0) x, y, t = symbols("x, y, t", real=True) # Define the initial solution uex = (sin(np.pi*x)**2)*sin(2*np.pi*y)*sin(t) uey = -sin(2*np.pi*x)*(sin(np.pi*y)**2)*sin(t) pe = cos(np.pi*x)*cos(np.pi*y)*sin(t) fex = -uex.diff(x, 2) - uex.diff(y, 2) + pe.diff(x, 1) + uex.diff(t, 1) fey = -uey.diff(x, 2) - uey.diff(y, 2) + pe.diff(y, 1) + uey.diff(t, 1) he = uex.diff(x, 1) + uey.diff(y, 1) uexf, ueyf, pef, fexf, feyf = map(lambda v: lambdify((x, y, t), v), (uex, uey, pe, fex, fey)) def main(n): # number of modes in x and y direction N = (32, 32) # basis function for velocity components in x and y directions: P_{N} D0X = FunctionSpace(N[0], 'Legendre', quad='GL', dtype='d', bc=(0, 0)) D0Y = FunctionSpace(N[1], 'Legendre', quad='GL', dtype='d', bc=(0, 0)) # basis function for pressure: P_{N-2} PX = FunctionSpace(N[0], 'Legendre', quad='GL') PY = FunctionSpace(N[1], 'Legendre', quad='GL') PX.slice = lambda: slice(0, N[0]-2) PY.slice = lambda: slice(0, N[1]-2) # define a multi-dimensional tensor product basis Vs = TensorProductSpace(comm, (D0X, D0Y)) Ps = TensorProductSpace(comm, (PX, PY), modify_spaces_inplace=True) # Create vector space for velocity Ws = VectorSpace([Vs, Vs]) # Create test and trial spaces for velocity and pressure u = TrialFunction(Ws); v = TestFunction(Ws) p = TrialFunction(Ps); q = TestFunction(Ps) X = Vs.local_mesh(True) # Define the initial solution on quadrature points at t=0 U = Array(Ws, buffer=(uex.subs(t, 0), uey.subs(t, 0))) P = Array(Ps); P.fill(0) F = Array(Ws, buffer=(fex.subs(t, 0), fey.subs(t, 0))) # Define the coefficient vector U_hat = Function(Ws); U_hat = Ws.forward(U, U_hat) P_hat = Function(Ps); P_hat = Ps.forward(P, P_hat) F_hat = Function(Ws); F_hat = Ws.forward(F, F_hat) # Initial time, time step, final time ti, dt, tf = 0., 5e-3/n, 5e-2 nsteps = np.int(np.ceil((tf - ti)/dt)) dt = (tf - ti)/nsteps X = Ws.local_mesh(True) # Define the implicit operator for BDF-2 Lb1 = BlockMatrix(inner(v, u*(1.5/dt)) + inner(grad(v), grad(u))) Lb2 = BlockMatrix(inner(-grad(q), grad(p))) # Define the implicit operator for Euler Le1 = BlockMatrix(inner(v, u*(1./dt)) + inner(grad(v), grad(u))) Le2 = BlockMatrix(inner(-grad(q), grad(p))) # Define the implicit operator for updating Lu1 = BlockMatrix([inner(v, u)]) Lu2 = BlockMatrix([inner(q, p)]) # temporary storage rhsU, rhsP = Function(Ws), Function(Ps) U0_hat = Function(Ws); U0_hat = Ws.forward(U, U0_hat) Ut_hat = Function(Ws); Ut_hat = Ws.forward(U, Ut_hat) P0_hat = Function(Ps); P0_hat = Ps.forward(P, P0_hat) Phi_hat = Function(Ps); Phi_hat = Ps.forward(P, Phi_hat) # integrate in time time = ti # storage rhsU, rhsP = rhsU, rhsP u_hat, p_hat = U_hat, P_hat u0_hat, p0_hat = U0_hat, P0_hat ut_hat, phi_hat = Ut_hat, Phi_hat # Euler time-step # evaluate the forcing function F[0] = fexf(X[0], X[1], time+dt) F[1] = feyf(X[0], X[1], time+dt) # Solve (9.102) rhsU.fill(0) rhsU += -inner(v, grad(p_hat)) rhsU += inner(v, F) rhsU += inner(v, u_hat/dt) ut_hat = Le1.solve(rhsU, u=ut_hat) # Solve (9.107) rhsP.fill(0) rhsP += (1/dt)*inner(q, div(ut_hat)) phi_hat = Le2.solve(rhsP, u=phi_hat, constraints=((0, 0, 0),)) # Update for next time step u0_hat[:] = u_hat; p0_hat[:] = p_hat # Update (9.107) rhsU.fill(0) rhsU += inner(v, ut_hat) - inner(v, dt*grad(phi_hat)) u_hat = Lu1.solve(rhsU, u=u_hat) # Update (9.105) rhsP.fill(0) rhsP += inner(q, phi_hat) + inner(q, p_hat) - inner(q, div(ut_hat)) p_hat = Lu2.solve(rhsP, u=p_hat, constraints=((0, 0, 0),)) time += dt # BDF time step for step in range(2, nsteps+1): # evaluate the forcing function F[0] = fexf(X[0], X[1], time+dt) F[1] = feyf(X[0], X[1], time+dt) # Solve (9.102) rhsU.fill(0) rhsU += -inner(v, grad(p_hat)) rhsU += inner(v, F) rhsU += inner(v, u_hat*2/dt) - inner(v, u0_hat*0.5/dt) ut_hat = Lb1.solve(rhsU, u=ut_hat) # Solve (9.107) rhsP.fill(0) rhsP += 1.5/dt*inner(q, div(ut_hat)) phi_hat = Lb2.solve(rhsP, u=phi_hat, constraints=((0, 0, 0),)) # update for next time step u0_hat[:] = u_hat; p0_hat[:] = p_hat # Update (9.107, 9.105) rhsU.fill(0) rhsU += inner(v, ut_hat) - inner(v, ((2.*dt/3))*grad(phi_hat)) u_hat = Lu1.solve(rhsU, u=u_hat) rhsP.fill(0) rhsP += inner(q, phi_hat) + inner(q, p_hat) - inner(q, div(ut_hat)) p_hat = Lu2.solve(rhsP, u=p_hat, constraints=((0, 0, 0),)) # increment time time += dt # Transform the solution to physical space UP = [*U_hat.backward(U), P_hat.backward(P)] # compute error Ue = Array(Ws, buffer=(uex.subs(t, tf), uey.subs(t, tf))) Pe = Array(Ps, buffer=(pe.subs(t, tf))) UPe = [*Ue, Pe] l2_error = list(map(np.linalg.norm, [u-ue for u, ue in zip(UP, UPe)])) return l2_error if __name__ == "__main__": N = 2**np.arange(0, 4) E = np.zeros((3, len(N))) for (j, n) in enumerate(N): E[:, j] = main(n) fig = plt.figure(figsize=(5.69, 4.27)) ax = plt.gca() marks = ('or', '-g', '-ob') vars = (r'$u_x$', r'$u_y$', r'$p$') for i in range(3): plt.loglog(N, E[i, :], marks[i], label=vars[i]) slope, intercept = np.polyfit(np.log(N[-2:]), np.log(E[i,-2:]), 1) if i != 1: annotation.slope_marker((N[-2], E[i, -2]), ("{0:.2f}".format(slope), 1), ax=ax, poly_kwargs=pa, text_kwargs=ta) plt.text(N[0], 2e-5, r"$\Delta t=5 \times 10^{-3},\; N=32^2$") plt.text(N[0], 1e-5, r"Final Time = $5 \times 10^{-2}$") plt.title(r"Stokes: $2^{nd}$-order Rotational Pressure-Correction") plt.legend() plt.autoscale() plt.ylabel(r'$|Error|_{L^2}$') plt.xticks(N) ax.get_xaxis().set_minor_formatter(NullFormatter()) fmt = lambda v: r"$\Delta t/{0}$".format(v) if v != 1 else r"$\Delta t$" plt.gca().set_xticklabels(list(map(fmt, N))) #plt.savefig("stokes.pdf", orientation='portrait') plt.show()
{ "repo_name": "spectralDNS/shenfun", "path": "demo/StokesPC.py", "copies": "1", "size": "6793", "license": "bsd-2-clause", "hash": -5098144695905062000, "line_mean": 31.6586538462, "line_max": 84, "alpha_frac": 0.5644045341, "autogenerated": false, "ratio": 2.57701062215478, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.36414151562547803, "avg_score": null, "num_lines": null }
"""2nd pass at adding IRONMAN 3 digit identifiers Revision ID: 4ea2b79957f3 Revises: d561999e9b42 Create Date: 2019-04-30 12:17:03.382443 """ import re from alembic import op from sqlalchemy.orm.session import Session from portal.models.identifier import Identifier from portal.models.organization import OrganizationIdentifier from portal.models.user import UserIdentifier from portal.system_uri import TRUENTH_EXTERNAL_STUDY_SYSTEM # revision identifiers, used by Alembic. revision = '4ea2b79957f3' down_revision = 'd561999e9b42' org_pattern = re.compile(r'^146-(\d\d)$') study_pattern = re.compile(r'^170-(\d\d)-(\d\d\d)$') def upgrade(): session = Session(bind=op.get_bind(), expire_on_commit=False) # All IRONMAN orgs need a 3 digit version IRONMAN_system = 'http://pcctc.org/' ironman_org_ids = [(id.id, id._value) for id in Identifier.query.filter( Identifier.system == IRONMAN_system).with_entities( Identifier.id, Identifier._value)] existing_values = [id[1] for id in ironman_org_ids] replacements = {} for io_id, io_value in ironman_org_ids: found = org_pattern.match(io_value) if found: # avoid probs if run again - don't add if already present needed = '146-0{}'.format(found.group(1)) replacements[found.group(1)] = '0{}'.format(found.group(1)) if needed not in existing_values: needed_i = Identifier( use='secondary', system=IRONMAN_system, _value=needed) else: needed_i = Identifier.query.filter( Identifier.system == IRONMAN_system).filter( Identifier._value == needed).one() # add a 3 digit identifier and link with same org oi = OrganizationIdentifier.query.filter( OrganizationIdentifier.identifier_id == io_id).one() needed_oi = OrganizationIdentifier.query.filter( OrganizationIdentifier.organization_id == oi.organization_id).filter( OrganizationIdentifier.identifier == needed_i).first() if not needed_oi: needed_i = session.merge(needed_i) needed_oi = OrganizationIdentifier( organization_id=oi.organization_id, identifier=needed_i) session.add(needed_oi) # All IRONMAN users with a 2 digit ID referencing one of the replaced # values needs a 3 digit version ironman_study_ids = Identifier.query.filter( Identifier.system == TRUENTH_EXTERNAL_STUDY_SYSTEM).filter( Identifier._value.like('170-%')).with_entities( Identifier.id, Identifier._value) for iid, ival in ironman_study_ids: found = study_pattern.match(ival) if found: org_segment = found.group(1) patient_segment = found.group(2) # only add if also one of the new org ids if org_segment not in replacements: continue needed = '170-{}-{}'.format( replacements[org_segment], patient_segment) # add a 3 digit identifier and link with same user(s), # if not already present uis = UserIdentifier.query.filter( UserIdentifier.identifier_id == iid) needed_i = Identifier.query.filter( Identifier.system == TRUENTH_EXTERNAL_STUDY_SYSTEM).filter( Identifier._value == needed).first() if not needed_i: needed_i = Identifier( use='secondary', system=TRUENTH_EXTERNAL_STUDY_SYSTEM, _value=needed) for ui in uis: needed_ui = UserIdentifier.query.filter( UserIdentifier.user_id == ui.user_id).filter( UserIdentifier.identifier == needed_i).first() if not needed_ui: needed_ui = UserIdentifier( user_id=ui.user_id, identifier=needed_i) session.add(needed_ui) session.commit() def downgrade(): pass
{ "repo_name": "uwcirg/true_nth_usa_portal", "path": "portal/migrations/versions/4ea2b79957f3_.py", "copies": "1", "size": "4167", "license": "bsd-3-clause", "hash": -1318155700847623400, "line_mean": 36.5405405405, "line_max": 76, "alpha_frac": 0.5987520998, "autogenerated": false, "ratio": 4.026086956521739, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5124839056321739, "avg_score": null, "num_lines": null }
# 2nd step of the process - constructing the index import os, sys, math; import pickle, glob, re; from operator import itemgetter; from os.path import join; # read the tf and idf objects # tff contains the tf dictionaries for each file as index tfpck=open("tfpickle.pkl","rb"); tff=pickle.load(tfpck); tfpck.close(); # idfs contains the idf dictionary for each unique word in the corpus idfpck=open("idfpickle.pkl","rb"); idfs=pickle.load(idfpck); idfpck.close(); tfidf={}; for i in tff: r={}; for j in tff[i]: r[j]=tff[i][j]*idfs[j]; tfidf[i]=r; def clnSentence(x): # keep only characters 32 to 126 after splitting x2=[i for i in x if ord(i)>=32 and ord(i)<=126]; return "".join(x2).strip(); def getSentences(x): # split the story into constituent sentences r=[]; f=open(x,"r"); fc=f.read(); fc1=fc.split("\n"); for i in fc1: r+=[clnSentence(i)]; return r; x=glob.glob("*.txt"); x=[i for i in x if len(i)==36]; # we save stories to summarize with filenames composed of their MD5 hash # makes it easy to locate documents to be processed, and explains "36" in check above. g=open("summaries.txt","w"); dcts={}; for i in x: g.write("original story follows: \n"); p=getSentences(i); for j in p: g.write(j); g.write("\n\n summary follows: \n"); svals=[]; # for each sentence, # break into words, # then compute total tfidf for each sentence... # divide each sentence tfidf by the number of words in the sentence # create a dictionary with the sentence as key and average tfidf as value. # sort sentences on value, pick top 30% of sentences in summary for j in p: wrds=j.split(" "); line_tfidf=sum([tff[i][k] for k in wrds if k in tff[i]]); avg_line_tfidf=line_tfidf/float(len(wrds)); svals+=[(j,avg_line_tfidf)]; svals=sorted(svals, key=itemgetter(1), reverse=True); # descending sort svals=[j[0] for j in svals[:len(p)/3]][:-1]; g.write(p[0]+" "); # always include first sentence for context for j in p[1:]: if j in svals: g.write(j+" "); g.write("\n\n\n"); g.close();
{ "repo_name": "gnokem/blog-code", "path": "tfidf_summarizer.py", "copies": "1", "size": "2109", "license": "mit", "hash": -8556239723070361000, "line_mean": 26.12, "line_max": 86, "alpha_frac": 0.6448553817, "autogenerated": false, "ratio": 2.81951871657754, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.396437409827754, "avg_score": null, "num_lines": null }
"""2nd update that adds an index on the user_id column Revision ID: 3414dfab0e91 Revises: 52feb4cd3e65 Create Date: 2015-10-09 12:16:31.095629 """ # revision identifiers, used by Alembic. revision = '3414dfab0e91' down_revision = '52feb4cd3e65' from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.alter_column('scores', 'created_at', existing_type=postgresql.TIMESTAMP(), nullable=False) op.drop_index('ix_scores_user_id', table_name='scores') op.create_index(op.f('ix_scores_user_id'), 'scores', ['user_id'], unique=False) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_scores_user_id'), table_name='scores') op.create_index('ix_scores_user_id', 'scores', ['user_id'], unique=True) op.alter_column('scores', 'created_at', existing_type=postgresql.TIMESTAMP(), nullable=True) ### end Alembic commands ###
{ "repo_name": "Rdbaker/GameCenter", "path": "migrations/versions/3414dfab0e91_.py", "copies": "2", "size": "1110", "license": "mit", "hash": 4268377765724918300, "line_mean": 31.6470588235, "line_max": 83, "alpha_frac": 0.6621621622, "autogenerated": false, "ratio": 3.3944954128440368, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5056657575044037, "avg_score": null, "num_lines": null }
# 2. # Используя расщепление матрицы Стилтьеса, отвечающее её неполной факторизации по методу ILU(k), # реализовать стационарный итерационный процесс и исследовать скорость его сходимости # # стр. 65 - Основные стационарные итерационные процессы # стр. 75 - ускорение сходимости стационарных итерационных процессов # # http://mathworld.wolfram.com/StationaryIterativeMethod.html # Stationary iterative methods are methods for solving a linear system of equations Ax=b # import numpy as np ITERATION_LIMIT = 1000 # initialize the matrix A = np.array([[10., -1., 2., 0.], [-1., 11., -1., 3.], [2., -1., 10., -1.], [0., 3., -1., 8.]]) # initialize the RHS vector b = np.array([6., 25., -11., 15.]) def jacobi_method(A: np.ndarray, b: np.ndarray): x = np.zeros_like(b) for it_count in range(ITERATION_LIMIT): # print("Current solution:", x) x_new = np.zeros_like(x) for i in range(A.shape[0]): s1 = np.dot(A[i, :i], x[:i]) s2 = np.dot(A[i, i + 1:], x[i + 1:]) x_new[i] = (b[i] - s1 - s2) / A[i, i] if np.allclose(x, x_new, atol=1e-8): break x = x_new return x def gauss_seidel(A: np.ndarray, b: np.ndarray): x = np.zeros_like(b) for it_count in range(ITERATION_LIMIT): # print("Current solution:", x) x_new = np.zeros_like(x) for i in range(A.shape[0]): s1 = np.dot(A[i, :i], x_new[:i]) s2 = np.dot(A[i, i + 1:], x[i + 1:]) x_new[i] = (b[i] - s1 - s2) / A[i, i] if np.allclose(x, x_new, rtol=1e-8): break x = x_new return x def sor_method(A: np.ndarray, b: np.ndarray, w=1.0): x = np.zeros_like(b) for it_count in range(ITERATION_LIMIT): # print("Current solution:", x) x_new = np.zeros_like(x) for i in range(A.shape[0]): s1 = np.dot(A[i, :i], x_new[:i]) s2 = np.dot(A[i, i + 1:], x[i + 1:]) x_new[i] = (1.0 - w)*x[i] + w * (b[i] - s1 - s2) / A[i, i] if np.allclose(x, x_new, rtol=1e-8): break x = x_new return x def ssor_method(A: np.ndarray, b: np.ndarray, w=1.0): x = np.zeros_like(b) xk = np.zeros(shape=(ITERATION_LIMIT, x.shape[0]), dtype=np.float) for it_count in range(ITERATION_LIMIT): # print("Current solution:", x) k = it_count xk[k] = np.zeros_like(x) # вычисляем вектор x^{k/2} на основе вектора x^{k-1} по методу SOR в прямом порядке # вычисляем вектор x^{k} на основе вектора x^{k/2} по методу SOR в обратном порядке for i in range(A.shape[0]): s1 = np.dot(A[i, :i], xk[k-1][:i]) s2 = np.dot(A[i, i + 1:], x[i + 1:]) xk[k/2][i] = (1.0 - w)*x[i] + w * (b[i] - s1 - s2) / A[i, i] # for i in reversed(range(A.shape[0])): s1 = np.dot(A[i, :i], xk[k/2][:i]) s2 = np.dot(A[i, i + 1:], x[i + 1:]) xk[k][i] = (1.0 - w)*x[i] + w * (b[i] - s1 - s2) / A[i, i] if np.allclose(x, xk[k], rtol=1e-8): break x = xk[k] return x x = sor_method(A, b) print("Final solution:") print(x) error = np.dot(A, x) - b print("Error:") print(error)
{ "repo_name": "maxmalysh/congenial-octo-adventure", "path": "mod2/task2.py", "copies": "1", "size": "3649", "license": "unlicense", "hash": 5055167547906019000, "line_mean": 26.9237288136, "line_max": 97, "alpha_frac": 0.5154826958, "autogenerated": false, "ratio": 2.2122229684351913, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8216070432187274, "avg_score": 0.0023270464095835044, "num_lines": 118 }
#2 okay lets do this import sys sys.path.append('../.') import pandas as pd import numpy as np import itertools as it import path_planner as plan pathName = '../../data-se3-path-planner/cherylData/' pathName1 = '../../data-se3-path-planner/yearData/batch2019/' months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] inclinations = ['55', '60', '65', '70', '75', '80', '85', '90'] inclinations = inclinations[::-1] # reverses the inclinations filesList =[[pathName+month+inclination+'.txt' for month in months ] for inclination in inclinations] # print( filesList) # filesList = ['55deg.txt', '60deg.txt','65deg.txt', '70deg.txt', '75deg.txt','80deg.txt','85deg.txt'] # filesList = [pathName+files for files in filesList] # filesList = ['80deg.txt'] # anglesList = [55, 60, 65, 70, 75, 80, 85] cma = [] def createCma(files): # print("FILES", files) df = pd.read_csv(files) # print(df.tail()) Xgse = df['DefaultSC.gse.X'] Ygse = df['DefaultSC.gse.Y'] Zgse = df['DefaultSC.gse.Z'] # i am DEFINITELY going to end up with a dimension problem here t = df['DefaultSC.A1ModJulian'] # print(t.tail()) t = t.tolist() t = [t_index + 29999.5 for t_index in t] # print("hopefully something close to the real time", t) # print("type of t", type(t.tolist())) # refer to tsyganenko for these coordinate systems # the output here is in radians # angle = np.arctan2(Xgse,Zgse) # theta = np.arctan2(Ygse,Xgse) angle = np.arctan2(Zgse,Xgse) theta = np.arctan2(Xgse,Ygse) print("type angle,", type(angle)) # but sometimes i print it in degrees # print("angle is" , angle * 180 / np.pi) # print("theta is", theta) # make it into an array for iteration (probably a faster way) # print(angle) # print(len(angle)) count = 0 region = [] # for x,x1 in zip(angle, angle[1:]): # eventually this has to be modified so that the unh professors script # will alter the dipole angle # These numbers are from the tsyganenko script that I wrote a while back # if x<0.2151 or x> 0.2849: # if 0.2151<=x1<=0.2849: # count+=1 # angle = angle[:20] # lets get this boundary crossing thing right # Okay I think I did it lowBound,highBound,lowLateralBound,highLateralBound = plan.GridGraph().getGoalRegion(t) # print("type of llb", lowLateralBound) # print("type of lb", lowBound) # print("type of hb", highBound) # print("type of llb", lowLateralBound) # print("type of hlb", highLateralBound) # lowBound = np.asarray(lowBound).tolist() # highBound = np.asarray(highBound).tolist() # lowLateralBound = np.asarray(lowLateralBound).tolist() # highLateralBound = np.asarray(highLateralBound).tolist() # print("lowbound hadhasdf", len(lowBound)) # print("lowbound", lowBound) # print("highBound", highBound) # print("lowLateralBound", lowLateralBound) # print("highLateralbound", highLateralBound) # lowBound = 0.2151/2 # highBound = 0.2849/2 # lateralBound = 5.0/2 # implement the tsyganenko function and dipole tilt for dynamic changing # of the cusp location # for x,y,lb,ub,llb,hlb in zip(angle, theta, lowBound, highBound, lowLateralBound, highLateralBound): for x,y,lb,hb,llb,hlb in zip(angle,theta,lowBound,highBound,lowLateralBound,highLateralBound): # the biggest thing is a modification of these thresholds # if lowBound<=x<=highBound and lowLateralBound<=y<=highLateralBound: if lb<=x<=hb and llb<=y<=hlb: # if lowLateralBound<=y<=highLateralBound: region.append(1) else: region.append(0) for x,x1 in zip(region, region[1:]): if x==0 and x1 == 1: count+=1 else: pass # print("x", angle) # print("x1", angle[1:]) # print("count",count) # the main problem is with the dimensions of the cma variable # so how do i get cma to have the same dimensions as filesList? cma.append([count]) # print("cma", cma) # print("region",region) # print("region", region[:100]) return count cma2 =[] # the fact that you can call a function in a list comprehension is the number one reason # why i'm going to stick with python cma2 =[[createCma(pathName1+month+inclination+'.txt') for month in months ] for inclination in inclinations] # cma2 = [[createCma(pathName1+'test4.txt')]] print("cma2", cma2) if __name__ == "__main__": a = 3 from pylab import * cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 1.0, 0.7), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (0.5, 1.0, 0.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (0.5, 1.0, 0.0), (1.0, 0.5, 1.0))} my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap',cdict,256) pcolor(cma2,cmap=my_cmap) colorbar() plt.title('Cusp Crossings') plt.xlabel('Start Month') plt.ylabel('55+5y deg inclination') plt.show()
{ "repo_name": "fsbr/se3-path-planner", "path": "modularPlanner/cuspAnalyze.py", "copies": "2", "size": "5214", "license": "mit", "hash": 6572577738920635000, "line_mean": 34.9586206897, "line_max": 110, "alpha_frac": 0.6058688147, "autogenerated": false, "ratio": 3.0598591549295775, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4665727969629577, "avg_score": null, "num_lines": null }
## 2. Opening Files ## a = open("test.txt", "r") print(a) f = open("crime_rates.csv", "r") ## 3. Reading In Files ## f = open("crime_rates.csv", "r") data = f.read() ## 4. Splitting ## # We can split a string into a list. sample = "john,plastic,joe" split_list = sample.split(",") print(split_list) # Here's another example. string_two = "How much wood\ncan a woodchuck chuck\nif a woodchuck\ncould chuck wood?" split_string_two = string_two.split('\n') print(split_string_two) # Code from previous cells f = open('crime_rates.csv', 'r') data = f.read() rows = data.split('\n') ## 6. Practice - Loops ## ten_rows = rows[0:10] for i in ten_rows: print(i) ## 7. List of Lists ## three_rows = ["Albuquerque,749", "Anaheim,371", "Anchorage,828"] final_list = [] for row in three_rows: split_list = row.split(',') final_list.append(split_list) print(final_list) print(final_list[0]) print(final_list[1]) print(final_list[2]) ## 8. Practice - Splitting Elements in a List ## f = open('crime_rates.csv', 'r') data = f.read() rows = data.split('\n') print(rows[0:5]) final_data = [] for item in rows: i = item.split(',') final_data.append(i) print(final_data) ## 9. Accessing Elements in a List of Lists: The Manual Way ## print(five_elements) cities_list = [] for list in five_elements: cities_list.append(list[0]) ## 10. Looping Through a List of Lists ## crime_rates = [] cities_list = [] for row in five_elements: # row is a list variable, not a string. crime_rate = row[1] # crime_rate is a string, the crime rate of the city. crime_rates.append(crime_rate) for row in final_data: cities_list.append(row[0]) ## 11. Challenge ## f = open('crime_rates.csv', 'r') data = f.read() rows = data.split('\n') print(rows[0:5]) int_crime_rates = [] for row in rows: row = row.split(',') int_crime_rates.append(int(row[1]))
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Python Programming Beginner/Files and Loops-2.py", "copies": "1", "size": "1881", "license": "mit", "hash": -4257560896612518000, "line_mean": 20.8837209302, "line_max": 86, "alpha_frac": 0.6422115896, "autogenerated": false, "ratio": 2.6418539325842696, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.37840655221842695, "avg_score": null, "num_lines": null }
''' 2-orbits_computed.py ========================= AIM: Verify which orbits were actually computed by the pipeline INPUT: files: - all flux_*.dat files in <orbit_id>_flux/ variables: see section PARAMETERS (below) OUTPUT: in <orbit_id>_misc/ : one file 'orbits.dat' containing the list CMD: python 2-orbits_computed.py ISSUES: <none known> REQUIRES:- standard python libraries, specific libraries in resources/ - Structure of the root folder: * <orbit_id>_flux/ --> flux files * <orbit_id>_figures/ --> figures * <orbit_id>_misc/ --> storages of data * all_figures/ --> comparison figures REMARKS: <none> ''' ########################################################################### ### INCLUDES import numpy as np import os.path from resources.routines import * from resources.TimeStepping import * ########################################################################### ### PARAMETERS # Orbit id same as in 0-*.py orbit_id = '6am_700_5_conf4e' # First orbit in data set orbit_ini = 1 # Last orbit to look for orbit_end = minute2orbit(1440*365+1,orbit_id) # File name for the output data file data_file = 'orbits.dat' ########################################################################### ### INITIALISATION # Formatted folders definitions folder_flux, folder_figures, folder_misc = init_folders(orbit_id) predictor = int((orbit_end - orbit_ini) / 10. * 4.) orbits = np.zeros(predictor*2).reshape(predictor, 2) kk = 0 orbit_old = 0 ########################################################################### ### Look for computed orbits for orbit in range(orbit_ini, orbit_end+1): # lookup the start and end time for the orbit t_ini, t_end, a_ini, a_end = orbit2times(orbit,orbit_id) # check that minute 0 and 60 exists (they should!) fname = '%sflux_%d.dat' % (folder_flux, a_ini) if not os.path.isfile(fname): continue fname = '%sflux_%d.dat' % (folder_flux, a_ini+60) if not os.path.isfile(fname): continue if kk > 0: step = orbit-orbit_old else: step = 1 try: orbits[kk,0] = orbit orbits[kk,1] = step except IndexError: orbits = np.vstack([orbits, [orbit, step]]) orbit_old = orbit print 'Orbit %4d was computed for orbit ID %s, step %d' % (orbit, orbit_id, step) kk += 1 # Remove extra line in the array orbits = orbits[orbits[:,1]>0] np.savetxt(folder_misc+data_file, orbits, fmt='%d')
{ "repo_name": "kuntzer/SALSA-public", "path": "2_orbits_computed.py", "copies": "1", "size": "2376", "license": "bsd-3-clause", "hash": 3813659845101292000, "line_mean": 25.1098901099, "line_max": 82, "alpha_frac": 0.5913299663, "autogenerated": false, "ratio": 3.147019867549669, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42383498338496683, "avg_score": null, "num_lines": null }
## 2. Organizing our code ## # Define the Trial class here class Trial(object): def __init__(self, datarow): self.efficiency = float(datarow[0]) self.individual = int(datarow[1]) self.chopstick_length = int(datarow[2]) first_trial = Trial(chopsticks[0]) ## 3. The Chopstick class ## class Trial(object): def __init__(self, datarow): self.efficiency = float(datarow[0]) self.individual = int(datarow[1]) self.chopstick_length = int(datarow[2]) first_trial = Trial(chopsticks[0]) # Define the Chopstick class here class Chopstick(object): def __init__(self,length): self.length = length mini_chopstick = Chopstick(100) ## 4. Storing the trials ## class Trial(object): def __init__(self, datarow): self.efficiency = float(datarow[0]) self.individual = int(datarow[1]) self.chopstick_length = int(datarow[2]) class Chopstick(object): def __init__(self, length): self.length = length # Start our trial list empty self.trials = [] # Now, fill our list with relevant trials for item in chopsticks: if int(item[2]) == self.length: self.trials.append(Trial(item)) medium_chopstick = Chopstick(240) ## 5. Average Efficiency ## import math class Trial(object): def __init__(self, datarow): self.efficiency = float(datarow[0]) self.individual = int(datarow[1]) self.chopstick_length = int(datarow[2]) class Chopstick(object): def __init__(self, length): self.length = length self.trials = [] for row in chopsticks: if int(row[2]) == self.length: self.trials.append(Trial(row)) def num_trials(self): return len(self.trials) def avg_efficiency(self): return math.fsum([row.efficiency for row in self.trials]) / self.num_trials() avg_eff_210 = Chopstick(210).avg_efficiency() ## 8. Bad Data ## class Trial(object): def __init__(self, datarow): try: self.efficiency = float(datarow[0]) self.individual = int(datarow[1]) self.chopstick_length = int(datarow[2]) except ValueError: self.efficiency = -1.0 self.individual = -1 self.chopstick_length = -1 bad_trial = Trial(chopsticks[-1]) ## 9. Bad Data - Part 2 ## class Trial(object): def __init__(self, datarow): try: self.efficiency = float(datarow[0]) self.individual = int(datarow[1]) self.chopstick_length = int(datarow[2]) except: self.efficiency = -1 self.individual = -1 self.chopstick_length = -1 class Chopstick(object): def __init__(self, length): self.length = length self.trials = [] for row in chopsticks: if int(row[2]) == self.length: trial = Trial(row) # Verify that the data is good if trial.efficiency != -1 and trial.individual != -1 and trial.chopstick_length != -1: # Add the trial to trials if it is good self.trials.append(trial) def num_trials(self): return len(self.trials) def avg_efficiency(self): efficiency_sum = 0 for trial in self.trials: efficiency_sum += trial.efficiency return efficiency_sum / self.num_trials() bad_chopstick = Chopstick(400) ## 10. Division By Zero ## class Trial(object): def __init__(self, datarow): try: self.efficiency = float(datarow[0]) self.individual = int(datarow[1]) self.chopstick_length = int(datarow[2]) except: self.efficiency = -1 self.individual = -1 self.chopstick_length = -1 class Chopstick(object): def __init__(self, length): self.length = length self.trials = [] for row in chopsticks: if int(row[2]) == self.length: trial = Trial(row) if trial.individual >= 0: self.trials.append(trial) def num_trials(self): return len(self.trials) def avg_efficiency(self): efficiency_sum = 0 for trial in self.trials: efficiency_sum += trial.efficiency try: return efficiency_sum / self.num_trials() except ZeroDivisionError: return -1.0 bad_average = Chopstick(100).avg_efficiency() ## 11. Most Efficient Chopsticks ## class Trial(object): def __init__(self, datarow): try: self.efficiency = float(datarow[0]) self.individual = int(datarow[1]) self.chopstick_length = int(datarow[2]) except: self.efficiency = -1 self.individual = -1 self.chopstick_length = -1 class Chopstick(object): def __init__(self, length): self.length = length self.trials = [] for row in chopsticks: if int(row[2]) == self.length: trial = Trial(row) if trial.individual >= 0: self.trials.append(trial) def num_trials(self): return len(self.trials) def avg_efficiency(self): efficiency_sum = 0 for trial in self.trials: efficiency_sum += trial.efficiency try: return efficiency_sum / self.num_trials() except ZeroDivisionError: return -1.0 chopstick_lengths = [180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330] chopstick_list = [Chopstick(length) for length in chopstick_lengths] ## 12. Most Efficient Chopsticks - Part 2 ## class Trial(object): def __init__(self, datarow): try: self.efficiency = float(datarow[0]) self.individual = int(datarow[1]) self.chopstick_length = int(datarow[2]) except: self.efficiency = -1 self.individual = -1 self.chopstick_length = -1 class Chopstick(object): def __init__(self, length): self.length = length self.trials = [] for row in chopsticks: if int(row[2]) == self.length: trial = Trial(row) if trial.individual >= 0: self.trials.append(trial) def num_trials(self): return len(self.trials) def avg_efficiency(self): efficiency_sum = 0 for trial in self.trials: efficiency_sum += trial.efficiency try: return efficiency_sum / self.num_trials() except ZeroDivisionError: return -1.0 def __lt__(self, other): return self.avg_efficiency() < other.avg_efficiency() def __gt__(self, other): return self.avg_efficiency() > other.avg_efficiency() def __le__(self, other): return self.avg_efficiency() <= other.avg_efficiency() def __ge__(self, other): return self.avg_efficiency() >= other.avg_efficiency() def __eq__(self, other): return self.avg_efficiency() == other.avg_efficiency() def __ne__(self, other): return self.avg_efficiency() != other.avg_efficiency() chopstick_lengths = [180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330] chopstick_list = [Chopstick(length) for length in chopstick_lengths] most_efficient = max(chopstick_list)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Python Programming Advanced/Exception handling-110.py", "copies": "1", "size": "7474", "license": "mit", "hash": -7034552558635030000, "line_mean": 30.0165975104, "line_max": 102, "alpha_frac": 0.5663633931, "autogenerated": false, "ratio": 3.555661274976213, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4622024668076213, "avg_score": null, "num_lines": null }
## 2. Our dataset ## import pandas # Set index_col to False to avoid pandas thinking that the first column is row indexes (it's age). income = pandas.read_csv("income.csv", index_col=False) print(income.head(5)) ## 3. Converting categorical variables ## # Convert a single column from text categories into numbers. col = pandas.Categorical.from_array(income["workclass"]) income["workclass"] = col.codes print(income["workclass"].head(5)) cols = ['education', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'native_country','high_income'] for item in cols: cat = pandas.Categorical.from_array(income[item]) income[item]=cat.codes ## 5. Performing a split ## # Enter your code here. private_incomes = income[income['workclass']==4] public_incomes = income[income['workclass']!=4] ## 8. Entropy ## import math # We'll do the same calculation we did above, but in Python. # Passing 2 as the second parameter to math.log will take a base 2 log. entropy = -(2/5 * math.log(2/5, 2) + 3/5 * math.log(3/5, 2)) print(entropy) countts = income['high_income'].value_counts() income_entropy = -(countts[0]/len(income['high_income']) * math.log(countts[0]/len(income['high_income']),2) + countts[1]/len(income['high_income']) * math.log(countts[1]/len(income['high_income']),2)) print(income_entropy) ## 9. Information gain ## import numpy def calc_entropy(column): """ Calculate entropy given a pandas Series, list, or numpy array. """ # Compute the counts of each unique value in the column. counts = numpy.bincount(column) # Divide by the total column length to get a probability. probabilities = counts / len(column) # Initialize the entropy to 0. entropy = 0 # Loop through the probabilities, and add each one to the total entropy. for prob in probabilities: if prob > 0: entropy += prob * math.log(prob, 2) return -entropy # Verify our function matches our answer from earlier. entropy = calc_entropy([1,1,0,0,1]) print(entropy) information_gain = entropy - ((.8 * calc_entropy([1,1,0,0])) + (.2 * calc_entropy([1]))) print(information_gain) income_entropy = calc_entropy(income["high_income"]) median_age = income["age"].median() left_split = income[income["age"] <= median_age] right_split = income[income["age"] > median_age] age_information_gain = income_entropy - ((left_split.shape[0] / income.shape[0]) * calc_entropy(left_split["high_income"]) + ((right_split.shape[0] / income.shape[0]) * calc_entropy(right_split["high_income"]))) ## 10. Finding the best split ## def calc_information_gain(data, split_name, target_name): """ Calculate information gain given a dataset, column to split on, and target. """ # Calculate original entropy. original_entropy = calc_entropy(data[target_name]) # Find the median of the column we're splitting. column = data[split_name] median = column.median() # Make two subsets of the data based on the median. left_split = data[column <= median] right_split = data[column > median] # Loop through the splits, and calculate the subset entropy. to_subtract = 0 for subset in [left_split, right_split]: prob = (subset.shape[0] / data.shape[0]) to_subtract += prob * calc_entropy(subset[target_name]) # Return information gain. return original_entropy - to_subtract # Verify that our answer is the same as in the last screen. print(calc_information_gain(income, "age", "high_income")) columns = ["age", "workclass", "education_num", "marital_status", "occupation", "relationship", "race", "sex", "hours_per_week", "native_country"] information_gains = [] for item in columns: info = calc_information_gain(income,item,'high_income') information_gains.append(info) highest_gain_index = information_gains.index(max(information_gains)) highest_gain = columns[highest_gain_index]
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Decision Trees/Introduction to Decision Trees-137.py", "copies": "1", "size": "3940", "license": "mit", "hash": -6466989242877481000, "line_mean": 34.8272727273, "line_max": 211, "alpha_frac": 0.6824873096, "autogenerated": false, "ratio": 3.4290687554395127, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9507817331666448, "avg_score": 0.020747746674612735, "num_lines": 110 }
"""2.Phase""" from sympy import * init_printing() z, x1, x2, x3, x4, x5, x6, x7 = symbols('z, x1, x2, x3, x4, x5, x6, x7') B = [x1, x2, x4, x6, x7] N = [x3, x5] rows = [Eq(x4, 6 + 3 * x5 - 1 * x3), Eq(x1, 2 - x5 + 1 * x3), Eq(x2, 8 + 2 * x5 - 1 * x3), Eq(x6, 22 - 5 * x5 + 1 * x3), Eq(x7, 10 + 1 * x5 - 1 * x3)] ziel = Eq(z, 86 + 5 * x5 + 3 * x3) # ------------------------------------------------------------------------------- for i in range(10): # eintretende Variable finden # auswaehlen nach dem Teknik in der Vorlesung (d.h. var mit grosstem Koeffizeint) eintretende = None max_eintretende = -oo for var, coeff in ziel.rhs.as_coefficients_dict().items(): # 1 is the first coeff i.e. the value of the ziel function if var != 1 and coeff > 0 and coeff > max_eintretende: max_eintretende = coeff eintretende = var # if no positiv costs => optimal if eintretende == None: break # verlassende Variable finden verlassende = None min_wert = +oo min_row = None for row in rows: if row.has(eintretende): new_row = row for nbv in N: if nbv != eintretende: new_row = new_row.subs(nbv, 0) wert = solve(new_row.rhs >= 0).as_set().right if wert < min_wert: min_wert = wert min_row = row verlassende = row.lhs # die Formlen umsetzen und rows updaten new_formel = Eq(eintretende, solve(min_row, eintretende)[0]) new_rows = [new_formel] for row in rows: if row.lhs != verlassende: new_rows.append(Eq(row.lhs, row.rhs.subs(eintretende, new_formel.rhs))) rows = new_rows # new ziel ziel = Eq(z, ziel.rhs.subs(eintretende, new_formel.rhs)) pprint(latex(ziel)) # update B, N B.remove(verlassende); B.append(eintretende) N.remove(eintretende); N.append(verlassende)
{ "repo_name": "mazenbesher/simplex", "path": "sympy_version/specific/blatt4_aufgabe2_iii.py", "copies": "1", "size": "2017", "license": "mit", "hash": -6708402545066076000, "line_mean": 30.0307692308, "line_max": 85, "alpha_frac": 0.5205751116, "autogenerated": false, "ratio": 2.7706043956043955, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3791179507204396, "avg_score": null, "num_lines": null }
## 2. Point Guards ## # Enter code here. point_guards = nba[nba["pos"] == "PG"] ## 3. Points Per Game ## point_guards['ppg'] = point_guards['pts'] / point_guards['g'] # Sanity check, make sure ppg = pts/g point_guards[['pts', 'g', 'ppg']].head(5) ## 4. Assist Turnover Ratio ## point_guards = point_guards[point_guards['tov'] != 0] point_guards["atr"] = point_guards["ast"] / point_guards["tov"] ## 5. Visualizing the Point Guards ## plt.scatter(point_guards['ppg'], point_guards['atr'], c='y') plt.title("Point Guards") plt.xlabel('Points Per Game', fontsize=13) plt.ylabel('Assist Turnover Ratio', fontsize=13) plt.show() ## 7. The Algorithm ## num_clusters = 5 # Use numpy's random function to generate a list, length: num_clusters, of indices random_initial_points = np.random.choice(point_guards.index, size=num_clusters) # Use the random indices to create the centroids centroids = point_guards.loc[random_initial_points] ## 8. Visualize Centroids ## plt.scatter(point_guards['ppg'], point_guards['atr'], c='yellow') plt.scatter(centroids['ppg'], centroids['atr'], c='red') plt.title("Centroids") plt.xlabel('Points Per Game', fontsize=13) plt.ylabel('Assist Turnover Ratio', fontsize=13) plt.show() ## 9. Setup (continued) ## def centroids_to_dict(centroids): dictionary = dict() # iterating counter we use to generate a cluster_id counter = 0 # iterate a pandas data frame row-wise using .iterrows() for index, row in centroids.iterrows(): coordinates = [row['ppg'], row['atr']] dictionary[counter] = coordinates counter += 1 return dictionary centroids_dict = centroids_to_dict(centroids) ## 10. Step 1 (Euclidean Distance) ## import math def calculate_distance(centroid, player_values): root_distance = 0 for x in range(0, len(centroid)): difference = centroid[x] - player_values[x] squared_difference = difference**2 root_distance += squared_difference euclid_distance = math.sqrt(root_distance) return euclid_distance q = [5, 2] p = [3,1] # Sqrt(5) = ~2.24 print(calculate_distance(q, p)) ## 11. Step 1 (Continued) ## # Add the function, `assign_to_cluster` # This creates the column, `cluster`, by applying assign_to_cluster row-by-row # Uncomment when ready def assign_to_cluster(row): largest = [] for key in centroids_dict.keys(): largest.append(calculate_distance(centroids_dict[key], [row["ppg"],row["atr"]])) return largest.index(min(largest)) point_guards['cluster'] = point_guards.apply(lambda row: assign_to_cluster(row), axis=1) ## 12. Visualizing Clusters ## # Visualizing clusters def visualize_clusters(df, num_clusters): colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] for n in range(num_clusters): clustered_df = df[df['cluster'] == n] plt.scatter(clustered_df['ppg'], clustered_df['atr'], c=colors[n-1]) plt.xlabel('Points Per Game', fontsize=13) plt.ylabel('Assist Turnover Ratio', fontsize=13) plt.show() visualize_clusters(point_guards, 5) ## 13. Step 2 ## def recalculate_centroids(df): new_centroids_dict = dict() # 0..1...2...3...4 for cluster_id in range(0, num_clusters): temp_df = df[df["cluster"] == cluster_id] new_centroids_dict[cluster_id] = [np.mean(temp_df["ppg"]),np.mean(temp_df["atr"])] return new_centroids_dict centroids_dict = recalculate_centroids(point_guards) ## 14. Repeat Step 1 ## point_guards['cluster'] = point_guards.apply(lambda row: assign_to_cluster(row), axis=1) visualize_clusters(point_guards, num_clusters) ## 15. Repeat Step 2 and Step 1 ## centroids_dict = recalculate_centroids(point_guards) point_guards['cluster'] = point_guards.apply(lambda row: assign_to_cluster(row), axis=1) visualize_clusters(point_guards, num_clusters) ## 16. Challenges of K-Means ## from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=num_clusters) kmeans.fit(point_guards[['ppg', 'atr']]) point_guards['cluster'] = kmeans.labels_ visualize_clusters(point_guards, num_clusters)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Machine learning Intermediate/K-means clustering-95.py", "copies": "1", "size": "4063", "license": "mit", "hash": 4968914129924903000, "line_mean": 28.2374100719, "line_max": 90, "alpha_frac": 0.6729017967, "autogenerated": false, "ratio": 3.0051775147928996, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9128740028389579, "avg_score": 0.009867856620664112, "num_lines": 139 }
## 2. Probability of renting bikes ## import pandas bikes = pandas.read_csv("bike_rental_day.csv") # Find the number of days the bikes rented exceeded the threshold. days_over_threshold = bikes[bikes["cnt"] > 2000].shape[0] # Find the total number of days we have data for. total_days = bikes.shape[0] # Get the probability that more than 2000 bikes were rented for any given day. probability_over_2000 = days_over_threshold / total_days print(probability_over_2000) probability_over_4000 =bikes[bikes["cnt"] > 4000].shape[0] / total_days ## 4. Calculating probabilities ## # Enter your code here. coin_1_prob = 0.5*3*.5*.5 ## 6. Calculating the number of combinations ## sunny_1_combinations = None # There are 5 combinations in which one day can be sunny. # SNNNN # NSNNN # NNSNN # NNNSN # NNNNS sunny_1_combinations = 5 ## 8. Finding the number of combinations ## import math def find_outcome_combinations(N, k): # Calculate the numerator of our formula. numerator = math.factorial(N) # Calculate the denominator. denominator = math.factorial(k) * math.factorial(N - k) # Divide them to get the final value. return numerator / denominator combinations_7 = find_outcome_combinations(10, 7) combinations_8 = find_outcome_combinations(10, 8) combinations_9 = find_outcome_combinations(10, 9) ## 10. Calculating the probability of one combination ## prob_combination_3 = None prob_combination_3 = (0.7 ** 3) * (0.3 ** 2) ## 12. Function to calculate the probability of a single combination ## p = .6 q = .4 def find_combination_probability(N, k, p, q): # Take p to the power k, and get the first term. term_1 = p ** k # Take q to the power N-k, and get the second term. term_2 = q ** (N-k) # Multiply the terms out. return term_1 * term_2 prob_8 = find_outcome_combinations(10, 8) * find_combination_probability(10, 8, p, q) prob_9 = find_outcome_combinations(10, 9) * find_combination_probability(10, 9, p, q) prob_10 = find_outcome_combinations(10, 10) * find_combination_probability(10, 10, p, q)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Probability Statistics Intermediate/Calculating probabilities-134.py", "copies": "1", "size": "2066", "license": "mit", "hash": 2333814900466093600, "line_mean": 28.9565217391, "line_max": 88, "alpha_frac": 0.701839303, "autogenerated": false, "ratio": 3.069836552748886, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9241802224338951, "avg_score": 0.005974726281986772, "num_lines": 69 }
2#------------------------------------------------------------------------------- # Name: module1 # Purpose: # # Author: Administrator # # Created: 08/10/2011 # Copyright: (c) Administrator 2011 # Licence: <your licence> #------------------------------------------------------------------------------- #!/usr/bin/env python class Gol02: def __init__(self): self.numberOfNeighbors = 0 self.isAlive = False self.board = [] pass def evolve(self): return def setAlive(self): self.isAlive = True def isLiving(self): result = ( self.numberOfNeighbors == 3 ) or \ (self.isAlive and self.numberOfNeighbors == 2) return result def addNeigbors(self, numberOfNeighbors): self.numberOfNeighbors = numberOfNeighbors return def appendNeigbors(neighbor): self.board.append(neighbor) self.numberOfNeighbors +=1 if __name__ == '__main__': pass
{ "repo_name": "hemmerling/codingdojo", "path": "src/game_of_life/python_coderetreat_berlin_2014-09/python_legacycrberlin02/gol02.py", "copies": "1", "size": "1049", "license": "apache-2.0", "hash": 3356558385341113300, "line_mean": 24.275, "line_max": 81, "alpha_frac": 0.4671115348, "autogenerated": false, "ratio": 4.444915254237288, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5412026789037289, "avg_score": null, "num_lines": null }
## 2. Sets ## #legislators = list(csv.reader(open('legislators.csv','r'))) gender = [] for item in legislators: gender.append(item[3]) gender = set(gender) print(gender) ## 3. Exploring the Dataset ## party = [] for item in legislators: party.append(item[6]) party = set(party) print(party) print(legislators) ## 4. Missing Values ## for item in legislators: if item[3]=='': item[3]= 'M' ## 5. Parsing Birth Years ## birth_years = [] for item in legislators: parts = item[2].split("-") birth_years.append(parts[0]) ## 6. Try/except Blocks ## try: float("hello") except Exception: print("Error converting to float..") ## 7. Exception Instances ## try: int('') except Exception as exc: print(type(exc)) print(str(exc)) ## 8. The Pass Keyword ## converted_years = [] for item in birth_years: try: item = int(item) except Exception: pass converted_years.append(item) ## 9. Convert Birth Years to Integers ## for item in legislators: try: birth_year = int(item[2].split('-')[0]) except Exception: birth_year = 0 item.append(birth_year) ## 10. Fill in Years Without a Value ## last_value = 1 for item in legislators: if item[7]==0: item[7]=last_value last_value = item[7]
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Python Programming Intermediate/Error Handling-7.py", "copies": "1", "size": "1303", "license": "mit", "hash": 4636334197409308000, "line_mean": 16.8630136986, "line_max": 60, "alpha_frac": 0.6162701458, "autogenerated": false, "ratio": 3.07311320754717, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9149345311419306, "avg_score": 0.008007608385573033, "num_lines": 73 }
## 2. Systems of equations as matrices ## import numpy as np # Set the dtype to float to do float math with the numbers. matrix = np.asarray([ [2, 1, 25], [3, 2, 40] ], dtype=np.float32) matrix[0] = matrix[0] * 2 matrix[0] = matrix[0] - matrix[1] matrix[1] = matrix[1] - (matrix[0] * 3) matrix[1] /= 2 print(matrix) ## 4. Solving more complex equations ## import numpy as np matrix = np.asarray([ [1, 2, 0, 7], [0, 3, 3, 11], [1, 2, 2, 11] ], dtype=np.float32) matrix[2] = matrix[2] - matrix[0] matrix[2] = matrix[2] / 2 matrix[1] = matrix[1] / 3 matrix[1] = matrix[1] - matrix[2] matrix[0] = matrix[0] - 2 * matrix[1] ## 5. Echelon form ## matrix = np.asarray([ [0, 0, 0, 7], [0, 0, 1, 11], [1, 2, 2, 11], [0, 5, 5, 1] ], dtype=np.float32) # Swap the first and the third rows - first swap matrix[[0,2]] = matrix[[2,0]] matrix[[1,3]] = matrix[[3,1]] matrix[[2,3]] = matrix[[3,2]] ## 6. Reduced row echelon form ## A = np.asarray([ [0, 2, 1, 5], [1, 2, 1, 8], [3, 0, 1, 10], ], dtype=np.float32) # First, we'll swap the second row with the first to get a non-zero coefficient in the first column A[[0,1]] = A[[1,0]] # The leading coefficient is already 1, so there's no need to divide # Now, we need to make sure that our 1 coefficient is the only coefficient in its column # We have to subtract three times the first row from the third row A[2] -= 3 * A[0] # Now, we move to row 2 # We divide by 2 to get a one as the leading coefficient A[1] /= 2 # We subtract 2 times the second row from the first to get rid of # the second column coefficient in the first row A[0] -= 2 * A[1] # And we'll add 6 times the second row to the third to eliminate the leading coefficient there A[2] += 6 * A[1] # Now, we can move to the third row where the leading coefficient is already 1 # We just need to subtract half of the third from the second A[1] -= 0.5 * A[2] # We're finished, and our system is solved! print(A) ## 7. Inconsistency ## A = np.asarray([ [10, 5, 20, 60], [3, 1, 0, 11], [8, 2, 2, 30], [0, 4, 5, 13] ], dtype=np.float32) B = np.asarray([ [5, -1, 3, 14], [0, 1, 2, 8], [0, -2, 5, 1], [0, 0, 6, 6] ], dtype=np.float32) A_consistent,B_consistent = True,False ## 8. Infinite solutions ## A = np.asarray([ [2, 4, 8, 20], [4, 8, 16, 40], [20, 5, 5, 10] ], dtype=np.float32) A_infinite = True B = np.asarray([ [1, 1, 1, 4], [3, -2, 5, 8], [8, -4, 5, 10] ], dtype=np.float32) B_infinite = False
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Linear Algebra/Solving systems of equations with matrices-55.py", "copies": "1", "size": "2582", "license": "mit", "hash": 6122938107126201000, "line_mean": 22.0625, "line_max": 99, "alpha_frac": 0.5766847405, "autogenerated": false, "ratio": 2.6618556701030927, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.3738540410603093, "avg_score": null, "num_lines": null }
# 2. telnetlib # # a. Write a script that connects using telnet to the pynet-rtr1 router. # Execute the 'show ip int brief' command on the router and return the output. # # Try to do this on your own (i.e. do not copy what I did previously). You should be able to do this by using the following items: # # telnetlib.Telnet(ip_addr, TELNET_PORT, TELNET_TIMEOUT) # remote_conn.read_until(<string_pattern>, TELNET_TIMEOUT) # remote_conn.read_very_eager() # remote_conn.write(<command> + '\n') # remote_conn.close() import telnetlib import socket import time ip_addr = "50.76.53.27" username = 'pyclass' password = '88newclass' TELNET_PORT = 23 TELNET_TIMEOUT = 5 try: remote_conn = telnetlib.Telnet(ip_addr, TELNET_PORT, TELNET_TIMEOUT) except socket.timeout: print "Unreachable Host" remote_conn.read_until("sername:", TELNET_TIMEOUT) remote_conn.write(username + "\n") remote_conn.read_until("assword:", TELNET_TIMEOUT) remote_conn.write(password + "\n") remote_conn.read_very_eager() remote_conn.write("show ip int brief" + "\n") time.sleep(1) output = remote_conn.read_very_eager() print output remote_conn.close()
{ "repo_name": "linkdebian/pynet_course", "path": "class2/exercise2.py", "copies": "1", "size": "1143", "license": "apache-2.0", "hash": -7075083346293237000, "line_mean": 24.4, "line_max": 130, "alpha_frac": 0.719160105, "autogenerated": false, "ratio": 2.901015228426396, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.41201753334263963, "avg_score": null, "num_lines": null }
## 2. The Basics of Binary ## # Let's say b is a binary number. In python, we have to store binary numbers as strings. # If we try to enter it directly as b = 10, Python will assume it's a base 10 integer. b = "10" # Now, we can convert b from a string to a binary number with the int function. We'll need to set the optional second argument, base, to 2 (binary is base two). print(int(b, 2)) base_10_100 = int("100", 2) ## 3. Binary Addition ## # a is in base 10 -- because we have 10 possible digits, the highest value we can represent with one digit is 9. a = 9 # When we want to represent a value one higher, we need to add another digit. a += 1 # a now has two digits -- we incremented the invisible leading digit, which was 0 and is now 1, and set the last digit back to zero. print(a) # When we add 1 to 19, we increment the leading 1 by 1, and then set the last digit to 0, giving us 20. a = 19 a += 1 # When we add 1 to 99, we increment the last digit by 1, and add 1 to the first digit, but the first digit is now greater than 9, so we have to increment the invisible leading digit. a = 99 a += 1 # Binary addition works the exact same way, except the highest value any single digit can represent is 1. b = "1" # We'll add binary values using a binary_add function that was made just for this exercise. # It's not extremely important to know how it works right this second. def binary_add(a, b): return bin(int(a, 2) + int(b, 2))[2:] c = binary_add(b, "1") # We now see that c equals "10", which is exactly what happens in base 10 when we reach the highest possible digit. print(c) # c now equals "11" c = binary_add(c, "1") print(c) # c now equals "100" c = binary_add(c, "1") print(c) c = binary_add(c,"10") print(c) ## 4. Converting Binary Values to Other Bases ## def binary_add(a, b): return bin(int(a, 2) + int(b, 2))[2:] # Start both at 0 a = 0 b = "0" # Loop 10 times for i in range(0, 10): # Add 1 to each a += 1 b = binary_add(b, "1") # Check if they are equal print(int(b, 2) == a) # The cool thing here is that a and b are always equal if we add the same amount to both. # This is because base 2 and base 10 are just ways to write numbers. # Counting 100 apples in base 2 or base 10 will always give us an equivalent result - we just have to convert between them. # We can represent any number in binary; we just need to use more digits than we would in base 10. base_10_1001 = int("1001", 2) ## 5. Converting Characters to Binary ## # We can use the ord() function to get the integer for an ASCII character. ord('a') # Then, we use the bin() function to convert to binary. # The bin function adds "0b" to the beginning of a string to indicate that it contains binary values. bin(ord('a')) # ÿ is the "last" ASCII character; it has the highest integer value of any ASCII character. # This is because 255 is the highest value we can represent with eight binary digits. ord('ÿ') # As you can see, we get eight 1's, which shows that this is the highest possible eight-digit value. bin(ord('ÿ')) # Why is this? Because a single binary digit is called a bit, and computers store values in sequences of eight bits (i.e., a byte). # You might be more familiar with kilobytes or megabytes. A kilobyte is 1000 bytes, and a megabyte is 1000 kilobytes. # There are 256 different ASCII symbols, because the largest amount of storage any single ASCII character can take up is one byte. binary_w = bin(ord("w")) binary_bracket = bin(ord("}")) ## 6. Introduction to Unicode ## # We can initialize Unicode code points (the value for this code point is \u27F6, but you see it as a character here because the Dataquest system is automatically converting it). code_point = "⟶" # This particular code point maps to a right arrow character. print(code_point) # We can get the base 10 integer value of the code point with the ord function. print(ord(code_point)) # As you can see, this takes up a lot more than 1 byte. print(bin(ord(code_point))) code_point = "မ" binary_1019 = bin(ord(code_point)) ## 7. Strings with Unicode ## s1 = "café" # The \u prefix means "the next four digits are a Unicode code point" # It doesn't change the value at all (the last character in the string below is \u00e9) s2 = "café" # These strings are the same, because code points are equal to their corresponding Unicode characters. # \u00e9 and é are equivalent. print(s1 == s2) s3 = "hello မ" ## 8. The Bytes Data Type ## # We can make a string with some Unicode values superman = "Clark Kent␦" print(superman) # This tells Python to encode the string superman as Unicode using the UTF-8 encoding system # We end up with a sequence of bytes instead of a string superman_bytes = "Clark Kent␦".encode("utf-8") batman = "Bruce Wayne␦" batman_bytes = batman.encode("utf-8") ## 10. Hexadecimal Conversions ## # F is the highest single digit in hexadecimal (base 16) # Its value is 15 in base 10 print(int("F", 16)) # A in base 16 has the value 10 in base 10 print(int("A", 16)) # Just like the earlier binary_add function, this adds two hexadecimal numbers def hexadecimal_add(a, b): return hex(int(a, 16) + int(b, 16))[2:] # When we add 1 to 9 in hexadecimal, it becomes "a" value = "9" value = hexadecimal_add(value, "1") print(value) hex_ea = hexadecimal_add("2", "ea") hex_ef = hexadecimal_add("e", "f") ## 11. Hex to Binary ## # One byte (eight bits) in hexadecimal (the value of the byte below is \xe2) hex_byte = "â" # Print the base 10 integer value for the hexadecimal byte print(ord(hex_byte)) # This gives the exact same value. Remember that \x is just a prefix, and doesn't affect the value. print(int("e2", 16)) # Convert the base 10 integer to binary print(bin(ord("â"))) binary_aa = bin(ord("ª")) binary_ab = bin(ord("\xab")) ## 12. Bytes and Strings ## hulk_bytes = "Bruce Banner␦".encode("utf-8") # We can't mix strings and bytes # For instance, if we try to replace the Unicode ␦ character as a string, it won't work, because that value has been encoded to bytes try: hulk_bytes.replace("Banner", "") except Exception: print("TypeError with replacement") # We can create objects of the bytes data type by putting a b in front of the quotation marks in a string hulk_bytes = b"Bruce Banner" # Now, instead of mixing strings and bytes, we can use the replace method with bytes objects instead hulk_bytes.replace(b"Banner", b"") thor_bytes = b"Thor" ## 13. Decode Bytes to Strings ## # Make a bytes object with aquaman's secret identity aquaman_bytes = b"Who knows?" # Now, we can use the decode method, along with the encoding system (UTF-8) to turn it into a string aquaman = aquaman_bytes.decode("utf-8") # We can print the value and type to verify that it's a string print(aquaman) print(type(aquaman)) morgan_freeman_bytes = b"Morgan Freeman" morgan_freeman = morgan_freeman_bytes.decode("utf-8") ## 14. Read in File Data ## # We can read our data in using csvreader import csv # When we open a file, we can specify the system used to encode it (in this case, UTF-8). f = open("sentences_cia.csv", 'r', encoding="utf-8") csvreader = csv.reader(f) sentences_cia = list(csvreader) # The data consists of two columns # The first column contains the year, and the second contains a sentence from a CIA report written in that year # Print the first column of the second row print(sentences_cia[1][0]) # Print the second column of the second row print(sentences_cia[1][1]) sentences_ten = sentences_cia[9][1] ## 15. Convert to a dataframe ## import csv # Let's read in the legislators data from a few missions ago f = open("legislators.csv", 'r', encoding="utf-8") csvreader = csv.reader(f) legislators = list(csvreader) # Now, we can import pandas and use the DataFrame class to convert the list of lists to a dataframe. import pandas as pd legislators_df = pd.DataFrame(legislators) # As you can see, the first row contains the headers, which we don't want (because they're not actually data) print(legislators_df.iloc[0,:]) # To remove the headers, we'll subset the df and pass them in separately # This code removes the headers from legislators, and instead passes them into the columns argument # The columns argument specifies column names legislators_df = pd.DataFrame(legislators[1:], columns=legislators[0]) # We now have the right data in the first row, as well as the proper headers print(legislators_df.iloc[0,:]) # The sentences_cia data from the last screen is available. sentences_cia_df = pd.DataFrame(sentences_cia[1:], columns=sentences_cia[0]) ## 16. Clean up Sentences ## # The integer codes for all the characters we want to keep good_characters = [48, 49, 50, 51, 52, 53, 54, 55, 56, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 32] sentence_15 = sentences_cia["statement"][14] # Iterate over the characters in the sentence, and only take those whose integer representations are in good_characters # This will construct a list of single characters cleaned_sentence_15_list = [s for s in sentence_15 if ord(s) in good_characters] # Join the list together, separated by "" (no space), which creates a string again cleaned_sentence_15 = "".join(cleaned_sentence_15_list) def clean_statement(row): statement = row["statement"] clean_statement_list = [s for s in statement if ord(s) in good_characters] return "".join(clean_statement_list) sentences_cia["cleaned_statement"] = sentences_cia.apply(clean_statement, axis=1) ## 17. Tokenize Statements ## # We can use the .join() method on strings to join lists together. # The string we use the method on will become the separator -- the character(s) between each string when they are joined.. combined_statements = " ".join(sentences_cia["cleaned_statement"]) statement_tokens = combined_statements.split(" ") ## 18. Filter the Tokens ## # statement_tokens has been loaded in. filtered_tokens = [s for s in statement_tokens if len(s) > 4] ## 19. Count the Tokens ## from collections import Counter fruits = ["apple", "apple", "banana", "orange", "pear", "orange", "apple", "grape"] fruit_count = Counter(fruits) # Our code has counted each of the items in the list, and given them dictionary keys print(fruit_count) # filtered_tokens has been loaded in filtered_token_counts = Counter(filtered_tokens) ## 20. Most Common Tokens ## from collections import Counter fruits = ["apple", "apple", "banana", "orange", "pear", "orange", "apple", "grape"] fruit_count = Counter(fruits) # We can use the most_common method of a Counter class to get the most common items # We pass in a number, which is the number of items we want to get print(fruit_count.most_common(2)) print(fruit_count.most_common(3)) # filtered_token_counts has been loaded in common_tokens = filtered_token_counts.most_common(3) ## 21. Finding the Most Common Tokens by Year ## # sentences_cia has been loaded in. # It already has the cleaned_statement column. from collections import Counter def find_most_common_by_year(year, sentences_cia): data = sentences_cia[sentences_cia["year"] == year] combined_statement = " ".join(data["cleaned_statement"]) statement_split = combined_statement.split(" ") counter = Counter([s for s in statement_split if len(s) > 4]) return counter.most_common(2) common_2000 = find_most_common_by_year("2000", sentences_cia) common_2002 = find_most_common_by_year("2002", sentences_cia) common_2013 = find_most_common_by_year("2013", sentences_cia)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Data Structures & Algorithms/Memory and Unicode-13.py", "copies": "1", "size": "11671", "license": "mit", "hash": 6067693329024267000, "line_mean": 35.1708074534, "line_max": 289, "alpha_frac": 0.7148377125, "autogenerated": false, "ratio": 3.2898305084745765, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45046682209745764, "avg_score": null, "num_lines": null }
## 2. The dataset ## import pandas as pd votes = pd.read_csv('114_congress.csv') ## 3. Exploring the data ## print(votes['party'].value_counts()) print(votes.mean()) ## 4. Distance between Senators ## from sklearn.metrics.pairwise import euclidean_distances print(euclidean_distances(votes.iloc[0,3:].reshape(1, -1), votes.iloc[1,3:].reshape(1, -1))) distance = euclidean_distances(votes.iloc[0,3:].reshape(1, -1), votes.iloc[2,3:].reshape(1, -1)) ## 5. Initial clustering ## import pandas as pd from sklearn.cluster import KMeans kmeans_model = KMeans(n_clusters=2, random_state=1) senator_distances = kmeans_model.fit_transform(votes.iloc[:,3:]) ## 6. Exploring the clusters ## labels = kmeans_model.labels_ print(pd.crosstab(labels, votes["party"])) ## 7. Exploring Senators in the wrong cluster ## democratic_outliers = votes[(labels == 1) & (votes["party"] != "D")] print(democratic_outliers) ## 8. Plotting out the clusters ## plt.scatter(senator_distances[:,0], senator_distances[:,1], c = labels) plt.show() ## 9. Finding the most extreme ## extremism = senator_distances ** 3 votes["extremism"] = extremism.sum(axis=1) votes.sort_values(by= "extremism" , ascending = False, inplace = True) votes.head(10)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Machine learning Beginner/Clustering basics-59.py", "copies": "1", "size": "1230", "license": "mit", "hash": 3761524056747814400, "line_mean": 25.7608695652, "line_max": 96, "alpha_frac": 0.7016260163, "autogenerated": false, "ratio": 2.8738317757009346, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.40754577920009344, "avg_score": null, "num_lines": null }
## 2. The mean as the center ## # Make a list of values values = [2, 4, 5, -1, 0, 10, 8, 9] # Compute the mean of the values values_mean = sum(values) / len(values) # Find the difference between each of the values and the mean by subtracting the mean from each value. differences = [i - values_mean for i in values] # This equals 0. Try changing the values around and verifying that it equals 0 if you want. print(sum(differences)) # We can use the median function from numpy to find the median # The median is the "middle" value in a set of values -- if you sort the values in order, it's the one in the center (or the average of the two in the center if there are an even number of items in the set) # You'll see that the differences from the median don't always add to 0. You might want to play around with this and think about why that is. from numpy import median values_median = median(values) median_difference_sum = 0 for i in range(len(values)): val = values[i] - values_median median_difference_sum += val ## 3. Finding variance ## import matplotlib.pyplot as plt import pandas as pd # The nba data is loaded into the nba_stats variable. # Find the mean value of the column pf_mean = nba_stats["pf"].mean() # Initialize variance at zero variance = 0 # Loop through each item in the "pf" column for p in nba_stats["pf"]: # Calculate the difference between the mean and the value difference = p - pf_mean # Square the difference -- this ensures that the result isn't negative # If we didn't square the difference, the total variance would be zero # ** in python means "raise whatever comes before this to the power of whatever number is after this" square_difference = difference ** 2 # Add the difference to the total variance += square_difference # Average the total to find the final variance. variance = variance / len(nba_stats["pf"]) pt_mean = nba_stats['pts'].mean() va = 0 for i in nba_stats['pts']: va += (i - pt_mean)**2 point_variance = va / len(nba_stats['pts']) ## 4. Order of operations ## # You might be wondering why multiplication and division are on the same level. # It doesn't matter whether we do the multiplication first, or the division first -- the answer here will always be the same. # In this case, we need to think of division as multiplication by a fraction -- otherwise, we'll be dividing more than we want to. # Create a formula a = 5 * 5 / 2 # Multiply by 1/2 instead of dividing by 2 -- the result is the same (2/2 == 2 * 1/2) a_subbed = 5 * 5 * 1/2 a_mul_first = 25 * 1/2 a_div_first = 5 * 2.5 print(a_mul_first == a_div_first) # The same thing is true for subtraction and addition # In this case, we need to convert subtraction into adding a negative number -- if we don't we'll end up subtracting more than we expect b = 10 - 8 + 5 # Add -8 instead of subtracting 8 b_subbed = 10 + -8 + 5 b_sub_first = 2 + 5 b_add_first = 10 + -3 print(b_sub_first == b_add_first) c = 10 / 2 + 5 d = 3 - 1 / 2 * 2 c = 10 / 2 * 5 d = 3 - 1 / 2 - 2 ## 5. Using parentheses ## a = 50 * 50 - 10 / 5 a_paren = 50 * (50 - 10) / 5 # If we put multiple operations inside parentheses, the order of operations is used inside to determine the order. a_paren = 50 * (50 - 10 / 5) b = 10 * (10 + 100) c = (8 - 6) * 100 ## 6. Fractional powers ## a = 5 ** 2 # Raise to the fourth power b = 10 ** 4 # Take the square root ( 3 * 3 == 9, so the answer is 3) c = 9 ** (1/2) # Take the cube root (4 * 4 * 4 == 64, so 4 is the cube root) d = 64 ** (1/3) e = 11**5 f = 10000 ** (1/4) ## 7. Calculating standard deviation ## # The nba stats are loaded into the nba_stats variable. def std_dev(data): d_mean = data.mean() v = 0 for i in data: v += (i - d_mean)**2 v = v/len(data) return(v**(1/2)) mp_dev = std_dev(nba_stats['mp']) ast_dev = std_dev(nba_stats['ast']) ## 8. Find standard deviation distance ## import matplotlib.pyplot as plt plt.hist(nba_stats["pf"]) mean = nba_stats["pf"].mean() plt.axvline(mean, color="r") # We can calculate standard deviation by using the std() method on a pandas series. std_dev = nba_stats["pf"].std() # Plot a line one standard deviation below the mean plt.axvline(mean - std_dev, color="g") # Plot a line one standard deviation above the mean plt.axvline(mean + std_dev, color="g") # We can see how much of the data points fall within 1 standard deviation of the mean # The more that falls into this range, the less spread out the data is plt.show() # We can calculate how many standard deviations a data point is from the mean by doing some subtraction and division # First, we find the total distance by subtracting the mean total_distance = nba_stats["pf"][0] - mean # Then we divide by standard deviation to find how many standard deviations away the point is. standard_deviation_distance = total_distance / std_dev point_10 = nba_stats["pf"][9] point_100 = nba_stats["pf"][99] point_10_std = (point_10 - mean) / std_dev point_100_std = (point_100 - mean) / std_dev ## 9. Working with the normal distribution ## import numpy as np import matplotlib.pyplot as plt # The norm module has a pdf function (pdf stands for probability density function) from scipy.stats import norm # The arange function generates a numpy vector # The vector below will start at -1, and go up to, but not including 1 # It will proceed in "steps" of .01. So the first element will be -1, the second -.99, the third -.98, all the way up to .99. points = np.arange(-1, 1, 0.01) # The norm.pdf function will take points vector and turn it into a probability vector # Each element in the vector will correspond to the normal distribution (earlier elements and later element smaller, peak in the center) # The distribution will be centered on 0, and will have a standard devation of .3 probabilities = norm.pdf(points, 0, .3) # Plot the points values on the x axis and the corresponding probabilities on the y axis # See the bell curve? plt.plot(points, probabilities) plt.show() pt = np.arange(-1,1,0.1) prob = norm.pdf(pt,0,2) plt.plot(pt,prob) plt.show() ## 10. Normal distribution deviation ## # Housefly wing lengths in millimeters wing_lengths = [36, 37, 38, 38, 39, 39, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 52, 52, 53, 53, 54, 55] mean = sum(wing_lengths)/len(wing_lengths) variances = [(i - mean)**2 for i in wing_lengths] variance = sum(variances)/len(variances) std = variance ** (1/2) std= [(i - mean) /std for i in wing_lengths] def within_percentage(deviations, count): within = [i for i in deviations if i <= count and i >= -count] count = len(within) return count / len(deviations) within_one_percentage = within_percentage(std, 1) within_two_percentage = within_percentage(std, 2) within_three_percentage = within_percentage(std, 3) ## 11. Plotting correlations ## import matplotlib.pyplot as plt # This is plotting field goals attempted (number of shots someone takes in a season) vs point scored in a season # Field goals attempted is on the x-axis, and points is on the y-axis # As you can tell, they are very strongly correlated -- the plot is close to a straight line. # The plot also slopes upward, which means that as field goal attempts go up, so do points. # That means that the plot is positively correlated. plt.scatter(nba_stats["fga"], nba_stats["pts"]) plt.show() # If we make points negative (so the people who scored the most points now score the least, because 3000 becomes -3000), we can change the direction of the correlation # Field goals are negatively correlated with our new "negative" points column -- the more free throws you attempt, the less negative points you score. # We can see this because the correlation line slopes downward. plt.scatter(nba_stats["fga"], -nba_stats["pts"]) plt.show() # Now, we can plot total rebounds (number of times someone got the ball back for their team after someone shot) vs total assists (number of times someone helped another person score) # These are uncorrelated, so you don't see the same nice line as you see with the plot above. plt.scatter(nba_stats["trb"], nba_stats["ast"]) plt.show() plt.scatter(nba_stats["fta"], nba_stats["pts"]) plt.show() plt.scatter(nba_stats["stl"], nba_stats["pf"]) plt.show() ## 12. Measuring correlation ## from scipy.stats.stats import pearsonr # The pearsonr function will find the correlation between two columns of data. # It returns the r value and the p value. We'll learn more about p values later on. r, p_value = pearsonr(nba_stats["fga"], nba_stats["pts"]) # As we can see, this is a very high positive r value -- close to 1 print(r) # These two columns are much less correlated r, p_value = pearsonr(nba_stats["trb"], nba_stats["ast"]) # We get a much lower, but still positive, r value print(r) r_fta_pts, p_value = pearsonr(nba_stats["fta"], nba_stats["pts"]) r_stl_pf, p_value = pearsonr(nba_stats["stl"], nba_stats["pf"]) ## 13. Calculate covariance ## # The nba_stats variable has been loaded. def covariance(x, y): x_mean = sum(x) / len(x) y_mean = sum(y) / len(y) x_diffs = [i - x_mean for i in x] y_diffs = [i - y_mean for i in y] codeviates = [x_diffs[i] * y_diffs[i] for i in range(len(x))] return sum(codeviates) / len(codeviates) cov_stl_pf = covariance(nba_stats["stl"], nba_stats["pf"]) cov_fta_pts = covariance(nba_stats["fta"], nba_stats["pts"]) ## 14. Calculate correlation ## from numpy import cov # The nba_stats variable has already been loaded. r_fta_blk = cov(nba_stats["fta"], nba_stats["blk"])[0,1] / ((nba_stats["fta"].var() * nba_stats["blk"].var())** (1/2)) r_ast_stl = cov(nba_stats["ast"], nba_stats["stl"])[0,1] / ((nba_stats["ast"].var() * nba_stats["stl"].var())** (1/2))
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Probability Statistics Beginner/Standard deviation and correlation-14.py", "copies": "1", "size": "10049", "license": "mit", "hash": 8537288113958745000, "line_mean": 38.880952381, "line_max": 415, "alpha_frac": 0.6880286596, "autogenerated": false, "ratio": 3.1285803237858034, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43166089833858035, "avg_score": null, "num_lines": null }
# 2. 删除操作 class Animal: name = "动物" age = 10 # a1 = Animal() # print(Animal.name) # # 动物 # del a1.__class__.name # print(Animal.__dict__) # {'__module__': '__main__', # 'age': 10, '__dict__': <attribute '__dict__' of 'Animal' objects>, # '__weakref__': <attribute '__weakref__' of 'Animal' objects>, # '__doc__': None} # 修改类 __dict__ dictA = Animal.__dict__ print(dictA) dictA['name'] =" xxx" # TypeError: 'mappingproxy' object does not support item assignment # print(Animal.name) # # 1. 定义类 # class Person: # name = "人类" # # 获取 dict # print(Person.__dict__) # # {'__module__': '__main__', # # 'name': '人类', # # '__dict__': <attribute '__dict__' of 'Person' objects>, # # '__weakref__': <attribute '__weakref__' of 'Person' objects>, # # '__doc__': None} # print(Person) # <class '__main__.Person'> # print(Person.__class__) # <class 'type'> # print(Person is Person.__class__) # False # print(type(Person.__class__))# <class 'type'> # print(type(Person)) # <class 'type'> # print(Person.__class__ is type(Person)) # True # print(Person.__class__ is type(Person.__class__)) # True # print(Person.__class__ is Person.__class__.__class__) # True # # 类似 原型链 # p1 = Person() # p2 = Person() # p1.name = "xx" # # Person.name = "age" # # print(p1.name) # print(p2.name) # print(Person.name) # # # 设置 不存在的属性 # Person.age = 123 # print(p2.age) # # print(type(p1)) # # # # 查询操作 # # dictA = Person.__dict__ # print(dictA) # Person.sex = "boy" # print(dictA) # class Nxx(Person): # typex = 999 # # # p2.__class__ = Nxx # print(p2.typex)
{ "repo_name": "z727354123/pyCharmTest", "path": "2018-01/01_Jan/14/02-ClassAttribute.py", "copies": "1", "size": "1623", "license": "apache-2.0", "hash": 5399735191346132000, "line_mean": 20.2328767123, "line_max": 68, "alpha_frac": 0.5661717237, "autogenerated": false, "ratio": 2.4983870967741937, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3564558820474194, "avg_score": null, "num_lines": null }
## 2. Using decision trees with scikit-learn ## from sklearn.tree import DecisionTreeClassifier # A list of columns to train with. # All columns have been converted to numeric. columns = ["age", "workclass", "education_num", "marital_status", "occupation", "relationship", "race", "sex", "hours_per_week", "native_country"] # Instantiate the classifier. # Set random_state to 1 to keep results consistent. clf = DecisionTreeClassifier(random_state=1) clf.fit(income[columns],income['high_income']) # The variable income is loaded, and contains all the income data. ## 3. Splitting the data into train and test sets ## import numpy import math # Set a random seed so the shuffle is the same every time. numpy.random.seed(1) # Shuffle the rows. This first permutes the index randomly using numpy.random.permutation. # Then, it reindexes the dataframe with this. # The net effect is to put the rows into random order. income = income.reindex(numpy.random.permutation(income.index)) train_max_row = math.floor(income.shape[0] * .8) train = income.iloc[:train_max_row,:] test = income.iloc[train_max_row:,:] ## 4. Evaluating error ## from sklearn.metrics import roc_auc_score clf = DecisionTreeClassifier(random_state=1) clf.fit(train[columns], train["high_income"]) predictions = clf.predict(test[columns]) error = roc_auc_score(test['high_income'],predictions) print(error) ## 5. Compute error on the training set ## predictions = clf.predict(train[columns]) print(roc_auc_score(train['high_income'],predictions)) ## 7. Building a shallower tree ## # Decision trees model from the last screen. clf = DecisionTreeClassifier(min_samples_split=13, random_state=1) clf.fit(train[columns], train["high_income"]) predictions = clf.predict(test[columns]) test_auc = roc_auc_score(test["high_income"], predictions) train_predictions = clf.predict(train[columns]) train_auc = roc_auc_score(train["high_income"], train_predictions) print(test_auc) print(train_auc) ## 8. More parameter tweaking ## # First decision trees model we trained and tested. clf = DecisionTreeClassifier(random_state=1,max_depth = 7, min_samples_split = 13) clf.fit(train[columns], train["high_income"]) predictions = clf.predict(test[columns]) test_auc = roc_auc_score(test["high_income"], predictions) train_predictions = clf.predict(train[columns]) train_auc = roc_auc_score(train["high_income"], train_predictions) print(test_auc) print(train_auc) ## 9. Tweaking the depth ## # First decision trees model we trained and tested. clf = DecisionTreeClassifier(random_state=1,max_depth = 2, min_samples_split = 100) clf.fit(train[columns], train["high_income"]) predictions = clf.predict(test[columns]) test_auc = roc_auc_score(test["high_income"], predictions) train_predictions = clf.predict(train[columns]) train_auc = roc_auc_score(train["high_income"], train_predictions) print(test_auc) print(train_auc) ## 12. Exploring decision tree variance ## numpy.random.seed(1) # Generate a column with random numbers from 0 to 4. income["noise"] = numpy.random.randint(4, size=income.shape[0]) # Adjust columns to include the noise column. columns = ["noise", "age", "workclass", "education_num", "marital_status", "occupation", "relationship", "race", "sex", "hours_per_week", "native_country"] # Make new train and test sets. train_max_row = math.floor(income.shape[0] * .8) train = income.iloc[:train_max_row] test = income.iloc[train_max_row:] # Initialize the classifier. clf = DecisionTreeClassifier(random_state=1) clf.fit(train[columns],train['high_income']) preds = clf.predict(train[columns]) train_auc = roc_auc_score(train['high_income'],preds) predictions = clf.predict(test[columns]) test_auc = roc_auc_score(test['high_income'],predictions)
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Decision Trees/Applying decision trees-143.py", "copies": "1", "size": "3748", "license": "mit", "hash": -529862598104107200, "line_mean": 32.7657657658, "line_max": 155, "alpha_frac": 0.7395944504, "autogenerated": false, "ratio": 3.231034482758621, "config_test": true, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.4470628933158621, "avg_score": null, "num_lines": null }
## 2. Web Page Structure ## # Write your code here. response = requests.get("http://dataquestio.github.io/web-scraping-pages/simple.html") content = response.content ## 3. Retrieving Elements from a Page ## from bs4 import BeautifulSoup # Initialize the parser, and pass in the content we grabbed earlier. parser = BeautifulSoup(content, 'html.parser') # Get the body tag from the document. # Since we passed in the top level of the document to the parser, we need to pick a branch off of the root. # With BeautifulSoup, we can access branches by using tag types as attributes. body = parser.body # Get the p tag from the body. p = body.p # Print the text inside the p tag. # Text is a property that gets the inside text of a tag. print(p.text) title_text = parser.head.title.text ## 4. Using Find All ## parser = BeautifulSoup(content, 'html.parser') # Get a list of all occurrences of the body tag in the element. body = parser.find_all("body") # Get the paragraph tag. p = body[0].find_all("p") # Get the text. print(p[0].text) title_text = parser.find_all('title')[0].text ## 5. Element IDs ## # Get the page content and set up a new parser. response = requests.get("http://dataquestio.github.io/web-scraping-pages/simple_ids.html") content = response.content parser = BeautifulSoup(content, 'html.parser') # Pass in the ID attribute to only get the element with that specific ID. first_paragraph = parser.find_all("p", id="first")[0] print(first_paragraph.text) second_paragraph_text = parser.find_all("p", id="second")[0].text ## 6. Element Classes ## # Get the website that contains classes. response = requests.get("http://dataquestio.github.io/web-scraping-pages/simple_classes.html") content = response.content parser = BeautifulSoup(content, 'html.parser') # Get the first inner paragraph. # Find all the paragraph tags with the class inner-text. # Then, take the first element in that list. first_inner_paragraph = parser.find_all("p", class_="inner-text")[0] print(first_inner_paragraph.text) second_inner_paragraph_text = parser.find_all("p",class_="inner-text")[1].text first_outer_paragraph_text = parser.find_all("p", class_="outer-text")[0].text ## 8. Using CSS Selectors ## # Get the website that contains classes and IDs. response = requests.get("http://dataquestio.github.io/web-scraping-pages/ids_and_classes.html") content = response.content parser = BeautifulSoup(content, 'html.parser') # Select all of the elements that have the first-item class. first_items = parser.select(".first-item") # Print the text of the first paragraph (the first element with the first-item class). print(first_items[0].text) first_outer_text = parser.select(".outer-text")[0].text second_text = parser.select("#second")[0].text ## 10. Using Nested CSS Selectors ## # Get the Superbowl box score data. response = requests.get("http://dataquestio.github.io/web-scraping-pages/2014_super_bowl.html") content = response.content parser = BeautifulSoup(content, 'html.parser') # Find the number of turnovers the Seahawks committed. turnovers = parser.select("#turnovers")[0] seahawks_turnovers = turnovers.select("td")[1] seahawks_turnovers_count = seahawks_turnovers.text print(seahawks_turnovers_count) patriots_total_plays_count = parser.select("#total-plays")[0].select("td")[2].text seahawks_total_yards_count = parser.select("#total-yards")[0].select("td")[1].text
{ "repo_name": "vipmunot/Data-Analysis-using-Python", "path": "Apis and Scraping/Web Scraping-119.py", "copies": "1", "size": "3394", "license": "mit", "hash": 3204754187570022000, "line_mean": 34.3645833333, "line_max": 107, "alpha_frac": 0.7386564526, "autogenerated": false, "ratio": 3.2416427889207258, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44802992415207255, "avg_score": null, "num_lines": null }
# 30.04.2009 #! #! Linear Elasticity #! ================= #$ \centerline{Example input file, \today} #! This file models a cylinder that is fixed at one end while the #! second end has a specified displacement of 0.01 in the x direction #! (this boundary condition is named Displaced). There is also a specified #! displacement of 0.005 in the z direction for points in #! the region labeled SomewhereTop. This boundary condition is named #! PerturbedSurface. The region SomewhereTop is specified as those nodes for #! which #! (z > 0.017) & (x > 0.03) & (x < 0.07). #! The output is the displacement for each node, saved by default to #! simple_out.vtk. The material is linear elastic and its properties are #! specified as Lame parameters (see #! http://en.wikipedia.org/wiki/Lam%C3%A9_parameters) #! #! Mesh #! ---- from sfepy import data_dir filename_mesh = data_dir + '/meshes/3d/cylinder.mesh' #! Regions #! ------- #! Whole domain 'Omega', left and right ends. regions = { 'Omega' : ('all', {}), 'Left' : ('nodes in (x < 0.001)', {}), 'Right' : ('nodes in (x > 0.099)', {}), 'SomewhereTop' : ('nodes in (z > 0.017) & (x > 0.03) & (x < 0.07)', {}), } #! Materials #! --------- #! The linear elastic material model is used. Properties are #! specified as Lame parameters. materials = { 'solid' : ({'lam' : 1e1, 'mu' : 1e0},), } #! Fields #! ------ #! A field is used to define the approximation on a (sub)domain #! A displacement field (three DOFs/node) will be computed on a region #! called 'Omega' using P1 (four-node tetrahedral) finite elements. fields = { 'displacement': ('real', 'vector', 'Omega', 1), } #! Integrals #! --------- #! Define the integral type Volume/Surface and quadrature rule #! (here: dim=3, order=1). integrals = { 'i1' : ('v', 'gauss_o1_d3'), } #! Variables #! --------- #! One field is used for unknown variable (generate discrete degrees #! of freedom) and the seccond field for the corresponding test variable of #! the weak formulation. variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), } #! Boundary Conditions #! ------------------- #! The left end of the cilinder is fixed (all DOFs are zero) and #! the 'right' end has non-zero displacements only in the x direction. ebcs = { 'Fixed' : ('Left', {'u.all' : 0.0}), 'Displaced' : ('Right', {'u.0' : 0.01, 'u.[1,2]' : 0.0}), 'PerturbedSurface' : ('SomewhereTop', {'u.2' : 0.005}), } #! Equations #! --------- #! The weak formulation of the linear elastic problem. equations = { 'balance_of_forces' : """dw_lin_elastic_iso.i1.Omega( solid.lam, solid.mu, v, u ) = 0""", } #! Solvers #! ------- #! Define linear and nonlinear solver. #! Even linear problems are solved by a nonlinear solver (KISS rule) - only one #! iteration is needed and the final rezidual is obtained for free. solvers = { 'ls' : ('ls.scipy_direct', {}), 'newton' : ('nls.newton', { 'i_max' : 1, 'eps_a' : 1e-10, 'eps_r' : 1.0, 'macheps' : 1e-16, # Linear system error < (eps_a * lin_red). 'lin_red' : 1e-2, 'ls_red' : 0.1, 'ls_red_warp' : 0.001, 'ls_on' : 1.1, 'ls_min' : 1e-5, 'check' : 0, 'delta' : 1e-6, 'is_plot' : False, # 'nonlinear' or 'linear' (ignore i_max) 'problem' : 'nonlinear'}), }
{ "repo_name": "olivierverdier/sfepy", "path": "examples/linear_elasticity/linear_elastic.py", "copies": "1", "size": "3615", "license": "bsd-3-clause", "hash": 3724869877416006700, "line_mean": 33.4285714286, "line_max": 79, "alpha_frac": 0.5587828492, "autogenerated": false, "ratio": 3.2190560997328586, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4277838948932859, "avg_score": null, "num_lines": null }
# 30.05.2007, c # last revision: 25.02.2008 from __future__ import absolute_import from sfepy import data_dir import six filename_mesh = data_dir + '/meshes/2d/square_unit_tri.mesh' material_1 = { 'name' : 'coef', 'values' : { 'val' : 1.0, }, } material_2 = { 'name' : 'm', 'values' : { 'K' : [[1.0, 0.0], [0.0, 1.0]], }, } field_1 = { 'name' : 'a_harmonic_field', 'dtype' : 'real', 'shape' : 'scalar', 'region' : 'Omega', 'approx_order' : 2, } variable_1 = { 'name' : 't', 'kind' : 'unknown field', 'field' : 'a_harmonic_field', 'order' : 0, } variable_2 = { 'name' : 's', 'kind' : 'test field', 'field' : 'a_harmonic_field', 'dual' : 't', } region_1000 = { 'name' : 'Omega', 'select' : 'all', } region_1 = { 'name' : 'Left', 'select' : 'vertices in (x < -0.499)', 'kind' : 'facet', } region_2 = { 'name' : 'Right', 'select' : 'vertices in (x > 0.499)', 'kind' : 'facet', } region_3 = { 'name' : 'Gamma', 'select' : 'vertices of surface', 'kind' : 'facet', } ebc_1 = { 'name' : 't_left', 'region' : 'Left', 'dofs' : {'t.0' : 5.0}, } ebc_2 = { 'name' : 't_right', 'region' : 'Right', 'dofs' : {'t.0' : 0.0}, } # 'Left' : ('T3', (30,), 'linear_y'), integral_1 = { 'name' : 'i', 'order' : 2, } equations = { 'Temperature' : """dw_laplace.i.Omega( coef.val, s, t ) = 0""" } solution = { 't' : '- 5.0 * (x - 0.5)', } solver_0 = { 'name' : 'ls', 'kind' : 'ls.scipy_direct', } solver_1 = { 'name' : 'newton', 'kind' : 'nls.newton', 'i_max' : 1, 'eps_a' : 1e-10, } lin_min, lin_max = 0.0, 2.0 ## # 31.05.2007, c def linear( bc, ts, coor, which ): vals = coor[:,which] min_val, max_val = vals.min(), vals.max() vals = (vals - min_val) / (max_val - min_val) * (lin_max - lin_min) + lin_min return vals ## # 31.05.2007, c def linear_x( bc, ts, coor ): return linear( bc, ts, coor, 0 ) def linear_y( bc, ts, coor ): return linear( bc, ts, coor, 1 ) def linear_z( bc, ts, coor ): return linear( bc, ts, coor, 2 ) from sfepy.base.testing import TestCommon ## # 30.05.2007, c class Test( TestCommon ): ## # 30.05.2007, c def from_conf( conf, options ): from sfepy.applications import solve_pde problem, state = solve_pde(conf, save_results=False) test = Test(problem=problem, state=state, conf=conf, options=options) return test from_conf = staticmethod( from_conf ) ## # 30.05.2007, c def test_solution( self ): sol = self.conf.solution vec = self.state() problem = self.problem variables = problem.get_variables() ok = True for var_name, expression in six.iteritems(sol): coor = variables[var_name].field.get_coor() ana_sol = self.eval_coor_expression( expression, coor ) num_sol = variables.get_state_part_view( vec, var_name ) ret = self.compare_vectors( ana_sol, num_sol, label1 = 'analytical %s' % var_name, label2 = 'numerical %s' % var_name ) if not ret: self.report( 'variable %s: failed' % var_name ) ok = ok and ret return ok ## # c: 30.05.2007, r: 19.02.2008 def test_boundary_fluxes( self ): import os.path as op from sfepy.linalg import rotation_matrix2d from sfepy.discrete import Material problem = self.problem angles = [0, 30, 45] region_names = ['Left', 'Right', 'Gamma'] values = [5.0, -5.0, 0.0] variables = problem.get_variables() get_state = variables.get_state_part_view state = self.state.copy(deep=True) problem.time_update(ebcs={}, epbcs={}) # problem.save_ebc( 'aux.vtk' ) state.apply_ebc() nls = problem.get_nls() aux = nls.fun(state()) field = variables['t'].field conf_m = problem.conf.get_item_by_name('materials', 'm') m = Material.from_conf(conf_m, problem.functions) name = op.join( self.options.out_dir, op.split( problem.domain.mesh.name )[1] + '_%02d.mesh' ) orig_coors = problem.get_mesh_coors().copy() ok = True for ia, angle in enumerate( angles ): self.report( '%d: mesh rotation %d degrees' % (ia, angle) ) problem.domain.mesh.transform_coors( rotation_matrix2d( angle ), ref_coors = orig_coors ) problem.set_mesh_coors(problem.domain.mesh.coors, update_fields=True) problem.domain.mesh.write( name % angle, io = 'auto' ) for ii, region_name in enumerate( region_names ): flux_term = 'd_surface_flux.i.%s( m.K, t )' % region_name val1 = problem.evaluate(flux_term, t=variables['t'], m=m) rvec = get_state( aux, 't', True ) reg = problem.domain.regions[region_name] nods = field.get_dofs_in_region(reg, merge=True) val2 = rvec[nods].sum() # Assume 1 dof per node. ok = ok and ((abs( val1 - values[ii] ) < 1e-10) and (abs( val2 - values[ii] ) < 1e-10)) self.report( ' %d. %s: %e == %e == %e'\ % (ii, region_name, val1, val2, values[ii]) ) # Restore original coordinates. problem.domain.mesh.transform_coors(rotation_matrix2d(0), ref_coors=orig_coors) problem.set_mesh_coors(problem.domain.mesh.coors, update_fields=True) return ok
{ "repo_name": "lokik/sfepy", "path": "tests/test_laplace_unit_square.py", "copies": "3", "size": "5870", "license": "bsd-3-clause", "hash": -1831525260669356800, "line_mean": 25.4414414414, "line_max": 81, "alpha_frac": 0.5052810903, "autogenerated": false, "ratio": 3.0652741514360313, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5070555241736032, "avg_score": null, "num_lines": null }
# 30.05.2007, c # last revision: 25.02.2008 from sfepy import data_dir filename_mesh = data_dir + '/meshes/2d/square_unit_tri.mesh' material_1 = { 'name' : 'coef', 'values' : { 'val' : 1.0, }, } material_2 = { 'name' : 'm', 'values' : { 'K' : [[1.0, 0.0], [0.0, 1.0]], }, } field_1 = { 'name' : 'a_harmonic_field', 'dtype' : 'real', 'shape' : 'scalar', 'region' : 'Omega', 'approx_order' : 2, } variable_1 = { 'name' : 't', 'kind' : 'unknown field', 'field' : 'a_harmonic_field', 'order' : 0, } variable_2 = { 'name' : 's', 'kind' : 'test field', 'field' : 'a_harmonic_field', 'dual' : 't', } region_1000 = { 'name' : 'Omega', 'select' : 'all', } region_1 = { 'name' : 'Left', 'select' : 'nodes in (x < -0.499)', 'can_cells' : True, } region_2 = { 'name' : 'Right', 'select' : 'nodes in (x > 0.499)', 'can_cells' : True, } region_3 = { 'name' : 'Gamma', 'select' : 'nodes of surface', 'can_cells' : True, } ebc_1 = { 'name' : 't_left', 'region' : 'Left', 'dofs' : {'t.0' : 5.0}, } ebc_2 = { 'name' : 't_right', 'region' : 'Right', 'dofs' : {'t.0' : 0.0}, } # 'Left' : ('T3', (30,), 'linear_y'), integral_1 = { 'name' : 'i1', 'kind' : 'v', 'quadrature' : 'gauss_o2_d2', } integral_2 = { 'name' : 'i2', 'kind' : 's3', 'quadrature' : 'gauss_o1_d1', } equations = { 'Temperature' : """dw_laplace.i1.Omega( coef.val, s, t ) = 0""" # 'Temperature' : """dw_hdpm_d.i1.Omega( m.K, s, t ) = 0""" } solution = { 't' : '- 5.0 * (x - 0.5)', } solver_0 = { 'name' : 'ls', 'kind' : 'ls.umfpack', } solver_1 = { 'name' : 'newton', 'kind' : 'nls.newton', 'i_max' : 1, 'eps_a' : 1e-10, 'eps_r' : 1.0, 'macheps' : 1e-16, 'lin_red' : 1e-2, # Linear system error < (eps_a * lin_red). 'ls_red' : 0.1, 'ls_red_warp' : 0.001, 'ls_on' : 1.1, 'ls_min' : 1e-5, 'check' : 0, 'delta' : 1e-6, 'is_plot' : False, 'lin_solver' : 'umfpack', 'matrix' : 'internal', # 'external' or 'internal' 'problem' : 'nonlinear', # 'nonlinear' or 'linear' (ignore i_max) } fe = { 'chunk_size' : 1000 } lin_min, lin_max = 0.0, 2.0 ## # 31.05.2007, c def linear( bc, ts, coor, which ): vals = coor[:,which] min_val, max_val = vals.min(), vals.max() vals = (vals - min_val) / (max_val - min_val) * (lin_max - lin_min) + lin_min return vals ## # 31.05.2007, c def linear_x( bc, ts, coor ): return linear( bc, ts, coor, 0 ) def linear_y( bc, ts, coor ): return linear( bc, ts, coor, 1 ) def linear_z( bc, ts, coor ): return linear( bc, ts, coor, 2 ) from sfepy.base.testing import TestCommon ## # 30.05.2007, c class Test( TestCommon ): ## # 30.05.2007, c def from_conf( conf, options ): from sfepy.solvers.generic import solve_stationary problem, vec = solve_stationary(conf) test = Test(problem=problem, vec=vec, conf=conf, options=options) return test from_conf = staticmethod( from_conf ) ## # 30.05.2007, c def test_solution( self ): sol = self.conf.solution vec = self.vec problem = self.problem variables = problem.get_variables() ok = True for var_name, expression in sol.iteritems(): coor = variables[var_name].field.get_coor() ana_sol = self.eval_coor_expression( expression, coor ) num_sol = variables.get_state_part_view( vec, var_name ) ret = self.compare_vectors( ana_sol, num_sol, label1 = 'analytical %s' % var_name, label2 = 'numerical %s' % var_name ) if not ret: self.report( 'variable %s: failed' % var_name ) ok = ok and ret return ok ## # c: 30.05.2007, r: 19.02.2008 def test_boundary_fluxes( self ): import os.path as op from sfepy.base.base import Struct from sfepy.linalg import rotation_matrix2d from sfepy.fem.evaluate import BasicEvaluator problem = self.problem vec = self.vec angles = [0, 30, 45] region_names = ['Left', 'Right', 'Gamma'] values = [5.0, -5.0, 0.0] variables = problem.get_variables() get_state = variables.get_state_part_view state = vec.copy() problem.time_update(ebcs={}, epbcs={}) # problem.save_ebc( 'aux.vtk' ) problem.apply_ebc( state ) ev = BasicEvaluator( problem ) aux = ev.eval_residual( state ) field = variables['t'].field name = op.join( self.options.out_dir, op.split( problem.domain.mesh.name )[1] + '_%02d.mesh' ) orig_coors = problem.get_mesh_coors().copy() ok = True for ia, angle in enumerate( angles ): self.report( '%d: mesh rotation %d degrees' % (ia, angle) ) problem.domain.mesh.transform_coors( rotation_matrix2d( angle ), ref_coors = orig_coors ) problem.domain.mesh.write( name % angle, io = 'auto' ) for ii, region_name in enumerate( region_names ): flux_term = 'd_hdpm_surfdvel.i2.%s( m.K, t )' % region_name val1 = problem.evaluate(flux_term, t=variables['t']) rvec = get_state( aux, 't', True ) reg = problem.domain.regions[region_name] nods = reg.get_field_nodes( field, merge = True ) val2 = rvec[nods].sum() # Assume 1 dof per node. ok = ok and ((abs( val1 - values[ii] ) < 1e-10) and (abs( val2 - values[ii] ) < 1e-10)) self.report( ' %d. %s: %e == %e == %e'\ % (ii, region_name, val1, val2, values[ii]) ) return ok
{ "repo_name": "olivierverdier/sfepy", "path": "tests/test_laplace_unit_square.py", "copies": "1", "size": "6037", "license": "bsd-3-clause", "hash": 8304519282148385000, "line_mean": 24.5805084746, "line_max": 81, "alpha_frac": 0.4956104025, "autogenerated": false, "ratio": 2.899615754082613, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3895226156582613, "avg_score": null, "num_lines": null }
# 300. Longest Increasing Subsequence # # Given an unsorted array of integers, find the length of longest increasing subsequence. # For example, # Given [10, 9, 2, 5, 3, 7, 101, 18], # The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. # Note that there may be more than one LIS combination, # it is only necessary for you to return the length. # Your algorithm should run in O(n2) complexity. # Follow up: Could you improve it to O(n log n) time complexity? class Solution(object): # https://gengwg.blogspot.com/2018/02/leetcode-300-longest-increasing.html # note this is subsequence not sub array. def lengthOfLIS(self, nums): """ :type nums: List[int] :rtype: int """ # can simply return max(dp) if with this line # if not nums: # return 0 sz = len(nums) # dp[i]: length of LIS ending with nums[i] dp = [1] * sz for i in range(sz): for j in range(i): if nums[i] > nums[j]: # max of multiple possible sub problems dp[i] = max(dp[i], dp[j] + 1) return max(dp) if dp else 0 if __name__ == '__main__': print(Solution().lengthOfLIS([10, 9, 2, 5, 3, 7, 101, 18]))
{ "repo_name": "gengwg/leetcode", "path": "300_longest_increasing_subsequence.py", "copies": "1", "size": "1282", "license": "apache-2.0", "hash": -8852912291516857000, "line_mean": 31.8717948718, "line_max": 89, "alpha_frac": 0.5889235569, "autogenerated": false, "ratio": 3.40053050397878, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.448945406087878, "avg_score": null, "num_lines": null }
# 303 - Range Sum Query Immutable (Easy) # https://leetcode.com/problems/range-sum-query-immutable/ class NumArray(object): def __init__(self, nums): """ initialize your data structure here. :type nums: List[int] """ self.arr = [] acum = 0 self.arr.append(0) for i in range(len(nums)): acum += nums[i] self.arr.append(acum) def sumRange(self, i, j): """ sum of elements nums[i..j], inclusive. :type i: int :type j: int :rtype: int """ return self.arr[j+1] - self.arr[i] # Your NumArray object will be instantiated and called as such: # numArray = NumArray(nums) # numArray.sumRange(0, 1) # numArray.sumRange(1, 2) """ Given nums = [-2, 0, 3, -5, 2, -1] sumRange(0, 2) -> 1 sumRange(2, 5) -> -1 sumRange(0, 5) -> -3 Time complexity : O(1) time per query, O(n) time pre-computation. Since the cumulative sum is cached, each sumRange query can be calculated in O(1) time. Space complexity : O(n). """
{ "repo_name": "zubie7a/Algorithms", "path": "LeetCode/01_Easy/lc_303.py", "copies": "1", "size": "1081", "license": "mit", "hash": -5537046844776160000, "line_mean": 26.7435897436, "line_max": 79, "alpha_frac": 0.5605920444, "autogenerated": false, "ratio": 3.2560240963855422, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9199094773264175, "avg_score": 0.023504273504273504, "num_lines": 39 }
# 303. Range Sum Query - Immutable # Given an integer array nums, # find the sum of the elements between indices i and j (i ≤ j), inclusive. # Example: # Given nums = [-2, 0, 3, -5, 2, -1] # sumRange(0, 2) -> 1 # sumRange(2, 5) -> -1 # sumRange(0, 5) -> -3 # Note: # You may assume that the array does not change. # There are many calls to sumRange function. # http://bookshadow.com/weblog/2015/11/10/leetcode-range-sum-query-immutable/ # 计算辅助数组sums: # sums[0] = 0, for k = 0 # sums[k] = nums[0] + nums[1] + ... + nums[k-1], for k > 0 # 则sumRange(i, j) = sums[j+1] - sums[i] # e.g. # sums[5] = nums[0] + nums[1] + nums[2] + nums[3] + nums[4] # sums[2] = nums[0] + nums[1] # sumRange(2,4) = sums[5] - sums[2] = nums[2] + nums[3] + nums[4] class NumArray(object): def __init__(self, nums): """ :type nums: List[int] """ size = len(nums) self.sums = [0] * (size + 1) for i in range(size): self.sums[i+1] = self.sums[i] + nums[i] # for i in range(1, size+1): # self.sums[i] = self.sums[i-1] + nums[i-1] def sumRange(self, i, j): """ :type i: int :type j: int :rtype: int """ return self.sums[j+1] - self.sums[i] # Your NumArray object will be instantiated and called as such: # obj = NumArray(nums) # param_1 = obj.sumRange(i,j)
{ "repo_name": "gengwg/leetcode", "path": "303_range_sum_query_immutable.py", "copies": "1", "size": "1403", "license": "apache-2.0", "hash": -5491774437696001000, "line_mean": 23.298245614, "line_max": 77, "alpha_frac": 0.5415162455, "autogenerated": false, "ratio": 2.564814814814815, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8604960446279727, "avg_score": 0.00027412280701754384, "num_lines": 57 }
# 304 Range Sum Query 2D - Immutable # # Given a 2D matrix matrix, # find the sum of the elements inside the rectangle defined by # its upper left corner (row1, col1) and lower right corner (row2, col2). # Example: # Given matrix = [ # [3, 0, 1, 4, 2], # [5, 6, 3, 2, 1], # [1, 2, 0, 1, 5], # [4, 1, 0, 1, 7], # [1, 0, 3, 0, 5] # ] # sumRegion(2, 1, 4, 3) -> 8 # sumRegion(1, 1, 2, 2) -> 11 # sumRegion(1, 2, 2, 4) -> 12 # Note: # You may assume that the matrix does not change. # There are many calls to sumRegion function. # You may assume that row1 ≤ row2 and col1 ≤ col2. # http://bookshadow.com/weblog/2015/11/12/leetcode-range-sum-query-2d-immutable/ # 构造辅助二维数组sums # sums[x][y]表示从0,0到x,y的子矩阵的和 # 利用容斥原理,可知: # sumRange(row1, col1, row2, col2) # = sums[row2][col2] + sums[row1 - 1][col1 - 1] - sums[row1 - 1][col2] - sums[row2][col1 - 1] # 将辅助矩阵的行数和列数+1,可以简化对矩阵边界的处理。 class NumMatrix(object): def __init__(self, matrix): """ :type matrix: List[List[int]] """ m = len(matrix) n = len(matrix[0]) if m else 0 self.sums = [[0 for _ in range(n+1)] for __ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): self.sums[i][j] = matrix[i-1][j-1] + self.sums[i][j-1] \ + self.sums[i-1][j] - self.sums[i-1][j-1] def sumRegion(self, row1, col1, row2, col2): """ :type row1: int :type col1: int :type row2: int :type col2: int :rtype: int """ return self.sums[row2 + 1][col2 + 1] + self.sums[row1][col1] \ - self.sums[row1][col2 + 1] - self.sums[row2 + 1][col1] # Your NumMatrix object will be instantiated and called as such: # obj = NumMatrix(matrix) # param_1 = obj.sumRegion(row1,col1,row2,col2)
{ "repo_name": "gengwg/leetcode", "path": "304_range_sum_query_2d_immutable.py", "copies": "1", "size": "1941", "license": "apache-2.0", "hash": -4026733841934629000, "line_mean": 25.5362318841, "line_max": 93, "alpha_frac": 0.555434189, "autogenerated": false, "ratio": 2.3656330749354004, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.34210672639354, "avg_score": null, "num_lines": null }
# 30 # l 7 class Solution: """ @param A : a list of integers @param target : an integer to be searched @return : a list of length 2, [index1, index2] """ def searchRange(self, A, target): # write your code here if A is None or A == []: return [-1, -1] start = 0 end = len(A) - 1 mid = start - (start - end) / 2 while start + 1 < end: if A[mid] > target: end = mid if A[mid] < target: start = mid if A[mid] == target: break mid = start - (start - end) / 2 else: if A[start] == target: if A[end] == target: return [start, end] if A[end] != target: return [start, start] else: if A[end] == target: return [end, end] else: return [-1, -1] new_end = new_start = mid # find start mid = start - (start - new_end) / 2 while start + 1 < new_end: if A[mid] >= target: new_end = mid if A[mid] < target: start = mid mid = start - (start - new_end) / 2 if A[start] != target: start = new_end # find end mid = new_start - (new_start - end) / 2 while new_start + 1 < end: if A[mid] <= target: new_start = mid else: end = mid mid = new_start - (new_start - end) / 2 if A[end] != target: end = new_start return [start, end]
{ "repo_name": "stonemary/lintcode_solutions", "path": "search-for-a-range/1.py", "copies": "1", "size": "1795", "license": "apache-2.0", "hash": -7719765717984588000, "line_mean": 27.046875, "line_max": 51, "alpha_frac": 0.3799442897, "autogenerated": false, "ratio": 4.1841491841491845, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5064093473849185, "avg_score": null, "num_lines": null }
"""31.0/.2015 PyOSE: Stacked exomoons with the Orbital Sampling Effect.""" import PyOSE import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib import rc from numpy import pi # Set stellar parameters StellarRadius = 696342. # km limb1 = 0.3643 limb2 = 0.2807 # Set planet parameters #PlanetRadius = 63700. # [km] PlanetRadius = 63750. PlanetAxis = 149597870.700 # [km] PlanetImpact = 0.4 # [0..1.x]; central transit is 0. PlanetPeriod = 365.25 # [days] # Set moon parameters MoonRadius = 17500. # [km] MoonAxis = 384000. # [km] MoonEccentricity = 0.7 # 0..1 MoonAscendingNode = 30.0 # degrees MoonLongitudePeriastron = 50.0 # degrees MoonInclination = 83.0 # 0..90 in degrees. 0 is the reference plain (no incl). # Set other parameters ShowPlanetMoonEclipses = True # True: the reality; False would be no mutual # eclipses. Of course unphysical, but useful for tests and comparisons) ShowPlanet = False # True: Planet+Moon; False: Moon only Noise = 0 # [ppm per minute]; 0 = no noise is added NumberOfTransits = 0 # How many (randomly chosen) transits are observed; # if 0 then all available are sampled (and their number is 10*Quality). PhaseToHighlight = 0.09 # If no highlighting is desired, choose value < 0 Quality = 250 # Radius of star in pixels --> size of numerical sampling grid NumberOfSamples = 250 # How many transits are to be sampled # 3D model plt.rc('text', usetex=True) plt.rc('font', family='serif') MyModelview = PyOSE.modelview( StellarRadius, limb1, limb2, PlanetRadius, PlanetImpact, MoonRadius, MoonAxis, MoonEccentricity, MoonAscendingNode, MoonLongitudePeriastron, MoonInclination, PhaseToHighlight, Quality) ax = plt.axes() ax.arrow(0, 0.4, 0.364, 0, head_width=0.0, head_length=0.0, fc='k', ec='k', zorder = 10) # direction #ax.arrow(0.364, 0.4, 0, -0.1, head_width=0.0, head_length=0.0, fc='k', ec='k') ax.arrow(0.356, 0.0, 0.0, 0.205, head_width=0.0, head_length=0.0, fc='k', ec='k', zorder = 10) # b_S ax.tick_params(direction='out') plt.tick_params(axis='both', which='major', labelsize=16) plt.annotate(r"direction", xy=(0.17, 0.42), size=16) plt.annotate(r"$b_S$", xy=(0.4, 0.05), size=16) #plt.annotate(r"$b_P$ ", xy=(-0.12, 0.1), size=16) plt.xlabel('distance [stellar radii]',fontsize=16) plt.ylabel('distance [stellar radii]',fontsize=16) ax.set_aspect('equal') plt.savefig("figure3-3dview.pdf", bbox_inches='tight') MyModelview.show() # River MyRiverKepler = PyOSE.river( StellarRadius, limb1, limb2, PlanetRadius, PlanetAxis, PlanetImpact, PlanetPeriod, MoonRadius, MoonAxis, MoonEccentricity, MoonAscendingNode, MoonLongitudePeriastron, MoonInclination, ShowPlanetMoonEclipses, Quality, NumberOfSamples, Noise) # River function returns pixel map. To plot time axis, call function timeaxis MyTime = PyOSE.timeaxis( PlanetPeriod, PlanetAxis, MoonRadius, StellarRadius, Quality) plt.imshow(MyRiverKepler, cmap=cm.gray, interpolation='none', extent=[MyTime[0], -MyTime[0], 1, 0]) plt.rc('text', usetex=True) plt.rc('font', family='serif') ax = plt.axes() ax.arrow(MyTime[0], PhaseToHighlight, 0.001, 0, head_width=0.1, head_length=0.1, fc='k', ec='k') ax.arrow(-0.5, PhaseToHighlight, 0.001, 0, head_width=0.05, head_length=0.05, fc='k', ec='k') plt.tick_params(axis='both', which='major', labelsize=16) plt.xlabel('time around planetary mid-transit [days]',fontsize=16) plt.ylabel('phase [0..1]',fontsize=16) plt.axis([-0.5, 0.5, 1, 0], fontsize=16) ax.tick_params(direction='out') plt.savefig("figure3-river.pdf", bbox_inches='tight') plt.show() # Curve MyNewCurve = PyOSE.curve(StellarRadius, limb1, limb2, PlanetRadius, PlanetAxis, PlanetImpact, PlanetPeriod, MoonRadius, MoonAxis, MoonEccentricity, MoonAscendingNode, MoonLongitudePeriastron, MoonInclination, ShowPlanetMoonEclipses, ShowPlanet, Quality, NumberOfSamples, Noise, NumberOfTransits) Time = MyNewCurve[0][1:] Flux = MyNewCurve[1][1:] plt.plot(Time, Flux, color = 'k') plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.tick_params(axis='both', which='major', labelsize=16) plt.xlabel('time around planetary mid-transit [days]',fontsize=16) plt.ylabel('normalized stellar brightness [$10^{-6}$]',fontsize=16) plt.axis([-0.5, +0.5, -700, 1], set_aspect='equal', fontsize=16) ax.tick_params(direction='out') plt.savefig("figure3-curve.pdf", bbox_inches='tight') plt.show() # Integral MyIntegral = PyOSE.integral(StellarRadius, limb1, limb2, PlanetRadius, PlanetAxis, PlanetImpact, PlanetPeriod, MoonRadius, MoonAxis, MoonEccentricity, MoonAscendingNode, MoonLongitudePeriastron, MoonInclination, ShowPlanetMoonEclipses, ShowPlanet, Quality, NumberOfSamples, Noise, NumberOfTransits) print 'Total occulted stellar flux:', MyIntegral, 'ppm hrs' #Save curve to Excel file #book = xlwt.Workbook() #sheet1 = book.add_sheet('sheet1') #for i in range(len(Time)): # sheet1.write(i,0,Time[i]) # sheet1.write(i,1,Flux[i]) #book.save("curve.xls") #book.save(TemporaryFile()) # Debug OSE duration. Use only with noiseless data and eccentricity = 0 v = 2 * pi * PlanetAxis / PlanetPeriod D = (2 * MoonAxis + 2 * MoonRadius + 2 * StellarRadius) / v print 'Moon transit duration (analytical):', D, '[days]' #Get first data point that contains negative flux value for i in range(len(Time)): if Flux[i] < 0: FirstDataPoint = Time[i] break #Get last data point that contains negative flux value for i in range(int(0.5 * len(Time)), len(Time)): if Flux[i] == 0: LastDataPoint = Time[i-1] break MoonTransitDurationFromData = LastDataPoint - FirstDataPoint print 'Moon transit duration (from data): ', \ MoonTransitDurationFromData, '[days]' ErrorInDuration = ((MoonTransitDurationFromData / D) - 1) * 100 print 'Error:', ErrorInDuration, '[%]. Note: Assumes eccentricity = impact = 0.'
{ "repo_name": "hippke/PyOSE", "path": "CreateFigure3.py", "copies": "1", "size": "5893", "license": "mit", "hash": -5215666870820811000, "line_mean": 34.7151515152, "line_max": 81, "alpha_frac": 0.7113524521, "autogenerated": false, "ratio": 2.7409302325581395, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8903281491398676, "avg_score": 0.009800238651892805, "num_lines": 165 }
# 31.05.2007, c # last revision: 25.02.2008 from __future__ import absolute_import from sfepy import data_dir filename_mesh = data_dir + '/meshes/2d/circle_sym.mesh' material_1 = { 'name' : 'coef', 'values' : { 'val' : 1.0, }, } material_2 = { 'name' : 'm', 'values' : { 'K' : [[1.0, 0.0], [0.0, 1.0]], }, } field_1 = { 'name' : 'a_harmonic_field', 'dtype' : 'real', 'shape' : 'scalar', 'region' : 'Omega', 'approx_order' : 2, } variable_1 = { 'name' : 't', 'kind' : 'unknown field', 'field' : 'a_harmonic_field', 'order' : 0, } variable_2 = { 'name' : 's', 'kind' : 'test field', 'field' : 'a_harmonic_field', 'dual' : 't', } region_1000 = { 'name' : 'Omega', 'select' : 'all', } region_1 = { 'name' : 'Centre', 'select' : 'vertices in (x < 1e-8) & (x > -1e-8) & (y < 1e-8) & (y > -1e-8)', 'kind' : 'vertex' } region_2 = { 'name' : 'Gamma', 'select' : 'vertices of surface', 'kind' : 'facet', } ebc_1 = { 'name' : 't_centre', 'region' : 'Centre', 'dofs' : {'t.0' : 1.0}, } ebc_2 = { 'name' : 't_gamma', 'region' : 'Gamma', 'dofs' : {'t.0' : 0.0}, } integral_1 = { 'name' : 'i', 'order' : 2, } equations = { 'Temperature' : """dw_laplace.i.Omega( coef.val, s, t ) = 0""" } solution = { 't' : '- 5.0 * (x - 0.5)', } solver_0 = { 'name' : 'ls', 'kind' : 'ls.scipy_direct', } solver_1 = { 'name' : 'newton', 'kind' : 'nls.newton', 'i_max' : 1, 'eps_a' : 1e-10, } from sfepy.base.testing import TestCommon ## # 31.05.2007, c class Test( TestCommon ): ## # 30.05.2007, c def from_conf( conf, options ): from sfepy.applications import solve_pde problem, state = solve_pde(conf, save_results=False) test = Test(problem=problem, state=state, conf=conf, options=options) return test from_conf = staticmethod( from_conf ) ## # 31.05.2007, c # 02.10.2007 def test_boundary_fluxes( self ): from sfepy.discrete import Material problem = self.problem region_names = ['Gamma'] variables = problem.get_variables() get_state = variables.get_state_part_view state = self.state.copy(deep=True) problem.time_update(ebcs={}, epbcs={}) ## problem.save_ebc( 'aux.vtk' ) state.apply_ebc() nls = problem.get_nls() aux = nls.fun(state()) field = variables['t'].field conf_m = problem.conf.get_item_by_name('materials', 'm') m = Material.from_conf(conf_m, problem.functions) ok = True for ii, region_name in enumerate( region_names ): flux_term = 'ev_surface_flux.1.%s( m.K, t )' % region_name val1 = problem.evaluate(flux_term, t=variables['t'], m=m) rvec = get_state( aux, 't', True ) reg = problem.domain.regions[region_name] nods = field.get_dofs_in_region(reg, merge=True) val2 = rvec[nods].sum() # Assume 1 dof per node. eps = 1e-2 ok = ok and ((abs( val1 - val2 ) < eps)) self.report( '%d. %s: |%e - %e| = %e < %.2e'\ % (ii, region_name, val1, val2, abs( val1 - val2 ), eps) ) return ok
{ "repo_name": "sfepy/sfepy", "path": "tests/test_laplace_unit_disk.py", "copies": "2", "size": "3356", "license": "bsd-3-clause", "hash": -5126609553571748000, "line_mean": 20.7922077922, "line_max": 81, "alpha_frac": 0.4988081049, "autogenerated": false, "ratio": 2.8013355592654423, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43001436641654417, "avg_score": null, "num_lines": null }
# 310. Minimum Height Trees # For an undirected graph with tree characteristics, we can choose any node as the root. # The result graph is then a rooted tree. Among all possible rooted trees, # those with minimum height are called minimum height trees (MHTs). # Given such a graph, write a function to find all the MHTs and return a list of their root labels. # # Format # The graph contains n nodes which are labeled from 0 to n - 1. # You will be given the number n and a list of undirected edges (each edge is a pair of labels). # # You can assume that no duplicate edges will appear in edges. # Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges. # # Example 1 : # # Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]] # # 0 # | # 1 # / \ # 2 3 # # Output: [1] # # Example 2 : # # Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]] # # 0 1 2 # \ | / # 3 # | # 4 # | # 5 # # Output: [3, 4] # # Note: # # According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.” # The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf. # class Solution: # https://leetcode.com/problems/minimum-height-trees/discuss/76055/Share-some-thoughts def findMinHeightTrees(self, n, edges): """ :type n: int :type edges: List[List[int]] :rtype: List[int] """ if n == 1: return [0] adj = [set() for _ in range(n)] for i, j in edges: adj[i].add(j) adj[j].add(i) leaves = [i for i in range(n) if len(adj[i]) == 1] while n > 2: n -= len(leaves) newLeaves = [] for i in leaves: j = adj[i].pop() adj[j].remove(i) if len(adj[j]) == 1: newLeaves.append(j) leaves = newLeaves return leaves print(Solution().findMinHeightTrees(4, [[1, 0], [1, 2], [1, 3]])) print(Solution().findMinHeightTrees(6, [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]))
{ "repo_name": "gengwg/leetcode", "path": "310_minimum_height_trees.py", "copies": "1", "size": "2312", "license": "apache-2.0", "hash": -7914796982830569000, "line_mean": 28.974025974, "line_max": 217, "alpha_frac": 0.5619584055, "autogenerated": false, "ratio": 3.1878453038674035, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42498037093674035, "avg_score": null, "num_lines": null }
# 3/13/2016 copy from tcor_030525.py # cd /Volumes/Transcend/SCAN_PROGRAM3 # python import os import sys import cv2 import numpy as np fscene=os.getcwd() os.chdir('../Utility') cwd=os.getcwd() sys.path.append(cwd) import rtc_util as ut import tcor_util as tc os.chdir(fscene) #---------------------------- # Initialize #---------------------------- print "#### Initialize ####" # parameter input fold=sys.argv[1] subf,tdec=fold.split('_') depth=float(subf[3:5])/100 nmax=int(subf[6:]) nstr=int(sys.argv[2]) nend=int(sys.argv[3]) dec=float(tdec)/10.0 model=subf[5] print 'depth:',depth print 'dec:',dec print 'nmax:',nmax print nstr,'-',nend f=open(fold +'/aparm.txt') text=f.readlines() f.close() el=tc.read_parm(text,'el',1)[0] az=tc.read_parm(text,'az',1)[0] nband=int(tc.read_parm(text,'nband',1)[0]) offset=tc.read_parm(text,'offset',nband) gain=tc.read_parm(text,'gain',nband) if fscene.find('OLI') == -1: penv=tc.read_parm(text,'penv',3) else: penv=tc.read_parm(text,'penv',4) depth=tc.read_parm(text,'depth',1)[0] wsize=tc.read_parm(text,'wsize',2) wsize=[int(x) for x in wsize] dec=tc.read_parm(text,'dec',1)[0] twid=tc.read_parm(text,'twid',15) cls_name=text[-1][:-1] fun_name=text[-2][:-1] ut.r_set0=float(text[-3][:-1]) ntau,nhigh,nsang=text[-4].split() ut.t_set=np.arange(int(ntau))*0.2 print cls_name print fun_name print ut.r_set0 print ut.t_set #------------------------------ # DEM Input and INC Calculation #------------------------------ # dem input and calc inc os.chdir('DATA') dem=cv2.imread('dem.tif',-1) dem[dem < 0.0]=0.0 #dem=tc.read_tif(fold+'/'+'dem.tif') tc.jmax,tc.imax=dem.shape inc=tc.incident(dem,el,az,30.0,30.0) slp=tc.slope(dem,30.0,30.0) #s_ang=np.load('sangle.npy') #veg=np.ones(tc.imax*tc.jmax,dtype=np.uint16).reshape(tc.jmax,tc.imax) #------------------------------ # Main Processing #------------------------------ if fscene.find('OLI') == -1: b_list=[1,2,3] else: b_list=[1,2,3,4] for band in b_list: print "#### Processing of Band"+str(band)+" ####" # tau-roh function for every pixel ut.cosb0=np.cos((90.0-el)*np.pi/180); ut.cosb0 print "--- function list ---" f_list=np.load(fun_name+'_'+str(band)+'.npy') cls=np.load(cls_name+'.npy') os.chdir('../'+fold) tau=depth*np.ones(tc.imax*tc.jmax).reshape(tc.jmax,tc.imax) eref=penv[0]*np.ones(tc.imax*tc.jmax).reshape(tc.jmax,tc.imax) for n in range(nstr): print "--- "+str(n)+ " iteration ---" t_ref=np.load('ref'+str(band)+str(n)+'.npy') temp=np.where(t_ref==1.0) cls[temp]=-1 eref=(1.0-dec)*eref+dec*tc.xmedian(t_ref,wsize[0]) t_taux=np.load('tau'+str(band)+str(n)+'.npy') temp=np.where(t_taux==1.8) cls[temp]=-1 tau=(1.0-dec)*tau+dec*tc.ymedian(t_taux,cls,wsize[1],twid[n]) temp=np.where(cls==-1) print 100.0*len(temp[0])/float(tc.imax*tc.jmax) cls=tc.mclass(256*inc,128*slp,256*256*t_ref,nmax) np.save('cls'+str(band),cls) iters=np.arange(nend-nstr)+nstr for iter in iters: print "--- "+str(iter)+ " iteration ---" print " > reflectance " ref=ut.mk_ref(tc.jmax,tc.imax,f_list,tau,eref) temp=np.where(ref==1.0) cls[temp]=-1 if model == 'M' : cref=tc.aestm(ref,cls) elif model == 'P' : cref=tc.aesth(ref,20,cls) else : cref=tc.aest(ref,cls) print " > aerosol " eref=(1.0-dec)*eref+dec*tc.xmedian(ref,wsize[0]) taux=ut.mk_tau(tc.jmax,tc.imax,f_list,eref,cref) temp=np.where(taux==1.8) cls[temp]=-1 print " > median filter " tau=(1.0-dec)*tau+dec*tc.ymedian(taux,cls,wsize[1],twid[iter]) temp=np.where(cls==-1) ; print 100.0*len(temp[0])/float(tc.imax*tc.jmax) np.save('tau'+str(band)+str(iter),taux) np.save('ref'+str(band)+str(iter),ref) #temp=np.where(cls == -1) #np.save('cls'+str(band)+str(iter)+'x',temp) os.chdir('../DATA') exit()
{ "repo_name": "y-iikura/AtmosphericCorrection", "path": "PostProcessing/post_reclss.py", "copies": "1", "size": "3811", "license": "mit", "hash": 8197105201693837000, "line_mean": 26.615942029, "line_max": 76, "alpha_frac": 0.607189714, "autogenerated": false, "ratio": 2.3308868501529054, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.34380765641529054, "avg_score": null, "num_lines": null }
# 313. Super Ugly Number # Write a program to find the nth super ugly number. # # Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k. # # Example: # # Input: n = 12, primes = [2,7,13,19] # Output: 32 # Explanation: [1,2,4,7,8,13,14,16,19,26,28,32] is the sequence of the first 12 # super ugly numbers given primes = [2,7,13,19] of size 4. # # Note: # # 1 is a super ugly number for any given primes. # The given numbers in primes are in ascending order. # 0 < k ≤ 100, 0 < n ≤ 106, 0 < primes[i] < 1000. # The nth super ugly number is guaranteed to fit in a 32-bit signed integer. # class Solution: # https://leetcode.com/problems/super-ugly-number/discuss/76291/Java-three-methods-23ms-36-ms-58ms(with-heap)-performance-explained # Basic idea is same as ugly number II, new ugly number is generated by multiplying a prime # with previous generated ugly number. One catch is need to remove duplicate def nthSuperUglyNumber(self, n, primes): """ :type n: int :type primes: List[int] :rtype: int """ import sys ugly = [0] * n idx = [0] * len(primes) ugly[0] = 1 for i in range(1, n): # find next # ugly[i] = sys.maxint # py2 ugly[i] = sys.maxsize for j in range(0, len(primes)): ugly[i] = min(ugly[i], primes[j] * ugly[idx[j]]) # slip duplicate for j in range(0, len(primes)): while primes[j] * ugly[idx[j]] <= ugly[i]: idx[j] += 1 return ugly[n - 1] sol = Solution() print(sol.nthSuperUglyNumber(12, [2,7,13,19]))
{ "repo_name": "gengwg/leetcode", "path": "313_super_ugly_number.py", "copies": "1", "size": "1740", "license": "apache-2.0", "hash": 3546217102709732400, "line_mean": 31.1481481481, "line_max": 135, "alpha_frac": 0.5852534562, "autogenerated": false, "ratio": 3.1853211009174314, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42705745571174314, "avg_score": null, "num_lines": null }
# 314. Binary Tree Vertical Order Traversal # Given a binary tree, return the vertical order traversal of its nodes' values. # (ie, from top to bottom, column by column). # If two nodes are in the same row and column, the order should be from left to right. # Examples: # # Given binary tree [3,9,20,null,null,15,7], # # 3 # /\ # / \ # 9 20 # /\ # / \ # 15 7 # # return its vertical order traversal as: # # [ # [9], # [3,15], # [20], # [7] # ] # # Given binary tree [3,9,8,4,0,1,7], # # 3 # /\ # / \ # 9 8 # /\ /\ # / \/ \ # 4 01 7 # # return its vertical order traversal as: # # [ # [4], # [9], # [3,0,1], # [8], # [7] # ] # # Given binary tree [3,9,8,4,0,1,7,null,null,null,2,5] (0's right child is 2 and 1's left child is 5), # # 3 # /\ # / \ # 9 8 # /\ /\ # / \/ \ # 4 01 7 # /\ # / \ # 5 2 # # return its vertical order traversal as: # # [ # [4], # [9,5], # [3,0,1], # [8,2], # [7] # ] # # https://www.geeksforgeeks.org/print-binary-tree-vertical-order/ # The idea is to traverse the tree once and get the minimum and maximum horizontal distance with respect to root. # For the tree shown above, minimum distance is -2 (for node with value 4) and maximum distance is 3 (For node with value 9). # Once we have maximum and minimum distances from root, we iterate for each vertical line at distance minimum to maximum from root, # and for each vertical line traverse the tree and print the nodes which lie on that vertical line. class Node: def __init__(self, key): self.data = key self.left = None self.right = None class Solution: # A utility function to find min and max distances with # respect to root def findMinMax(self, node, minimum, maximum, hd): if node is None: return if hd < minimum[0]: minimum[0] = hd elif hd > maximum[0]: maximum[0] = hd # recur for left and right subtrees self.findMinMax(node.left, minimum, maximum, hd-1) self.findMinMax(node.right, minimum, maximum, hd+1) # A utility function to print all nodes on a given line_no # hd is horizontal distance of current node with respect to root def printVerticalLine(self, node, line_no, hd): if node is None: return if hd == line_no: print node.data, self.printVerticalLine(node.left, line_no, hd-1) self.printVerticalLine(node.right, line_no, hd+1) def verticalOrder(self, root): minimum = [0] maximum = [0] self.findMinMax(root, minimum, maximum, 0) print minimum[0], maximum[0] for line_no in range(minimum[0], maximum[0]+1): self.printVerticalLine(root, line_no, 0) print if __name__ == '__main__': root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) root.right.left.right = Node(8) root.right.right.right = Node(9) print "Vertical order traversal is" Solution().verticalOrder(root)
{ "repo_name": "gengwg/leetcode", "path": "314_binary_tree_vertical_order_traversal.py", "copies": "1", "size": "3410", "license": "apache-2.0", "hash": 1164314591294910200, "line_mean": 23.8905109489, "line_max": 131, "alpha_frac": 0.5451612903, "autogenerated": false, "ratio": 3.178005591798695, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4223166882098695, "avg_score": null, "num_lines": null }
# 318. Maximum Product of Word Lengths # Given a string array words, find the maximum value of length(word[i]) * length(word[j]) # where the two words do not share common letters. # You may assume that each word will contain only lower case letters. # If no such two words exist, return 0. # Example 1: # Input: ["abcw","baz","foo","bar","xtfn","abcdef"] # Output: 16 # Explanation: The two words can be "abcw", "xtfn". # Example 2: # Input: ["a","ab","abc","d","cd","bcd","abcd"] # Output: 4 # Explanation: The two words can be "ab", "cd". # Example 3: # Input: ["a","aa","aaa","aaaa"] # Output: 0 # Explanation: No such pair of words. class Solution(object): # https://www.hrwhisper.me/leetcode-maximum-product-of-word-lengths/ # nums[i] |= 1 << (c - 'a') is using bit to represent if a char exists in the word. # For example, if a and b exists, it will be 11 (binary). # if((nums[i] & nums[j]) == 0 is to check if the two words have common chars. def maxProduct(self, words): """ :type words: List[str] :rtype: int """ n = len(words) elements = [0] * n for i, s in enumerate(words): for c in s: elements[i] |= 1 << (ord(c) - 97) ans = 0 for i in range(n): for j in range(i+1, n): if not (elements[i] & elements[j]): ans = max(ans, len(words[i]) * len(words[j])) return ans s = Solution() print(s.maxProduct(["abcw", "baz", "foo", "bar", "xtfn", "abcdef"]))
{ "repo_name": "gengwg/leetcode", "path": "318_Maximum_Product_of_Word_Lengths.py", "copies": "1", "size": "1557", "license": "apache-2.0", "hash": 8721006329104645000, "line_mean": 27.3090909091, "line_max": 90, "alpha_frac": 0.5651894669, "autogenerated": false, "ratio": 3.1905737704918034, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42557632373918036, "avg_score": null, "num_lines": null }
## 3.1 A First Individual import random from deap import base from deap import creator from deap import tools IND_SIZE = 5 creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0)) creator.create("Individual", list, fitness=creator.FitnessMin) toolbox = base.Toolbox() toolbox.register("attr_float", random.random) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=IND_SIZE) ind1 = toolbox.individual() print ind1 # [0.86..., 0.27..., 0.70..., 0.03..., 0.87...] print ind1.fitness.valid # False ## 3.2 Evaluation def evaluate(individual): # Do some hard computing on the individual a = sum(individual) b = len(individual) return a, 1. / b ind1.fitness.values = evaluate(ind1) print ind1.fitness.valid # True print ind1.fitness # (2.73, 0.2) ## 3.3 Mutation mutant = toolbox.clone(ind1) ind2, = tools.mutGaussian(mutant, mu=0.0, sigma=0.2, indpb=0.2) del mutant.fitness.values print ind2 is mutant # True print mutant is ind1 # False ## 3.4 Crossover child1, child2 = [toolbox.clone(ind) for ind in (ind1, ind2)] tools.cxBlend(child1, child2, 0.5) del child1.fitness.values del child2.fitness.values ## 3.5 Selection selected = tools.selBest([child1, child2], 2) print child1 in selected # True ## 3.5 Note LAMBDA = 10 toolbox.register("select", tools.selRandom) population = [ind1, ind2] * 10 selected = toolbox.select(population, LAMBDA) offspring = [toolbox.clone(ind) for ind in selected]
{ "repo_name": "DailyActie/Surrogate-Model", "path": "docs/code/tutorials/part_3/3_next_step.py", "copies": "2", "size": "1495", "license": "mit", "hash": 6748982779075502000, "line_mean": 24.3389830508, "line_max": 68, "alpha_frac": 0.7070234114, "autogenerated": false, "ratio": 2.8207547169811322, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4527778128381132, "avg_score": null, "num_lines": null }
31#Copyright (c) 2007-8, Playful Invention Company. #Copyright (c) 2008-11, Walter Bender #Copyright (c) 2011 Collabora Ltd. <http://www.collabora.co.uk/> #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. import gtk from math import pi import os import pango import cairo import pangocairo from tautils import get_path from taconstants import COLORDICT, TMP_SVG_PATH def wrap100(n): ''' A variant on mod... 101 -> 99; 199 -> 1 ''' n = int(n) n %= 200 if n > 99: n = 199 - n return n def calc_shade(c, s, invert=False): ''' Convert a color to the current shade (lightness/darkness). ''' # Assumes 16 bit input values if invert: if s == -1: return int(c) elif s < 0: return int(c / (1 + s)) return int((c - 65536 * s) / (1 - s)) else: if s < 0: return int(c * (1 + s)) return int(c + (65536 - c) * s) def calc_gray(c, g, invert=False): ''' Gray is a psuedo saturation calculation. ''' # Assumes 16 bit input values if g == 100: return int(c) if invert: if g == 0: return int(c) else: return int(((c * 100) - (32768 * (100 - g))) / g) else: return int(((c * g) + (32768 * (100 - g))) / 100) colors = {} DEGTOR = pi / 180. RTODEG = 180. / pi COLOR_TABLE = ( 0xFF0000, 0xFF0D00, 0xFF1A00, 0xFF2600, 0xFF3300, 0xFF4000, 0xFF4D00, 0xFF5900, 0xFF6600, 0xFF7300, 0xFF8000, 0xFF8C00, 0xFF9900, 0xFFA600, 0xFFB300, 0xFFBF00, 0xFFCC00, 0xFFD900, 0xFFE600, 0xFFF200, 0xFFFF00, 0xE6FF00, 0xCCFF00, 0xB3FF00, 0x99FF00, 0x80FF00, 0x66FF00, 0x4DFF00, 0x33FF00, 0x1AFF00, 0x00FF00, 0x00FF0D, 0x00FF1A, 0x00FF26, 0x00FF33, 0x00FF40, 0x00FF4D, 0x00FF59, 0x00FF66, 0x00FF73, 0x00FF80, 0x00FF8C, 0x00FF99, 0x00FFA6, 0x00FFB3, 0x00FFBF, 0x00FFCC, 0x00FFD9, 0x00FFE6, 0x00FFF2, 0x00FFFF, 0x00F2FF, 0x00E6FF, 0x00D9FF, 0x00CCFF, 0x00BFFF, 0x00B3FF, 0x00A6FF, 0x0099FF, 0x008CFF, 0x0080FF, 0x0073FF, 0x0066FF, 0x0059FF, 0x004DFF, 0x0040FF, 0x0033FF, 0x0026FF, 0x001AFF, 0x000DFF, 0x0000FF, 0x0D00FF, 0x1A00FF, 0x2600FF, 0x3300FF, 0x4000FF, 0x4D00FF, 0x5900FF, 0x6600FF, 0x7300FF, 0x8000FF, 0x8C00FF, 0x9900FF, 0xA600FF, 0xB300FF, 0xBF00FF, 0xCC00FF, 0xD900FF, 0xE600FF, 0xF200FF, 0xFF00FF, 0xFF00E6, 0xFF00CC, 0xFF00B3, 0xFF0099, 0xFF0080, 0xFF0066, 0xFF004D, 0xFF0033, 0xFF001A) class TurtleGraphics: ''' A class for the Turtle graphics canvas ''' def __init__(self, turtle_window, width, height): ''' Create a sprite to hold the canvas. ''' self.turtle_window = turtle_window self.width = width self.height = height self.textsize = 48 self._fgrgb = [255, 0, 0] self._bgrgb = [255, 248, 222] self._shade = 0 self._color = 0 self._gray = 100 self.cr_svg = None # Surface used for saving to SVG # Build a cairo.Context from a cairo.XlibSurface self.canvas = cairo.Context(self.turtle_window.turtle_canvas) cr = gtk.gdk.CairoContext(self.canvas) cr.set_line_cap(1) # Set the line cap to be round self.set_pen_size(5) def setup_svg_surface(self): ''' Set up a surface for saving to SVG ''' if self.turtle_window.running_sugar: svg_surface = cairo.SVGSurface( os.path.join(get_path(self.turtle_window.activity, 'instance'), 'output.svg'), self.width, self.height) else: svg_surface = cairo.SVGSurface( TMP_SVG_PATH, self.width, self.height) self.cr_svg = cairo.Context(svg_surface) self.cr_svg.set_line_cap(1) # Set the line cap to be round def fill_polygon(self, poly_points): ''' Draw the polygon... ''' def _fill_polygon(cr, poly_points): cr.new_path() for i, p in enumerate(poly_points): if p[0] == 'move': cr.move_to(p[1], p[2]) elif p[0] == 'rarc': cr.arc(p[1], p[2], p[3], p[4], p[5]) elif p[0] == 'larc': cr.arc_negative(p[1], p[2], p[3], p[4], p[5]) else: # line cr.line_to(p[1], p[2]) cr.close_path() cr.fill() _fill_polygon(self.canvas, poly_points) self.inval() if self.cr_svg is not None: _fill_polygon(self.cr_svg, poly_points) def clearscreen(self, share=True): '''Clear the canvas and reset most graphics attributes to defaults.''' def _clearscreen(cr): cr.move_to(0, 0) self._bgrgb = [255, 248, 222] cr.set_source_rgb(self._bgrgb[0] / 255., self._bgrgb[1] / 255., self._bgrgb[2] / 255.) cr.rectangle(0, 0, self.width * 2, self.height * 2) cr.fill() _clearscreen(self.canvas) self.inval() if self.cr_svg is not None: _clearscreen(self.cr_svg) def rarc(self, x, y, r, a, heading): ''' draw a clockwise arc ''' def _rarc(cr, x, y, r, a, h): cr.arc(x, y, r, (h - 180) * DEGTOR, (h - 180 + a) * DEGTOR) cr.stroke() _rarc(self.canvas, x, y, r, a, heading) self.inval() if self.cr_svg is not None: _rarc(self.cr_svg, x, y, r, a, heading) def larc(self, x, y, r, a, heading): ''' draw a counter-clockwise arc ''' def _larc(cr, x, y, r, a, h): cr.arc_negative(x, y, r, h * DEGTOR, (h - a) * DEGTOR) cr.stroke() _larc(self.canvas, x, y, r, a, heading) self.inval() if self.cr_svg is not None: _larc(self.cr_svg, x, y, r, a, heading) def set_pen_size(self, pen_size): ''' Set the pen size ''' self.canvas.set_line_width(pen_size) if self.cr_svg is not None: self.cr_svg.set_line_width(pen_size) def fillscreen(self, c, s): ''' Deprecated method: Fill screen with color/shade ''' self.fillscreen_with_gray(c, s, self._gray) def fillscreen_with_gray(self, color, shade, gray): ''' Fill screen with color/shade/gray and reset to defaults ''' save_rgb = self._fgrgb[:] # Special case for color blocks if color in COLORDICT: if COLORDICT[color][0] is None: self._shade = COLORDICT[color][1] else: self._color = COLORDICT[color][0] else: self._color = color if shade in COLORDICT: self._shade = COLORDICT[shade][1] else: self._shade = shade if gray in COLORDICT: self._gray = COLORDICT[gray][2] else: self._gray = gray if self._gray < 0: self._gray = 0 if self._gray > 100: self._gray = 100 self.set_fgcolor(shade=self._shade, gray=self._gray, color=self._color) self._bgrgb = self._fgrgb[:] def _fillscreen(cr, rgb, w, h): cr.set_source_rgb(rgb[0] / 255., rgb[1] / 255., rgb[2] / 255.) cr.rectangle(0, 0, w * 2, h * 2) cr.fill() _fillscreen(self.canvas, self._fgrgb, self.width, self.height) self.inval() if self.cr_svg is not None: _fillscreen(self.cr_svg, self._fgrgb, self.width, self.height) self._fgrgb = save_rgb[:] def set_fgcolor(self, shade=None, gray=None, color=None): ''' Set the foreground color ''' if shade is not None: self._shade = shade if gray is not None: self._gray = gray if color is not None: self._color = color sh = (wrap100(self._shade) - 50) / 50.0 rgb = COLOR_TABLE[wrap100(self._color)] r = (rgb >> 8) & 0xff00 r = calc_gray(r, self._gray) r = calc_shade(r, sh) g = rgb & 0xff00 g = calc_gray(g, self._gray) g = calc_shade(g, sh) b = (rgb << 8) & 0xff00 b = calc_gray(b, self._gray) b = calc_shade(b, sh) self._fgrgb = [r >> 8, g >> 8, b >> 8] def draw_surface(self, surface, x, y, w, h): ''' Draw a surface ''' def _draw_surface(cr, surface, x, y, w, h): cc = gtk.gdk.CairoContext(cr) cc.set_source_surface(surface, x, y) cc.rectangle(x, y, w, h) cc.fill() _draw_surface(self.canvas, surface, x, y, w, h) self.inval() if self.cr_svg is not None: _draw_surface(self.cr_svg, surface, x, y, w, h) def draw_pixbuf(self, pixbuf, a, b, x, y, w, h, heading): ''' Draw a pixbuf ''' def _draw_pixbuf(cr, pixbuf, a, b, x, y, w, h, heading): # Build a gtk.gdk.CairoContext from a cairo.Context to access # the set_source_pixbuf attribute. cc = gtk.gdk.CairoContext(cr) cc.save() # center the rotation on the center of the image cc.translate(x + w / 2., y + h / 2.) cc.rotate(heading * DEGTOR) cc.translate(-x - w / 2., -y - h / 2.) cc.set_source_pixbuf(pixbuf, x, y) cc.rectangle(x, y, w, h) cc.fill() cc.restore() _draw_pixbuf(self.canvas, pixbuf, a, b, x, y, w, h, heading) self.inval() if self.cr_svg is not None: _draw_pixbuf(self.cr_svg, pixbuf, a, b, x, y, w, h, heading) def draw_text(self, label, x, y, size, width, heading, scale): ''' Draw text ''' def _draw_text(cr, label, x, y, size, width, scale, heading, rgb): cc = pangocairo.CairoContext(cr) pl = cc.create_layout() fd = pango.FontDescription('Sans') fd.set_size(int(size * scale) * pango.SCALE) pl.set_font_description(fd) if isinstance(label, (str, unicode)): pl.set_text(label.replace('\0', ' ')) elif isinstance(label, (float, int)): pl.set_text(str(label)) else: pl.set_text(str(label)) pl.set_width(int(width) * pango.SCALE) cc.save() cc.translate(x, y) cc.rotate(heading * DEGTOR) cr.set_source_rgb(rgb[0] / 255., rgb[1] / 255., rgb[2] / 255.) cc.update_layout(pl) cc.show_layout(pl) cc.restore() width *= scale _draw_text(self.canvas, label, x, y, size, width, scale, heading, self._fgrgb) self.inval() if self.cr_svg is not None: # and self.pendown: _draw_text(self.cr_svg, label, x, y, size, width, scale, heading, self._fgrgb) def set_source_rgb(self): r = self._fgrgb[0] / 255. g = self._fgrgb[1] / 255. b = self._fgrgb[2] / 255. self.canvas.set_source_rgb(r, g, b) if self.cr_svg is not None: self.cr_svg.set_source_rgb(r, g, b) def draw_line(self, x1, y1, x2, y2): ''' Draw a line ''' def _draw_line(cr, x1, y1, x2, y2): cr.move_to(x1, y1) cr.line_to(x2, y2) cr.stroke() _draw_line(self.canvas, x1, y1, x2, y2) if self.cr_svg is not None: _draw_line(self.cr_svg, x1, y1, x2, y2) self.inval() def get_color_index(self, r, g, b, a=0): ''' Find the closest palette entry to the rgb triplet ''' if self._shade != 50 or self._gray != 100: r <<= 8 g <<= 8 b <<= 8 if self._shade != 50: sh = (wrap100(self._shade) - 50) / 50. r = calc_shade(r, sh, True) g = calc_shade(g, sh, True) b = calc_shade(b, sh, True) if self._gray != 100: r = calc_gray(r, self._gray, True) g = calc_gray(g, self._gray, True) b = calc_gray(b, self._gray, True) r >>= 8 g >>= 8 b >>= 8 min_distance = 1000000 closest_color = -1 for i, c in enumerate(COLOR_TABLE): cr = int((c & 0xff0000) >> 16) cg = int((c & 0x00ff00) >> 8) cb = int((c & 0x0000ff)) distance_squared = \ ((cr - r) ** 2) + ((cg - g) ** 2) + ((cb - b) ** 2) if distance_squared == 0: return i if distance_squared < min_distance: min_distance = distance_squared closest_color = i return closest_color def get_pixel(self, x, y): ''' Read the pixel at x, y ''' if self.turtle_window.interactive_mode: x = int(x) y = int(y) w = self.turtle_window.turtle_canvas.get_width() h = self.turtle_window.turtle_canvas.get_height() if x < 0 or x > (w - 1) or y < 0 or y > (h - 1): return(-1, -1, -1, -1) # create a new 1x1 cairo surface cs = cairo.ImageSurface(cairo.FORMAT_RGB24, 1, 1) cr = cairo.Context(cs) cr.set_source_surface(self.turtle_window.turtle_canvas, -x, -y) cr.rectangle(0, 0, 1, 1) cr.set_operator(cairo.OPERATOR_SOURCE) cr.fill() cs.flush() # ensure all writing is done pixels = cs.get_data() # Read the pixel return (ord(pixels[2]), ord(pixels[1]), ord(pixels[0]), 0) else: return(-1, -1, -1, -1) def svg_close(self): ''' Close current SVG graphic ''' self.cr_svg.show_page() def svg_reset(self): ''' Reset svg flags ''' self.cr_svg = None def inval(self): ''' Invalidate a region for gtk ''' self.turtle_window.inval_all()
{ "repo_name": "walterbender/AmazonasTortuga", "path": "TurtleArt/tacanvas.py", "copies": "2", "size": "14965", "license": "mit", "hash": -1116941944366732400, "line_mean": 34.4620853081, "line_max": 79, "alpha_frac": 0.5347143334, "autogenerated": false, "ratio": 3.171894870707927, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4706609204107927, "avg_score": null, "num_lines": null }
#31-Game #PythonLab import random as R def createDeck(): return [i for i in range(1,15)] deck = [ createDeck(),createDeck(), createDeck(),createDeck() ] Exit = False while not Exit: cards = [] mother = [] s = 0 choice = raw_input("Do you want to play? ") if choice == 'yes' or choice == 'y': firstCard = R.randint(1,14) secondCard = R.randint(1,14) cards.append(firstCard) cards.append(secondCard) mCard = R.randint(1,14) mSCard = R.randint(1,14) mother.append(firstCard) mother.append(secondCard) ms = sum(mother) s = sum(cards) print "Current sum: ",s while True: choice = raw_input("Another card?y/n: ") if choice == 'y': cards.append(R.randint(1,14)) s += sum(cards) if s > 31: print "You lost with ",s break else: print "Your current number: ",sum(cards) else: print "You hand: ",sum(cards) while True: mother.append(R.randint(1,14)) ms += sum(mother) if ms == 31 or (ms < 31 and (ms > s and s <= 31)): print "Mother Wins" print "Mother had ",ms break else: print "You Won!" print "Mother had ",ms break break else: print "There's the door!"
{ "repo_name": "georgezafiris/python-lab", "path": "cs2_thirtyone_game.py", "copies": "1", "size": "1729", "license": "mit", "hash": -8573842265179196000, "line_mean": 24.8059701493, "line_max": 70, "alpha_frac": 0.4117987276, "autogenerated": false, "ratio": 4.227383863080685, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5139182590680684, "avg_score": null, "num_lines": null }
# #3.1 # names=['zhang dongzhou','jiang miaoshan','zhang qiyang','zhang yifeng','zhang tong'] # def T(a): # return str(a.title()) # message=T(names[0])+"\tand\t"+T(names[-4])+"\tis\t"+T(names[2])+","+T(names[3])+"\tand\t"+T(names[-1])+"'s parents!" # print("It is the most important that\n",message) # #3.2[列表元素的添加,修改,删除(del,在删除这个元素后不在使用这个元素,则用del)] # families=['zhang dongzhou','jiang miaoshan','zhang yi','sssss'] # del families[-1]#(可以尝试将此行代码- # families[-1]='zhang yifeng'#- # families.append('zhang tong')# - # families.insert(2,'zhang qiyang')#-此行代码打乱顺序 会有什么变化) # print(families) # #pop删除[如果在删除一个列表元素之后还要用到这个元素则用pop()删除].remove()删除也可以和pop一样再次使用已删除的元素 # f=['a','b','c','d'] # popped_f=f.pop(0) # popped_F=f.pop()#pop后括号中不添加数字默认最后一位 # the_third_alphabet='c'#先将一个元素赋值给一个名称 # f.remove(the_third_alphabet)#用remove删除这个元素之后, # print(the_third_alphabet)#可以输出改名称来使该元素重现 # print(f) # print(popped_f) # print(popped_F) # print("The third alphabet is "+the_third_alphabet.upper()+".") # message="The\tfirst\tEnglish\talphabet\tis\t"+popped_f.upper()+",\nthe\tsecond\talphabet\tis\t"+f[0].upper()+",\nthe\tforth\tis\t"+popped_F.upper()+"." # print(message) # msg= 'sahdhsahdias,{},dhasidhiaoshdioas,{},dasdhasdhasi'.format('88888','0000') # print(msg) # #3.3
{ "repo_name": "Tiger-C/python", "path": "3/3.py", "copies": "1", "size": "1562", "license": "mit", "hash": -8494961630740106000, "line_mean": 29.8780487805, "line_max": 153, "alpha_frac": 0.6753554502, "autogenerated": false, "ratio": 1.8059914407988589, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.29813468909988594, "avg_score": null, "num_lines": null }
# 320. Generalized Abbreviation # Write a function to generate the generalized abbreviations of a word. # Example: # Given word = "word", return the following list (order does not matter): # ["word", "1ord", "w1rd", "wo1d", "wor1", "2rd", "w2d", "wo2", "1o1d", "1or1", "w1r1", "1o2", "2r1", "3d", "w3", "4"] class Solution(object): def generateAbbreviations(self, word): """ :type word: str :rtype: List[str] """ def dfs(word, i, cur, res): if i == len(word): res.append(''.join(cur)) return cur.append(word[i]) dfs(word, i+1, cur, res) cur.pop() if not cur or not cur[-1][-1].isdigit(): for l in range(1, len(word)-i+1): cur.append(str(l)) dfs(word, i+l, cur, res) cur.pop() res, cur = [], [] dfs(word, 0, cur, res) return res # https://github.com/jzysheep/LeetCode/blob/master/320.%20Generalized%20Abbreviation.cpp # https://gengwg.blogspot.com/2018/06/leetcode-320-generalized-abbreviation.html def generateAbbreviations(self, word): """ :type word: str :rtype: List[str] time O(2^n) pos: points to the current character cur: current string formed count: how many letters are abbreviated in the current streak At each step: Abbreviate the current letter Keep the current letter and summarize the abbreviation in the current streak """ def dfs(res, word, i, cur, count): if i == len(word): if count > 0: cur += str(count) res.append(cur) return # abbreviate this letter dfs(res, word, i+1, cur, count+1) # keeep this letter, summarize the abbreviation in the current streak if count > 0: cur += str(count) cur += word[i] dfs(res, word, i+1, cur, 0) res = [] dfs(res, word, 0, '', 0) return res print Solution().generateAbbreviations('word')
{ "repo_name": "gengwg/leetcode", "path": "320_generalized_abbreviation.py", "copies": "1", "size": "2200", "license": "apache-2.0", "hash": 2368717046090383000, "line_mean": 30.4285714286, "line_max": 118, "alpha_frac": 0.5181818182, "autogenerated": false, "ratio": 3.536977491961415, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9549937093440228, "avg_score": 0.0010444433442373994, "num_lines": 70 }
# 322. Coin Change # You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1. # Example 1: # coins = [1, 2, 5], amount = 11 # return 3 (11 = 5 + 5 + 1) # Example 2: # coins = [2], amount = 3 # return -1. # Note: # You may assume that you have an infinite number of each kind of coin. class Solution(object): # https://gengwg.blogspot.com/2018/03/leetcode-322-coin-change.html def coinChange(self, coins, amount): """ :type coins: List[int] :type amount: int :rtype: int """ dp = [0] + [-1] * amount for i in range(1, amount + 1): # set min to a large impossible value # note it must be inside the loop mincoins = i + 1 for j in [c for c in coins if c <= i]: # only possible if coin value smaller than i if dp[i - j] != -1: # if i-j is impossible, i is also impossible. mincoins = min(mincoins, dp[i - j] + 1) # if min coints is impossible set it to -1 dp[i] = -1 if mincoins == i + 1 else mincoins return dp[amount] if __name__ == '__main__': s = Solution() print s.coinChange([1], 1) # 1 print s.coinChange([1, 2, 5], 11) # 3 print s.coinChange([1, 5, 10, 25], 63) # 6 print s.coinChange([1, 5, 10, 21, 25], 63) # 3
{ "repo_name": "gengwg/leetcode", "path": "322_coin_change.py", "copies": "1", "size": "1535", "license": "apache-2.0", "hash": 5479912583752918000, "line_mean": 36.4390243902, "line_max": 264, "alpha_frac": 0.5732899023, "autogenerated": false, "ratio": 3.238396624472574, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9308499812622908, "avg_score": 0.0006373428299331751, "num_lines": 41 }
# 323 Number of Connected Components in an Undirected Graph # Given n nodes labeled from 0 to n-1 and a list of undirected edges (each edge is a pair of nodes), # write a function to find the number of connected components in an undirected graph. # # Example 1: # # 0 3 # | | # 1 --- 2 4 # # Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2. # # Example 2: # # 0 4 # | | # 1 --- 2 --- 3 # # Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1. # # Note: # You can assume that no duplicate edges will appear in edges. Since all edges are undirected, # [0, 1] is the same as [1, 0] and thus will not appear together in edges. class Solution: # https://all4win78.wordpress.com/2016/06/27/leetcode-323-number-of-connected-components-in-an-undirected-graph/ def countComponents(self, n, edges): count = n idx = [i for i in range(n)] #for i in range(n): # idx[i] = i for edge in edges: a = edge[0] b = edge[1] fa = idx[a] fb = idx[b] if fa != fb: for i in range(n): if idx[i] == fb: idx[i] = fa count -= 1 return count print(Solution().countComponents(5, [[0, 1], [1, 2], [3, 4]])) print(Solution().countComponents(5, [[0, 1], [1, 2], [2, 3], [3, 4]]))
{ "repo_name": "gengwg/leetcode", "path": "323_number_of_connected_components_in_an_undirected_graph.py", "copies": "1", "size": "1439", "license": "apache-2.0", "hash": 1300470461648253700, "line_mean": 29.6170212766, "line_max": 116, "alpha_frac": 0.510771369, "autogenerated": false, "ratio": 3.1766004415011038, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9178473670665728, "avg_score": 0.0017796279670750925, "num_lines": 47 }
# 324. Wiggle Sort II # Given an unsorted array nums, reorder it such that nums[0] < nums[1] > nums[2] < nums[3].... # # Example 1: # # Input: nums = [1, 5, 1, 1, 6, 4] # Output: One possible answer is [1, 4, 1, 5, 1, 6]. # # Example 2: # # Input: nums = [1, 3, 2, 2, 3, 1] # Output: One possible answer is [2, 3, 1, 3, 1, 2]. # # Note: # You may assume all input has valid answer. # # Follow Up: # Can you do it in O(n) time and/or in-place with O(1) extra space? class Solution(object): # 1. sort # 2. find mid point # 3. take one from end of two lists one by one def wiggleSort(self, nums): """ :type nums: List[int] :rtype: void Do not return anything, modify nums in-place instead. """ tmp = sorted(nums) s = (len(nums) + 1) >> 1 t = len(nums) for i in range(len(nums)): if i & 1 == 0: # even number s -= 1 nums[i] = tmp[s] else: # odd number t -= 1 nums[i] = tmp[t] sol = Solution() nums = [1, 5, 1, 1, 6, 4] sol.wiggleSort(nums) print(nums)
{ "repo_name": "gengwg/leetcode", "path": "324_wiggle_sort_ii.py", "copies": "1", "size": "1131", "license": "apache-2.0", "hash": 33473013736526304, "line_mean": 24.1333333333, "line_max": 94, "alpha_frac": 0.5128205128, "autogenerated": false, "ratio": 2.9149484536082473, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8920063428052554, "avg_score": 0.001541107671138631, "num_lines": 45 }
# 329-longest-increasing-path-in-matrix.py class Solution(object): def longestIncreasingPath_wa(self, matrix): # Wrong Answer, need 4 directions """ :type matrix: List[List[int]] :rtype: int """ if len(matrix) == 0: return 0 d1 = [[1] * len(matrix[0]) for _ in matrix] # Greater d2 = [[1] * len(matrix[0]) for _ in matrix] # Lesser maxLength = 1 for i in xrange(len(matrix)): for j in xrange(len(matrix[0])): if i == 0 and j == 0: continue if i == 0: if matrix[i][j] > matrix[i][j-1]: d1[i][j] = d1[i][j-1] + 1 elif matrix[i][j] < matrix[i][j-1]: d2[i][j] = d2[i][j-1] + 1 elif j == 0: if matrix[i][j] > matrix[i-1][j]: d1[i][j] = d1[i-1][j] + 1 elif matrix[i][j] < matrix[i-1][j]: d2[i][j] = d2[i-1][j] + 1 else: if matrix[i][j] > matrix[i-1][j]: d1[i][j] = d1[i-1][j] + 1 elif matrix[i][j] < matrix[i-1][j]: d2[i][j] = d2[i-1][j] + 1 if matrix[i][j] > matrix[i][j-1]: d1[i][j] = max(d1[i][j], d1[i][j-1]+1) elif matrix[i][j] < matrix[i][j-1]: d2[i][j] = max(d2[i][j], d2[i][j-1]+1) maxLength = max(maxLength, d1[i][j], d2[i][j]) return maxLength def longestIncreasingPath(self, matrix): def dfs(x, y): if not d[x][y]: # Only calculate once. curr = matrix[x][y] d[x][y] = 1 + max( dfs(x-1, y) if x > 0 and curr > matrix[x-1][y] else 0, dfs(x+1, y) if x < lx-1 and curr > matrix[x+1][y] else 0, dfs(x, y-1) if y > 0 and curr > matrix[x][y-1] else 0, dfs(x, y+1) if y < ly-1 and curr > matrix[x][y+1] else 0) return d[x][y] if not matrix or not matrix[0]: return 0 lx, ly = len(matrix), len(matrix[0]) d = [[0] * ly for _ in xrange(lx)] return max(dfs(x, y) for x in range(lx) for y in range(ly)) s = Solution() print s.longestIncreasingPath([[9,9,4],[6,6,8],[2,1,1]]) print s.longestIncreasingPath([[0,1,2,3,4,5,6,7,8,9],[19,18,17,16,15,14,13,12,11,10],[20,21,22,23,24,25,26,27,28,29],[39,38,37,36,35,34,33,32,31,30],[40,41,42,43,44,45,46,47,48,49],[59,58,57,56,55,54,53,52,51,50],[60,61,62,63,64,65,66,67,68,69],[79,78,77,76,75,74,73,72,71,70],[80,81,82,83,84,85,86,87,88,89],[99,98,97,96,95,94,93,92,91,90],[100,101,102,103,104,105,106,107,108,109],[119,118,117,116,115,114,113,112,111,110],[120,121,122,123,124,125,126,127,128,129],[139,138,137,136,135,134,133,132,131,130],[0,0,0,0,0,0,0,0,0,0]])
{ "repo_name": "daicang/Leetcode-solutions", "path": "329-longest-increasing-path-in-matrix.py", "copies": "1", "size": "2949", "license": "mit", "hash": -2003808647158119700, "line_mean": 48.15, "line_max": 532, "alpha_frac": 0.4513394371, "autogenerated": false, "ratio": 2.676043557168784, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8562043356222356, "avg_score": 0.01306792760928549, "num_lines": 60 }
"""32bit ARM/NEON assembly emitter. Used by code generators to produce ARM assembly with NEON simd code. Provides tools for easier register management: named register variable allocation/deallocation, and offers a more procedural/structured approach to generating assembly. TODO: right now neon emitter prints out assembly instructions immediately, it might be beneficial to keep the whole structure and emit the assembly after applying some optimizations like: instruction reordering or register reuse. TODO: NeonRegister object assigns explicit registers at allocation time. Similarily to emiting code, register mapping and reuse can be performed and optimized lazily. """ class Error(Exception): """Module level error.""" class RegisterAllocationError(Error): """Cannot alocate registers.""" class LaneError(Error): """Wrong lane number.""" class ArgumentError(Error): """Wrong argument.""" def _Low(register): assert register[0] == 'q' num = int(register[1:]) return 'd%d' % (num * 2) def _High(register): assert register[0] == 'q' num = int(register[1:]) return 'd%d' % (num * 2 + 1) def _ExpandQuads(registers): doubles = [] for register in registers: if register[0] == 'q': doubles.append(_Low(register)) doubles.append(_High(register)) else: doubles.append(register) return doubles def _MakeCompatible(op1, op2, op3): if op1[0] == 'd' or op2[0] == 'd' or op3[0] == 'd': if op1[0] == 'q': op1 = _Low(op1) if op2[0] == 'q': op2 = _Low(op2) if op3[0] == 'q': op3 = _Low(op3) return (op1, op2, op3) class _NeonRegisters32Bit(object): """Utility that keeps track of used 32bit ARM/NEON registers.""" def __init__(self): self.double = set() self.double_ever = set() self.general = set() self.general_ever = set() self.parameters = set() def MapParameter(self, parameter): self.parameters.add(parameter) return '%%[%s]' % parameter def DoubleRegister(self, min_val=0): for i in range(min_val, 32): if i not in self.double: self.double.add(i) self.double_ever.add(i) return 'd%d' % i raise RegisterAllocationError('Not enough double registers.') def QuadRegister(self, min_val=0): for i in range(min_val, 16): if ((i * 2) not in self.double) and ((i * 2 + 1) not in self.double): self.double.add(i * 2) self.double.add(i * 2 + 1) self.double_ever.add(i * 2) self.double_ever.add(i * 2 + 1) return 'q%d' % i raise RegisterAllocationError('Not enough quad registers.') def GeneralRegister(self): for i in range(0, 16): if i not in self.general: self.general.add(i) self.general_ever.add(i) return 'r%d' % i raise RegisterAllocationError('Not enough general registers.') def MappedParameters(self): return [x for x in self.parameters] def Clobbers(self): return (['r%d' % i for i in self.general_ever] + ['d%d' % i for i in self.DoubleClobbers()]) def DoubleClobbers(self): return sorted(self.double_ever) def FreeRegister(self, register): assert len(register) > 1 num = int(register[1:]) if register[0] == 'r': assert num in self.general self.general.remove(num) elif register[0] == 'd': assert num in self.double self.double.remove(num) elif register[0] == 'q': assert num * 2 in self.double assert num * 2 + 1 in self.double self.double.remove(num * 2) self.double.remove(num * 2 + 1) else: raise RegisterDeallocationError('Register not allocated: %s' % register) def FreeRegisters(self, registers): for register in registers: self.FreeRegister(register) class NeonEmitter(object): """Emits ARM/NEON assembly opcodes.""" def __init__(self, debug=False): self.ops = {} self.indent = '' self.debug = debug def PushIndent(self): self.indent += ' ' def PopIndent(self): self.indent = self.indent[:-2] def EmitIndented(self, what): print self.indent + what def PushOp(self, op): if op in self.ops.keys(): self.ops[op] += 1 else: self.ops[op] = 1 def ClearCounters(self): self.ops.clear() def EmitNewline(self): print '' def EmitPreprocessor1(self, op, param): print '#%s %s' % (op, param) def EmitPreprocessor(self, op): print '#%s' % op def EmitInclude(self, include): self.EmitPreprocessor1('include', include) def EmitCall1(self, function, param): self.EmitIndented('%s(%s);' % (function, param)) def EmitAssert(self, assert_expression): if self.debug: self.EmitCall1('assert', assert_expression) def EmitHeaderBegin(self, header_name, includes): self.EmitPreprocessor1('ifndef', (header_name + '_H_').upper()) self.EmitPreprocessor1('define', (header_name + '_H_').upper()) self.EmitNewline() if includes: for include in includes: self.EmitInclude(include) self.EmitNewline() def EmitHeaderEnd(self): self.EmitPreprocessor('endif') def EmitCode(self, code): self.EmitIndented('%s;' % code) def EmitFunctionBeginA(self, function_name, params, return_type): self.EmitIndented('%s %s(%s) {' % (return_type, function_name, ', '.join(['%s %s' % (t, n) for (t, n) in params]))) self.PushIndent() def EmitFunctionEnd(self): self.PopIndent() self.EmitIndented('}') def EmitAsmBegin(self): self.EmitIndented('asm volatile(') self.PushIndent() def EmitAsmMapping(self, elements, modifier): if elements: self.EmitIndented(': ' + ', '.join(['[%s] "%s"(%s)' % (d, modifier, d) for d in elements])) else: self.EmitIndented(':') def EmitClobbers(self, elements): if elements: self.EmitIndented(': ' + ', '.join(['"%s"' % c for c in elements])) else: self.EmitIndented(':') def EmitAsmEnd(self, outputs, inputs, clobbers): self.EmitAsmMapping(outputs, '+r') self.EmitAsmMapping(inputs, 'r') self.EmitClobbers(clobbers) self.PopIndent() self.EmitIndented(');') def EmitComment(self, comment): self.EmitIndented('// ' + comment) def EmitNumericalLabel(self, label): self.EmitIndented('"%d:"' % label) def EmitOp1(self, op, param1): self.PushOp(op) self.EmitIndented('"%s %s\\n"' % (op, param1)) def EmitOp2(self, op, param1, param2): self.PushOp(op) self.EmitIndented('"%s %s, %s\\n"' % (op, param1, param2)) def EmitOp3(self, op, param1, param2, param3): self.PushOp(op) self.EmitIndented('"%s %s, %s, %s\\n"' % (op, param1, param2, param3)) def EmitAdd(self, destination, source, param): self.EmitOp3('add', destination, source, param) def EmitSubs(self, destination, source, param): self.EmitOp3('subs', destination, source, param) def EmitSub(self, destination, source, param): self.EmitOp3('sub', destination, source, param) def EmitMul(self, destination, source, param): self.EmitOp3('mul', destination, source, param) def EmitMov(self, param1, param2): self.EmitOp2('mov', param1, param2) def EmitBeqBack(self, label): self.EmitOp1('beq', '%db' % label) def EmitBeqFront(self, label): self.EmitOp1('beq', '%df' % label) def EmitBneBack(self, label): self.EmitOp1('bne', '%db' % label) def EmitBneFront(self, label): self.EmitOp1('bne', '%df' % label) def EmitVAdd(self, add_type, destination, source_1, source_2): destination, source_1, source_2 = _MakeCompatible(destination, source_1, source_2) self.EmitOp3('vadd.%s' % add_type, destination, source_1, source_2) def EmitVAddw(self, add_type, destination, source_1, source_2): self.EmitOp3('vaddw.%s' % add_type, destination, source_1, source_2) def EmitVCvt(self, cvt_to, cvt_from, destination, source): self.EmitOp2('vcvt.%s.%s' % (cvt_to, cvt_from), destination, source) def EmitVDup(self, dup_type, destination, source): self.EmitOp2('vdup.%s' % dup_type, destination, source) def EmitVMov(self, mov_type, destination, source): self.EmitOp2('vmov.%s' % mov_type, destination, source) def EmitVQmovn(self, mov_type, destination, source): if destination[0] == 'q': destination = _Low(destination) self.EmitOp2('vqmovn.%s' % mov_type, destination, source) def EmitVQmovn2(self, mov_type, destination, source_1, source_2): self.EmitVQmovn(mov_type, _Low(destination), source_1) self.EmitVQmovn(mov_type, _High(destination), source_2) def EmitVQmovun(self, mov_type, destination, source): if destination[0] == 'q': destination = _Low(destination) self.EmitOp2('vqmovun.%s' % mov_type, destination, source) def EmitVMul(self, mul_type, destination, source_1, source_2): destination, source_1, source_2 = _MakeCompatible(destination, source_1, source_2) self.EmitOp3('vmul.%s' % mul_type, destination, source_1, source_2) def EmitVMulScalar(self, mul_type, destination, source_1, source_2): self.EmitOp3('vmul.%s' % mul_type, destination, source_1, source_2) def EmitVMull(self, mul_type, destination, source_1, source_2): self.EmitOp3('vmull.%s' % mul_type, destination, source_1, source_2) def EmitVPadd(self, add_type, destination, source_1, source_2): self.EmitOp3('vpadd.%s' % add_type, destination, source_1, source_2) def EmitVPaddl(self, add_type, destination, source): self.EmitOp2('vpaddl.%s' % add_type, destination, source) def EmitVPadal(self, add_type, destination, source): self.EmitOp2('vpadal.%s' % add_type, destination, source) def EmitVLoad(self, load_no, load_type, destination, source): self.EmitVLoadA(load_no, load_type, [destination], source) def EmitVLoadA(self, load_no, load_type, destinations, source): self.EmitOp2('vld%d.%d' % (load_no, load_type), '{%s}' % ', '.join(_ExpandQuads(destinations)), source) def EmitVLoadAE(self, load_type, elem_count, destinations, source, alignment=None): bits_to_load = load_type * elem_count destinations = _ExpandQuads(destinations) if len(destinations) * 64 < bits_to_load: raise ArgumentError('To few destinations: %d to load %d bits.' % (len(destinations), bits_to_load)) while bits_to_load > 0: if bits_to_load >= 256: self.EmitVLoadA(1, 32, destinations[:4], self.DereferenceIncrement(source, alignment)) bits_to_load -= 256 destinations = destinations[4:] elif bits_to_load >= 192: self.EmitVLoadA(1, 32, destinations[:3], self.DereferenceIncrement(source, alignment)) bits_to_load -= 192 destinations = destinations[3:] elif bits_to_load >= 128: self.EmitVLoadA(1, 32, destinations[:2], self.DereferenceIncrement(source, alignment)) bits_to_load -= 128 destinations = destinations[2:] elif bits_to_load >= 64: self.EmitVLoad(1, 32, destinations[0], self.DereferenceIncrement(source, alignment)) bits_to_load -= 64 destinations = destinations[1:] else: destination = destinations[0] if bits_to_load == 56: self.EmitVLoad(1, 32, self.Lane(32, destination, 0), self.DereferenceIncrement(source)) self.EmitVLoad(1, 16, self.Lane(16, destination, 2), self.DereferenceIncrement(source)) self.EmitVLoad(1, 8, self.Lane(8, destination, 6), self.DereferenceIncrement(source)) elif bits_to_load == 48: self.EmitVLoad(1, 32, self.Lane(32, destination, 0), self.DereferenceIncrement(source)) self.EmitVLoad(1, 16, self.Lane(16, destination, 2), self.DereferenceIncrement(source)) elif bits_to_load == 40: self.EmitVLoad(1, 32, self.Lane(32, destination, 0), self.DereferenceIncrement(source)) self.EmitVLoad(1, 8, self.Lane(8, destination, 4), self.DereferenceIncrement(source)) elif bits_to_load == 32: self.EmitVLoad(1, 32, self.Lane(32, destination, 0), self.DereferenceIncrement(source)) elif bits_to_load == 24: self.EmitVLoad(1, 16, self.Lane(16, destination, 0), self.DereferenceIncrement(source)) self.EmitVLoad(1, 8, self.Lane(8, destination, 2), self.DereferenceIncrement(source)) elif bits_to_load == 16: self.EmitVLoad(1, 16, self.Lane(16, destination, 0), self.DereferenceIncrement(source)) elif bits_to_load == 8: self.EmitVLoad(1, 8, self.Lane(8, destination, 0), self.DereferenceIncrement(source)) else: raise ArgumentError('Wrong leftover: %d' % bits_to_load) return def EmitVLoadE(self, load_type, count, destination, source, alignment=None): self.EmitVLoadAE(load_type, count, [destination], source, alignment) def EmitVLoadAllLanes(self, load_no, load_type, destination, source): destinations = [] if destination[0] == 'q': destinations.append(self.AllLanes(_Low(destination))) destinations.append(self.AllLanes(_High(destination))) else: destinations.append(self.AllLanes(destination)) self.EmitVLoadA(load_no, load_type, destinations, source) def EmitPld(self, load_address_register): self.EmitOp1('pld', '[%s]' % load_address_register) def EmitPldOffset(self, load_address_register, offset): self.EmitOp1('pld', '[%s, %s]' % (load_address_register, offset)) def EmitVShl(self, shift_type, destination, source, shift): self.EmitOp3('vshl.%s' % shift_type, destination, source, shift) def EmitVStore(self, store_no, store_type, source, destination): self.EmitVStoreA(store_no, store_type, [source], destination) def EmitVStoreA(self, store_no, store_type, sources, destination): self.EmitOp2('vst%d.%d' % (store_no, store_type), '{%s}' % ', '.join(_ExpandQuads(sources)), destination) def EmitVStoreAE(self, store_type, elem_count, sources, destination, alignment=None): bits_to_store = store_type * elem_count sources = _ExpandQuads(sources) if len(sources) * 64 < bits_to_store: raise ArgumentError('To few sources: %d to store %d bits.' % (len(sources), bits_to_store)) while bits_to_store > 0: if bits_to_store >= 256: self.EmitVStoreA(1, 32, sources[:4], self.DereferenceIncrement(destination, alignment)) bits_to_store -= 256 sources = sources[4:] elif bits_to_store >= 192: self.EmitVStoreA(1, 32, sources[:3], self.DereferenceIncrement(destination, alignment)) bits_to_store -= 192 sources = sources[3:] elif bits_to_store >= 128: self.EmitVStoreA(1, 32, sources[:2], self.DereferenceIncrement(destination, alignment)) bits_to_store -= 128 sources = sources[2:] elif bits_to_store >= 64: self.EmitVStore(1, 32, sources[0], self.DereferenceIncrement(destination, alignment)) bits_to_store -= 64 sources = sources[1:] else: source = sources[0] if bits_to_store == 56: self.EmitVStore(1, 32, self.Lane(32, source, 0), self.DereferenceIncrement(destination)) self.EmitVStore(1, 16, self.Lane(16, source, 2), self.DereferenceIncrement(destination)) self.EmitVStore(1, 8, self.Lane(8, source, 6), self.DereferenceIncrement(destination)) elif bits_to_store == 48: self.EmitVStore(1, 32, self.Lane(32, source, 0), self.DereferenceIncrement(destination)) self.EmitVStore(1, 16, self.Lane(16, source, 2), self.DereferenceIncrement(destination)) elif bits_to_store == 40: self.EmitVStore(1, 32, self.Lane(32, source, 0), self.DereferenceIncrement(destination)) self.EmitVStore(1, 8, self.Lane(8, source, 4), self.DereferenceIncrement(destination)) elif bits_to_store == 32: self.EmitVStore(1, 32, self.Lane(32, source, 0), self.DereferenceIncrement(destination)) elif bits_to_store == 24: self.EmitVStore(1, 16, self.Lane(16, source, 0), self.DereferenceIncrement(destination)) self.EmitVStore(1, 8, self.Lane(8, source, 2), self.DereferenceIncrement(destination)) elif bits_to_store == 16: self.EmitVStore(1, 16, self.Lane(16, source, 0), self.DereferenceIncrement(destination)) elif bits_to_store == 8: self.EmitVStore(1, 8, self.Lane(8, source, 0), self.DereferenceIncrement(destination)) else: raise ArgumentError('Wrong leftover: %d' % bits_to_store) return def EmitVStoreE(self, store_type, count, source, destination, alignment=None): self.EmitVStoreAE(store_type, count, [source], destination, alignment) def EmitVStoreOffset(self, store_no, store_type, source, destination, offset): self.EmitVStoreOffsetA(store_no, store_type, [source], destination, offset) def EmitVStoreOffsetA(self, store_no, store_type, sources, destination, offset): self.EmitOp3('vst%d.%d' % (store_no, store_type), '{%s}' % ', '.join(_ExpandQuads(sources)), destination, offset) def EmitVStoreOffsetE(self, store_type, count, source, destination, offset): """Emit assembly to store a number elements from the source registers.""" if store_type is not 32: raise ArgumentError('Unsupported store_type: %d' % store_type) sources = [] if source[0] == 'q': sources.append(_Low(source)) sources.append(_High(source)) if count * store_type > 128: raise ArgumentError('To many %dbit elements in a q register: %d' % (store_type, count)) else: sources.append(source) if count * store_type > 64: raise ArgumentError('To many %dbit elements in a d register: %d' % (store_type, count)) if count == 1: self.EmitVStoreOffset(1, store_type, self.Lane(store_type, sources[0], 0), self.Dereference(destination, None), offset) elif count == 2: self.EmitVStoreOffset(1, store_type, sources[0], self.Dereference(destination, None), offset) elif count == 3: self.EmitVStore(1, store_type, sources[0], self.DereferenceIncrement(destination, None)) self.EmitVStoreOffset(1, store_type, self.Lane(store_type, sources[1], 0), self.Dereference(destination, None), offset) self.EmitSub(destination, destination, self.ImmediateConstant(8)) elif count == 4: self.EmitVStoreOffsetA(1, store_type, sources, self.Dereference(destination, None), offset) else: raise ArgumentError('To many elements: %d' % count) def EmitVSumReduce(self, reduce_type, elem_count, reduce_count, destinations, sources): """Emit assembly for n-fold horizontal sum reduction.""" if reduce_type is not 'u32': raise ArgumentError('Unsupported reduce: %s' % reduce_type) sources = _ExpandQuads(sources) destinations = _ExpandQuads(destinations) if len(destinations) * 2 < elem_count: raise ArgumentError('Not enough space in destination: %d vs %d' % (len(destinations) * 2, elem_count)) if len(sources) * 2 != elem_count * reduce_count: raise ArgumentError('Wrong number of sources: %d vs %d' % (len(sources) * 2, elem_count * reduce_count)) if reduce_count <= 1: raise ArgumentError('Unsupported reduce_count: %d' % reduce_count) while reduce_count > 1: if len(sources) % 2 == 1: sources.append(sources[-1]) if reduce_count == 2: for i in range(len(destinations)): self.EmitVPadd(reduce_type, destinations[i], sources[2 * i], sources[2 * i + 1]) return else: sources_2 = [] for i in range(len(sources) / 2): self.EmitVPadd(reduce_type, sources[2 * i], sources[2 * i], sources[2 * i + 1]) sources_2.append(sources[2 * i]) reduce_count /= 2 sources = sources_2 def Dereference(self, value, alignment=None): if alignment: return '[%s:%d]' % (value, alignment) else: return '[%s]' % value def DereferenceIncrement(self, value, alignment=None): return '%s!' % self.Dereference(value, alignment) def ImmediateConstant(self, value): return '#%d' % value def AllLanes(self, value): return '%s[]' % value def Lane(self, bits, value, lane): """Get the proper n-bit lane from the given register.""" registers = [] if value[0] == 'q': registers.append(_Low(value)) registers.append(_High(value)) else: registers.append(value) elems_per_register = 64 / bits register = lane / elems_per_register lane %= elems_per_register return '%s[%d]' % (registers[register], lane) def CreateRegisters(self): return _NeonRegisters32Bit()
{ "repo_name": "shishaochen/TensorFlow-0.8-Win", "path": "third_party/gemmlowp/meta/generators/neon_emitter.py", "copies": "5", "size": "22203", "license": "apache-2.0", "hash": 8112293378004539000, "line_mean": 34.5817307692, "line_max": 80, "alpha_frac": 0.604152592, "autogenerated": false, "ratio": 3.454107031736154, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6558259623736155, "avg_score": null, "num_lines": null }
32""" Creates th WAVES.for mesh for a square domain under a point load. @autor Juan Gomez """ from __future__ import division import meshio import mesh_waves as msw import numpy as np import fileinput import glob #%% points, cells, point_data, cell_data , field_data = \ meshio.read("transparency.msh") # nodes_array = msw.node_writer(points , point_data) print len(nodes_array) # #%% nfin , els1_array = msw.ele_writer(cells , cell_data , 'quad9' , 11000 , 3 , 5 , 18 , 9 , 0 ) nini = nfin nfin , els2_array = msw.face_recognition(cells , cell_data , 10000 , 5000 , nini) nini = nfin nfin , els3_array = msw.boundary_writer(cells , cell_data , 7000 , 6 , nini) # #%% # np.savetxt("2nodes.txt", nodes_array, fmt=("%d", "%d", "%d" , "%d" , "%.4f", "%.4f")) np.savetxt("5eles.txt", els1_array , fmt="%d") np.savetxt("6eles.txt", els2_array , fmt="%d") np.savetxt("7eles.txt", els3_array , fmt="%d") file_list = glob.glob("*.txt") with open('transparency.inp', 'w') as file: input_lines = fileinput.input(file_list) file.writelines(input_lines)
{ "repo_name": "jgomezc1/WAVES", "path": "MODELS/MESHER/transparency_input.py", "copies": "1", "size": "1076", "license": "mit", "hash": 5631720392737371000, "line_mean": 26.6153846154, "line_max": 94, "alpha_frac": 0.6459107807, "autogenerated": false, "ratio": 2.5619047619047617, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8510438313700681, "avg_score": 0.039475445780816076, "num_lines": 39 }
#32 - Top Scores.py # You rank players in the game from highest to lowest score. So far you're using an algorithm that sorts in O(n\lg{n})O(nlgn) time, but players are complaining that their rankings aren't updated fast enough. You need a faster sorting algorithm. # Write a function that takes: # a list of unsorted_scores # the highest_possible_score in the game # and returns a sorted list of scores in less than O(nlog(n)) time. unsorted_scores = [5,20, 3, 89, 89, 99, 98] highest_possible_score = 100 def get_highest_scores(unsorted_scores, highest_possible_score): # define a dictionary scores_to_counts = {} for score in unsorted_scores: if score in scores_to_counts: scores_to_counts[score] += 1 else: scores_to_counts[score] = 1 sorted_scores = sorted(scores_to_counts, reverse = True) full_sorted_list = [] for score in sorted_scores: j = scores_to_counts[score] while j > 0: full_sorted_list.append(score) j = j - 1 return(full_sorted_list) print get_highest_scores(unsorted_scores, highest_possible_score)
{ "repo_name": "bruno615/one-off-analysis", "path": "Python/Inteview Cake/32 - Top Scores.py", "copies": "1", "size": "1084", "license": "mit", "hash": 6049270699746267000, "line_mean": 28.2972972973, "line_max": 244, "alpha_frac": 0.7029520295, "autogenerated": false, "ratio": 3.335384615384615, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4538336644884615, "avg_score": null, "num_lines": null }