id
stringlengths
2
115
README
stringlengths
0
977k
IlyaGusev/headline_cause
--- annotations_creators: - crowdsourced language_creators: - found language: - ru - en license: - cc0-1.0 multilinguality: - multilingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: - multi-class-classification pretty_name: HeadlineCause tags: - causal-reasoning --- # Dataset Card for HeadlineCause ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://github.com/IlyaGusev/HeadlineCause - **Paper:** [HeadlineCause: A Dataset of News Headlines for Detecting Causalities](https://arxiv.org/abs/2108.12626) - **Point of Contact:** [Ilya Gusev](ilya.gusev@phystech.edu) ### Dataset Summary A dataset for detecting implicit causal relations between pairs of news headlines. The dataset includes over 5000 headline pairs from English news and over 9000 headline pairs from Russian news labeled through crowdsourcing. The pairs vary from totally unrelated or belonging to the same general topic to the ones including causation and refutation relations. ### Usage Loading Russian Simple task: ```python from datasets import load_dataset dataset = load_dataset("IlyaGusev/headline_cause", "ru_simple") ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages This dataset consists of two parts, Russian and English. ## Dataset Structure ### Data Instances There is an URL, a title, and a timestamp for each of the two headlines in every data instance. A label is presented in three fields. 'Result' field is a textual label, 'label' field is a numeric label, and the 'agreement' field shows the majority vote agreement between annotators. Additional information includes instance ID and the presence of the link between two articles. ``` { 'left_url': 'https://www.kommersant.ru/doc/4347456', 'right_url': 'https://tass.ru/kosmos/8488527', 'left_title': 'NASA: информация об отказе сотрудничать с Россией по освоению Луны некорректна', 'right_title': 'NASA назвало некорректными сообщения о нежелании США включать РФ в соглашение по Луне', 'left_timestamp': datetime.datetime(2020, 5, 15, 19, 46, 20), 'right_timestamp': datetime.datetime(2020, 5, 15, 19, 21, 36), 'label': 0, 'result': 'not_cause', 'agreement': 1.0, 'id': 'ru_tg_101', 'has_link': True } ``` ### Data Splits | Dataset | Split | Number of Instances | |:---------|:---------|:---------| | ru_simple | train | 7,641 | | | validation | 955 | | | test | 957 | | en_simple | train | 4,332 | | | validation | 542 | | | test | 542 | | ru_full | train | 5,713 | | | validation | 715 | | | test | 715 | | en_full | train | 2,009 | | | validation | 251 | | | test | 252 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process Every candidate pair was annotated with [Yandex Toloka](https://toloka.ai/), a crowdsourcing platform. The task was to determine a relationship between two headlines, A and B. There were seven possible options: titles are almost the same, A causes B, B causes A, A refutes B, B refutes A, A linked with B in another way, A is not linked to B. An annotation guideline was in Russian for Russian news and in English for English news. Guidelines: * Russian: [link](https://ilyagusev.github.io/HeadlineCause/toloka/ru/instruction.html) * English: [link](https://ilyagusev.github.io/HeadlineCause/toloka/en/instruction.html) Ten workers annotated every pair. The total annotation budget was 870$, with the estimated hourly wage paid to participants of 45 cents. Annotation management was semi-automatic. Scripts are available in the [Github repository](https://github.com/IlyaGusev/HeadlineCause). #### Who are the annotators? Yandex Toloka workers were the annotators, 457 workers for the Russian part, 180 workers for the English part. ### Personal and Sensitive Information The dataset is not anonymized, so individuals' names can be found in the dataset. Information about the original author is not included in the dataset. No information about annotators is included except a platform worker ID. ## Considerations for Using the Data ### Social Impact of Dataset We do not see any direct malicious applications of our work. The data probably do not contain offensive content, as news agencies usually do not produce it, and a keyword search returned nothing. However, there are news documents in the dataset on several sensitive topics. ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators The data was collected by Ilya Gusev. ### Licensing Information [More Information Needed] ### Citation Information ```bibtex @misc{gusev2021headlinecause, title={HeadlineCause: A Dataset of News Headlines for Detecting Causalities}, author={Ilya Gusev and Alexey Tikhonov}, year={2021}, eprint={2108.12626}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions [N/A]
Intel/WEC-Eng
# WEC-Eng A large-scale dataset for cross-document event coreference extracted from English Wikipedia. </br> - **Repository (Code for generating WEC):** https://github.com/AlonEirew/extract-wec - **Paper:** https://aclanthology.org/2021.naacl-main.198/ ### Languages English ## Load Dataset You can read in WEC-Eng files as follows (using the **huggingface_hub** library): ```json from huggingface_hub import hf_hub_url, cached_download import json REPO_ID = "datasets/Intel/WEC-Eng" splits_files = ["Dev_Event_gold_mentions_validated.json", "Test_Event_gold_mentions_validated.json", "Train_Event_gold_mentions.json"] wec_eng = list() for split_file in splits_files: wec_eng.append(json.load(open(cached_download( hf_hub_url(REPO_ID, split_file)), "r"))) ``` ## Dataset Structure ### Data Splits - **Final version of the English CD event coreference dataset**<br> - Train - Train_Event_gold_mentions.json - Dev - Dev_Event_gold_mentions_validated.json - Test - Test_Event_gold_mentions_validated.json | | Train | Valid | Test | | ----- | ------ | ----- | ---- | | Clusters | 7,042 | 233 | 322 | | Event Mentions | 40,529 | 1250 | 1,893 | - **The non (within clusters) controlled version of the dataset (lexical diversity)**<br> - All (experimental) - All_Event_gold_mentions_unfiltered.json ### Data Instances ```json { "coref_chain": 2293469, "coref_link": "Family Values Tour 1998", "doc_id": "House of Pain", "mention_context": [ "From", "then", "on", ",", "the", "members", "continued", "their" ], "mention_head": "Tour", "mention_head_lemma": "Tour", "mention_head_pos": "PROPN", "mention_id": "108172", "mention_index": 1, "mention_ner": "UNK", "mention_type": 8, "predicted_coref_chain": null, "sent_id": 2, "tokens_number": [ 50, 51, 52, 53 ], "tokens_str": "Family Values Tour 1998", "topic_id": -1 } ``` ### Data Fields |Field|Value Type|Value| |---|:---:|---| |coref_chain|Numeric|Coreference chain/cluster ID| |coref_link|String|Coreference link wikipeida page/article title| |doc_id|String|Mention page/article title| |mention_context|List[String]|Tokenized mention paragraph (including mention)| |mention_head|String|Mention span head token| |mention_head_lemma|String|Mention span head token lemma| |mention_head_pos|String|Mention span head token POS| |mention_id|String|Mention id| |mention_index|Numeric|Mention index in json file| |mention_ner|String|Mention NER| |tokens_number|List[Numeric]|Mentions tokens ids within the context| |tokens_str|String|Mention span text| |topic_id|Ignore|Ignore| |mention_type|Ignore|Ignore| |predicted_coref_chain|Ignore|Ignore| |sent_id|Ignore|Ignore| ## Citation ``` @inproceedings{eirew-etal-2021-wec, title = "{WEC}: Deriving a Large-scale Cross-document Event Coreference dataset from {W}ikipedia", author = "Eirew, Alon and Cattan, Arie and Dagan, Ido", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.198", doi = "10.18653/v1/2021.naacl-main.198", pages = "2498--2510", abstract = "Cross-document event coreference resolution is a foundational task for NLP applications involving multi-text processing. However, existing corpora for this task are scarce and relatively small, while annotating only modest-size clusters of documents belonging to the same topic. To complement these resources and enhance future research, we present Wikipedia Event Coreference (WEC), an efficient methodology for gathering a large-scale dataset for cross-document event coreference from Wikipedia, where coreference links are not restricted within predefined topics. We apply this methodology to the English Wikipedia and extract our large-scale WEC-Eng dataset. Notably, our dataset creation method is generic and can be applied with relatively little effort to other Wikipedia languages. To set baseline results, we develop an algorithm that adapts components of state-of-the-art models for within-document coreference resolution to the cross-document setting. Our model is suitably efficient and outperforms previously published state-of-the-art results for the task.", } ``` ## License We provide the following data sets under a <a href="https://creativecommons.org/licenses/by-sa/3.0/deed.en_US">Creative Commons Attribution-ShareAlike 3.0 Unported License</a>. It is based on content extracted from Wikipedia that is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License ## Contact If you have any questions please create a Github issue at https://github.com/AlonEirew/extract-wec.
JIsanan/war-ceb-wikipedia
annotations_creators: [] language_creators: - found languages: - war, ceb licenses: [] multilinguality: - multilingual pretty_name: Waray Cebu Wikipedia size_categories: - unknown source_datasets: [] task_categories: [] task_ids: []
Jean-Baptiste/wikiner_fr
--- language: - fr dataset_info: features: - name: id dtype: int64 - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': LOC '2': PER '3': MISC '4': ORG splits: - name: test num_bytes: 5954708 num_examples: 13410 - name: train num_bytes: 54305659 num_examples: 120682 download_size: 12147768 dataset_size: 60260367 train-eval-index: - config: Jean-Baptiste--wikiner_fr task: token-classification task_id: entity_extraction splits: eval_split: test col_mapping: tokens: tokens ner_tags: tags --- # Dataset Card for "wikiner_fr" Dataset Description: - **Homepage:** https://metatext.io/datasets/wikiner - **Repository:** - **Paper:** https://www.sciencedirect.com/science/article/pii/S0004370212000276?via%3Dihub - **Leaderboard:** - **Point of Contact:**
Jeska/autonlp-data-vaccinfaq
--- task_categories: - text-classification --- # AutoNLP Dataset for project: vaccinfaq ## Table of content - [Dataset Description](#dataset-description) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) ## Dataset Descritpion This dataset has been automatically processed by AutoNLP for project vaccinfaq. ### Languages The BCP-47 code for the dataset's language is unk. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "target": 6, "text": "What je naam?" }, { "target": 6, "text": "Hoe heet je?" } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "target": "ClassLabel(num_classes=181, names=['chitchat_ask_bye', 'chitchat_ask_hi', 'chitchat_ask_hi_de', 'chitchat_ask_hi_en', 'chitchat_ask_hi_fr', 'chitchat_ask_hoe_gaat_het', 'chitchat_ask_name', 'chitchat_ask_thanks', 'faq_ask_aantal_gevaccineerd', 'faq_ask_aantal_gevaccineerd_wereldwijd', 'faq_ask_afspraak_afzeggen', 'faq_ask_afspraak_gemist', 'faq_ask_algemeen_info', 'faq_ask_allergisch_na_vaccinatie', 'faq_ask_alternatieve_medicatie', 'faq_ask_andere_vaccins', 'faq_ask_astrazeneca', 'faq_ask_astrazeneca_bij_ouderen', 'faq_ask_astrazeneca_bloedklonters', 'faq_ask_astrazeneca_prik_2', 'faq_ask_attest', 'faq_ask_autisme_na_vaccinatie', 'faq_ask_auto-immuun', 'faq_ask_begeleiding', 'faq_ask_beschermen', 'faq_ask_beschermingsduur', 'faq_ask_beschermingspercentage', 'faq_ask_besmetten_na_vaccin', 'faq_ask_betalen_voor_vaccin', 'faq_ask_betrouwbaar', 'faq_ask_betrouwbare_bronnen', 'faq_ask_bijsluiter', 'faq_ask_bijwerking_AZ', 'faq_ask_bijwerking_JJ', 'faq_ask_bijwerking_algemeen', 'faq_ask_bijwerking_lange_termijn', 'faq_ask_bijwerking_moderna', 'faq_ask_bijwerking_pfizer', 'faq_ask_bloed_geven', 'faq_ask_borstvoeding', 'faq_ask_buitenlander', 'faq_ask_chronisch_ziek', 'faq_ask_combi', 'faq_ask_complottheorie', 'faq_ask_complottheorie_5G', 'faq_ask_complottheorie_Bill_Gates', 'faq_ask_contra_ind', 'faq_ask_corona_is_griep', 'faq_ask_corona_vermijden', 'faq_ask_covid_door_vaccin', 'faq_ask_curevac', 'faq_ask_derde_prik', 'faq_ask_dna', 'faq_ask_duur_vaccinatie', 'faq_ask_eerst_weigeren', 'faq_ask_eerste_prik_buitenland', 'faq_ask_essentieel_beroep', 'faq_ask_experimenteel', 'faq_ask_foetus', 'faq_ask_geen_antwoord', 'faq_ask_geen_risicopatient', 'faq_ask_geen_uitnodiging', 'faq_ask_gestockeerd', 'faq_ask_gezondheidstoestand_gekend', 'faq_ask_gif_in_vaccin', 'faq_ask_goedkeuring', 'faq_ask_groepsimmuniteit', 'faq_ask_hartspierontsteking', 'faq_ask_hersenziekte', 'faq_ask_hoe_dodelijk', 'faq_ask_hoe_weet_overheid', 'faq_ask_hoeveel_dosissen', 'faq_ask_huisarts', 'faq_ask_huisdieren', 'faq_ask_iedereen', 'faq_ask_in_vaccin', 'faq_ask_info_vaccins', 'faq_ask_janssen', 'faq_ask_janssen_een_dosis', 'faq_ask_jong_en_gezond', 'faq_ask_keuze', 'faq_ask_keuze_vaccinatiecentrum', 'faq_ask_kinderen', 'faq_ask_kosjer_halal', 'faq_ask_leveringen', 'faq_ask_logistiek', 'faq_ask_logistiek_veilig', 'faq_ask_magnetisch', 'faq_ask_man_vrouw_verschillen', 'faq_ask_mantelzorger', 'faq_ask_maximaal_een_dosis', 'faq_ask_meer_bijwerkingen_tweede_dosis', 'faq_ask_minder_mobiel', 'faq_ask_moderna', 'faq_ask_mondmasker', 'faq_ask_motiveren', 'faq_ask_mrna_vs_andere_vaccins', 'faq_ask_naaldangst', 'faq_ask_nadelen', 'faq_ask_nuchter', 'faq_ask_ontwikkeling', 'faq_ask_onvruchtbaar', 'faq_ask_oplopen_vaccinatie', 'faq_ask_pfizer', 'faq_ask_phishing', 'faq_ask_pijnstiller', 'faq_ask_planning_eerstelijnszorg', 'faq_ask_planning_ouderen', 'faq_ask_positieve_test_na_vaccin', 'faq_ask_prioritaire_gropen', 'faq_ask_privacy', 'faq_ask_probleem_registratie', 'faq_ask_problemen_uitnodiging', 'faq_ask_quarantaine', 'faq_ask_qvax_probleem', 'faq_ask_reproductiegetal', 'faq_ask_risicopatient', 'faq_ask_risicopatient_diabetes', 'faq_ask_risicopatient_hartvaat', 'faq_ask_risicopatient_immuunziekte', 'faq_ask_risicopatient_kanker', 'faq_ask_risicopatient_luchtwegaandoening', 'faq_ask_smaakverlies', 'faq_ask_snel_ontwikkeld', 'faq_ask_sneller_aan_de_beurt', 'faq_ask_taxi', 'faq_ask_test_voor_vaccin', 'faq_ask_testen', 'faq_ask_tijd_tot_tweede_dosis', 'faq_ask_timing_andere_vaccins', 'faq_ask_trage_start', 'faq_ask_tweede_dosis_afspraak', 'faq_ask_tweede_dosis_vervroegen', 'faq_ask_twijfel_bijwerkingen', 'faq_ask_twijfel_effectiviteit', 'faq_ask_twijfel_inhoud', 'faq_ask_twijfel_ivm_vaccinatie', 'faq_ask_twijfel_noodzaak', 'faq_ask_twijfel_ontwikkeling', 'faq_ask_twijfel_praktisch', 'faq_ask_twijfel_vaccins_zelf', 'faq_ask_twijfel_vrijheid', 'faq_ask_uit_flacon', 'faq_ask_uitnodiging_afspraak_kwijt', 'faq_ask_uitnodiging_na_vaccinatie', 'faq_ask_vaccin_doorgeven', 'faq_ask_vaccin_immuunsysteem', 'faq_ask_vaccin_variant', 'faq_ask_vaccinatiecentrum', 'faq_ask_vaccine_covid_gehad', 'faq_ask_vaccine_covid_gehad_effect', 'faq_ask_vakantie', 'faq_ask_veelgestelde_vragen', 'faq_ask_vegan', 'faq_ask_verplicht', 'faq_ask_verschillen', 'faq_ask_vrijwillig_Janssen', 'faq_ask_vrijwilliger', 'faq_ask_waar_en_wanneer', 'faq_ask_waarom', 'faq_ask_waarom_niet_verplicht', 'faq_ask_waarom_ouderen_eerst', 'faq_ask_waarom_twee_prikken', 'faq_ask_waarom_twijfel', 'faq_ask_wanneer_algemene_bevolking', 'faq_ask_wanneer_iedereen_gevaccineerd', 'faq_ask_wat_is_corona', 'faq_ask_wat_is_rna', 'faq_ask_wat_is_vaccin', 'faq_ask_wat_na_vaccinatie', 'faq_ask_welk_vaccin_krijg_ik', 'faq_ask_welke_vaccin', 'faq_ask_wie_ben_ik', 'faq_ask_wie_doet_inenting', 'faq_ask_wie_is_risicopatient', 'faq_ask_wie_nu', 'faq_ask_wilsonbekwaam', 'faq_ask_zwanger', 'get_started', 'nlu_fallback', 'test'], names_file=None, id=None)", "text": "Value(dtype='string', id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 11651 | | valid | 1267 |
KBLab/overlim
--- annotations_creators: - other language_creators: - other language: - sv - da - nb license: - cc-by-4.0 multilinguality: - translation size_categories: - unknown source_datasets: - extended|glue - extended|super_glue task_categories: - text-classification task_ids: - natural-language-inference - semantic-similarity-classification - sentiment-classification - text-scoring pretty_name: overlim tags: - qa-nli - paraphrase-identification --- # Dataset Card for OverLim ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary The _OverLim_ dataset contains some of the GLUE and SuperGLUE tasks automatically translated to Swedish, Danish, and Norwegian (bokmål), using the OpusMT models for MarianMT. The translation quality was not manually checked and may thus be faulty. Results on these datasets should thus be interpreted carefully. If you want to have an easy script to train and evaluate your models have a look [here](https://github.com/kb-labb/overlim_eval) ### Supported Tasks and Leaderboards The data contains the following tasks from GLUE and SuperGLUE: - GLUE - `mnli` - `mrpc` - `qnli` - `qqp` - `rte` - `sst` - `stsb` - `wnli` - SuperGLUE - `boolq` - `cb` - `copa` - `rte` ### Languages - Swedish - Danish - Norwegian (bokmål) ## Dataset Structure ### Data Instances Every task has their own set of features, but all share an `idx` and `label`. - GLUE - `mnli` - `premise`, `hypothesis` - `mrpc` - `text_a`, `text_b` - `qnli` - `premise`, `hypothesis` - `qqp` - `text_a`, `text_b` - `sst` - `text` - `stsb` - `text_a`, `text_b` - `wnli` - `premise`, `hypothesis` - SuperGLUE - `boolq` - `question`, `passage` - `cb` - `premise`, `hypothesis` - `copa` - `premise`, `choice1`, `choice2`, `question` - `rte` - `premise`, `hypothesis` ### Data Splits In order to have test-split, we repurpose the original validation-split as test-split, and split the training-split into a new training- and validation-split, with an 80-20 distribution. ## Dataset Creation For more information about the individual tasks see (https://gluebenchmark.com) and (https://super.gluebenchmark.com). ### Curation Rationale Training non-English models is easy, but there is a lack of evaluation datasets to compare their actual performance. ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@kb-labb](https://github.com/kb-labb) for adding this dataset.
KBLab/sucx3_ner
--- annotations_creators: - expert-generated language_creators: - other language: - sv license: - cc-by-4.0 multilinguality: - monolingual size_categories: - unknown source_datasets: - original task_categories: - other task_ids: - named-entity-recognition - part-of-speech pretty_name: sucx3_ner tags: - structure-prediction --- # Dataset Card for _SUCX 3.0 - NER_ ## Dataset Description - **Homepage:** [https://spraakbanken.gu.se/en/resources/suc3](https://spraakbanken.gu.se/en/resources/suc3) - **Repository:** [https://github.com/kb-labb/sucx3_ner](https://github.com/kb-labb/sucx3_ner) - **Paper:** [SUC 2.0 manual](http://spraakbanken.gu.se/parole/Docs/SUC2.0-manual.pdf) - **Point of Contact:** ### Dataset Summary The dataset is a conversion of the venerable SUC 3.0 dataset into the huggingface ecosystem. The original dataset does not contain an official train-dev-test split, which is introduced here; the tag distribution for the NER tags between the three splits is mostly the same. The dataset has three different types of tagsets: manually annotated POS, manually annotated NER, and automatically annotated NER. For the automatically annotated NER tags, only sentences were chosen, where the automatic and manual annotations would match (with their respective categories). Additionally we provide remixes of the same data with some or all sentences being lowercased. ### Supported Tasks and Leaderboards - Part-of-Speech tagging - Named-Entity-Recognition ### Languages Swedish ## Dataset Structure ### Data Remixes - `original_tags` contain the manual NER annotations - `lower` the whole dataset uncased - `lower_mix` some of the dataset uncased - `lower_both` every instance both cased and uncased - `simple_tags` contain the automatic NER annotations - `lower` the whole dataset uncased - `lower_mix` some of the dataset uncased - `lower_both` every instance both cased and uncased ### Data Instances For each instance, there is an `id`, with an optional `_lower` suffix to mark that it has been modified, a `tokens` list of strings containing tokens, a `pos_tags` list of strings containing POS-tags, and a `ner_tags` list of strings containing NER-tags. ```json {"id": "e24d782c-e2475603_lower", "tokens": ["-", "dels", "har", "vi", "inget", "index", "att", "g\u00e5", "efter", ",", "vi", "kr\u00e4ver", "allts\u00e5", "ers\u00e4ttning", "i", "40-talets", "penningv\u00e4rde", "."], "pos_tags": ["MID", "KN", "VB", "PN", "DT", "NN", "IE", "VB", "PP", "MID", "PN", "VB", "AB", "NN", "PP", "NN", "NN", "MAD"], "ner_tags": ["O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O"]} ``` ### Data Fields - `id`: a string containing the sentence-id - `tokens`: a list of strings containing the sentence's tokens - `pos_tags`: a list of strings containing the tokens' POS annotations - `ner_tags`: a list of strings containing the tokens' NER annotations ### Data Splits | Dataset Split | Size Percentage of Total Dataset Size | Number of Instances for the Original Tags | | ------------- | ------------------------------------- | ----------------------------------------- | | train | 64% | 46\,026 | | dev | 16% | 11\,506 | | test | 20% | 14\,383 | The `simple_tags` remix has fewer instances due to the requirement to match tags. ## Dataset Creation See the [original webpage](https://spraakbanken.gu.se/en/resources/suc3) ## Additional Information ### Dataset Curators [Språkbanken](sb-info@svenska.gu.se) ### Licensing Information CC BY 4.0 (attribution) ### Citation Information [SUC 2.0 manual](http://spraakbanken.gu.se/parole/Docs/SUC2.0-manual.pdf) ### Contributions Thanks to [@robinqrtz](https://github.com/robinqrtz) for adding this dataset.
KETI-AIR/klue
<!-- Copyright 2021 san kim Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Korean Language Understanding Evaluation (KLUE)
KETI-AIR/korquad
<!-- Copyright 2021 san kim Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # KorQuAD
KETI-AIR/nikl
<!-- Copyright 2021 san kim Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # National Institute of Korean Language(NIKL) Corpus
KTH/martin
hello
KTH/nst
--- license: cc0-1.0 task_categories: - automatic-speech-recognition language: - sv --- # NST Swedish ASR Database (16 kHz) – reorganized This database was created by Nordic Language Technology for the development of automatic speech recognition and dictation in Swedish. In this updated version, the organization of the data have been altered to improve the usefulness of the database. In the original version of the material, the files were organized in a specific folder structure where the folder names were meaningful. However, the file names were not meaningful, and there were also cases of files with identical names in different folders. This proved to be impractical, since users had to keep the original folder structure in order to use the data. The files have been renamed, such that the file names are unique and meaningful regardless of the folder structure. The original metadata files were in spl format. These have been converted to JSON format. The converted metadata files are also anonymized and the text encoding has been converted from ANSI to UTF-8. See the documentation file for a full description of the data and the changes made to the database. The data is originally hosted on the National Library of Norway website. https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-56/ Hosting on Hugging Face datasets for convenience. Licence CC0 1.0 Universal (CC0 1.0) Public Domain Dedication
KTH/speechdat
# Speechdat Speechdat dataset ## Loading the dataset You need to download the dataset from another folder. We assume the wav files are located inside a /wav folder inside speechdat. ``` from datasets import load_dataset speechdat = load_dataset("./speechdat", split="train", data_dir="./speechdat/wav") ```
KTH/waxholm
# THE WAXHOLM CORPUS The Waxholm corpus was collected in 1993 - 1994 at the department of Speech, Hearing and Music (TMH), KTH. It is described in several publications. Two are included in this archive. Publication of work using the Waxholm corpus should refer to either of these. More information on the Waxholm project can be found on the web page http://www.speech.kth.se/waxholm/waxholm2.html ## FILE INFORMATION ### SAMPLED FILES The .smp files contain the speech signal. The identity of the speaker is coded by the two digits after 'fp20' in the file name. The smp file format was developed by TMH. Recording information is stored in a header as a 1024 byte text string. The speech signal in the Waxholm corpus is quantised into 16 bits, 2 bytes/sample and the byte order is big-endian (most significant byte first). The sampling frequency is 16 kHz. Here is an example of a file header: ``` >head -9 fp2001.1.01.smp file=samp ; file type is sampled signal msb=first ; byte order sftot=16000 ; sampling frequency in Hz nchans=1 ; number of channels preemph=no ; no signal preemphasis during recording view=-10,10 born=/o/libhex/ad_da.h25 range=-12303,11168 ; amplitude range = ``` ### LABEL FILES Normally, each sample file has a label file. This has been produced in four steps. The first step was to manually enter the orthographic text by listening. From this text a sequence of phonemes were produced by a rule-based text-to-phoneme module. The endpoint time positions of the phonemes were computed by an automatic alignment program, followed by manual correction. Some of the speech files have no label file, due to different problems in this process. These files should not be used for training or testing. The labels are stored in .mix files. Below is an example of the beginning of a mix file. ``` >head -20 fp2001.1.01.smp.mix CORRECTED: OK jesper Jesper Hogberg Thu Jun 22 13:26:26 EET 1995 AUTOLABEL: tony A. de Serpa-Leitao Mon Nov 15 13:44:30 MET 1993 Waxholm dialog. /u/wax/data/scenes/fp2001/fp2001.1.01.smp TEXT: jag vill }ka h{rifr}n . J'A:+ V'IL+ "]:K'A H'[3RIFR]N. CT 1 Labels: J'A: V'IL "]:KkA H'[3RIFR]N . FR 11219 #J >pm #J >w jag 0.701 sec FR 12565 $'A: >pm $'A:+ 0.785 sec FR 13189 #V >pm #V >w vill 0.824 sec FR 13895 $'I >pm $'I 0.868 sec FR 14700 $L >pm $L+ 0.919 sec ``` The orthographic text representation is after the label 'TEXT:' CT is the frame length in number of sample points. (Always = 1 in Waxholm mix files) Each line starting with 'FR' contains up to three labels at the phonetic, phonemic and word levels. FR is immediately followed by the frame number of the start of the segment. Since CT = 1, FR is the sample index in the file. If a frame duration is = 0, the label has been judged as a non-pronounced segment and deleted by the manual labeller, although it was generated by the text-to-phoneme or the automatic alignment modules. Column 3 in an FR line is the phonetic label. Initial '#' indicates word initial position. '$' indicates other positions. The optional label '>pm' precedes the phonemic label, which has been generated by the text-to-phoneme rules. Often, the phonemic and the phonetic labels are identical. The optional '>w' is followed by the identity of the word beginning at this frame. The phoneme symbol inventory is mainly STA, used by the KTH/TMH RULSYS system. It is specified in the included file 'sampa_latex_se.pdf'. Some extra labels at the phonetic level have been defined. The most common ones are: | | | |---------------------|------------------------------------------| |sm | lip or tongue opening | |p: | silent interval | |pa | aspirative sound from breathing | |kl | click sound | |v | short vocalic segment between consonants | |upper case of stops | occlusion | |lower case of stops | burst | The label 'Labels:' before the FR lines is a text string assembled from the FR labels The mix files in this archive correspond to those with the name extension .mix.new in the original corpus. Besides a few other corrections, the main difference is that burst segments after retroflex stops were not labelled as retroflex in the original .mix files ( d, t after 2D and 2T have been changed to 2d and 2t). ## REFERENCES Bertenstam, J., Blomberg, M., Carlson, R., Elenius, K., Granström, B., Gustafson, J., Hunnicutt, S., Högberg, J., Lindell, R., Neovius, L., Nord, L., de Serpa-Leitao, A., and Ström, N.,(1995). "Spoken dialogue data collected in the WAXHOLM project" STL-QPSR 1/1995, KTH/TMH, Stockholm. Bertenstam, J., Blomberg, M., Carlson, R., Elenius, K., Granström, B., Gustafson, J., Hunnicutt, S., Högberg, J., Lindell, R., Neovius, L., de Serpa-Leitao, A., Nord, L., & Ström, N. (1995). The Waxholm application data-base. In Pardo, J.M. (Ed.), Proceedings Eurospeech 1995 (pp. 833-836). Madrid. Comments and error reports are welcome. These should be sent to: Mats Blomberg <matsb@speech.kth.se> or Kjell Elenius <kjell@speech.kth.se>
Karavet/ARPA-Armenian-Paraphrase-Corpus
--- language: - hy task_categories: [paraphrase, paraphrase detection] multilinguality: [monolingual] task_ids: [paraphrase, paraphrase detection] --- ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Dataset Structure](#dataset-structure) - [Dataset Evaluation](#dataset-evaluation) - [Additional Information](#additional-information) ## Dataset Description We provide sentential paraphrase detection train, test datasets as well as BERT-based models for the Armenian language. ### Dataset Summary The sentences in the dataset are taken from [Hetq](https://hetq.am/) and [Panarmenian](http://www.panarmenian.net/) news articles. To generate paraphrase for the sentences, we used back translation from Armenian to English. We repeated the step twice, after which the generated paraphrases were manually reviewed. Invalid sentences were filtered out, while the rest were labelled as either paraphrase, near paraphrase or non-paraphrase. Test examples were reviewed by 3 different annotators. In addition, to increase the number of non-paraphrase pairs, we padded the dataset with automatically generated negative examples, including pairs of consecutive sentences and random pairs. ## Dataset Structure Each row consists of 2 sentences and their label. This sentences were labelled as either paraphrase, near paraphrase or non-paraphrase (with 1, 0, -1 labels respectively). The sentences are divided into train and test sets. |Number of examples|Total|Paraphrase|Non-paraphrase (near paraphrase)| |:-- | :---: | :---: | :---: | |Train | 4233 |1339 |2683 (211) | |Test | 1682 |1021 |448 (213) | ### Dataset Evaluation We finetuned Multilingual BERT on several training sets, including the proposed ARPA dataset, and evaluated their performance on our test set. During training and evaluation, near paraphrase and non-paraphrase pairs were combined into one class. The results are provided below: |BERT Model | Train set | F1 | Acc. | |:-- | :---: | :---: | :---: | |Multilingual BERT | ARPA train set| 84.27| 78.06| |Multilingual BERT | Paraphraser.ru train set machine-translated into Armenian | 83.81 | 77.09 | |Multilingual BERT | MRPC train set machine-translated into Armenian | 80.07 | 69.87 | |Multilingual BERT | All of the above combined | 84 |77.6 | #### Additional Information The model trained on ARPA is available for use, and can be downloaded using this [link](https://drive.google.com/uc?id=14owW5kkZ1JiNa6P-676e-QIj8m8i5e_8). For more details about the models and dataset construction, refer to the [paper](https://arxiv.org/pdf/2009.12615).
Karavet/ILUR-news-text-classification-corpus
--- language: - hy task_categories: [news-classification, text-classification] multilinguality: [monolingual] task_ids: [news-classification, text-classification] license: - apache-2.0 --- ## Table of Contents - [Table of Contents](#table-of-contents) - [News Texts Dataset](#news-texts-dataset) ## News Texts Dataset We release a dataset of over 12000 news articles from [iLur.am](http://www.ilur.am/), categorized into 7 classes: sport, politics, weather, economy, accidents, art, society. The articles are split into train (2242k tokens) and test sets (425k tokens). For more details, refer to the [paper](https://arxiv.org/ftp/arxiv/papers/1906/1906.03134.pdf).
Karavet/pioNER-Armenian-Named-Entity
--- language: [hy] task_categories: [named-entity-recognition] multilinguality: [monolingual] task_ids: [named-entity-recognition] license: [apache-2.0] --- ## Table of Contents - [Table of Contents](#table-of-contents) - [pioNER - named entity annotated datasets](#pioNER---named-entity-annotated-datasets) - [Silver-standard dataset](#silver-standard-dataset) - [Gold-standard dataset](#gold-standard-dataset) # pioNER - named entity annotated datasets pioNER corpus provides gold-standard and automatically generated named-entity datasets for the Armenian language. Alongside the datasets, we release 50-, 100-, 200-, and 300-dimensional GloVe word embeddings trained on a collection of Armenian texts from Wikipedia, news, blogs, and encyclopedia. ## Silver-standard dataset The generated corpus is automatically extracted and annotated using Armenian Wikipedia. We used a modification of [Nothman et al](https://www.researchgate.net/publication/256660013_Learning_multilingual_named_entity_recognition_from_Wikipedia) and [Sysoev and Andrianov](http://www.dialog-21.ru/media/3433/sysoevaaandrianovia.pdf) approaches to create this corpus. This approach uses links between Wikipedia articles to extract fragments of named-entity annotated texts. The corpus is split into train and development sets. *Table 1. Statistics for pioNER train, development and test sets* | dataset | #tokens | #sents | annotation | texts' source | |-------------|:--------:|:-----:|:--------:|:-----:| | train | 130719 | 5964 | automatic | Wikipedia | | dev | 32528 | 1491 | automatic | Wikipedia | | test | 53606 | 2529 | manual | iLur.am | ## Gold-standard dataset This dataset is a collection of over 250 news articles from iLur.am with manual named-entity annotation. It includes sentences from political, sports, local and world news, and is comparable in size with the test sets of other languages (Table 2). We aim it to serve as a benchmark for future named entity recognition systems designed for the Armenian language. The dataset contains annotations for 3 popular named entity classes: people (PER), organizations (ORG), and locations (LOC), and is released in CoNLL03 format with IOB tagging scheme. During annotation, we generally relied on categories and [guidelines assembled by BBN](https://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html) Technologies for TREC 2002 question answering track Tokens and sentences were segmented according to the UD standards for the Armenian language from [ArmTreebank project](http://armtreebank.yerevann.com/tokenization/process/). *Table 2. Comparison of pioNER gold-standard test set with test sets for English, Russian, Spanish and German* | test dataset | #tokens | #LOC | #ORG | #PER | |-------------|:--------:|:-----:|:--------:|:-----:| | Armenian pioNER | 53606 | 1312 | 1338 | 1274 | | Russian factRuEval-2016 | 59382 | 1239 | 1595 | 1353 | | German CoNLL03 | 51943 | 1035 | 773 | 1195 | | Spanish CoNLL02 | 51533 | 1084 | 1400 | 735 | | English CoNLL03 | 46453 | 1668 | 1661 | 1671 |
Khanoooo/autonlp-data-Corona
It's all about Corona
khondoker/SentNoB
--- language: - bn task_categories: - text-classification pretty_name: SentNoB task_ids: - sentiment-classification annotations_creators: - expert-generated language_creators: - expert-generated paperswithcode_id: sentnob --- # Dataset Card for "SentNoB" ### Dataset Summary Social Media User Comments' Sentiment Analysis Dataset. Each user comments are labeled with either positive (1), negative (2), or neutral (0). ### Citation Information ``` @inproceedings{islam2021sentnob, title={SentNoB: A Dataset for Analysing Sentiment on Noisy Bangla Texts}, author={Islam, Khondoker Ittehadul and Kar, Sudipta and Islam, Md Saiful and Amin, Mohammad Ruhul}, booktitle={Findings of the Association for Computational Linguistics: EMNLP 2021}, pages={3265--3271}, year={2021} } ```
Kili/plastic_in_river
--- size_categories: - 1K<n<10K source_datasets: - original task_categories: - object-detection task_ids: [] pretty_name: Plastic in river tags: - other-object-detection --- # Plastic in river This dataset is an export of the annotated assets from the [Kili's Community Challenge - Plastic in River dataset](https://kili-technology.com/blog/kili-s-community-challenge-plastic-in-river-dataset). The Hugging Face dataset will be updated every day during the challenge with the latest annotations.
Kira-Asimov/gender_clinical_trial
# Gender classification from Clinical Trial Public Data
LIAMF-USP/arc-retrieval-c4
hello
Langame/starter
--- annotations_creators: - expert-generated language: - en language_creators: - expert-generated license: - mit multilinguality: - monolingual pretty_name: '' size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-generation task_ids: [] --- # Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
Langame/waiting-messages
# Langame/waiting-messages Generated using OpenAI GPT-3 davinci-codex based on random initial samples written by a human. ⚠️ The dataset has not been de-duplicated, so there may be duplicates. ⚠️
Language/Fren
--- annotations_creators: - no-annotation language_creators: - found languages: - fr licenses: - apache-2.0 multilinguity: -monolingual size_categories: - 110K<n<1M source_datasets: - original task_categories: - conditional-text-generation task_ids: - summarization ---
LeoCordoba/CC-NEWS-ES-titles
--- annotations_creators: - no-annotation language_creators: - found language: - es license: - mit multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - cc-news task_categories: - summarization - text-generation task_ids: [] tags: - conditional-text-generation --- # Dataset Card for CC-NEWS-ES-titles ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** [CC-NEWS-ES-titles dataset repository](https://huggingface.co/datasets/LeoCordoba/CC-NEWS-ES-titles) - **Paper:** - **Leaderboard:** - **Point of Contact:** [Leonardo Ignacio Córdoba](https://www.linkedin.com/in/leonardo-ignacio-c%C3%B3rdoba/) ### Dataset Summary CC-NEWS-ES-titles is a Spanish-language dataset for news titles generation. The text and titles comes from 2019 and 2020 CC-NEWS data (which is part of Common Crawl). It contains 402.310 pairs of news title and body, splitted in : - Train: 370.125 - Eval: 16.092 - Test: 16.092 ### Supported Tasks and Leaderboards - `text-classification`, `sentiment-classification`: The dataset can be used to train a model for news title generation which can be considered a subset of abstractive summarization. ### Languages The text is in Spanish. The BCP-47 code for Spanish is es. ## Dataset Structure ### Data Instances Each data instance contains the following features: _text_ and _output_text_. - _text_ is the body of the news. - _output_text_ is the title of the news. An example from the CC-NEWS-ES-titles train set looks like the following: ``` {'text': 'Hoy en el Boletín Oficial también se publicó la disposición para universidades, institutos universitarios y de educación superior de todas las jurisdicciones, a las que recomienda que "adecúen las condiciones en que se desarrolla la actividad académica presencial en el marco de la emergencia conforme con las recomendaciones del Ministerio de Salud", según lo publicado por la agencia ', 'output_text': 'Coronavirus: "Seguimos educando", la plataforma online para que los chicos estudien en cuarentena'} ``` ### Data Fields - 'text': a string containing the body of the news. - 'output_text': a string containing the title of the news. ### Data Splits The CC-NEWS-ES-titles dataset has 3 splits: _train_, _validation_, and _test_. The splits contain disjoint sets of news. | Dataset Split | Number of Instances in Split | | ------------- | ---------------------------- | | Train | 370.125 | | Eval | 16.092 | | Test | 16.092 | ## Dataset Creation ### Curation Rationale [N/A] ### Source Data #### Initial Data Collection and Normalization TODO #### Who are the source language producers? Common Crawl: https://commoncrawl.org/ ### Annotations The dataset does not contain any additional annotations. #### Annotation process [N/A] #### Who are the annotators? [N/A] ### Personal and Sensitive Information [N/A] ## Considerations for Using the Data ### Social Impact of Dataset Abstractive summarization is a complex task and Spanish is a underrepresented language in the NLP domain. As a consequence, adding a Spanish resource may help others to improve their research and educational activities. ### Discussion of Biases [N/A] ### Other Known Limitations [N/A] ## Additional Information ### Dataset Curators This dataset is maintained by [Leonardo Ignacio Córdoba](https://www.linkedin.com/in/leonardo-ignacio-c%C3%B3rdoba/) and was built with the help of [María Gaska](https://www.linkedin.com/in/mfgaska/). ### Licensing Information [N/A] ### Citation Information TODO ### Contributions [N/A]
LeoCordoba/CC-NEWS-ES
--- annotations_creators: - no-annotation language_creators: - found language: - es license: - mit multilinguality: - monolingual size_categories: - n<1K - 1K<n<10K - 10K<n<100K - 100K<n<1M - 1M<n<10M source_datasets: - cc-news task_categories: - summarization - text-generation task_ids: [] tags: - conditional-text-generation --- # Dataset Card for CC-NEWS-ES ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** [CC-NEWS-ES dataset repository](https://huggingface.co/datasets/LeoCordoba/CC-NEWS-ES) - **Paper:** - **Leaderboard:** - **Point of Contact:** [Leonardo Ignacio Córdoba](https://www.linkedin.com/in/leonardo-ignacio-c%C3%B3rdoba/) ### Dataset Summary CC-NEWS-ES is a Spanish-language dataset of news. The corpus was generated by extracting the Spanish articles from CC-NEWS (news index of Common Crawl) of 2019. For doing that FastText model was used for language prediction. It contains a total of 7,473,286 texts and 1,812,009,283 words distributed as follows: |domain | texts | words | |:----|-----------------:|-----------------:| | ar | 532703 | 1.45127e+08 | | bo | 29557 | 7.28996e+06 | | br | 107 | 14207 | | cl | 116661 | 3.34633e+07 | | co | 78662 | 1.92649e+07 | | com | 3650950 | 8.44094e+08 | | cr | 16542 | 3.82075e+06 | | es |1838790 | 4.82943e+08 | | gt | 4833 | 838121 | | hn | 36559 | 5.49933e+06 | | mx | 724908 | 1.62198e+08 | | ni | 40643 | 1.08501e+07 | | pa | 18447 | 4.34724e+06 | | pe | 230962 | 3.52123e+07 | | pr | 7756 | 1.6633e+06 | | py | 30651 | 2.08077e+07 | | sv | 454 | 353145 | | uy | 80948 | 2.72562e+07 | | ve | 33148 | 6.96578e+06 | ### Supported Tasks and Leaderboards TODO - ### Languages The text is in Spanish. The BCP-47 code for Spanish is es. ## Dataset Structure ### Data Instances Each data instance contains the following features: ... - country: top level domain, usually refers to a country (except in the case of .com). - text: body of the news - id: internal id An example from CC-NEWS-ES looks like the following: ``` {'country': 'py', 'text': '“La que asumió es una mujer que está en línea de sucesión. La policía, ni los militares están en el Palacio, lo que ella dijo fue que no se podía seguir reprimiendo al pueblo", manifestó este jueves el senador colorado, Enrique Riera, sobre la asunción presidencial en Bolivia de la senadora opositora, Jeanine Áñez,Riera agregó que Evo Morales el que "escapó y abandonó" a su pueblo al ir como asilado a México. En ese sentido, dijo que irónicamente, el expresidente boliviano no eligió como destino a Venezuela, Nicaragua ni a Cuba.Sostuvo que nos de debe utilizar a las instituciones democráticas y republicanas para llegar al poder, cambiando Constituciones y prorrogando mandatos una y otra vez. “El amigo Morales no respetó absolutamente nada”, subrayó.Por otra parte, el senador colorado mencionó que los fiscales y jueces bolivianos deberían tener el "coraje" de investigar el origen de la riqueza de Morales.Habló también sobre la situación en Venezuela y mencionó que Nicolás Maduro no cae, porque "toda la FFAA está contaminada de narcotráfico". El hombre cuenta con orden de prisión en su país por los ilícitos de Tráfico de Drogas y Asociación Criminal, según el Consejo Nacional de Justicia del Brasil.La agente fiscal Liliana Denice Duarte, titular de la Unidad Fiscal Nº 1 de Presidente Franco, requirió la expulsión del extranjero y la jueza Carina Frutos Recalde, mediante Auto Interlocutorio (A.I.) N° 2.153, dio curso favorable al pedido del Ministerio Público. Esto considerando la alta expectativa de pena que tiene el supuesto delincuente en su país.La detención ...', 'id': 7328086} Note: the text is shortened for simplicity. ``` ### Data Fields - ... - ... ### Data Splits ... ## Dataset Creation ### Curation Rationale [N/A] ### Source Data #### Initial Data Collection and Normalization TODO #### Who are the source language producers? Common Crawl: https://commoncrawl.org/ ### Annotations The dataset does not contain any additional annotations. #### Annotation process [N/A] #### Who are the annotators? [N/A] ### Personal and Sensitive Information [N/A] ## Considerations for Using the Data ### Social Impact of Dataset ... ### Discussion of Biases [N/A] ### Other Known Limitations [N/A] ## Additional Information ### Dataset Curators This dataset is maintained by [Leonardo Ignacio Córdoba](https://www.linkedin.com/in/leonardo-ignacio-c%C3%B3rdoba/) and was built with the help of [María Gaska](https://www.linkedin.com/in/mfgaska/). ### Licensing Information [N/A] ### Citation Information TODO ### Contributions [N/A]
Linda/test1111
dataset card
Llamacha/monolingual-quechua-iic
--- annotations_creators: - no-annotation language_creators: - crowdsourced language: - qu license: - apache-2.0 multilinguality: - monolingual size_categories: - 1M<n<5M source_datasets: - original task_categories: - fill-mask task_ids: - language-modeling - masked-language-modeling --- # Dataset Card for Monolingual-Quechua-IIC ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://llamacha.pe](https://llamacha.pe) - **Paper:** [Introducing QuBERT: A Large Monolingual Corpus and BERT Model for Southern Quechua](https://aclanthology.org/2022.deeplo-1.1.pdf) - **Point of Contact:** [Rodolfo Zevallos](mailto:rodolfojoel.zevallos@upf.edu) - **Size of downloaded dataset files:** 373.28 MB ### Dataset Summary We present Monolingual-Quechua-IIC, a monolingual corpus of Southern Quechua, which can be used to build language models using Transformers models. This corpus also includes the Wiki and OSCAR corpora. We used this corpus to build Llama-RoBERTa-Quechua, the first language model for Southern Quechua using Transformers. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages Southern Quechua ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information Apache-2.0 ### Citation Information ``` @inproceedings{zevallos2022introducing, title={Introducing QuBERT: A Large Monolingual Corpus and BERT Model for Southern Quechua}, author={Zevallos, Rodolfo and Ortega, John and Chen, William and Castro, Richard and Bel, Nuria and Toshio, Cesar and Venturas, Renzo and Aradiel, Hilario and Melgarejo, Nelsi}, booktitle={Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing}, pages={1--13}, year={2022} } ``` ### Contributions Thanks to [@rjzevallos](https://github.com/rjzevallos) for adding this dataset.
LoganKells/amazon_product_reviews_video_games
#Title
MBAH/MOVIESON
https://mahoningmed.org/docs/123movies-watch-after-we-fell-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-cinderella-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-cryptozoo-2021full-movie-hd-free/ https://mahoningmed.org/docs/123movieswatch-breathless-2021hd-full-movie-online/ https://mahoningmed.org/docs/123movieswatch-firebird-2021full-hd-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-paw-patrol-the-movie-2021-full-hd-movie-online-free/ https://mahoningmed.org/docs/atch-sweet-girl-2021free-hd-full-movie-online/ https://mahoningmed.org/docs/123movies-watch-hes-all-that-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movieswatch-im-your-man-2020hd-full-movie-online-free/ https://mahoningmed.org/docs/watchcrazy-fist-2021full-hd-movie-online-free/ https://mahoningmed.org/docs/watchpaw-patrol-the-movie-2021hd-full-movie-online-for-free/ https://mahoningmed.org/docs/123movies-watch-black-widow-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/full-watch-dont-breathe-2-2021-hd-movie-online-free/ https://mahoningmed.org/docs/watchthe-tomorrow-war-2021hd-full-movie-online-for-free/ https://mahoningmed.org/docs/123movies-watch-jurassic-hunt-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-after-we-fell-2021-hd-full-movie-online-free-2/ https://mahoningmed.org/docs/23movies-watch-free-guy-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/watch-candyman-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watch-the-night-house-2021full-hd-movie-online-free/ https://mahoningmed.org/docs/watchsas-red-notice-2021hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchshang-chi-and-the-legend-of-the-ten-rings-2021hd-full-movie-online-for-free/ https://mahoningmed.org/docs/123movies-watch-luca-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-escape-room-tournament-of-champions-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/watchnarco-sub-2021hd-full-movie-online-for-free/ https://mahoningmed.org/docs/123movies-watch-malignant-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/watch-mortal-kombat-legends-battle-of-the-realms-2021full-online-movie-free-hd/ https://mahoningmed.org/docs/watch-space-jam-a-new-legacy-2021-hd-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-cinderella-2021-hd-full-movie-online-free-2/ https://mahoningmed.org/docs/watcheggs-run-2021hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watch-f9-2021full-online-movie-free-hd-1080p/ https://mahoningmed.org/docs/123movies-watch-jurassic-hunt-2021-hd-full-movie-online-free-2/ https://mahoningmed.org/docs/123movies-watch-vacation-friends-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-silent-night-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-the-card-counter-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-silent-night-2021-hd-full-movie-online-free-2/ https://mahoningmed.org/docs/123movies-watch-jolt-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-the-last-mercenary-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-beckett-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-rogue-hostage-2018-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-the-boss-baby-family-business-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/123movies-watch-cruella-2021-hd-full-movie-online-free/ https://mahoningmed.org/docs/watch-the-manson-brothers-midnight-zombie-massacre-2021full-hd-movie-online-free-123movies/ https://mahoningmed.org/docs/watchthe-suicide-squad-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watch-jungle-cruise-2021full-hd-movie-online-free/ https://mahoningmed.org/docs/watch-after-we-fell-2021full-hd-movie-online-free/ https://mahoningmed.org/docs/123movieswatch-the-last-warrior-root-of-evil-2021hd-full-movie-online-free/ https://mahoningmed.org/docs/123movieswatch-kate-2021hd-full-movie-online-free/ https://mahoningmed.org/docs/23movieswatch-wrath-of-man-2021hd-full-movie-online-free/ https://mahoningmed.org/docs/watchthe-forever-purge-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchafterlife-of-the-party-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchthe-conjuring-the-devil-made-me-do-it-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchold-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchinsensate-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchdreamcatcher-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchthe-kissing-booth-3-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchjj-plus-e-2021-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchyoung-sister-in-law-3-2019-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/watchjurassic-world-fallen-kingdom-2018-hd-full-movie-online-for-free/ https://mahoningmed.org/docs/123movieswatch-danny-boy-2021hd-full-movie-online-free/ https://mahoningmed.org/docs/watchsnake-eyes-g-i-joe-origins-2021-hd-full-movie-online-for-free/
MKK/Dhivehi-English
Mansooreh/sharif-emotional-speech-dataset
# <a href='https://arxiv.org/pdf/1906.01155.pdf'>ShEMO: a large-scale validated database for Persian speech emotion detection</a><br> ## Abstract <div align="justify"> This paper introduces a large-scale, validated database for Persian called Sharif Emotional Speech Database (ShEMO). The database includes 3000 semi-natural utterances, equivalent to 3 hours and 25 minutes of speech data extracted from online radio plays. The ShEMO covers speech samples of 87 native-Persian speakers for five basic emotions including <i>anger</i>, <i>fear</i>, <i>happiness</i>, <i>sadness</i> and <i>surprise</i>, as well as neutral state. Twelve annotators label the underlying emotional state of utterances and majority voting is used to decide on the final labels. According to the kappa measure, the inter-annotator agreement is 64% which is interpreted as "substantial agreement". We also present benchmark results based on common classification methods in speech emotion detection task. According to the experiments, support vector machine achieves the best results for both gender-independent (58.2%) and gender-dependent models (female=59.4%, male=57.6%). The ShEMO is available for academic purposes free of charge to provide a baseline for further research on Persian emotional speech. ## Download Dataset To download female utterances (zip file): ```bash wget -O female.zip "https://www.dropbox.com/s/42okby6c40w3j2x/female.zip?dl=0" ``` To download male utterances (zip file): ```bash wget -O male.zip "https://www.dropbox.com/s/5ebs8hq1zm0qkp6/male.zip?dl=0" ``` To download labels & transcripts (json file): ```bash wget https://github.com/pariajm/sharif-emotional-speech-dataset/raw/master/shemo.json ``` ## Models Trained or Fine-tuned on ShEMO Credits to [Mehrdad Farahani](https://github.com/m3hrdadfi/soxan) - [Speech emotion detection in Persian (fa) using wav2vec 2.0](https://huggingface.co/m3hrdadfi/wav2vec2-xlsr-persian-speech-emotion-recognition) - [Speech emotion detection in Persian (fa) using HuBERT](https://huggingface.co/m3hrdadfi/hubert-base-persian-speech-emotion-recognition) - [Speech geneder detection in Persian (fa) using HuBERT](https://huggingface.co/m3hrdadfi/hubert-base-persian-speech-gender-recognition) - [Automatic speech recognition in Persian (fa) using XLSR-53](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-shemo) ## Overview of ShEMO Feature | Status ------------- | ---------- **access** | open source **language** | Persian (fa) **modality** | speech **duration** | 3 hours and 25 minutes **#utterances** | 3000 **#speakers** | 87 (31 females, 56 males) **#emotions** | 5 basic emotions (anger, fear, happiness, sadness and surprise) and neutral state **orthographic transcripts** | available **phonetic transcripts** | available Read our paper on <a href='https://link.springer.com/article/10.1007/s10579-018-9427-x'>Springer</a> or [arxiv](https://arxiv.org/pdf/1906.01155.pdf) ## Description of Filenames The characters used in the filenames and their corresponding meaning: - **A**: angry - **F**: female speaker (if used at the beginning of the label e.g.`F14A09`) or fearful (if used in the middle of the label e.g. `M02F01`) - **H** : happy - **M** : male speaker - **N** : neutral - **S** : sad - **W** : surprised e.g. `F03S02` **F** means the speaker is **female**, **03** denotes **the speaker code**, **S** refers to the underlying emotion of the utterance which is **sadness**, **02** means this is the **second utterance for this speaker in sad emotion**. ## Data Instances Here is a sample of data instances: ```json "F21N37": { "speaker_id": "F21", "gender": "female", "emotion": "neutral", "transcript": "مگه من به تو نگفته بودم که باید راجع به دورانت سکوت کنی؟", "ipa": "mӕge mæn be to nægofte budӕm ke bɑyæd rɑdʒeʔ be dorɑnt sokut koni" } ``` ## دادگان گفتار احساسی شریف (شمو) برای دریافت مقاله <a href='https://arxiv.org/pdf/1906.01155.pdf'>اینجا</a> کلیک کنید ## Citation If you use this dataset, please cite the following paper: ~~~~ @Article{MohamadNezami2019, author = {Mohamad Nezami, Omid and Jamshid Lou, Paria and Karami, Mansoureh}, title = {ShEMO: a large-scale validated database for Persian speech emotion detection}, journal = {Language Resources and Evaluation}, year = {2019}, volume = {53}, number = {1}, pages = {1--16}, issn = {1574-0218}, doi = {10.1007/s10579-018-9427-x}, url = {https://doi.org/10.1007/s10579-018-9427-x} } ~~~~ ### Contact Paria Jamshid Lou <paria.jamshid-lou@hdr.mq.edu.au> Omid Mohamad Nezami <omid.mohamad-nezami@hdr.mq.edu.au>
Marzipan/QA4PC
## QA4PC Dataset (paper: Cross-Policy Compliance Detection via Question Answering) ### Train Sets To create training set or entailment and QA tasks, download the ShARC data from here: https://sharc-data.github.io/data.html. After that, run the script from _create_train_from_sharc.py_, by providing the path to the ShARC train and development sets. ### Evaluation Sets #### Entailment Data The following files contain the data for the entailment task. This includes the policy + questions, a scenario and an answer (_Yes, No, Maybe_). Each datapoint also contain the information from the ShARC dataset such as tree_id and source_url. - __dev_entailment_qa4pc.json__ - __test_entailment_qa4pc.json__ #### QA Data The following files contain the data for the QA task. - __dev_sc_qa4pc.json__ - __test_sc_qa4pc.json__ The following file contains the expression tree data for the dev and test sets. Each tree includes a policy, a set of questions and a logical expression. - __trees_dev_test_qa4pc.json__
McGill-NLP/mlquestions
# Dataset Card for mlquestions ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://github.com/McGill-NLP/MLQuestions - **Repository:** https://github.com/McGill-NLP/MLQuestions - **Paper:** https://aclanthology.org/2021.emnlp-main.566.pdf - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Devang Kulshreshtha](mailto:devang.kulshreshtha@mila.quebec) ### Dataset Summary The MLQuestions dataset consists of questions from Google search queries and passages from Wikipedia pages related to Machine learning domain . The dataset was created to support research in domain adaptation of question generation and passage retrieval models. ### Languages The text in the dataset is in English ## Dataset Structure ### Data Instances We release development and test sets where a typical data point comprises a passage denoted by `input_text` label and a question, with a `target_text` label. An example from the MLQuestions test set looks as follows: { 'input_text': 'Bayesian learning uses Bayes' theorem to determine the conditional probability of a hypotheses given some evidence or observations.' 'target_text': 'What is Bayesian learning in machine learning' } We also provide unsupervised questions and passages in two separate files - 'passages_unaligned.csv' and 'questions_unaligned.csv' with labels `input_text` and `target_text` respectively. ## Additional Information ### Licensing Information https://github.com/McGill-NLP/MLQuestions/blob/main/LICENSE.md ### Citation Information If you find this useful in your research, please consider citing: @inproceedings{kulshreshtha-etal-2021-back, title = "Back-Training excels Self-Training at Unsupervised Domain Adaptation of Question Generation and Passage Retrieval", author = "Kulshreshtha, Devang and Belfer, Robert and Serban, Iulian Vlad and Reddy, Siva", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.566", pages = "7064--7078", abstract = "In this work, we introduce back-training, an alternative to self-training for unsupervised domain adaptation (UDA). While self-training generates synthetic training data where natural inputs are aligned with noisy outputs, back-training results in natural outputs aligned with noisy inputs. This significantly reduces the gap between target domain and synthetic data distribution, and reduces model overfitting to source domain. We run UDA experiments on question generation and passage retrieval from the Natural Questions domain to machine learning and biomedical domains. We find that back-training vastly outperforms self-training by a mean improvement of 7.8 BLEU-4 points on generation, and 17.6{\%} top-20 retrieval accuracy across both domains. We further propose consistency filters to remove low-quality synthetic data before training. We also release a new domain-adaptation dataset - MLQuestions containing 35K unaligned questions, 50K unaligned passages, and 3K aligned question-passage pairs.", }
Melinoe/TheLabTexts
Motahar/github-issues
--- annotations_creators: - no-annotation language_creators: - found language: - en license: - unknown multilinguality: - monolingual pretty_name: Huggingface Datasets github issues size_categories: - unknown source_datasets: - original task_categories: - text-retrieval - text-classification task_ids: - document-retrieval - multi-label-classification - multi-class-classification ---
Mulin/my_third_dataset
My third Dataset - for wolf classification
NLPC-UOM/Sinhala-Stopword-list
--- annotations_creators: [] language: - si license: - mit ---
NYTK/HuCOLA
--- YAML tags: annotations_creators: - expert-generated language_creators: - found language: - hu license: - cc-by-sa-4.0 multilinguality: - monolingual pretty_name: HuCOLA size_categories: - unknown source_datasets: - original task_categories: - conditional-text-generation task_ids: - machine-translation - summarization - text-simplification --- # Dataset Card for HuCOLA ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** [HuCOLA dataset](https://github.com/nytud/HuCOLA) - **Paper:** - **Leaderboard:** - **Point of Contact:** [lnnoemi](mailto:ligeti-nagy.noemi@nytud.hu) ### Dataset Summary This is the dataset card for the Hungarian Corpus of Linguistic Acceptability (HuCOLA), which is also part of the Hungarian Language Understanding Evaluation Benchmark Kit [HuLU](hulu.nlp.nytud.hu). ### Supported Tasks and Leaderboards ### Languages The BCP-47 code for Hungarian, the only represented language in this dataset, is hu-HU. ## Dataset Structure ### Data Instances For each instance, there is aN id, a sentence and a label. An example: ``` {"Sent_id": "dev_0", "Sent": "A földek eláradtak.", "Label": "0"} ``` ### Data Fields - Sent_id: unique id of the instances, an integer between 1 and 1000; - Sent: a Hungarian sentence; - label: '0' for wrong, '1' for good sentences. ### Data Splits HuCOLA has 3 splits: *train*, *validation* and *test*. | Dataset split | Number of sentences in the split | Proportion of the split |---------------|----------------------------------| ---------| | train | 7276 | 80%| | validation | 900 |10%| | test | 900 |10%| The test data is distributed without the labels. To evaluate your model, please [contact us](mailto:ligeti-nagy.noemi@nytud.hu), or check [HuLU's website](hulu.nlp.nytud.hu) for an automatic evaluation (this feature is under construction at the moment). The evaluation metric is Matthew's correlation coefficient. ## Dataset Creation ### Source Data #### Initial Data Collection and Normalization The data was collected by two human annotators from 3 main linguistic books on Hungarian language: - Kiefer Ferenc (ed.) (1992), Strukturális magyar nyelvtan 1. Mondattan. Budapest, Akadémiai Kiadó. - Alberti, Gábor and Laczkó, Tibor (eds) (2018), Syntax of Hungarian Nouns and Noun Phrases. I., II. Comprehensive grammar resources. Amsterdam University Press, Amsterdam. - Katalin É. Kiss and Veronika Hegedűs (eds) (2021), Postpositions and Postpositional Phrases. Amsterdam: Amsterdam University Press. The process of collecting sentences partly followed the one described in Warstadt et. al (2018). The guideline of our process is available in the repository of [HuCOLA](https://github.com/nytud/HuCOLA). ### Annotations #### Annotation process Each instance was annotated by 4 human annotators for its acceptability (see the annotation guidelines in the repository of [HuCOLA](https://github.com/nytud/HuCOLA)). #### Who are the annotators? The annotators were native Hungarian speakers (of various ages, from 20 to 67) without any linguistic backround. ## Additional Information ### Licensing Information HuCOLA is released under the CC-BY-SA 4.0 licence. ### Citation Information If you use this resource or any part of its documentation, please refer to: Ligeti-Nagy, N., Ferenczi, G., Héja, E., Jelencsik-Mátyus, K., Laki, L. J., Vadász, N., Yang, Z. Gy. and Váradi, T. (2022) HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából [HuLU: Hungarian benchmark dataset to evaluate neural language models]. XVIII. Magyar Számítógépes Nyelvészeti Konferencia. (in press) ``` @inproceedings{ligetinagy2022hulu, title={HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából}, author={Ligeti-Nagy, N. and Ferenczi, G. and Héja, E. and Jelencsik-Mátyus, K. and Laki, L. J. and Vadász, N. and Yang, Z. Gy. and Váradi, T.}, booktitle={XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year={2022} } ``` ### Contributions Thanks to [lnnoemi](https://github.com/lnnoemi) for adding this dataset.
NYTK/HuCoPA
--- annotations_creators: - found language_creators: - found - expert-generated language: - hu license: - bsd-2-clause multilinguality: - monolingual size_categories: - unknown source_datasets: - extended|other task_categories: - other task_ids: [] pretty_name: HuCoPA tags: - commonsense-reasoning --- # Dataset Card for HuCoPA ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** [HuCoPA dataset](https://github.com/nytud/HuCoPA) - **Paper:** - **Leaderboard:** - **Point of Contact:** [lnnoemi](mailto:ligeti-nagy.noemi@nytud.hu) ### Dataset Summary This is the dataset card for the Hungarian Choice of Plausible Alternatives Corpus (HuCoPA), which is also part of the Hungarian Language Understanding Evaluation Benchmark Kit [HuLU](hulu.nlp.nytud.hu). The corpus was created by translating and re-annotating the original English CoPA corpus (Roemmele et al., 2011). ### Supported Tasks and Leaderboards 'commonsense reasoning' 'question answering' ### Languages The BCP-47 code for Hungarian, the only represented language in this dataset, is hu-HU. ## Dataset Structure ### Data Instances For each instance, there is an id, a premise, a question ('cause' or 'effect'), two alternatives and a label (1 or 2). An example: ``` {"idx": "1", "question": "cause", "label": "1", "premise": "A testem árnyékot vetett a fűre.", "choice1": "Felkelt a nap.", "choice2": "A füvet lenyírták."} ``` ### Data Fields - id: unique id of the instances, an integer between 1 and 1000; - question: "cause" or "effect". It suggests what kind of causal relation are we looking for: in the case of "cause" we search for the more plausible alternative that may be a cause of the premise. In the case of "effect" we are looking for a plausible result of the premise; - premise: the premise, a sentence; - choice1: the first alternative, a sentence; - choice2: the second alternative, a sentence; - label: the number of the more plausible alternative (1 or 2). ### Data Splits HuCoPA has 3 splits: *train*, *validation* and *test*. | Dataset split | Number of instances in the split | |---------------|----------------------------------| | train | 400 | | validation | 100 | | test | 500 | The test data is distributed without the labels. To evaluate your model, please [contact us](mailto:ligeti-nagy.noemi@nytud.hu), or check [HuLU's website](hulu.nlp.nytud.hu) for an automatic evaluation (this feature is under construction at the moment). ## Dataset Creation ### Source Data #### Initial Data Collection and Normalization The data is a translation of the content of the CoPA corpus. Each sentence was translated by a human translator. Each translation was manually checked and further refined by another annotator. ### Annotations #### Annotation process The instances initially inherited their original labels from the CoPA dataset. Each instance was annotated by a human annotator. If the original label and the human annotator's label did not match, we manually curated the instance and assigned a final label to that. This step was necessary to ensure that the causal realationship had not been changed or lost during the translation process. #### Who are the annotators? The translators were native Hungarian speakers with English proficiency. The annotators were university students with some linguistic background. ## Additional Information The human performance on the test set is 96% (accuracy). ### Licensing Information HuCoPA is released under the BSD 2-Clause License. Copyright (c) 2010, University of Southern California All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ### Citation Information If you use this resource or any part of its documentation, please refer to: Ligeti-Nagy, N., Ferenczi, G., Héja, E., Jelencsik-Mátyus, K., Laki, L. J., Vadász, N., Yang, Z. Gy. and Váradi, T. (2022) HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából [HuLU: Hungarian benchmark dataset to evaluate neural language models]. In: Berend, Gábor and Gosztolya, Gábor and Vincze, Veronika (eds), XVIII. Magyar Számítógépes Nyelvészeti Konferencia. JATEPress, Szeged. 431–446. ``` @inproceedings{ligetinagy2022hulu, title={HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából}, author={Ligeti-Nagy, N. and Ferenczi, G. and Héja, E. and Jelencsik-Mátyus, K. and Laki, L. J. and Vadász, N. and Yang, Z. Gy. and Váradi, T.}, booktitle={XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year={2022}, editors = {Berend, Gábor and Gosztolya, Gábor and Vincze, Veronika}, address = {Szeged}, publisher = {JATEPress}, pages = {431–446} } ``` and to: Roemmele, M., Bejan, C., and Gordon, A. (2011) Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning. AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning, Stanford University, March 21-23, 2011. ``` @inproceedings{roemmele2011choice, title={Choice of plausible alternatives: An evaluation of commonsense causal reasoning}, author={Roemmele, Melissa and Bejan, Cosmin Adrian and Gordon, Andrew S}, booktitle={2011 AAAI Spring Symposium Series}, year={2011}, url={https://people.ict.usc.edu/~gordon/publications/AAAI-SPRING11A.PDF}, } ``` ### Contributions Thanks to [lnnoemi](https://github.com/lnnoemi) for adding this dataset.
NYTK/HuRC
--- YAML tags: annotations_creators: - crowdsourced language_creators: - found - expert-generated language: - hu license: - cc-by-4.0 multilinguality: - monolingual pretty_name: HuRC size_categories: - unknown source_datasets: - extended|other task_categories: - question-answering task_ids: - extractive-qa - abstractive-qa --- # Dataset Card for HuRC ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** [HuRC dataset](https://github.com/nytud/HuRC) - **Paper:** - **Leaderboard:** - **Point of Contact:** [lnnoemi](mailto:ligeti-nagy.noemi@nytud.hu) ### Dataset Summary This is the dataset card for the Hungarian Corpus for Reading Comprehension with Commonsense Reasoning (HuRC), which is also part of the Hungarian Language Understanding Evaluation Benchmark Kit HuLU. The dataset contains 80 614 instances. Each instance is composed of a lead, a passage and a cloze-style query with a masked entity. The task is to select the named entity that is being masked in the query. The data was automatically collected from the online news of Népszabadság online (nol.hu). ### Languages The BCP-47 code for Hungarian, the only represented language in this dataset, is hu-HU. ## Dataset Structure ### Data Instances For each instance, there is an id, a lead, a passage, a query and a MASK. An example: ``` { "id": "1", "lead": ["A Közigazgatási és Igazságügyi Minisztérium szerint a Bárka Színház esetében felmerült a felelőtlen gazdálkodás gyanúja, egyes értesülések szerint pedig ebben \"a színház igazgatójának és gazdasági vezetőjének felelőssége is felmerül\""], "passage": [ "A teátrumnak Navracsics Tibor közigazgatási és igazságügyi miniszterhez és Kocsis Máté VIII. kerületi polgármesterhez", "reagálva a tárca azt írta, hogy a felelőtlen gazdálkodás gyanújában \"egyes értesülések szerint a színház igazgatójának és gazdasági vezetőjének felelőssége is felmerül\". A KIM \"éppen ezért nagyon várja az Állami Számvevőszék készülő jelentését, hogy tiszta képet kaphasson a színház működéséről\".", "A minisztérium hangsúlyozta, hogy az elmúlt évben is mindent elkövetett azért, hogy a Bárka Színház \"valós, rangos művészeti térként\" működjön, és a továbbiakban is ez a szándéka, de jelenleg a társulat működtetését a minisztérium fenntartói támogatás formájában jogszerűen még nem tudja megoldani.", "A teátrum az átadás-átvétel elhúzódásának okát keresve tette közzé nyílt levelét, amelyben elmaradó fizetésekre, előadásokra és bemutatókra hívta fel a figyelmet, és jelezte, hogy várja a helyzet megoldását.", "A színház átadás-átvétele jelenleg zajlik, a folyamat végeztével a Bárka a józsefvárosi önkormányzattól állami tulajdonba, a tervek szerint a Közigazgatási és Igazságügyi Minisztérium fenntartásába kerül." ], "query": "A KIM 2014-es költségvetésében szerepel a Bárka Színház, de amíg nem a minisztérium a [MASK] fenntartója, addig ez a költségvetési keret nem nyitható meg.", "MASK": "Bárka", } ``` ### Data Fields - id: unique id of the instances; - lead: a short summary of the article as it was extracted from the source texts; - passage: 3-6 paragraphs of texts as the body of the article; - query: the last paragraph of an article, some kind of summary or conclusion, with a named entity masked (with [MASK]) in it; - MASK: the masked named entity. ### Data Splits HuRC has 3 splits: *train*, *validation* and *test*. | Dataset split | Number of instances in the split | Proportion of the split |---------------|----------------------------------| ---------| | train | 64614 | 80%| | validation | 8000 |10%| | test | 8000 |10%| The test data is distributed without the MASK fields. To evaluate your model, please [contact us](mailto:ligeti-nagy.noemi@nytud.hu), or check [HuLU's website](hulu.nlp.nytud.hu) for an automatic evaluation (this feature is under construction at the moment). ## Dataset Creation ### Source Data #### Initial Data Collection and Normalization To produce the Hungarian material, we used the daily articles from Népszabadság Online which had titles and summaries as well. We selected 3-6 paragraphs from each article from the ones which contain proper nouns both in the main part and the summary as well. We trained a NER model using huBERT (Nemeskey 2021) for recognizing proper nouns. NerKor (Simon és Vadász 2021) and Huggingface’s token-level classification library were used to fine-tune the model. Our model achieved an F-score of 90.18 on the test material. As a final step, we found pairs of proper names which are present both in the main article and the summary. Multiple articles contained more than one such pairs so we used those more than once. This resulted in a database of 88655 instances (from 49782 articles). The quantitative properties of our corpus are as follows: Number of articles: 88655 Number of different articles (type): 49782 Token: 27703631 Type: 1115.260 Average length of text (token): 249.42 (median: 229) Average question length (token): 63.07 (median: 56). We fine-tuned the corpus by hand. One annotator per 100 unit checked and validated the dataset for which we provided our own demo interface. Automatic masking and the previous occurrence of the entity was checked. This resulted in a database of 80 614 validated entries. ## Additional Information ### Licensing Information HuRC is released under the cc-by-4.0 license. ### Citation Information If you use this resource or any part of its documentation, please refer to: Ligeti-Nagy, N., Ferenczi, G., Héja, E., Jelencsik-Mátyus, K., Laki, L. J., Vadász, N., Yang, Z. Gy. and Váradi, T. (2022) HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából [HuLU: Hungarian benchmark dataset to evaluate neural language models]. XVIII. Magyar Számítógépes Nyelvészeti Konferencia. (in press) ``` @inproceedings{ligetinagy2022hulu, title={HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából}, author={Ligeti-Nagy, N. and Ferenczi, G. and Héja, E. and Jelencsik-Mátyus, K. and Laki, L. J. and Vadász, N. and Yang, Z. Gy. and Váradi, T.}, booktitle={XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year={2022} } ``` ### Contributions Thanks to [lnnoemi](https://github.com/lnnoemi) for adding this dataset.
NYTK/HuSST
--- annotations_creators: - found language_creators: - found - expert-generated language: - hu license: - bsd-2-clause multilinguality: - monolingual size_categories: - unknown source_datasets: - extended|other task_categories: - text-classification task_ids: - sentiment-classification - sentiment-scoring - text-scoring pretty_name: HuSST --- # Dataset Card for HuSST ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Language](#language) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** [HuSST dataset](https://github.com/nytud/HuSST) - **Paper:** - **Leaderboard:** - **Point of Contact:** [lnnoemi](mailto:ligeti-nagy.noemi@nytud.hu) ### Dataset Summary This is the dataset card for the Hungarian version of the Stanford Sentiment Treebank. This dataset which is also part of the Hungarian Language Understanding Evaluation Benchmark Kit [HuLU](hulu.nlp.nytud.hu). The corpus was created by translating and re-annotating the original SST (Roemmele et al., 2011). ### Supported Tasks and Leaderboards 'sentiment classification' 'sentiment scoring' ### Language The BCP-47 code for Hungarian, the only represented language in this dataset, is hu-HU. ## Dataset Structure ### Data Instances For each instance, there is an id, a sentence and a sentiment label. An example: ``` { "Sent_id": "dev_0", "Sent": "Nos, a Jason elment Manhattanbe és a Pokolba kapcsán, azt hiszem, az elkerülhetetlen folytatások ötletlistájáról kihúzhatunk egy űrállomást 2455-ben (hé, ne lődd le a poént).", "Label": "neutral" } ``` ### Data Fields - Sent_id: unique id of the instances; - Sent: the sentence, translation of an instance of the SST dataset; - Label: "negative", "neutral", or "positive". ### Data Splits HuSST has 3 splits: *train*, *validation* and *test*. | Dataset split | Number of instances in the split | |---------------|----------------------------------| | train | 9344 | | validation | 1168 | | test | 1168 | The test data is distributed without the labels. To evaluate your model, please [contact us](mailto:ligeti-nagy.noemi@nytud.hu), or check [HuLU's website](hulu.nlp.nytud.hu) for an automatic evaluation (this feature is under construction at the moment). ## Dataset Creation ### Source Data #### Initial Data Collection and Normalization The data is a translation of the content of the SST dataset (only the whole sentences were used). Each sentence was translated by a human translator. Each translation was manually checked and further refined by another annotator. ### Annotations #### Annotation process The translated sentences were annotated by three human annotators with one of the following labels: negative, neutral and positive. Each sentence was then curated by a fourth annotator (the 'curator'). The final label is the decision of the curator based on the three labels of the annotators. #### Who are the annotators? The translators were native Hungarian speakers with English proficiency. The annotators were university students with some linguistic background. ## Additional Information ### Licensing Information ### Citation Information If you use this resource or any part of its documentation, please refer to: Ligeti-Nagy, N., Ferenczi, G., Héja, E., Jelencsik-Mátyus, K., Laki, L. J., Vadász, N., Yang, Z. Gy. and Vadász, T. (2022) HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából [HuLU: Hungarian benchmark dataset to evaluate neural language models]. XVIII. Magyar Számítógépes Nyelvészeti Konferencia. pp. 431–446. ``` @inproceedings{ligetinagy2022hulu, title={HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából}, author={Ligeti-Nagy, N. and Ferenczi, G. and Héja, E. and Jelencsik-Mátyus, K. and Laki, L. J. and Vadász, N. and Yang, Z. Gy. and Vadász, T.}, booktitle={XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year={2022}, pages = {431--446} } ``` and to: Socher et al. (2013), Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. 1631--1642. ``` @inproceedings{socher-etal-2013-recursive, title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank", author = "Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D. and Ng, Andrew and Potts, Christopher", booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing", month = oct, year = "2013", address = "Seattle, Washington, USA", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D13-1170", pages = "1631--1642", } ``` ### Contributions Thanks to [lnnoemi](https://github.com/lnnoemi) for adding this dataset.
NYTK/HuWNLI
--- annotations_creators: - found language_creators: - found - expert-generated language: - hu license: - cc-by-sa-4.0 multilinguality: - monolingual size_categories: - unknown source_datasets: - extended|other task_categories: - other task_ids: - coreference-resolution pretty_name: HuWNLI tags: - structure-prediction --- # Dataset Card for HuWNLI ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** [HuWNLI dataset](https://github.com/nytud/HuWNLI) - **Paper:** - **Leaderboard:** - **Point of Contact:** [lnnoemi](mailto:ligeti-nagy.noemi@nytud.hu) ### Dataset Summary This is the dataset card for the Hungarian translation of the Winograd schemata formatted as an inference task. A Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is resolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its resolution (Levesque et al. 2012). This dataset is also part of the Hungarian Language Understanding Evaluation Benchmark Kit [HuLU](hulu.nlp.nytud.hu). The corpus was created by translating and manually curating the original English Winograd schemata. The NLI format was created by replacing the ambiguous pronoun with each possible referent (the method is described in GLUE's paper, Wang et al. 2019). We extended the set of sentence pairs derived from the schemata by the translation of the sentence pairs that - together with the Winograd schema sentences - build up the WNLI dataset of GLUE. ### Languages The BCP-47 code for Hungarian, the only represented language in this dataset, is hu-HU. ## Dataset Structure ### Data Instances For each instance, there is an orig_id, an id, two sentences and a label. An example: ``` {"orig_id": "4", "id": "4", "sentence1": "A férfi nem tudta felemelni a fiát, mert olyan nehéz volt.", "sentence2": "A fia nehéz volt.", "Label": "1" } ``` ### Data Fields - orig_id: the original id of this sentence pair (more precisely, its English counterpart's) in GLUE's WNLI dataset; - id: unique id of the instances; - sentence1: the premise; - sentence2: the hypothesis; - label: "1" if sentence2 is entailed by sentence1, and "0" otherwise. ### Data Splits The data is distributed in three splits: training set (562), development set (59) and test set (134). The splits follow GLUE's WNLI's splits but contain fewer instances as many sentence pairs had to be thrown away for being untranslatable to Hungarian. The train and the development set have been extended from nli sentence pairs formatted from the Hungarian translation of 6 Winograd schemata left out from the original WNLI dataset. The test set's sentence pairs are translated from GLUE's WNLI's test set. This set was distributed without labels. 3 annotators annotated the Hungarian sentence pairs. The test set of HuWNLI is also distributed without labels. To evaluate your model, please [contact us](mailto:ligeti-nagy.noemi@nytud.hu), or check [HuLU's website](hulu.nytud.hu) for an automatic evaluation (this feature is under construction at the moment). ## Dataset Creation ### Source Data #### Initial Data Collection and Normalization The data is a translation of the English Winograd schemata and the additional sentence pairs of GLUE's WNLI. Each schema and sentence pair was translated by a human translator. Each schema was manually curated by a linguistic expert. The schemata were transformed into nli format by a linguistic expert. During the adaption method, we found two erroneous labels in GLUE's WNLI's train set (id 347 and id 464). We corrected them in our dataset. ## Additional Information Average human performance on the test set is 92,78% (accuracy). ### Licensing Information HuWNLI is released under the Creative Commons Attribution-ShareAlike 4.0 International License. ### Citation Information If you use this resource or any part of its documentation, please refer to: Ligeti-Nagy, N., Héja, E., Laki, L. J., Takács, D., Yang, Z. Gy. and Váradi, T. (2023) Hát te mekkorát nőttél! - A HuLU első életéve új adatbázisokkal és webszolgáltatással \[Look at how much you have grown! - The first year of HuLU with new databases and with webservice\]. In: Berend, G., Gosztolya, G. and Vincze, V. (eds), XIX. Magyar Számítógépes Nyelvészeti Konferencia. Szeged, Szegedi Tudományegyetem, Informatikai Intézet. 217-230. ``` @inproceedings{ligetinagy2023hulu, title={át te mekkorát nőttél! - A HuLU első életéve új adatbázisokkal és webszolgáltatással}, author={Ligeti-Nagy, N. and Héja, E. and Laki, L. J. and Takács, D. and Yang, Z. Gy. and Váradi, T.}, booktitle={XIX. Magyar Számítógépes Nyelvészeti Konferencia}, year={2023}, editors = {Berend, Gábor and Gosztolya, Gábor and Vincze, Veronika}, address = {Szeged}, publisher = {JATEPress}, pages = {217–230} } ``` Ligeti-Nagy, N., Ferenczi, G., Héja, E., Jelencsik-Mátyus, K., Laki, L. J., Vadász, N., Yang, Z. Gy. and Váradi, T. (2022) HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából \[HuLU: Hungarian benchmark dataset to evaluate neural language models\]. In: Berend, Gábor and Gosztolya, Gábor and Vincze, Veronika (eds), XVIII. Magyar Számítógépes Nyelvészeti Konferencia. JATEPress, Szeged. 431–446. ``` @inproceedings{ligetinagy2022hulu, title={HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából}, author={Ligeti-Nagy, N. and Ferenczi, G. and Héja, E. and Jelencsik-Mátyus, K. and Laki, L. J. and Vadász, N. and Yang, Z. Gy. and Váradi, T.}, booktitle={XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year={2022}, editors = {Berend, Gábor and Gosztolya, Gábor and Vincze, Veronika}, address = {Szeged}, publisher = {JATEPress}, pages = {431–446} } ``` and to: Levesque, Hector, Davis, Ernest, Morgenstern, Leora (2012) he winograd schema challenge. In: Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning. ``` @inproceedings{levesque2012winograd, title={The Winograd Schema Challenge}, author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora}, booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning}, year={2012}, organization={Citeseer} } ``` ### Contributions Thanks to [lnnoemi](https://github.com/lnnoemi) for adding this dataset.
Nathanael/NPS
TEST
NbAiLab/NCC_small_100
# Dataset Card for NBAiLab/NCC_small_100 annotations_creators: - no-annotation language_creators: - found languages: - en,nb,no,nn,se,dk,is,fo licenses: - odc-by-1.0 multilinguality: - multilingual pretty_name: NCC size_categories: - 2G<n<1B source_datasets: - original task_categories: - sequence-modeling task_ids: - language-modeling ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Data Fields](#data-fiels) - [Dataset Creation](#dataset-creation) - [Statistics](#statistics) - [Document Types](#document-types) - [Languages](#languages) - [Publish Periode](#publish-periode) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://github.com/NBAiLab/notram - **Repository:** https://github.com/NBAiLab/notram - **Paper:** https://arxiv.org/abs/2104.09617 - **Point of Contact:** [Freddy Wetjen](mailto:freddy.wetjen@nb.no) The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corpuses suitable for training large language models. We have done extensive cleaning on the datasets, and have made them available in a common format. The total size of the NCC is currently 45GB. ## How to Use ```python from datasets import load_dataset data = load_dataset("NBAiLab/NCC_small_100", streaming=True) ``` ## Download Data If you do not want to use the HuggingFace Dataset-library for training, or if you want to do additional pre-processing, it is also possible to download the files locally. ```bash # Download all files in one batch operation for i in $(seq -f "%04g" 1 100): do wget https://huggingface.co/datasets/NbAiLab/NCC_small_100/blob/main/data/train-shard-$i-of-0100.json.gz &; done # Create one large training file of all shards without unpacking cat *.gz > onefile.json.gz ``` <details> <summary>List of all the files.</summary> * [train-shard-0001-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0001-of-0100.json.gz) * [train-shard-0002-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0002-of-0100.json.gz) * [train-shard-0003-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0003-of-0100.json.gz) * [train-shard-0004-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0004-of-0100.json.gz) * [train-shard-0005-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0005-of-0100.json.gz) * [train-shard-0006-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0006-of-0100.json.gz) * [train-shard-0007-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0007-of-0100.json.gz) * [train-shard-0008-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0008-of-0100.json.gz) * [train-shard-0009-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0009-of-0100.json.gz) * [train-shard-0010-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0010-of-0100.json.gz) * [train-shard-0011-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0011-of-0100.json.gz) * [train-shard-0012-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0012-of-0100.json.gz) * [train-shard-0013-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0013-of-0100.json.gz) * [train-shard-0014-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0014-of-0100.json.gz) * [train-shard-0015-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0015-of-0100.json.gz) * [train-shard-0016-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0016-of-0100.json.gz) * [train-shard-0017-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0017-of-0100.json.gz) * [train-shard-0018-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0018-of-0100.json.gz) * [train-shard-0019-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0019-of-0100.json.gz) * [train-shard-0020-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0020-of-0100.json.gz) * [train-shard-0021-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0021-of-0100.json.gz) * [train-shard-0022-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0022-of-0100.json.gz) * [train-shard-0023-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0023-of-0100.json.gz) * [train-shard-0024-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0024-of-0100.json.gz) * [train-shard-0025-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0025-of-0100.json.gz) * [train-shard-0026-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0026-of-0100.json.gz) * [train-shard-0027-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0027-of-0100.json.gz) * [train-shard-0028-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0028-of-0100.json.gz) * [train-shard-0029-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0029-of-0100.json.gz) * [train-shard-0030-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0030-of-0100.json.gz) * [train-shard-0031-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0031-of-0100.json.gz) * [train-shard-0032-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0032-of-0100.json.gz) * [train-shard-0033-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0033-of-0100.json.gz) * [train-shard-0034-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0034-of-0100.json.gz) * [train-shard-0035-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0035-of-0100.json.gz) * [train-shard-0036-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0036-of-0100.json.gz) * [train-shard-0037-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0037-of-0100.json.gz) * [train-shard-0038-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0038-of-0100.json.gz) * [train-shard-0039-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0039-of-0100.json.gz) * [train-shard-0040-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0040-of-0100.json.gz) * [train-shard-0041-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0041-of-0100.json.gz) * [train-shard-0042-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0042-of-0100.json.gz) * [train-shard-0043-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0043-of-0100.json.gz) * [train-shard-0044-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0044-of-0100.json.gz) * [train-shard-0045-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0045-of-0100.json.gz) * [train-shard-0046-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0046-of-0100.json.gz) * [train-shard-0047-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0047-of-0100.json.gz) * [train-shard-0048-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0048-of-0100.json.gz) * [train-shard-0049-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0049-of-0100.json.gz) * [train-shard-0050-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0050-of-0100.json.gz) * [train-shard-0051-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0051-of-0100.json.gz) * [train-shard-0052-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0052-of-0100.json.gz) * [train-shard-0053-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0053-of-0100.json.gz) * [train-shard-0054-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0054-of-0100.json.gz) * [train-shard-0055-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0055-of-0100.json.gz) * [train-shard-0056-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0056-of-0100.json.gz) * [train-shard-0057-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0057-of-0100.json.gz) * [train-shard-0058-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0058-of-0100.json.gz) * [train-shard-0059-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0059-of-0100.json.gz) * [train-shard-0060-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0060-of-0100.json.gz) * [train-shard-0061-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0061-of-0100.json.gz) * [train-shard-0062-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0062-of-0100.json.gz) * [train-shard-0063-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0063-of-0100.json.gz) * [train-shard-0064-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0064-of-0100.json.gz) * [train-shard-0065-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0065-of-0100.json.gz) * [train-shard-0066-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0066-of-0100.json.gz) * [train-shard-0067-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0067-of-0100.json.gz) * [train-shard-0068-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0068-of-0100.json.gz) * [train-shard-0069-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0069-of-0100.json.gz) * [train-shard-0070-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0070-of-0100.json.gz) * [train-shard-0071-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0071-of-0100.json.gz) * [train-shard-0072-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0072-of-0100.json.gz) * [train-shard-0073-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0073-of-0100.json.gz) * [train-shard-0074-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0074-of-0100.json.gz) * [train-shard-0075-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0075-of-0100.json.gz) * [train-shard-0076-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0076-of-0100.json.gz) * [train-shard-0077-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0077-of-0100.json.gz) * [train-shard-0078-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0078-of-0100.json.gz) * [train-shard-0079-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0079-of-0100.json.gz) * [train-shard-0080-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0080-of-0100.json.gz) * [train-shard-0081-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0081-of-0100.json.gz) * [train-shard-0082-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0082-of-0100.json.gz) * [train-shard-0083-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0083-of-0100.json.gz) * [train-shard-0084-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0084-of-0100.json.gz) * [train-shard-0085-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0085-of-0100.json.gz) * [train-shard-0086-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0086-of-0100.json.gz) * [train-shard-0087-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0087-of-0100.json.gz) * [train-shard-0088-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0088-of-0100.json.gz) * [train-shard-0089-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0089-of-0100.json.gz) * [train-shard-0090-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0090-of-0100.json.gz) * [train-shard-0091-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0091-of-0100.json.gz) * [train-shard-0092-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0092-of-0100.json.gz) * [train-shard-0093-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0093-of-0100.json.gz) * [train-shard-0094-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0094-of-0100.json.gz) * [train-shard-0095-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0095-of-0100.json.gz) * [train-shard-0096-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0096-of-0100.json.gz) * [train-shard-0097-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0097-of-0100.json.gz) * [train-shard-0098-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0098-of-0100.json.gz) * [train-shard-0099-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0099-of-0100.json.gz) * [train-shard-0100-of-0100](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/train-shard-0100-of-0100.json.gz) * [validation-shard-0001-of-0001](https://huggingface.co/datasets/NbAiLab/NCC_small_100/resolve/main/data/validation-shard-0001-of-0001.json.gz) </details> ### Dataset Summary The NCC_small_100 dataset contains json lines with language training data. Here is an example json line: ```json { "id": "1006205", "doc_type": "cc100", "publish_year": 2021, "lang_fasttext": "nn", "lang_fasttext_conf": "0.641", "text": "Eg har ein PLAN! KOS deg og ha ei fin helg" } ``` ## Data Fields |**id:** | String with id to source of line and a unique identifier| |:-----------|:------------| |**doc_type ** | String describing type of media text extracted from (I.e. book,newspaper etc)| |**publish_year ** | Integer. The year text published. When year is undetermined it is set to 2021.| |**lang_fasttext ** | String. Language of text identified by FastText| |**lang_fasttext_conf ** | String. Confidence calculated by FastText| |**text ** | String. The complete utf-8 document. If longer than 1M characters it is split.| ### Dataset Creation We are providing a **train** and a **validation** split. The standard size of the validation is a single 1GB file, while train is sharded in 1GB chunks. All files are gzipped. Build date: 03122021 #### Initial Data Collection and Curation The procedure for the dataset creation is described in detail in our paper. ### Summary | Words | Documents | Words/Document | |------------:|------------:|-----------------:| | 152,828,370 | 452,838 | 337 | ### Document Types | Source | Words | Documents | Words/Document | |--------------------------------------:|-----------:|------------:|-----------------:| | newspaper_ocr | 42,875,141 | 214,047 | 200 | | parliament | 27,906,014 | 201 | 138,835 | | books | 19,806,532 | 546 | 36,275 | | newspapers_online_nb | 10,681,495 | 75,216 | 142 | | maalfrid_regjeringen | 7,884,471 | 20,124 | 391 | | maalfrid_ssb | 6,101,595 | 18,502 | 329 | | maalfrid_uio | 3,891,127 | 16,548 | 235 | | government_nb | 3,399,192 | 100 | 33,991 | | wikipedia_download_nbo | 2,520,875 | 11,481 | 219 | | maalfrid_fylkesmannen | 2,234,608 | 10,150 | 220 | | publicreports | 2,198,220 | 82 | 26,807 | | maalfrid_nve | 1,430,464 | 6,458 | 221 | | maalfrid_patentstyret | 1,367,518 | 4,551 | 300 | | maalfrid_ntnu | 1,266,953 | 4,378 | 289 | | newspapers_online_nn | 913,353 | 3,679 | 248 | | maalfrid_fhi | 729,409 | 3,167 | 230 | | maalfrid_vegvesen | 710,333 | 3,545 | 200 | | maalfrid_norad | 708,294 | 2,017 | 351 | | lovdata_cd_odelsting_2005 | 696,273 | 43 | 16,192 | | maalfrid_skatteetaten | 679,125 | 1,753 | 387 | | maalfrid_uib | 615,724 | 2,483 | 247 | | wikipedia_download_nno | 592,536 | 3,181 | 186 | | maalfrid_forskningsradet | 526,472 | 1,604 | 328 | | maalfrid_nasjonalparkstyre | 467,226 | 2,013 | 232 | | maalfrid_nmbu | 406,053 | 1,578 | 257 | | maalfrid_domstol | 382,629 | 1,121 | 341 | | maalfrid_oslomet | 380,272 | 1,002 | 379 | | maalfrid_nav | 363,539 | 1,670 | 217 | | maalfrid_banenor | 338,844 | 1,479 | 229 | | maalfrid_landbruksdirektoratet | 293,549 | 1,048 | 280 | | maalfrid_helsedirektoratet | 289,269 | 1,076 | 268 | | government_nn | 281,763 | 25 | 11,270 | | maalfrid_udir | 228,128 | 874 | 261 | | maalfrid_nokut | 226,072 | 877 | 257 | | maalfrid_norges-bank | 224,812 | 829 | 271 | | maalfrid_vkm | 214,855 | 683 | 314 | | maalfrid_nbim | 214,235 | 417 | 513 | | maalfrid_hi | 209,748 | 848 | 247 | | maalfrid_ngu | 209,454 | 794 | 263 | | maalfrid_miljodirektoratet | 208,346 | 757 | 275 | | maalfrid_distriktssenteret | 204,538 | 847 | 241 | | maalfrid_ptil | 204,458 | 753 | 271 | | maalfrid_nord | 193,119 | 961 | 200 | | maalfrid_difi | 172,807 | 788 | 219 | | maalfrid_fiskeridir | 172,337 | 714 | 241 | | maalfrid_hivolda | 168,122 | 564 | 298 | | maalfrid_mattilsynet | 165,226 | 616 | 268 | | maalfrid_havarikommisjonen | 164,555 | 555 | 296 | | maalfrid_kulturradet | 151,989 | 472 | 322 | | maalfrid_kystverket | 151,671 | 686 | 221 | | maalfrid_ks | 149,000 | 563 | 264 | | maalfrid_udi | 141,628 | 429 | 330 | | maalfrid_uia | 134,214 | 535 | 250 | | maalfrid_hjelpemiddeldatabasen | 129,178 | 764 | 169 | | maalfrid_dsb | 127,197 | 423 | 300 | | maalfrid_khrono | 124,208 | 432 | 287 | | maalfrid_helsetilsynet | 123,804 | 397 | 311 | | lovdata_cd_somb_rundskriv_2005 | 121,983 | 68 | 1,793 | | maalfrid_veiviseren | 116,185 | 388 | 299 | | lovdata_cd_sentrale_forskrifter_2005 | 114,379 | 251 | 455 | | maalfrid_moreforsk | 114,223 | 451 | 253 | | maalfrid_husbanken | 112,257 | 359 | 312 | | maalfrid_forsvarsbygg | 109,309 | 441 | 247 | | maalfrid_imdi | 108,090 | 357 | 302 | | maalfrid_jernbanedirektoratet | 107,264 | 435 | 246 | | maalfrid_konkurransetilsynet | 106,330 | 296 | 359 | | maalfrid_inn | 102,298 | 613 | 166 | | maalfrid_legemiddelverket | 100,455 | 452 | 222 | | maalfrid_dsa | 100,141 | 353 | 283 | | maalfrid_hiof | 99,743 | 528 | 188 | | maalfrid_vetinst | 97,390 | 312 | 312 | | maalfrid_ehelse | 95,975 | 496 | 193 | | maalfrid_arkivverket | 94,310 | 360 | 261 | | maalfrid_sdir | 94,192 | 311 | 302 | | maalfrid_klagenemndssekretariatet | 87,830 | 258 | 340 | | maalfrid_dibk | 84,106 | 336 | 250 | | maalfrid_nhh | 81,294 | 317 | 256 | | maalfrid_sprakradet | 80,918 | 315 | 256 | | maalfrid_toll | 79,364 | 305 | 260 | | maalfrid_politiet | 78,471 | 240 | 326 | | maalfrid_vestlandfylke | 77,600 | 304 | 255 | | maalfrid_riksrevisjonen | 77,117 | 225 | 342 | | maalfrid_met | 76,310 | 400 | 190 | | maalfrid_artsdatabanken | 76,117 | 200 | 380 | | maalfrid_kartverket | 75,468 | 397 | 190 | | maalfrid_bufdir | 75,375 | 262 | 287 | | maalfrid_nibio | 74,594 | 386 | 193 | | maalfrid_nkom | 63,734 | 215 | 296 | | maalfrid_npd | 63,605 | 260 | 244 | | maalfrid_nlr | 61,251 | 364 | 168 | | maalfrid_aldringoghelse | 58,322 | 147 | 396 | | maalfrid_uis | 57,580 | 190 | 303 | | maalfrid_custompublish | 56,876 | 219 | 259 | | maalfrid_nyemetoder | 56,634 | 245 | 231 | | maalfrid_sykkelbynettverket | 53,461 | 230 | 232 | | maalfrid_arbeidstilsynet | 52,903 | 127 | 416 | | maalfrid_luftfartstilsynet | 51,929 | 221 | 234 | | maalfrid_seniorporten | 50,569 | 159 | 318 | | maalfrid_bioteknologiradet | 49,956 | 129 | 387 | | maalfrid_riksantikvaren | 49,722 | 187 | 265 | | maalfrid_sjt | 47,006 | 230 | 204 | | maalfrid_dfo | 46,582 | 206 | 226 | | maalfrid_hvl | 46,544 | 202 | 230 | | lovdata_cd_lokaleforskrifter_2005 | 46,482 | 476 | 97 | | maalfrid_forbrukerradet | 44,620 | 157 | 284 | | maalfrid_himolde | 43,761 | 226 | 193 | | maalfrid_kompetansenorge | 43,626 | 213 | 204 | | maalfrid_ldo | 41,409 | 153 | 270 | | lovdata_cd_norgeslover_2005 | 40,450 | 32 | 1,264 | | maalfrid_forskningsetikk | 39,574 | 127 | 311 | | maalfrid_naku | 37,039 | 107 | 346 | | maalfrid_usn | 35,982 | 154 | 233 | | maalfrid_godeidrettsanlegg | 35,482 | 145 | 244 | | maalfrid_naturfag | 34,881 | 132 | 264 | | maalfrid_matematikksenteret | 34,258 | 158 | 216 | | maalfrid_medietilsynet | 33,904 | 145 | 233 | | maalfrid_diskrimineringsnemnda | 33,264 | 89 | 373 | | maalfrid_nupi | 31,508 | 121 | 260 | | maalfrid_miljopakken | 31,029 | 140 | 221 | | lovdata_cd_rtv_rundskriv_2005 | 30,518 | 222 | 137 | | maalfrid_dirmin | 30,360 | 117 | 259 | | maalfrid_diku | 29,246 | 135 | 216 | | maalfrid_arbeidsretten | 27,492 | 92 | 298 | | maalfrid_fellesstudentsystem | 27,029 | 197 | 137 | | maalfrid_kriminalitetsforebygging | 26,971 | 104 | 259 | | maalfrid_statsbygg | 26,256 | 102 | 257 | | maalfrid_nb | 25,375 | 94 | 269 | | maalfrid_nih | 25,036 | 112 | 223 | | maalfrid_folketrygdfondet | 25,027 | 91 | 275 | | maalfrid_npolar | 24,843 | 62 | 400 | | maalfrid_valgdirektoratet | 23,205 | 205 | 113 | | maalfrid_lottstift | 22,736 | 78 | 291 | | maalfrid_naturfagsenteret | 22,618 | 95 | 238 | | maalfrid_samordnaopptak | 22,400 | 56 | 400 | | maalfrid_sykehuspartner | 21,855 | 108 | 202 | | maalfrid_unit | 21,305 | 135 | 157 | | lovdata_cd_rundskriv_lovavdeling_2005 | 21,295 | 10 | 2,129 | | maalfrid_anskaffelser | 21,097 | 104 | 202 | | maalfrid_barneombudet | 20,092 | 65 | 309 | | maalfrid_mareano | 19,922 | 91 | 218 | | maalfrid_datatilsynet | 19,845 | 55 | 360 | | maalfrid_fiskeridirektoratet | 18,831 | 60 | 313 | | maalfrid_spesialenheten | 18,550 | 47 | 394 | | maalfrid_xn--miljlftet-o8ab | 18,447 | 78 | 236 | | lovdata_cd_skatt_rundskriv_2005 | 18,316 | 7 | 2,616 | | maalfrid_skrivesenteret | 17,951 | 102 | 175 | | maalfrid_khio | 16,924 | 63 | 268 | | maalfrid_bibliotekutvikling | 16,631 | 89 | 186 | | maalfrid_helsenorge | 15,431 | 60 | 257 | | maalfrid_sykehusinnkjop | 15,204 | 92 | 165 | | maalfrid_spk | 13,824 | 44 | 314 | | maalfrid_aho | 13,268 | 78 | 170 | | maalfrid_matportalen | 12,756 | 51 | 250 | | maalfrid_nfi | 12,696 | 36 | 352 | | maalfrid_samas | 12,650 | 62 | 204 | | maalfrid_kunstkultursenteret | 12,307 | 35 | 351 | | maalfrid_nhn | 12,156 | 77 | 157 | | maalfrid_pasientsikkerhetsprogrammet | 11,892 | 91 | 130 | | maalfrid_ceres | 11,310 | 44 | 257 | | maalfrid_nysgjerrigper | 11,177 | 63 | 177 | | maalfrid_une | 11,036 | 23 | 479 | | maalfrid_nynorsksenteret | 10,822 | 45 | 240 | | maalfrid_natursekken | 10,060 | 73 | 137 | | maalfrid_nidsenter | 9,996 | 34 | 294 | | maalfrid_nsm | 9,926 | 39 | 254 | | maalfrid_justervesenet | 9,847 | 29 | 339 | | maalfrid_giek | 9,769 | 39 | 250 | | maalfrid_digdir | 9,675 | 54 | 179 | | maalfrid_stami | 9,518 | 22 | 432 | | maalfrid_sshf | 9,488 | 37 | 256 | | maalfrid_kriminalomsorgen | 9,126 | 32 | 285 | | maalfrid_vinmonopolet | 9,094 | 22 | 413 | | maalfrid_nodnett | 8,738 | 50 | 174 | | maalfrid_gjenopptakelse | 8,249 | 30 | 274 | | maalfrid_fordelingsutvalget | 8,242 | 28 | 294 | | maalfrid_kjonnsforskning | 8,010 | 22 | 364 | | maalfrid_nasjonalmuseet | 7,935 | 21 | 377 | | maalfrid_forsvaret | 7,614 | 27 | 282 | | maalfrid_ombudsmann | 7,496 | 12 | 624 | | maalfrid_forbrukereuropa | 7,260 | 28 | 259 | | maalfrid_romsenter | 7,219 | 27 | 267 | | maalfrid_ovf | 6,699 | 28 | 239 | | maalfrid_beccle | 6,686 | 33 | 202 | | maalfrid_forbrukertilsynet | 6,440 | 19 | 338 | | maalfrid_helfo | 5,746 | 21 | 273 | | maalfrid_politietssikkerhetstjeneste | 5,570 | 16 | 348 | | maalfrid_geonorge | 5,228 | 35 | 149 | | maalfrid_realfagsloyper | 5,155 | 22 | 234 | | maalfrid_opplaringslovutvalget | 5,062 | 11 | 460 | | maalfrid_vea-fs | 5,026 | 28 | 179 | | maalfrid_energimerking | 4,842 | 25 | 193 | | maalfrid_jernbanemagasinet | 4,663 | 14 | 333 | | maalfrid_traumebevisst | 4,456 | 50 | 89 | | maalfrid_politihogskolen | 4,434 | 27 | 164 | | maalfrid_universell | 4,138 | 37 | 111 | | maalfrid_nafkam | 4,096 | 11 | 372 | | maalfrid_koro | 3,781 | 10 | 378 | | maalfrid_npe | 3,744 | 21 | 178 | | maalfrid_regionaleforskningsfond | 3,512 | 23 | 152 | | maalfrid_denkulturelleskolesekken | 3,375 | 7 | 482 | | maalfrid_squarespace | 3,310 | 12 | 275 | | maalfrid_riksteatret | 3,143 | 12 | 261 | | maalfrid_riksmekleren | 2,936 | 15 | 195 | | maalfrid_pkh | 2,927 | 9 | 325 | | maalfrid_konfliktraadet | 2,918 | 9 | 324 | | maalfrid_aasentunet | 2,713 | 8 | 339 | | maalfrid_radetfordyreetikk | 2,579 | 12 | 214 | | maalfrid_generaladvokaten | 2,428 | 7 | 346 | | maalfrid_lanekassen | 2,237 | 7 | 319 | | maalfrid_okokrim | 2,184 | 10 | 218 | | maalfrid_kulturminnefondet | 2,157 | 10 | 215 | | maalfrid_whocc | 2,143 | 13 | 164 | | maalfrid_brreg | 2,140 | 13 | 164 | | maalfrid_polarhistorie | 2,016 | 7 | 288 | | maalfrid_unknown | 2,015 | 11 | 183 | | maalfrid_ffi | 2,010 | 6 | 335 | | maalfrid_finansportalen | 1,967 | 7 | 281 | | maalfrid_digidel | 1,701 | 10 | 170 | | maalfrid_sismo | 1,685 | 6 | 280 | | maalfrid_nlb | 1,665 | 5 | 333 | | maalfrid_lektor2 | 1,397 | 8 | 174 | | maalfrid_sivilforsvaret | 1,365 | 8 | 170 | | maalfrid_konkursradet | 1,309 | 4 | 327 | | maalfrid_varsom | 1,281 | 10 | 128 | | maalfrid_informasjonskompetanse | 1,254 | 8 | 156 | | maalfrid_skattefunn | 1,171 | 3 | 390 | | maalfrid_sivilrett | 1,166 | 3 | 388 | | maalfrid_uit | 1,112 | 16 | 69 | | maalfrid_yrkesfisker | 1,110 | 10 | 111 | | maalfrid_nbsk | 1,098 | 8 | 137 | | maalfrid_lokforerskolen | 1,075 | 7 | 153 | | maalfrid_laudim | 1,069 | 8 | 133 | | maalfrid_nyinorge | 1,064 | 2 | 532 | | maalfrid_transport21 | 1,030 | 4 | 257 | | maalfrid_openaccess | 953 | 3 | 317 | | maalfrid_sinn | 924 | 5 | 184 | | maalfrid_htu | 881 | 4 | 220 | | maalfrid_yr | 865 | 12 | 72 | | maalfrid_akkreditert | 856 | 4 | 214 | | maalfrid_helseklage | 855 | 3 | 285 | | maalfrid_ssn | 841 | 5 | 168 | | maalfrid_fug | 816 | 2 | 408 | | maalfrid_matogindustri | 780 | 6 | 130 | | maalfrid_fordelingsutvalet | 772 | 2 | 386 | | maalfrid_dekom | 764 | 18 | 42 | | maalfrid_lokalhistorie | 753 | 3 | 251 | | maalfrid_unesco | 749 | 4 | 187 | | maalfrid_omsorgsforskning | 711 | 5 | 142 | | maalfrid_pts | 651 | 2 | 325 | | maalfrid_valg | 638 | 2 | 319 | | maalfrid_forbrukerklageutvalget | 626 | 2 | 313 | | maalfrid_miljoklagenemnda | 625 | 3 | 208 | | maalfrid_regjeringsadvokaten | 616 | 2 | 308 | | maalfrid_iearth | 552 | 3 | 184 | | maalfrid_skeivtarkiv | 552 | 4 | 138 | | maalfrid_xn--kvinneligomskjring-1ub | 514 | 1 | 514 | | maalfrid_haldenfengsel | 469 | 1 | 469 | | maalfrid_hjelpelinjen | 466 | 2 | 233 | | maalfrid_sevuppt | 429 | 1 | 429 | | maalfrid_norec | 376 | 1 | 376 | | maalfrid_kk-utvalget | 348 | 1 | 348 | | maalfrid_ah | 346 | 1 | 346 | | maalfrid_lykillinn | 331 | 1 | 331 | | maalfrid_vergemal | 319 | 1 | 319 | | maalfrid_riksadvokaten | 315 | 2 | 157 | | maalfrid_global | 301 | 1 | 301 | | maalfrid_webhuset | 280 | 1 | 280 | | maalfrid_xn--tilbakefring-2jb | 267 | 2 | 133 | | maalfrid_oslofengsel | 266 | 1 | 266 | | maalfrid_nasjonaleturistveger | 227 | 1 | 227 | | maalfrid_kulturped | 172 | 1 | 172 | | maalfrid_altinn | 170 | 2 | 85 | | maalfrid_shiprep | 165 | 2 | 82 | | maalfrid_kulturoghelse | 161 | 4 | 40 | | maalfrid_kantinekurset | 145 | 1 | 145 | | maalfrid_designavgang | 145 | 1 | 145 | | maalfrid_memu | 126 | 2 | 63 | | maalfrid_alleteller | 123 | 1 | 123 | | maalfrid_havmiljo | 118 | 1 | 118 | | maalfrid_fmfiavo@fylkesmannen | 81 | 2 | 40 | | maalfrid_okopark | 61 | 1 | 61 | | maalfrid_nynorskbok | 52 | 1 | 52 | | maalfrid_uh-it | 47 | 2 | 23 | | maalfrid_bastoyfengsel | 46 | 1 | 46 | | maalfrid_overgangsbolig | 40 | 1 | 40 | | maalfrid_spinn-inn | 37 | 2 | 18 | | maalfrid_karriereveiledning | 31 | 1 | 31 | | maalfrid_norskpetroleum | 15 | 2 | 7 | | maalfrid_feide | 9 | 1 | 9 | ### Languages | Language | Words | Documents | Words/Document | |-----------:|------------:|------------:|-----------------:| | no | 110,561,181 | 373,475 | 296 | | da | 22,054,103 | 12,507 | 1,763 | | en | 10,551,361 | 33,082 | 318 | | nn | 6,400,816 | 21,583 | 296 | | fr | 1,150,970 | 2,354 | 488 | | de | 848,915 | 1,804 | 470 | | sv | 290,653 | 2,578 | 112 | | es | 238,453 | 910 | 262 | | fi | 138,410 | 984 | 140 | | et | 71,255 | 507 | 140 | | cs | 57,634 | 465 | 123 | | oc | 51,457 | 109 | 472 | | pt | 49,471 | 326 | 151 | | nl | 38,024 | 266 | 142 | | la | 36,388 | 20 | 1,819 | | uk | 31,820 | 107 | 297 | | zh | 27,640 | 181 | 152 | | eu | 25,582 | 74 | 345 | | it | 24,134 | 199 | 121 | | ru | 24,022 | 149 | 161 | | pl | 23,919 | 216 | 110 | | ca | 23,748 | 84 | 282 | | gu | 16,739 | 1 | 16,739 | | fa | 11,657 | 49 | 237 | | hu | 10,583 | 173 | 61 | | is | 10,225 | 37 | 276 | | ja | 9,563 | 109 | 87 | | el | 5,320 | 20 | 266 | | id | 5,254 | 44 | 119 | | ar | 4,268 | 20 | 213 | | so | 3,343 | 13 | 257 | | sl | 3,243 | 47 | 69 | | vi | 3,077 | 22 | 139 | | sr | 2,022 | 29 | 69 | | hr | 1,947 | 23 | 84 | | tr | 1,802 | 41 | 43 | | gl | 1,709 | 17 | 100 | | mn | 1,575 | 1 | 1,575 | | lt | 1,442 | 15 | 96 | | am | 1,405 | 6 | 234 | | ko | 1,301 | 29 | 44 | | sq | 1,265 | 8 | 158 | | ro | 1,214 | 13 | 93 | | kk | 1,092 | 2 | 546 | | ur | 1,003 | 5 | 200 | | ml | 986 | 6 | 164 | | sh | 939 | 5 | 187 | | eo | 755 | 14 | 53 | | th | 550 | 12 | 45 | | ta | 505 | 6 | 84 | | sw | 468 | 3 | 156 | | sk | 442 | 12 | 36 | | war | 369 | 3 | 123 | | tl | 340 | 2 | 170 | | bg | 327 | 1 | 327 | | pnb | 276 | 1 | 276 | | bs | 230 | 2 | 115 | | ceb | 196 | 6 | 32 | | cy | 182 | 2 | 91 | | ku | 175 | 1 | 175 | | ga | 102 | 6 | 17 | | my | 82 | 1 | 82 | | hy | 66 | 2 | 33 | | ast | 59 | 1 | 59 | | ms | 53 | 13 | 4 | | be | 40 | 1 | 40 | | nds | 30 | 6 | 5 | | lv | 30 | 3 | 10 | | als | 22 | 3 | 7 | | mk | 21 | 2 | 10 | | as | 17 | 1 | 17 | | br | 16 | 3 | 5 | | af | 13 | 1 | 13 | | tt | 12 | 2 | 6 | | si | 10 | 1 | 10 | | su | 8 | 1 | 8 | | bn | 8 | 1 | 8 | | hsb | 6 | 1 | 6 | | jv | 5 | 1 | 5 | | fy | 5 | 2 | 2 | | az | 5 | 1 | 5 | | pms | 4 | 1 | 4 | | jbo | 4 | 1 | 4 | | lb | 3 | 1 | 3 | | io | 3 | 1 | 3 | | he | 1 | 1 | 1 | ### Publish Periode | Decade | Words | Documents | Words/Document | |---------:|-----------:|------------:|-----------------:| | 2020 | 90,368,489 | 238,255 | 568 | | 2010 | 7,706,272 | 52,464 | 1,483 | | 2000 | 10,118,391 | 36,978 | 3,135 | | 1990 | 16,379,779 | 54,636 | 2,989 | | 1980 | 3,378,092 | 11,838 | 2,845 | | 1970 | 4,041,362 | 17,805 | 2,261 | | 1960 | 3,523,333 | 17,974 | 1,971 | | 1950 | 2,128,506 | 10,387 | 2,058 | | 1940 | 2,662,606 | 12,271 | 2,521 | | 1930 | 964,846 | 20 | 383,978 | | 1920 | 744,560 | 16 | 328,756 | | 1910 | 1,701,319 | 31 | 527,445 | | 1900 | 1,183,273 | 24 | 414,972 | | 1890 | 2,246,433 | 40 | 461,126 | | 1880 | 1,059,838 | 19 | 490,702 | | 1870 | 999,024 | 15 | 521,165 | | 1860 | 842,042 | 17 | 533,772 | | 1850 | 1,408,491 | 25 | 434,091 | | 1840 | 627,004 | 10 | 398,914 | | 1830 | 695,289 | 11 | 475,094 | | 1820 | 49,421 | 2 | 49,421 | ## Considerations for Using the Data This corpus contains data under copyright and is not allowed to be used outide the National Library of Norway. The dataset should not be distributed. ### Discussion of Biases Please refer to our paper. ### Dataset Curators Freddy.wetjen@nb.no Per.Kummervold@nb.no ## License Various licences applies to different parts of the corpus. Every document in the corpus has a tag telling what **"doc_type"** it belongs to. If you are unable to accept any of the licenses, you should filter out the **"doc_type"** with a conflicting license. | Doc_type | License | | :-------- | :------------- | | government_nb, government_nn, parliament, publicreports, lovdata_cd_\*, maalfrid_\* | [NLOD 2.0](https://data.norge.no/nlod/en/2.0/)| | newspapers_ocr, newspapers_pdf, books| [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)| | newspapers_online_nb, newspapers_online_nn | [CC BY-NC 2.0](https://creativecommons.org/licenses/by-nc/2.0/)| | opensubtitles, wikipedia | [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) | ### Citation Information We are preparing an article with detailed information about this corpus. Until it is published, please cite out paper discussing the first version of this corpus: ``` @inproceedings{kummervold-etal-2021-operationalizing, title = {Operationalizing a National Digital Library: The Case for a {N}orwegian Transformer Model}, author = {Kummervold, Per E and De la Rosa, Javier and Wetjen, Freddy and Brygfjeld, Svein Arne", booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)}, year = "2021", address = "Reykjavik, Iceland (Online)", publisher = {Link{"o}ping University Electronic Press, Sweden}, url = "https://aclanthology.org/2021.nodalida-main.3", pages = "20--29", abstract = "In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library. The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models in several token and sequence classification tasks for both Norwegian Bokm{aa}l and Norwegian Nynorsk. Our model also improves the mBERT performance for other languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore, we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.", } ```
NbAiLab/NCC_small_divided
# Dataset Card for NBAiLab/NCC_small_divided annotations_creators: - no-annotation language_creators: - found languages: - en,nb,no,nn,se,dk,is,fo licenses: - odc-by-1.0 multilinguality: - multilingual pretty_name: NCC size_categories: - 2G<n<1B source_datasets: - original task_categories: - sequence-modeling task_ids: - language-modeling ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Data Fields](#data-fiels) - [Dataset Creation](#dataset-creation) - [Statistics](#statistics) - [Document Types](#document-types) - [Languages](#languages) - [Publish Periode](#publish-periode) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://github.com/NBAiLab/notram - **Repository:** https://github.com/NBAiLab/notram - **Paper:** https://arxiv.org/abs/2104.09617 - **Point of Contact:** [Freddy Wetjen](mailto:freddy.wetjen@nb.no) The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corpuses suitable for training large language models. We have done extensive cleaning on the datasets, and have made them available in a common format. The total size of the NCC is currently 45GB. ## How to Use ```python from datasets import load_dataset data = load_dataset("NBAiLab/NCC_small_divided", streaming=True) ``` ## Download Data If you do not want to use the HuggingFace Dataset-library for training, or if you want to do additional pre-processing, it is also possible to download the files locally. ```bash # Download all files in one batch operation for i in $(seq -f "%04g" 1 1): do wget https://huggingface.co/datasets/NbAiLab/NCC_small/blob/main/data/train-shard-$i-of-0001.json.gz &; done # Create one large training file of all shards without unpacking cat *.gz > onefile.json.gz ``` <details> <summary>List of all the files.</summary> * [train-shard-0001-of-0001](https://huggingface.co/datasets/NbAiLab/NCC_small/resolve/main/data/train-shard-0001-of-0001.json.gz) * [validation-shard-0001-of-0001](https://huggingface.co/datasets/NbAiLab/NCC_small/resolve/main/data/validation-shard-0001-of-0001.json.gz) </details> ### Dataset Summary The NCC_small dataset contains json lines with language training data. Here is an example json line: ```json { "id": "1006205", "doc_type": "cc100", "publish_year": 2021, "lang_fasttext": "nn", "lang_fasttext_conf": "0.641", "text": "Eg har ein PLAN! KOS deg og ha ei fin helg" } ``` ## Data Fields |**id:** | String with id to source of line and a unique identifier| |:-----------|:------------| |**doc_type ** | String describing type of media text extracted from (I.e. book,newspaper etc)| |**publish_year ** | Integer. The year text published. When year is undetermined it is set to 2021.| |**lang_fasttext ** | String. Language of text identified by FastText| |**lang_fasttext_conf ** | String. Confidence calculated by FastText| |**text ** | String. The complete utf-8 document. If longer than 1M characters it is split.| ### Dataset Creation We are providing a **train** and a **validation** split. The standard size of the validation is a single 1GB file, while train is sharded in 1GB chunks. All files are gzipped. Build date: 03122021 #### Initial Data Collection and Curation The procedure for the dataset creation is described in detail in our paper. ### Summary | Words | Documents | Words/Document | |------------:|------------:|-----------------:| | 152,829,466 | 452,845 | 337 | ### Document Types | Source | Words | Documents | Words/Document | |--------------------------------------:|-----------:|------------:|-----------------:| | newspaper_ocr | 42,875,679 | 214,051 | 200 | | parliament | 27,906,014 | 201 | 138,835 | | books | 19,806,532 | 546 | 36,275 | | newspapers_online_nb | 10,681,801 | 75,218 | 142 | | maalfrid_regjeringen | 7,884,471 | 20,124 | 391 | | maalfrid_ssb | 6,101,847 | 18,503 | 329 | | maalfrid_uio | 3,891,127 | 16,548 | 235 | | government_nb | 3,399,192 | 100 | 33,991 | | wikipedia_download_nbo | 2,520,875 | 11,481 | 219 | | maalfrid_fylkesmannen | 2,234,608 | 10,150 | 220 | | publicreports | 2,198,220 | 82 | 26,807 | | maalfrid_nve | 1,430,464 | 6,458 | 221 | | maalfrid_patentstyret | 1,367,518 | 4,551 | 300 | | maalfrid_ntnu | 1,266,953 | 4,378 | 289 | | newspapers_online_nn | 913,353 | 3,679 | 248 | | maalfrid_fhi | 729,409 | 3,167 | 230 | | maalfrid_vegvesen | 710,333 | 3,545 | 200 | | maalfrid_norad | 708,294 | 2,017 | 351 | | lovdata_cd_odelsting_2005 | 696,273 | 43 | 16,192 | | maalfrid_skatteetaten | 679,125 | 1,753 | 387 | | maalfrid_uib | 615,724 | 2,483 | 247 | | wikipedia_download_nno | 592,536 | 3,181 | 186 | | maalfrid_forskningsradet | 526,472 | 1,604 | 328 | | maalfrid_nasjonalparkstyre | 467,226 | 2,013 | 232 | | maalfrid_nmbu | 406,053 | 1,578 | 257 | | maalfrid_domstol | 382,629 | 1,121 | 341 | | maalfrid_oslomet | 380,272 | 1,002 | 379 | | maalfrid_nav | 363,539 | 1,670 | 217 | | maalfrid_banenor | 338,844 | 1,479 | 229 | | maalfrid_landbruksdirektoratet | 293,549 | 1,048 | 280 | | maalfrid_helsedirektoratet | 289,269 | 1,076 | 268 | | government_nn | 281,763 | 25 | 11,270 | | maalfrid_udir | 228,128 | 874 | 261 | | maalfrid_nokut | 226,072 | 877 | 257 | | maalfrid_norges-bank | 224,812 | 829 | 271 | | maalfrid_vkm | 214,855 | 683 | 314 | | maalfrid_nbim | 214,235 | 417 | 513 | | maalfrid_hi | 209,748 | 848 | 247 | | maalfrid_ngu | 209,454 | 794 | 263 | | maalfrid_miljodirektoratet | 208,346 | 757 | 275 | | maalfrid_distriktssenteret | 204,538 | 847 | 241 | | maalfrid_ptil | 204,458 | 753 | 271 | | maalfrid_nord | 193,119 | 961 | 200 | | maalfrid_difi | 172,807 | 788 | 219 | | maalfrid_fiskeridir | 172,337 | 714 | 241 | | maalfrid_hivolda | 168,122 | 564 | 298 | | maalfrid_mattilsynet | 165,226 | 616 | 268 | | maalfrid_havarikommisjonen | 164,555 | 555 | 296 | | maalfrid_kulturradet | 151,989 | 472 | 322 | | maalfrid_kystverket | 151,671 | 686 | 221 | | maalfrid_ks | 149,000 | 563 | 264 | | maalfrid_udi | 141,628 | 429 | 330 | | maalfrid_uia | 134,214 | 535 | 250 | | maalfrid_hjelpemiddeldatabasen | 129,178 | 764 | 169 | | maalfrid_dsb | 127,197 | 423 | 300 | | maalfrid_khrono | 124,208 | 432 | 287 | | maalfrid_helsetilsynet | 123,804 | 397 | 311 | | lovdata_cd_somb_rundskriv_2005 | 121,983 | 68 | 1,793 | | maalfrid_veiviseren | 116,185 | 388 | 299 | | lovdata_cd_sentrale_forskrifter_2005 | 114,379 | 251 | 455 | | maalfrid_moreforsk | 114,223 | 451 | 253 | | maalfrid_husbanken | 112,257 | 359 | 312 | | maalfrid_forsvarsbygg | 109,309 | 441 | 247 | | maalfrid_imdi | 108,090 | 357 | 302 | | maalfrid_jernbanedirektoratet | 107,264 | 435 | 246 | | maalfrid_konkurransetilsynet | 106,330 | 296 | 359 | | maalfrid_inn | 102,298 | 613 | 166 | | maalfrid_legemiddelverket | 100,455 | 452 | 222 | | maalfrid_dsa | 100,141 | 353 | 283 | | maalfrid_hiof | 99,743 | 528 | 188 | | maalfrid_vetinst | 97,390 | 312 | 312 | | maalfrid_ehelse | 95,975 | 496 | 193 | | maalfrid_arkivverket | 94,310 | 360 | 261 | | maalfrid_sdir | 94,192 | 311 | 302 | | maalfrid_klagenemndssekretariatet | 87,830 | 258 | 340 | | maalfrid_dibk | 84,106 | 336 | 250 | | maalfrid_nhh | 81,294 | 317 | 256 | | maalfrid_sprakradet | 80,918 | 315 | 256 | | maalfrid_toll | 79,364 | 305 | 260 | | maalfrid_politiet | 78,471 | 240 | 326 | | maalfrid_vestlandfylke | 77,600 | 304 | 255 | | maalfrid_riksrevisjonen | 77,117 | 225 | 342 | | maalfrid_met | 76,310 | 400 | 190 | | maalfrid_artsdatabanken | 76,117 | 200 | 380 | | maalfrid_kartverket | 75,468 | 397 | 190 | | maalfrid_bufdir | 75,375 | 262 | 287 | | maalfrid_nibio | 74,594 | 386 | 193 | | maalfrid_nkom | 63,734 | 215 | 296 | | maalfrid_npd | 63,605 | 260 | 244 | | maalfrid_nlr | 61,251 | 364 | 168 | | maalfrid_aldringoghelse | 58,322 | 147 | 396 | | maalfrid_uis | 57,580 | 190 | 303 | | maalfrid_custompublish | 56,876 | 219 | 259 | | maalfrid_nyemetoder | 56,634 | 245 | 231 | | maalfrid_sykkelbynettverket | 53,461 | 230 | 232 | | maalfrid_arbeidstilsynet | 52,903 | 127 | 416 | | maalfrid_luftfartstilsynet | 51,929 | 221 | 234 | | maalfrid_seniorporten | 50,569 | 159 | 318 | | maalfrid_bioteknologiradet | 49,956 | 129 | 387 | | maalfrid_riksantikvaren | 49,722 | 187 | 265 | | maalfrid_sjt | 47,006 | 230 | 204 | | maalfrid_dfo | 46,582 | 206 | 226 | | maalfrid_hvl | 46,544 | 202 | 230 | | lovdata_cd_lokaleforskrifter_2005 | 46,482 | 476 | 97 | | maalfrid_forbrukerradet | 44,620 | 157 | 284 | | maalfrid_himolde | 43,761 | 226 | 193 | | maalfrid_kompetansenorge | 43,626 | 213 | 204 | | maalfrid_ldo | 41,409 | 153 | 270 | | lovdata_cd_norgeslover_2005 | 40,450 | 32 | 1,264 | | maalfrid_forskningsetikk | 39,574 | 127 | 311 | | maalfrid_naku | 37,039 | 107 | 346 | | maalfrid_usn | 35,982 | 154 | 233 | | maalfrid_godeidrettsanlegg | 35,482 | 145 | 244 | | maalfrid_naturfag | 34,881 | 132 | 264 | | maalfrid_matematikksenteret | 34,258 | 158 | 216 | | maalfrid_medietilsynet | 33,904 | 145 | 233 | | maalfrid_diskrimineringsnemnda | 33,264 | 89 | 373 | | maalfrid_nupi | 31,508 | 121 | 260 | | maalfrid_miljopakken | 31,029 | 140 | 221 | | lovdata_cd_rtv_rundskriv_2005 | 30,518 | 222 | 137 | | maalfrid_dirmin | 30,360 | 117 | 259 | | maalfrid_diku | 29,246 | 135 | 216 | | maalfrid_arbeidsretten | 27,492 | 92 | 298 | | maalfrid_fellesstudentsystem | 27,029 | 197 | 137 | | maalfrid_kriminalitetsforebygging | 26,971 | 104 | 259 | | maalfrid_statsbygg | 26,256 | 102 | 257 | | maalfrid_nb | 25,375 | 94 | 269 | | maalfrid_nih | 25,036 | 112 | 223 | | maalfrid_folketrygdfondet | 25,027 | 91 | 275 | | maalfrid_npolar | 24,843 | 62 | 400 | | maalfrid_valgdirektoratet | 23,205 | 205 | 113 | | maalfrid_lottstift | 22,736 | 78 | 291 | | maalfrid_naturfagsenteret | 22,618 | 95 | 238 | | maalfrid_samordnaopptak | 22,400 | 56 | 400 | | maalfrid_sykehuspartner | 21,855 | 108 | 202 | | maalfrid_unit | 21,305 | 135 | 157 | | lovdata_cd_rundskriv_lovavdeling_2005 | 21,295 | 10 | 2,129 | | maalfrid_anskaffelser | 21,097 | 104 | 202 | | maalfrid_barneombudet | 20,092 | 65 | 309 | | maalfrid_mareano | 19,922 | 91 | 218 | | maalfrid_datatilsynet | 19,845 | 55 | 360 | | maalfrid_fiskeridirektoratet | 18,831 | 60 | 313 | | maalfrid_spesialenheten | 18,550 | 47 | 394 | | maalfrid_xn--miljlftet-o8ab | 18,447 | 78 | 236 | | lovdata_cd_skatt_rundskriv_2005 | 18,316 | 7 | 2,616 | | maalfrid_skrivesenteret | 17,951 | 102 | 175 | | maalfrid_khio | 16,924 | 63 | 268 | | maalfrid_bibliotekutvikling | 16,631 | 89 | 186 | | maalfrid_helsenorge | 15,431 | 60 | 257 | | maalfrid_sykehusinnkjop | 15,204 | 92 | 165 | | maalfrid_spk | 13,824 | 44 | 314 | | maalfrid_aho | 13,268 | 78 | 170 | | maalfrid_matportalen | 12,756 | 51 | 250 | | maalfrid_nfi | 12,696 | 36 | 352 | | maalfrid_samas | 12,650 | 62 | 204 | | maalfrid_kunstkultursenteret | 12,307 | 35 | 351 | | maalfrid_nhn | 12,156 | 77 | 157 | | maalfrid_pasientsikkerhetsprogrammet | 11,892 | 91 | 130 | | maalfrid_ceres | 11,310 | 44 | 257 | | maalfrid_nysgjerrigper | 11,177 | 63 | 177 | | maalfrid_une | 11,036 | 23 | 479 | | maalfrid_nynorsksenteret | 10,822 | 45 | 240 | | maalfrid_natursekken | 10,060 | 73 | 137 | | maalfrid_nidsenter | 9,996 | 34 | 294 | | maalfrid_nsm | 9,926 | 39 | 254 | | maalfrid_justervesenet | 9,847 | 29 | 339 | | maalfrid_giek | 9,769 | 39 | 250 | | maalfrid_digdir | 9,675 | 54 | 179 | | maalfrid_stami | 9,518 | 22 | 432 | | maalfrid_sshf | 9,488 | 37 | 256 | | maalfrid_kriminalomsorgen | 9,126 | 32 | 285 | | maalfrid_vinmonopolet | 9,094 | 22 | 413 | | maalfrid_nodnett | 8,738 | 50 | 174 | | maalfrid_gjenopptakelse | 8,249 | 30 | 274 | | maalfrid_fordelingsutvalget | 8,242 | 28 | 294 | | maalfrid_kjonnsforskning | 8,010 | 22 | 364 | | maalfrid_nasjonalmuseet | 7,935 | 21 | 377 | | maalfrid_forsvaret | 7,614 | 27 | 282 | | maalfrid_ombudsmann | 7,496 | 12 | 624 | | maalfrid_forbrukereuropa | 7,260 | 28 | 259 | | maalfrid_romsenter | 7,219 | 27 | 267 | | maalfrid_ovf | 6,699 | 28 | 239 | | maalfrid_beccle | 6,686 | 33 | 202 | | maalfrid_forbrukertilsynet | 6,440 | 19 | 338 | | maalfrid_helfo | 5,746 | 21 | 273 | | maalfrid_politietssikkerhetstjeneste | 5,570 | 16 | 348 | | maalfrid_geonorge | 5,228 | 35 | 149 | | maalfrid_realfagsloyper | 5,155 | 22 | 234 | | maalfrid_opplaringslovutvalget | 5,062 | 11 | 460 | | maalfrid_vea-fs | 5,026 | 28 | 179 | | maalfrid_energimerking | 4,842 | 25 | 193 | | maalfrid_jernbanemagasinet | 4,663 | 14 | 333 | | maalfrid_traumebevisst | 4,456 | 50 | 89 | | maalfrid_politihogskolen | 4,434 | 27 | 164 | | maalfrid_universell | 4,138 | 37 | 111 | | maalfrid_nafkam | 4,096 | 11 | 372 | | maalfrid_koro | 3,781 | 10 | 378 | | maalfrid_npe | 3,744 | 21 | 178 | | maalfrid_regionaleforskningsfond | 3,512 | 23 | 152 | | maalfrid_denkulturelleskolesekken | 3,375 | 7 | 482 | | maalfrid_squarespace | 3,310 | 12 | 275 | | maalfrid_riksteatret | 3,143 | 12 | 261 | | maalfrid_riksmekleren | 2,936 | 15 | 195 | | maalfrid_pkh | 2,927 | 9 | 325 | | maalfrid_konfliktraadet | 2,918 | 9 | 324 | | maalfrid_aasentunet | 2,713 | 8 | 339 | | maalfrid_radetfordyreetikk | 2,579 | 12 | 214 | | maalfrid_generaladvokaten | 2,428 | 7 | 346 | | maalfrid_lanekassen | 2,237 | 7 | 319 | | maalfrid_okokrim | 2,184 | 10 | 218 | | maalfrid_kulturminnefondet | 2,157 | 10 | 215 | | maalfrid_whocc | 2,143 | 13 | 164 | | maalfrid_brreg | 2,140 | 13 | 164 | | maalfrid_polarhistorie | 2,016 | 7 | 288 | | maalfrid_unknown | 2,015 | 11 | 183 | | maalfrid_ffi | 2,010 | 6 | 335 | | maalfrid_finansportalen | 1,967 | 7 | 281 | | maalfrid_digidel | 1,701 | 10 | 170 | | maalfrid_sismo | 1,685 | 6 | 280 | | maalfrid_nlb | 1,665 | 5 | 333 | | maalfrid_lektor2 | 1,397 | 8 | 174 | | maalfrid_sivilforsvaret | 1,365 | 8 | 170 | | maalfrid_konkursradet | 1,309 | 4 | 327 | | maalfrid_varsom | 1,281 | 10 | 128 | | maalfrid_informasjonskompetanse | 1,254 | 8 | 156 | | maalfrid_skattefunn | 1,171 | 3 | 390 | | maalfrid_sivilrett | 1,166 | 3 | 388 | | maalfrid_uit | 1,112 | 16 | 69 | | maalfrid_yrkesfisker | 1,110 | 10 | 111 | | maalfrid_nbsk | 1,098 | 8 | 137 | | maalfrid_lokforerskolen | 1,075 | 7 | 153 | | maalfrid_laudim | 1,069 | 8 | 133 | | maalfrid_nyinorge | 1,064 | 2 | 532 | | maalfrid_transport21 | 1,030 | 4 | 257 | | maalfrid_openaccess | 953 | 3 | 317 | | maalfrid_sinn | 924 | 5 | 184 | | maalfrid_htu | 881 | 4 | 220 | | maalfrid_yr | 865 | 12 | 72 | | maalfrid_akkreditert | 856 | 4 | 214 | | maalfrid_helseklage | 855 | 3 | 285 | | maalfrid_ssn | 841 | 5 | 168 | | maalfrid_fug | 816 | 2 | 408 | | maalfrid_matogindustri | 780 | 6 | 130 | | maalfrid_fordelingsutvalet | 772 | 2 | 386 | | maalfrid_dekom | 764 | 18 | 42 | | maalfrid_lokalhistorie | 753 | 3 | 251 | | maalfrid_unesco | 749 | 4 | 187 | | maalfrid_omsorgsforskning | 711 | 5 | 142 | | maalfrid_pts | 651 | 2 | 325 | | maalfrid_valg | 638 | 2 | 319 | | maalfrid_forbrukerklageutvalget | 626 | 2 | 313 | | maalfrid_miljoklagenemnda | 625 | 3 | 208 | | maalfrid_regjeringsadvokaten | 616 | 2 | 308 | | maalfrid_iearth | 552 | 3 | 184 | | maalfrid_skeivtarkiv | 552 | 4 | 138 | | maalfrid_xn--kvinneligomskjring-1ub | 514 | 1 | 514 | | maalfrid_haldenfengsel | 469 | 1 | 469 | | maalfrid_hjelpelinjen | 466 | 2 | 233 | | maalfrid_sevuppt | 429 | 1 | 429 | | maalfrid_norec | 376 | 1 | 376 | | maalfrid_kk-utvalget | 348 | 1 | 348 | | maalfrid_ah | 346 | 1 | 346 | | maalfrid_lykillinn | 331 | 1 | 331 | | maalfrid_vergemal | 319 | 1 | 319 | | maalfrid_riksadvokaten | 315 | 2 | 157 | | maalfrid_global | 301 | 1 | 301 | | maalfrid_webhuset | 280 | 1 | 280 | | maalfrid_xn--tilbakefring-2jb | 267 | 2 | 133 | | maalfrid_oslofengsel | 266 | 1 | 266 | | maalfrid_nasjonaleturistveger | 227 | 1 | 227 | | maalfrid_kulturped | 172 | 1 | 172 | | maalfrid_altinn | 170 | 2 | 85 | | maalfrid_shiprep | 165 | 2 | 82 | | maalfrid_kulturoghelse | 161 | 4 | 40 | | maalfrid_kantinekurset | 145 | 1 | 145 | | maalfrid_designavgang | 145 | 1 | 145 | | maalfrid_memu | 126 | 2 | 63 | | maalfrid_alleteller | 123 | 1 | 123 | | maalfrid_havmiljo | 118 | 1 | 118 | | maalfrid_fmfiavo@fylkesmannen | 81 | 2 | 40 | | maalfrid_okopark | 61 | 1 | 61 | | maalfrid_nynorskbok | 52 | 1 | 52 | | maalfrid_uh-it | 47 | 2 | 23 | | maalfrid_bastoyfengsel | 46 | 1 | 46 | | maalfrid_overgangsbolig | 40 | 1 | 40 | | maalfrid_spinn-inn | 37 | 2 | 18 | | maalfrid_karriereveiledning | 31 | 1 | 31 | | maalfrid_norskpetroleum | 15 | 2 | 7 | | maalfrid_feide | 9 | 1 | 9 | ### Languages | Language | Words | Documents | Words/Document | |-----------:|------------:|------------:|-----------------:| | no | 110,562,216 | 373,481 | 296 | | da | 22,054,103 | 12,507 | 1,763 | | en | 10,551,361 | 33,082 | 318 | | nn | 6,400,877 | 21,584 | 296 | | fr | 1,150,970 | 2,354 | 488 | | de | 848,915 | 1,804 | 470 | | sv | 290,653 | 2,578 | 112 | | es | 238,453 | 910 | 262 | | fi | 138,410 | 984 | 140 | | et | 71,255 | 507 | 140 | | cs | 57,634 | 465 | 123 | | oc | 51,457 | 109 | 472 | | pt | 49,471 | 326 | 151 | | nl | 38,024 | 266 | 142 | | la | 36,388 | 20 | 1,819 | | uk | 31,820 | 107 | 297 | | zh | 27,640 | 181 | 152 | | eu | 25,582 | 74 | 345 | | it | 24,134 | 199 | 121 | | ru | 24,022 | 149 | 161 | | pl | 23,919 | 216 | 110 | | ca | 23,748 | 84 | 282 | | gu | 16,739 | 1 | 16,739 | | fa | 11,657 | 49 | 237 | | hu | 10,583 | 173 | 61 | | is | 10,225 | 37 | 276 | | ja | 9,563 | 109 | 87 | | el | 5,320 | 20 | 266 | | id | 5,254 | 44 | 119 | | ar | 4,268 | 20 | 213 | | so | 3,343 | 13 | 257 | | sl | 3,243 | 47 | 69 | | vi | 3,077 | 22 | 139 | | sr | 2,022 | 29 | 69 | | hr | 1,947 | 23 | 84 | | tr | 1,802 | 41 | 43 | | gl | 1,709 | 17 | 100 | | mn | 1,575 | 1 | 1,575 | | lt | 1,442 | 15 | 96 | | am | 1,405 | 6 | 234 | | ko | 1,301 | 29 | 44 | | sq | 1,265 | 8 | 158 | | ro | 1,214 | 13 | 93 | | kk | 1,092 | 2 | 546 | | ur | 1,003 | 5 | 200 | | ml | 986 | 6 | 164 | | sh | 939 | 5 | 187 | | eo | 755 | 14 | 53 | | th | 550 | 12 | 45 | | ta | 505 | 6 | 84 | | sw | 468 | 3 | 156 | | sk | 442 | 12 | 36 | | war | 369 | 3 | 123 | | tl | 340 | 2 | 170 | | bg | 327 | 1 | 327 | | pnb | 276 | 1 | 276 | | bs | 230 | 2 | 115 | | ceb | 196 | 6 | 32 | | cy | 182 | 2 | 91 | | ku | 175 | 1 | 175 | | ga | 102 | 6 | 17 | | my | 82 | 1 | 82 | | hy | 66 | 2 | 33 | | ast | 59 | 1 | 59 | | ms | 53 | 13 | 4 | | be | 40 | 1 | 40 | | nds | 30 | 6 | 5 | | lv | 30 | 3 | 10 | | als | 22 | 3 | 7 | | mk | 21 | 2 | 10 | | as | 17 | 1 | 17 | | br | 16 | 3 | 5 | | af | 13 | 1 | 13 | | tt | 12 | 2 | 6 | | si | 10 | 1 | 10 | | su | 8 | 1 | 8 | | bn | 8 | 1 | 8 | | hsb | 6 | 1 | 6 | | jv | 5 | 1 | 5 | | fy | 5 | 2 | 2 | | az | 5 | 1 | 5 | | pms | 4 | 1 | 4 | | jbo | 4 | 1 | 4 | | lb | 3 | 1 | 3 | | io | 3 | 1 | 3 | | he | 1 | 1 | 1 | ### Publish Periode | Decade | Words | Documents | Words/Document | |---------:|-----------:|------------:|-----------------:| | 2020 | 90,369,047 | 238,258 | 568 | | 2010 | 7,706,272 | 52,464 | 1,483 | | 2000 | 10,118,573 | 36,979 | 3,135 | | 1990 | 16,379,779 | 54,636 | 2,989 | | 1980 | 3,378,153 | 11,839 | 2,845 | | 1970 | 4,041,657 | 17,807 | 2,261 | | 1960 | 3,523,333 | 17,974 | 1,971 | | 1950 | 2,128,506 | 10,387 | 2,058 | | 1940 | 2,662,606 | 12,271 | 2,521 | | 1930 | 964,846 | 20 | 383,978 | | 1920 | 744,560 | 16 | 328,756 | | 1910 | 1,701,319 | 31 | 527,445 | | 1900 | 1,183,273 | 24 | 414,972 | | 1890 | 2,246,433 | 40 | 461,126 | | 1880 | 1,059,838 | 19 | 490,702 | | 1870 | 999,024 | 15 | 521,165 | | 1860 | 842,042 | 17 | 533,772 | | 1850 | 1,408,491 | 25 | 434,091 | | 1840 | 627,004 | 10 | 398,914 | | 1830 | 695,289 | 11 | 475,094 | | 1820 | 49,421 | 2 | 49,421 | ## Considerations for Using the Data This corpus contains data under copyright and is not allowed to be used outide the National Library of Norway. The dataset should not be distributed. ### Discussion of Biases Please refer to our paper. ### Dataset Curators Freddy.wetjen@nb.no Per.Kummervold@nb.no ## License Various licences applies to different parts of the corpus. Every document in the corpus has a tag telling what **"doc_type"** it belongs to. If you are unable to accept any of the licenses, you should filter out the **"doc_type"** with a conflicting license. | Doc_type | License | | :-------- | :------------- | | government_nb, government_nn, parliament, publicreports, lovdata_cd_\*, maalfrid_\* | [NLOD 2.0](https://data.norge.no/nlod/en/2.0/)| | newspapers_ocr, newspapers_pdf, books| [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)| | newspapers_online_nb, newspapers_online_nn | [CC BY-NC 2.0](https://creativecommons.org/licenses/by-nc/2.0/)| | opensubtitles, wikipedia | [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) | ### Citation Information We are preparing an article with detailed information about this corpus. Until it is published, please cite out paper discussing the first version of this corpus: ``` @inproceedings{kummervold-etal-2021-operationalizing, title = {Operationalizing a National Digital Library: The Case for a {N}orwegian Transformer Model}, author = {Kummervold, Per E and De la Rosa, Javier and Wetjen, Freddy and Brygfjeld, Svein Arne", booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)}, year = "2021", address = "Reykjavik, Iceland (Online)", publisher = {Link{"o}ping University Electronic Press, Sweden}, url = "https://aclanthology.org/2021.nodalida-main.3", pages = "20--29", abstract = "In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library. The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models in several token and sequence classification tasks for both Norwegian Bokm{aa}l and Norwegian Nynorsk. Our model also improves the mBERT performance for other languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore, we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.", } ```
NbAiLab/NPSC
--- annotations_creators: - no-annotation language_creators: - found language: - 'no' - nb - nn license: - cc0-1.0 multilinguality: - monolingual size_categories: - 2G<n<1B source_datasets: - original task_categories: - automatic-speech-recognition - audio-classification pretty_name: NPSC tags: - speech-modeling --- # Dataset Card for NbAiLab/NPSC ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Data Fields](#data-fiels) - [Dataset Creation](#dataset-creation) - [Statistics](#statistics) - [Document Types](#document-types) - [Languages](#languages) - [Publish Periode](#publish-periode) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://www.nb.no/sprakbanken/ - **Repository:** https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-58/ - **Paper:** https://www.nb.no/sprakbanken/ - **Point of Contact:** [Per Erik Solberg](mailto:per.solberg@nb.no) The Norwegian Parliamentary Speech Corpus (NPSC) is a speech corpus made by the Norwegian Language Bank at the National Library of Norway in 2019-2021. The NPSC consists of recordings of speech from Stortinget, the Norwegian parliament, and corresponding orthographic transcriptions to Norwegian Bokmål and Norwegian Nynorsk. All transcriptions are done manually by trained linguists or philologists, and the manual transcriptions are subsequently proofread to ensure consistency and accuracy. Entire days of Parliamentary meetings are transcribed in the dataset. This repository contains a version of the NPSC in the 🤗 Dataset Format. Note that the official release of the dataset, which can be found in [the repository of the Norwegian Language Bank](https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-58/), contains more information than the version found here, including word-level metadata, metadata about the speakers, and detailed documentation. ## How to Use ```python # Loads the 16K Bokmål corpus in streaming mode from datasets import load_dataset data = load_dataset("NbAiLab/NPSC", config="16K_mp3_bokmaal", streaming=True) ``` ## Dataset Summary The NPSC dataset contains JSON lines with language training data. The data loader will add audio data to this structure. Here is an example json object: ```json { "sentence_id": 49853, "sentence_order": 0, "speaker_id": 32, "meeting_date": "20170110", "speaker_name": "Olemic Thommessen", "sentence_text": "Stortingets møte er lovlig satt", "sentence_language_code": "nb-NO", "text": "Stortingets møte er lovlig satt", "start_time": 320246, "end_time": 323590, "normsentence_text": "Stortingets møte er lovlig satt", "transsentence_text": "Stortingets møte er lovleg sett", "translated": 1, "audio": {"path": "audio/20170110-095504_320246_323590.wav","array": [.......]} } ``` ## Data Fields |**Key** | **Type** | **Description** | |:-----------|:------------|:------------| |**sentence_id:** | Integer | Unique identifier of the sentence | |**sentence_order** | Integer | A number indicating the order of the sentences in the meeting | |**speaker_id** | Integer | The ID of the speaker. This can be linked to the original dataset containing thorough demographic and dialectal information about the speaker. | |**meeting_date** | String | The date for the meeting in the format __yyyymmdd__ | | **speaker_name** | String | Name of the speaker. All speakers were members of the Norwegian Parliament or members of the Norwegian Government at the meeting date | | **sentence_text** | String | The sentence text. The transcribed text string of the sentence in non-normalized form. This is the text of the manual transcriptions, without any postprocessing (apart from corrections of known errors). It may contain interrupted words, non-standard words and function words with a pronunciation deviating from the written form. Detailed metadata about the words in the sentence can be found in the word-tokenized version of the corpus in the official release of the dataset. | | **sentence_language_code** | String | The language code of the sentence. The following alternatives exists in the file: ['nb-NO'. 'nn-NO', 'en-US']| | **text** | String | sentence text. This is a copy of "sentence_text". It is included here to make it more convenient to interleave with other datasets.| | **start_time** | Integer | The start time of the sentence in milliseconds. This time is relative to the start of audiofile of the entire meeting, which can be accessed in the official release | | **end_time** | Integer | End time. See comment above. | | **normsentence_text** | String | Normalized sentence text. In this version of the transcription, numbers and dates are written in digits on standardized formats, and common abbreviations are used. These modifications to the original transcriptions are produced automatically using normalization grammars | | **transsentence_text** | String | Translated sentence text. Whenever the original transcription is in Bokmål (nb-NO), this field contains a machine-translated version in Nynorsk (nn-NO), and vice versa | | **translated** | Integer | A flag indicating whether a machine-translated version has been produced or not. Sentences in en-US have not been translated | | **audio** | Array | The dataloader will encode the accociated audio files and provide them as an array containing 'path', 'sound array','sampling_rate' | #### Initial Data Collection The procedure for the dataset creation is described in detail in our paper. ## Statistics | Feature | Value | |:---------|-----------:| | Duration, pauses included | 140,3 hours| | Duration, pauses not included | 125,7 hours | | Word count | 1,2 million | | Sentence count | 64.531 | | Language distribution | Nynorsk: 12,8%| | | Bokmål: 87,2%| | Gender distribution | Female: 38,3% | | | Male: 61.7% | ## Considerations for Using the Data This corpus contains speech data. All recordings are of members of Parliament in a public setting, and can be distributed without any restrains. ### Dataset Creators and Curators The content of the dataset was created by the Norwegian Language Bank (Språkbanken) at the National Library of Norway. [Javier de la Rosa](mailto:versae@nb.no), [Freddy Wetjen](mailto:freddy.wetjen@nb.no), [Per Egil Kummervold](mailto:per.kummervold@nb.no), and [Andre Kaasen](mailto:andre.kasen@nb.no) all contributed in making this into a HuggingFace Dataset. Thanks to the HuggingFace team for assistance. ## License The sound and the transcriptions are released under the [CC-ZERO-license](https://creativecommons.org/publicdomain/zero/1.0/). The curation of the HuggingFace Dataset is released under [CC-BY-SA-3-license](https://creativecommons.org/licenses/by-sa/3.0/). ### Citation Information The following article gives detailed information about the corpus. Please refer to the article and this page if you are using this dataset: ``` @inproceedings{solberg2022norwegian, title={The Norwegian Parliamentary Speech Corpus}, author={Solberg, Per Erik and Ortiz, Pablo}, booktitle={Proceedings of the 13th Language Resources and Evaluation Conference}, url={http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.106.pdf}, year={2022} } ```
NbAiLab/NPSC_test
--- annotations_creators: - no-annotation language_creators: - found language: - nb - 'no' - nn license: - cc0-1.0 multilinguality: - monolingual size_categories: - 2G<n<1B source_datasets: - original task_categories: - automatic-speech-recognition - audio-classification task_ids: - speech-modeling pretty_name: NPSC tags: - speech-modeling --- # Dataset Card for NBAiLab/NPSC ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Data Fields](#data-fiels) - [Dataset Creation](#dataset-creation) - [Statistics](#statistics) - [Document Types](#document-types) - [Languages](#languages) - [Publish Periode](#publish-periode) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://www.nb.no/sprakbanken/ - **Repository:** https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-58/ - **Paper:** https://www.nb.no/sprakbanken/ - **Point of Contact:** [Per Erik Solberg](mailto:per.solberg@nb.no) The Norwegian Parliament Speech Corpus (NPSC) is a corpus for training a Norwegian ASR (Automatic Speech Recognition) models. The corpus is created by Språkbanken at the National Library in Norway. NPSC is based on sound recording from meeting in the Norwegian Parliament. These talks are orthographically transcribed to either Norwegian Bokmål or Norwegian Nynorsk. In addition to the data actually included in this dataset, there is a significant amount of metadata that is included in the original corpus. Through the speaker id there is additional information about the speaker, like gender, age, and place of birth (ie dialect). Through the proceedings id the corpus can be linked to the official proceedings from the meetings. The corpus is in total sound recordings from 40 entire days of meetings. This amounts to 140 hours of speech, 65,000 sentences or 1.2 million words. This corpus is an adaption of the original corpus made for efficiant ASR training. For simplicity and portability, a few of the original datasets features, like the token transcription, is ommitted. You can find the complete dataset at [the Resource Catalogue at Språkbanken](https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-58/). ## How to Use (This needs to be edited of course) ```python from datasets import load_dataset data = load_dataset("nb/NPSC", streaming=True) ``` ## Data Fields Currently there are two versions included in this repo. ### Version A This verison has a short list of the metadata and includes the audio (48k mp3) encoded as a float32 array in the dataset itself. The current dataloader script is associated with this version. One line in train.json looks like this: ```json { "sentence_id": 7309, "sentence_order": 0, "speaker_id": 1, "speaker_name": "Marit Nybakk", "sentence_text": "Stortingets møte er lovlig satt", "sentence_language_code": "nb-NO", "text": "Stortingets møte er lovlig satt", "start_time": 302650, "end_time": 306000, "normsentence_text": "Stortingets møte er lovlig satt", "transsentence_text": "Stortingets møte er lovleg sett", "translated": 1, "audio": { "path": "audio/20170207-095506_302650_306000.wav", "array": [ 24, 25, 50, (...) ], "sampling_rate": 48000 } } ``` ### Version B This verison does not contain the audio encoded in the dataset. Instead it has the audio files placed in sub-directories. There are currently both samples in clips_48k_wav and clips_16k_mp3. Only the base filename is referred in the dataset. Please not that there are both sentence-based audio clips as well at meeting-based audio clips. The dataset contains referrals to both, the latter referral has start and stop time as well. One line in the train/metadata.json looks like this: ```json { "meeting_date": "20170207", "full_audio_file": "20170207-095506", "proceedings_file": "20170207-095506.ref", "duration": 4442474, "transcriber_id": 1, "reviewer_id": 2, "data_split": "test", "speaker_name": "Marit Nybakk", "speaker_id": 1, "sentence_id": 7309, "sentence_language_code": "nb-NO", "sentence_text": "Stortingets møte er lovlig satt", "sentence_order": 0, "audio_file": "20170207-095506_302650_306000", "start_time": 302650, "end_time": 306000, "normsentence_text": "Stortingets møte er lovlig satt", "transsentence_text": "Stortingets møte er lovleg sett", "translated": 1 } ``` ### Dataset Creation We are providing a **train**, **dev** and **test** split. These are the same as in the orginal corpus. Build date: 20012022 #### Initial Data Collection and Curation The procedure for the dataset creation is described in detail in the paper. ## Statistics | Feature | Value | |:---------|-----------:| | Duration, pauses included | 140,3 hours| | Duration, pauses not included | 125,7 hours | | Word count | 1,2 million | | Sentence count | 64.531 | | Language distribution | Nynorsk: 12,8%| | | Bokmål: 87,2%%| | Gender distribution | Female: 38,3% | | | Male: 61.7% | ## Considerations for Using the Data This corpus contains speech data and is allowed to be used outside the National Library of Norway for speech recognition technology purposes. ### Discussion of Biases Please refer to our paper. ### Dataset Curators [Per Erik Solberg](mailto:per.solberg@nb.no) [Freddy Wetjen](mailto:Freddy.wetjen@nb.no), [Andre Kaasen](mailto:andre.kasen@nb.no) and [Per Egil Kummervold](mailto:per.kummervold@nb.no) has contributed to porting it to the Hugging Face Dataset format. ### Licensing Information Licensed for use outside the National Library of Norway. ## License CC-ZERO(https://creativecommons.org/publicdomain/zero/1.0/) ### Citation Information We are preparing an article with detailed information about this corpus. Until it is published, please cite out paper discussing the first version of this corpus: ``` ANDRE: TO BE DONE ```
NbAiLab/NPSC_test2
--- license: cc0-1.0 ---
NbAiLab/bokmaal_admin
# Dataset Card for NBAiLab/bokmaal_admin ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Data Fields](#data-fiels) - [Dataset Creation](#dataset-creation) - [Statistics](#statistics) - [Document Types](#document-types) - [Languages](#languages) - [Publish Periode](#publish-periode) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://github.com/NBAiLab/notram - **Repository:** https://github.com/NBAiLab/notram - **Paper:** https://arxiv.org/abs/2104.09617 - **Point of Contact:** [Freddy Wetjen][mailto:freddy.wetjen@nb.no] ## How to Use ``` from datasets import load_dataset data = load_dataset("NBAiLab/bokmaal_admin") ``` ### Dataset Summary The bokmaal_admin dataset contains json lines with language training data. Here is an example json line: ``` {"id": "1006205", "doc_type": "cc100", "publish_year": 2021, "lang_fasttext": "no", "lang_fasttext_conf": "0.641", "text": "Eg har en PLAN! KOS deg og ha en fortryllende herlig pinse :)"} ``` ## Data Fields **id:** String with id to source of line and a unique identifier **doc_type:** String describing type of media text extracted from (I.e. book,newspaper etc) **publish_year:** String with year text published **lang_fasttext:** String. Language of text identified by FastText **lang_fasttext_conf:** String. Confidence calculated by FastText **text:** String. The complete utf-8 document. If longer than 1M characters it is split. ### Dataset Creation We are providing a **train** and a **validation** split. The standard size of the validation is a single 1GB file, while train is sharded in 1GB chunks. All files are gzipped. Build date: 20211112 05:25 #### Initial Data Collection and Curation The procedure for the dataset creation is described in detail in our paper. ## Statistics ### Document Types | Source | Words | Documents | Words/Document | |--------------------------------------:|--------------:|------------:|-----------------:| | books | 6,380,459,425 | 179,928 | 35,461 | | newspaper_ocr | 3,430,315,600 | 17,800,434 | 192 | | newspaper_pdf | 1,322,713,993 | 2,578,379 | 513 | | parliament | 505,936,380 | 3,772 | 134,129 | | mc4 | 335,731,602 | 629,305 | 533 | | maalfrid_regjeringen | 247,343,698 | 569,556 | 434 | | facebook | 224,240,379 | 6,029,317 | 37 | | newspapers_online_nb | 202,484,169 | 1,550,434 | 130 | | cc100 | 178,306,026 | 415,438 | 429 | | lovdata_transfer | 151,683,287 | 2,455,158 | 61 | | wikipedia_download_nbo | 67,973,672 | 337,685 | 201 | | publicreports | 60,688,239 | 2,485 | 24,421 | | maalfrid_fylkesmannen | 59,961,218 | 225,748 | 265 | | maalfrid_ssb | 52,430,231 | 161,640 | 324 | | maalfrid_uio | 51,941,921 | 205,859 | 252 | | maalfrid_nve | 36,914,989 | 134,307 | 274 | | lovdata_cd_odelsting_2005 | 30,759,585 | 1,512 | 20,343 | | maalfrid_ntnu | 28,396,799 | 91,801 | 309 | | government_nb | 26,180,035 | 1,778 | 14,724 | | maalfrid_skatteetaten | 19,959,092 | 50,433 | 395 | | maalfrid_vegvesen | 17,211,017 | 72,632 | 236 | | maalfrid_fhi | 15,255,348 | 60,886 | 250 | | maalfrid_uib | 14,942,918 | 54,175 | 275 | | maalfrid_forskningsradet | 14,842,039 | 41,564 | 357 | | Published_article | 13,672,349 | 8,641 | 1,582 | | maalfrid_domstol | 12,358,434 | 32,931 | 375 | | maalfrid_nasjonalparkstyre | 11,843,995 | 46,622 | 254 | | maalfrid_nav | 9,860,610 | 35,635 | 276 | | maalfrid_banenor | 9,418,904 | 33,241 | 283 | | maalfrid_landbruksdirektoratet | 9,306,807 | 29,919 | 311 | | maalfrid_helsedirektoratet | 8,846,278 | 30,601 | 289 | | maalfrid_udir | 7,174,012 | 25,639 | 279 | | maalfrid_nokut | 7,129,990 | 25,355 | 281 | | oscar | 6,645,855 | 20,520 | 323 | | maalfrid_distriktssenteret | 6,615,310 | 24,369 | 271 | | maalfrid_patentstyret | 6,532,768 | 15,936 | 409 | | maalfrid_oslomet | 6,179,568 | 16,991 | 363 | | maalfrid_nmbu | 6,111,332 | 21,911 | 278 | | maalfrid_difi | 5,906,257 | 22,634 | 260 | | maalfrid_ptil | 5,417,850 | 19,492 | 277 | | maalfrid_ks | 5,291,586 | 18,458 | 286 | | maalfrid_nord | 5,220,333 | 22,139 | 235 | | maalfrid_miljodirektoratet | 5,057,030 | 16,276 | 310 | | lovdata_cd_somb_rundskriv_2005 | 4,877,892 | 2,913 | 1,674 | | maalfrid_kulturradet | 4,765,528 | 13,438 | 354 | | maalfrid_hi | 4,371,332 | 14,953 | 292 | | maalfrid_khrono | 4,334,418 | 13,657 | 317 | | maalfrid_havarikommisjonen | 4,324,589 | 13,785 | 313 | | maalfrid_helsetilsynet | 4,139,780 | 11,949 | 346 | | maalfrid_veiviseren | 4,026,354 | 12,641 | 318 | | maalfrid_kystverket | 3,986,569 | 15,948 | 249 | | maalfrid_fiskeridir | 3,917,471 | 13,931 | 281 | | maalfrid_imdi | 3,876,903 | 11,910 | 325 | | maalfrid_klagenemndssekretariatet | 3,627,643 | 9,907 | 366 | | maalfrid_mattilsynet | 3,570,296 | 11,399 | 313 | | maalfrid_jernbanedirektoratet | 3,249,132 | 10,901 | 298 | | maalfrid_husbanken | 3,205,560 | 9,956 | 321 | | maalfrid_inn | 3,180,435 | 15,942 | 199 | | maalfrid_ehelse | 3,169,426 | 13,781 | 229 | | maalfrid_moreforsk | 3,149,028 | 11,288 | 278 | | maalfrid_dibk | 3,075,479 | 10,192 | 301 | | maalfrid_dsb | 2,931,468 | 9,116 | 321 | | maalfrid_uia | 2,875,875 | 10,161 | 283 | | maalfrid_hivolda | 2,825,217 | 8,503 | 332 | | maalfrid_konkurransetilsynet | 2,761,569 | 6,937 | 398 | | maalfrid_riksrevisjonen | 2,758,645 | 7,474 | 369 | | lovdata_cd_sentrale_forskrifter_2005 | 2,730,182 | 4,952 | 551 | | maalfrid_hiof | 2,700,988 | 11,976 | 225 | | maalfrid_bufdir | 2,697,466 | 8,398 | 321 | | maalfrid_forsvarsbygg | 2,683,162 | 9,920 | 270 | | maalfrid_udi | 2,664,169 | 7,842 | 339 | | maalfrid_norad | 2,574,013 | 6,832 | 376 | | maalfrid_politiet | 2,540,239 | 7,562 | 335 | | maalfrid_arkivverket | 2,540,064 | 8,338 | 304 | | maalfrid_vkm | 2,539,216 | 8,036 | 315 | | maalfrid_sdir | 2,370,087 | 7,819 | 303 | | maalfrid_norges-bank | 2,240,269 | 6,157 | 363 | | maalfrid_ngu | 2,237,688 | 9,121 | 245 | | maalfrid_legemiddelverket | 2,188,175 | 8,378 | 261 | | maalfrid_hjelpemiddeldatabasen | 2,159,289 | 12,899 | 167 | | maalfrid_vetinst | 2,060,618 | 5,974 | 344 | | maalfrid_seniorporten | 1,964,793 | 5,735 | 342 | | maalfrid_aldringoghelse | 1,829,458 | 4,715 | 388 | | maalfrid_sykkelbynettverket | 1,736,925 | 6,595 | 263 | | maalfrid_bioteknologiradet | 1,718,372 | 3,983 | 431 | | maalfrid_riksantikvaren | 1,648,807 | 5,549 | 297 | | maalfrid_arbeidstilsynet | 1,615,239 | 4,189 | 385 | | maalfrid_custompublish | 1,612,284 | 5,460 | 295 | | maalfrid_nlr | 1,538,129 | 6,949 | 221 | | maalfrid_dsa | 1,537,797 | 5,546 | 277 | | maalfrid_sjt | 1,524,515 | 6,280 | 242 | | maalfrid_dfo | 1,444,746 | 5,686 | 254 | | maalfrid_sprakradet | 1,395,100 | 4,908 | 284 | | maalfrid_kartverket | 1,377,475 | 6,001 | 229 | | maalfrid_uis | 1,367,221 | 4,047 | 337 | | maalfrid_ldo | 1,340,466 | 4,945 | 271 | | maalfrid_nkom | 1,326,479 | 4,093 | 324 | | maalfrid_kompetansenorge | 1,316,195 | 5,409 | 243 | | maalfrid_diskrimineringsnemnda | 1,309,432 | 3,369 | 388 | | maalfrid_arbeidsretten | 1,284,610 | 4,106 | 312 | | maalfrid_naku | 1,275,346 | 3,528 | 361 | | maalfrid_forbrukerradet | 1,247,911 | 4,339 | 287 | | maalfrid_toll | 1,180,475 | 4,396 | 268 | | maalfrid_himolde | 1,169,805 | 5,882 | 198 | | maalfrid_artsdatabanken | 1,123,755 | 3,043 | 369 | | maalfrid_medietilsynet | 1,120,669 | 4,219 | 265 | | maalfrid_dirmin | 1,106,085 | 3,560 | 310 | | maalfrid_usn | 1,079,920 | 3,964 | 272 | | maalfrid_naturfag | 1,074,980 | 3,442 | 312 | | maalfrid_forskningsetikk | 1,050,995 | 2,835 | 370 | | maalfrid_nibio | 1,018,312 | 4,418 | 230 | | maalfrid_npd | 983,147 | 3,023 | 325 | | maalfrid_fellesstudentsystem | 979,009 | 6,086 | 160 | | maalfrid_nhh | 959,716 | 3,547 | 270 | | maalfrid_miljopakken | 921,711 | 3,876 | 237 | | maalfrid_nyemetoder | 912,371 | 3,571 | 255 | | maalfrid_nbim | 905,006 | 2,871 | 315 | | lovdata_cd_lokaleforskrifter_2005 | 865,182 | 5,737 | 150 | | maalfrid_unit | 863,597 | 4,278 | 201 | | government | 863,481 | 15 | 57,565 | | lovdata_cd_rtv_rundskriv_2005 | 851,334 | 5,557 | 153 | | maalfrid_sykehuspartner | 844,623 | 3,551 | 237 | | maalfrid_statsbygg | 837,396 | 2,847 | 294 | | lovdata_cd_skatt_rundskriv_2005 | 834,700 | 280 | 2,981 | | maalfrid_diku | 820,160 | 3,060 | 268 | | maalfrid_folketrygdfondet | 817,411 | 2,403 | 340 | | maalfrid_anskaffelser | 806,237 | 3,281 | 245 | | maalfrid_godeidrettsanlegg | 798,087 | 2,945 | 270 | | maalfrid_hvl | 763,706 | 3,342 | 228 | | maalfrid_kriminalitetsforebygging | 750,695 | 2,811 | 267 | | maalfrid_fiskeridirektoratet | 703,340 | 2,139 | 328 | | maalfrid_met | 689,904 | 3,894 | 177 | | lovdata_cd_norgeslover_2005 | 654,973 | 545 | 1,201 | | maalfrid_aho | 638,050 | 2,638 | 241 | | maalfrid_barneombudet | 625,833 | 1,579 | 396 | | maalfrid_luftfartstilsynet | 608,528 | 2,218 | 274 | | maalfrid_datatilsynet | 603,203 | 1,791 | 336 | | maalfrid_xn--miljlftet-o8ab | 586,635 | 2,217 | 264 | | maalfrid_matematikksenteret | 585,609 | 2,632 | 222 | | maalfrid_sykehusinnkjop | 549,824 | 2,653 | 207 | | maalfrid_spesialenheten | 533,643 | 1,241 | 430 | | maalfrid_helsenorge | 520,386 | 1,670 | 311 | | maalfrid_naturfagsenteret | 512,334 | 1,777 | 288 | | maalfrid_lottstift | 492,579 | 1,849 | 266 | | maalfrid_sshf | 489,791 | 1,462 | 335 | | maalfrid_nih | 480,388 | 2,313 | 207 | | maalfrid_une | 442,146 | 935 | 472 | | maalfrid_ceres | 417,870 | 1,623 | 257 | | maalfrid_khio | 417,364 | 1,654 | 252 | | maalfrid_skrivesenteret | 408,989 | 1,876 | 218 | | maalfrid_pasientsikkerhetsprogrammet | 406,202 | 2,468 | 164 | | maalfrid_nodnett | 400,250 | 1,581 | 253 | | maalfrid_nhn | 380,617 | 1,989 | 191 | | maalfrid_vestlandfylke | 347,841 | 1,690 | 205 | | maalfrid_nsm | 347,481 | 1,175 | 295 | | maalfrid_spk | 338,368 | 1,087 | 311 | | maalfrid_samordnaopptak | 337,615 | 1,208 | 279 | | lovdata_cd_rundskriv_lovavdeling_2005 | 334,659 | 320 | 1,045 | | maalfrid_kriminalomsorgen | 326,604 | 1,055 | 309 | | maalfrid_fordelingsutvalget | 320,403 | 1,180 | 271 | | maalfrid_stami | 312,943 | 799 | 391 | | maalfrid_mareano | 305,826 | 1,482 | 206 | | maalfrid_nysgjerrigper | 299,481 | 1,570 | 190 | | maalfrid_natursekken | 297,159 | 2,187 | 135 | | maalfrid_nidsenter | 296,232 | 855 | 346 | | maalfrid_justervesenet | 295,738 | 896 | 330 | | maalfrid_matportalen | 270,759 | 920 | 294 | | maalfrid_kunstkultursenteret | 266,393 | 805 | 330 | | maalfrid_digdir | 249,544 | 1,245 | 200 | | maalfrid_kjonnsforskning | 248,296 | 756 | 328 | | maalfrid_forsvaret | 243,755 | 799 | 305 | | maalfrid_gjenopptakelse | 243,459 | 904 | 269 | | maalfrid_forbrukertilsynet | 241,234 | 766 | 314 | | maalfrid_romsenter | 232,686 | 698 | 333 | | maalfrid_geonorge | 220,003 | 1,062 | 207 | | maalfrid_nupi | 206,031 | 726 | 283 | | maalfrid_universell | 199,461 | 1,294 | 154 | | maalfrid_ovf | 187,196 | 540 | 346 | | maalfrid_vea-fs | 185,860 | 957 | 194 | | maalfrid_nfi | 183,915 | 572 | 321 | | maalfrid_ombudsmann | 181,429 | 313 | 579 | | maalfrid_valgdirektoratet | 176,937 | 659 | 268 | | maalfrid_bibliotekutvikling | 173,659 | 828 | 209 | | maalfrid_nasjonalmuseet | 173,044 | 426 | 406 | | maalfrid_politihogskolen | 168,943 | 724 | 233 | | maalfrid_nb | 154,850 | 570 | 271 | | maalfrid_regionaleforskningsfond | 152,294 | 748 | 203 | | maalfrid_opplaringslovutvalget | 148,285 | 399 | 371 | | maalfrid_beccle | 147,160 | 542 | 271 | | maalfrid_jernbanemagasinet | 141,276 | 280 | 504 | | maalfrid_energimerking | 138,944 | 530 | 262 | | maalfrid_samas | 138,706 | 527 | 263 | | maalfrid_pkh | 135,365 | 453 | 298 | | maalfrid_traumebevisst | 126,587 | 1,027 | 123 | | maalfrid_npe | 124,648 | 531 | 234 | | maalfrid_realfagsloyper | 123,279 | 498 | 247 | | maalfrid_vinmonopolet | 116,011 | 288 | 402 | | maalfrid_nafkam | 115,290 | 335 | 344 | | maalfrid_helfo | 109,740 | 517 | 212 | | maalfrid_giek | 104,748 | 315 | 332 | | maalfrid_polarhistorie | 102,152 | 265 | 385 | | maalfrid_okokrim | 91,030 | 274 | 332 | | maalfrid_koro | 86,691 | 270 | 321 | | maalfrid_politietssikkerhetstjeneste | 83,250 | 246 | 338 | | maalfrid_lokforerskolen | 82,092 | 410 | 200 | | maalfrid_konfliktraadet | 81,638 | 236 | 345 | | maalfrid_sismo | 81,184 | 186 | 436 | | maalfrid_radetfordyreetikk | 78,270 | 297 | 263 | | maalfrid_squarespace | 77,333 | 255 | 303 | | maalfrid_riksmekleren | 76,636 | 352 | 217 | | maalfrid_brreg | 71,766 | 331 | 216 | | maalfrid_riksteatret | 69,415 | 308 | 225 | | maalfrid_generaladvokaten | 63,969 | 195 | 328 | | maalfrid_sivilforsvaret | 63,303 | 280 | 226 | | maalfrid_lanekassen | 62,069 | 174 | 356 | | maalfrid_ffi | 60,454 | 144 | 419 | | maalfrid_uit | 53,943 | 283 | 190 | | maalfrid_akkreditert | 53,878 | 235 | 229 | | maalfrid_lektor2 | 48,998 | 278 | 176 | | maalfrid_nynorsksenteret | 47,745 | 207 | 230 | | maalfrid_omsorgsforskning | 46,908 | 196 | 239 | | maalfrid_riksadvokaten | 46,891 | 113 | 414 | | maalfrid_nlb | 43,425 | 142 | 305 | | maalfrid_unknown | 43,077 | 174 | 247 | | maalfrid_dekom | 42,214 | 610 | 69 | | maalfrid_kulturminnefondet | 40,957 | 209 | 195 | | maalfrid_varsom | 39,362 | 165 | 238 | | maalfrid_openaccess | 36,978 | 107 | 345 | | maalfrid_lokalhistorie | 35,629 | 141 | 252 | | maalfrid_sivilrett | 34,831 | 98 | 355 | | maalfrid_denkulturelleskolesekken | 34,167 | 156 | 219 | | maalfrid_unesco | 32,206 | 97 | 332 | | maalfrid_finansportalen | 30,756 | 128 | 240 | | maalfrid_htu | 29,233 | 108 | 270 | | maalfrid_dep | 28,746 | 88 | 326 | | maalfrid_yrkesfisker | 28,629 | 194 | 147 | | maalfrid_ssn | 25,958 | 131 | 198 | | maalfrid_informasjonskompetanse | 24,635 | 159 | 154 | | maalfrid_helseklage | 24,477 | 82 | 298 | | maalfrid_forbrukereuropa | 22,901 | 102 | 224 | | maalfrid_kulturped | 21,673 | 61 | 355 | | maalfrid_kulturoghelse | 21,192 | 115 | 184 | | maalfrid_nbsk | 20,379 | 124 | 164 | | maalfrid_nyinorge | 20,353 | 43 | 473 | | maalfrid_matogindustri | 19,957 | 113 | 176 | | maalfrid_fug | 19,910 | 66 | 301 | | maalfrid_sinn | 19,682 | 87 | 226 | | maalfrid_transport21 | 19,666 | 62 | 317 | | maalfrid_vergemal | 18,784 | 54 | 347 | | maalfrid_konkursradet | 17,890 | 50 | 357 | | maalfrid_xn--kvinneligomskjring-1ub | 17,578 | 71 | 247 | | maalfrid_feide | 16,493 | 115 | 143 | | maalfrid_digidel | 15,548 | 91 | 170 | | maalfrid_skattefunn | 15,185 | 50 | 303 | | maalfrid_xn--tilbakefring-2jb | 14,974 | 39 | 383 | | maalfrid_memu | 14,965 | 65 | 230 | | maalfrid_russamtalen | 14,672 | 53 | 276 | | maalfrid_pts | 14,672 | 46 | 318 | | maalfrid_regjeringsadvokaten | 14,565 | 36 | 404 | | maalfrid_nasjonaleturistveger | 13,564 | 55 | 246 | | maalfrid_samfunnskunnskap | 12,499 | 46 | 271 | | maalfrid_skeivtarkiv | 11,599 | 44 | 263 | | maalfrid_forbrukerklageutvalget | 11,415 | 39 | 292 | | maalfrid_ah | 11,363 | 33 | 344 | | maalfrid_fordelingsutvalet | 11,329 | 21 | 539 | | maalfrid_xn--forskerfr-t8a | 11,062 | 81 | 136 | | maalfrid_nettvett | 10,135 | 37 | 273 | | maalfrid_laudim | 8,732 | 63 | 138 | | maalfrid_uh-it | 7,131 | 126 | 56 | | maalfrid_valg | 7,089 | 36 | 196 | | maalfrid_mhfa | 6,287 | 52 | 120 | | maalfrid_spinn-inn | 6,286 | 24 | 261 | | maalfrid_npolar | 6,200 | 22 | 281 | | maalfrid_bastoyfengsel | 6,194 | 40 | 154 | | maalfrid_miljoklagenemnda | 5,432 | 23 | 236 | | maalfrid_prosjektveiviseren | 5,154 | 15 | 343 | | maalfrid_voldsoffererstatning | 5,129 | 21 | 244 | | maalfrid_aldersvennlig | 4,540 | 23 | 197 | | maalfrid_hjelpelinjen | 4,514 | 18 | 250 | | maalfrid_sevuppt | 4,491 | 16 | 280 | | maalfrid_barentswatch | 4,099 | 26 | 157 | | maalfrid_global | 4,079 | 16 | 254 | | maalfrid_kk-utvalget | 3,813 | 14 | 272 | | maalfrid_forsvaretsmuseer | 3,768 | 33 | 114 | | maalfrid_utdanningiverden | 2,876 | 7 | 410 | | maalfrid_fmfiavo@fylkesmannen | 2,830 | 33 | 85 | | maalfrid_iearth | 2,747 | 15 | 183 | | maalfrid_pst | 2,667 | 12 | 222 | | maalfrid_altinn | 2,600 | 10 | 260 | | maalfrid_overgangsbolig | 2,580 | 16 | 161 | | maalfrid_designavgang | 2,541 | 20 | 127 | | maalfrid_kantinekurset | 2,319 | 17 | 136 | | maalfrid_velgekte | 2,269 | 10 | 226 | | maalfrid_okopark | 2,261 | 7 | 323 | | maalfrid_musikkbasertmiljobehandling | 2,118 | 13 | 162 | | maalfrid_arkitektur | 1,922 | 9 | 213 | | maalfrid_agropub | 1,875 | 6 | 312 | | maalfrid_alleteller | 1,511 | 7 | 215 | | maalfrid_norskpetroleum | 1,355 | 20 | 67 | | maalfrid_lykillinn | 1,349 | 4 | 337 | | maalfrid_oslofengsel | 1,159 | 5 | 231 | | maalfrid_hjorteviltregisteret | 910 | 2 | 455 | | maalfrid_umb | 875 | 5 | 175 | | maalfrid_webhuset | 849 | 3 | 283 | | maalfrid_anleggsregisteret | 702 | 3 | 234 | | maalfrid_utdanning | 687 | 5 | 137 | | maalfrid_mangfoldsprisen | 538 | 2 | 269 | | maalfrid_nynorskbok | 464 | 4 | 116 | | maalfrid_mammapresenterer | 447 | 2 | 223 | | maalfrid_ringerikefengsel | 435 | 3 | 145 | | maalfrid_romerikefengsel | 252 | 2 | 126 | | maalfrid_indreostfoldfengsel | 215 | 3 | 71 | | wikipedia_huggingface | 209 | 4 | 52 | | maalfrid_yr | 209 | 1 | 209 | | maalfrid_xn--kroppsvingsforskning-gcc | 162 | 1 | 162 | | maalfrid_retttilaalese | 160 | 2 | 80 | | maalfrid_grunderskolen | 117 | 1 | 117 | | maalfrid_nodsms | 98 | 1 | 98 | | maalfrid_karriereveiledning | 32 | 3 | 10 | | maalfrid_sikkerhverdag | 19 | 1 | 19 | ### Languages | Language | Words | Documents | Words/Document | |-----------:|---------------:|------------:|-----------------:| | no | 13,827,935,821 | 34,804,446 | 397 | ### Publish Periode | Decade | Words | Documents | Words/Document | |---------:|--------------:|------------:|-----------------:| | 2020 | 2,627,953,523 | 8,645,421 | 710 | | 2010 | 4,313,046,574 | 17,265,618 | 2,802 | | 2000 | 2,749,348,382 | 4,303,662 | 8,388 | | 1990 | 2,847,964,191 | 3,290,177 | 8,828 | | 1980 | 1,289,623,151 | 1,299,568 | 10,006 | ## Considerations for Using the Data This corpus contains data under copyright and is not allowed to be used outide the National Library of Norway. The dataset should not be distributed. ### Discussion of Biases Please refer to our paper. ### Dataset Curators Freddy.wetjen@nb.no Per.Kummervold@nb.no ### Licensing Information Not lisenced for use outside the National Library of Norway. ### Citation Information We are preparing an article with detailed information about this corpus. Until it is published, please cite out paper discussing the first version of this corpus: ``` @inproceedings{kummervold-etal-2021-operationalizing, title = {Operationalizing a National Digital Library: The Case for a {N}orwegian Transformer Model}, author = {Kummervold, Per E and De la Rosa, Javier and Wetjen, Freddy and Brygfjeld, Svein Arne", booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)}, year = "2021", address = "Reykjavik, Iceland (Online)", publisher = {Link{"o}ping University Electronic Press, Sweden}, url = "https://aclanthology.org/2021.nodalida-main.3", pages = "20--29", abstract = "In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library. The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models in several token and sequence classification tasks for both Norwegian Bokm{aa}l and Norwegian Nynorsk. Our model also improves the mBERT performance for other languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore, we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.", } ```
NbAiLab/norec_agg
--- annotations_creators: - expert-generated language_creators: - found language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification --- # Dataset Card Creation Guide ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** N/A - **Repository:** [GitHub](https://github.com/ltgoslo/NorBERT/) - **Paper:** [A Fine-grained Sentiment Dataset for Norwegian](https://www.aclweb.org/anthology/2020.lrec-1.618/) - **Leaderboard:** N/A - **Point of Contact:** - ### Dataset Summary Aggregated NoRec_fine: A Fine-grained Sentiment Dataset for Norwegian. This dataset was created by the Nordic Language Processing Laboratory by aggregating the fine-grained annotations in NoReC_fine and removing sentences with conflicting or no sentiment. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages The text in the dataset is in Norwegian. ## Dataset Structure ### Data Instances Example of one instance in the dataset. ```{'label': 0, 'text': 'Verre er det med slagsmålene .'}``` ### Data Fields - `id`: index of the example - `text`: Text of a sentence - `label`: The sentiment label. Here - 0 = negative - 1 = positive ### Data Splits The dataset is split into a `train`, `validation`, and `test` split with the following sizes: | | Tain | Valid | Test | | ----- | ------ | ----- | ----- | | Number of examples | 2675 | 516 | 417 | ## Dataset Creation This dataset is based largely on the original data described in the paper _A Fine-Grained Sentiment Dataset for Norwegian_ by L. Øvrelid, P. Mæhlum, J. Barnes, and E. Velldal, accepted at LREC 2020, [paper available](https://www.aclweb.org/anthology/2020.lrec-1.618). However, we have since added annotations for another 3476 sentences, increasing the overall size and scope of the dataset. ## Additional Information ### Licensing Information This work is licensed under a Creative Commons Attribution 4.0 International License ### Citation Information ```latex @misc{sheng2020investigating, title={Investigating Societal Biases in a Poetry Composition System}, author={Emily Sheng and David Uthus}, year={2020}, eprint={2011.02686}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
NbAiLab/norne
--- annotations_creators: - expert-generated language_creators: - crowdsourced language: - 'no' license: - other multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - token-classification task_ids: - named-entity-recognition - part-of-speech tags: - structure-prediction --- # Dataset Card for NorNE: Norwegian Named Entities ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [NorNE](https://github.com/ltgoslo/norne/) - **Repository:** [Github](https://github.com/ltgoslo/norne/) - **Paper:** https://arxiv.org/abs/1911.12146 - **Leaderboard:** - **Point of Contact:** ### Dataset Summary NorNE is a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokmål and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons,organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names. ### Supported Tasks and Leaderboards NorNE ads named entity annotations on top of the Norwegian Dependency Treebank. ### Languages Both Norwegian Bokmål (`bokmaal`) and Nynorsk (`nynorsk`) are supported as different configs in this dataset. An extra config for the combined languages is also included (`combined`). See the Annotation section for details on accessing reduced tag sets for the NER feature. ## Dataset Structure Each entry contains text sentences, their language, identifiers, tokens, lemmas, and corresponding NER and POS tag lists. ### Data Instances An example of the `train` split of the `bokmaal` config. ```python {'idx': '000001', 'lang': 'bokmaal', 'lemmas': ['lam', 'og', 'piggvar', 'på', 'bryllupsmeny'], 'ner_tags': [0, 0, 0, 0, 0], 'pos_tags': [0, 9, 0, 5, 0], 'text': 'Lam og piggvar på bryllupsmenyen', 'tokens': ['Lam', 'og', 'piggvar', 'på', 'bryllupsmenyen']} ``` ### Data Fields Each entry is annotated with the next fields: - `idx` (`int`), text (sentence) identifier from the NorNE dataset - `lang` (`str`), language variety, either `bokmaal`, `nynorsk` or `combined` - `text` (`str`), plain text - `tokens` (`List[str]`), list of tokens extracted from `text` - `lemmas` (`List[str]`), list of lemmas extracted from `tokens` - `ner_tags` (`List[int]`), list of numeric NER tags for each token in `tokens` - `pos_tags` (`List[int]`), list of numeric PoS tags for each token in `tokens` An example DataFrame obtained from the dataset: <table class="dataframe" border="1"> <thead> <tr style="text-align: right;"> <th></th> <th>idx</th> <th>lang</th> <th>text</th> <th>tokens</th> <th>lemmas</th> <th>ner_tags</th> <th>pos_tags</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>000001</td> <td>bokmaal</td> <td>Lam og piggvar på bryllupsmenyen</td> <td>[Lam, og, piggvar, på, bryllupsmenyen]</td> <td>[lam, og, piggvar, på, bryllupsmeny]</td> <td>[0, 0, 0, 0, 0]</td> <td>[0, 9, 0, 5, 0]</td> </tr> <tr> <th>1</th> <td>000002</td> <td>bokmaal</td> <td>Kamskjell, piggvar og lammefilet sto på menyen...</td> <td>[Kamskjell, ,, piggvar, og, lammefilet, sto, p...</td> <td>[kamskjell, $,, piggvar, og, lammefilet, stå, ...</td> <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]</td> <td>[0, 1, 0, 9, 0, 15, 2, 0, 2, 8, 6, 0, 1]</td> </tr> <tr> <th>2</th> <td>000003</td> <td>bokmaal</td> <td>Og til dessert: Parfait à la Mette-Marit.</td> <td>[Og, til, dessert, :, Parfait, à, la, Mette-Ma...</td> <td>[og, til, dessert, $:, Parfait, à, la, Mette-M...</td> <td>[0, 0, 0, 0, 7, 8, 8, 8, 0]</td> <td>[9, 2, 0, 1, 10, 12, 12, 10, 1]</td> </tr> </tbody> </table> ### Data Splits There are three splits: `train`, `validation` and `test`. | Config | Split | Total | | :---------|-------------:|-------:| | `bokmaal` | `train` | 15696 | | `bokmaal` | `validation` | 2410 | | `bokmaal` | `test` | 1939 | | `nynorsk` | `train` | 14174 | | `nynorsk` | `validation` | 1890 | | `nynorsk` | `test` | 1511 | | `combined`| `test` | 29870 | | `combined`| `validation` | 4300 | | `combined`| `test` | 3450 | ## Dataset Creation ### Curation Rationale 1. A _name_ in this context is close to [Saul Kripke's definition of a name](https://en.wikipedia.org/wiki/Saul_Kripke#Naming_and_Necessity), in that a name has a unique reference and its meaning is constant (there are exceptions in the annotations, e.g. "Regjeringen" (en. "Government")). 2. It is the usage of a name that determines the entity type, not the default/literal sense of the name, 3. If there is an ambiguity in the type/sense of a name, then the the default/literal sense of the name is chosen (following [Markert and Nissim, 2002](http://www.lrec-conf.org/proceedings/lrec2002/pdf/11.pdf)). For more details, see the "Annotation Guidelines.pdf" distributed with the corpus. ### Source Data Data was collected using blogs and newspapers in Norwegian, as well as parliament speeches and governamental reports. #### Initial Data Collection and Normalization The texts in the Norwegian Dependency Treebank (NDT) are manually annotated with morphological features, syntactic functions and hierarchical structure. The formalism used for the syntactic annotation is dependency grammar. The treebanks consists of two parts, one part in Norwegian Bokmål (`nob`) and one part in Norwegian Nynorsk (`nno`). Both parts contain around 300.000 tokens, and are a mix of different non-fictional genres. See the [NDT webpage](https://www.nb.no/sprakbanken/show?serial=sbr-10) for more details. ### Annotations The following types of entities are annotated: - **Person (`PER`):** Real or fictional characters and animals - **Organization (`ORG`):** Any collection of people, such as firms, institutions, organizations, music groups, sports teams, unions, political parties etc. - **Location (`LOC`):** Geographical places, buildings and facilities - **Geo-political entity (`GPE`):** Geographical regions defined by political and/or social groups. A GPE entity subsumes and does not distinguish between a nation, its region, its government, or its people - **Product (`PROD`):** Artificially produced entities are regarded products. This may include more abstract entities, such as speeches, radio shows, programming languages, contracts, laws and ideas. - **Event (`EVT`):** Festivals, cultural events, sports events, weather phenomena, wars, etc. Events are bounded in time and space. - **Derived (`DRV`):** Words (and phrases?) that are dervied from a name, but not a name in themselves. They typically contain a full name and are capitalized, but are not proper nouns. Examples (fictive) are "Brann-treneren" ("the Brann coach") or "Oslo-mannen" ("the man from Oslo"). - **Miscellaneous (`MISC`):** Names that do not belong in the other categories. Examples are animals species and names of medical conditions. Entities that are manufactured or produced are of type Products, whereas thing naturally or spontaneously occurring are of type Miscellaneous. Furthermore, all `GPE` entities are additionally sub-categorized as being either `ORG` or `LOC`, with the two annotation levels separated by an underscore: - `GPE_LOC`: Geo-political entity, with a locative sense (e.g. "John lives in _Spain_") - `GPE_ORG`: Geo-political entity, with an organisation sense (e.g. "_Spain_ declined to meet with Belgium") The two special types `GPE_LOC` and `GPE_ORG` can easily be altered depending on the task, choosing either the more general `GPE` tag or the more specific `LOC`/`ORG` tags, conflating them with the other annotations of the same type. This means that the following sets of entity types can be derived: - 7 types, deleting `_GPE`: **`ORG`**, **`LOC`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC` - 8 types, deleting `LOC_` and `ORG_`: **`ORG`**, **`LOC`**, **`GPE`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC` - 9 types, keeping all types: **`ORG`**, **`LOC`**, **`GPE_LOC`**, **`GPE_ORG`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC` The class distribution is as follows, broken down across the data splits of the UD version of NDT, and sorted by total counts (i.e. the number of examples, not tokens within the spans of the annotatons): | Type | Train | Dev | Test | Total | | :--------|-------:|-------:|-------:|-------:| | `PER` | 4033 | 607 | 560 | 5200 | | `ORG` | 2828 | 400 | 283 | 3511 | | `GPE_LOC`| 2132 | 258 | 257 | 2647 | | `PROD` | 671 | 162 | 71 | 904 | | `LOC` | 613 | 109 | 103 | 825 | | `GPE_ORG`| 388 | 55 | 50 | 493 | | `DRV` | 519 | 77 | 48 | 644 | | `EVT` | 131 | 9 | 5 | 145 | | `MISC` | 8 | 0 | 0 | 0 | To access these reduce versions of the dataset, you can use the configs `bokmaal-7`, `nynorsk-7`, `combined-7` for the NER tag set with 7 tags ( **`ORG`**, **`LOC`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`), and `bokmaal-8`, `nynorsk-8`, `combined-8` for the NER tag set with 8 tags (`LOC_` and `ORG_`: **`ORG`**, **`LOC`**, **`GPE`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`). By default, the full set (9 tags) will be used. ## Additional Information ### Dataset Curators NorNE was created as a collaboration between [Schibsted Media Group](https://schibsted.com/), [Språkbanken](https://www.nb.no/forskning/sprakbanken/) at the [National Library of Norway](https://www.nb.no) and the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) at the University of Oslo. NorNE was added to Huggingface Datasets by the AI-Lab at the National Library of Norway. ### Licensing Information The NorNE corpus is published under the same [license](https://github.com/ltgoslo/norne/blob/master/LICENSE_NDT.txt) as the Norwegian Dependency Treebank ### Citation Information This dataset is described in the paper _NorNE: Annotating Named Entities for Norwegian_ by Fredrik Jørgensen, Tobias Aasmoe, Anne-Stine Ruud Husevåg, Lilja Øvrelid, and Erik Velldal, accepted for LREC 2020 and available as pre-print here: https://arxiv.org/abs/1911.12146.
NbAiLab/norwegian_parliament
--- annotations_creators: - expert-generated language_creators: - found language: - no license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-classification --- # Dataset Card Creation Guide ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** N/A - **Repository:** [GitHub](https://github.com/ltgoslo/NorBERT/) - **Paper:** N/A - **Leaderboard:** N/A - **Point of Contact:** - ### Dataset Summary The Norwegian Parliament Speeches is a collection of text passages from 1998 to 2016 and pronounced at the Norwegian Parliament (Storting) by members of the two major parties: Fremskrittspartiet and Sosialistisk Venstreparti. The dataset is annotated with the party the speaker was associated with at the time (dates of speeches are also included). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages The text in the dataset is in Norwegian. ## Dataset Structure ### Data Instances Example of one instance in the dataset. ```{'label': 0, 'text': 'Verre er det med slagsmålene .'}``` ### Data Fields - `id`: index of the example - `text`: Text of a speech - `date`: Date (`YYYY-MM-DD`) the speech was produced - `label`: Political party the speaker was associated with at the time - 0 = Fremskrittspartiet - 1 = Sosialistisk Venstreparti ### Data Splits The dataset is split into a `train`, `validation`, and `test` split with the following sizes: | | Tain | Valid | Test | | ----- | ------ | ----- | ----- | | Number of examples | 3600 | 1200 | 1200 | The dataset is balanced on political party. ## Dataset Creation This dataset is based on the publicly available information by Norwegian Parliament (Storting) and created by the National Library of Norway AI-Lab to benchmark their language models. ## Additional Information ### Licensing Information This work is licensed under a Creative Commons Attribution 4.0 International License ### Citation Information ```latex @misc{--, title={--}, author={--}, year={2021}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Niciu/github-issues
restsfds
Nuwaisir/Quran_speech_recognition_kaggle
This dataset can be found in Kaggle
Omar2027/caner_replicate
OmarN121/train
--- YAML tags: - copy-paste the tags obtained with the online tagging app: https://huggingface.co/spaces/huggingface/datasets-tagging --- # Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
Paul/hatecheck
--- annotations_creators: - crowdsourced language_creators: - expert-generated language: - en license: - cc-by-4.0 multilinguality: - monolingual pretty_name: HateCheck size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-classification task_ids: - hate-speech-detection --- # Dataset Card for HateCheck ## Dataset Description HateCheck is a suite of functional test for hate speech detection models. The dataset contains 3,728 validated test cases in 29 functional tests. 19 functional tests correspond to distinct types of hate. The other 11 functional tests cover challenging types of non-hate. This allows for targeted diagnostic insights into model performance. In our ACL paper, we found critical weaknesses in all commercial and academic hate speech detection model that we tested with HateCheck. Please refer to the paper (linked below) for results and further discussion, as well as further information on the dataset and a full data statement. - **Paper:** Röttger et al. (2021) - HateCheck: Functional Tests for Hate Speech Detection Model. https://aclanthology.org/2021.acl-long.4/ or https://arxiv.org/abs/2012.15606 - **Repository:** https://github.com/paul-rottger/hatecheck-data - **Point of Contact:** paul.rottger@oii.ox.ac.uk ## Dataset Structure "test.csv" contains all 3,728 validated test cases. Each test case (row) has the following attributes: **functionality** The shorthand for the functionality tested by the test case. **case_id** The unique ID of the test case (assigned to each of the 3,901 cases we initially generated) **test_case** The text of the test case. **label_gold** The gold standard label (hateful/non-hateful) of the test case. All test cases within a given functionality have the same gold standard label. **target_ident** Where applicable, the protected group targeted or referenced by the test case. We cover seven protected groups in the test suite: women, trans people, gay people, black people, disabled people, Muslims and immigrants. **direction** For hateful cases, the binary secondary label indicating whether they are *directed* at an individual as part of a protected group or aimed at the group in *general*. **focus_words** Where applicable, the key word or phrase in a given test case (e.g. "cut their throats"). **focus_lemma** Where applicable, the corresponding lemma (e.g. "cut sb. throat"). **ref_case_id** For hateful cases, where applicable, the ID of the simpler hateful case which was perturbed to generate them. For non-hateful cases, where applicable, the ID of the hateful case which is contrasted. **ref_templ_id** The equivalent, but for template IDs. **templ_id** The unique ID of the template from which the test case was generated (assigned to each of the 866 cases and templates from which we generated the 3,901 initial cases). ## Citation Information When using HateCheck, please cite our ACL paper: @inproceedings{rottger-etal-2021-hatecheck, title = "{H}ate{C}heck: Functional Tests for Hate Speech Detection Models", author = {R{\"o}ttger, Paul and Vidgen, Bertie and Nguyen, Dong and Waseem, Zeerak and Margetts, Helen and Pierrehumbert, Janet}, booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.4", doi = "10.18653/v1/2021.acl-long.4", pages = "41--58", abstract = "Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically, hate speech detection models are evaluated by measuring their performance on held-out test data using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify specific model weak points. It also risks overestimating generalisable model performance due to increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, we introduce HateCheck, a suite of functional tests for hate speech detection models. We specify 29 model functionalities motivated by a review of previous research and a series of interviews with civil society stakeholders. We craft test cases for each functionality and validate their quality through a structured annotation process. To illustrate HateCheck{'}s utility, we test near-state-of-the-art transformer models as well as two popular commercial models, revealing critical model weaknesses.", }
PaulLerner/triviaqa_for_viquae
See https://github.com/PaulLerner/ViQuAE Get the original dataset there: http://nlp.cs.washington.edu/triviaqa/ (or via HF: https://huggingface.co/datasets/trivia_qa)
PaulLerner/viquae_all_images
See https://github.com/PaulLerner/ViQuAE --- license: cc-by-4.0 ---
PaulLerner/viquae_dataset
See https://github.com/PaulLerner/ViQuAE --- license: cc-by-4.0 ---
PaulLerner/viquae_images
See https://github.com/PaulLerner/ViQuAE --- license: cc-by-4.0 ---
PaulLerner/viquae_wikipedia
See https://github.com/PaulLerner/ViQuAE --- license: cc-by-3.0 ---
Pengfei/asfwe
Pengfei/test1
This is the dataset
Perkhad/corejur
PlanTL-GOB-ES/SQAC
--- annotations_creators: - expert-generated language_creators: - found language: - es license: - cc-by-sa-4.0 multilinguality: - monolingual pretty_name: Spanish Question Answering Corpus (SQAC) source_datasets: - original task_categories: - question-answering task_ids: - extractive-qa --- # SQAC (Spanish Question-Answering Corpus) ## Dataset Description SQAC is an extractive QA dataset for the Spanish language. - **Paper:** [MarIA: Spanish Language Models](https://upcommons.upc.edu/bitstream/handle/2117/367156/6405-5863-1-PB%20%281%29.pdf?sequence=1) - **Point of Contact:** carlos.rodriguez1@bsc.es - **Leaderboard:** [EvalEs] (https://plantl-gob-es.github.io/spanish-benchmark/) ### Dataset Summary Contains 6,247 contexts and 18,817 questions with their respective answers, 1 to 5 for each fragment. The sources of the contexts are: * Encyclopedic articles from the [Spanish Wikipedia](https://es.wikipedia.org/), used under [CC-by-sa licence](https://creativecommons.org/licenses/by-sa/3.0/legalcode). * News articles from [Wikinews](https://es.wikinews.org/), used under [CC-by licence](https://creativecommons.org/licenses/by/2.5/). * Newswire and literature text from the [AnCora corpus](http://clic.ub.edu/corpus/en), used under [CC-by licence](https://creativecommons.org/licenses/by/4.0/legalcode). ### Supported Tasks Extractive-QA ### Languages - Spanish (es) ### Directory Structure - README.md - SQAC.py - dev.json - test.json - train.json ## Dataset Structure ### Data Instances <pre> { 'id': '6cf3dcd6-b5a3-4516-8f9e-c5c1c6b66628', 'title': 'Historia de Japón', 'context': 'La historia de Japón (日本の歴史 o 日本史, Nihon no rekishi / Nihonshi?) es la sucesión de hechos acontecidos dentro del archipiélago japonés. Algunos de estos hechos aparecen aislados e influenciados por la naturaleza geográfica de Japón como nación insular, en tanto que otra serie de hechos, obedece a influencias foráneas como en el caso del Imperio chino, el cual definió su idioma, su escritura y, también, su cultura política. Asimismo, otra de las influencias foráneas fue la de origen occidental, lo que convirtió al país en una nación industrial, ejerciendo con ello una esfera de influencia y una expansión territorial sobre el área del Pacífico. No obstante, dicho expansionismo se detuvo tras la Segunda Guerra Mundial y el país se posicionó en un esquema de nación industrial con vínculos a su tradición cultural.', 'question': '¿Qué influencia convirtió Japón en una nación industrial?', 'answers': { 'text': ['la de origen occidental'], 'answer_start': [473] } } </pre> ### Data Fields <pre> { id: str title: str context: str question: str answers: { answer_start: [int] text: [str] } } </pre> ### Data Splits | Split | Size | | ------------- | ------------- | | `train` | 15,036 | | `dev` | 1,864 | | `test` | 1.910 | ## Content analysis ### Number of articles, paragraphs and questions * Number of articles: 3,834 * Number of contexts: 6,247 * Number of questions: 18,817 * Number of sentences: 48,026 * Questions/Context ratio: 3.01 * Sentences/Context ratio: 7.70 ### Number of tokens * Total tokens in context: 1,561,616 * Average tokens/context: 250 * Total tokens in questions: 203,235 * Average tokens/question: 10.80 * Total tokens in answers: 90,307 * Average tokens/answer: 4.80 ### Lexical variation 46.38% of the words in the Question can be found in the Context. ### Question type | Question | Count | % | |----------|-------:|---:| | qué | 6,381 | 33.91 % | | quién/es | 2,952 | 15.69 % | | cuál/es | 2,034 | 10.81 % | | cómo | 1,949 | 10.36 % | | dónde | 1,856 | 9.86 % | | cuándo | 1,639 | 8.71 % | | cuánto | 1,311 | 6.97 % | | cuántos | 495 |2.63 % | | adónde | 100 | 0.53 % | | cuánta | 49 | 0.26 % | | no question mark | 43 | 0.23 % | | cuántas | 19 | 0.10 % | ## Dataset Creation ### Curation Rationale For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines from SQUAD 1.0 [(Rajpurkar, Pranav et al.)](http://arxiv.org/abs/1606.05250). ### Source Data #### Initial Data Collection and Normalization The source data are scraped articles from Wikinews, the Spanish Wikipedia and the AnCora corpus. - [Spanish Wikipedia](https://es.wikipedia.org) - [Spanish Wikinews](https://es.wikinews.org/) - [AnCora corpus](http://clic.ub.edu/corpus/en) #### Who are the source language producers? Contributors to the aforementioned sites. ### Annotations #### Annotation process We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [(Rajpurkar, Pranav et al.)](http://arxiv.org/abs/1606.05250). #### Who are the annotators? Native language speakers. ### Personal and Sensitive Information No personal or sensitive information included. ## Considerations for Using the Data ### Social Impact of Dataset This corpus contributes to the development of language models in Spanish. ### Discussion of Biases No postprocessing steps were applied to mitigate potential social biases. ## Additional Information ### Dataset Curators Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es). For further information, send an email to (plantl-gob-es@bsc.es). This work was funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://avancedigital.mineco.gob.es/en-us/Paginas/index.aspx) within the framework of the [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx). ### Licensing information This work is licensed under [CC Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) License. Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) ### Citation Information ``` @article{maria, author = {Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquin Silveira-Ocampo and Casimiro Pio Carrino and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Aitor Gonzalez-Agirre and Marta Villegas}, title = {MarIA: Spanish Language Models}, journal = {Procesamiento del Lenguaje Natural}, volume = {68}, number = {0}, year = {2022}, issn = {1989-7553}, url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405}, pages = {39--60} } ``` ### Contributions [N/A]
PlanTL-GOB-ES/cantemist-ner
--- annotations_creators: - expert-generated language: - es tags: - biomedical - clinical - spanish multilinguality: - monolingual task_categories: - token-classification task_ids: - named-entity-recognition license: - cc-by-4.0 --- # CANTEMIST ## Dataset Description Manually classified collection of Spanish oncological clinical case reports. - **Homepage:** [zenodo](https://zenodo.org/record/3978041) - **Paper:** [Named Entity Recognition, Concept Normalization and Clinical Coding: Overview of the Cantemist Track for Cancer Text Mining in Spanish, Corpus, Guidelines, Methods and Results](https://www.researchgate.net/profile/Antonio-Miranda-Escalada-2/publication/352786464_Named_Entity_Recognition_Concept_Normalization_and_Clinical_Coding_Overview_of_the_Cantemist_Track_for_Cancer_Text_Mining_in_Spanish_Corpus_Guidelines_Methods_and_Results/links/60d98a3b458515d6fbe382d8/Named-Entity-Recognition-Concept-Normalization-and-Clinical-Coding-Overview-of-the-Cantemist-Track-for-Cancer-Text-Mining-in-Spanish-Corpus-Guidelines-Methods-and-Results.pdf) - **Point of Contact:** encargo-pln-life@bsc.es ### Dataset Summary Collection of 1301 oncological clinical case reports written in Spanish, with tumor morphology mentions manually annotated and mapped by clinical experts to a controlled terminology. Every tumor morphology mention is linked to an eCIE-O code (the Spanish equivalent of ICD-O). The training subset contains 501 documents, the development subsets 500, and the test subset 300. The original dataset is distributed in [Brat](https://brat.nlplab.org/standoff.html) format. This dataset was designed for the CANcer TExt Mining Shared Task, sponsored by [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx). For further information, please visit [the official website](https://temu.bsc.es/cantemist/). ### Supported Tasks Named Entity Recognition (NER) ### Languages - Spanish (es) ### Directory Structure * README.md * cantemist.py * train.conll * dev.conll * test.conll ## Dataset Structure ### Data Instances Three four-column files, one for each split. ### Data Fields Every file has 4 columns: * 1st column: Word form or punctuation symbol * 2nd column: Original BRAT file name * 3rd column: Spans * 4th column: IOB tag #### Example <pre> El cc_onco101 662_664 O informe cc_onco101 665_672 O HP cc_onco101 673_675 O es cc_onco101 676_678 O compatible cc_onco101 679_689 O con cc_onco101 690_693 O adenocarcinoma cc_onco101 694_708 B-MORFOLOGIA_NEOPLASIA moderadamente cc_onco101 709_722 I-MORFOLOGIA_NEOPLASIA diferenciado cc_onco101 723_735 I-MORFOLOGIA_NEOPLASIA que cc_onco101 736_739 O afecta cc_onco101 740_746 O a cc_onco101 747_748 O grasa cc_onco101 749_754 O peripancreática cc_onco101 755_770 O sobrepasando cc_onco101 771_783 O la cc_onco101 784_786 O serosa cc_onco101 787_793 O , cc_onco101 793_794 O infiltración cc_onco101 795_807 O perineural cc_onco101 808_818 O . cc_onco101 818_819 O </pre> ### Data Splits | Split | Size | | ------------- | ------------- | | `train` | 19,397 | | `dev` | 18,165 | | `test` | 11,168 | ## Dataset Creation ### Curation Rationale For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. ### Source Data #### Initial Data Collection and Normalization The selected clinical case reports are fairly similar to hospital health records. To increase the usefulness and practical relevance of the CANTEMIST corpus, we selected clinical cases affecting all genders and that comprised most ages (from children to the elderly) and of various complexity levels (solid tumors, hemato-oncological malignancies, neuroendocrine cancer...). The CANTEMIST cases include clinical signs and symptoms, personal and family history, current illness, physical examination, complementary tests (blood tests, imaging, pathology), diagnosis, treatment (including adverse effects of chemotherapy), evolution and outcome. #### Who are the source language producers? Humans, there is no machine generated data. ### Annotations #### Annotation process The manual annotation of the Cantemist corpus was performed by clinical experts following the Cantemist guidelines (for more detail refer to this [paper](http://ceur-ws.org/Vol-2664/cantemist_overview.pdf)). These guidelines contain rules for annotating morphology neoplasms in Spanish oncology clinical cases, as well as for mapping these annotations to eCIE-O. A medical doctor was regularly consulted by annotators (scientists with PhDs on cancer-related subjects) for the most difficult pathology expressions. This same doctor periodically checked a random selection of annotated clinical records and these annotations were compared and discussed with the annotators. To normalize a selection of very complex cases, MD specialists in pathology from one of the largest university hospitals in Spain were consulted. #### Who are the annotators? Clinical experts. ### Personal and Sensitive Information No personal or sensitive information included. ## Considerations for Using the Data ### Social Impact of Dataset This corpus contributes to the development of medical language models in Spanish. ### Discussion of Biases Not applicable. ## Additional Information ### Dataset Curators Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es). For further information, send an email to (plantl-gob-es@bsc.es). This work was funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://avancedigital.mineco.gob.es/en-us/Paginas/index.aspx) within the framework of the [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx). ### Licensing information This work is licensed under [CC Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) License. Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) ### Citation Information ```bibtex @article{cantemist, title={Named Entity Recognition, Concept Normalization and Clinical Coding: Overview of the Cantemist Track for Cancer Text Mining in Spanish, Corpus, Guidelines, Methods and Results.}, author={Miranda-Escalada, Antonio and Farr{\'e}, Eul{\`a}lia and Krallinger, Martin}, journal={IberLEF@ SEPLN}, pages={303--323}, year={2020} } ``` ### Contributions [N/A]
PlanTL-GOB-ES/pharmaconer
--- annotations_creators: - expert-generated language: - es tags: - biomedical - clinical - spanish multilinguality: - monolingual task_categories: - token-classification task_ids: - named-entity-recognition license: - cc-by-4.0 --- # PharmaCoNER ## Dataset Description Manually classified collection of Spanish clinical case studies. - **Homepage:** [zenodo](https://zenodo.org/record/4270158) - **Paper:** [PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track](https://aclanthology.org/D19-5701/) - **Point of Contact:** encargo-pln-life@bsc.es ### Dataset Summary Manually classified collection of clinical case studies derived from the Spanish Clinical Case Corpus (SPACCC), an open access electronic library that gathers Spanish medical publications from [SciELO](https://scielo.org/). The PharmaCoNER corpus contains a total of 396,988 words and 1,000 clinical cases that have been randomly sampled into 3 subsets. The training set contains 500 clinical cases, while the development and test sets contain 250 clinical cases each. In terms of training examples, this translates to a total of 8129, 3787 and 3952 annotated sentences in each set. The original dataset is distributed in [Brat](https://brat.nlplab.org/standoff.html) format. The annotation of the entire set of entity mentions was carried out by domain experts. It includes the following 4 entity types: NORMALIZABLES, NO_NORMALIZABLES, PROTEINAS and UNCLEAR. This dataset was designed for the PharmaCoNER task, sponsored by [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx). For further information, please visit [the official website](https://temu.bsc.es/pharmaconer/). ### Supported Tasks Named Entity Recognition (NER) ### Languages - Spanish (es) ### Directory Structure * README.md * pharmaconer.py * dev-set_1.1.conll * test-set_1.1.conll * train-set_1.1.conll ## Dataset Structure ### Data Instances Three four-column files, one for each split. ### Data Fields Every file has four columns: * 1st column: Word form or punctuation symbol * 2nd column: Original BRAT file name * 3rd column: Spans * 4th column: IOB tag #### Example <pre> La S0004-06142006000900008-1 123_125 O paciente S0004-06142006000900008-1 126_134 O tenía S0004-06142006000900008-1 135_140 O antecedentes S0004-06142006000900008-1 141_153 O de S0004-06142006000900008-1 154_156 O hipotiroidismo S0004-06142006000900008-1 157_171 O , S0004-06142006000900008-1 171_172 O hipertensión S0004-06142006000900008-1 173_185 O arterial S0004-06142006000900008-1 186_194 O en S0004-06142006000900008-1 195_197 O tratamiento S0004-06142006000900008-1 198_209 O habitual S0004-06142006000900008-1 210_218 O con S0004-06142006000900008-1 219-222 O atenolol S0004-06142006000900008-1 223_231 B-NORMALIZABLES y S0004-06142006000900008-1 232_233 O enalapril S0004-06142006000900008-1 234_243 B-NORMALIZABLES </pre> ### Data Splits | Split | Size | | ------------- | ------------- | | `train` | 8,129 | | `dev` | 3,787 | | `test` | 3,952 | ## Dataset Creation ### Curation Rationale For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. ### Source Data #### Initial Data Collection and Normalization Manually classified collection of clinical case report sections. The clinical cases were not restricted to a single medical discipline, covering a variety of medical disciplines, including oncology, urology, cardiology, pneumology or infectious diseases. This is key to cover a diverse set of chemicals and drugs. #### Who are the source language producers? Humans, there is no machine generated data. ### Annotations #### Annotation process The annotation process of the PharmaCoNER corpus was inspired by previous annotation schemes and corpora used for the BioCreative CHEMDNER and GPRO tracks, translating the guidelines used for these tracks into Spanish and adapting them to the characteristics and needs of clinically oriented documents by modifying the annotation criteria and rules to cover medical information needs. This adaptation was carried out in collaboration with practicing physicians and medicinal chemistry experts. The adaptation, translation and refinement of the guidelines was done on a sample set of the SPACCC corpus and linked to an iterative process of annotation consistency analysis through interannotator agreement (IAA) studies until a high annotation quality in terms of IAA was reached. #### Who are the annotators? Practicing physicians and medicinal chemistry experts. ### Personal and Sensitive Information No personal or sensitive information included. ## Considerations for Using the Data ### Social Impact of Dataset This corpus contributes to the development of medical language models in Spanish. ### Discussion of Biases [N/A] ## Additional Information ### Dataset Curators Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es). For further information, send an email to (plantl-gob-es@bsc.es). This work was funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://avancedigital.mineco.gob.es/en-us/Paginas/index.aspx) within the framework of the [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx). ### Licensing information This work is licensed under [CC Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) License. Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) ### Citation Information ```bibtex @inproceedings{, title = "PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track", author = "Gonzalez-Agirre, Aitor and Marimon, Montserrat and Intxaurrondo, Ander and Rabal, Obdulia and Villegas, Marta and Krallinger, Martin", booktitle = "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/D19-5701", doi = "10.18653/v1/D19-5701", pages = "1--10", } ``` ### Contributions [N/A]
Plim/common_voice_7_0_fr_processed
--- language: - fr ---
Plim/fr_corpora_parliament_processed
--- language: fr ---
Plim/fr_wikipedia_processed
--- language: fr ---
Plim/language_model_fr
--- language: fr ---
Pratik/Gujarati_OpenSLR
OpenSLR is a site devoted to hosting speech and language resources, such as training corpora for speech recognition, and software related to speech recognition. They intend to be a convenient place for anyone to put resources that they have created, so that they can be downloaded publicly. They aim to provide a central, hassle-free place for others to put their speech resources. see there http://www.openslr.org/contributions.html #Supported Task Automatic Speech Recognition #Languages Gujarati Identifier: SLR78 Summary: Data set which contains recordings of native speakers of Gujarati. Category: Speech License: Attribution-ShareAlike 4.0 International Downloads (use a mirror closer to you): about.html [1.5K] (Information about the data set ) Mirrors: [China] LICENSE [20K] (License information for the data set ) Mirrors: [China] line_index_female.tsv [423K] (Lines recorded by the female speakers ) Mirrors: [China] line_index_male.tsv [393K] (Lines recorded by the male speakers ) Mirrors: [China] gu_in_female.zip [917M] (Archive containing recordings from female speakers ) Mirrors: [China] gu_in_male.zip [825M] (Archive file recordings from male speakers ) Mirrors: [China] About this resource: This data set contains transcribed high-quality audio of Gujarati sentences recorded by volunteers. The data set consists of wave files, and a TSV file (line_index.tsv). The file line_index.tsv contains a anonymized FileID and the transcription of audio in the file. The data set has been manually quality checked, but there might still be errors. Please report any issues in the following issue tracker on GitHub. https://github.com/googlei18n/language-resources/issues See LICENSE file for license information. Copyright 2018, 2019 Google, Inc. If you use this data in publications, please cite it as follows: @inproceedings{he-etal-2020-open, title = {{Open-source Multi-speaker Speech Corpora for Building Gujarati, Kannada, Malayalam, Marathi, Tamil and Telugu Speech Synthesis Systems}}, author = {He, Fei and Chu, Shan-Hui Cathy and Kjartansson, Oddur and Rivera, Clara and Katanova, Anna and Gutkin, Alexander and Demirsahin, Isin and Johny, Cibu and Jansche, Martin and Sarin, Supheakmungkol and Pipatsrisawat, Knot}, booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference (LREC)}, month = may, year = {2020}, address = {Marseille, France}, publisher = {European Language Resources Association (ELRA)}, pages = {6494--6503}, url = {https://www.aclweb.org/anthology/2020.lrec-1.800}, ISBN = "{979-10-95546-34-4}, }
R0bk/XFUN
--- license: mit ---
Remesita/tagged_reviews
RohanAiLab/persian_blog
--- language: - fa source_datasets: - original task_categories: - text-generation task_ids: - language-modeling pretty_name: persian_blog --- # Persian Blog # Dataset Summary persian_news_dataset is a collection of 400k blog posts. these posts have been gathered from more than 10 websites. This dataset can be used in different NLP tasks like language modeling and text generation tasks. This effort is part of a bigger perspective to have several datasets in Persian language for different tasks that have two important factors: `free` and `easy-to-use`. Here is a quick HOW-TO for using this dataset in datasets library:[Demo-datasets](https://saied71.github.io/RohanAiLab/2021/09/03/Demo-datasets.html) # Description As discussed before, this dataset contains 5M news articles. Each article has these three attributes: text, title, category. Here is a sample of dataset: ``` text : چرا کودکان به روانشناس نیاز دارند؟ روانشناسی کودکانکودکان همچون غنچه‌های زیبا هستند که برای شکوفایی و به ثمر رسیدن نیاز به مراقبت و رسیدگی دارند . روانشناس کودک فردیست که از زمان بدو تولد کودک در مراحل مختلف زندگی کودک در کنار والدین وی می‌باشد و به چگونگی تربیت کودک کمک می‌کند تا به بهترین شکل رشد کند . چرا که روانشناس کودک با روحیات ، نیاز‌ها و مشکلات کودکان و همچنین چگونگی برقراری ارتباط بین کودک و والدین وی آشنایی کامل دارد .بسیاری از کودکان در سنین مختلف بخاطر شرایط زندگی ، دچار انواع ناسازگاری‌ها و مشکلات در زندگی خود می‌شود از ناسازگاری کودکان می‌توان به موارد زیر اشاره کرد : 1 . پرخاشگری 2 . بد دهنی 3 . اختلال در خوابیدن 4 . اختلال در غذا خوردن و کم اشتهایی 5 . حالت افسردگی و اضطراب 6 . ترس از محیط پیرامون 7 . عدم آمادگی برای ورود به جامعه 8 . وجود مشکل در محیط مدرسه 9 . عدم تمرکز 10 . جویدن ناخن ها 11 . انزوا و گوشه گیری 12 . عدم هم بازی شدن با هم سن و سال هاو .این گونه ناسازگاری‌ها در زندگی آینده کودک نقش به سزایی دارد .روانشناس کودکیک روانشناس کودک خوب ، با دلسوزی و با تکیه بر تجربیات و تخصص خود می‌کوشد تا رفتار‌های کودک را مورد ارزیابی و بررسی قرار دهد سپس سعی می‌کند تا رفتار‌های بعدی کودک را پیش بینی کند و منشاء این مشکلات و سطح پیشرفت آن را بیابد. سپس او بهترین روش‌های درمان برای بهبود اختلال کودک را می‌یابد و با کمک والدین این ناسازگاری‌ها ، مشکلات و ناهنجاری‌ها را حل کرده و نهایتا رابطه‌ای دوستانه و صمیمانه بین کودک و والدین وی ایجاد می‌نماید تاآینده‌ای درخشان در انتظار کودک شما باشد . ``` # Citation ``` rohanailab@gmail.com title={persian_blog}, author={Saied Alimoradi}, year={2021} } ```
RohanAiLab/persian_daily_news
--- pretty_name: Persian Daily News language: - fa source_datasets: - original task_categories: - Summarization - sequence-modeling --- # Persian Daily News # Dataset Summary persian_daily_news is a collection of 2 million of unique news articles with the headline for each article. dataset can be used in abstractive summarization and paraphrasing tasks. This effort is part of a bigger perspective to have several datasets in Persian language(and other low resources languages) for different tasks that have two important factors: `free` and `easy-to-use`. Here is a quick HOW-TO for using this dataset in datasets library:[Demo-datasets](https://saied71.github.io/RohanAiLab/2021/09/03/Demo-datasets.html) # Description As discussed before, this dataset contains 2M news articles. Each article has these two attributes: text and summary. Here is a sample of dataset: ``` text: به گزارش گروه بین الملل ، خبرگزاری رسمی قطر اعلام کرد، بعد از امضای موافقتنامه همکاری نظامی بین قطر و روسیه این امکان فراهم شده است تا نظامیان قطری برای تکمیل آموزش‌های نظامی خود عازم روسیه شده و در آنجا تعلیم ببینند.در چارچوب این قرارداد که امروز یک شنبه توسط سرتیپ ستاد عبدالعزیز صالح السلیطی رییس هییت همکاری‌های بین المللی نظامی قطر و سرلشکر ویکتور جوریمیکین رییس اداره عمومی نیروی انسانی وزارت دفاع روسیه به امضا رسید، روابط نظامی بین دوحه و مسکو در زمینه موسسات آموزش‌های نظامی شاهد توسه قابل توجهی خواهد شد.به نوشته این خبرگزاری روابط قطر و روسیه در حال گسترش بوده و به سوی شکل‌گیری مشارکت راهبردی در تمامی زمینه‌ها پیش می‌رود. summary: از این پس نظامیان قطری برای آموزش عازم روسیه شده و در موسسات آموزش نظامی این کشور تعلیم خواهند دید. ``` # Citation ``` rohanailab@gmail.com title={persian_daily_news}, author={Saied Alimoradi}, year={2021} } ```
RohanAiLab/persian_news_dataset
--- pretty_name: persian_news_datset language: - fa source_datasets: - original task_categories: - text-classification - sequence-modeling task_ids: - language-modeling - multi-class-classification --- # Persian_News_Dataset # Dataset Summary persian_news_dataset is a collection of 5 million news articles. News articles have been gathered from more than 10 news agencies for the last 12 years. This dataset can be used in different NLP tasks like language modeling, classification, supervised topic modeling,... This effort is part of a bigger perspective to have several datasets in Persian language for different tasks that have two important factors: `free` and `easy-to-use`. Here is a quick HOW-TO for using this dataset in datasets library:[Demo-datasets](https://saied71.github.io/RohanAiLab/2021/09/03/Demo-datasets.html) # Description As discussed before, this dataset contains 5M news articles. Each article has these three attributes: text, title, category. Here is a sample of dataset: ``` text :سه‌شنبه شب از دور برگشت مرحله نیمه‌نهایی لیگ قهرمانان اروپا، منچسترسیتی در ورزشگاه «اتحاد» میزبان پاری‌سن‌ژرمن بود و با ارائه نمایشی حساب شده و تحسین برانگیز به پیروزی دو بر صفر دست یافت.بازی رفت در پاریس با برتری دو بر یک سیتی به اتمام رسیده بود و با این اوصاف تیم تحت هدایت «پپ گواردیولا» در مجموع با پیروزی چهار بر یک، راهی فینال شد.بارش برف موجب سفیدپوش شدن زمین شده بود و همین امر بر عملکرد تیم‌ها تاثیر گذاشت. دیدار در حالی آغاز به کار کرد که «امباپه» ستاره پاریسی‌ها که به تازگی از مصدومیت رهایی پیدا کرده است، نیمکت‌نشین بود.بازی با حملات میهمان آغاز شد و در دقیقه هفتم داور هلندی با تصمیمی عجیب اعتقاد داشت توپ به دست «زینچنکو» مدافع سیتی برخورد کرده و نقطه پنالتی را نشان داد، اما با استفاده از سیستم کمک داور ویدئویی، پنالتی پس گرفته شد. سیتی خیلی زود به هدفش رسید و در دقیقه ۱۰ حرکت عالی او و پاس به «دی‌بروین» موجب شد تا توپ در یک رفت و برگشت به «ریاض محرز» رسیده و این بازیکن الجزایری گل نخست بازی را برای میزبان به ارمغان آورد.در دقیقه ۱۶ ضربه سر «مارکینیوش» مدافع پیش‌تاخته پاری‌سن‌ژرمن با بدشانسی به تیرک دروازه سیتی برخورد کرد.در ادامه برای دقایقی، بازیکنان در میانه میدان خطاهای متعددی انجام دادند و این امر موجب ایجاد چند درگیری شد.هرچند نماینده فرانسه درپی جبران مافات بود اما برنامه‌ای برای رسیدن به این مهم نداشت تا نیمه نخست با همین یک گل همراه شود.در نیمه دوم هم حملات پاریسی‌ها سودی نداشت و در طرف مقابل منچسترسیتی، بازی بسیار هوشمندانه‌ای ارائه کرد.در دقیقه ۶۲ و در ضد حمله‌ای برق آسا، «فیل فودن» با پاسی عالی توپ را به «ریاض محرز» رساند تا این بازیکن گل دوم خود و تیمش را ثبت کرده و سند صعود سیتی به فینال را امضا کند.در دقیقه ۶۸ «آنخل دی‌ماریا» وینگر آرژانتینی تیم پاری‌سن‌ژرمن پس از درگیری با «فرناندینو» با کارت قرمز داور از زمین اخراج شد تا کار تیمش تمام شود.در این بازی پاری‌سن‌ژرمن با تفکرات «پوچتینو»، طراحی حملات خود را به «نیمار» سپرده بود اما این بازیکن مطرح برزیلی با حرکات انفرادی بیش از از اندازه، عملکرد خوبی نداشت و حملات تیمش را خراب کرد.در نهایت بازی با پیروزی سیتی همراه شد و مالکان ثروتمند منچسترسیتی به آرزوی خود رسیده و پس از سال‌ها سرمایه‌گذاری به دیدار نهایی رسیدند. این اولین حضور سیتی در فینال لیگ قهرمانان اروپا است.چهارشنبه شب در دیگر دیدار دور برگشت نیمه‌نهایی، چلسی انگلیس در ورزشگاه «استمفورد بریج» شهر لندن پذیرای رئال‌مادرید اسپانیا است. بازی رفت با تساوی یک بر یک به اتمام رسید title:آرزوی سیتی برآورده شد؛ صعود شاگردان «گواردیولا» به فینال category:ورزش ``` # Citation ``` rohanailab@gmail.com title={persian_news_dataset}, author={Saied Alimoradi}, year={2021} } ```
SCourthial/test
SajjadAyoubi/persian_qa
# PersianQA: a dataset for Persian Question Answering Persian Question Answering (PersianQA) Dataset is a reading comprehension dataset on Persian Wikipedia. The crowd-sourced dataset consists of more than 9,000 entries. Each entry can be either an impossible to answer or a question with one or more answers spanning in the passage (the context) from which the questioner proposed the question. Much like the SQuAD2.0 dataset, the impossible or unanswerable questions can be utilized to create a system which "knows that it doesn't know the answer". On top of that, the dataset has 900 test data available. Moreover, the first models trained on the dataset, Transformers, are available. All the crowd workers of the dataset are native Persian speakers. Also, it worth mentioning that the contexts are collected from all categories of the Wiki (Historical, Religious, Geography, Science, etc.) At the moment, each context has 7 pairs of questions with one answer and 3 impossible questions. ## Dataset ### Access/Download - You can find the data under the [`dataset/`](https://github.com/sajjjadayobi/PersianQA/tree/main/dataset) directory. and use it like this ```python import read_qa # is avalible at src/read_ds.py train_ds = read_qa('pqa_train.json') test_ds = read_qa('pqa_test.json') ``` - Alternatively, you can also access the data through the HuggingFace🤗 datasets library - First, you need to install datasets using this command in your terminal: ```sh pip install -q datasets ``` - Then import `persian_qa` dataset using `load_dataset`: ```python from datasets import load_dataset dataset = load_dataset("SajjadAyoubi/persian_qa") ``` ### Examples | Title | Context | Question | Answer | | :---: | :---------------------: | :--------: | :----: | | خوب، بد، زشت | خوب، بد، زشت یک فیلم درژانر وسترن اسپاگتی حماسی است که توسط سرجو لئونه در سال ۱۹۶۶ در ایتالیا ساخته شد. زبانی که بازیگران این فیلم به آن تکلم می‌کنند مخلوطی از ایتالیایی و انگلیسی است. این فیلم سومین (و آخرین) فیلم از سه‌گانهٔ دلار (Dollars Trilogy) سرجو لئونه است. این فیلم در حال حاضر در فهرست ۲۵۰ فیلم برتر تاریخ سینما در وب‌گاه IMDB با امتیاز ۸٫۸ از ۱۰، رتبهٔ هشتم را به خود اختصاص داده‌است و به عنوان بهترین فیلم وسترن تاریخ سینمای جهان شناخته می‌شود. «خوب» (کلینت ایستوود، در فیلم، با نام «بلوندی») و «زشت» (ایلای والاک، در فیلم، با نام «توکو») با هم کار می‌کنند و با شگرد خاصی، به گول زدن کلانترهای مناطق مختلف و پول درآوردن از این راه می‌پردازند. «بد» (لی وان کلیف) آدمکشی حرفه‌ای است که به‌خاطر پول حاضر به انجام هر کاری است. «بد»، که در فیلم او را «اِنجل آیز (اِینجل آیز)» (به انگلیسی: Angel Eyes) صدا می‌کنند. به‌دنبال گنجی است که در طی جنگ‌های داخلی آمریکا، به دست سربازی به نام «جکسون»، که بعدها به «کارسون» نامش را تغییر داده، مخفی شده‌است. | در فیلم خوب بد زشت شخصیت ها کجایی صحبت می کنند؟ | مخلوطی از ایتالیایی و انگلیسی | | قرارداد کرسنت | قرارداد کرسنت قراردادی برای فروش روزانه معادل ۵۰۰ میلیون فوت مکعب، گاز ترش میدان سلمان است، که در سال ۱۳۸۱ و در زمان وزارت بیژن نامدار زنگنه در دولت هفتم مابین شرکت کرسنت پترولیوم و شرکت ملی نفت ایران منعقد گردید. مذاکرات اولیه این قرارداد از سال ۱۹۹۷ آغاز شد و در نهایت، سال ۲۰۰۱ (۱۳۸۱) به امضای این تفاهم نامه مشترک انجامید. بر اساس مفاد این قرارداد، مقرر شده بود که از سال ۲۰۰۵ با احداث خط لوله در خلیج فارس، گاز فرآورده نشده میدان سلمان (مخزن مشترک با ابوظبی)، به میزان روزانه ۵۰۰ میلیون فوت مکعب (به قول برخی منابع ۶۰۰ میلیون فوت مکعب) به امارات صادر شود. این قرارداد مطابق قوانین داخلی ایران بسته شده‌ و تنها قرارداد نفتی ایران است که از طرف مقابل خود، تضمین گرفته‌است. اجرای این پروژه در سال ۱۳۸۴ با دلایل ارائه شده از سوی دیوان محاسبات ایران از جمله تغییر نیافتن بهای گاز صادراتی و ثابت ماندن آن در هفت سال اول اجرای قرارداد متوقف شد. این در حالی است که طبق تعریف حقوقی، دیوان محاسبات ایران، حق دخالت در قراردادها، پیش از آنکه قراردادها اجرایی و مالی شوند را ندارد. | طرفین قرار داد کرسنت کیا بودن؟ | کرسنت پترولیوم و شرکت ملی نفت ایران | | چهارشنبه‌سوری | چهارشنبه‌سوری یکی از جشن‌های ایرانی است که از غروب آخرین سه‌شنبه ی ماه اسفند، تا پس از نیمه‌شب تا آخرین چهارشنبه ی سال، برگزار می‌شود و برافروختن و پریدن از روی آتش مشخصهٔ اصلی آن است. این جشن، نخستین جشن از مجموعهٔ جشن‌ها و مناسبت‌های نوروزی است که با برافروختن آتش و برخی رفتارهای نمادین دیگر، به‌صورت جمعی در فضای باز برگزار می‌شود. به‌گفتهٔ ابراهیم پورداوود چهارشنبه‌سوری ریشه در گاهنبارِ هَمَسْپَتْمَدَم زرتشتیان و نیز جشن نزول فروهرها دارد که شش روز پیش از فرارسیدن نوروز برگزار می‌شد. احتمال دیگر این است که چهارشنبه‌سوری بازمانده و شکل تحول‌یافته‌ای از جشن سده باشد، که احتمال بعیدی است. علاوه برافروختن آتش، آیین‌های مختلف دیگری نیز در بخش‌های گوناگون ایران در زمان این جشن انجام می‌شوند. برای نمونه، در تبریز، مردم به چهارشنبه‌بازار می‌روند که با چراغ و شمع، به‌طرز زیبایی چراغانی شده‌است. هر خانواده یک آینه، دانه‌های اسفند، و یک کوزه برای سال نو خریداری می‌کنند. همه‌ساله شهروندانی از ایران در اثر انفجارهای ناخوشایند مربوط به این جشن، کشته یا مصدوم می‌شوند. | نام جشن اخرین شنبه ی سال چیست؟ | No Answer | ### Statistic | Split | # of instances | # of unanswerables | avg. question length | avg. paragraph length | avg. answer length | | :---: | :------------: | :----------------: | :------------------: | :-------------------: | :----------------: | | Train | 9,000 | 2,700 | 8.39 | 224.58 | 9.61 | | Test | 938 | 280 | 8.02 | 220.18 | 5.99 | The lengths are on the token level. - for more about data and more example see [here](https://github.com/sajjjadayobi/PersianQA/tree/main/dataset#readme) ## Models Currently, two models (baseline) on [HuggingFace🤗](https://huggingface.co/SajjadAyoubi/) model hub are using the dataset. ## Citation Yet, we didn't publish any papers on the work. However, if you did, please cite us properly with an entry like one below. ```bibtex @misc{PersianQA, author = {Ayoubi, Sajjad \& Davoodeh, Mohammad Yasin}, title = {PersianQA: a dataset for Persian Question Answering}, year = 2021, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/SajjjadAyobi/PersianQA}}, } ```
Sakonii/nepalitext-language-model-dataset
--- annotations_creators: - no-annotation language_creators: - found - other language: - ne license: - cc0-1.0 multilinguality: - monolingual source_datasets: - extended|oscar - extended|cc100 task_categories: - text-generation task_ids: - language-modeling pretty_name: nepalitext-language-model-dataset --- # Dataset Card for "nepalitext-language-model-dataset" ### Dataset Summary "NepaliText" language modeling dataset is a collection of over 13 million Nepali text sequences (phrases/sentences/paragraphs) extracted by combining the datasets: [OSCAR](https://huggingface.co/datasets/oscar) , [cc100](https://huggingface.co/datasets/cc100) and a set of scraped Nepali articles on Wikipedia. ### Supported Tasks and Leaderboards This dataset is intended to pre-train language models and word representations on Nepali Language. ### Languages The data is focused on Nepali language, but may have instances of other languages as well. ## Dataset Structure ### Data Instances An example: ``` {'text': 'घरेलु मैदानमा भएको च्याम्पियन्स लिगको दोस्रो लेगमा एथ्लेटिको मड्रिडले आर्सनललाई एक शून्यले हराउँदै समग्रमा दुई एकको अग्रताका साथ फाइनलमा प्रवेश गरेको हो ।\n'} ``` ### Data Fields The data fields are: - `text`: a `string` feature. ### Data Splits train|test| ----:|---:| 13141222|268189| ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations The dataset does not contain any additional annotations. #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information Being extracted and scraped from variety of internet sources, Personal and sensitive information might be present. This must be considered before training deep learning models, specially in the case of text-generation models. ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@Sakonii](https://github.com/Sakonii) for adding this dataset.
Samip/func
Hello
SaulLu/Natural_Questions_HTML
This is a dataset extracted from the Natural Questions dataset This dataset is currently under development
SebastianS/github-issues
--- annotations_creators: [] language_creators: - crowdsourced language: - en-US license: [] multilinguality: - monolingual pretty_name: github-issues size_categories: - unknown source_datasets: [] task_categories: - text-classification task_ids: [] --- # Dataset Card for GitHub Issues ## Dataset Description this was an example dataset made from the huggingface course
SetFit/20_newsgroups
This is a version of the [20 newsgroups dataset](https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html#the-20-newsgroups-text-dataset) that is provided in Scikit-learn. From the Scikit-learn docs: > The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for training (or development) and the other one for testing (or for performance evaluation). The split between the train and test set is based upon a messages posted before and after a specific date. We followed the [recommended practice](https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html#filtering-text-for-more-realistic-training) to remove headers, signature blocks, and quotations from each news article.
SetFit/TREC-QC
# TREC Question Classification Question classification in coarse and fine-grained categories. Source: [Experimental Data for Question Classification](https://cogcomp.seas.upenn.edu/Data/QA/QC/) Xin Li, Dan Roth, Learning Question Classifiers. COLING'02, Aug., 2002.
SetFit/amazon_counterfactual
# Amazon Multilingual Counterfactual Dataset The dataset contains sentences from Amazon customer reviews (sampled from Amazon product review dataset) annotated for counterfactual detection (CFD) binary classification. Counterfactual statements describe events that did not or cannot take place. Counterfactual statements may be identified as statements of the form – If p was true, then q would be true (i.e. assertions whose antecedent (p) and consequent (q) are known or assumed to be false). The key features of this dataset are: * The dataset is multilingual and contains sentences in English, German, and Japanese. * The labeling was done by professional linguists and high quality was ensured. * The dataset is supplemented with the annotation guidelines and definitions, which were worked out by professional linguists. We also provide the clue word lists, which are typical for counterfactual sentences and were used for initial data filtering. The clue word lists were also compiled by professional linguists. Please see the [paper](https://arxiv.org/abs/2104.06893) for the data statistics, detailed description of data collection and annotation. GitHub repo URL: https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset ## Usage You can load each of the languages as follows: ``` from datasets import get_dataset_config_names dataset_id = "SetFit/amazon_counterfactual" # Returns ['de', 'en', 'en-ext', 'ja'] configs = get_dataset_config_names(dataset_id) # Load English subset dset = load_dataset(dataset_id, name="en") ```
SetFit/amazon_counterfactual_en
# Amazon Counterfactual Statements This dataset is the *en-ext* split from [SetFit/amazon_counterfactual](https://huggingface.co/datasets/SetFit/amazon_counterfactual). As the original test set is rather small (1333 examples), a different split was created with 50-50 for training & testing. The dataset is described in [amazon-multilingual-counterfactual-dataset](https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset) / [Paper](https://arxiv.org/pdf/2104.06893.pdf) It contains statements from Amazon reviews about events that did not or cannot take place.
SetFit/bbc-news
# BBC News Topic Classification Dataset on [BBC News Topic Classification](https://www.kaggle.com/yufengdev/bbc-text-categorization/data): 2225 articles, each labeled under one of 5 categories: business, entertainment, politics, sport or tech.
SetFit/emotion
** Attention: There appears an overlap in train / test. I trained a model on the train set and achieved 100% acc on test set. With the original emotion dataset this is not the case (92.4% acc)**
SetFit/enron_spam
This is a version of the [Enron Spam Email Dataset](https://github.com/MWiechmann/enron_spam_data), containing emails (subject + message) and a label whether it is spam or ham.
SetFit/ethos
# Ethos This dataset is a clone of the official [`ethos` dataset](https://huggingface.co/datasets/ethos) on the Hub. It contains both `binary` and `multilabel` subsets.
SetFit/ethos_binary
This is the binary split of [ethos](https://huggingface.co/datasets/ethos), split into train and test. It contains comments annotated for hate speech or not.
SetFit/go_emotions
# GoEmotions This dataset is a port of the official [`go_emotions` dataset](https://huggingface.co/datasets/go_emotions) on the Hub. It only contains the `simplified` subset as these are the only fields we need for text classification.
SetFit/hate_speech_offensive
# hate_speech_offensive This dataset is a version from [hate_speech_offensive](https://huggingface.co/datasets/hate_speech_offensive), splitted into train and test set.
SetFit/insincere-questions
This is a version of the [Quora Insincere Questions Classification](https://www.kaggle.com/c/quora-insincere-questions-classification). An insincere question is defined as a question intended to make a statement rather than look for helpful answers. About 6% of questions are labeled as insincere.
SetFit/mnli
# Glue MNLI This dataset is a port of the official [`mnli` dataset](https://huggingface.co/datasets/glue/viewer/mnli/train) on the Hub. It contains the matched version. Note that the premise and hypothesis columns have been renamed to text1 and text2 respectively. Also, the test split is not labeled; the label column values are always -1.
SetFit/mnli_mm
# Glue MNLI This dataset is a port of the official [`mnli` dataset](https://huggingface.co/datasets/glue/viewer/mnli/train) on the Hub. It contains the mismatched version. Note that the premise and hypothesis columns have been renamed to text1 and text2 respectively. Also, the test split is not labeled; the label column values are always -1.