id
stringlengths 2
115
| README
stringlengths 0
977k
|
---|---|
rcds/swiss_judgment_prediction | ---
pretty_name: Swiss-Judgment-Prediction
annotations_creators:
- found
language_creators:
- found
language:
- de
- fr
- it
- en
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
tags:
- judgement-prediction
dataset_info:
- config_name: de
features:
- name: id
dtype: int32
- name: year
dtype: int32
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: dismissal
1: approval
- name: language
dtype: string
- name: region
dtype: string
- name: canton
dtype: string
- name: legal area
dtype: string
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 104270719
num_examples: 35458
- name: validation
num_bytes: 12131878
num_examples: 4705
- name: test
num_bytes: 26056177
num_examples: 9725
download_size: 1000382331
dataset_size: 142458774
- config_name: fr
features:
- name: id
dtype: int32
- name: year
dtype: int32
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: dismissal
1: approval
- name: language
dtype: string
- name: region
dtype: string
- name: canton
dtype: string
- name: legal area
dtype: string
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 96807957
num_examples: 21179
- name: validation
num_bytes: 13031904
num_examples: 3095
- name: test
num_bytes: 33318359
num_examples: 6820
download_size: 1000382331
dataset_size: 143158220
- config_name: it
features:
- name: id
dtype: int32
- name: year
dtype: int32
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: dismissal
1: approval
- name: language
dtype: string
- name: region
dtype: string
- name: canton
dtype: string
- name: legal area
dtype: string
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 10773516
num_examples: 3072
- name: validation
num_bytes: 1045551
num_examples: 408
- name: test
num_bytes: 2474761
num_examples: 812
download_size: 1000382331
dataset_size: 14293828
- config_name: mt_de
features:
- name: id
dtype: int32
- name: year
dtype: int32
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: dismissal
1: approval
- name: language
dtype: string
- name: region
dtype: string
- name: canton
dtype: string
- name: legal area
dtype: string
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 106990696
num_examples: 24251
- name: validation
- name: test
download_size: 1000382331
dataset_size: 106990696
- config_name: mt_fr
features:
- name: id
dtype: int32
- name: year
dtype: int32
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: dismissal
1: approval
- name: language
dtype: string
- name: region
dtype: string
- name: canton
dtype: string
- name: legal area
dtype: string
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 117932134
num_examples: 38524
- name: validation
- name: test
download_size: 1000382331
dataset_size: 117932134
- config_name: mt_it
features:
- name: id
dtype: int32
- name: year
dtype: int32
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: dismissal
1: approval
- name: language
dtype: string
- name: region
dtype: string
- name: canton
dtype: string
- name: legal area
dtype: string
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 201749076
num_examples: 56631
- name: validation
- name: test
download_size: 1000382331
dataset_size: 201749076
- config_name: mt_en
features:
- name: id
dtype: int32
- name: year
dtype: int32
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: dismissal
1: approval
- name: language
dtype: string
- name: region
dtype: string
- name: canton
dtype: string
- name: legal area
dtype: string
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 196352783
num_examples: 59703
- name: validation
- name: test
download_size: 1000382331
dataset_size: 196352783
- config_name: all
features:
- name: id
dtype: int32
- name: year
dtype: int32
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: dismissal
1: approval
- name: language
dtype: string
- name: region
dtype: string
- name: canton
dtype: string
- name: legal area
dtype: string
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 211852192
num_examples: 59709
- name: validation
num_bytes: 26209333
num_examples: 8208
- name: test
num_bytes: 61849297
num_examples: 17357
download_size: 1000382331
dataset_size: 299910822
- config_name: all+mt
features:
- name: id
dtype: int32
- name: year
dtype: int32
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: dismissal
1: approval
- name: language
dtype: string
- name: region
dtype: string
- name: canton
dtype: string
- name: legal area
dtype: string
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 834876881
num_examples: 238818
- name: validation
num_bytes: 26209333
num_examples: 8208
- name: test
num_bytes: 61849297
num_examples: 17357
download_size: 1000382331
dataset_size: 922935511
---
# Dataset Card for "SwissJudgmentPrediction"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/JoelNiklaus/SwissCourtRulingCorpus
- **Repository:** https://github.com/JoelNiklaus/SwissCourtRulingCorpus
- **Paper:** https://arxiv.org/abs/2110.00806
- **Leaderboard:** N/A
- **Point of Contact:** [Joel Niklaus](mailto:joel.niklaus@inf.unibe.ch)
### Dataset Summary
**Documents**
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
### Supported Tasks and Leaderboards
SwissJudgmentPrediction can be used for the legal judgment prediction task.
The dataset is not yet part of an established benchmark.
### Languages
Switzerland has four official languages with 3 languages (German, French and Italian) being represented in more than 1000 Swiss Federal Supreme court decisions. The decisions are written by the judges and clerks in the language of the proceedings.
## Dataset Structure
In version 2 we added machine translated data using [EasyNMT](https://github.com/UKPLab/EasyNMT) for all documents into German, French, Italian and English as an additional training set.
### Data Instances
**Multilingual use of the dataset**
When the dataset is used in a multilingual setting selecting the the 'all_languages' flag:
```python
from datasets import load_dataset
dataset = load_dataset('swiss_judgment_prediction', 'all_languages')
```
```
{
"id": 48757,
"year": 2015,
"facts": "Sachverhalt: A. X._ war bei der Krankenversicherung C._ taggeldversichert. Infolge einer Arbeitsunf\u00e4higkeit leistete ihm die C._ vom 30. Juni 2011 bis am 28. Juni 2013 Krankentaggelder, wobei die Leistungen bis am 30. September 2012 auf Grundlage einer Arbeitsunf\u00e4higkeit von 100% und danach basierend auf einer Arbeitsunf\u00e4higkeit von 55% erbracht wurden. Die Neueinsch\u00e4tzung der Arbeitsf\u00e4higkeit erfolgte anhand eines Gutachtens der D._ AG vom 27. August 2012, welches im Auftrag der C._ erstellt wurde. X._ machte daraufhin gegen\u00fcber der C._ geltend, er sei entgegen dem Gutachten auch nach dem 30. September 2012 zu 100% arbeitsunf\u00e4hig gewesen. Ferner verlangte er von der D._ AG zwecks externer \u00dcberpr\u00fcfung des Gutachtens die Herausgabe s\u00e4mtlicher diesbez\u00fcglicher Notizen, Auswertungen und Unterlagen. A._ (als Gesch\u00e4ftsf\u00fchrer der D._ AG) und B._ (als f\u00fcr das Gutachten medizinisch Verantwortliche) antworteten ihm, dass sie alle Unterlagen der C._ zugestellt h\u00e4tten und dass allf\u00e4llige Fragen zum Gutachten direkt der C._ zu stellen seien. X._ reichte am 2. Januar 2014 eine Strafanzeige gegen A._ und B._ ein. Er wirft diesen vor, ihn durch die Nichtherausgabe der Dokumente und durch Behinderung des IV-Verfahrens gen\u00f6tigt, Daten besch\u00e4digt bzw. vernichtet und ein falsches \u00e4rztliches Zeugnis ausgestellt zu haben. Zudem h\u00e4tten sie durch die Verz\u00f6gerung des IV-Verfahrens und insbesondere durch das falsche \u00e4rztliche Zeugnis sein Verm\u00f6gen arglistig gesch\u00e4digt. B. Die Staatsanwaltschaft des Kantons Bern, Region Oberland, nahm das Verfahren wegen N\u00f6tigung, Datenbesch\u00e4digung, falschem \u00e4rztlichem Zeugnis und arglistiger Verm\u00f6genssch\u00e4digung mit Verf\u00fcgung vom 10. November 2014 nicht an die Hand. Das Obergericht des Kantons Bern wies die von X._ dagegen erhobene Beschwerde am 27. April 2015 ab, soweit darauf einzutreten war. C. X._ beantragt mit Beschwerde in Strafsachen, der Beschluss vom 27. April 2015 sei aufzuheben und die Angelegenheit zur korrekten Ermittlung des Sachverhalts an die Staatsanwaltschaft zur\u00fcckzuweisen. Er stellt zudem den sinngem\u00e4ssen Antrag, das bundesgerichtliche Verfahren sei w\u00e4hrend der Dauer des konnexen Strafverfahrens gegen eine Teilgutachterin und des ebenfalls konnexen Zivil- oder Strafverfahrens gegen die C._ wegen Einsichtsverweigerung in das mutmasslich gef\u00e4lschte Originalgutachten zu sistieren. X._ ersucht um unentgeltliche Rechtspflege. ",
"labels": 0, # dismissal
"language": "de",
"region": "Espace Mittelland",
"canton": "be",
"legal area": "penal law"
}
```
**Monolingual use of the dataset**
When the dataset is used in a monolingual setting selecting the ISO language code for one of the 3 supported languages. For example:
```python
from datasets import load_dataset
dataset = load_dataset('swiss_judgment_prediction', 'de')
```
```
{
"id": 48757,
"year": 2015,
"facts": "Sachverhalt: A. X._ war bei der Krankenversicherung C._ taggeldversichert. Infolge einer Arbeitsunf\u00e4higkeit leistete ihm die C._ vom 30. Juni 2011 bis am 28. Juni 2013 Krankentaggelder, wobei die Leistungen bis am 30. September 2012 auf Grundlage einer Arbeitsunf\u00e4higkeit von 100% und danach basierend auf einer Arbeitsunf\u00e4higkeit von 55% erbracht wurden. Die Neueinsch\u00e4tzung der Arbeitsf\u00e4higkeit erfolgte anhand eines Gutachtens der D._ AG vom 27. August 2012, welches im Auftrag der C._ erstellt wurde. X._ machte daraufhin gegen\u00fcber der C._ geltend, er sei entgegen dem Gutachten auch nach dem 30. September 2012 zu 100% arbeitsunf\u00e4hig gewesen. Ferner verlangte er von der D._ AG zwecks externer \u00dcberpr\u00fcfung des Gutachtens die Herausgabe s\u00e4mtlicher diesbez\u00fcglicher Notizen, Auswertungen und Unterlagen. A._ (als Gesch\u00e4ftsf\u00fchrer der D._ AG) und B._ (als f\u00fcr das Gutachten medizinisch Verantwortliche) antworteten ihm, dass sie alle Unterlagen der C._ zugestellt h\u00e4tten und dass allf\u00e4llige Fragen zum Gutachten direkt der C._ zu stellen seien. X._ reichte am 2. Januar 2014 eine Strafanzeige gegen A._ und B._ ein. Er wirft diesen vor, ihn durch die Nichtherausgabe der Dokumente und durch Behinderung des IV-Verfahrens gen\u00f6tigt, Daten besch\u00e4digt bzw. vernichtet und ein falsches \u00e4rztliches Zeugnis ausgestellt zu haben. Zudem h\u00e4tten sie durch die Verz\u00f6gerung des IV-Verfahrens und insbesondere durch das falsche \u00e4rztliche Zeugnis sein Verm\u00f6gen arglistig gesch\u00e4digt. B. Die Staatsanwaltschaft des Kantons Bern, Region Oberland, nahm das Verfahren wegen N\u00f6tigung, Datenbesch\u00e4digung, falschem \u00e4rztlichem Zeugnis und arglistiger Verm\u00f6genssch\u00e4digung mit Verf\u00fcgung vom 10. November 2014 nicht an die Hand. Das Obergericht des Kantons Bern wies die von X._ dagegen erhobene Beschwerde am 27. April 2015 ab, soweit darauf einzutreten war. C. X._ beantragt mit Beschwerde in Strafsachen, der Beschluss vom 27. April 2015 sei aufzuheben und die Angelegenheit zur korrekten Ermittlung des Sachverhalts an die Staatsanwaltschaft zur\u00fcckzuweisen. Er stellt zudem den sinngem\u00e4ssen Antrag, das bundesgerichtliche Verfahren sei w\u00e4hrend der Dauer des konnexen Strafverfahrens gegen eine Teilgutachterin und des ebenfalls konnexen Zivil- oder Strafverfahrens gegen die C._ wegen Einsichtsverweigerung in das mutmasslich gef\u00e4lschte Originalgutachten zu sistieren. X._ ersucht um unentgeltliche Rechtspflege. ",
"labels": 0, # dismissal
"language": "de",
"region": "Espace Mittelland",
"canton": "be",
"legal area": "penal law"
}
```
### Data Fields
**Multilingual use of the dataset**
The following data fields are provided for documents (`train`, `validation`, `test`):
`id`: (**int**) a unique identifier of the for the document \
`year`: (**int**) the publication year \
`text`: (**str**) the facts of the case \
`label`: (**class label**) the judgment outcome: 0 (dismissal) or 1 (approval) \
`language`: (**str**) one of (de, fr, it) \
`region`: (**str**) the region of the lower court \
`canton`: (**str**) the canton of the lower court \
`legal area`: (**str**) the legal area of the case
**Monolingual use of the dataset**
The following data fields are provided for documents (`train`, `validation`, `test`):
`id`: (**int**) a unique identifier of the for the document \
`year`: (**int**) the publication year \
`text`: (**str**) the facts of the case \
`label`: (**class label**) the judgment outcome: 0 (dismissal) or 1 (approval) \
`language`: (**str**) one of (de, fr, it) \
`region`: (**str**) the region of the lower court \
`canton`: (**str**) the canton of the lower court \
`legal area`: (**str**) the legal area of the case
### Data Splits
| Language | Subset | Number of Documents (Training/Validation/Test) |
|------------|------------|------------------------------------------------|
| German | **de** | 35'452 / 4'705 / 9'725 |
| French | **fr** | 21'179 / 3'095 / 6'820 |
| Italian | **it** | 3'072 / 408 / 812 |
| All | **all** | 59'709 / 8'208 / 17'357 |
| MT German | **mt_de** | 24'251 / 0 / 0 |
| MT French | **mt_fr** | 38'524 / 0 / 0 |
| MT Italian | **mt_it** | 56'631 / 0 / 0 |
| MT All | **all+mt** | 238'818 / 8'208 / 17'357 |
## Dataset Creation
### Curation Rationale
The dataset was curated by Niklaus et al. (2021).
### Source Data
#### Initial Data Collection and Normalization
The original data are available at the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML.
#### Who are the source language producers?
Switzerland has four official languages with 3 languages (German, French and Italian) being represented in more than 1000 Swiss Federal Supreme court decisions. The decisions are written by the judges and clerks in the language of the proceedings.
### Annotations
#### Annotation process
The decisions have been annotated with the binarized judgment outcome using parsers and regular expressions.
#### Who are the annotators?
Joel Niklaus and Adrian Jörg annotated the binarized judgment outcomes.
Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch).
### Personal and Sensitive Information
The dataset contains publicly available court decisions from the Swiss Federal Supreme Court. Personal or sensitive information has been anonymized by the court before publication according to the following guidelines: https://www.bger.ch/home/juridiction/anonymisierungsregeln.html.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Niklaus et al. (2021)
### Licensing Information
We release the data under CC-BY-4.0 which complies with the court licensing (https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf)
© Swiss Federal Supreme Court, 2000-2020
The copyright for the editorial content of this website and the consolidated texts, which is owned by the Swiss Federal Supreme Court, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made.
Source: https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf
### Citation Information
*Joel Niklaus, Ilias Chalkidis, and Matthias Stürmer.*
*Swiss-Judgment-Prediction: A Multilingual Legal Judgment Prediction Benchmark*
*Proceedings of the 2021 Natural Legal Language Processing Workshop. Punta Cana, Dominican Republic. 2021*
```
@InProceedings{niklaus-etal-2021-swiss,
author = {Niklaus, Joel
and Chalkidis, Ilias
and Stürmer, Matthias},
title = {Swiss-Judgment-Prediction: A Multilingual Legal Judgment Prediction Benchmark},
booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},
year = {2021},
location = {Punta Cana, Dominican Republic},
}
```
and the new citation
```
@misc{niklaus2022empirical,
title={An Empirical Study on Cross-X Transfer for Legal Judgment Prediction},
author={Joel Niklaus and Matthias Stürmer and Ilias Chalkidis},
year={2022},
eprint={2209.12325},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@joelniklaus](https://github.com/joelniklaus) for adding this dataset. |
tab_fact | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- fact-checking
paperswithcode_id: tabfact
pretty_name: TabFact
dataset_info:
- config_name: tab_fact
features:
- name: id
dtype: int32
- name: table_id
dtype: string
- name: table_text
dtype: string
- name: table_caption
dtype: string
- name: statement
dtype: string
- name: label
dtype:
class_label:
names:
'0': refuted
'1': entailed
splits:
- name: train
num_bytes: 99852664
num_examples: 92283
- name: validation
num_bytes: 13846872
num_examples: 12792
- name: test
num_bytes: 13493391
num_examples: 12779
download_size: 196508436
dataset_size: 127192927
- config_name: blind_test
features:
- name: id
dtype: int32
- name: table_id
dtype: string
- name: table_text
dtype: string
- name: table_caption
dtype: string
- name: statement
dtype: string
- name: test_id
dtype: string
splits:
- name: test
num_bytes: 10954442
num_examples: 9750
download_size: 196508436
dataset_size: 10954442
---
# Dataset Card for TabFact
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [TabFact](https://tabfact.github.io/index.html)
- **Repository:** [GitHub](https://github.com/wenhuchen/Table-Fact-Checking)
- **Paper:** [TabFact: A Large-scale Dataset for Table-based Fact Verification](https://arxiv.org/abs/1909.02164)
- **Leaderboard:** [Leaderboard](https://competitions.codalab.org/competitions/21611)
- **Point of Contact:** [Wenhu Chen](wenhuchen@cs.ucsb.edu)
### Dataset Summary
The problem of verifying whether a textual hypothesis holds the truth based on the given evidence, also known as fact verification, plays an important role in the study of natural language understanding and semantic representation. However, existing studies are restricted to dealing with unstructured textual evidence (e.g., sentences and passages, a pool of passages), while verification using structured forms of evidence, such as tables, graphs, and databases, remains unexplored. TABFACT is large scale dataset with 16k Wikipedia tables as evidence for 118k human annotated statements designed for fact verification with semi-structured evidence. The statements are labeled as either ENTAILED or REFUTED. TABFACT is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inproceedings{2019TabFactA,
title={TabFact : A Large-scale Dataset for Table-based Fact Verification},
author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang},
booktitle = {International Conference on Learning Representations (ICLR)},
address = {Addis Ababa, Ethiopia},
month = {April},
year = {2020}
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
tamilmixsentiment | ---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
- ta
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: Tamilmixsentiment
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': Positive
'1': Negative
'2': Mixed_feelings
'3': unknown_state
'4': not-Tamil
splits:
- name: train
num_bytes: 790132
num_examples: 11335
- name: validation
num_bytes: 89618
num_examples: 1260
- name: test
num_bytes: 218764
num_examples: 3149
download_size: 1150792
dataset_size: 1098514
---
# Dataset Card for Tamilmixsentiment
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Tamilmixsentiment Homepage](https://dravidian-codemix.github.io/2020/index.html)
- **Repository:** [Tamilmixsentiment repository](https://dravidian-codemix.github.io/2020/datasets.html)
- **Paper:** [Corpus Creation for Sentiment Analysis in Code-Mixed Tamil-English Text](https://www.aclweb.org/anthology/2020.sltu-1.28/)
- **Leaderboard:** [Rank list](https://drive.google.com/file/d/1Mf8-No-63koGRwdF13RrO01NAFBlNmI0/view?usp=sharing)
- **Point of Contact:** [Bharathi Raja Chakravarthi](mailto:bharathiraja.akr@gmail.com)
### Dataset Summary
The first gold standard Tamil-English code-switched, sentiment-annotated corpus containing 15,744 comment posts from YouTube. This makes the largest general domain sentiment dataset for this relatively low-resource language with code-mixing phenomenon. The comment/post may contain more than one sentence but the average sentence length of the corpora is 1. Each comment/post is annotated with sentiment polarity at the comment/post level. This dataset also has class imbalance problems depicting real-world scenarios.
### Supported Tasks and Leaderboards
To identify sentiment polarity of the code-mixed dataset of comments/posts in Tamil-English collected from social media.
### Languages
Tamil-English code-switched. The dataset contains all the three types of code-mixed sentences - Inter-Sentential switch, Intra-Sentential switch and Tag switching. Most comments were written in Roman script with either Tamil grammar with English lexicon or English grammar with Tamil lexicon. Some comments were written in Tamil script with English expressions in between.
## Dataset Structure
### Data Instances
An example from the Tamilmixsentiment train set looks as follows:
```
text label
Trailer late ah parthavanga like podunga Positive
```
### Data Fields
- `text`: Tamil-English code-mixed comment.
- `label`: list of the possible sentiments "Positive", "Negative", "Mixed_feelings", "unknown_state", "not-Tamil"
### Data Splits
The entire dataset of 15,744 sentences was randomly shuffled and split into three parts as follows:
| | train | validation | test |
|------------------------------|------:|-----------:|-----:|
| Tamilmixsentiment | 11335 | 1260 | 3149 |
## Dataset Creation
### Curation Rationale
Sentiment analysis has become important in social media research (Yang and Eisenstein, 2017). Until recently these applications were created for high-resourced languages which analysed monolingual utterances. But social media in multilingual communities contains more code-mixed text. Code-mixing is common among speakers in a bilingual speech community. As English is seen as the language of prestige and education, the influence of lexicon, connectives and phrases from English language is common in spoken Tamil. Tamil has little annotated data for code-mixed scenarios. An annotated corpus developed for monolingual data cannot deal with code-mixed usage and therefore it fails to yield good results due to mixture of languages at different levels of linguistic analysis. Therefore this dataset of code-mixed Tamil-English sentiment annotated corpus is created.
### Source Data
#### Initial Data Collection and Normalization
The data was scraped from Youtube. In total 184,573 sentences for Tamil from YouTube comments from the trailers of a movies released in 2019. Many of the them contained sentences
that were either entirely written in English or code-mixed Tamil-English or fully written in Tamil. So we filtered out a non-code-mixed corpus based on language identification
at comment level using the langdetect library. The comment is written fully in Tamil or English, we discarded that comment since monolingual resources are available for these languages. We also identified if the sentences were written in other languages such as Hindi, Malayalam, Urdu, Telugu, and Kannada. We preprocessed the comments by removing the emoticons and applying a sentence
length filter. We want to create a code-mixed corpus of reasonable size with sentences that have fairly defined sentiments which will be useful for future research. Thus our filter removed sentences with less than five words and more than 15 words after cleaning the data. In the end we got 15,744 Tanglish sentences.
#### Who are the source language producers?
Youtube users
### Annotations
#### Annotation process
Three steps complete the annotation setup. First, each sentence was annotated by two people. In the second step, the data were collected if both of them agreed. In the case of conflict, a third person annotated the sentence. In the third step, if all the three of them did not agree, then two more annotators annotated the sentences.
#### Who are the annotators?
Eleven volunteers were involved in the process. All of them were native speakers of Tamil with diversity in gender, educational level and medium of instruction in their school education.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inproceedings{chakravarthi-etal-2020-corpus,
title = "Corpus Creation for Sentiment Analysis in Code-Mixed {T}amil-{E}nglish Text",
author = "Chakravarthi, Bharathi Raja and
Muralidaran, Vigneshwaran and
Priyadharshini, Ruba and
McCrae, John Philip",
booktitle = "Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources association",
url = "https://www.aclweb.org/anthology/2020.sltu-1.28",
pages = "202--210",
abstract = "Understanding the sentiment of a comment from a video or an image is an essential task in many applications. Sentiment analysis of a text can be useful for various decision-making processes. One such application is to analyse the popular sentiments of videos on social media based on viewer comments. However, comments from social media do not follow strict rules of grammar, and they contain mixing of more than one language, often written in non-native scripts. Non-availability of annotated code-mixed data for a low-resourced language like Tamil also adds difficulty to this problem. To overcome this, we created a gold standard Tamil-English code-switched, sentiment-annotated corpus containing 15,744 comment posts from YouTube. In this paper, we describe the process of creating the corpus and assigning polarities. We present inter-annotator agreement and show the results of sentiment analysis trained on this corpus as a benchmark.",
language = "English",
ISBN = "979-10-95546-35-1",
}
```
### Contributions
Thanks to [@jamespaultg](https://github.com/jamespaultg) for adding this dataset. |
tanzil | ---
annotations_creators:
- found
language_creators:
- found
language:
- am
- ar
- az
- bg
- bn
- bs
- cs
- de
- dv
- en
- es
- fa
- fr
- ha
- hi
- id
- it
- ja
- ko
- ku
- ml
- ms
- nl
- 'no'
- pl
- pt
- ro
- ru
- sd
- so
- sq
- sv
- sw
- ta
- tg
- th
- tr
- tt
- ug
- ur
- uz
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: tanzil
dataset_info:
- config_name: bg-en
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- bg
- en
splits:
- name: train
num_bytes: 34473016
num_examples: 135477
download_size: 9305292
dataset_size: 34473016
- config_name: bn-hi
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- bn
- hi
splits:
- name: train
num_bytes: 18869103
num_examples: 24942
download_size: 3542740
dataset_size: 18869103
- config_name: fa-sv
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- fa
- sv
splits:
- name: train
num_bytes: 29281634
num_examples: 68601
download_size: 8550826
dataset_size: 29281634
- config_name: ru-zh
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ru
- zh
splits:
- name: train
num_bytes: 59736143
num_examples: 99779
download_size: 16214659
dataset_size: 59736143
- config_name: en-tr
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- tr
splits:
- name: train
num_bytes: 255891913
num_examples: 1189967
download_size: 82954694
dataset_size: 255891913
---
# Dataset Card for tanzil
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://opus.nlpl.eu/Tanzil.php
- **Repository:** None
- **Paper:** http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** [More Information Needed]
### Dataset Summary
To load a language pair which isn't part of the config, all you need to do is specify the language code as pairs.
You can find the valid pairs in Homepage section of Dataset Description: http://opus.nlpl.eu/Tanzil.php
E.g.
`dataset = load_dataset("tanzil", lang1="en", lang2="ru")`
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
Here are some examples of questions and facts:
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
tapaco | ---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
language:
- af
- ar
- az
- be
- ber
- bg
- bn
- br
- ca
- cbk
- cmn
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fi
- fr
- gl
- gos
- he
- hi
- hr
- hu
- hy
- ia
- id
- ie
- io
- is
- it
- ja
- jbo
- kab
- ko
- kw
- la
- lfn
- lt
- mk
- mr
- nb
- nds
- nl
- orv
- ota
- pes
- pl
- pt
- rn
- ro
- ru
- sl
- sr
- sv
- tk
- tl
- tlh
- tok
- tr
- tt
- ug
- uk
- ur
- vi
- vo
- war
- wuu
- yue
license:
- cc-by-2.0
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
- 10K<n<100K
- 1K<n<10K
- 1M<n<10M
- n<1K
source_datasets:
- extended|other-tatoeba
task_categories:
- text2text-generation
- translation
- text-classification
task_ids:
- semantic-similarity-classification
paperswithcode_id: tapaco
pretty_name: TaPaCo Corpus
configs:
- af
- all_languages
- ar
- az
- be
- ber
- bg
- bn
- br
- ca
- cbk
- cmn
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fi
- fr
- gl
- gos
- he
- hi
- hr
- hu
- hy
- ia
- id
- ie
- io
- is
- it
- ja
- jbo
- kab
- ko
- kw
- la
- lfn
- lt
- mk
- mr
- nb
- nds
- nl
- orv
- ota
- pes
- pl
- pt
- rn
- ro
- ru
- sl
- sr
- sv
- tk
- tl
- tlh
- tok
- tr
- tt
- ug
- uk
- ur
- vi
- vo
- war
- wuu
- yue
tags:
- paraphrase-generation
dataset_info:
- config_name: all_languages
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 162802556
num_examples: 1926192
download_size: 32213126
dataset_size: 162802556
- config_name: af
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 21219
num_examples: 307
download_size: 32213126
dataset_size: 21219
- config_name: ar
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 546200
num_examples: 6446
download_size: 32213126
dataset_size: 546200
- config_name: az
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 44461
num_examples: 624
download_size: 32213126
dataset_size: 44461
- config_name: be
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 140376
num_examples: 1512
download_size: 32213126
dataset_size: 140376
- config_name: ber
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 5118620
num_examples: 67484
download_size: 32213126
dataset_size: 5118620
- config_name: bg
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 590535
num_examples: 6324
download_size: 32213126
dataset_size: 590535
- config_name: bn
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 146654
num_examples: 1440
download_size: 32213126
dataset_size: 146654
- config_name: br
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 177919
num_examples: 2536
download_size: 32213126
dataset_size: 177919
- config_name: ca
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 39404
num_examples: 518
download_size: 32213126
dataset_size: 39404
- config_name: cbk
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 19404
num_examples: 262
download_size: 32213126
dataset_size: 19404
- config_name: cmn
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 964514
num_examples: 12549
download_size: 32213126
dataset_size: 964514
- config_name: cs
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 482292
num_examples: 6659
download_size: 32213126
dataset_size: 482292
- config_name: da
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 848886
num_examples: 11220
download_size: 32213126
dataset_size: 848886
- config_name: de
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 10593377
num_examples: 125091
download_size: 32213126
dataset_size: 10593377
- config_name: el
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 926054
num_examples: 10072
download_size: 32213126
dataset_size: 926054
- config_name: en
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 15070349
num_examples: 158053
download_size: 32213126
dataset_size: 15070349
- config_name: eo
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 16810965
num_examples: 207105
download_size: 32213126
dataset_size: 16810965
- config_name: es
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 6851135
num_examples: 85064
download_size: 32213126
dataset_size: 6851135
- config_name: et
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 17127
num_examples: 241
download_size: 32213126
dataset_size: 17127
- config_name: eu
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 42702
num_examples: 573
download_size: 32213126
dataset_size: 42702
- config_name: fi
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 2520167
num_examples: 31753
download_size: 32213126
dataset_size: 2520167
- config_name: fr
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 9481426
num_examples: 116733
download_size: 32213126
dataset_size: 9481426
- config_name: gl
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 26551
num_examples: 351
download_size: 32213126
dataset_size: 26551
- config_name: gos
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 18442
num_examples: 279
download_size: 32213126
dataset_size: 18442
- config_name: he
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 6024345
num_examples: 68350
download_size: 32213126
dataset_size: 6024345
- config_name: hi
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 209382
num_examples: 1913
download_size: 32213126
dataset_size: 209382
- config_name: hr
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 36638
num_examples: 505
download_size: 32213126
dataset_size: 36638
- config_name: hu
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 5289610
num_examples: 67964
download_size: 32213126
dataset_size: 5289610
- config_name: hy
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 49230
num_examples: 603
download_size: 32213126
dataset_size: 49230
- config_name: ia
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 194035
num_examples: 2548
download_size: 32213126
dataset_size: 194035
- config_name: id
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 124568
num_examples: 1602
download_size: 32213126
dataset_size: 124568
- config_name: ie
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 31956
num_examples: 488
download_size: 32213126
dataset_size: 31956
- config_name: io
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 33892
num_examples: 480
download_size: 32213126
dataset_size: 33892
- config_name: is
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 132062
num_examples: 1641
download_size: 32213126
dataset_size: 132062
- config_name: it
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 15073750
num_examples: 198919
download_size: 32213126
dataset_size: 15073750
- config_name: ja
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 4314423
num_examples: 44267
download_size: 32213126
dataset_size: 4314423
- config_name: jbo
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 201564
num_examples: 2704
download_size: 32213126
dataset_size: 201564
- config_name: kab
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 1211051
num_examples: 15944
download_size: 32213126
dataset_size: 1211051
- config_name: ko
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 40458
num_examples: 503
download_size: 32213126
dataset_size: 40458
- config_name: kw
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 88577
num_examples: 1328
download_size: 32213126
dataset_size: 88577
- config_name: la
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 485749
num_examples: 6889
download_size: 32213126
dataset_size: 485749
- config_name: lfn
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 203383
num_examples: 2313
download_size: 32213126
dataset_size: 203383
- config_name: lt
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 599166
num_examples: 8042
download_size: 32213126
dataset_size: 599166
- config_name: mk
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 1240185
num_examples: 14678
download_size: 32213126
dataset_size: 1240185
- config_name: mr
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 1838921
num_examples: 16413
download_size: 32213126
dataset_size: 1838921
- config_name: nb
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 85371
num_examples: 1094
download_size: 32213126
dataset_size: 85371
- config_name: nds
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 195021
num_examples: 2633
download_size: 32213126
dataset_size: 195021
- config_name: nl
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 1790975
num_examples: 23561
download_size: 32213126
dataset_size: 1790975
- config_name: orv
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 40484
num_examples: 471
download_size: 32213126
dataset_size: 40484
- config_name: ota
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 44996
num_examples: 486
download_size: 32213126
dataset_size: 44996
- config_name: pes
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 433406
num_examples: 4285
download_size: 32213126
dataset_size: 433406
- config_name: pl
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 1722188
num_examples: 22391
download_size: 32213126
dataset_size: 1722188
- config_name: pt
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 6141178
num_examples: 78430
download_size: 32213126
dataset_size: 6141178
- config_name: rn
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 47387
num_examples: 648
download_size: 32213126
dataset_size: 47387
- config_name: ro
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 162955
num_examples: 2092
download_size: 32213126
dataset_size: 162955
- config_name: ru
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 24540667
num_examples: 251263
download_size: 32213126
dataset_size: 24540667
- config_name: sl
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 49610
num_examples: 706
download_size: 32213126
dataset_size: 49610
- config_name: sr
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 667308
num_examples: 8175
download_size: 32213126
dataset_size: 667308
- config_name: sv
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 509884
num_examples: 7005
download_size: 32213126
dataset_size: 509884
- config_name: tk
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 95047
num_examples: 1165
download_size: 32213126
dataset_size: 95047
- config_name: tl
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 76059
num_examples: 1017
download_size: 32213126
dataset_size: 76059
- config_name: tlh
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 185309
num_examples: 2804
download_size: 32213126
dataset_size: 185309
- config_name: toki
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 310864
num_examples: 3738
download_size: 32213126
dataset_size: 310864
- config_name: tr
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 11271158
num_examples: 142088
download_size: 32213126
dataset_size: 11271158
- config_name: tt
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 277269
num_examples: 2398
download_size: 32213126
dataset_size: 277269
- config_name: ug
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 118474
num_examples: 1183
download_size: 32213126
dataset_size: 118474
- config_name: uk
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 4885677
num_examples: 54431
download_size: 32213126
dataset_size: 4885677
- config_name: ur
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 24075
num_examples: 252
download_size: 32213126
dataset_size: 24075
- config_name: vi
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 84773
num_examples: 962
download_size: 32213126
dataset_size: 84773
- config_name: vo
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 22164
num_examples: 328
download_size: 32213126
dataset_size: 22164
- config_name: war
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 25759
num_examples: 327
download_size: 32213126
dataset_size: 25759
- config_name: wuu
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 31640
num_examples: 408
download_size: 32213126
dataset_size: 31640
- config_name: yue
features:
- name: paraphrase_set_id
dtype: string
- name: sentence_id
dtype: string
- name: paraphrase
dtype: string
- name: lists
sequence: string
- name: tags
sequence: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 42766
num_examples: 561
download_size: 32213126
dataset_size: 42766
---
# Dataset Card for TaPaCo Corpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages](https://zenodo.org/record/3707949#.X9Dh0cYza3I)
- **Paper:** [TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages](https://www.aclweb.org/anthology/2020.lrec-1.848.pdf)
- **Point of Contact:** [Yves Scherrer](https://blogs.helsinki.fi/yvesscherrer/)
### Dataset Summary
A freely available paraphrase corpus for 73 languages extracted from the Tatoeba database.
Tatoeba is a crowdsourcing project mainly geared towards language learners. Its aim is to provide example sentences
and translations for particular linguistic constructions and words. The paraphrase corpus is created by populating a
graph with Tatoeba sentences and equivalence links between sentences “meaning the same thing”. This graph is then
traversed to extract sets of paraphrases. Several language-independent filters and pruning steps are applied to
remove uninteresting sentences. A manual evaluation performed on three languages shows that between half and three
quarters of inferred paraphrases are correct and that most remaining ones are either correct but trivial,
or near-paraphrases that neutralize a morphological distinction. The corpus contains a total of 1.9 million
sentences, with 200 – 250 000 sentences per language. It covers a range of languages for which, to our knowledge,
no other paraphrase dataset exists.
### Supported Tasks and Leaderboards
Paraphrase detection and generation have become popular tasks in NLP
and are increasingly integrated into a wide variety of common downstream tasks such as machine translation
, information retrieval, question answering, and semantic parsing. Most of the existing datasets
cover only a single language – in most cases English – or a small number of languages. Furthermore, some paraphrase
datasets focus on lexical and phrasal rather than sentential paraphrases, while others are created (semi
-)automatically using machine translation.
The number of sentences per language ranges from 200 to 250 000, which makes the dataset
more suitable for fine-tuning and evaluation purposes than
for training. It is well-suited for multi-reference evaluation
of paraphrase generation models, as there is generally not a
single correct way of paraphrasing a given input sentence.
### Languages
The dataset contains paraphrases in Afrikaans, Arabic, Azerbaijani, Belarusian, Berber languages, Bulgarian, Bengali
, Breton, Catalan; Valencian, Chavacano, Mandarin, Czech, Danish, German, Greek, Modern (1453-), English, Esperanto
, Spanish; Castilian, Estonian, Basque, Finnish, French, Galician, Gronings, Hebrew, Hindi, Croatian, Hungarian
, Armenian, Interlingua (International Auxiliary Language Association), Indonesian, Interlingue; Occidental, Ido
, Icelandic, Italian, Japanese, Lojban, Kabyle, Korean, Cornish, Latin, Lingua Franca Nova\t, Lithuanian, Macedonian
, Marathi, Bokmål, Norwegian; Norwegian Bokmål, Low German; Low Saxon; German, Low; Saxon, Low, Dutch; Flemish, ]Old
Russian, Turkish, Ottoman (1500-1928), Iranian Persian, Polish, Portuguese, Rundi, Romanian; Moldavian; Moldovan,
Russian, Slovenian, Serbian, Swedish, Turkmen, Tagalog, Klingon; tlhIngan-Hol, Toki Pona, Turkish, Tatar,
Uighur; Uyghur, Ukrainian, Urdu, Vietnamese, Volapük, Waray, Wu Chinese and Yue Chinese
## Dataset Structure
### Data Instances
Each data instance corresponds to a paraphrase, e.g.:
```
{
'paraphrase_set_id': '1483',
'sentence_id': '5778896',
'paraphrase': 'Ɣremt adlis-a.',
'lists': ['7546'],
'tags': [''],
'language': 'ber'
}
```
### Data Fields
Each dialogue instance has the following fields:
- `paraphrase_set_id`: a running number that groups together all sentences that are considered paraphrases of each
other
- `sentence_id`: OPUS sentence id
- `paraphrase`: Sentential paraphrase in a given language for a given paraphrase_set_id
- `lists`: Contributors can add sentences to list in order to specify the original source of the data
- `tags`: Indicates morphological or phonological properties of the sentence when available
- `language`: Language identifier, one of the 73 languages that belong to this dataset.
### Data Splits
The dataset is having a single `train` split, contains a total of 1.9 million sentences, with 200 – 250 000
sentences per language
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Creative Commons Attribution 2.0 Generic
### Citation Information
```
@dataset{scherrer_yves_2020_3707949,
author = {Scherrer, Yves},
title = {{TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages}},
month = mar,
year = 2020,
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.3707949},
url = {https://doi.org/10.5281/zenodo.3707949}
}
```
### Contributions
Thanks to [@pacman100](https://github.com/pacman100) for adding this dataset. |
tashkeela | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- ar
license:
- gpl-2.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: null
pretty_name: Tashkeela
tags:
- diacritics-prediction
dataset_info:
features:
- name: text
dtype: string
- name: book
dtype: string
config_name: plain_text
splits:
- name: train
num_bytes: 1081110249
num_examples: 97
download_size: 183393530
dataset_size: 1081110249
---
# Dataset Card for Tashkeela
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Tashkeela](https://sourceforge.net/projects/tashkeela/)
- **Repository:** [Tashkeela](https://sourceforge.net/projects/tashkeela/)
- **Paper:** [Tashkeela: Novel corpus of Arabic vocalized texts, data for auto-diacritization systems](https://www.sciencedirect.com/science/article/pii/S2352340917300112)
- **Point of Contact:** [Taha Zerrouki](mailto:t_zerrouki@esi.dz)
### Dataset Summary
It contains 75 million of fully vocalized words mainly
97 books from classical and modern Arabic language.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is based on Arabic.
## Dataset Structure
### Data Instances
```
{'book': 'zip://Tashkeela-arabic-diacritized-text-utf8-0.3/texts.txt/msa/al-kalema.org/أشكال-التجارب-في-مَثَل-الزارع.htm.txt::https://sourceforge.net/projects/tashkeela/files/latest/download',
'text': 'الكلمة\n\n\nصفحه اصلی\nاشترك\nالكتاب المقدس\nجميع المقالات\nالترتيب بالموضوع\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nهذا المقال على نسخة PDF\n\n\nأشكال التجارب في مَثَل الزارع\n\n\tقد رأينا في مقال " \nوسائل واشكال التجارب" الأشكال التي من الممكن أن تتخذها التجارب (وخاصة الاختبارات التي تأتي من خلال الآلام والاضطهاد وأشراك إطاعة شهوات الإنسان العتيق، الجسد)، نستطيع أيضاً أن نرى هذه الأقسام عاملة في مثال الزارع. هناك مجموعتين في مثال الزارع أنه برغم من سماعهم واستقبالهم للكلمة، إلا أنهم لم يجلبوا ثماراً. والسؤال هو لماذا؟\n\n1. التجارب في القسم الثاني من مثال الزارع\n\nفيما يخص القسم الثاني من مثال الزارع، تخبرنا عنها متى 13: 20- 21 ولوقا 8: 13 \nمتى 13: 20- 21\n" وَالْمَزْرُوعُ عَلَى الأَمَاكِنِ الْمُحْجِرَةِ هُوَ الَّذِي يَسْمَعُ الْكَلِمَةَ، وَحَالاً يَقْبَلُهَا بِفَرَحٍ، وَلكِنْ لَيْسَ لَهُ أَصْلٌ فِي ذَاتِهِ، بَلْ هُوَ إِلَى حِينٍ. فَإِذَا حَدَثَ ضِيقٌ أَوِ اضْطِهَادٌ مِنْ أَجْلِ الْكَلِمَةِ فَحَالاً يَعْثُرُ."\nلوقا 8: 13\n" وَالَّذِينَ عَلَى الصَّخْرِ هُمُ الَّذِينَ مَتَى سَمِعُوا يَقْبَلُونَ الْكَلِمَةَ بِفَرَحٍ، وَهؤُلاَءِ لَيْسَ لَهُمْ أَصْلٌ، فَيُؤْمِنُونَ إِلَى حِينٍ، وَفِي وَقْتِ التَّجْرِبَةِ يَرْتَدُّونَ."\n\nكما نرى، الناس في هذا القسم سمعوا الكلمة وحالاً قبلوها بفرح! بمعنى آخر، لقد كانوا متحمسين جداً تجاه الكلمة. ثم جاءت التجارب والاختبارات في شكل ضيق واضطهاد من أجل الكلمة، أي أنه بسبب الكلمة، اضطهد هؤلاء الناس. وعندئذ توقفوا. عوضاً عن أن يحفظوا ويتمسكوا بالكلمة التي قد حدث واستقبلوها بفرح، تراجعوا وسقطوا بعيداً، إن كنت مؤمناً صغيراً مليء بالحماسة تجاه الله، وبالرغم من أنه قد يبدو أنه لا يوجد شيطان من حولك، فهذا لن يستمر إلى الأبد. فالتجارب والاختبارات آتية. ستحتاج إلى أن تحفظ وتتمسك بالإيمان وبالكلمة التي قد حدث واستقبلتها بفرح. كما تقول لنا الكلمة:\nعبرانيين 10: 35- 39\n" فَلاَ تَطْرَحُوا ثِقَتَكُمُ الَّتِي لَهَا مُجَازَاةٌ عَظِيمَةٌ. لأَنَّكُمْ تَحْتَاجُونَ إِلَى الصَّبْرِ، حَتَّى إِذَا صَنَعْتُمْ مَشِيئَةَ اللهِ تَنَالُونَ الْمَوْعِدَ. لأَنَّهُ بَعْدَ قَلِيل جِدًّا «سَيَأْتِي الآتِي وَلاَ يُبْطِئُ. أَمَّا الْبَارُّ فَبِالإِيمَانِ يَحْيَا، وَإِنِ ارْتَدَّ لاَ تُسَرُّ بِهِ نَفْسِي». وَأَمَّا نَحْنُ فَلَسْنَا مِنَ الارْتِدَادِ لِلْهَلاَكِ، بَلْ مِنَ الإِيمَانِ لاقْتِنَاءِ النَّفْسِ."\n\nوالضيق قد يأخذ أشكالاً عديدة. رأيت أناساً يسقطون، تاركين الإيمان لأن آبائهم أو أقاربهم وأصدقائهم قد عارضوهم ورفضوهم بسبب إيمانهم. بالطبع قد يأخذ الاضطهاد أشكالاً أكثر من ذلك أيضاً، مثل أن تلقى في سجن أو أن تعذب لأجل إيمانك. قد يسبب الموت كذلك، كما حدث مع اسطفانوس ويعقوب أخو يوحنا. وتقول الكلمة من أجلك ومن أجل كل الذين حوكموا:\nرومية 16: 19- 20\n" لأَنَّ طَاعَتَكُمْ ذَاعَتْ إِلَى الْجَمِيعِ، فَأَفْرَحُ أَنَا بِكُمْ، وَأُرِيدُ أَنْ تَكُونُوا حُكَمَاءَ لِلْخَيْرِ وَبُسَطَاءَ لِلشَّرِّ. وَإِلهُ السَّلاَمِ سَيَسْحَقُ الشَّيْطَانَ تَحْتَ أَرْجُلِكُمْ سَرِيعًا."\nو بطرس الأولى 5: 8- 10\n" اُصْحُوا وَاسْهَرُوا. لأَنَّ إِبْلِيسَ خَصْمَكُمْ كَأَسَدٍ زَائِرٍ، يَجُولُ مُلْتَمِسًا مَنْ يَبْتَلِعُهُ هُوَ. فَقَاوِمُوهُ، رَاسِخِينَ فِي الإِيمَانِ، عَالِمِينَ أَنَّ نَفْسَ هذِهِ الآلاَمِ تُجْرَى عَلَى إِخْوَتِكُمُ الَّذِينَ فِي الْعَالَمِ. وَإِلهُ كُلِّ نِعْمَةٍ الَّذِي دَعَانَا إِلَى مَجْدِهِ الأَبَدِيِّ فِي الْمَسِيحِ يَسُوعَ، بَعْدَمَا تَأَلَّمْتُمْ يَسِيرًا، هُوَ يُكَمِّلُكُمْ، وَيُثَبِّتُكُمْ، وَيُقَوِّيكُمْ، وَيُمَكِّنُكُمْ."\n\nتمسك بالإيمان حتى النهاية. ضع حياتك ووضعك بين يدي الله وكن مستعداً لمواجهة أي شيء قد يحدث، أجل وحتى السخرية والعذاب. الله معك، سيقويك وسيعينك تماماً مثلما فعل مع يسوع في بستان جسثيماني. وتماماً مثلما فعل مع بولس في السجن عندما اضطهد من قِبَل اليهود (أعمال الرسل 23: 11). وكما قال بولس في كورنثوس الثانية 1: 7:" عَالِمِينَ أَنَّكُمْ كَمَا أَنْتُمْ شُرَكَاءُ فِي الآلاَمِ، كَذلِكَ فِي التَّعْزِيَةِ أَيْضًا." فالعزاء الآتي من الله يوازن أي سخرية أو أي عذاب قد يأتي إلينا من أي إنسان.\n\n2. التجارب في القسم الثالث من مثال الزارع\n\nبخصوص القسم الثالث من مثال الزارع، فنقرأ عنه في مرقس 4: 18- 19\n\n" وَهؤُلاَءِ هُمُ الَّذِينَ زُرِعُوا بَيْنَ الشَّوْكِ: هؤُلاَءِ هُمُ الَّذِينَ يَسْمَعُونَ الْكَلِمَةَ، وَهُمُومُ هذَا الْعَالَمِ وَغُرُورُ الْغِنَى وَشَهَوَاتُ سَائِرِ الأَشْيَاءِ تَدْخُلُ وَتَخْنُقُ الْكَلِمَةَ فَتَصِيرُ بِلاَ ثَمَرٍ."\nو لوقا 8: 14\n" وَالَّذِي سَقَطَ بَيْنَ الشَّوْكِ هُمُ الَّذِينَ يَسْمَعُونَ، ثُمَّ يَذْهَبُونَ فَيَخْتَنِقُونَ مِنْ هُمُومِ الْحَيَاةِ وَغِنَاهَا وَلَذَّاتِهَا، وَلاَ يُنْضِجُونَ ثَمَرًا."\n\nهؤلاء قد سمعوا الكلمة وفهموها ولكنهم صاروا بلا ثمر، وما هو السبب؟ السبب هو لأنهم تركوا أبواب قلوبهم مفتوحة لأشواك " وَهُمُومُ هذَا الْعَالَمِ وَغُرُورُ الْغِنَى وَشَهَوَاتُ سَائِرِ الأَشْيَاءِ" (مرقس 4: 19)، والتي تدخل فتخنق الكلمة، كما رأينا يعقوب دائماً ما يقول:\nيعقوب 1: 13- 15\n" لاَ يَقُلْ أَحَدٌ إِذَا جُرِّبَ: «إِنِّي أُجَرَّبُ مِنْ قِبَلِ اللهِ»، لأَنَّ اللهَ غَيْرُ مُجَرَّبٍ بِالشُّرُورِ، وَهُوَ لاَ يُجَرِّبُ أَحَدًا. وَلكِنَّ كُلَّ وَاحِدٍ يُجَرَّبُ إِذَا انْجَذَبَ وَانْخَدَعَ مِنْ شَهْوَتِهِ. ثُمَّ الشَّهْوَةُ إِذَا حَبِلَتْ تَلِدُ خَطِيَّةً، وَالْخَطِيَّةُ إِذَا كَمَلَتْ تُنْتِجُ مَوْتًا."\nوتيموثاوس الأولى 6: 9 تقول لنا\n" وَأَمَّا الَّذِينَ يُرِيدُونَ أَنْ يَكُونُوا أَغْنِيَاءَ، فَيَسْقُطُونَ فِي تَجْرِبَةٍ وَفَخٍّ وَشَهَوَاتٍ كَثِيرَةٍ غَبِيَّةٍ وَمُضِرَّةٍ، تُغَرِّقُ النَّاسَ فِي الْعَطَبِ وَالْهَلاَكِ."\n\nيجب أن نلاحظ شيئاً هنا: أن تأثير هموم الحياة هو نفس التأثير الذي لتجارب الغنى وشهوات الأشياء الأخرى. فهموم الحياة أيضاً لا تجلب الثمار، إذاً فإن اردت أن تكون مسيحياً مثمراً، أي مسيحي حقيقي وليس فقط مسيحي اسمي، فيجب عليك أن تزيل أشواك الهموم والغنى وملذات الحياة وأن تمنعهم من العودة مرة أخرى. تحتاج إلى أن تفعل شيئاً، تحتاج إلى أن تتغير والله سيعينك في هذا إن كنت حقاً تريده. التجارب في القسم الثالث من مثال الزارع لا تأتي من خلال الاضطهاد والآلام عن طريق الشيطان. ولكن هنا تأخذ التجارب صوراً أكثر مكراً والتي مع هذا تتطلب مقاومتنا. الاهتمام بما يهتم به هذا العالم ("هموم هذا العالم")، الرغبة في الغنى أو اشتهاء الأشياء الأخرى هي أمور خطيرة جداً. إنها أشواك يجب إزالتها. كما رأينا بولس يقول:\nرومية 13: 14\n" بَلِ الْبَسُوا الرَّبَّ يَسُوعَ الْمَسِيحَ، وَلاَ تَصْنَعُوا تَدْبِيرًا لِلْجَسَدِ لأَجْلِ الشَّهَوَاتِ."\n\n" لاَ تَصْنَعُوا تَدْبِيرًا لِلْجَسَدِ" والتي تعني أنه يجب علينا أن لا نهتم بالجسد وشهواته. ولكن عوضاً عن ذلك ينبغي لنا أن نطعم أنفسنا بلبن الكلمة الصافي الذي ننمو بواستطه (بطرس الأولى 2: 2).\n\n\nتاسوس كيولاشوجلو'}
```
### Data Fields
- `book` (str): Book filename.
- `text` (str): Text of the book.
### Data Splits
The dataset is not split.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
The Modern Standard Arabic texts crawled from the Internet.
#### Who are the source language producers?
Websites.
### Annotations
The dataset does not contain any additional annotations.
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[GNU General Public License, version 2 (GPLv2)](https://opensource.org/licenses/GPL-2.0).
### Citation Information
The dataset was published on this [paper](https://www.sciencedirect.com/science/article/pii/S2352340917300112#!):
```
@article{zerrouki2017tashkeela,
title={Tashkeela: Novel corpus of Arabic vocalized texts, data for auto-diacritization systems},
author={Zerrouki, Taha and Balla, Amar},
journal={Data in brief},
volume={11},
pages={147},
year={2017},
publisher={Elsevier}
}
```
### Contributions
Thanks to [@zaidalyafeai](https://github.com/zaidalyafeai) for adding this dataset. |
taskmaster1 | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: taskmaster-1
pretty_name: Taskmaster-1
dataset_info:
- config_name: one_person_dialogs
features:
- name: conversation_id
dtype: string
- name: instruction_id
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 18037058
num_examples: 6168
- name: validation
num_bytes: 2239656
num_examples: 770
- name: test
num_bytes: 2224163
num_examples: 770
download_size: 103276427
dataset_size: 22500877
- config_name: woz_dialogs
features:
- name: conversation_id
dtype: string
- name: instruction_id
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 13028593
num_examples: 5507
download_size: 103276427
dataset_size: 13028593
---
# Dataset Card for Taskmaster-1
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Taskmaster-1](https://research.google/tools/datasets/taskmaster-1/)
- **Repository:** [GitHub](https://github.com/google-research-datasets/Taskmaster/tree/master/TM-1-2019)
- **Paper:** [Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset](https://arxiv.org/abs/1909.05358)
- **Leaderboard:** N/A
- **Point of Contact:** [Taskmaster Googlegroup](taskmaster-datasets@googlegroups.com)
### Dataset Summary
Taskmaster-1 is a goal-oriented conversational dataset. It includes 13,215 task-based
dialogs comprising six domains. Two procedures were used to create this collection,
each with unique advantages. The first involves a two-person, spoken "Wizard of Oz" (WOz) approach
in which trained agents and crowdsourced workers interact to complete the task while the second is
"self-dialog" in which crowdsourced workers write the entire dialog themselves.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is in English language.
## Dataset Structure
### Data Instances
A typical example looks like this
```
{
"conversation_id":"dlg-336c8165-068e-4b4b-803d-18ef0676f668",
"instruction_id":"restaurant-table-2",
"utterances":[
{
"index":0,
"segments":[
],
"speaker":"USER",
"text":"Hi, I'm looking for a place that sells spicy wet hotdogs, can you think of any?"
},
{
"index":1,
"segments":[
{
"annotations":[
{
"name":"restaurant_reservation.name.restaurant.reject"
}
],
"end_index":37,
"start_index":16,
"text":"Spicy Wet Hotdogs LLC"
}
],
"speaker":"ASSISTANT",
"text":"You might enjoy Spicy Wet Hotdogs LLC."
},
{
"index":2,
"segments":[
],
"speaker":"USER",
"text":"That sounds really good, can you make me a reservation?"
},
{
"index":3,
"segments":[
],
"speaker":"ASSISTANT",
"text":"Certainly, when would you like a reservation?"
},
{
"index":4,
"segments":[
{
"annotations":[
{
"name":"restaurant_reservation.num.guests"
},
{
"name":"restaurant_reservation.num.guests"
}
],
"end_index":20,
"start_index":18,
"text":"50"
}
],
"speaker":"USER",
"text":"I have a party of 50 who want a really sloppy dog on Saturday at noon."
}
]
}
```
### Data Fields
Each conversation in the data file has the following structure:
- `conversation_id`: A universally unique identifier with the prefix 'dlg-'. The ID has no meaning.
- `utterances`: A list of utterances that make up the conversation.
- `instruction_id`: A reference to the file(s) containing the user (and, if applicable, agent) instructions for this conversation.
Each utterance has the following fields:
- `index`: A 0-based index indicating the order of the utterances in the conversation.
- `speaker`: Either USER or ASSISTANT, indicating which role generated this utterance.
- `text`: The raw text of the utterance. In case of self dialogs (one_person_dialogs), this is written by the crowdsourced worker. In case of the WOz dialogs, 'ASSISTANT' turns are written and 'USER' turns are transcribed from the spoken recordings of crowdsourced workers.
- `segments`: A list of various text spans with semantic annotations.
Each segment has the following fields:
- `start_index`: The position of the start of the annotation in the utterance text.
- `end_index`: The position of the end of the annotation in the utterance text.
- `text`: The raw text that has been annotated.
- `annotations`: A list of annotation details for this segment.
Each annotation has a single field:
- `name`: The annotation name.
### Data Splits
- one_person_dialogs
The data in `one_person_dialogs` config is split into `train`, `dev` and `test` splits.
| | train | validation | test |
|--------------|-------:|------------:|------:|
| N. Instances | 6168 | 770 | 770 |
- woz_dialogs
The data in `woz_dialogs` config has no default splits.
| | train |
|--------------|-------:|
| N. Instances | 5507 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The dataset is licensed under `Creative Commons Attribution 4.0 License`
### Citation Information
[More Information Needed]
```
@inproceedings{48484,
title = {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},
author = {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},
year = {2019}
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
taskmaster2 | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: taskmaster-2
pretty_name: Taskmaster-2
dataset_info:
- config_name: flights
features:
- name: conversation_id
dtype: string
- name: instruction_id
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 7073487
num_examples: 2481
download_size: 23029880
dataset_size: 7073487
- config_name: food-ordering
features:
- name: conversation_id
dtype: string
- name: instruction_id
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 1734825
num_examples: 1050
download_size: 5376675
dataset_size: 1734825
- config_name: hotels
features:
- name: conversation_id
dtype: string
- name: instruction_id
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 7436667
num_examples: 2357
download_size: 22507266
dataset_size: 7436667
- config_name: movies
features:
- name: conversation_id
dtype: string
- name: instruction_id
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 7112301
num_examples: 3056
download_size: 21189893
dataset_size: 7112301
- config_name: music
features:
- name: conversation_id
dtype: string
- name: instruction_id
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 2814030
num_examples: 1603
download_size: 8981720
dataset_size: 2814030
- config_name: restaurant-search
features:
- name: conversation_id
dtype: string
- name: instruction_id
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 7341998
num_examples: 3276
download_size: 21472680
dataset_size: 7341998
- config_name: sports
features:
- name: conversation_id
dtype: string
- name: instruction_id
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 5738818
num_examples: 3481
download_size: 19549440
dataset_size: 5738818
---
# Dataset Card for Taskmaster-2
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Taskmaster-1](https://research.google/tools/datasets/taskmaster-1/)
- **Repository:** [GitHub](https://github.com/google-research-datasets/Taskmaster/tree/master/TM-2-2020)
- **Paper:** [Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset](https://arxiv.org/abs/1909.05358)
- **Leaderboard:** N/A
- **Point of Contact:** [Taskmaster Googlegroup](taskmaster-datasets@googlegroups.com)
### Dataset Summary
Taskmaster is dataset for goal oriented conversations. The Taskmaster-2 dataset consists of 17,289 dialogs
in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports.
Unlike Taskmaster-1, which includes both written "self-dialogs" and spoken two-person dialogs,
Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is
almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs.
All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced
workers played the role of a 'user' and trained call center operators played the role of the 'assistant'.
In this way, users were led to believe they were interacting with an automated system that “spoke”
using text-to-speech (TTS) even though it was in fact a human behind the scenes.
As a result, users could express themselves however they chose in the context of an automated interface.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is in English language.
## Dataset Structure
### Data Instances
A typical example looks like this
```
{
"conversation_id": "dlg-0047a087-6a3c-4f27-b0e6-268f53a2e013",
"instruction_id": "flight-6",
"utterances": [
{
"index": 0,
"segments": [],
"speaker": "USER",
"text": "Hi, I'm looking for a flight. I need to visit a friend."
},
{
"index": 1,
"segments": [],
"speaker": "ASSISTANT",
"text": "Hello, how can I help you?"
},
{
"index": 2,
"segments": [],
"speaker": "ASSISTANT",
"text": "Sure, I can help you with that."
},
{
"index": 3,
"segments": [],
"speaker": "ASSISTANT",
"text": "On what dates?"
},
{
"index": 4,
"segments": [
{
"annotations": [
{
"name": "flight_search.date.depart_origin"
}
],
"end_index": 37,
"start_index": 27,
"text": "March 20th"
},
{
"annotations": [
{
"name": "flight_search.date.return"
}
],
"end_index": 45,
"start_index": 41,
"text": "22nd"
}
],
"speaker": "USER",
"text": "I'm looking to travel from March 20th to 22nd."
}
]
}
```
### Data Fields
Each conversation in the data file has the following structure:
- `conversation_id`: A universally unique identifier with the prefix 'dlg-'. The ID has no meaning.
- `utterances`: A list of utterances that make up the conversation.
- `instruction_id`: A reference to the file(s) containing the user (and, if applicable, agent) instructions for this conversation.
Each utterance has the following fields:
- `index`: A 0-based index indicating the order of the utterances in the conversation.
- `speaker`: Either USER or ASSISTANT, indicating which role generated this utterance.
- `text`: The raw text of the utterance. In case of self dialogs (one_person_dialogs), this is written by the crowdsourced worker. In case of the WOz dialogs, 'ASSISTANT' turns are written and 'USER' turns are transcribed from the spoken recordings of crowdsourced workers.
- `segments`: A list of various text spans with semantic annotations.
Each segment has the following fields:
- `start_index`: The position of the start of the annotation in the utterance text.
- `end_index`: The position of the end of the annotation in the utterance text.
- `text`: The raw text that has been annotated.
- `annotations`: A list of annotation details for this segment.
Each annotation has a single field:
- `name`: The annotation name.
### Data Splits
There are no deafults splits for all the config. The below table lists the number of examples in each config.
| Config | Train |
|-------------------|--------|
| flights | 2481 |
| food-orderings | 1050 |
| hotels | 2355 |
| movies | 3047 |
| music | 1602 |
| restaurant-search | 3276 |
| sports | 3478 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The dataset is licensed under `Creative Commons Attribution 4.0 License`
### Citation Information
[More Information Needed]
```
@inproceedings{48484,
title = {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},
author = {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},
year = {2019}
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
taskmaster3 | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: null
pretty_name: taskmaster3
dataset_info:
features:
- name: conversation_id
dtype: string
- name: vertical
dtype: string
- name: instructions
dtype: string
- name: scenario
dtype: string
- name: utterances
list:
- name: index
dtype: int32
- name: speaker
dtype: string
- name: text
dtype: string
- name: apis
list:
- name: name
dtype: string
- name: index
dtype: int32
- name: args
list:
- name: arg_name
dtype: string
- name: arg_value
dtype: string
- name: response
list:
- name: response_name
dtype: string
- name: response_value
dtype: string
- name: segments
list:
- name: start_index
dtype: int32
- name: end_index
dtype: int32
- name: text
dtype: string
- name: annotations
list:
- name: name
dtype: string
splits:
- name: train
num_bytes: 143609327
num_examples: 23757
download_size: 313402141
dataset_size: 143609327
---
# Dataset Card for taskmaster3
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Taskmaster](https://research.google/tools/datasets/taskmaster-1/)
- **Repository:** [GitHub](https://github.com/google-research-datasets/Taskmaster/tree/master/TM-3-2020)
- **Paper:** [Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset](https://arxiv.org/abs/1909.05358)
- **Leaderboard:** N/A
- **Point of Contact:** [Taskmaster Googlegroup](taskmaster-datasets@googlegroups.com)
### Dataset Summary
Taskmaster is dataset for goal oriented conversations. The Taskmaster-3 dataset consists of 23,757 movie ticketing dialogs.
By "movie ticketing" we mean conversations where the customer's goal is to purchase tickets after deciding
on theater, time, movie name, number of tickets, and date, or opt out of the transaction. This collection
was created using the "self-dialog" method. This means a single, crowd-sourced worker is
paid to create a conversation writing turns for both speakers, i.e. the customer and the ticketing agent.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is in English language.
## Dataset Structure
### Data Instances
A typical example looks like this
```
{
"conversation_id": "dlg-ddee80da-9ffa-4773-9ce7-f73f727cb79c",
"instructions": "SCENARIO: Pretend you’re *using a digital assistant to purchase tickets for a movie currently showing in theaters*. ...",
"scenario": "4 exchanges with 1 error and predefined variables",
"utterances": [
{
"apis": [],
"index": 0,
"segments": [
{
"annotations": [
{
"name": "num.tickets"
}
],
"end_index": 21,
"start_index": 20,
"text": "2"
},
{
"annotations": [
{
"name": "name.movie"
}
],
"end_index": 42,
"start_index": 37,
"text": "Mulan"
}
],
"speaker": "user",
"text": "I would like to buy 2 tickets to see Mulan."
},
{
"index": 6,
"segments": [],
"speaker": "user",
"text": "Yes.",
"apis": [
{
"args": [
{
"arg_name": "name.movie",
"arg_value": "Mulan"
},
{
"arg_name": "name.theater",
"arg_value": "Mountain AMC 16"
}
],
"index": 6,
"name": "book_tickets",
"response": [
{
"response_name": "status",
"response_value": "success"
}
]
}
]
}
],
"vertical": "Movie Tickets"
}
```
### Data Fields
Each conversation in the data file has the following structure:
- `conversation_id`: A universally unique identifier with the prefix 'dlg-'. The ID has no meaning.
- `utterances`: A list of utterances that make up the conversation.
- `instructions`: Instructions for the crowdsourced worker used in creating the conversation.
- `vertical`: In this dataset the vertical for all dialogs is "Movie Tickets".
- `scenario`: This is the title of the instructions for each dialog.
Each utterance has the following fields:
- `index`: A 0-based index indicating the order of the utterances in the conversation.
- `speaker`: Either USER or ASSISTANT, indicating which role generated this utterance.
- `text`: The raw text of the utterance. In case of self dialogs (one_person_dialogs), this is written by the crowdsourced worker. In case of the WOz dialogs, 'ASSISTANT' turns are written and 'USER' turns are transcribed from the spoken recordings of crowdsourced workers.
- `segments`: A list of various text spans with semantic annotations.
- `apis`: An array of API invocations made during the utterance.
Each API has the following structure:
- `name`: The name of the API invoked (e.g. find_movies).
- `index`: The index of the parent utterance.
- `args`: A `list` of `dict` with keys `arg_name` and `arg_value` which represent the name of the argument and the value for the argument respectively.
- `response`: A `list` of `dict`s with keys `response_name` and `response_value` which represent the name of the response and the value for the response respectively.
Each segment has the following fields:
- `start_index`: The position of the start of the annotation in the utterance text.
- `end_index`: The position of the end of the annotation in the utterance text.
- `text`: The raw text that has been annotated.
- `annotations`: A list of annotation details for this segment.
Each annotation has a single field:
- `name`: The annotation name.
### Data Splits
There are no deafults splits for all the config. The below table lists the number of examples in each config.
| | Train |
|-------------------|--------|
| n_instances | 23757 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The dataset is licensed under `Creative Commons Attribution 4.0 License`
### Citation Information
[More Information Needed]
```
@inproceedings{48484,
title = {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},
author = {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},
year = {2019}
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
tatoeba | ---
annotations_creators:
- found
language_creators:
- found
language:
- ab
- acm
- ady
- af
- afb
- afh
- aii
- ain
- ajp
- akl
- aln
- am
- an
- ang
- aoz
- apc
- ar
- arq
- ary
- arz
- as
- ast
- avk
- awa
- ayl
- az
- ba
- bal
- bar
- be
- ber
- bg
- bho
- bjn
- bm
- bn
- bo
- br
- brx
- bs
- bua
- bvy
- bzt
- ca
- cay
- cbk
- ce
- ceb
- ch
- chg
- chn
- cho
- chr
- cjy
- ckb
- ckt
- cmn
- co
- code
- cpi
- crh
- crk
- cs
- csb
- cv
- cy
- da
- de
- dng
- drt
- dsb
- dtp
- dv
- dws
- ee
- egl
- el
- emx
- en
- enm
- eo
- es
- et
- eu
- ext
- fi
- fj
- fkv
- fo
- fr
- frm
- fro
- frr
- fuc
- fur
- fuv
- fy
- ga
- gag
- gan
- gbm
- gcf
- gd
- gil
- gl
- gn
- gom
- gos
- got
- grc
- gsw
- gu
- gv
- ha
- hak
- haw
- hbo
- he
- hi
- hif
- hil
- hnj
- hoc
- hr
- hrx
- hsb
- hsn
- ht
- hu
- hy
- ia
- iba
- id
- ie
- ig
- ii
- ike
- ilo
- io
- is
- it
- izh
- ja
- jam
- jbo
- jdt
- jpa
- jv
- ka
- kaa
- kab
- kam
- kek
- kha
- kjh
- kk
- kl
- km
- kmr
- kn
- ko
- koi
- kpv
- krc
- krl
- ksh
- ku
- kum
- kw
- kxi
- ky
- la
- laa
- lad
- lb
- ldn
- lfn
- lg
- lij
- liv
- lkt
- lld
- lmo
- ln
- lo
- lt
- ltg
- lut
- lv
- lzh
- lzz
- mad
- mai
- max
- mdf
- mfe
- mg
- mgm
- mh
- mhr
- mi
- mic
- min
- mk
- ml
- mn
- mni
- mnw
- moh
- mr
- mt
- mvv
- mwl
- mww
- my
- myv
- na
- nah
- nan
- nb
- nch
- nds
- ngt
- ngu
- niu
- nl
- nlv
- nn
- nog
- non
- nov
- npi
- nst
- nus
- nv
- ny
- nys
- oar
- oc
- ofs
- ood
- or
- orv
- os
- osp
- ota
- otk
- pa
- pag
- pal
- pam
- pap
- pau
- pcd
- pdc
- pes
- phn
- pi
- pl
- pms
- pnb
- ppl
- prg
- ps
- pt
- qu
- quc
- qya
- rap
- rif
- rm
- rn
- ro
- rom
- ru
- rue
- rw
- sa
- sah
- sc
- scn
- sco
- sd
- sdh
- se
- sg
- sgs
- shs
- shy
- si
- sjn
- sl
- sm
- sma
- sn
- so
- sq
- sr
- stq
- su
- sux
- sv
- swg
- swh
- syc
- ta
- te
- tet
- tg
- th
- thv
- ti
- tig
- tk
- tl
- tlh
- tly
- tmr
- tmw
- tn
- to
- toi
- tok
- tpi
- tpw
- tr
- ts
- tt
- tts
- tvl
- ty
- tyv
- tzl
- udm
- ug
- uk
- umb
- ur
- uz
- vec
- vep
- vi
- vo
- vro
- wa
- war
- wo
- wuu
- xal
- xh
- xqa
- yi
- yo
- yue
- zlm
- zsm
- zu
- zza
license:
- cc-by-2.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: tatoeba
pretty_name: Tatoeba
dataset_info:
- config_name: en-mr
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- mr
splits:
- name: train
num_bytes: 6190484
num_examples: 53462
download_size: 1436200
dataset_size: 6190484
- config_name: eo-nl
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- eo
- nl
splits:
- name: train
num_bytes: 8150048
num_examples: 93650
download_size: 3020382
dataset_size: 8150048
- config_name: es-pt
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- es
- pt
splits:
- name: train
num_bytes: 6180464
num_examples: 67782
download_size: 2340361
dataset_size: 6180464
- config_name: fr-ru
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- fr
- ru
splits:
- name: train
num_bytes: 19775390
num_examples: 195161
download_size: 5509784
dataset_size: 19775390
- config_name: es-gl
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- es
- gl
splits:
- name: train
num_bytes: 287683
num_examples: 3135
download_size: 128506
dataset_size: 287683
---
# Dataset Card for Tatoeba
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://opus.nlpl.eu/Tatoeba.php
- **Repository:** None
- **Paper:** http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** [More Information Needed]
### Dataset Summary
Tatoeba is a collection of sentences and translations.
To load a language pair which isn't part of the config, all you need to do is specify the language code as pairs.
You can find the valid pairs in Homepage section of Dataset Description: http://opus.nlpl.eu/Tatoeba.php
E.g.
`dataset = load_dataset("tatoeba", lang1="en", lang2="he")`
The default date is v2021-07-22, but you can also change the date with
`dataset = load_dataset("tatoeba", lang1="en", lang2="he", date="v2020-11-09")`
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The languages in the dataset are:
- ab
- acm
- ady
- af
- afb
- afh
- aii
- ain
- ajp
- akl
- aln
- am
- an
- ang
- aoz
- apc
- ar
- arq
- ary
- arz
- as
- ast
- avk
- awa
- ayl
- az
- ba
- bal
- bar
- be
- ber
- bg
- bho
- bjn
- bm
- bn
- bo
- br
- brx
- bs
- bua
- bvy
- bzt
- ca
- cay
- cbk
- ce
- ceb
- ch
- chg
- chn
- cho
- chr
- cjy
- ckb
- ckt
- cmn
- co
- code
- cpi
- crh
- crk
- cs
- csb
- cv
- cy
- da
- de
- dng
- drt
- dsb
- dtp
- dv
- dws
- ee
- egl
- el
- emx
- en
- enm
- eo
- es
- et
- eu
- ext
- fi
- fj
- fkv
- fo
- fr
- frm
- fro
- frr
- fuc
- fur
- fuv
- fy
- ga
- gag
- gan
- gbm
- gcf
- gd
- gil
- gl
- gn
- gom
- gos
- got
- grc
- gsw
- gu
- gv
- ha
- hak
- haw
- hbo
- he
- hi
- hif
- hil
- hnj
- hoc
- hr
- hrx
- hsb
- hsn
- ht
- hu
- hy
- ia
- iba
- id
- ie
- ig
- ii
- ike
- ilo
- io
- is
- it
- izh
- ja
- jam
- jbo
- jdt
- jpa
- jv
- ka
- kaa
- kab
- kam
- kek
- kha
- kjh
- kk
- kl
- km
- kmr
- kn
- ko
- koi
- kpv
- krc
- krl
- ksh
- ku
- kum
- kw
- kxi
- ky
- kzj: Coastal Kadazan (deprecated tag; preferred value: Kadazan Dusun; Central Dusun (`dtp`))
- la
- laa
- lad
- lb
- ldn
- lfn
- lg
- lij
- liv
- lkt
- lld
- lmo
- ln
- lo
- lt
- ltg
- lut
- lv
- lzh
- lzz
- mad
- mai
- max
- mdf
- mfe
- mg
- mgm
- mh
- mhr
- mi
- mic
- min
- mk
- ml
- mn
- mni
- mnw
- moh
- mr
- mt
- mvv
- mwl
- mww
- my
- myv
- na
- nah
- nan
- nb
- nch
- nds
- ngt
- ngu
- niu
- nl
- nlv
- nn
- nog
- non
- nov
- npi
- nst
- nus
- nv
- ny
- nys
- oar
- oc
- ofs
- ood
- or
- orv
- os
- osp
- ota
- otk
- pa
- pag
- pal
- pam
- pap
- pau
- pcd
- pdc
- pes
- phn
- pi
- pl
- pms
- pnb
- ppl
- prg
- ps
- pt
- qu
- quc
- qya
- rap
- rif
- rm
- rn
- ro
- rom
- ru
- rue
- rw
- sa
- sah
- sc
- scn
- sco
- sd
- sdh
- se
- sg
- sgs
- shs
- shy
- si
- sjn
- sl
- sm
- sma
- sn
- so
- sq
- sr
- stq
- su
- sux
- sv
- swg
- swh
- syc
- ta
- te
- tet
- tg
- th
- thv
- ti
- tig
- tk
- tl
- tlh
- tly
- tmr
- tmw
- tn
- to
- toi
- tok
- tpi
- tpw
- tr
- ts
- tt
- tts
- tvl
- ty
- tyv
- tzl
- udm
- ug
- uk
- umb
- ur
- uz
- vec
- vep
- vi
- vo
- vro
- wa
- war
- wo
- wuu
- xal
- xh
- xqa
- yi
- yo
- yue
- zlm
- zsm
- zu
- zza
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
ted_hrlr | ---
annotations_creators:
- crowdsourced
language:
- az
- be
- en
- es
- fr
- gl
- he
- it
- pt
- ru
- tr
language_creators:
- expert-generated
license:
- cc-by-nc-nd-4.0
multilinguality:
- translation
pretty_name: TEDHrlr
size_categories:
- 1M<n<10M
source_datasets:
- extended|ted_talks_iwslt
task_categories:
- translation
task_ids: []
paperswithcode_id: null
dataset_info:
- config_name: az_to_en
features:
- name: translation
dtype:
translation:
languages:
- az
- en
splits:
- name: test
num_bytes: 186540
num_examples: 904
- name: train
num_bytes: 1226853
num_examples: 5947
- name: validation
num_bytes: 122709
num_examples: 672
download_size: 131005909
dataset_size: 1536102
- config_name: aztr_to_en
features:
- name: translation
dtype:
translation:
languages:
- az_tr
- en
splits:
- name: test
num_bytes: 186540
num_examples: 904
- name: train
num_bytes: 39834469
num_examples: 188397
- name: validation
num_bytes: 122709
num_examples: 672
download_size: 131005909
dataset_size: 40143718
- config_name: be_to_en
features:
- name: translation
dtype:
translation:
languages:
- be
- en
splits:
- name: test
num_bytes: 186606
num_examples: 665
- name: train
num_bytes: 1176899
num_examples: 4510
- name: validation
num_bytes: 59328
num_examples: 249
download_size: 131005909
dataset_size: 1422833
- config_name: beru_to_en
features:
- name: translation
dtype:
translation:
languages:
- be_ru
- en
splits:
- name: test
num_bytes: 186606
num_examples: 665
- name: train
num_bytes: 59953616
num_examples: 212615
- name: validation
num_bytes: 59328
num_examples: 249
download_size: 131005909
dataset_size: 60199550
- config_name: es_to_pt
features:
- name: translation
dtype:
translation:
languages:
- es
- pt
splits:
- name: test
num_bytes: 343640
num_examples: 1764
- name: train
num_bytes: 8611393
num_examples: 44939
- name: validation
num_bytes: 181535
num_examples: 1017
download_size: 131005909
dataset_size: 9136568
- config_name: fr_to_pt
features:
- name: translation
dtype:
translation:
languages:
- fr
- pt
splits:
- name: test
num_bytes: 311650
num_examples: 1495
- name: train
num_bytes: 8755387
num_examples: 43874
- name: validation
num_bytes: 212317
num_examples: 1132
download_size: 131005909
dataset_size: 9279354
- config_name: gl_to_en
features:
- name: translation
dtype:
translation:
languages:
- gl
- en
splits:
- name: test
num_bytes: 193213
num_examples: 1008
- name: train
num_bytes: 1961363
num_examples: 10018
- name: validation
num_bytes: 137929
num_examples: 683
download_size: 131005909
dataset_size: 2292505
- config_name: glpt_to_en
features:
- name: translation
dtype:
translation:
languages:
- gl_pt
- en
splits:
- name: test
num_bytes: 193213
num_examples: 1008
- name: train
num_bytes: 11734254
num_examples: 61803
- name: validation
num_bytes: 137929
num_examples: 683
download_size: 131005909
dataset_size: 12065396
- config_name: he_to_pt
features:
- name: translation
dtype:
translation:
languages:
- he
- pt
splits:
- name: test
num_bytes: 361378
num_examples: 1624
- name: train
num_bytes: 10627615
num_examples: 48512
- name: validation
num_bytes: 230725
num_examples: 1146
download_size: 131005909
dataset_size: 11219718
- config_name: it_to_pt
features:
- name: translation
dtype:
translation:
languages:
- it
- pt
splits:
- name: test
num_bytes: 324726
num_examples: 1670
- name: train
num_bytes: 8905825
num_examples: 46260
- name: validation
num_bytes: 210375
num_examples: 1163
download_size: 131005909
dataset_size: 9440926
- config_name: pt_to_en
features:
- name: translation
dtype:
translation:
languages:
- pt
- en
splits:
- name: test
num_bytes: 347803
num_examples: 1804
- name: train
num_bytes: 9772911
num_examples: 51786
- name: validation
num_bytes: 207960
num_examples: 1194
download_size: 131005909
dataset_size: 10328674
- config_name: ru_to_en
features:
- name: translation
dtype:
translation:
languages:
- ru
- en
splits:
- name: test
num_bytes: 1459576
num_examples: 5477
- name: train
num_bytes: 58778442
num_examples: 208107
- name: validation
num_bytes: 1318357
num_examples: 4806
download_size: 131005909
dataset_size: 61556375
- config_name: ru_to_pt
features:
- name: translation
dtype:
translation:
languages:
- ru
- pt
splits:
- name: test
num_bytes: 409062
num_examples: 1589
- name: train
num_bytes: 11882860
num_examples: 47279
- name: validation
num_bytes: 276866
num_examples: 1185
download_size: 131005909
dataset_size: 12568788
- config_name: tr_to_en
features:
- name: translation
dtype:
translation:
languages:
- tr
- en
splits:
- name: test
num_bytes: 1026406
num_examples: 5030
- name: train
num_bytes: 38607636
num_examples: 182451
- name: validation
num_bytes: 832358
num_examples: 4046
download_size: 131005909
dataset_size: 40466400
---
# Dataset Card for "ted_hrlr"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:** https://github.com/neulab/word-embeddings-for-nmt
- **Paper:** [When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?](https://aclanthology.org/N18-2084/)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.83 GB
- **Size of the generated dataset:** 281.66 MB
- **Total amount of disk used:** 2.12 GB
### Dataset Summary
Data sets derived from TED talk transcripts for comparing similar language pairs
where one is high resource and the other is low resource.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### az_to_en
- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 1.53 MB
- **Total amount of disk used:** 132.54 MB
An example of 'train' looks as follows.
```
{
"translation": {
"az": "zəhmət olmasa , sizə xitab edən sözlər eşidəndə əlinizi qaldırın .",
"en": "please raise your hand if something applies to you ."
}
}
```
#### aztr_to_en
- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 40.14 MB
- **Total amount of disk used:** 171.15 MB
An example of 'train' looks as follows.
```
{
"translation": {
"az_tr": "zəhmət olmasa , sizə xitab edən sözlər eşidəndə əlinizi qaldırın .",
"en": "please raise your hand if something applies to you ."
}
}
```
#### be_to_en
- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 1.43 MB
- **Total amount of disk used:** 132.42 MB
An example of 'train' looks as follows.
```
{
"translation": {
"be": "zəhmət olmasa , sizə xitab edən sözlər eşidəndə əlinizi qaldırın .",
"en": "please raise your hand if something applies to you ."
}
}
```
#### beru_to_en
- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 60.20 MB
- **Total amount of disk used:** 191.21 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"translation": "{\"be_ru\": \"11 yaşımdaydım . səhərin birində , evimizdəki sevinc səslərinə oyandığım indiki kimi yadımdadır .\", \"en\": \"when i was..."
}
```
#### es_to_pt
- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 9.13 MB
- **Total amount of disk used:** 140.14 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"translation": "{\"es\": \"11 yaşımdaydım . səhərin birində , evimizdəki sevinc səslərinə oyandığım indiki kimi yadımdadır .\", \"pt\": \"when i was 11..."
}
```
### Data Fields
The data fields are the same among all splits.
#### az_to_en
- `translation`: a multilingual `string` variable, with possible languages including `az`, `en`.
#### aztr_to_en
- `translation`: a multilingual `string` variable, with possible languages including `az_tr`, `en`.
#### be_to_en
- `translation`: a multilingual `string` variable, with possible languages including `be`, `en`.
#### beru_to_en
- `translation`: a multilingual `string` variable, with possible languages including `be_ru`, `en`.
#### es_to_pt
- `translation`: a multilingual `string` variable, with possible languages including `es`, `pt`.
### Data Splits
| name |train |validation|test|
|----------|-----:|---------:|---:|
|az_to_en | 5947| 672| 904|
|aztr_to_en|188397| 672| 904|
|be_to_en | 4510| 249| 665|
|beru_to_en|212615| 249| 665|
|es_to_pt | 44939| 1017|1764|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{qi-etal-2018-pre,
title = "When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?",
author = "Qi, Ye and
Sachan, Devendra and
Felix, Matthieu and
Padmanabhan, Sarguna and
Neubig, Graham",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2084",
doi = "10.18653/v1/N18-2084",
pages = "529--535",
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
ted_iwlst2013 | ---
annotations_creators:
- found
language_creators:
- found
language:
- ar
- de
- en
- es
- fa
- fr
- it
- nl
- pl
- pt
- ro
- ru
- sl
- tr
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: TedIwlst2013
configs:
- ar-en
- de-en
- en-es
- en-fa
- en-fr
- en-it
- en-nl
- en-pl
- en-pt
- en-ro
- en-ru
- en-sl
- en-tr
- en-zh
dataset_info:
- config_name: ar-en
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ar
- en
splits:
- name: train
num_bytes: 37413446
num_examples: 152838
download_size: 12065234
dataset_size: 37413446
- config_name: de-en
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 30295518
num_examples: 143836
download_size: 10931406
dataset_size: 30295518
- config_name: en-es
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- es
splits:
- name: train
num_bytes: 32522545
num_examples: 157895
download_size: 11642092
dataset_size: 32522545
- config_name: en-fa
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- fa
splits:
- name: train
num_bytes: 22228781
num_examples: 80510
download_size: 6579696
dataset_size: 22228781
- config_name: en-fr
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- fr
splits:
- name: train
num_bytes: 34355481
num_examples: 160420
download_size: 12061420
dataset_size: 34355481
- config_name: en-it
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- it
splits:
- name: train
num_bytes: 32916537
num_examples: 159391
download_size: 11774644
dataset_size: 32916537
- config_name: en-nl
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- nl
splits:
- name: train
num_bytes: 29679822
num_examples: 145951
download_size: 10712032
dataset_size: 29679822
- config_name: en-pl
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- pl
splits:
- name: train
num_bytes: 29776339
num_examples: 149120
download_size: 10999482
dataset_size: 29776339
- config_name: en-pt
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- pt
splits:
- name: train
num_bytes: 32179607
num_examples: 155995
download_size: 11493053
dataset_size: 32179607
- config_name: en-ro
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- ro
splits:
- name: train
num_bytes: 32958421
num_examples: 158483
download_size: 11936172
dataset_size: 32958421
- config_name: en-ru
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: train
num_bytes: 36529465
num_examples: 133660
download_size: 11167700
dataset_size: 36529465
- config_name: en-sl
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- sl
splits:
- name: train
num_bytes: 2831344
num_examples: 14960
download_size: 1060712
dataset_size: 2831344
- config_name: en-tr
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- tr
splits:
- name: train
num_bytes: 28016103
num_examples: 137028
download_size: 10038531
dataset_size: 28016103
- config_name: en-zh
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- zh
splits:
- name: train
num_bytes: 30205477
num_examples: 154579
download_size: 11714497
dataset_size: 30205477
---
# Dataset Card for TedIwlst2013
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://opus.nlpl.eu/TED2013.php
- **Repository:** None
- **Paper:** hhttp://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
- **Leaderboard:** None
- **Point of Contact:** [More Information Needed]
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
ted_multi | ---
pretty_name: TEDMulti
paperswithcode_id: null
dataset_info:
features:
- name: translations
dtype:
translation_variable_languages:
languages:
- ar
- az
- be
- bg
- bn
- bs
- calv
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fr-ca
- gl
- he
- hi
- hr
- hu
- hy
- id
- it
- ja
- ka
- kk
- ko
- ku
- lt
- mk
- mn
- mr
- ms
- my
- nb
- nl
- pl
- pt
- pt-br
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- ta
- th
- tr
- uk
- ur
- vi
- zh
- zh-cn
- zh-tw
num_languages: 60
- name: talk_name
dtype: string
config_name: plain_text
splits:
- name: test
num_bytes: 23364983
num_examples: 7213
- name: train
num_bytes: 748209995
num_examples: 258098
- name: validation
num_bytes: 19435383
num_examples: 6049
download_size: 352222045
dataset_size: 791010361
---
# Dataset Card for "ted_multi"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/neulab/word-embeddings-for-nmt](https://github.com/neulab/word-embeddings-for-nmt)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 352.23 MB
- **Size of the generated dataset:** 791.01 MB
- **Total amount of disk used:** 1.14 GB
### Dataset Summary
Massively multilingual (60 language) data set derived from TED Talk transcripts.
Each record consists of parallel arrays of language and text. Missing and
incomplete translations will be filtered out.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### plain_text
- **Size of downloaded dataset files:** 352.23 MB
- **Size of the generated dataset:** 791.01 MB
- **Total amount of disk used:** 1.14 GB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"talk_name": "shabana_basij_rasikh_dare_to_educate_afghan_girls",
"translations": "{\"language\": [\"ar\", \"az\", \"bg\", \"bn\", \"cs\", \"da\", \"de\", \"el\", \"en\", \"es\", \"fa\", \"fr\", \"he\", \"hi\", \"hr\", \"hu\", \"hy\", \"id\", \"it\", ..."
}
```
### Data Fields
The data fields are the same among all splits.
#### plain_text
- `translations`: a multilingual `string` variable, with possible languages including `ar`, `az`, `be`, `bg`, `bn`.
- `talk_name`: a `string` feature.
### Data Splits
| name |train |validation|test|
|----------|-----:|---------:|---:|
|plain_text|258098| 6049|7213|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
ted_talks_iwslt | ---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- af
- am
- ar
- arq
- art
- as
- ast
- az
- be
- bg
- bi
- bn
- bo
- bs
- ca
- ceb
- cnh
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hup
- hy
- id
- ig
- inh
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- ltg
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- mt
- my
- nb
- ne
- nl
- nn
- oc
- pa
- pl
- ps
- pt
- ro
- ru
- rup
- sh
- si
- sk
- sl
- so
- sq
- sr
- sv
- sw
- szl
- ta
- te
- tg
- th
- tl
- tlh
- tr
- tt
- ug
- uk
- ur
- uz
- vi
- zh
language_bcp47:
- art-x-bork
- fr-CA
- pt-BR
- zh-CN
- zh-TW
license:
- cc-by-nc-nd-4.0
multilinguality:
- translation
size_categories:
- 1K<n<10K
- n<1K
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: Web Inventory of Transcribed & Translated (WIT) Ted Talks
configs:
- de_ja_2014
- de_ja_2015
- de_ja_2016
- eu_ca_2014
- eu_ca_2015
- eu_ca_2016
- fr-ca_hi_2014
- fr-ca_hi_2015
- fr-ca_hi_2016
- nl_en_2014
- nl_en_2015
- nl_en_2016
- nl_hi_2014
- nl_hi_2015
- nl_hi_2016
dataset_info:
- config_name: eu_ca_2014
features:
- name: translation
dtype:
translation:
languages:
- eu
- ca
splits:
- name: train
num_bytes: 15192
num_examples: 44
download_size: 1666674366
dataset_size: 15192
- config_name: eu_ca_2015
features:
- name: translation
dtype:
translation:
languages:
- eu
- ca
splits:
- name: train
num_bytes: 18768
num_examples: 52
download_size: 1666674366
dataset_size: 18768
- config_name: eu_ca_2016
features:
- name: translation
dtype:
translation:
languages:
- eu
- ca
splits:
- name: train
num_bytes: 19506
num_examples: 54
download_size: 1666674366
dataset_size: 19506
- config_name: nl_en_2014
features:
- name: translation
dtype:
translation:
languages:
- nl
- en
splits:
- name: train
num_bytes: 1035545
num_examples: 2966
download_size: 1666674366
dataset_size: 1035545
- config_name: nl_en_2015
features:
- name: translation
dtype:
translation:
languages:
- nl
- en
splits:
- name: train
num_bytes: 1292610
num_examples: 3550
download_size: 1666674366
dataset_size: 1292610
- config_name: nl_en_2016
features:
- name: translation
dtype:
translation:
languages:
- nl
- en
splits:
- name: train
num_bytes: 1434207
num_examples: 3852
download_size: 1666674366
dataset_size: 1434207
- config_name: nl_hi_2014
features:
- name: translation
dtype:
translation:
languages:
- nl
- hi
splits:
- name: train
num_bytes: 214870
num_examples: 367
download_size: 1666674366
dataset_size: 214870
- config_name: nl_hi_2015
features:
- name: translation
dtype:
translation:
languages:
- nl
- hi
splits:
- name: train
num_bytes: 252192
num_examples: 421
download_size: 1666674366
dataset_size: 252192
- config_name: nl_hi_2016
features:
- name: translation
dtype:
translation:
languages:
- nl
- hi
splits:
- name: train
num_bytes: 310922
num_examples: 496
download_size: 1666674366
dataset_size: 310922
- config_name: de_ja_2014
features:
- name: translation
dtype:
translation:
languages:
- de
- ja
splits:
- name: train
num_bytes: 1074403
num_examples: 2536
download_size: 1666674366
dataset_size: 1074403
- config_name: de_ja_2015
features:
- name: translation
dtype:
translation:
languages:
- de
- ja
splits:
- name: train
num_bytes: 1442047
num_examples: 3247
download_size: 1666674366
dataset_size: 1442047
- config_name: de_ja_2016
features:
- name: translation
dtype:
translation:
languages:
- de
- ja
splits:
- name: train
num_bytes: 1630729
num_examples: 3590
download_size: 1666674366
dataset_size: 1630729
- config_name: fr-ca_hi_2014
features:
- name: translation
dtype:
translation:
languages:
- fr-ca
- hi
splits:
- name: train
num_bytes: 74472
num_examples: 127
download_size: 1666674366
dataset_size: 74472
- config_name: fr-ca_hi_2015
features:
- name: translation
dtype:
translation:
languages:
- fr-ca
- hi
splits:
- name: train
num_bytes: 82448
num_examples: 141
download_size: 1666674366
dataset_size: 82448
- config_name: fr-ca_hi_2016
features:
- name: translation
dtype:
translation:
languages:
- fr-ca
- hi
splits:
- name: train
num_bytes: 93425
num_examples: 156
download_size: 1666674366
dataset_size: 93425
---
# Dataset Card for Web Inventory of Transcribed & Translated(WIT) Ted Talks
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://wit3.fbk.eu/home
- **Repository:** https://drive.google.com/file/d/1Cz1Un9p8Xn9IpEMMrg2kXSDt0dnjxc4z/view?usp=sharing
- **Paper:** https://www.aclweb.org/anthology/2012.eamt-1.60.pdf
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Mauro Cettolo](mailto:cettolo@fbk.eu)
[Roldano Cattoni](mailto:cattoni@fbk.eu)
### Dataset Summary
The Web Inventory Talk is a collection of the original Ted talks and their translated version. The translations are available in more than 109+ languages, though the distribution is not uniform.
To load a language pair which isn't part of the config, all you need to do is specify the language code as pairs.
E.g.
`dataset = load_dataset("ted_talks_iwslt", language_pair=("it", "pl"), year="2014")`
The full list of languages is: 'af', 'am', 'ar', 'arq', 'art-x-bork', 'as', 'ast', 'az', 'be', 'bg', 'bi', 'bn', 'bo', 'bs', 'ca', 'ceb', 'cnh', 'cs', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fil', 'fr', 'fr-ca', 'ga', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hup', 'hy', 'id', 'ig', 'inh', 'is', 'it', 'ja', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lb', 'lo', 'lt', 'ltg', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'mt', 'my', 'nb', 'ne', 'nl', 'nn', 'oc', 'pa', 'pl', 'ps', 'pt', 'pt-br', 'ro', 'ru', 'rup', 'sh', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'srp', 'sv', 'sw', 'szl', 'ta', 'te', 'tg', 'th', 'tl', 'tlh', 'tr', 'tt', 'ug', 'uk', 'ur', 'uz', 'vi', 'zh', 'zh-cn', 'zh-tw'.
The full list of years is: '2014', '2015', '2016'.
### Supported Tasks and Leaderboards
machine learning task, language modeling and generation
### Languages
Ted talks are mostly held in English (`en`). Almost all of the talks have been translated, by volunteers, into Arabic, Bulgarian, Chinese (simplified), French, Italian, Korean, Portuguese (Brazil) and Spanish. For about 70 other languages, the number of translated talks ranges from several hundreds (e.g. such as other Dutch, German, Hebrew, Romanian) to one (e.g. Hausa, Hupa, Bislama, Ingush, Maltese).
The languages in the dataset are:
- af
- am
- ar
- arq
- art
- as
- ast
- az
- be
- bg
- bi
- bn
- bo
- bs
- ca
- ceb
- cnh
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hup
- hy
- id
- ig
- inh
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- ltg
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- mt
- my
- nb
- ne
- nl
- nn
- oc
- pa
- pl
- ps
- pt
- ro
- ru
- rup
- sh
- si
- sk
- sl
- so
- sq
- sr
- srp: Serbian (`sr`)
- sv
- sw
- szl
- ta
- te
- tg
- th
- tl
- tlh
- tr
- tt
- ug
- uk
- ur
- uz
- vi
- zh
## Dataset Structure
### Data Instances
One example from the dataset is:
```
{'translation': {'hi': 'जब मार्च २०१४ में इबोला का प्रकोप छाया, पर्डिस सबेटी और उनकी टीम को वाइरस के जीनोम का अनुक्रमण करना था, सीखना था कि यह कैसे परवतिर्त होते हैं और फैलते हैं। सबेटी ने तुरंत ही अपने अनुसंधान को वेब में जारी किया, ताकि दुनिया भर के वाइरस ट्रैकर्स और वैज्ञानिक इस तत्काल लड़ाई में शामिल हो सकें। इस बातचीत में, वह दिखाती हैं कि सबका सहयोग ही कुंजी है वाइरस को रोकने के लिए--और लड़ने के लिए आगे आने वाले हमलों से। सबेटी ने कहा,"हमने खुले तौर पर काम किया, साझा किया और साथ काम किया"। "हमे दुनिया को एक वाइरस के विनाश से नहीं, पर अरबों दिलों और दिमागों की एकता से परिभाषित करना है"।',
'nl': 'Toen Ebola in maart 2014 uitbrak, zijn Pardis Sabeti en haar team aan het werk gegaan om het genoom in kaart te brengen. Zo ontdekten ze hoe het virus zich verspreidde en muteerde. Sabeti zette direct haar onderzoek op het internet, zodat wereldwijd virus-jagers en wetenschappers mee konden werken aan de strijd. In deze talk laat ze zien hoe die openheid geholpen heeft bij het stoppen van het virus en hoe het kan helpen bij de strijd tegen het volgende virus. "We moesten transparant werken, delen en samenwerken". Sabeti zegt:"Laat de wereld niet ten onder gaan aan een virus, maar verlicht worden door miljoenen harten en geesten die samenwerken."'}}
```
The original XML files are formatted like this example:
```
<file id="1">
<head>
<url>http://www.ted.com/talks/ryan_holladay_to_hear_this_music_you_have_to_be_there_literally.html</url>
<pagesize>66634</pagesize>
<dtime>Sun Jan 12 15:17:32 CET 2014</dtime>
<content-type>text/html; charset=utf-8</content-type>
<encoding>utf-8</encoding>
<videourl>http://download.ted.com/talks/RyanHolladay_2013S.mp4</videourl>
<videopath>talks/RyanHolladay_2013S.mp4</videopath>
<transcription>
<seekvideo id="2939">(Music)</seekvideo>
<seekvideo id="7555">For any of you who have visited or lived in New York City,</seekvideo>
<seekvideo id="11221">these shots might start to look familiar.</seekvideo>
<seekvideo id="16116">This is Central Park,</seekvideo>
.
.
.
<seekvideo id="361992">for people to interact with</seekvideo>
<seekvideo id="363709">and experience music.</seekvideo>
<seekvideo id="365451">Thank you.</seekvideo>
<seekvideo id="367495">(Applause)</seekvideo>
</transcription>
<talkid>1903</talkid>
<title>Ryan Holladay: To hear this music you have to be there. Literally</title>
<description>The music industry ......segments of sounds that only play when a listener is physically nearby. (Filmed at TED@BCG.)</description>
<keywords>entertainment,music,technology</keywords>
<image>http://images.ted.com/images/ted/d98c17773da6f84e9f915895c270c7ffd2de3778_389x292.jpg</image>
<date>2014/01/12</date>
<wordnum>885</wordnum>
<charnum>5051</charnum>
</head>
<content>(Music) For any of you who have visited or lived in New York City, these shots might start to look familiar. This is Central Park, ............new ways for people to interact with and experience music. Thank you. (Applause)</content>
</file>
```
### Data Fields
The fields of the dataset are:
- translation:
- <lang1>: text in <lang1>
- <lang2>L translated text in <lang2>
Information about the original data files:
For each language, a single XML file is generated which includes all talks subtitled in
that language. Each talk is enclosed in tags `<file id="int">` and `</file>` and includes, among other tags:
| Tags | Description |
|---|:---|
| `<url>`| the address of the original HTML document of the talk |
| `<speaker>` | the name of the talk speaker |
| `<talkid>` | the numeric talk identifier |
| `<transcript>` | talk subtitles split in captions |
| `<date>` | the issue date of the talk |
| `<content>` | talk subtitles |
### Data Splits
The paper doesn't provide any specific train-test-dev splits. However data can be split by available years (2014, 2015, 2016)
## Dataset Creation
### Curation Rationale
TED Conference, based in California, has been posting all video recordings of its talks together with subtitles in English and their translations in more than 80 languages. Aside from its cultural and social relevance, this content, which is published under the Creative Commons BYNC-ND license, also represents a precious language resource for the machine translation research community, thanks to its size, variety of topics, and covered languages.
### Source Data
#### Initial Data Collection and Normalization
The talks were collected from the [Ted Conference website](http://www.ted.com/)
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
Translation has been contributed by volunteers
### Personal and Sensitive Information
No personal and sensitive information is provided in the dataset. All talks are publicly available
## Considerations for Using the Data
### Social Impact of Dataset
In statistical machine translation, large amount of in-domain parallel data are usually required to properly train translation and reordering models. With more than 900+ Ted talks (as of 2011) and translation in more than 90+ languages. This dataset provides a useful resource for the MT research community.
In turn, this enables easy access to a vast treasure trove of human knowledge.
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
The original dataset was curated by:
[Mauro Cettolo](mailto:cettolo@fbk.eu)
[Roldano Cattoni](mailto:cattoni@fbk.eu)
Author:
Christian Girardi
For issues with the HuggingFace Dataset implementation, reach out: [Aakash Gupta](mailto:aakashg80@gmail.com)
### Licensing Information
cc-by-nc-nd-4.0
### Citation Information
```
@inproceedings{cettolo-etal-2012-wit3,
title = "{WIT}3: Web Inventory of Transcribed and Translated Talks",
author = "Cettolo, Mauro and
Girardi, Christian and
Federico, Marcello",
booktitle = "Proceedings of the 16th Annual conference of the European Association for Machine Translation",
month = may # " 28{--}30",
year = "2012",
address = "Trento, Italy",
publisher = "European Association for Machine Translation",
url = "https://www.aclweb.org/anthology/2012.eamt-1.60",
pages = "261--268",
}
```
### Contributions
Thanks to [@skyprince999](https://github.com/skyprince999) for adding this dataset. |
telugu_books | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- te
license:
- unknown
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: null
pretty_name: TeluguBooks
dataset_info:
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 315076011
num_examples: 25794
download_size: 0
dataset_size: 315076011
---
# Dataset Card for [telugu_books]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:**
[Telugu Books](https://www.kaggle.com/sudalairajkumar/telugu-nlp)
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset is created by scraping telugu novels from teluguone.com this dataset can be used for nlp tasks like topic modeling, word embeddings, transfer learning etc
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
TE - Telugu
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- Text: Sentence from a novel
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
Anusha Motamarri
### Annotations
#### Annotation process
Anusha Motamarri
#### Who are the annotators?
Anusha Motamarri
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@vinaykudari](https://github.com/vinaykudari) for adding this dataset. |
telugu_news | ---
annotations_creators:
- machine-generated
language_creators:
- other
language:
- te
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- text-classification
task_ids:
- language-modeling
- masked-language-modeling
- multi-class-classification
- topic-classification
pretty_name: TeluguNews
dataset_info:
features:
- name: sno
dtype: int32
- name: date
dtype: string
- name: heading
dtype: string
- name: body
dtype: string
- name: topic
dtype:
class_label:
names:
'0': business
'1': editorial
'2': entertainment
'3': nation
'4': sports
splits:
- name: train
num_bytes: 69400234
num_examples: 17312
- name: test
num_bytes: 17265514
num_examples: 4329
download_size: 0
dataset_size: 86665748
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.kaggle.com/sudalairajkumar/telugu-nlp?select=telugu_news
- **Repository:** https://github.com/AnushaMotamarri/Telugu-Newspaper-Article-Dataset
### Dataset Summary
This dataset contains Telugu language news articles along with respective topic
labels (business, editorial, entertainment, nation, sport) extracted from the daily Andhra Jyoti.
This dataset could be used to build Classification and Language Models.
### Supported Tasks and Leaderboards
Multiclass classification, Topic Classification, Language Model
### Languages
TE - Telugu, India
## Dataset Structure
### Data Instances
Two CSV files (train, test) with five columns (sno, date, heading, body, topic).
### Data Fields
- sno: id
- date: publish date of the news article
- heading: article heading/title
- body: article body/content
- topic: one of the following topics (business, editorial, entertainment, nation, sport)
### Data Splits
Train and Test
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
- https://www.kaggle.com/sudalairajkumar/telugu-nlp?select=telugu_news
- https://github.com/AnushaMotamarri/Telugu-Newspaper-Article-Dataset
#### Initial Data Collection and Normalization
The source data is scraped articles from archives of Telugu newspaper website Andhra Jyoti.
A set of queries were created and the corresponding ground truth answers were retrieved by a combination of BM25 and tf-idf.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Sudalai Rajkumar, Anusha Motamarri
### Licensing Information
[More Information Needed]
### Citation Information
```
@InProceedings{kaggle:dataset,
title = {Telugu News - Natural Language Processing for Indian Languages},
authors={Sudalai Rajkumar, Anusha Motamarri},
year={2019}
}
```
### Contributions
Thanks to [@oostopitre](https://github.com/oostopitre) for adding this dataset. |
tep_en_fa_para | ---
annotations_creators:
- found
language_creators:
- found
language:
- en
- fa
license:
- unknown
multilinguality:
- translation
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: TepEnFaPara
dataset_info:
features:
- name: translation
dtype:
translation:
languages:
- en
- fa
config_name: en-fa
splits:
- name: train
num_bytes: 58735557
num_examples: 612087
download_size: 16353318
dataset_size: 58735557
---
# Dataset Card for [tep_en_fa_para]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**[TEP: Tehran English-Persian parallel corpus](http://opus.nlpl.eu/TEP.php)
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
TEP: Tehran English-Persian parallel corpus. The first free Eng-Per corpus, provided by the Natural Language and Text Processing Laboratory, University of Tehran.
### Supported Tasks and Leaderboards
The underlying task is machine translation for language pair English-Persian
### Languages
English, Persian
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
M. T. Pilevar, H. Faili, and A. H. Pilevar, “TEP: Tehran English-Persian Parallel Corpus”, in proceedings of 12th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing-2011).
### Contributions
Thanks to [@spatil6](https://github.com/spatil6) for adding this dataset. |
text2log | ---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
pretty_name: text2log
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- translation
task_ids: []
dataset_info:
features:
- name: sentence
dtype: string
- name: fol_translation
dtype: string
splits:
- name: train
num_bytes: 10358134
num_examples: 101931
download_size: 9746473
dataset_size: 10358134
---
# Dataset Card for text2log
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:**
- **Repository:** [GitHub](https://github.com/alevkov/text2log)
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** https://github.com/alevkov
### Dataset Summary
The dataset contains 100,000 simple English sentences selected and filtered from `enTenTen15` and their translation into First Order Logic (FOL) using `ccg2lambda`.
### Supported Tasks and Leaderboards
'semantic-parsing': The data set is used to train models which can generate FOL statements from natural language text
### Languages
en-US
## Dataset Structure
### Data Instances
```
{
'clean':'All things that are new are good.',
'trans':'all x1.(_thing(x1) -> (_new(x1) -> _good(x1)))'
}
```
### Data Fields
- 'clean': a simple English sentence
- 'trans': the corresponding translation into Lambda Dependency-based Compositional Semantics
### Data Splits
No predefined train/test split is given. The authors used a 80/20 split
## Dataset Creation
### Curation Rationale
The text2log data set is used to improve FOL statement generation from natural text
### Source Data
#### Initial Data Collection and Normalization
Short text samples selected from enTenTen15
#### Who are the source language producers?
See https://www.sketchengine.eu/ententen-english-corpus/
### Annotations
#### Annotation process
Machine generated using https://github.com/mynlp/ccg2lambda
#### Who are the annotators?
none
### Personal and Sensitive Information
The dataset does not contain personal or sensitive information.
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
None given
### Citation Information
```bibtex
@INPROCEEDINGS{9401852,
author={Levkovskyi, Oleksii and Li, Wei},
booktitle={SoutheastCon 2021},
title={Generating Predicate Logic Expressions from Natural Language},
year={2021},
volume={},
number={},
pages={1-8},
doi={10.1109/SoutheastCon45413.2021.9401852}
}
```
### Contributions
Thanks to [@apergo-ai](https://github.com/apergo-ai) for adding this dataset. |
thai_toxicity_tweet | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- th
license:
- cc-by-nc-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: ThaiToxicityTweet
dataset_info:
features:
- name: tweet_id
dtype: string
- name: tweet_text
dtype: string
- name: toxic_votes
dtype: int32
- name: nontoxic_votes
dtype: int32
- name: is_toxic
dtype:
class_label:
names:
'0': neg
'1': pos
config_name: thai_toxicity_tweet
splits:
- name: train
num_bytes: 637387
num_examples: 3300
download_size: 194740
dataset_size: 637387
---
# Dataset Card for `thai_toxicity_tweet`
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/tmu-nlp/ThaiToxicityTweetCorpus/
- **Repository:** https://github.com/tmu-nlp/ThaiToxicityTweetCorpus/
- **Paper:** https://www.ta-cos.org/sites/ta-cos.org/files/1_W32.pdf
- **Leaderboard:**
- **Point of Contact:** https://www.ta-cos.org/sites/ta-cos.org/files/1_W32.pdf
### Dataset Summary
Thai Toxicity Tweet Corpus contains 3,300 tweets (506 tweets with texts missing) annotated by humans with guidelines including a 44-word dictionary.
The author obtained 2,027 and 1,273 toxic and non-toxic tweets, respectively; these were labeled by three annotators. The result of corpus
analysis indicates that tweets that include toxic words are not always toxic. Further, it is more likely that a tweet is toxic, if it contains
toxic words indicating their original meaning. Moreover, disagreements in annotation are primarily because of sarcasm, unclear existing
target, and word sense ambiguity.
Notes from data cleaner: The data is included into [huggingface/datasets](https://www.github.com/huggingface/datasets) in Dec 2020. By this time, 506 of the tweets are not available publicly anymore. We denote these by `TWEET_NOT_FOUND` in `tweet_text`.
Processing can be found at [this PR](https://github.com/tmu-nlp/ThaiToxicityTweetCorpus/pull/1).
### Supported Tasks and Leaderboards
text classification
### Languages
Thai (`th`)
## Dataset Structure
### Data Instances
```
{'is_toxic': 0, 'nontoxic_votes': 3, 'toxic_votes': 0, 'tweet_id': '898576382384418817', 'tweet_text': 'วันๆ นี่คุยกะหมา แมว หมู ไก่ ม้า ควาย มากกว่าคุยกับคนไปละ'}
{'is_toxic': 1, 'nontoxic_votes': 0, 'toxic_votes': 3, 'tweet_id': '898573084981985280', 'tweet_text': 'ควายแดงเมิงด่ารัฐบาลจนรองนายกป่วย พวกมึงกำลังทำลายชาติรู้มั้ย มั้ย มั้ย มั้ยยยยยยยยย news.voicetv.co.th/thailand/51672…'}
```
### Data Fields
"tweet_id": Id of tweet on Twitter
"tweet_text": text of the tweet
"toxic_votes": how many annotators say it is toxic, out of 3 annotators
"nontoxic_votes": how many annotators say it is NOT toxic, out of 3 annotators
"is_toxic": 1 if tweet is toxic else 0 (majority rules)
### Data Splits
No explicit split is given.
## Dataset Creation
### Curation Rationale
The dataset is created as part of [Sirihattasak et al (2019)](https://www.ta-cos.org/sites/ta-cos.org/files/1_W32.pdf).
### Source Data
#### Initial Data Collection and Normalization
The authors used the public Twitter Search API to collect 9,819 tweets from January–December 2017 based on our keyword dictionary. Then, they selected 75 tweets for each keyword. In total, they collected 3,300 tweets for annotation. To ensure quality of data, they set the following selection criteria.
1. All tweets are selected by humans to prevent word ambiguity. (The Twitter API selected the tweets based on characters in the keyword. For example, in the case of “บ้า(crazy),” the API will also select “บ้านนอก” (countryside)” which is not our target.)
2. The length of the tweet should be sufficiently long to discern the context of the tweet. Hence, they set five words as the minimum limit.
3. The tweets that contain only extremely toxic words, (for example: “damn, retard, bitch, f*ck, slut!!!”) are not considered.
4. In addition, they allowed tweets with English words if they were not critical elements in the labeling decision, for example, the word “f*ck.” As a result, our corpus contains English words, but they are less than 2% of the total.
All hashtags, re-tweets, and links were removed from these tweets. However, they did not delete emoticons because these emotional icons can imply the real intent of the post owners. Furthermore, only in the case of annotation, some entries such as the names of famous people were replaced with a tag <ไม่ขอเปิดเผยชื่อ>, for anonymity to prevent individual bias.
#### Who are the source language producers?
Twitter users in Thailand
### Annotations
#### Annotation process
We manually annotated our dataset with two labels: Toxic and Non-Toxic. We define a message as toxic if it indicates any harmful, damage, or negative intent based on our definition of toxicity. Furthermore, all the tweets were annotated by three annotators to identify toxicity; the conditions used for this identification are presented in the following list.
- A toxic message is a message that should be deleted or not be allowed in public.
- A message’s target or consequence must exist. It can either be an individual or a generalized group based on a commonality such as religion or ethnicity, or an entire community.
- Self-complain is not considered toxic, because it is not harmful to anyone. However, if self-complain is intended to indicate something bad, it will be considered as toxic.
- Both direct and indirect messages including those with sarcasm are taken into consideration.
We strictly instructed all the annotators about these concepts and asked them to perform a small test to ensure they understood these conditions. The annotation process was divided into two rounds. We asked the candidates to annotate their answers in the first round to learn our annotation standard. Then, we asked them to annotate a different dataset and selected the ones who obtained a full-score for the second round as an annotator. From among these annotators, 20% of the annotators failed the first round and were not involved in the final annotation.
#### Who are the annotators?
Three annotators hired by [Sirihattasak et al (2019)](https://www.ta-cos.org/sites/ta-cos.org/files/1_W32.pdf)
### Personal and Sensitive Information
Despite all tweets being public, due to the nature of toxic tweets, there might be personal attacks and toxic language used.
## Considerations for Using the Data
### Social Impact of Dataset
- toxic social media message classification dataset
### Discussion of Biases
- Users are masked before annotation by the annotators to prevent biases based on tweet authors
### Other Known Limitations
- The data is included into [huggingface/datasets](https://www.github.com/huggingface/datasets) in Dec 2020. By this time, 506 of the tweets are not available publicly anymore. We denote these by `TWEET_NOT_FOUND` in `tweet_text`.
## Additional Information
### Dataset Curators
[Sirihattasak et al (2019)](https://www.ta-cos.org/sites/ta-cos.org/files/1_W32.pdf)
### Licensing Information
CC-BY-NC 3.0
### Citation Information
Please cite the following if you make use of the dataset:
```
@article{sirihattasak2019annotation,
title={Annotation and Classification of Toxicity for Thai Twitter},
author={Sirihattasak, Sugan and Komachi, Mamoru and Ishikawa, Hiroshi},
year={2019}
}
```
### Contributions
Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset. |
thainer | ---
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- found
- expert-generated
language:
- th
license:
- cc-by-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-tirasaroj-aroonmanakun
task_categories:
- token-classification
task_ids:
- named-entity-recognition
- part-of-speech
pretty_name: thainer
dataset_info:
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': NOUN
'7': NUM
'8': PART
'9': PRON
'10': PROPN
'11': PUNCT
'12': SCONJ
'13': VERB
- name: ner_tags
sequence:
class_label:
names:
'0': B-DATE
'1': B-EMAIL
'2': B-LAW
'3': B-LEN
'4': B-LOCATION
'5': B-MONEY
'6': B-ORGANIZATION
'7': B-PERCENT
'8': B-PERSON
'9': B-PHONE
'10': B-TIME
'11': B-URL
'12': B-ZIP
'13': B-ไม่ยืนยัน
'14': I-DATE
'15': I-EMAIL
'16': I-LAW
'17': I-LEN
'18': I-LOCATION
'19': I-MONEY
'20': I-ORGANIZATION
'21': I-PERCENT
'22': I-PERSON
'23': I-PHONE
'24': I-TIME
'25': I-URL
'26': I-ไม่ยืนยัน
'27': O
config_name: thainer
splits:
- name: train
num_bytes: 8117902
num_examples: 6348
download_size: 5456461
dataset_size: 8117902
---
# Dataset Card for `thainer`
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/wannaphong/thai-ner
- **Repository:** https://github.com/wannaphong/thai-ner
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** https://github.com/wannaphong/
### Dataset Summary
ThaiNER (v1.3) is a 6,456-sentence named entity recognition dataset created from expanding the 2,258-sentence [unnamed dataset](http://pioneer.chula.ac.th/~awirote/Data-Nutcha.zip) by [Tirasaroj and Aroonmanakun (2012)](http://pioneer.chula.ac.th/~awirote/publications/). It is used to train NER taggers in [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp). The NER tags are annotated by [Tirasaroj and Aroonmanakun (2012)]((http://pioneer.chula.ac.th/~awirote/publications/)) for 2,258 sentences and the rest by [@wannaphong](https://github.com/wannaphong/). The POS tags are done by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)'s `perceptron` engine trained on `orchid_ud`. [@wannaphong](https://github.com/wannaphong/) is now the only maintainer of this dataset.
### Supported Tasks and Leaderboards
- named entity recognition
- pos tagging
### Languages
Thai
## Dataset Structure
### Data Instances
```
{'id': 100, 'ner_tags': [27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27], 'pos_tags': [6, 12, 13, 1, 6, 5, 11, 7, 11, 6, 5, 13, 6, 6, 6, 11, 6, 6, 11, 6, 6, 11, 6, 6, 13, 6, 11, 11, 6, 11, 6, 11, 6, 11, 6, 11, 11, 6, 6, 11, 12, 6, 13, 5, 11, 7, 11, 6, 3, 11, 12, 3, 13, 6, 1, 6, 12, 13, 1, 6, 6, 5, 11, 3, 11, 5, 4, 6, 13, 6, 13, 6, 10, 3, 13, 13, 12, 13, 12, 0, 1, 10, 11, 6, 6, 11, 6, 11, 6, 12, 13, 5, 12, 3, 13, 13, 1, 6, 1, 6, 13], 'tokens': ['เชื้อโรค', 'ที่', 'ปรากฏ', 'ใน', 'สัตว์', 'ทั้ง', ' ', '4', ' ', 'ชนิด', 'นี้', 'เป็น', 'เชื้อ', 'โรคไข้หวัด', 'นก', ' ', 'เอช', 'พี', ' ', 'เอ', 'เวียน', ' ', 'อิน', 'ฟลู', 'เอน', 'ซา', ' ', '(', 'Hight', ' ', 'Polygenic', ' ', 'Avain', ' ', 'Influenza', ')', ' ', 'ชนิด', 'รุนแรง', ' ', 'ซึ่ง', 'การ', 'ตั้งชื่อ', 'ทั้ง', ' ', '4', ' ', 'ขึ้น', 'มา', ' ', 'เพื่อที่จะ', 'สามารถ', 'ระบุ', 'เชื้อ', 'ของ', 'ไวรัส', 'ที่', 'ทำอันตราย', 'ตาม', 'สิ่งมีชีวิต', 'ประเภท', 'ต่างๆ', ' ', 'ได้', ' ', 'อีก', 'ทั้ง', 'การ', 'ระบุ', 'สถานที่', 'คือ', 'ประเทศ', 'ไทย', 'จะ', 'ทำให้', 'รู้', 'ว่า', 'พบ', 'ที่', 'แรก', 'ใน', 'ไทย', ' ', 'ส่วน', 'วัน', ' ', 'เดือน', ' ', 'ปี', 'ที่', 'พบ', 'นั้น', 'ก็', 'จะ', 'ทำให้', 'ทราบ', 'ถึง', 'ครั้งแรก', 'ของ', 'การ', 'ค้นพบ']}
{'id': 107, 'ner_tags': [27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27], 'pos_tags': [0, 1, 6, 5, 11, 12, 3, 3, 13, 6, 13, 12, 0, 2, 12, 11, 6, 5, 13, 6, 5, 1, 6, 6, 1, 10, 11, 4, 13, 6, 11, 12, 6, 6, 10, 11, 13, 6, 1, 6, 4, 6, 1, 6, 6, 11, 4, 6, 1, 5, 6, 12, 2, 13, 6, 6, 5, 1, 11, 12, 13, 1, 6, 6, 11, 13, 11, 6, 6, 6, 11, 11, 6, 11, 11, 4, 10, 11, 11, 6, 11], 'tokens': ['ล่าสุด', 'ใน', 'เรื่อง', 'นี้', ' ', 'ทั้งนี้', 'คง', 'ต้อง', 'มี', 'การ', 'ตรวจสอบ', 'ให้', 'ชัดเจน', 'อีกครั้ง', 'ว่า', ' ', 'ไวรัส', 'นี้', 'เป็น', 'ชนิด', 'เดียว', 'กับ', 'ไข้หวัด', 'นก', 'ใน', 'ไทย', ' ', 'หรือ', 'เป็น', 'การกลายพันธุ์', ' ', 'โดยที่', 'คณะ', 'สัตวแพทย์', 'มหาวิทยาลัยเกษตรศาสตร์', ' ', 'จัด', 'ระดมสมอง', 'จาก', 'คณบดี', 'และ', 'ผู้เชี่ยวชาญ', 'จาก', 'คณะ', 'สัตวแพทย์', ' ', 'และ', 'ปศุสัตว์', 'ของ', 'หลาย', 'มหาวิทยาลัย', 'เพื่อ', 'ร่วมกัน', 'หา', 'ข้อมูล', 'เรื่อง', 'นี้', 'ด้วย', ' ', 'โดย', 'ประสาน', 'กับ', 'เจ้าหน้าที่', 'ระหว่างประเทศ', ' ', 'คือ', ' ', 'องค์การ', 'สุขภาพ', 'สัตว์โลก', ' ', '(', 'OIE', ')', ' ', 'และ', 'องค์การอนามัยโลก', ' ', '(', 'WHO', ')']}
```
### Data Fields
- `id`: sentence id
- `tokens`: word tokens by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)'s dictionary-based tokenizer `newmm`
- `pos_tags`: POS tags tagged by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)'s `perceptron` engine trained on `orchid_ud`
- `ner_tags`: NER tags tagged by humans
### Data Splits
No explicit split is given
## Dataset Creation
### Curation Rationale
ThaiNER (v1.3) is a 6,456-sentence named entity recognition dataset created from expanding the 2,258-sentence [unnamed dataset](http://pioneer.chula.ac.th/~awirote/Data-Nutcha.zip) by [Tirasaroj and Aroonmanakun (2012)](http://pioneer.chula.ac.th/~awirote/publications/). It is used to train NER taggers in [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp).
### Source Data
#### Initial Data Collection and Normalization
The earlier part of the dataset is all news articles, whereas the part added by [@wannaphong](https://github.com/wannaphong/) includes news articles, public announcements and [@wannaphong](https://github.com/wannaphong/)'s own chat messages with personal and sensitive information removed.
#### Who are the source language producers?
News articles and public announcements are created by their respective authors. Chat messages are created by [@wannaphong](https://github.com/wannaphong/).
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[Tirasaroj and Aroonmanakun (2012)](http://pioneer.chula.ac.th/~awirote/publications/) for the earlier 2,258 sentences and [@wannaphong](https://github.com/wannaphong/) for the rest
### Personal and Sensitive Information
News articles and public announcements are not expected to include personal and sensitive information. [@wannaphong](https://github.com/wannaphong/) has removed such information from his own chat messages.
## Considerations for Using the Data
### Social Impact of Dataset
- named entity recognition in Thai
### Discussion of Biases
Since almost all of collection and annotation is done by [@wannaphong](https://github.com/wannaphong/), his biases are expected to be reflected in the dataset.
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[Tirasaroj and Aroonmanakun (2012)](http://pioneer.chula.ac.th/~awirote/publications/) for the earlier 2,258 sentences and [@wannaphong](https://github.com/wannaphong/) for the rest
### Licensing Information
CC-BY 3.0
### Citation Information
```
@misc{Wannaphong Phatthiyaphaibun_2019,
title={wannaphongcom/thai-ner: ThaiNER 1.3},
url={https://zenodo.org/record/3550546},
DOI={10.5281/ZENODO.3550546},
abstractNote={Thai Named Entity Recognition},
publisher={Zenodo},
author={Wannaphong Phatthiyaphaibun},
year={2019},
month={Nov}
}
```
Work extended from:
[Tirasaroj, N. and Aroonmanakun, W. 2012. Thai NER using CRF model based on surface features. In Proceedings of SNLP-AOS 2011, 9-10 February, 2012, Bangkok, pages 176-180.](http://pioneer.chula.ac.th/~awirote/publications/)
### Contributions
Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset. |
thaiqa_squad | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- th
license:
- cc-by-nc-sa-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-thaiqa
task_categories:
- question-answering
task_ids:
- extractive-qa
- open-domain-qa
paperswithcode_id: null
pretty_name: thaiqa-squad
dataset_info:
features:
- name: question_id
dtype: int32
- name: article_id
dtype: int32
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer
dtype: string
- name: answer_begin_position
dtype: int32
- name: answer_end_position
dtype: int32
config_name: thaiqa_squad
splits:
- name: train
num_bytes: 47905050
num_examples: 4000
- name: validation
num_bytes: 744813
num_examples: 74
download_size: 10003354
dataset_size: 48649863
---
# Dataset Card for `thaiqa-squad`
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://github.com/pythainlp/thaiqa_squad (original `thaiqa` at https://aiforthai.in.th/)
- **Repository:** http://github.com/pythainlp/thaiqa_squad
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**http://github.com/pythainlp/ (original `thaiqa` at https://aiforthai.in.th/)
### Dataset Summary
`thaiqa_squad` is an open-domain, extractive question answering dataset (4,000 questions in `train` and 74 questions in `dev`) in [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) format, originally created by [NECTEC](https://www.nectec.or.th/en/) from Wikipedia articles and adapted to [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) format by [PyThaiNLP](https://github.com/PyThaiNLP/).
### Supported Tasks and Leaderboards
extractive question answering
### Languages
Thai
## Dataset Structure
### Data Instances
```
{'answers': {'answer': ['ฮิกกิ้นส์'], 'answer_begin_position': [528], 'answer_end_position': [537]}, 'article_id': 115035, 'context': '<doc id="115035" url="https://th.wikipedia.org/wiki?curid=115035" title="เบนจี้">เบนจี้ เบนจี้ () เป็นชื่อตัวละครหมาพันทางแสนรู้ ที่ปรากฏอยู่ในภาพยนตร์หลายเรื่องที่เขียนบท และกำกับโดย โจ แคมป์ ในช่วงทศวรรษ 1970 ถึง 1980 ภาพยนตร์เรื่องแรกในชุด ใช้ชื่อเรื่องว่า เบนจี้ เช่นเดียวกับตัวละคร ถ่ายทำที่เมืองดัลลัส รัฐเทกซัส ฉายครั้งแรกในปี พ.ศ. 2517 ภาพยนตร์ได้รับการเสนอชื่อเข้าชิงรางวัลออสการ์ และได้รางวัลลูกโลกทองคำ สาขาเพลงประกอบยอดเยี่ยม จากเพลง Benji\'s Theme (I Feel Love) ร้องโดย ชาร์ลี ริช หมาที่แสดงเป็นเบนจี้ตัวแรก ชื่อว่า ฮิกกิ้นส์ (พ.ศ. 2502 - พ.ศ. 2518) มีอายุถึง 15 ปีแล้วในขณะแสดง หลังจากภาพยนตร์ออกฉายได้ไม่นาน มันก็ตายในปี พ.ศ. 2518เบนจี้ในภาพยนตร์เบนจี้ในภาพยนตร์. - พ.ศ. 2517, Benji (ภาพยนตร์) - พ.ศ. 2520, For the Love of Benji (ภาพยนตร์) - พ.ศ. 2521, Benji\'s Very Own Christmas Story (ภาพยนตร์โทรทัศน์) - พ.ศ. 2523, Oh Heavenly Dog (ภาพยนตร์) - พ.ศ. 2523, Benji at Work (ภาพยนตร์โทรทัศน์) - พ.ศ. 2524, Benji Takes a Dive at Marineland (ภาพยนตร์โทรทัศน์) - พ.ศ. 2526, Benji, Zax & the Alien Prince (ภาพยนตร์ซีรีส์) - พ.ศ. 2530, Benji the Hunted (ภาพยนตร์) - พ.ศ. 2547, Benji: Off the Leash! (ภาพยนตร์) - พ.ศ. 2550, Benji: The Barkening (ภาพยนตร์)</doc>\n', 'question': 'สุนัขตัวแรกรับบทเป็นเบนจี้ในภาพยนตร์เรื่อง Benji ที่ออกฉายในปี พ.ศ. 2517 มีชื่อว่าอะไร', 'question_id': 1}
{'answers': {'answer': ['ชาร์ลี ริช'], 'answer_begin_position': [482], 'answer_end_position': [492]}, 'article_id': 115035, 'context': '<doc id="115035" url="https://th.wikipedia.org/wiki?curid=115035" title="เบนจี้">เบนจี้ เบนจี้ () เป็นชื่อตัวละครหมาพันทางแสนรู้ ที่ปรากฏอยู่ในภาพยนตร์หลายเรื่องที่เขียนบท และกำกับโดย โจ แคมป์ ในช่วงทศวรรษ 1970 ถึง 1980 ภาพยนตร์เรื่องแรกในชุด ใช้ชื่อเรื่องว่า เบนจี้ เช่นเดียวกับตัวละคร ถ่ายทำที่เมืองดัลลัส รัฐเทกซัส ฉายครั้งแรกในปี พ.ศ. 2517 ภาพยนตร์ได้รับการเสนอชื่อเข้าชิงรางวัลออสการ์ และได้รางวัลลูกโลกทองคำ สาขาเพลงประกอบยอดเยี่ยม จากเพลง Benji\'s Theme (I Feel Love) ร้องโดย ชาร์ลี ริช หมาที่แสดงเป็นเบนจี้ตัวแรก ชื่อว่า ฮิกกิ้นส์ (พ.ศ. 2502 - พ.ศ. 2518) มีอายุถึง 15 ปีแล้วในขณะแสดง หลังจากภาพยนตร์ออกฉายได้ไม่นาน มันก็ตายในปี พ.ศ. 2518เบนจี้ในภาพยนตร์เบนจี้ในภาพยนตร์. - พ.ศ. 2517, Benji (ภาพยนตร์) - พ.ศ. 2520, For the Love of Benji (ภาพยนตร์) - พ.ศ. 2521, Benji\'s Very Own Christmas Story (ภาพยนตร์โทรทัศน์) - พ.ศ. 2523, Oh Heavenly Dog (ภาพยนตร์) - พ.ศ. 2523, Benji at Work (ภาพยนตร์โทรทัศน์) - พ.ศ. 2524, Benji Takes a Dive at Marineland (ภาพยนตร์โทรทัศน์) - พ.ศ. 2526, Benji, Zax & the Alien Prince (ภาพยนตร์ซีรีส์) - พ.ศ. 2530, Benji the Hunted (ภาพยนตร์) - พ.ศ. 2547, Benji: Off the Leash! (ภาพยนตร์) - พ.ศ. 2550, Benji: The Barkening (ภาพยนตร์)</doc>\n', 'question': "เพลง Benji's Theme ใช้ประกอบภาพยนตร์เรื่อง Benji ในปีพ.ศ. 2517 ขับร้องโดยใคร", 'question_id': 2035}
```
### Data Fields
```
{
"question_id": question id
"article_id": article id
"context": article texts
"question": question
"answers":
{
"answer": answer text
"answer_begin_position": answer beginning position
"answer_end_position": answer exclusive upper bound position
}
),
}
```
### Data Splits
| | train | valid |
|-------------------------|-------------|-------------|
| # questions | 4000 | 74 |
| # avg words in context | 1186.740750 | 1016.459459 |
| # avg words in question | 14.325500 | 12.743243 |
| # avg words in answer | 3.279750 | 4.608108 |
## Dataset Creation
### Curation Rationale
[PyThaiNLP](https://github.com/PyThaiNLP/) created `thaiqa_squad` as a [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) version of [thaiqa](http://copycatch.in.th/thai-qa-task.html). [thaiqa](https://aiforthai.in.th/corpus.php) is part of [The 2nd Question answering program from Thai Wikipedia](http://copycatch.in.th/thai-qa-task.html) of [National Software Contest 2020](http://nsc.siit.tu.ac.th/GENA2/login.php).
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
Wikipedia authors for contexts and [NECTEC](https://www.nectec.or.th/en/) for questions and answer annotations
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[NECTEC](https://www.nectec.or.th/en/)
### Personal and Sensitive Information
All contents are from Wikipedia. No personal and sensitive information is expected to be included.
## Considerations for Using the Data
### Social Impact of Dataset
- open-domain, extractive question answering in Thai
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Dataset provided for research purposes only. Please check dataset license for additional information.
The contexts include `<doc>` tags at start and at the end
## Additional Information
### Dataset Curators
[NECTEC](https://www.nectec.or.th/en/) for original [thaiqa](https://aiforthai.in.th/corpus.php). SQuAD formattting by [PyThaiNLP](https://github.com/PyThaiNLP/).
### Licensing Information
CC-BY-NC-SA 3.0
### Citation Information
No clear citation guidelines from source: https://aiforthai.in.th/corpus.php
SQuAD version: https://github.com/PyThaiNLP/thaiqa_squad
### Contributions
Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset. |
thaisum | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- th
license:
- mit
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- summarization
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: null
pretty_name: ThaiSum
dataset_info:
features:
- name: title
dtype: string
- name: body
dtype: string
- name: summary
dtype: string
- name: type
dtype: string
- name: tags
dtype: string
- name: url
dtype: string
config_name: thaisum
splits:
- name: train
num_bytes: 2945472406
num_examples: 358868
- name: validation
num_bytes: 118437310
num_examples: 11000
- name: test
num_bytes: 119496704
num_examples: 11000
download_size: 647582078
dataset_size: 3183406420
---
# Dataset Card for ThaiSum
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/nakhunchumpolsathien/ThaiSum
- **Repository:** https://github.com/nakhunchumpolsathien/ThaiSum
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** https://github.com/nakhunchumpolsathien
### Dataset Summary
ThaiSum is a large-scale corpus for Thai text summarization obtained from several online news websites namely Thairath, ThaiPBS, Prachathai, and The Standard. This dataset consists of over 350,000 article and summary pairs written by journalists.
### Supported Tasks and Leaderboards
summarization, language modeling
### Languages
Thai
## Dataset Structure
### Data Instances
```
{'body': 'กีเก ซานเชซ ฟลอเรส\xa0 กุนซือเลือดกระทิงของทีมวัตฟอร์ด\xa0 เมินประเด็นจุดโทษปัญหาในเกมพรีเมียร์ลีก อังกฤษ นัดที่แตนอาละวาดเปิดบ้านพ่าย คริสตัล พาเลซ 0-1ชี้ทีมของเขาเล่นไม่ดีพอเอง,สำนักข่าวต่างประเทศรายงานวันที่ 27 ก.ย. ว่า กีเก ซานเชซ ฟลอเรส\xa0 ผู้จัดการทีมชาวสเปน ของ แตนอาละวาด วัตฟอร์ด\xa0 ยอมรับทีมของเขาเล่นได้ไม่ดีพอเอง ในเกมพรีเมียร์ลีก อังกฤษ นัดเปิดบ้านพ่าย อินทรีผงาด คริสตัล พาเลซ 0-1 เมื่อคืนวันอาทิตย์ที่ผ่านมา,เกมนี้จุดเปลี่ยนมาอยู่ที่การได้จุดโทษในช่วงครึ่งหลังของ คริสตัล พาเลซ ซึ่งไม่ค่อยชัดเจนเท่าไหร่ว่า อัลลัน นียอม นั้นไปทำฟาล์วใส่ วิลฟรีด ซาฮา ในเขตโทษหรือไม่ แต่ผู้ตัดสินก็ชี้เป็นจุดโทษ ซึ่ง โยอัน กาบาย สังหารไม่พลาด และเป็นประตูชัยช่วยให้ คริสตัล พาเลซ เอาชนะ วัตฟอร์ด ไป 1-0 และเป็นการพ่ายแพ้ในบ้านนัดแรกของวัตฟอร์ดในฤดูกาลนี้อีกด้วย,ฟลอเรส กล่าวว่า มันเป็นเรื่องยากในการหยุดเกมรุกของคริสตัล พาเลซ ซึ่งมันอึดอัดจริงๆสำหรับเรา เราเล่นกันได้ไม่ดีนักในตอนที่ได้ครองบอล เราต้องเล่นทางริมเส้นให้มากกว่านี้ เราไม่สามารถหยุดเกมสวนกลับของพวกเขาได้ และแนวรับของเราก็ยืนไม่เป็นระเบียบสักเท่าไหร่ในช่วงครึ่งแรก ส่วนเรื่องจุดโทษการตัดสินใจขั้นสุดท้ายมันอยู่ที่ผู้ตัดสิน ซึ่งมันเป็นการตัดสินใจที่สำคัญ ผมเองก็ไม่รู้ว่าเขาตัดสินถูกหรือเปล่า บางทีมันอาจเป็นจุดที่ตัดสินเกมนี้เลย แต่เราไม่ได้แพ้เกมนี้เพราะจุดโทษ เราแพ้ในวันนี้เพราะเราเล่นไม่ดีและคริสตัล พาเลซ เล่นดีกว่าเรา เราไม่ได้มีฟอร์มการเล่นที่ดีในเกมนี้เลย', 'summary': 'กีเก ซานเชซ ฟลอเรส กุนซือเลือดกระทิงของทีมวัตฟอร์ด เมินประเด็นจุดโทษปัญหาในเกมพรีเมียร์ลีก อังกฤษ นัดที่แตนอาละวาดเปิดบ้านพ่าย คริสตัล พาเลซ 0-1ชี้ทีมของเขาเล่นไม่ดีพอเอง', 'tags': 'พรีเมียร์ลีก,วัตฟอร์ด,คริสตัล พาเลซ,กีเก ซานเชซ ฟลอเรส,ข่าวกีฬา,ข่าว,ไทยรัฐออนไลน์', 'title': 'ฟลอเรส รับ วัตฟอร์ดห่วยเองเกมพ่ายพาเลซคาบ้าน', 'type': '', 'url': 'https://www.thairath.co.th/content/528322'}
```
### Data Fields
- `title`: title of article
- `body`: body of article
- `summary`: summary of article
- `type`: type of article, if any
- `tags`: tags of article, separated by `,`
- `url`: URL of article
### Data Splits
train/valid/test: 358868 / 11000 / 11000
## Dataset Creation
### Curation Rationale
Sequence-to-sequence (Seq2Seq) models have shown great achievement in text summarization. However, Seq2Seq model often requires large-scale training data to achieve effective results. Although many impressive advancements in text summarization field have been made, most of summarization studies focus on resource-rich languages. The progress of Thai text summarization is still far behind. The dearth of large-scale dataset keeps Thai text summarization in its infancy. As far as our knowledge goes, there is not a large-scale dataset for Thai text summarization available anywhere. Thus, we present ThaiSum, a large-scale corpus for Thai text summarization obtained from several online news websites namely Thairath, ThaiPBS, Prachathai, and The Standard.
### Source Data
#### Initial Data Collection and Normalization
We used a python library named Scrapy to crawl articles from several news websites namely Thairath, Prachatai, ThaiPBS and, The Standard. We first collected news URLs provided in their sitemaps. During web-crawling, we used HTML markup and metadata available in HTML pages to identify article text, summary, headline, tags and label. Collected articles were published online from 2014 to August 2020. <br> <br>
We further performed data cleansing process to minimize noisy data. We filtered out articles that their article text or summary is missing. Articles that contains article text with less than 150 words or summary with less than 15 words were removed. We also discarded articles that contain at least one of these following tags: ‘ดวง’ (horoscope), ‘นิยาย’ (novel), ‘อินสตราแกรมดารา’ (celebrity Instagram), ‘คลิปสุดฮา’(funny video) and ‘สรุปข่าว’ (highlight news). Some summaries were completely irrelevant to their original article texts. To eliminate those irrelevant summaries, we calculated abstractedness score between summary and its article text. Abstractedness score is written formally as: <br>
<center><a href="https://www.codecogs.com/eqnedit.php?latex=\begin{equation}&space;\frac{|S-A|}{r}&space;\times&space;100&space;\end{equation}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\begin{equation}&space;\frac{|S-A|}{r}&space;\times&space;100&space;\end{equation}" title="\begin{equation} \frac{|S-A|}{r} \times 100 \end{equation}" /></a></center><br>
<br>Where 𝑆 denotes set of article tokens. 𝐴 denotes set of summary tokens. 𝑟 denotes a total number of summary tokens. We omitted articles that have abstractedness score at 1-grams higher than 60%.
<br><br>
It is important to point out that we used [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp), version 2.2.4, tokenizing engine = newmm, to process Thai texts in this study. It is challenging to tokenize running Thai text into words or sentences because there are not clear word/sentence delimiters in Thai language. Therefore, using different tokenization engines may result in different segment of words/sentences.
After data-cleansing process, ThaiSum dataset contains over 358,000 articles. The size of this dataset is comparable to a well-known English document summarization dataset, CNN/Dily mail dataset. Moreover, we analyse the characteristics of this dataset by measuring the abstractedness level, compassion rate, and content diversity. For more details, see [thaisum_exploration.ipynb](https://github.com/nakhunchumpolsathien/ThaiSum/blob/master/thaisum_exploration.ipynb).
#### Dataset Statistics
ThaiSum dataset consists of 358,868 articles. Average lengths of article texts and summaries are approximately 530 and 37 words respectively. As mentioned earlier, we also collected headlines, tags and labels provided in each article. Tags are similar to keywords of the article. An article normally contains several tags but a few labels. Tags can be name of places or persons that article is about while labels indicate news category (politic, entertainment, etc.). Ultimatly, ThaiSum contains 538,059 unique tags and 59 unique labels. Note that not every article contains tags or labels.
|Dataset Size| 358,868 | articles |
|:---|---:|---:|
|Avg. Article Length| 529.5 | words|
|Avg. Summary Length | 37.3 | words|
|Avg. Headline Length | 12.6 | words|
|Unique Vocabulary Size | 407,355 | words|
|Occurring > 10 times | 81,761 | words|
|Unique News Tag Size | 538,059 | tags|
|Unique News Label Size | 59 | labels|
#### Who are the source language producers?
Journalists of respective articles
### Annotations
#### Annotation process
`summary`, `type` and `tags` are created by journalists who wrote the articles and/or their publishers.
#### Who are the annotators?
`summary`, `type` and `tags` are created by journalists who wrote the articles and/or their publishers.
### Personal and Sensitive Information
All data are public news articles. No personal and sensitive information is expected to be included.
## Considerations for Using the Data
### Social Impact of Dataset
- News summarization in Thai
- Language modeling for Thai news
### Discussion of Biases
- [ThaiPBS](https://www.thaipbs.or.th/home) [receives funding from Thai government](https://www.bangkokbiznews.com/blog/detail/648740).
- [Thairath](https://www.thairath.co.th/) is known as [the most popular newspaper in Thailand](https://mgronline.com/onlinesection/detail/9620000058532); no clear political leaning.
- [The Standard](https://thestandard.co/) is a left-leaning online magazine.
- [Prachathai](https://prachatai.com/) is a left-leaning, human-right-focused news site.
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[@nakhunchumpolsathien](https://github.com/nakhunchumpolsathien/)
[@caramelWaffle](https://github.com/caramelWaffle)
### Licensing Information
MIT License
### Citation Information
```
@mastersthesis{chumpolsathien_2020,
title={Using Knowledge Distillation from Keyword Extraction to Improve the Informativeness of Neural Cross-lingual Summarization},
author={Chumpolsathien, Nakhun},
year={2020},
school={Beijing Institute of Technology}
```
### Contributions
Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset. |
EleutherAI/the_pile | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- other
multilinguality:
- monolingual
pretty_name: The Pile
size_categories:
- unknown
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: the-pile
---
# Dataset Card for The Pile
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://pile.eleuther.ai/
- **Repository:** https://github.com/EleutherAI/the-pile
- **Paper:** [The Pile: An 800GB Dataset of Diverse Text for Language Modeling](https://arxiv.org/abs/2101.00027)
- **Leaderboard:**
- **Point of Contact:** [EleutherAI](mailto:contact@eleuther.ai)
### Dataset Summary
The Pile is a 825 GiB diverse, open source language modelling data set that consists of 22 smaller, high-quality
datasets combined together.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
This dataset is in English (`EN`).
## Dataset Structure
### Data Instances
#### all
```
{
'meta': {'pile_set_name': 'Pile-CC'},
'text': 'It is done, and submitted. You can play “Survival of the Tastiest” on Android, and on the web. Playing on...'
}
```
#### enron_emails
```
{
'text': 'Name\t\t\tNew Title\t\t\t\tEffective Date\t\t\tMid Year promotion Yes/No\n\nFloyd, Jodie\t\tSr Cust Svc Rep (no change)\t\t7/16/01\t\t\t\tNo\n\nBuehler, Craig\t\tSr Mkt/Sup Analyst (no change)\t\t7/16/01\t\t\t\tNo\n\nWagoner, Mike\t\tTeam Advisor - Gas Control\t\t7/1/01\t\t\t\tNo\n\nClapper, Karen\t\tSr Cust Svc Rep\t\t\t8/1/01\t\t\t\tYes\n\nGreaney, Chris\t\tSr Cust Svc Rep\t\t\t8/1/01\t\t\t\tYes\n\nWilkens, Jerry\t\tSr Cust Svc Rep\t\t\t8/1/01\t\t\t\tYes\n\nMinton, Kevin\t\tPipeline Controller\t\t\t8/1/01\t\t\t\tYes\n\nCox, Don\t\tPipeline Controller\t\t\t8/1/01\t\t\t\tYes\n\nHanagriff, Richard\tSr Accounting Control Spec\t\t8/1/01\t\t\t\tYes\n\n\nThanks,\nMS'
'meta': "{}",
}
```
#### europarl
```
{
'text': 'Uvádění biocidních přípravků na trh - Nový návrh revize týkající se biocidních přípravků (rozprava) \nPředsedající\nDalším bodem je společná rozprava o následujících tématech:\nzpráva paní Sârbuové za Výbor pro životní prostředí, veřejné zdraví a bezpečnost potravin o návrhu...'
'meta': "{'language': 'cs'}",
}
```
#### free_law
```
{
'meta': "{'case_jurisdiction': 'scotus.tar.gz', 'case_ID': '110921.json','date_created': '2010-04-28T17:12:49Z'}",
'text': '\n461 U.S. 238 (1983)\nOLIM ET AL.\nv.\nWAKINEKONA\nNo. 81-1581.\nSupreme Court of United States.\nArgued...'
}
```
#### hacker_news
```
{
'text': "\nChina Deserves Donald Trump - rm2889\nhttps://www.nytimes.com/2019/05/21/opinion/china-trump-trade.html\n======\nNotPaidToPost\n> so he’d be wise to curb his nationalistic “no-one-tells-China-what-to-do”\n> bluster\n\nThis comment highlights both ignorance of Chinese history and continuing\nAmerican arrogance.\n\nChina has been painfully dictated what to do during the last 200 years. This\nhas had a profound effect on the country and has led to the collapse of\nimperial rule and the drive to 'rejuvenate'...",
'meta': "{'id': '19979654'}",
}
```
#### nih_exporter
```
{
'text': "The National Domestic Violence Hotline (NDVH) and the National Dating Abuse Helpline (NDAH), which are supported by the Division of Family Violence Prevention and Services within the Family and Youth Services Bureau, serve as critical partners in the intervention, prevention, and resource assistance efforts of the network of family violence, domestic violence, and dating violence service providers. They provide crisis intervention and support services; information about resources on domestic...",
'meta': " {'APPLICATION_ID': 100065}",
}
```
#### pubmed
```
{
'meta': {'pmid': 11409574, 'language': 'eng'},
'text': 'Epidemiology of hypoxaemia in children with acute lower respiratory infection.\nTo determine the prevalence of hypoxaemia in children aged under 5 years suffering acute lower respiratory infections (ALRI), the risk factors for hypoxaemia in children under 5 years of age with ALRI, and the association of hypoxaemia with an increased risk of dying in children of the same age. Systematic review of the published literature. Out-patient clinics, emergency departments and hospitalisation wards in 23 health centres from 10 countries. Cohort studies reporting the frequency of hypoxaemia in children under 5 years of age with ALRI, and the association between hypoxaemia and the risk of dying. Prevalence of hypoxaemia measured in children with ARI and relative risks for the association between the severity of illness and the frequency of hypoxaemia, and between hypoxaemia and the risk of dying. Seventeen published studies were found that included 4,021 children under 5 with acute respiratory infections (ARI) and reported the prevalence of hypoxaemia. Out-patient children and those with a clinical diagnosis of upper ARI had a low risk of hypoxaemia (pooled estimate of 6% to 9%). The prevalence increased to 31% and to 43% in patients in emergency departments and in cases with clinical pneumonia, respectively, and it was even higher among hospitalised children (47%) and in those with radiographically confirmed pneumonia (72%). The cumulated data also suggest that hypoxaemia is more frequent in children living at high altitude. Three papers reported an association between hypoxaemia and death, with relative risks varying between 1.4 and 4.6. Papers describing predictors of hypoxaemia have focused on clinical signs for detecting hypoxaemia rather than on identifying risk factors for developing this complication. Hypoxaemia is a common and potentially lethal complication of ALRI in children under 5, particularly among those with severe disease and those living at high altitude. Given the observed high prevalence of hypoxaemia and its likely association with increased mortality, efforts should be made to improve the detection of hypoxaemia and to provide oxygen earlier to more children with severe ALRI.'
}
```
#### pubmed_central
```
{
'meta': "{id': 'PMC5595690'}",
'text': 'Introduction {#acel12642-sec-0001}\n============\n\nAlzheimer\\\'s disease (AD), the most common cause of...'
}
```
#### ubuntu_irc
```
{
'text': "#ubuntu 2004-07-05\n* Window 3\n* \tServer: [0] <None>\n* \tScreen: 0x817e90c\n* \tGeometry Info: [0 11 0 11 11 11] \n* \tCO, LI are [94 49] \n* \tCurrent channel: #ubuntu\n* \tQuery User: <None> \n*\tPrompt: <None>\n* \tSecond status line is OFF\n* \tSplit line is ON triple is OFF\n* \tLogging is ON\n* \tLogfile is irclogs/ubuntu.log\n* \tNotification is OFF\n* \tHold mode is OFF\n* \tWindow level is NONE\n* \tLastlog level is ALL\n* \tNotify level is ALL\n<mdz> lifeless: using tla effectively for all packages in Warty requ...",
'meta': "{'channel': 'ubuntu', 'month': 7}"
}
```
#### uspto
```
{
'text': "1. Field of the Invention\nIn an extensive plant breeding program, Grant Merrill, originator and now deceased, originated a large number of new and distinct varieties of fruit trees, and which included the herein-claimed variety of peach tree. Such plant breeding program was undertaken in originator's experimental orchard located near Exeter, Tulare County, Calif.\n2. Prior Varieties\nAmong the existent varieties of peach trees which were known to originator, particular reference is made to Gemfree (U.S. Plant Pat. No. 1,409) and June Lady (U.S. Plant Pat. No. 3,022) hereinafter mentioned for the purpose of comparison.",
'meta': "{'bibliographic_information': {'Patent Number': 'PP0049700', 'Series Code': '6', 'Application Number': '2845415', 'Application Type': '6', 'Art unit': '337', 'Application Filing Date': '19810720', 'Title of Invention': 'Peach tree (A3-10)', 'Issue Date': '19830104', 'Number of Claims': '1', 'Exemplary Claim Number(s)': '1', 'Primary Examiner': 'Bagwill; Robert E.', 'Number of Drawing Sheets': '1', 'Number of figures': '1'}, 'source_file': 'https://bulkdata.uspto.gov/data/patent/grant/redbook/fulltext/1983/pftaps19830104_wk01.zip', 'abstract': 'A peach tree which is large, vigorous, and spreading; foliated with large, lanceolate leaves having a finely serrate margin, a petiole of medium length and thickness, and medium size, reniform glands; blooms from medium size, conic, plump, pubescent buds; the flowers, medium in blooming period compared with other varieties, being of medium size, and pink; and is a regular and very productive bearer of medium but variable size, round truncate, clingstone fruit having yellow skin substantially overspread with red, yellow flesh mottled with red adjacent the skin, and an amber stone.', 'classifications': [{'OCL': ['Plt', '43'], 'EDF': ['3'], 'ICL': ['A01H', '503'], 'FSC': ['Plt'], 'FSS': ['43']}], 'inventors': [{'inventor name': 'Merrill, deceased; Grant', 'Street': '325 Breese Ave.', 'City': 'late of Red Bluff', 'State': 'CA'}, {'inventor name': 'Merrill, executrix; by Lucile B.', 'Street': '325 Breese Ave.', 'City': 'Red Bluff', 'State': 'CA', 'Zip code': '96080'}]}"
}
```
#### github
```
{
'text': "/* filesystem.c\n * Filesystem utility routines\n *\n * Wireshark - Network traffic analyzer\n * By Gerald Combs <gerald@wireshark.org>\n * Copyright 1998 Gerald Combs\n *\n * SPDX-License-Identifier: GPL-2.0-or-later\n */\n\n#include <config.h>\n\n#include <stdio.h>\n#include <stdlib.h>\n#include <string.h>\n#include <errno.h>\n\n#include <glib.h>...",
'meta': "{'repo_name': 'wireshark/wireshark', 'stars': '2789', 'repo_language': 'C', 'file_name': 'packet-mpeg-audio-template.c', 'mime_type': 'text/x-c'}"
}
```
### Data Fields
#### all
- `text` (str): Text.
- `meta` (dict): Metadata of the data instance with keys:
- pile_set_name: Name of the subset.
#### enron_emails
- `text` (str): Text.
- `meta` (str): Metadata of the data instance.
#### europarl
- `text` (str): Text.
- `meta` (str): Metadata of the data instance with: language.
#### free_law
- `text` (str): Text.
- `meta` (str): Metadata of the data instance with: case_ID, case_jurisdiction, date_created.
#### hacker_news
- `text` (str): Text.
- `meta` (str): Metadata of the data instance with: id.
#### nih_exporter
- `text` (str): Text.
- `meta` (str): Metadata of the data instance with: APPLICATION_ID.
#### pubmed
- `text` (str): Text.
- `meta` (str): Metadata of the data instance with: pmid, language.
#### pubmed_central
- `text` (str): Text.
- `meta` (str): Metadata of the data instance with: ID of the data instance.
#### ubuntu_irc
- `text` (str): Text.
- `meta` (str): Metadata of the data instance with: channel, month.
#### uspto
- `text` (str): Text.
- `meta` (str): Metadata of the data instance with: bibliographic_information, source_file, abstract, classifications,
inventors.
#### github
- `text` (str): Text.
- `meta` (str): Metadata of the data instance with: repo_name, stars, repo_language, file_name, mime_type.
### Data Splits
The "all" configuration is composed of 3 splits: train, validation and test.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Please refer to the specific license depending on the subset you use:
- PubMed Central: [MIT License](https://github.com/EleutherAI/pile-pubmedcentral/blob/master/LICENSE)
### Citation Information
```
@misc{gao2020pile,
title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Leo Gao and Stella Biderman and Sid Black and Laurence Golding and Travis Hoppe and Charles Foster and Jason Phang and Horace He and Anish Thite and Noa Nabeshima and Shawn Presser and Connor Leahy},
year={2020},
eprint={2101.00027},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|
the_pile_books3 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- mit
multilinguality:
- monolingual
pretty_name: Books3
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
dataset_info:
features:
- name: title
dtype: string
- name: text
dtype: string
config_name: plain_text
splits:
- name: train
num_bytes: 108392037000
num_examples: 196639
download_size: 39516981435
dataset_size: 108392037000
---
# Dataset Card for the_pile_books3
## Table of Contents
- [Dataset Card for the_pile_books3](#dataset-card-for-the_pile_books3)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [|split|num examples|](#splitnum-examples)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [GitHub](https://github.com/soskek/bookcorpus/issues/27#issuecomment-716104208)
- **Repository:** [Needs More Information]
- **Paper:** [arXiv](https://arxiv.org/abs/2101.00027)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
This dataset is Shawn Presser's work and is part of EleutherAi/The Pile dataset.
This dataset contains all of bibliotik in plain .txt form, aka 197,000 books processed in exactly the same way as did for bookcorpusopen (a.k.a. books1). seems to be similar to OpenAI's mysterious "books2" dataset referenced in their papers. Unfortunately OpenAI will not give details, so we know very little about any differences. People suspect it's "all of libgen", but it's purely conjecture.
|download_size|36.8 Gib|
|dataset_size|100.9 Gib|
### Supported Tasks and Leaderboards
This dataset is used for Language Modeling.
### Languages
The dataset is in English.
## Dataset Structure
### Data Instances
```
{'title': '07 LEGO Ninjago - The Search For Zane (Scholastic) - Kate Howard (retail)'
'text': '\n\nTITLE PAGE\n\nFROM THE JOURNAL OF SENSEI GARMADON\n\nCHAPTER 1\n\nCHAPTER 2\n\nCHAPTER 3\n\nCHAPTER 4\n\nCHAPTER 5\n\nCHAPTER 6\n\nCHAPTER 7\n\nCHAPTER 8\n\nCHAPTER 9\n\nCOPYRIGHT\n\nThroughout Ninjago", five ninja are well-known for their speed, strength, and of course the elemental powers that help them protect our world from evil. But there are others who possess some of the same powers as the ninja. Others who may not always use their powers for good.\n\nBefore now, the ninja believed they were special. They di.......'}
```
### Data Fields
- `title`: title of the book
- `text`: text content of the book
### Data Splits
|split|num examples|
--------------------------------
|train|196640|
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
MIT
### Citation Information
```
@article{pile,
title={The {P}ile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and Presser, Shawn and Leahy, Connor},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
```
### Contributions
Thanks to [@shawwn](https://github.com/shawwn) for creating this dataset.
Thanks to [@richarddwang](https://github.com/richarddwang) for adding this dataset. |
the_pile_openwebtext2 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- mit
multilinguality:
- monolingual
pretty_name: OpenWebText2
size_categories:
- 10M<n<100M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- text-classification
task_ids:
- language-modeling
- masked-language-modeling
- text-scoring
dataset_info:
features:
- name: title
dtype: string
- name: text
dtype: string
config_name: plain_text
splits:
- name: train
num_bytes: 68571017395
num_examples: 17103059
download_size: 29344276480
dataset_size: 68571017395
---
# Dataset Card for the_pile_openwebtext2
## Table of Contents
- [Dataset Card for the_pile_openwebtext2](#dataset-card-for-the_pile_openwebtext2)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [|split|num examples|](#splitnum-examples)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://openwebtext2.readthedocs.io/en/latest/
- **Repository:** [GitHub](https://github.com/EleutherAI/openwebtext2)
- **Paper:** https://arxiv.org/abs/2101.00027
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
OpenWebText2 is part of EleutherAi/The Pile dataset and is an enhanced version of the original OpenWebTextCorpus covering all Reddit submissions from 2005 up until April 2020, with further months becoming available after the corresponding PushShift dump files are released.
|download_size|27.3 Gib|
|dataset_size|63.8 Gib|
### Supported Tasks and Leaderboards
This dataset is used for Language Modeling.
### Languages
This dataset is in English.
## Dataset Structure
### Data Instances
```
This example was too long and was cropped:
{'title': Xiaomi Mi Note 10 Gearbest Coupon Promo Code [6+128GB] [France Warehouse],
'text': '27% off Xiaomi Mi Note 10 (CC9 Pro) 108MP Penta Camera Mobile Phone Global Version Online Smartphone – Black Gearbest Coupon Promo Code\n\nGearbest Coupon Price :$439.99\n\nRegular Price : $603.19 Your Save : $163.20 Coupon Limit: 100 times Warehouse: France Expires : September 30, 2020 Coupon Valid for...',
'reddit_scores': [6],}
```
### Data Fields
- `title`: title of the web page
- `text`: text content of the web page
- `reddit_scores`: scores of the reddit submissions that mention this web page, as a list of integers
### Data Splits
|split|num examples|
--------------------------------
|train|17103059|
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
```
@article{pile,
title={The {P}ile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and Presser, Shawn and Leahy, Connor},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
```
### Contributions
[researcher2](https://github.com/researcher2) Wrote much of this code, with inspiration and some straight copying of the scraping code found [here](https://github.com/yet-another-account/openwebtext/).<br/>
[sdtblck](https://github.com/sdtblck/) kindly put together the Colab notebook, and performed a chunk of the scraping. <br/>
[leogao2](https://github.com/leogao2/) provided overall design guidance, lm_dataformat, and performed another chunk of scraping. <br />
[Colaboratory](https://colab.research.google.com/) VMs helped with about 10% of our overall scraping. <br />
[The Eye](http://the-eye.eu/) host the processed datasets.<br />
[Read The Docs](https://readthedocs.org/) host our documentation.<br />
[@richarddwang](https://github.com/richarddwang) added this dataset to HF/datasets. |
the_pile_stack_exchange | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: Stack Exchange
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
dataset_info:
features:
- name: domain
dtype: string
- name: text
dtype: string
config_name: plain_text
splits:
- name: train
num_bytes: 11075434609
num_examples: 5096117
download_size: 36802959360
dataset_size: 11075434609
---
# Dataset Card for Stack Exchange
## Table of Contents
- [Dataset Card for Stack Exchange](#dataset-card-for-the_pile_stack_exchange)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [|split|num examples|](#splitnum-examples)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [GitHub](https://github.com/EleutherAI/stackexchange-dataset)
- **Repository:** [Needs More Information]
- **Paper:** [arXiv](https://arxiv.org/abs/2101.00027)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
This dataset is part of EleutherAI/The Pile dataset and is a dataset for Language Models from processing stackexchange data dump, which is an anonymized dump of all user-contributed content on the Stack Exchange network.
|download_size|34.28 Gib|
|dataset_size|10.3 Gib|
### Supported Tasks and Leaderboards
The dataset is used for Language Modeling.
### Languages
The dataset is in English.
## Dataset Structure
### Data Instances
```
{'domain': 'chemistry',
'text':"\nQ: \n \nReviving old questions or asking a new one? \n \nI'm relatively new to the Chemistry SE community, and sometimes when I go to ask a question, I notice that the same (or similar) question has \nalready been asked. However, the previous question doesn't have a good answer (or is unanswered). In this case, is it better to ask the questi\non again in a new post (which might be marked as duplicate) or comment on the old post (which might be several years old)? In other words, wha\nt are the customs of this site in regards to reviving old questions/discussions?\n\nA:\n\nAs Martin commented, it really depends on the type of question. In any case, you always have the following possibilities:\n\nAsk a new question\nEdit the question to bump it to the first page\nAdd a bounty\nBring it to the attention of people in chat\n\nConsider the following cases:\n\nI have exactly the same question as asked and unanswered before!\n\nIf you ask a new question which turns out to be the same question, it may be closed as a dupe (depending on whether users remember the old que\nstion). Not the ideal option.\nIf you can find something substantial to edit and bump the question, do so. Maybe add a comment that you would really love an answer.\nIf you can spare some rep for a bounty (50 is usually enough), do so.\nYou can always bring it to the attention of people in chat.\n",}
```
### Data Fields
- `domain`: Stack Exchange domain of the sample
- `text`: Text content containing both the question and the answer
### Data Splits
|split|num examples|
--------------------------------
|train|5096117|
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
```
@article{pile,
title={The {P}ile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and Presser, Shawn and Leahy, Connor},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
```
### Contributions
Thanks to [sdtblck](https://github.com/sdtblck) for creating the dataset.
Thanks to [richarddwang](https://github.com/richarddwang) for adding the dataset. |
tilde_model | ---
annotations_creators:
- found
language_creators:
- found
language:
- bg
- cs
- da
- de
- el
- en
- es
- et
- fi
- fr
- hr
- hu
- is
- it
- lt
- lv
- mt
- nl
- 'no'
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- tr
- uk
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: tilde-model-corpus
pretty_name: Tilde Multilingual Open Data for European Languages
dataset_info:
- config_name: bg-el
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- bg
- el
splits:
- name: train
num_bytes: 258081
num_examples: 455
download_size: 64430
dataset_size: 258081
- config_name: cs-en
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- cs
- en
splits:
- name: train
num_bytes: 709168
num_examples: 3100
download_size: 201503
dataset_size: 709168
- config_name: de-hr
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- de
- hr
splits:
- name: train
num_bytes: 180148538
num_examples: 683194
download_size: 49585877
dataset_size: 180148538
- config_name: en-no
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- 'no'
splits:
- name: train
num_bytes: 73797124
num_examples: 348141
download_size: 17852861
dataset_size: 73797124
- config_name: es-pt
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- es
- pt
splits:
- name: train
num_bytes: 3808423
num_examples: 13464
download_size: 1160892
dataset_size: 3808423
---
# Dataset Card for Tilde Multilingual Open Data for European Languages
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://opus.nlpl.eu/TildeMODEL.php
- **Repository:** None
- **Paper:** https://www.aclweb.org/anthology/W17-0235.pdf
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** [More Information Needed]
### Dataset Summary
To load a language pair which isn't part of the config, all you need to do is specify the language code as pairs.
You can find the valid pairs in Homepage section of Dataset Description: http://opus.nlpl.eu/TildeMODEL.php
E.g.
`dataset = load_dataset("tilde_model", lang1="en", lang2="lv")`
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
Here are some examples of questions and facts:
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
time_dial | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
pretty_name: 'TimeDial: Temporal Commonsense Reasoning in Dialog'
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-label-classification
paperswithcode_id: timedial
tags:
- dialog-act-classification
dataset_info:
features:
- name: id
dtype: int32
- name: conversation
sequence: string
- name: correct1
dtype: string
- name: correct2
dtype: string
- name: incorrect1
dtype: string
- name: incorrect1_rule
dtype: string
- name: incorrect2
dtype: string
- name: incorrect2_rule
dtype: string
splits:
- name: test
num_bytes: 1449879
num_examples: 1446
download_size: 1613806
dataset_size: 1449879
---
# Dataset Card for TimeDial: Temporal Commonsense Reasoning in Dialog
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [TimeDial](https://github.com/google-research-datasets/timedial)
- **Paper:** [TimeDial: Temporal Commonsense Reasoning in Dialog](https://arxiv.org/abs/2106.04571)
- **Point of Contact:** [Please create an issue in the official repository](https://github.com/google-research-datasets/timedial)
### Dataset Summary
TimeDial presents a crowdsourced English challenge set, for temporal commonsense reasoning, formulated as a multiple choice cloze task with around 1.5k carefully curated dialogs. The dataset is derived from the DailyDialog ([Li et al., 2017](https://www.aclweb.org/anthology/I17-1099/)), which is a multi-turn dialog corpus.
In order to establish strong baselines and provide information on future model development, the authors conducted extensive experiments with state-of-the-art LMs. While humans can easily answer these questions (97.8\%), the best T5 model variant struggles on this challenge set (73\%). Moreover, our qualitative error analyses show that the models often rely on shallow, spurious features (particularly text matching), instead of truly doing reasoning over the context.
Detailed experiments and analyses can be found in their [paper](https://arxiv.org/pdf/2106.04571.pdf).
### Supported Tasks and Leaderboards
To be updated soon.
### Languages
The dataset is in English only.
## Dataset Structure
### Data Instances
```
{
"id": 1,
"conversation": [
"A: We need to take the accounts system offline to carry out the upgrade . But don't worry , it won't cause too much inconvenience . We're going to do it over the weekend .",
"B: How long will the system be down for ?",
"A: We'll be taking everything offline in about two hours ' time . It'll be down for a minimum of twelve hours . If everything goes according to plan , it should be up again by 6 pm on Saturday .",
"B: That's fine . We've allowed <MASK> to be on the safe side ."
],
"correct1": "forty-eight hours",
"correct2": "50 hours ",
"incorrect1": "two hours ",
"incorrect1_rule": "Rule 1",
"incorrect2": "12 days ",
"incorrect2_rule": "Rule 2"
}
```
### Data Fields
- "id": Unique identifier, as a integer
- "conversation": Dialog context with <MASK> span, as a string
- "correct1": Original <MASK> span, as a string
- "correct2": Additional correct option provided by annotators, as a string
- "incorrect1": Incorrect option #1 provided by annotators, as a string
- "incorrect1_rule": One of phrase matching ("Rule 1"), numeral matching ("Rule 2"), or open ended ("Rule 3"), as a string
- "incorrect2": Incorrect option #2 provided by annotators, as a string
- "incorrect2_rule": One of phrase matching ("Rule 1"), numeral matching ("Rule 2"), or open ended ("Rule 3"), as a string
### Data Splits
TimeDial dataset consists only of a test set of 1,104 dialog instances with 2 correct and 2 incorrect options with the following statistics:
| | Avg. |
|-----|-----|
|Turns per Dialog | 11.7 |
|Words per Turn | 16.5 |
|Time Spans per Dialog | 3 |
## Dataset Creation
### Curation Rationale
Although previous works have studied temporal reasoning in natural language, they have either focused on specific time-related concepts in isolation, such as temporal ordering and relation extraction, and/or dealt with limited context, such as single-sentence-based question answering and natural language inference.
In this work, they make the first systematic study of temporal commonsense reasoning in a multi-turn dialog setting. The task involves complex reasoning that requires operations like comparison and arithmetic reasoning over temporal expressions and the need for commonsense and world knowledge.
### Source Data
#### Initial Data Collection and Normalization
The TIMEDIAL dataset is derived from DailyDialog data (Li et al., 2017), which is a multi-turn dialog corpus containing over 13K English dialogs. Dialogs in this dataset consist of turn-taking between two people on topics over 10 broad categories, ranging from daily lives to financial topics.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
The data collection process involves two steps: (1) identifying dialogs that are rich in temporal expressions, and (2) asking human annotators to provide correct and incorrect options for cloze instances derived from these dialogs. More details about the two steps:
1) Temporal expression identification: Here, they select dialogs that are rich with temporal information, in order to focus on complex temporal reasoning that arises in natural dialogs. Temporal expressions are automatically identified with SU-Time, an off-the-shelf temporal expression detector. They keep only the dialogs with more than 3 temporal expressions and at least one expression that contains numerals like “two weeks” (as opposed to non-numeric spans, like “summer”, “right now”, and “later”). In their initial experiment, they observe that language models can often correctly predict these non-numerical temporal phrases.
2) Human annotated options: Next, they make spans in the dialogs. For a dialog, they mask out each temporal expression that contains numerals, each resulting in a cloze question that is then sent for human annotation.
This resulted in 1,526 instances for annotation. For each masked span in each dialog, they obtain human annotation to derive a fixed set of correct and incorrect options given the context. Concretely, given a masked dialog and a seed correct answer (i.e., the original text) for the masked span, the annotators were asked to (1) come up with an alternative correct answer that makes sense in the dialog adhering to commonsense, and (2) formulate two incorrect answers that have no possibility of making sense in the dialog context. They highlight all time expressions in the context to make it easier for annotators to select reasonable time expressions.
#### Who are the annotators?
They are English linguists.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Dataset provided for research purposes only. Please check dataset license for additional information.
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
TimeDial dataset is licensed under CC BY-NC-SA 4.0.
### Citation Information
```
@inproceedings{qin-etal-2021-timedial,
title = "{TimeDial: Temporal Commonsense Reasoning in Dialog}",
author = "Qin, Lianhui and Gupta, Aditya and Upadhyay, Shyam and He, Luheng and Choi, Yejin and Faruqui, Manaal",
booktitle = "Proc. of ACL",
year = "2021"
}
```
### Contributions
Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik) for adding this dataset. |
times_of_india_news_headlines | ---
annotations_creators:
- no-annotation
language_creators:
- expert-generated
language:
- en
license:
- cc0-1.0
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text2text-generation
- text-retrieval
task_ids:
- document-retrieval
- fact-checking-retrieval
- text-simplification
paperswithcode_id: null
pretty_name: Times of India News Headlines
dataset_info:
features:
- name: publish_date
dtype: string
- name: headline_category
dtype: string
- name: headline_text
dtype: string
splits:
- name: train
num_bytes: 260939306
num_examples: 3297173
download_size: 0
dataset_size: 260939306
---
# Dataset Card for Times of India News Headlines
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/J7BYRX
- **Repository:** [More Information Needed]
- **Paper:** [More Information Needed]
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** [More Information Needed]
### Dataset Summary
This news dataset is a persistent historical archive of noteable events in the Indian subcontinent from start-2001 to mid-2020, recorded in realtime by the journalists of India. It contains approximately 3.3 million events published by Times of India. Times Group as a news agency, reaches out a very wide audience across Asia and drawfs every other agency in the quantity of english articles published per day. Due to the heavy daily volume over multiple years, this data offers a deep insight into Indian society, its priorities, events, issues and talking points and how they have unfolded over time. It is possible to chop this dataset into a smaller piece for a more focused analysis, based on one or more facets.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The text in the dataset is in English.
## Dataset Structure
### Data Instances
```
{
'publish_date': '20010530',
'headline_category': city.kolkata,
'headline_text': "Malda fake notes"
}
```
### Data Fields
- `publish_date`: Date of publishing in yyyyMMdd format
- `headline_category`: Category of event in ascii, dot-delimited values
- `headline_text`: Headline of article en la Engrezi (2020-07-10)
### Data Splits
This dataset has no splits.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset was created by Rohit Kulkarni.
### Licensing Information
The data is under the [CC0: Public Domain](https://creativecommons.org/publicdomain/zero/1.0/)
### Citation Information
```
@data{DVN/DPQMQH_2020,
author = {Kulkarni, Rohit},
publisher = {Harvard Dataverse},
title = {{Times of India News Headlines}},
year = {2020},
version = {V1},
doi = {10.7910/DVN/DPQMQH},
url = {https://doi.org/10.7910/DVN/DPQMQH}
}
```
### Contributions
Thanks to [@tanmoyio](https://github.com/tanmoyio) for adding this dataset. |
timit_asr | ---
pretty_name: TIMIT
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- other
license_details: "LDC-User-Agreement-for-Non-Members"
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
paperswithcode_id: timit
train-eval-index:
- config: clean
task: automatic-speech-recognition
task_id: speech_recognition
splits:
train_split: train
eval_split: test
col_mapping:
file: path
text: text
metrics:
- type: wer
name: WER
- type: cer
name: CER
---
# Dataset Card for timit_asr
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [TIMIT Acoustic-Phonetic Continuous Speech Corpus](https://catalog.ldc.upenn.edu/LDC93S1)
- **Repository:** [Needs More Information]
- **Paper:** [TIMIT: Dataset designed to provide speech data for acoustic-phonetic studies and for the development and evaluation of automatic speech recognition systems.](https://catalog.ldc.upenn.edu/LDC93S1)
- **Leaderboard:** [Paperswithcode Leaderboard](https://paperswithcode.com/sota/speech-recognition-on-timit)
- **Point of Contact:** [Needs More Information]
### Dataset Summary
The TIMIT corpus of read speech is designed to provide speech data for acoustic-phonetic studies and for the development and evaluation of automatic speech recognition systems. TIMIT contains broadband recordings of 630 speakers of eight major dialects of American English, each reading ten phonetically rich sentences. The TIMIT corpus includes time-aligned orthographic, phonetic and word transcriptions as well as a 16-bit, 16kHz speech waveform file for each utterance. Corpus design was a joint effort among the Massachusetts Institute of Technology (MIT), SRI International (SRI) and Texas Instruments, Inc. (TI). The speech was recorded at TI, transcribed at MIT and verified and prepared for CD-ROM production by the National Institute of Standards and Technology (NIST).
The dataset needs to be downloaded manually from https://catalog.ldc.upenn.edu/LDC93S1:
```
To use TIMIT you have to download it manually.
Please create an account and download the dataset from https://catalog.ldc.upenn.edu/LDC93S1
Then extract all files in one folder and load the dataset with:
`datasets.load_dataset('timit_asr', data_dir='path/to/folder/folder_name')`
```
### Supported Tasks and Leaderboards
- `automatic-speech-recognition`, `speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/sota/speech-recognition-on-timit and ranks models based on their WER.
### Languages
The audio is in English.
The TIMIT corpus transcriptions have been hand verified. Test and training subsets, balanced for phonetic and dialectal coverage, are specified. Tabular computer-searchable information is included as well as written documentation.
## Dataset Structure
### Data Instances
A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.
```
{
'file': '/data/TRAIN/DR4/MMDM0/SI681.WAV',
'audio': {'path': '/data/TRAIN/DR4/MMDM0/SI681.WAV',
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
'sampling_rate': 16000},
'text': 'Would such an act of refusal be useful?',
'phonetic_detail': [{'start': '0', 'stop': '1960', 'utterance': 'h#'},
{'start': '1960', 'stop': '2466', 'utterance': 'w'},
{'start': '2466', 'stop': '3480', 'utterance': 'ix'},
{'start': '3480', 'stop': '4000', 'utterance': 'dcl'},
{'start': '4000', 'stop': '5960', 'utterance': 's'},
{'start': '5960', 'stop': '7480', 'utterance': 'ah'},
{'start': '7480', 'stop': '7880', 'utterance': 'tcl'},
{'start': '7880', 'stop': '9400', 'utterance': 'ch'},
{'start': '9400', 'stop': '9960', 'utterance': 'ix'},
{'start': '9960', 'stop': '10680', 'utterance': 'n'},
{'start': '10680', 'stop': '13480', 'utterance': 'ae'},
{'start': '13480', 'stop': '15680', 'utterance': 'kcl'},
{'start': '15680', 'stop': '15880', 'utterance': 't'},
{'start': '15880', 'stop': '16920', 'utterance': 'ix'},
{'start': '16920', 'stop': '18297', 'utterance': 'v'},
{'start': '18297', 'stop': '18882', 'utterance': 'r'},
{'start': '18882', 'stop': '19480', 'utterance': 'ix'},
{'start': '19480', 'stop': '21723', 'utterance': 'f'},
{'start': '21723', 'stop': '22516', 'utterance': 'y'},
{'start': '22516', 'stop': '24040', 'utterance': 'ux'},
{'start': '24040', 'stop': '25190', 'utterance': 'zh'},
{'start': '25190', 'stop': '27080', 'utterance': 'el'},
{'start': '27080', 'stop': '28160', 'utterance': 'bcl'},
{'start': '28160', 'stop': '28560', 'utterance': 'b'},
{'start': '28560', 'stop': '30120', 'utterance': 'iy'},
{'start': '30120', 'stop': '31832', 'utterance': 'y'},
{'start': '31832', 'stop': '33240', 'utterance': 'ux'},
{'start': '33240', 'stop': '34640', 'utterance': 's'},
{'start': '34640', 'stop': '35968', 'utterance': 'f'},
{'start': '35968', 'stop': '37720', 'utterance': 'el'},
{'start': '37720', 'stop': '39920', 'utterance': 'h#'}],
'word_detail': [{'start': '1960', 'stop': '4000', 'utterance': 'would'},
{'start': '4000', 'stop': '9400', 'utterance': 'such'},
{'start': '9400', 'stop': '10680', 'utterance': 'an'},
{'start': '10680', 'stop': '15880', 'utterance': 'act'},
{'start': '15880', 'stop': '18297', 'utterance': 'of'},
{'start': '18297', 'stop': '27080', 'utterance': 'refusal'},
{'start': '27080', 'stop': '30120', 'utterance': 'be'},
{'start': '30120', 'stop': '37720', 'utterance': 'useful'}],
'dialect_region': 'DR4',
'sentence_type': 'SI',
'speaker_id': 'MMDM0',
'id': 'SI681'
}
```
### Data Fields
- file: A path to the downloaded audio file in .wav format.
- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- text: The transcription of the audio file.
- phonetic_detail: The phonemes that make up the sentence. The PHONCODE.DOC contains a table of all the phonemic and phonetic symbols used in TIMIT lexicon.
- word_detail: Word level split of the transcript.
- dialect_region: The dialect code of the recording.
- sentence_type: The type of the sentence - 'SA':'Dialect', 'SX':'Compact' or 'SI':'Diverse'.
- speaker_id: Unique id of the speaker. The same speaker id can be found for multiple data samples.
- id: ID of the data sample. Contains the <SENTENCE_TYPE><SENTENCE_NUMBER>.
### Data Splits
The speech material has been subdivided into portions for training and
testing. The default train-test split will be made available on data download.
The test data alone has a core portion containing 24 speakers, 2 male and 1 female
from each dialect region. More information about the test set can
be found [here](https://catalog.ldc.upenn.edu/docs/LDC93S1/TESTSET.TXT)
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Dataset provided for research purposes only. Please check dataset license for additional information.
## Additional Information
### Dataset Curators
The dataset was created by John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, Victor Zue
### Licensing Information
[LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf)
### Citation Information
```
@inproceedings{
title={TIMIT Acoustic-Phonetic Continuous Speech Corpus},
author={Garofolo, John S., et al},
ldc_catalog_no={LDC93S1},
DOI={https://doi.org/10.35111/17gk-bn40},
journal={Linguistic Data Consortium, Philadelphia},
year={1983}
}
```
### Contributions
Thanks to [@vrindaprabhu](https://github.com/vrindaprabhu) for adding this dataset.
|
tiny_shakespeare | ---
paperswithcode_id: null
pretty_name: TinyShakespeare
dataset_info:
features:
- name: text
dtype: string
splits:
- name: test
num_bytes: 55780
num_examples: 1
- name: train
num_bytes: 1003864
num_examples: 1
- name: validation
num_bytes: 55780
num_examples: 1
download_size: 1115394
dataset_size: 1115424
---
# Dataset Card for "tiny_shakespeare"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt](https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.11 MB
- **Size of the generated dataset:** 1.11 MB
- **Total amount of disk used:** 2.23 MB
### Dataset Summary
40,000 lines of Shakespeare from a variety of Shakespeare's plays. Featured in Andrej Karpathy's blog post 'The Unreasonable Effectiveness of Recurrent Neural Networks': http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
To use for e.g. character modelling:
```
d = datasets.load_dataset(name='tiny_shakespeare')['train']
d = d.map(lambda x: datasets.Value('strings').unicode_split(x['text'], 'UTF-8'))
# train split includes vocabulary for other splits
vocabulary = sorted(set(next(iter(d)).numpy()))
d = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]})
d = d.unbatch()
seq_len = 100
batch_size = 2
d = d.batch(seq_len)
d = d.batch(batch_size)
```
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 1.11 MB
- **Size of the generated dataset:** 1.11 MB
- **Total amount of disk used:** 2.23 MB
An example of 'train' looks as follows.
```
{
"text": "First Citizen:\nBefore we proceed any further, hear me "
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `text`: a `string` feature.
### Data Splits
| name |train|validation|test|
|-------|----:|---------:|---:|
|default| 1| 1| 1|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@misc{
author={Karpathy, Andrej},
title={char-rnn},
year={2015},
howpublished={\url{https://github.com/karpathy/char-rnn}}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
tlc | ---
pretty_name: Thai Literature Corpora (TLC)
annotations_creators:
- expert-generated
- no-annotation
language_creators:
- expert-generated
language:
- th
license:
- unknown
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: null
dataset_info:
- config_name: tlcv1.0
features:
- name: ch_num
dtype: string
- name: title
dtype: string
- name: text
sequence:
sequence: string
splits:
- name: train
num_bytes: 32498
num_examples: 1
download_size: 2904472
dataset_size: 32498
- config_name: tlcv2.0
features:
- name: ch_num
dtype: string
- name: title
dtype: string
- name: text
sequence:
sequence: string
splits:
- name: train
num_bytes: 32498
num_examples: 1
download_size: 5551710
dataset_size: 32498
- config_name: tnhcv1.0
features:
- name: text
sequence: string
splits:
- name: train
num_bytes: 25198
num_examples: 152
download_size: 1465403
dataset_size: 25198
---
# Dataset Card for Thai Literature Corpora (TLC)
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://attapol.github.io/tlc.html
- **Leaderboard:** https://www.kaggle.com/c/wisesight-sentiment/
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** Jitkapat Sawatphol, Attapol Rutherford; attapolrutherford at gmail.com
### Dataset Summary
Thai Literature Corpora (TLC): Corpora of machine-ingestible Thai classical literature texts.
It consists of two datasets:
## TLC set
It is texts from [Vajirayana Digital Library](https://vajirayana.org/), stored by chapters and stanzas (non-tokenized).
tlc v.2.0 (6/17/19 : a total of 34 documents, 292,270 lines, 31,790,734 characters)
tlc v.1.0 (6/11/19 : a total of 25 documents, 113,981 lines, 28,775,761 characters)
## TNHC set
It is texts from Thai National Historical Corpus, stored by lines (manually tokenized).
tnhc v.1.0 (6/25/19 : a total of 47 documents, 756,478 lines, 13,361,142 characters)
### Supported Tasks and Leaderboards
Language Modeling, Language Generation
### Languages
Thai
## Dataset Structure
### Data Instances
```
{
"ch_num": "๑",
"title": "กากี กลอนสุภาพ",
"text": [
[
"๏ จักกล่าวอดีตนิทานแต่ปางก่อน\n",
"เมื่อครั้งองค์สมเด็จพระชินวร\tยังสัญจรแสวงหาโพธิญาณ\n",
"เสวยชาติเป็นสกุณาพระยานก\tจึงชักเรื่องชาดกมาบรรหาร\n",
"หวังแสดงแห่งจิตหญิงพาล\tให้ชายชาญรู้เชิงกระสัตรี ฯ\n"
]
}
```
### Data Fields
- `ch_num`: chapter number in Thai Numerals (๑, ๒, ๓, ๔, ๕, ๖, ๗, ๘, ๙, ๑๐, ...)
- `title`: chapter name
- `text`: each item corresponds to one stanzas, each line is a couplet which can be seperated by `\t`
### Data Splits
tlc v.2.0 (6/17/19 : a total of 34 documents, 292,270 lines, 31,790,734 characters)
tlc v.1.0 (6/11/19 : a total of 25 documents, 113,981 lines, 28,775,761 characters)
## TNHC set
It is texts from Thai National Historical Corpus, stored by lines (manually tokenized).
tnhc v.1.0 (6/25/19 : a total of 47 documents, 756,478 lines, 13,361,142 characters)
| | tlc2.0 | tlc1.0 | tnhc |
|-----------|-------|-------|-------|
| # documents | 34 | 25 | 47 |
| # lines | 292,270 | 113,981 | 756,478 |
## Dataset Creation
### Curation Rationale
Originally, the dataset was compiled for the [Thai Poetry Generator](https://github.com/jitkapat/thaipoetrygenerator) at Chulalongkorn university as the Final project for `2209372 Introduction to Computational Linguistics` by [Jitkapat Sawatphol](https://jitkapat.github.io/) (Faculty of Engineering, Chulalongkorn University).
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
There is no personal information.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Thanks [Jitkapat Sawatphol](https://jitkapat.github.io/) (Faculty of Arts, Chulalongkorn University), and [Attapol Rutherford](https://attapol.github.io/) (Faculty of Arts, Chulalongkorn University)
### Licensing Information
[More Information Needed]
### Citation Information
Please cite the following if you make use of the dataset:
Jitkapat Sawatphol, and Attapol Rutherford. 2019. **Thai Literature Corpora (TLC)**.
BibTeX:
```
@misc{
author={Sawatphol, Jitkapat},
title={Thai Literature Corpora},
year={2019},
howpublished={\\url{https://attapol.github.io/tlc.html}}
}
```
### Contributions
Thanks to [@chameleonTK](https://github.com/chameleonTK) for adding this dataset. |
tmu_gfm_dataset | ---
annotations_creators:
- crowdsourced
language_creators:
- machine-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text2text-generation
task_ids: []
paperswithcode_id: null
pretty_name: TMU-GFM-Dataset
tags:
- grammatical-error-correction
dataset_info:
features:
- name: source
dtype: string
- name: output
dtype: string
- name: grammer
sequence: int32
- name: fluency
sequence: int32
- name: meaning
sequence: int32
- name: system
dtype: string
- name: ave_g
dtype: float32
- name: ave_f
dtype: float32
- name: ave_m
dtype: float32
splits:
- name: train
num_bytes: 1446144
num_examples: 4221
download_size: 1270197
dataset_size: 1446144
---
# Dataset Card for TMU-GFM-Dataset
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [N/A]
- **Repository:** https://github.com/tmu-nlp/TMU-GFM-Dataset
- **Paper:** [SOME: Reference-less Sub-Metrics Optimized for Manual Evaluations of Grammatical Error Correction](https://www.aclweb.org/anthology/2020.coling-main.573.pdf)
- **Leaderboard:** [N/A]
- **Point of Contact:** Check the paper.
### Dataset Summary
Authors collected manual evaluations for the grammaticality, fluency, and meaning preservation of the system outputs of 1,381 sentences from CoNLL 2013.
To collect the manual evaluations for various system outputs, each source sentence was corrected by the following five typical systems: statistical machine translation (SMT) (Grundkiewicz and Junczys-Dowmunt, 2018), recurrent neural network (RNN) (Luong et al., 2015), convolutional neural network (CNN) (Chollampatt and Ng, 2018), self-attention network (SAN) (Vaswani et al., 2017), and SAN with copy mechanism (SAN+Copy) (Zhao et al., 2019).
Manual evaluation for the grammaticality, fluency, and meaning preservation were assigned to a total of 4,223 sentences.
### Supported Tasks and Leaderboards
Grammatical Error Correction
### Languages
English
## Dataset Structure
### Data Instances
An example from the TMU-GFM-Dataset looks as follows:
```
{'ave_f': 3.4000000953674316,
'ave_g': 3.4000000953674316,
'ave_m': 3.5999999046325684,
'fluency': [3, 4, 3, 4, 3],
'grammer': [3, 4, 3, 4, 3],
'meaning': [3, 4, 4, 4, 3],
'output': 'After all, there will be an endless battle between the technology and human mentality.',
'source': 'Afterall there will be an endless battle between the technology and human mentality.',
'system': 'lstm,cnn'}
```
### Data Fields
The are 9 columns in the tmu-gfm-dataset.
- source: source sentence.
- output: system output sentence.
- grammer: Grammaticaliry annotations by 5 annotators.
- fluency: Fluency annotations by 5 annotators.
- meaning: Meaning Preservation annotations by 5 annotators.
- system: Which system the output sentence is from.
- ave_g: Average grammer score.
- ave_f: Average fluency score.
- ave_m: Average meaning score.
### Data Splits
Authors divided the dataset into train/dev/test with 3,376/422/423 sentences and used for fine-tuning BERT in thier paper.
## Dataset Creation
### Curation Rationale
The authors proposed a reference-less metric trained on manual evaluations of system outputs for grammatical error correction (GEC).
They said that previous studies have shown that reference-less metrics are promising; however, existing metrics are not optimized for manual evaluation of the system output because there is no dataset of system output with manual evaluation.
To achieve a better correlation with manual evaluation, they created a dataset to optimize each sub-metric to the manual evaluation of GEC systems. Their annotators evaluated the output of five typical GEC systems.
### Source Data
#### Initial Data Collection and Normalization
Authors collected manual evaluations for the grammaticality, fluency, and meaning preservation of the system outputs of 1,381 sentences from CoNLL 2013.
To collect the manual evaluations for various system outputs, each source sentence was corrected by the following five typical systems: statistical machine translation (SMT) (Grundkiewicz and Junczys-Dowmunt, 2018), recurrent neural network (RNN) (Luong et al., 2015), convolutional neural network (CNN) (Chollampatt and Ng, 2018), self-attention network (SAN) (Vaswani et al., 2017), and SAN with copy mechanism (SAN+Copy) (Zhao et al., 2019).
#### Who are the source language producers?
machine-generated
### Annotations
#### Annotation process
By excluding duplicate corrected sentences, manual evaluation for the grammaticality, fluency, and meaning preservation were assigned to a total of 4,223 sentences, as follows:
- Grammaticality: Annotators evaluated the grammatical correctness of the system output. The authors followed the five-point scale evaluation criteria (4: Perfect, 3: Comprehensible, 2: Somewhat comprehensible, 1: Incomprehensible, and 0: Other) proposed by Heilman et al. (2014).
- Fluency: Annotators evaluated how natural the sentence sounds for native speakers. The authors followed the criteria (4: Extremely natural, 3: Somewhat natural, 2: Somewhat unnatural, and 1: Extremely unnatural) proposed by Lau et al. (2015).
- Meaning preservation: Annotators evaluated the extent to which the meaning of source sentences is preserved in system output. The authors followed the criteria (4: Identical, 3: Minor differences, 2: Moderate differences, 1: Sub- stantially different, and 0: Other) proposed by Xu et al. (2016).
Finally, the authors created a dataset with manual evaluations for a total of 4,221 sentences, excluding sentences in which three or more annotators answered “0: Other.”
#### Who are the annotators?
Five native English annotators reqruited by using Amazon Mechaincal turk
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
@inproceedings{yoshimura-etal-2020-reference,
title = "{SOME}: Reference-less Sub-Metrics Optimized for Manual Evaluations of Grammatical Error Correction",
author = "Yoshimura, Ryoma and
Kaneko, Masahiro and
Kajiwara, Tomoyuki and
Komachi, Mamoru",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.coling-main.573",
pages = "6516--6522",
abstract = "We propose a reference-less metric trained on manual evaluations of system outputs for grammatical error correction (GEC). Previous studies have shown that reference-less metrics are promising; however, existing metrics are not optimized for manual evaluations of the system outputs because no dataset of the system output exists with manual evaluation. This study manually evaluates outputs of GEC systems to optimize the metrics. Experimental results show that the proposed metric improves correlation with the manual evaluation in both system- and sentence-level meta-evaluation. Our dataset and metric will be made publicly available.",
}
### Contributions
Thanks to [@forest1988](https://github.com/forest1988) for adding this dataset. |
told-br | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- pt
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: told-br
pretty_name: ToLD-Br
language_bcp47:
- pt-BR
tags:
- hate-speech-detection
dataset_info:
- config_name: multilabel
features:
- name: text
dtype: string
- name: homophobia
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: obscene
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: insult
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: racism
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: misogyny
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
- name: xenophobia
dtype:
class_label:
names:
'0': zero_votes
'1': one_vote
'2': two_votes
'3': three_votes
splits:
- name: train
num_bytes: 2978006
num_examples: 21000
download_size: 2430416
dataset_size: 2978006
- config_name: binary
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': not-toxic
'1': toxic
splits:
- name: train
num_bytes: 1709560
num_examples: 16800
- name: test
num_bytes: 216297
num_examples: 2100
- name: validation
num_bytes: 212153
num_examples: 2100
download_size: 853322
dataset_size: 2138010
---
# Dataset Card for "ToLD-Br"
## Table of Contents
- [Dataset Card for "ToLD-Br"](#dataset-card-for-told-br)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://paperswithcode.com/dataset/told-br
- **Repository:** https://github.com/JAugusto97/ToLD-Br
- **Paper:** https://arxiv.org/abs/2010.04543
- **Leaderboard:** https://paperswithcode.com/sota/hate-speech-detection-on-told-br
- **Point of Contact:** joao.leite@estudante.ufscar.br
### Dataset Summary
ToLD-Br is the biggest dataset for toxic tweets in Brazilian Portuguese, crowdsourced by 42 annotators selected from a pool of 129 volunteers. Annotators were selected aiming to create a plural group in terms of demographics (ethnicity, sexual orientation, age, gender). Each tweet was labeled by three annotators in 6 possible categories: LGBTQ+phobia, Xenophobia, Obscene, Insult, Misogyny and Racism.
### Supported Tasks and Leaderboards
-`text-classification-other-hate-speech-detection`: The dataset can be used to train a model for Hate Speech Detection, either using it's multi-label classes or by grouping them into a binary Hate vs. Non-Hate class. A [BERT](https://huggingface.co/docs/transformers/model_doc/bert) model can be fine-tuned to perform this task and achieve 0.75 F1-Score for it's binary version.
### Languages
The text in the dataset is in Brazilian Portuguese, as spoken by Tweet users. The associated BCP-47 code is `pt-BR`.
## Dataset Structure
### Data Instances
ToLD-Br has two versions: binary and multilabel.
Multilabel:
A data point consists of the tweet text (string) followed by 6 categories that have values ranging from 0 to 3, meaning the amount of votes from annotators for that specific class on homophobia, obscene, insult, racism, misogyny and xenophobia.
An example from multilabel ToLD-Br looks as follows:
```
{'text': '@user bandido dissimulado. esse sérgio moro é uma espécie de mal carater com ditadura e pitadas de atraso'
'homophobia': 0
'obscene': 0
'insult': 2
'racism': 0
'misogyny': 0
'xenophobia': 0}
```
Binary:
A data point consists of the tweet text (string) followed by a binary class "toxic" with values 0 or 1.
An example from binary ToLD-Br looks as follows:
```
{'text': '@user bandido dissimulado. esse sérgio moro é uma espécie de mal carater com ditadura e pitadas de atraso'
'toxic': 1}
```
### Data Fields
Multilabel:
- text: A string representing the tweet posted by a user. Mentions to other users are anonymized by replacing the mention with a @user tag.
- homophobia: numerical value {0, 1, 2, 3) representing the number of votes given by annotators flagging the respective tweet as homophobic.
- obscene: numerical value {0, 1, 2, 3) representing the number of votes given by annotators flagging the respective tweet as obscene.
- insult: numerical value {0, 1, 2, 3) representing the number of votes given by annotators flagging the respective tweet as insult.
- racism: numerical value {0, 1, 2, 3) representing the number of votes given by annotators flagging the respective tweet as racism.
- misogyny: numerical value {0, 1, 2, 3) representing the number of votes given by annotators flagging the respective tweet as misogyny.
- xenophobia: numerical value {0, 1, 2, 3) representing the number of votes given by annotators flagging the respective tweet as xenophobia.
Binary:
- text: A string representing the tweet posted by a user. Mentions to other users are anonymized by replacing the mention with a @user tag.
- label: numerical binary value {0, 1} representing if the respective text is toxic/abusive or not.
### Data Splits
Multilabel:
The entire dataset consists of 21.000 examples.
Binary:
The train set consists of 16.800 examples, validation set consists of 2.100 examples and test set consists of 2.100 examples.
## Dataset Creation
### Curation Rationale
Despite Portuguese being the 5th most spoken language in the world and Brazil being the 4th country with most unique users, Brazilian Portuguese was underrepresented in the hate-speech detection task. Only two other datasets were available, one of them being European Portuguese. ToLD-Br is 4x bigger than both these datasets combined. Also, none of them had multiple annotators per instance. Also, this work proposes a plural and diverse group of annotators carefully selected to avoid inserting bias into the annotation.
### Source Data
#### Initial Data Collection and Normalization
Data was collected in 15 days in August 2019 using Gate Cloud's Tweet Collector. Ten million tweets were collected using two methods: a keyword-based method and a user-mention method. The first method collected tweets mentioning the following keywords:
viado,veado,viadinho,veadinho,viadao,veadao,bicha,bixa,bichinha,bixinha,bichona,bixona,baitola,sapatão,sapatao,traveco,bambi,biba,boiola,marica,gayzão,gayzao,flor,florzinha,vagabundo,vagaba,desgraçada,desgraçado,desgracado,arrombado,arrombada,foder,fuder,fudido,fodido,cú,cu,pinto,pau,pal,caralho,caraio,carai,pica,cacete,rola,porra,escroto,buceta,fdp,pqp,vsf,tnc,vtnc,puto,putinho,acéfalo,acefalo,burro,idiota,trouxa,estúpido,estupido,estúpida,canalha,demente,retardado,retardada,verme,maldito,maldita,ridículo,ridiculo,ridícula,ridicula,morfético,morfetico,morfética,morfetica,lazarento,lazarenta,lixo,mongolóide,mongoloide,mongol,asqueroso,asquerosa,cretino,cretina,babaca,pilantra,neguinho,neguinha,pretinho,pretinha,escurinho,escurinha,pretinha,pretinho,crioulo,criolo,crioula,criola,macaco,macaca,gorila,puta,vagabunda,vagaba,mulherzinha,piranha,feminazi,putinha,piriguete,vaca,putinha,bahiano,baiano,baianagem,xingling,xing ling,xing-ling,carioca,paulista,sulista,mineiro,gringo
The list of most followed Brazilian Twitter accounts can be found [here](https://assuperlistas.com/2022/01/21/os-100-brasileiros-mais-seguidos-do-twitter/).
#### Who are the source language producers?
The language producers are Twitter users from Brazil, speakers of Portuguese.
### Annotations
#### Annotation process
A form was published at the Federal University of São Carlos asking for volunteers to annotate our dataset. 129 people volunteered and 42 were selected according to their demographics in order to create a diverse and plural annotation group. Guidelines were produced and presented to the annotators. The entire process was done asynchronously because of the Covid-19 pandemic. The tool used was Google Sheets. Annotators were grouped into 14 teams of three annotators each. Each group annotated a respective file containing 1500 tweets. Annotators didn't have contact with each other, nor did they know that other annotators were labelling the same tweets as they were.
#### Who are the annotators?
Annotators were people from the Federal University of São Carlos' Facebook group. Their demographics are described below:
| Gender | |
|--------|--------|
| Male | 18 |
| Female | 24 |
| Sexual Orientation | |
|--------------------|----|
| Heterosexual | 22 |
| Bisexual | 12 |
| Homosexual | 5 |
| Pansexual | 3 |
| Ethnicity | |
|--------------|----|
| White | 25 |
| Brown | 9 |
| Black | 5 |
| Asian | 2 |
| Non-Declared | 1 |
Ages range from 18 to 37 years old.
Annotators were paid R$50 ($10) to label 1500 examples each.
### Personal and Sensitive Information
The dataset contains sensitive information for homophobia, obscene, insult, racism, misogyny and xenophobia.
Tweets were anonymized by replacing user mentions with a @user tag.
## Considerations for Using the Data
### Social Impact of Dataset
The purpose of this dataset is to help develop better hate speech detection systems.
A system that succeeds at this task would be able to identify hate speech tweets associated with the classes available in the dataset.
### Discussion of Biases
An effort was made to reduce annotation bias by selecting annotators with a diverse demographic background. In terms of data collection, by using keywords and user mentions, we are introducing some bias to the data, restricting our scope to the list of keywords and users we created.
### Other Known Limitations
Because of the massive data skew for the multilabel classes, it is extremely hard to train a robust model for this version of the dataset. We advise using it for analysis and experimentation only. The binary version of the dataset is robust enough to train a classifier with up to 76% F1-score.
## Additional Information
### Dataset Curators
The dataset was created by João Augusto Leite, Diego Furtado Silva, both from the Federal University of São Carlos (BR), Carolina Scarton and Kalina Bontcheva both from the University of Sheffield (UK)
### Licensing Information
ToLD-Br is licensed under a Creative Commons BY-SA 4.0
### Citation Information
```
@article{DBLP:journals/corr/abs-2010-04543,
author = {Joao Augusto Leite and
Diego F. Silva and
Kalina Bontcheva and
Carolina Scarton},
title = {Toxic Language Detection in Social Media for Brazilian Portuguese:
New Dataset and Multilingual Analysis},
journal = {CoRR},
volume = {abs/2010.04543},
year = {2020},
url = {https://arxiv.org/abs/2010.04543},
eprinttype = {arXiv},
eprint = {2010.04543},
timestamp = {Tue, 15 Dec 2020 16:10:16 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2010-04543.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@JAugusto97](https://github.com/JAugusto97) for adding this dataset. |
totto | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- table-to-text
task_ids: []
paperswithcode_id: totto
pretty_name: ToTTo
dataset_info:
features:
- name: id
dtype: int32
- name: table_page_title
dtype: string
- name: table_webpage_url
dtype: string
- name: table_section_title
dtype: string
- name: table_section_text
dtype: string
- name: table
list:
list:
- name: column_span
dtype: int32
- name: is_header
dtype: bool
- name: row_span
dtype: int32
- name: value
dtype: string
- name: highlighted_cells
sequence:
sequence: int32
- name: example_id
dtype: string
- name: sentence_annotations
sequence:
- name: original_sentence
dtype: string
- name: sentence_after_deletion
dtype: string
- name: sentence_after_ambiguity
dtype: string
- name: final_sentence
dtype: string
- name: overlap_subset
dtype: string
splits:
- name: train
num_bytes: 652754806
num_examples: 120761
- name: validation
num_bytes: 47277039
num_examples: 7700
- name: test
num_bytes: 40883586
num_examples: 7700
download_size: 187724372
dataset_size: 740915431
---
# Dataset Card for ToTTo
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** None
- **Repository:** https://github.com/google-research-datasets/ToTTo
- **Paper:** https://arxiv.org/abs/2004.14373
- **Leaderboard:** https://github.com/google-research-datasets/ToTTo#leaderboard
- **Point of Contact:** [totto@google.com](mailto:totto@google.com)
### Dataset Summary
ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled
generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
A sample training set is provided below
```
{'example_id': '1762238357686640028',
'highlighted_cells': [[13, 2]],
'id': 0,
'overlap_subset': 'none',
'sentence_annotations': {'final_sentence': ['A Favorita is the telenovela aired in the 9 pm timeslot.'],
'original_sentence': ['It is also the first telenovela by the writer to air in the 9 pm timeslot.'],
'sentence_after_ambiguity': ['A Favorita is the telenovela aired in the 9 pm timeslot.'],
'sentence_after_deletion': ['It is the telenovela air in the 9 pm timeslot.']},
'table': [[{'column_span': 1, 'is_header': True, 'row_span': 1, 'value': '#'},
{'column_span': 1, 'is_header': True, 'row_span': 1, 'value': 'Run'},
{'column_span': 1, 'is_header': True, 'row_span': 1, 'value': 'Title'},
{'column_span': 1, 'is_header': True, 'row_span': 1, 'value': 'Chapters'},
{'column_span': 1, 'is_header': True, 'row_span': 1, 'value': 'Author'},
{'column_span': 1, 'is_header': True, 'row_span': 1, 'value': 'Director'},
{'column_span': 1,
'is_header': True,
'row_span': 1,
'value': 'Ibope Rating'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '59'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'June 5, 2000— February 2, 2001'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Laços de Família'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '209'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Manoel Carlos'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Ricardo Waddington'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '44.9'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '60'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'February 5, 2001— September 28, 2001'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Porto dos Milagres'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '203'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Aguinaldo Silva Ricardo Linhares'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Marcos Paulo Simões'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '44.6'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '61'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'October 1, 2001— June 14, 2002'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': 'O Clone'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '221'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Glória Perez'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Jayme Monjardim'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '47.0'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '62'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'June 17, 2002— February 14, 2003'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': 'Esperança'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '209'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Benedito Ruy Barbosa'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Luiz Fernando'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '37.7'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '63'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'February 17, 2003— October 10, 2003'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Mulheres Apaixonadas'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '203'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Manoel Carlos'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Ricardo Waddington'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '46.6'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '64'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'October 13, 2003— June 25, 2004'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Celebridade'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '221'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Gilberto Braga'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Dennis Carvalho'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '46.0'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '65'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'June 28, 2004— March 11, 2005'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Senhora do Destino'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '221'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Aguinaldo Silva'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': 'Wolf Maya'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '50.4'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '66'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'March 14, 2005— November 4, 2005'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': 'América'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '203'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Glória Perez'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Jayme Monjardim Marcos Schechtman'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '49.4'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '67'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'November 7, 2005— July 7, 2006'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': 'Belíssima'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '209'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Sílvio de Abreu'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Denise Saraceni'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '48.5'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '68'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'July 10, 2006— March 2, 2007'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Páginas da Vida'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '203'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Manoel Carlos'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Jayme Monjardim'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '46.8'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '69'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'March 5, 2007— September 28, 2007'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Paraíso Tropical'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '179'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Gilberto Braga Ricardo Linhares'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Dennis Carvalho'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '42.8'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '70'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'October 1, 2007— May 31, 2008'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Duas Caras'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '210'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Aguinaldo Silva'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': 'Wolf Maya'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '41.1'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '71'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'June 2, 2008— January 16, 2009'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'A Favorita'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '197'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'João Emanuel Carneiro'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Ricardo Waddington'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '39.5'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '72'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'January 19, 2009— September 11, 2009'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Caminho das Índias'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '203'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Glória Perez'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Marcos Schechtman'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '38.8'}],
[{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '73'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'September 14, 2009— May 14, 2010'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Viver a Vida'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '209'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Manoel Carlos'},
{'column_span': 1,
'is_header': False,
'row_span': 1,
'value': 'Jayme Monjardim'},
{'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '35.6'}]],
'table_page_title': 'List of 8/9 PM telenovelas of Rede Globo',
'table_section_text': '',
'table_section_title': '2000s',
'table_webpage_url': 'http://en.wikipedia.org/wiki/List_of_8/9_PM_telenovelas_of_Rede_Globo'}
```
Please note that in test set sentence annotations are not available and thus values inside `sentence_annotations` can be safely ignored.
### Data Fields
- `table_webpage_url` (`str`): Table webpage URL.
- `table_page_title` (`str`): Table metadata with context about the table.
- `table_section_title` (`str`): Table metadata with context about the table.
- `table_section_text` (`str`): Table metadata with context about the table.
- `table` (`List[List[Dict]]`): The outer lists represents rows and the inner lists columns. Each Dict has the fields:
- `column_span` (`int`)
- `is_header` (`bool`)
- `row_span` (`int`)
- `value` (`str`)
- `highlighted_cells` (`List[[row_index, column_index]]`): Where each `[row_index, column_index]` pair indicates that `table[row_index][column_index]` is highlighted.
- `example_id` (`int`): A unique id for this example.
- `sentence_annotations`: Consists of the `original_sentence` and the sequence of revised sentences performed in order to produce the `final_sentence`.
### Data Splits
```
DatasetDict({
train: Dataset({
features: ['id', 'table_page_title', 'table_webpage_url', 'table_section_title', 'table_section_text', 'table', 'highlighted_cells', 'example_id', 'sentence_annotations', 'overlap_subset'],
num_rows: 120761
})
validation: Dataset({
features: ['id', 'table_page_title', 'table_webpage_url', 'table_section_title', 'table_section_text', 'table', 'highlighted_cells', 'example_id', 'sentence_annotations', 'overlap_subset'],
num_rows: 7700
})
test: Dataset({
features: ['id', 'table_page_title', 'table_webpage_url', 'table_section_title', 'table_section_text', 'table', 'highlighted_cells', 'example_id', 'sentence_annotations', 'overlap_subset'],
num_rows: 7700
})
})
```
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inproceedings{parikh2020totto,
title={{ToTTo}: A Controlled Table-To-Text Generation Dataset},
author={Parikh, Ankur P and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan},
booktitle={Proceedings of EMNLP},
year={2020}
}
```
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
trec | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-class-classification
paperswithcode_id: trecqa
pretty_name: Text Retrieval Conference Question Answering
dataset_info:
features:
- name: text
dtype: string
- name: coarse_label
dtype:
class_label:
names:
'0': ABBR
'1': ENTY
'2': DESC
'3': HUM
'4': LOC
'5': NUM
- name: fine_label
dtype:
class_label:
names:
'0': ABBR:abb
'1': ABBR:exp
'2': ENTY:animal
'3': ENTY:body
'4': ENTY:color
'5': ENTY:cremat
'6': ENTY:currency
'7': ENTY:dismed
'8': ENTY:event
'9': ENTY:food
'10': ENTY:instru
'11': ENTY:lang
'12': ENTY:letter
'13': ENTY:other
'14': ENTY:plant
'15': ENTY:product
'16': ENTY:religion
'17': ENTY:sport
'18': ENTY:substance
'19': ENTY:symbol
'20': ENTY:techmeth
'21': ENTY:termeq
'22': ENTY:veh
'23': ENTY:word
'24': DESC:def
'25': DESC:desc
'26': DESC:manner
'27': DESC:reason
'28': HUM:gr
'29': HUM:ind
'30': HUM:title
'31': HUM:desc
'32': LOC:city
'33': LOC:country
'34': LOC:mount
'35': LOC:other
'36': LOC:state
'37': NUM:code
'38': NUM:count
'39': NUM:date
'40': NUM:dist
'41': NUM:money
'42': NUM:ord
'43': NUM:other
'44': NUM:period
'45': NUM:perc
'46': NUM:speed
'47': NUM:temp
'48': NUM:volsize
'49': NUM:weight
splits:
- name: train
num_bytes: 385090
num_examples: 5452
- name: test
num_bytes: 27983
num_examples: 500
download_size: 359212
dataset_size: 413073
---
# Dataset Card for "trec"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://cogcomp.seas.upenn.edu/Data/QA/QC/](https://cogcomp.seas.upenn.edu/Data/QA/QC/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 0.36 MB
- **Size of the generated dataset:** 0.41 MB
- **Total amount of disk used:** 0.78 MB
### Dataset Summary
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.
The dataset has 6 coarse class labels and 50 fine class labels. Average length of each sentence is 10, vocabulary size of 8700.
Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set. These questions were manually labeled.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
The language in this dataset is English (`en`).
## Dataset Structure
### Data Instances
- **Size of downloaded dataset files:** 0.36 MB
- **Size of the generated dataset:** 0.41 MB
- **Total amount of disk used:** 0.78 MB
An example of 'train' looks as follows.
```
{
'text': 'How did serfdom develop in and then leave Russia ?',
'coarse_label': 2,
'fine_label': 26
}
```
### Data Fields
The data fields are the same among all splits.
- `text` (`str`): Text of the question.
- `coarse_label` (`ClassLabel`): Coarse class label. Possible values are:
- 'ABBR' (0): Abbreviation.
- 'ENTY' (1): Entity.
- 'DESC' (2): Description and abstract concept.
- 'HUM' (3): Human being.
- 'LOC' (4): Location.
- 'NUM' (5): Numeric value.
- `fine_label` (`ClassLabel`): Fine class label. Possible values are:
- ABBREVIATION:
- 'ABBR:abb' (0): Abbreviation.
- 'ABBR:exp' (1): Expression abbreviated.
- ENTITY:
- 'ENTY:animal' (2): Animal.
- 'ENTY:body' (3): Organ of body.
- 'ENTY:color' (4): Color.
- 'ENTY:cremat' (5): Invention, book and other creative piece.
- 'ENTY:currency' (6): Currency name.
- 'ENTY:dismed' (7): Disease and medicine.
- 'ENTY:event' (8): Event.
- 'ENTY:food' (9): Food.
- 'ENTY:instru' (10): Musical instrument.
- 'ENTY:lang' (11): Language.
- 'ENTY:letter' (12): Letter like a-z.
- 'ENTY:other' (13): Other entity.
- 'ENTY:plant' (14): Plant.
- 'ENTY:product' (15): Product.
- 'ENTY:religion' (16): Religion.
- 'ENTY:sport' (17): Sport.
- 'ENTY:substance' (18): Element and substance.
- 'ENTY:symbol' (19): Symbols and sign.
- 'ENTY:techmeth' (20): Techniques and method.
- 'ENTY:termeq' (21): Equivalent term.
- 'ENTY:veh' (22): Vehicle.
- 'ENTY:word' (23): Word with a special property.
- DESCRIPTION:
- 'DESC:def' (24): Definition of something.
- 'DESC:desc' (25): Description of something.
- 'DESC:manner' (26): Manner of an action.
- 'DESC:reason' (27): Reason.
- HUMAN:
- 'HUM:gr' (28): Group or organization of persons
- 'HUM:ind' (29): Individual.
- 'HUM:title' (30): Title of a person.
- 'HUM:desc' (31): Description of a person.
- LOCATION:
- 'LOC:city' (32): City.
- 'LOC:country' (33): Country.
- 'LOC:mount' (34): Mountain.
- 'LOC:other' (35): Other location.
- 'LOC:state' (36): State.
- NUMERIC:
- 'NUM:code' (37): Postcode or other code.
- 'NUM:count' (38): Number of something.
- 'NUM:date' (39): Date.
- 'NUM:dist' (40): Distance, linear measure.
- 'NUM:money' (41): Price.
- 'NUM:ord' (42): Order, rank.
- 'NUM:other' (43): Other number.
- 'NUM:period' (44): Lasting time of something
- 'NUM:perc' (45): Percent, fraction.
- 'NUM:speed' (46): Speed.
- 'NUM:temp' (47): Temperature.
- 'NUM:volsize' (48): Size, area and volume.
- 'NUM:weight' (49): Weight.
### Data Splits
| name | train | test |
|---------|------:|-----:|
| default | 5452 | 500 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{li-roth-2002-learning,
title = "Learning Question Classifiers",
author = "Li, Xin and
Roth, Dan",
booktitle = "{COLING} 2002: The 19th International Conference on Computational Linguistics",
year = "2002",
url = "https://www.aclweb.org/anthology/C02-1150",
}
@inproceedings{hovy-etal-2001-toward,
title = "Toward Semantics-Based Answer Pinpointing",
author = "Hovy, Eduard and
Gerber, Laurie and
Hermjakob, Ulf and
Lin, Chin-Yew and
Ravichandran, Deepak",
booktitle = "Proceedings of the First International Conference on Human Language Technology Research",
year = "2001",
url = "https://www.aclweb.org/anthology/H01-1069",
}
```
### Contributions
Thanks to [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |
trivia_qa | ---
annotations_creators:
- crowdsourced
language_creators:
- machine-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
paperswithcode_id: triviaqa
pretty_name: TriviaQA
size_categories:
- 10K<n<100K
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
- text2text-generation
task_ids:
- open-domain-qa
- open-domain-abstractive-qa
- extractive-qa
- abstractive-qa
dataset_info:
- config_name: rc
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 12749652867
num_examples: 138384
- name: validation
num_bytes: 1662321436
num_examples: 17944
- name: test
num_bytes: 1577710751
num_examples: 17210
download_size: 2665779500
dataset_size: 15989685054
- config_name: rc.nocontext
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 106884466
num_examples: 138384
- name: validation
num_bytes: 14060078
num_examples: 17944
- name: test
num_bytes: 3668151
num_examples: 17210
download_size: 2665779500
dataset_size: 124612695
- config_name: unfiltered
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 25019623548
num_examples: 87622
- name: validation
num_bytes: 3038803991
num_examples: 11313
- name: test
num_bytes: 2906455559
num_examples: 10832
download_size: 3298328560
dataset_size: 30964883098
- config_name: unfiltered.nocontext
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 63301342
num_examples: 87622
- name: validation
num_bytes: 8297118
num_examples: 11313
- name: test
num_bytes: 2320908
num_examples: 10832
download_size: 632549060
dataset_size: 73919368
- config_name: rc.web
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 9408852131
num_examples: 76496
- name: validation
num_bytes: 1232155262
num_examples: 9951
- name: test
num_bytes: 1171664123
num_examples: 9509
download_size: 2665779500
dataset_size: 11812671516
- config_name: rc.web.nocontext
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 58524077
num_examples: 76496
- name: validation
num_bytes: 7694681
num_examples: 9951
- name: test
num_bytes: 2024871
num_examples: 9509
download_size: 2665779500
dataset_size: 68243629
- config_name: unfiltered.web
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
- name: validation
- name: test
download_size: 3298328560
dataset_size: 0
- config_name: unfiltered.web.nocontext
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
- name: validation
- name: test
download_size: 632549060
dataset_size: 0
- config_name: rc.wikipedia
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 3340800860
num_examples: 61888
- name: validation
num_bytes: 430166174
num_examples: 7993
- name: test
num_bytes: 406046628
num_examples: 7701
download_size: 2665779500
dataset_size: 4177013662
- config_name: rc.wikipedia.nocontext
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 48360513
num_examples: 61888
- name: validation
num_bytes: 6365397
num_examples: 7993
- name: test
num_bytes: 1643280
num_examples: 7701
download_size: 2665779500
dataset_size: 56369190
- config_name: unfiltered.wikipedia
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
- name: validation
- name: test
download_size: 3298328560
dataset_size: 0
- config_name: unfiltered.wikipedia.nocontext
features:
- name: question
dtype: string
- name: question_id
dtype: string
- name: question_source
dtype: string
- name: entity_pages
sequence:
- name: doc_source
dtype: string
- name: filename
dtype: string
- name: title
dtype: string
- name: wiki_context
dtype: string
- name: search_results
sequence:
- name: description
dtype: string
- name: filename
dtype: string
- name: rank
dtype: int32
- name: title
dtype: string
- name: url
dtype: string
- name: search_context
dtype: string
- name: answer
struct:
- name: aliases
sequence: string
- name: normalized_aliases
sequence: string
- name: matched_wiki_entity_name
dtype: string
- name: normalized_matched_wiki_entity_name
dtype: string
- name: normalized_value
dtype: string
- name: type
dtype: string
- name: value
dtype: string
splits:
- name: train
- name: validation
- name: test
download_size: 632549060
dataset_size: 0
---
# Dataset Card for "trivia_qa"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://nlp.cs.washington.edu/triviaqa/](http://nlp.cs.washington.edu/triviaqa/)
- **Repository:** [https://github.com/mandarjoshi90/triviaqa](https://github.com/mandarjoshi90/triviaqa)
- **Paper:** [TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension](https://arxiv.org/abs/1705.03551)
- **Leaderboard:** [CodaLab Leaderboard](https://competitions.codalab.org/competitions/17208#results)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 9.26 GB
- **Size of the generated dataset:** 45.46 GB
- **Total amount of disk used:** 54.72 GB
### Dataset Summary
TriviaqQA is a reading comprehension dataset containing over 650K
question-answer-evidence triples. TriviaqQA includes 95K question-answer
pairs authored by trivia enthusiasts and independently gathered evidence
documents, six per question on average, that provide high quality distant
supervision for answering the questions.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
English.
## Dataset Structure
### Data Instances
#### rc
- **Size of downloaded dataset files:** 2.67 GB
- **Size of the generated dataset:** 16.02 GB
- **Total amount of disk used:** 18.68 GB
An example of 'train' looks as follows.
```
```
#### rc.nocontext
- **Size of downloaded dataset files:** 2.67 GB
- **Size of the generated dataset:** 126.27 MB
- **Total amount of disk used:** 2.79 GB
An example of 'train' looks as follows.
```
```
#### unfiltered
- **Size of downloaded dataset files:** 3.30 GB
- **Size of the generated dataset:** 29.24 GB
- **Total amount of disk used:** 32.54 GB
An example of 'validation' looks as follows.
```
```
#### unfiltered.nocontext
- **Size of downloaded dataset files:** 632.55 MB
- **Size of the generated dataset:** 74.56 MB
- **Total amount of disk used:** 707.11 MB
An example of 'train' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### rc
- `question`: a `string` feature.
- `question_id`: a `string` feature.
- `question_source`: a `string` feature.
- `entity_pages`: a dictionary feature containing:
- `doc_source`: a `string` feature.
- `filename`: a `string` feature.
- `title`: a `string` feature.
- `wiki_context`: a `string` feature.
- `search_results`: a dictionary feature containing:
- `description`: a `string` feature.
- `filename`: a `string` feature.
- `rank`: a `int32` feature.
- `title`: a `string` feature.
- `url`: a `string` feature.
- `search_context`: a `string` feature.
- `aliases`: a `list` of `string` features.
- `normalized_aliases`: a `list` of `string` features.
- `matched_wiki_entity_name`: a `string` feature.
- `normalized_matched_wiki_entity_name`: a `string` feature.
- `normalized_value`: a `string` feature.
- `type`: a `string` feature.
- `value`: a `string` feature.
#### rc.nocontext
- `question`: a `string` feature.
- `question_id`: a `string` feature.
- `question_source`: a `string` feature.
- `entity_pages`: a dictionary feature containing:
- `doc_source`: a `string` feature.
- `filename`: a `string` feature.
- `title`: a `string` feature.
- `wiki_context`: a `string` feature.
- `search_results`: a dictionary feature containing:
- `description`: a `string` feature.
- `filename`: a `string` feature.
- `rank`: a `int32` feature.
- `title`: a `string` feature.
- `url`: a `string` feature.
- `search_context`: a `string` feature.
- `aliases`: a `list` of `string` features.
- `normalized_aliases`: a `list` of `string` features.
- `matched_wiki_entity_name`: a `string` feature.
- `normalized_matched_wiki_entity_name`: a `string` feature.
- `normalized_value`: a `string` feature.
- `type`: a `string` feature.
- `value`: a `string` feature.
#### unfiltered
- `question`: a `string` feature.
- `question_id`: a `string` feature.
- `question_source`: a `string` feature.
- `entity_pages`: a dictionary feature containing:
- `doc_source`: a `string` feature.
- `filename`: a `string` feature.
- `title`: a `string` feature.
- `wiki_context`: a `string` feature.
- `search_results`: a dictionary feature containing:
- `description`: a `string` feature.
- `filename`: a `string` feature.
- `rank`: a `int32` feature.
- `title`: a `string` feature.
- `url`: a `string` feature.
- `search_context`: a `string` feature.
- `aliases`: a `list` of `string` features.
- `normalized_aliases`: a `list` of `string` features.
- `matched_wiki_entity_name`: a `string` feature.
- `normalized_matched_wiki_entity_name`: a `string` feature.
- `normalized_value`: a `string` feature.
- `type`: a `string` feature.
- `value`: a `string` feature.
#### unfiltered.nocontext
- `question`: a `string` feature.
- `question_id`: a `string` feature.
- `question_source`: a `string` feature.
- `entity_pages`: a dictionary feature containing:
- `doc_source`: a `string` feature.
- `filename`: a `string` feature.
- `title`: a `string` feature.
- `wiki_context`: a `string` feature.
- `search_results`: a dictionary feature containing:
- `description`: a `string` feature.
- `filename`: a `string` feature.
- `rank`: a `int32` feature.
- `title`: a `string` feature.
- `url`: a `string` feature.
- `search_context`: a `string` feature.
- `aliases`: a `list` of `string` features.
- `normalized_aliases`: a `list` of `string` features.
- `matched_wiki_entity_name`: a `string` feature.
- `normalized_matched_wiki_entity_name`: a `string` feature.
- `normalized_value`: a `string` feature.
- `type`: a `string` feature.
- `value`: a `string` feature.
### Data Splits
| name |train |validation|test |
|--------------------|-----:|---------:|----:|
|rc |138384| 18669|17210|
|rc.nocontext |138384| 18669|17210|
|unfiltered | 87622| 11313|10832|
|unfiltered.nocontext| 87622| 11313|10832|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The University of Washington does not own the copyright of the questions and documents included in TriviaQA.
### Citation Information
```
@article{2017arXivtriviaqa,
author = {{Joshi}, Mandar and {Choi}, Eunsol and {Weld},
Daniel and {Zettlemoyer}, Luke},
title = "{triviaqa: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension}",
journal = {arXiv e-prints},
year = 2017,
eid = {arXiv:1705.03551},
pages = {arXiv:1705.03551},
archivePrefix = {arXiv},
eprint = {1705.03551},
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun) for adding this dataset. |
tsac | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- aeb
license:
- lgpl-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: tsac
pretty_name: Tunisian Sentiment Analysis Corpus
dataset_info:
features:
- name: id
dtype: string
- name: sentence
dtype: string
- name: target
dtype:
class_label:
names:
'0': '1'
'1': '-1'
splits:
- name: train
num_bytes: 1020146
num_examples: 13669
- name: test
num_bytes: 268504
num_examples: 3400
download_size: 963015
dataset_size: 1288650
---
# Dataset Card for Tunisian Sentiment Analysis Corpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** None
- **Repository:** https://github.com/fbougares/TSAC
- **Paper:** https://www.aclweb.org/anthology/W17-1307
- **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
- **Point of Contact:** Salima Mdhaffar (firstname.lastname@univ-lemans.fr)
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
ttc4900 | ---
annotations_creators:
- found
language_creators:
- found
language:
- tr
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
pretty_name: TTC4900 - A Benchmark Data for Turkish Text Categorization
tags:
- news-category-classification
dataset_info:
features:
- name: category
dtype:
class_label:
names:
'0': siyaset
'1': dunya
'2': ekonomi
'3': kultur
'4': saglik
'5': spor
'6': teknoloji
- name: text
dtype: string
config_name: ttc4900
splits:
- name: train
num_bytes: 10640831
num_examples: 4900
download_size: 10627541
dataset_size: 10640831
---
# Dataset Card for TTC4900: A Benchmark Data for Turkish Text Categorization
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [TTC4900 Homepage](https://www.kaggle.com/savasy/ttc4900)
- **Repository:** [TTC4900 Repository](https://github.com/savasy/TurkishTextClassification)
- **Paper:** [A Comparison of Different Approaches to Document Representation in Turkish Language](https://dergipark.org.tr/en/pub/sdufenbed/issue/38975/456349)
- **Point of Contact:** [Savaş Yıldırım](mailto:savasy@gmail.com)
### Dataset Summary
The data set is taken from [kemik group](http://www.kemik.yildiz.edu.tr/)
The data are pre-processed for the text categorization, collocations are found, character set is corrected, and so forth.
We named TTC4900 by mimicking the name convention of TTC 3600 dataset shared by the study ["A Knowledge-poor Approach to Turkish Text Categorization with a Comparative Analysis, Proceedings of CICLING 2014, Springer LNCS, Nepal, 2014"](https://link.springer.com/chapter/10.1007/978-3-642-54903-8_36)
If you use the dataset in a paper, please refer https://www.kaggle.com/savasy/ttc4900 as footnote and cite one of the papers as follows:
- A Comparison of Different Approaches to Document Representation in Turkish Language, SDU Journal of Natural and Applied Science, Vol 22, Issue 2, 2018
- A comparative analysis of text classification for Turkish language, Pamukkale University Journal of Engineering Science Volume 25 Issue 5, 2018
- A Knowledge-poor Approach to Turkish Text Categorization with a Comparative Analysis, Proceedings of CICLING 2014, Springer LNCS, Nepal, 2014.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is based on Turkish.
## Dataset Structure
### Data Instances
A text classification dataset with 7 different news category.
Here is an example from the dataset:
```
{
"category": 0, # politics/siyaset
"text": "paris teki infaz imralı ile başlayan sürece bir darbe mi elif_çakır ın sunduğu söz_bitmeden in bugünkü konuğu gazeteci melih altınok oldu programdan satıbaşları imralı ile görüşmeler hangi aşamada bundan sonra ne olacak hangi kesimler sürece engel oluyor psikolojik mayınlar neler türk solu bu dönemde evrensel sorumluluğunu yerine getirebiliyor mu elif_çakır sordu melih altınok söz_bitmeden de yanıtladı elif_çakır pkk nın silahsızlandırılmasına yönelik olarak öcalan ile görüşme sonrası 3 kadının infazı enteresan çünkü kurucu isimlerden birisi sen nasıl okudun bu infazı melih altınok herkesin ciddi anlamda şüpheleri var şu an yürüttüğümüz herşey bir delile dayanmadığı için komple teorisinden ibaret kalacak ama şöyle bir durum var imralı görüşmelerin ilk defa bir siyasi iktidar tarafından açıkça söylendiği bir dönem ardından geliyor bu sürecin gerçekleşmemesini isteyen kesimler yaptırmıştır dedi"
}
```
### Data Fields
- **category** : Indicates to which category the news text belongs.
(Such as "politics", "world", "economy", "culture", "health", "sports", "technology".)
- **text** : Contains the text of the news.
### Data Splits
It is not divided into Train set and Test set.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The data are pre-processed for the text categorization, collocations are found, character set is corrected, and so forth.
#### Who are the source language producers?
Turkish online news sites.
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset was created by [Savaş Yıldırım](https://github.com/savasy)
### Licensing Information
[More Information Needed]
### Citation Information
```
@article{doi:10.5505/pajes.2018.15931,
author = {Yıldırım, Savaş and Yıldız, Tuğba},
title = {A comparative analysis of text classification for Turkish language},
journal = {Pamukkale Univ Muh Bilim Derg},
volume = {24},
number = {5},
pages = {879-886},
year = {2018},
doi = {10.5505/pajes.2018.15931},
note ={doi: 10.5505/pajes.2018.15931},
URL = {https://dx.doi.org/10.5505/pajes.2018.15931},
eprint = {https://dx.doi.org/10.5505/pajes.2018.15931}
}
```
### Contributions
Thanks to [@yavuzKomecoglu](https://github.com/yavuzKomecoglu) for adding this dataset. |
tunizi | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- aeb
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: tunizi
pretty_name: TUNIZI
dataset_info:
features:
- name: id
dtype: string
- name: sentence
dtype: string
- name: target
dtype:
class_label:
names:
'0': '1'
'1': '-1'
splits:
- name: train
num_bytes: 211166
num_examples: 3000
download_size: 162781
dataset_size: 211166
---
# Dataset Card for TUNIZI
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/chaymafourati/TUNIZI-Sentiment-Analysis-Tunisian-Arabizi-Dataset
- **Repository:** https://github.com/chaymafourati/TUNIZI-Sentiment-Analysis-Tunisian-Arabizi-Dataset
- **Paper:** https://arxiv.org/abs/2004.14303
- **Point of Contact:** Chayma Fourati (chayma@icompass.digital)
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
This dataset uses Tunisian Arabic written with latin script (BCP-47: aeb-Latn)
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
tuple_ie | ---
annotations_creators:
- found
language_creators:
- machine-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- other
task_ids: []
paperswithcode_id: tupleinf-open-ie-dataset
pretty_name: TupleInf Open IE
tags:
- open-information-extraction
dataset_info:
- config_name: all
features:
- name: sentence
dtype: string
- name: tuples
sequence:
- name: score
dtype: float32
- name: tuple_text
dtype: string
- name: context
dtype: string
- name: arg1
dtype: string
- name: rel
dtype: string
- name: arg2s
sequence: string
splits:
- name: train
num_bytes: 115621096
num_examples: 267719
download_size: 18026102
dataset_size: 115621096
- config_name: 4th_grade
features:
- name: sentence
dtype: string
- name: tuples
sequence:
- name: score
dtype: float32
- name: tuple_text
dtype: string
- name: context
dtype: string
- name: arg1
dtype: string
- name: rel
dtype: string
- name: arg2s
sequence: string
splits:
- name: train
num_bytes: 65363445
num_examples: 158910
download_size: 18026102
dataset_size: 65363445
- config_name: 8th_grade
features:
- name: sentence
dtype: string
- name: tuples
sequence:
- name: score
dtype: float32
- name: tuple_text
dtype: string
- name: context
dtype: string
- name: arg1
dtype: string
- name: rel
dtype: string
- name: arg2s
sequence: string
splits:
- name: train
num_bytes: 50257651
num_examples: 108809
download_size: 18026102
dataset_size: 50257651
---
# Dataset Card for TupleInf Open IE
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Tuple IE Homepage](https://allenai.org/data/tuple-ie)
- **Repository:**
- **Paper:** [Answering Complex Questions Using Open Information Extraction](https://www.semanticscholar.org/paper/Answering-Complex-Questions-Using-Open-Information-Khot-Sabharwal/0ff595f0645a3e25a2f37145768985b10ead0509)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The TupleInf Open IE dataset contains Open IE tuples extracted from 263K sentences that were used by the solver in “Answering Complex Questions Using Open Information Extraction” (referred as Tuple KB, T). These sentences were collected from a large Web corpus using training questions from 4th and 8th grade as queries. This dataset contains 156K sentences collected for 4th grade questions and 107K sentences for 8th grade questions. Each sentence is followed by the Open IE v4 tuples using their simple format.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The text in the dataset is in English, collected from a large Web corpus using training questions from 4th and 8th grade as queries.
## Dataset Structure
### Data Instances
This dataset contains setences with corresponding relation tuples extracted from each sentence. Each instance should contain a sentence and followed by the [Open IE v4](https://github.com/allenai/openie-standalone) tuples using their *simple format*.
An example of an instance:
```JSON
{
"sentence": "0.04593 kg Used a triple beam balance to mass a golf ball.",
"tuples": {
"score": 0.8999999761581421,
"tuple_text": "(0.04593 kg; Used; a triple beam balance; to mass a golf ball)",
"context": "",
"arg1": "0.04593 kg",
"rel": "Used",
"arg2s": ["a triple beam balance", "to mass a golf ball"],
}
}
```
### Data Fields
- `sentence`: the input text/sentence.
- `tuples`: the extracted relation tuples from the sentence.
- `score`: the confident score for each tuple.
- `tuple_text`: the relationship representation text of the extraction, in the *simple format* of [Open IE v4](https://github.com/allenai/openie-standalone).
- `context`: an optional representation of the context for this extraction. Defaults to `""` if there's no context.
- `arg1`: the first argument in the relationship.
- `rel`: the relation.
- `arg2s`: a sequence of the 2nd arguments in the realtionship.
### Data Splits
| name | train|
|-----------|-----:|
| all |267719|
| 4th_grade |158910|
| 8th_grade |108809|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```bibtex
@article{Khot2017AnsweringCQ,
title={Answering Complex Questions Using Open Information Extraction},
author={Tushar Khot and A. Sabharwal and Peter Clark},
journal={ArXiv},
year={2017},
volume={abs/1704.05572}
}
```
### Contributions
Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset. |
turk | ---
annotations_creators:
- machine-generated
language_creators:
- found
language:
- en
license:
- gpl-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text2text-generation
task_ids:
- text-simplification
paperswithcode_id: null
pretty_name: TURK
dataset_info:
features:
- name: original
dtype: string
- name: simplifications
sequence: string
config_name: simplification
splits:
- name: validation
num_bytes: 2120187
num_examples: 2000
- name: test
num_bytes: 396378
num_examples: 359
download_size: 2443394
dataset_size: 2516565
---
# Dataset Card for TURK
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** None
- **Repository:** [TURK](https://github.com/cocoxu/simplification)
- **Paper:** [Optimizing Statistical Machine Translation for Text Simplification](https://www.aclweb.org/anthology/Q16-1029/)
- **Leaderboard:** N/A
- **Point of Contact:** [Wei Xu](mailto:wei.xu@cc.gatech.edu)
### Dataset Summary
TURK is a multi-reference dataset for the evaluation of sentence simplification in English. The dataset consists of 2,359 sentences from the [Parallel Wikipedia Simplification (PWKP) corpus](https://www.aclweb.org/anthology/C10-1152/). Each sentence is associated with 8 crowdsourced simplifications that focus on only lexical paraphrasing (no sentence splitting or deletion).
### Supported Tasks and Leaderboards
No Leaderboard for the task.
### Languages
TURK contains English text only (BCP-47: `en`).
## Dataset Structure
### Data Instances
An instance consists of an original sentence and 8 possible reference simplifications that focus on lexical paraphrasing.
```
{'original': 'one side of the armed conflicts is composed mainly of the sudanese military and the janjaweed , a sudanese militia group recruited mostly from the afro-arab abbala tribes of the northern rizeigat region in sudan .',
'simplifications': ['one side of the armed conflicts is made of sudanese military and the janjaweed , a sudanese militia recruited from the afro-arab abbala tribes of the northern rizeigat region in sudan .', 'one side of the armed conflicts consist of the sudanese military and the sudanese militia group janjaweed .', 'one side of the armed conflicts is mainly sudanese military and the janjaweed , which recruited from the afro-arab abbala tribes .', 'one side of the armed conflicts is composed mainly of the sudanese military and the janjaweed , a sudanese militia group recruited mostly from the afro-arab abbala tribes in sudan .', 'one side of the armed conflicts is made up mostly of the sudanese military and the janjaweed , a sudanese militia group whose recruits mostly come from the afro-arab abbala tribes from the northern rizeigat region in sudan .', 'the sudanese military and the janjaweed make up one of the armed conflicts , mostly from the afro-arab abbal tribes in sudan .', 'one side of the armed conflicts is composed mainly of the sudanese military and the janjaweed , a sudanese militia group recruited mostly from the afro-arab abbala tribes of the northern rizeigat regime in sudan .', 'one side of the armed conflicts is composed mainly of the sudanese military and the janjaweed , a sudanese militia group recruited mostly from the afro-arab abbala tribes of the northern rizeigat region in sudan .']}
```
### Data Fields
- `original`: an original sentence from the source datasets
- `simplifications`: a set of reference simplifications produced by crowd workers.
### Data Splits
TURK does not contain a training set; many models use [WikiLarge](https://github.com/XingxingZhang/dress) (Zhang and Lapata, 2017) or [Wiki-Auto](https://github.com/chaojiang06/wiki-auto) (Jiang et. al 2020) for training.
Each input sentence has 8 associated reference simplified sentences. 2,359 input sentences are randomly split into 2,000 validation and 359 test sentences.
| | Dev | Test | Total |
| ----- | ------ | ---- | ----- |
| Input Sentences | 2000 | 359 | 2359 |
| Reference Simplifications | 16000 | 2872 | 18872 |
## Dataset Creation
### Curation Rationale
The TURK dataset was constructed to evaluate the task of text simplification. It contains multiple human-written references that focus on only lexical simplification.
### Source Data
#### Initial Data Collection and Normalization
The input sentences in the dataset are extracted from the [Parallel Wikipedia Simplification (PWKP) corpus](https://www.aclweb.org/anthology/C10-1152/).
#### Who are the source language producers?
The references are crowdsourced from Amazon Mechanical Turk. The annotators were asked to provide simplifications without losing any information or splitting the input sentence. No other demographic or compensation information is provided in the paper.
### Annotations
#### Annotation process
The instructions given to the annotators are available in the paper.
#### Who are the annotators?
The annotators are Amazon Mechanical Turk workers.
### Personal and Sensitive Information
Since the dataset is created from English Wikipedia (August 22, 2009 version), all the information contained in the dataset is already in the public domain.
## Considerations for Using the Data
### Social Impact of Dataset
The dataset helps move forward the research towards text simplification by creating a higher quality validation and test dataset. Progress in text simplification in turn has the potential to increase the accessibility of written documents to wider audiences.
### Discussion of Biases
The dataset may contain some social biases, as the input sentences are based on Wikipedia. Studies have shown that the English Wikipedia contains both gender biases [(Schmahl et al., 2020)](https://research.tudelft.nl/en/publications/is-wikipedia-succeeding-in-reducing-gender-bias-assessing-changes) and racial biases [(Adams et al., 2019)](https://journals.sagepub.com/doi/pdf/10.1177/2378023118823946).
### Other Known Limitations
Since the dataset contains only 2,359 sentences that are derived from Wikipedia, it is limited to a small subset of topics present on Wikipedia.
## Additional Information
### Dataset Curators
TURK was developed by researchers at the University of Pennsylvania. The work was supported by the NSF under grant IIS-1430651 and the NSF GRFP under grant 1232825.
### Licensing Information
[GNU General Public License v3.0](https://github.com/cocoxu/simplification/blob/master/LICENSE)
### Citation Information
```
@article{Xu-EtAl:2016:TACL,
author = {Wei Xu and Courtney Napoles and Ellie Pavlick and Quanze Chen and Chris Callison-Burch},
title = {Optimizing Statistical Machine Translation for Text Simplification},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year = {2016},
url = {https://cocoxu.github.io/publications/tacl2016-smt-simplification.pdf},
pages = {401--415}
}
```
### Contributions
Thanks to [@mounicam](https://github.com/mounicam) for adding this dataset. |
turkic_xwmt | ---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- az
- ba
- en
- kaa
- kk
- ky
- ru
- sah
- tr
- uz
license:
- mit
multilinguality:
- translation
pretty_name: turkic_xwmt
size_categories:
- n<1K
task_categories:
- translation
task_ids: []
source_datasets:
- extended|WMT 2020 News Translation Task
configs:
- az-ba
- az-en
- az-kaa
- az-kk
- az-ky
- az-ru
- az-sah
- az-tr
- az-uz
- ba-az
- ba-en
- ba-kaa
- ba-kk
- ba-ky
- ba-ru
- ba-sah
- ba-tr
- ba-uz
- en-az
- en-ba
- en-kaa
- en-kk
- en-ky
- en-ru
- en-sah
- en-tr
- en-uz
- kaa-az
- kaa-ba
- kaa-en
- kaa-kk
- kaa-ky
- kaa-ru
- kaa-sah
- kaa-tr
- kaa-uz
- kk-az
- kk-ba
- kk-en
- kk-kaa
- kk-ky
- kk-ru
- kk-sah
- kk-tr
- kk-uz
- ky-az
- ky-ba
- ky-en
- ky-kaa
- ky-kk
- ky-ru
- ky-sah
- ky-tr
- ky-uz
- ru-az
- ru-ba
- ru-en
- ru-kaa
- ru-kk
- ru-ky
- ru-sah
- ru-tr
- ru-uz
- sah-az
- sah-ba
- sah-en
- sah-kaa
- sah-kk
- sah-ky
- sah-ru
- sah-tr
- sah-uz
- tr-az
- tr-ba
- tr-en
- tr-kaa
- tr-kk
- tr-ky
- tr-ru
- tr-sah
- tr-uz
- uz-az
- uz-ba
- uz-en
- uz-kaa
- uz-kk
- uz-ky
- uz-ru
- uz-sah
- uz-tr
dataset_info:
- config_name: az-ba
features:
- name: translation
dtype:
translation:
languages:
- az
- ba
splits:
- name: test
num_bytes: 266801
num_examples: 600
download_size: 12862396
dataset_size: 266801
- config_name: az-en
features:
- name: translation
dtype:
translation:
languages:
- az
- en
splits:
- name: test
num_bytes: 181156
num_examples: 600
download_size: 12862396
dataset_size: 181156
- config_name: az-kaa
features:
- name: translation
dtype:
translation:
languages:
- az
- kaa
splits:
- name: test
num_bytes: 134071
num_examples: 300
download_size: 12862396
dataset_size: 134071
- config_name: az-kk
features:
- name: translation
dtype:
translation:
languages:
- az
- kk
splits:
- name: test
num_bytes: 203798
num_examples: 500
download_size: 12862396
dataset_size: 203798
- config_name: az-ky
features:
- name: translation
dtype:
translation:
languages:
- az
- ky
splits:
- name: test
num_bytes: 210549
num_examples: 500
download_size: 12862396
dataset_size: 210549
- config_name: az-ru
features:
- name: translation
dtype:
translation:
languages:
- az
- ru
splits:
- name: test
num_bytes: 262739
num_examples: 600
download_size: 12862396
dataset_size: 262739
- config_name: az-sah
features:
- name: translation
dtype:
translation:
languages:
- az
- sah
splits:
- name: test
num_bytes: 144198
num_examples: 300
download_size: 12862396
dataset_size: 144198
- config_name: az-tr
features:
- name: translation
dtype:
translation:
languages:
- az
- tr
splits:
- name: test
num_bytes: 162447
num_examples: 500
download_size: 12862396
dataset_size: 162447
- config_name: az-uz
features:
- name: translation
dtype:
translation:
languages:
- az
- uz
splits:
- name: test
num_bytes: 194231
num_examples: 600
download_size: 12862396
dataset_size: 194231
- config_name: ba-az
features:
- name: translation
dtype:
translation:
languages:
- ba
- az
splits:
- name: test
num_bytes: 266801
num_examples: 600
download_size: 12862396
dataset_size: 266801
- config_name: ba-en
features:
- name: translation
dtype:
translation:
languages:
- ba
- en
splits:
- name: test
num_bytes: 431223
num_examples: 1000
download_size: 12862396
dataset_size: 431223
- config_name: ba-kaa
features:
- name: translation
dtype:
translation:
languages:
- ba
- kaa
splits:
- name: test
num_bytes: 168895
num_examples: 300
download_size: 12862396
dataset_size: 168895
- config_name: ba-kk
features:
- name: translation
dtype:
translation:
languages:
- ba
- kk
splits:
- name: test
num_bytes: 374756
num_examples: 700
download_size: 12862396
dataset_size: 374756
- config_name: ba-ky
features:
- name: translation
dtype:
translation:
languages:
- ba
- ky
splits:
- name: test
num_bytes: 268986
num_examples: 500
download_size: 12862396
dataset_size: 268986
- config_name: ba-ru
features:
- name: translation
dtype:
translation:
languages:
- ba
- ru
splits:
- name: test
num_bytes: 568101
num_examples: 1000
download_size: 12862396
dataset_size: 568101
- config_name: ba-sah
features:
- name: translation
dtype:
translation:
languages:
- ba
- sah
splits:
- name: test
num_bytes: 179022
num_examples: 300
download_size: 12862396
dataset_size: 179022
- config_name: ba-tr
features:
- name: translation
dtype:
translation:
languages:
- ba
- tr
splits:
- name: test
num_bytes: 309455
num_examples: 700
download_size: 12862396
dataset_size: 309455
- config_name: ba-uz
features:
- name: translation
dtype:
translation:
languages:
- ba
- uz
splits:
- name: test
num_bytes: 410874
num_examples: 900
download_size: 12862396
dataset_size: 410874
- config_name: en-az
features:
- name: translation
dtype:
translation:
languages:
- en
- az
splits:
- name: test
num_bytes: 181156
num_examples: 600
download_size: 12862396
dataset_size: 181156
- config_name: en-ba
features:
- name: translation
dtype:
translation:
languages:
- en
- ba
splits:
- name: test
num_bytes: 431223
num_examples: 1000
download_size: 12862396
dataset_size: 431223
- config_name: en-kaa
features:
- name: translation
dtype:
translation:
languages:
- en
- kaa
splits:
- name: test
num_bytes: 126304
num_examples: 300
download_size: 12862396
dataset_size: 126304
- config_name: en-kk
features:
- name: translation
dtype:
translation:
languages:
- en
- kk
splits:
- name: test
num_bytes: 274728
num_examples: 700
download_size: 12862396
dataset_size: 274728
- config_name: en-ky
features:
- name: translation
dtype:
translation:
languages:
- en
- ky
splits:
- name: test
num_bytes: 198854
num_examples: 500
download_size: 12862396
dataset_size: 198854
- config_name: en-ru
features:
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: test
num_bytes: 422718
num_examples: 1000
download_size: 12862396
dataset_size: 422718
- config_name: en-sah
features:
- name: translation
dtype:
translation:
languages:
- en
- sah
splits:
- name: test
num_bytes: 136431
num_examples: 300
download_size: 12862396
dataset_size: 136431
- config_name: en-tr
features:
- name: translation
dtype:
translation:
languages:
- en
- tr
splits:
- name: test
num_bytes: 210144
num_examples: 700
download_size: 12862396
dataset_size: 210144
- config_name: en-uz
features:
- name: translation
dtype:
translation:
languages:
- en
- uz
splits:
- name: test
num_bytes: 278971
num_examples: 900
download_size: 12862396
dataset_size: 278971
- config_name: kaa-az
features:
- name: translation
dtype:
translation:
languages:
- kaa
- az
splits:
- name: test
num_bytes: 134071
num_examples: 300
download_size: 12862396
dataset_size: 134071
- config_name: kaa-ba
features:
- name: translation
dtype:
translation:
languages:
- kaa
- ba
splits:
- name: test
num_bytes: 168895
num_examples: 300
download_size: 12862396
dataset_size: 168895
- config_name: kaa-en
features:
- name: translation
dtype:
translation:
languages:
- kaa
- en
splits:
- name: test
num_bytes: 126304
num_examples: 300
download_size: 12862396
dataset_size: 126304
- config_name: kaa-kk
features:
- name: translation
dtype:
translation:
languages:
- kaa
- kk
splits:
- name: test
num_bytes: 160022
num_examples: 300
download_size: 12862396
dataset_size: 160022
- config_name: kaa-ky
features:
- name: translation
dtype:
translation:
languages:
- kaa
- ky
splits:
- name: test
num_bytes: 163763
num_examples: 300
download_size: 12862396
dataset_size: 163763
- config_name: kaa-ru
features:
- name: translation
dtype:
translation:
languages:
- kaa
- ru
splits:
- name: test
num_bytes: 168349
num_examples: 300
download_size: 12862396
dataset_size: 168349
- config_name: kaa-sah
features:
- name: translation
dtype:
translation:
languages:
- kaa
- sah
splits:
- name: test
num_bytes: 177151
num_examples: 300
download_size: 12862396
dataset_size: 177151
- config_name: kaa-tr
features:
- name: translation
dtype:
translation:
languages:
- kaa
- tr
splits:
- name: test
num_bytes: 132055
num_examples: 300
download_size: 12862396
dataset_size: 132055
- config_name: kaa-uz
features:
- name: translation
dtype:
translation:
languages:
- kaa
- uz
splits:
- name: test
num_bytes: 132789
num_examples: 300
download_size: 12862396
dataset_size: 132789
- config_name: kk-az
features:
- name: translation
dtype:
translation:
languages:
- kk
- az
splits:
- name: test
num_bytes: 203798
num_examples: 500
download_size: 12862396
dataset_size: 203798
- config_name: kk-ba
features:
- name: translation
dtype:
translation:
languages:
- kk
- ba
splits:
- name: test
num_bytes: 374756
num_examples: 700
download_size: 12862396
dataset_size: 374756
- config_name: kk-en
features:
- name: translation
dtype:
translation:
languages:
- kk
- en
splits:
- name: test
num_bytes: 274728
num_examples: 700
download_size: 12862396
dataset_size: 274728
- config_name: kk-kaa
features:
- name: translation
dtype:
translation:
languages:
- kk
- kaa
splits:
- name: test
num_bytes: 160022
num_examples: 300
download_size: 12862396
dataset_size: 160022
- config_name: kk-ky
features:
- name: translation
dtype:
translation:
languages:
- kk
- ky
splits:
- name: test
num_bytes: 253421
num_examples: 500
download_size: 12862396
dataset_size: 253421
- config_name: kk-ru
features:
- name: translation
dtype:
translation:
languages:
- kk
- ru
splits:
- name: test
num_bytes: 369633
num_examples: 700
download_size: 12862396
dataset_size: 369633
- config_name: kk-sah
features:
- name: translation
dtype:
translation:
languages:
- kk
- sah
splits:
- name: test
num_bytes: 170149
num_examples: 300
download_size: 12862396
dataset_size: 170149
- config_name: kk-tr
features:
- name: translation
dtype:
translation:
languages:
- kk
- tr
splits:
- name: test
num_bytes: 204442
num_examples: 500
download_size: 12862396
dataset_size: 204442
- config_name: kk-uz
features:
- name: translation
dtype:
translation:
languages:
- kk
- uz
splits:
- name: test
num_bytes: 290325
num_examples: 700
download_size: 12862396
dataset_size: 290325
- config_name: ky-az
features:
- name: translation
dtype:
translation:
languages:
- ky
- az
splits:
- name: test
num_bytes: 210549
num_examples: 500
download_size: 12862396
dataset_size: 210549
- config_name: ky-ba
features:
- name: translation
dtype:
translation:
languages:
- ky
- ba
splits:
- name: test
num_bytes: 268986
num_examples: 500
download_size: 12862396
dataset_size: 268986
- config_name: ky-en
features:
- name: translation
dtype:
translation:
languages:
- ky
- en
splits:
- name: test
num_bytes: 198854
num_examples: 500
download_size: 12862396
dataset_size: 198854
- config_name: ky-kaa
features:
- name: translation
dtype:
translation:
languages:
- ky
- kaa
splits:
- name: test
num_bytes: 163763
num_examples: 300
download_size: 12862396
dataset_size: 163763
- config_name: ky-kk
features:
- name: translation
dtype:
translation:
languages:
- ky
- kk
splits:
- name: test
num_bytes: 253421
num_examples: 500
download_size: 12862396
dataset_size: 253421
- config_name: ky-ru
features:
- name: translation
dtype:
translation:
languages:
- ky
- ru
splits:
- name: test
num_bytes: 265803
num_examples: 500
download_size: 12862396
dataset_size: 265803
- config_name: ky-sah
features:
- name: translation
dtype:
translation:
languages:
- ky
- sah
splits:
- name: test
num_bytes: 173890
num_examples: 300
download_size: 12862396
dataset_size: 173890
- config_name: ky-tr
features:
- name: translation
dtype:
translation:
languages:
- ky
- tr
splits:
- name: test
num_bytes: 168026
num_examples: 400
download_size: 12862396
dataset_size: 168026
- config_name: ky-uz
features:
- name: translation
dtype:
translation:
languages:
- ky
- uz
splits:
- name: test
num_bytes: 209619
num_examples: 500
download_size: 12862396
dataset_size: 209619
- config_name: ru-az
features:
- name: translation
dtype:
translation:
languages:
- ru
- az
splits:
- name: test
num_bytes: 262739
num_examples: 600
download_size: 12862396
dataset_size: 262739
- config_name: ru-ba
features:
- name: translation
dtype:
translation:
languages:
- ru
- ba
splits:
- name: test
num_bytes: 568101
num_examples: 1000
download_size: 12862396
dataset_size: 568101
- config_name: ru-en
features:
- name: translation
dtype:
translation:
languages:
- ru
- en
splits:
- name: test
num_bytes: 422718
num_examples: 1000
download_size: 12862396
dataset_size: 422718
- config_name: ru-kaa
features:
- name: translation
dtype:
translation:
languages:
- ru
- kaa
splits:
- name: test
num_bytes: 168349
num_examples: 300
download_size: 12862396
dataset_size: 168349
- config_name: ru-kk
features:
- name: translation
dtype:
translation:
languages:
- ru
- kk
splits:
- name: test
num_bytes: 369633
num_examples: 700
download_size: 12862396
dataset_size: 369633
- config_name: ru-ky
features:
- name: translation
dtype:
translation:
languages:
- ru
- ky
splits:
- name: test
num_bytes: 265803
num_examples: 500
download_size: 12862396
dataset_size: 265803
- config_name: ru-sah
features:
- name: translation
dtype:
translation:
languages:
- ru
- sah
splits:
- name: test
num_bytes: 178476
num_examples: 300
download_size: 12862396
dataset_size: 178476
- config_name: ru-tr
features:
- name: translation
dtype:
translation:
languages:
- ru
- tr
splits:
- name: test
num_bytes: 304586
num_examples: 700
download_size: 12862396
dataset_size: 304586
- config_name: ru-uz
features:
- name: translation
dtype:
translation:
languages:
- ru
- uz
splits:
- name: test
num_bytes: 403551
num_examples: 900
download_size: 12862396
dataset_size: 403551
- config_name: sah-az
features:
- name: translation
dtype:
translation:
languages:
- sah
- az
splits:
- name: test
num_bytes: 144198
num_examples: 300
download_size: 12862396
dataset_size: 144198
- config_name: sah-ba
features:
- name: translation
dtype:
translation:
languages:
- sah
- ba
splits:
- name: test
num_bytes: 179022
num_examples: 300
download_size: 12862396
dataset_size: 179022
- config_name: sah-en
features:
- name: translation
dtype:
translation:
languages:
- sah
- en
splits:
- name: test
num_bytes: 136431
num_examples: 300
download_size: 12862396
dataset_size: 136431
- config_name: sah-kaa
features:
- name: translation
dtype:
translation:
languages:
- sah
- kaa
splits:
- name: test
num_bytes: 177151
num_examples: 300
download_size: 12862396
dataset_size: 177151
- config_name: sah-kk
features:
- name: translation
dtype:
translation:
languages:
- sah
- kk
splits:
- name: test
num_bytes: 170149
num_examples: 300
download_size: 12862396
dataset_size: 170149
- config_name: sah-ky
features:
- name: translation
dtype:
translation:
languages:
- sah
- ky
splits:
- name: test
num_bytes: 173890
num_examples: 300
download_size: 12862396
dataset_size: 173890
- config_name: sah-ru
features:
- name: translation
dtype:
translation:
languages:
- sah
- ru
splits:
- name: test
num_bytes: 178476
num_examples: 300
download_size: 12862396
dataset_size: 178476
- config_name: sah-tr
features:
- name: translation
dtype:
translation:
languages:
- sah
- tr
splits:
- name: test
num_bytes: 142182
num_examples: 300
download_size: 12862396
dataset_size: 142182
- config_name: sah-uz
features:
- name: translation
dtype:
translation:
languages:
- sah
- uz
splits:
- name: test
num_bytes: 142916
num_examples: 300
download_size: 12862396
dataset_size: 142916
- config_name: tr-az
features:
- name: translation
dtype:
translation:
languages:
- tr
- az
splits:
- name: test
num_bytes: 162447
num_examples: 500
download_size: 12862396
dataset_size: 162447
- config_name: tr-ba
features:
- name: translation
dtype:
translation:
languages:
- tr
- ba
splits:
- name: test
num_bytes: 309455
num_examples: 700
download_size: 12862396
dataset_size: 309455
- config_name: tr-en
features:
- name: translation
dtype:
translation:
languages:
- tr
- en
splits:
- name: test
num_bytes: 210144
num_examples: 700
download_size: 12862396
dataset_size: 210144
- config_name: tr-kaa
features:
- name: translation
dtype:
translation:
languages:
- tr
- kaa
splits:
- name: test
num_bytes: 132055
num_examples: 300
download_size: 12862396
dataset_size: 132055
- config_name: tr-kk
features:
- name: translation
dtype:
translation:
languages:
- tr
- kk
splits:
- name: test
num_bytes: 204442
num_examples: 500
download_size: 12862396
dataset_size: 204442
- config_name: tr-ky
features:
- name: translation
dtype:
translation:
languages:
- tr
- ky
splits:
- name: test
num_bytes: 168026
num_examples: 400
download_size: 12862396
dataset_size: 168026
- config_name: tr-ru
features:
- name: translation
dtype:
translation:
languages:
- tr
- ru
splits:
- name: test
num_bytes: 304586
num_examples: 700
download_size: 12862396
dataset_size: 304586
- config_name: tr-sah
features:
- name: translation
dtype:
translation:
languages:
- tr
- sah
splits:
- name: test
num_bytes: 142182
num_examples: 300
download_size: 12862396
dataset_size: 142182
- config_name: tr-uz
features:
- name: translation
dtype:
translation:
languages:
- tr
- uz
splits:
- name: test
num_bytes: 194761
num_examples: 600
download_size: 12862396
dataset_size: 194761
- config_name: uz-az
features:
- name: translation
dtype:
translation:
languages:
- uz
- az
splits:
- name: test
num_bytes: 194231
num_examples: 600
download_size: 12862396
dataset_size: 194231
- config_name: uz-ba
features:
- name: translation
dtype:
translation:
languages:
- uz
- ba
splits:
- name: test
num_bytes: 410874
num_examples: 900
download_size: 12862396
dataset_size: 410874
- config_name: uz-en
features:
- name: translation
dtype:
translation:
languages:
- uz
- en
splits:
- name: test
num_bytes: 278971
num_examples: 900
download_size: 12862396
dataset_size: 278971
- config_name: uz-kaa
features:
- name: translation
dtype:
translation:
languages:
- uz
- kaa
splits:
- name: test
num_bytes: 132789
num_examples: 300
download_size: 12862396
dataset_size: 132789
- config_name: uz-kk
features:
- name: translation
dtype:
translation:
languages:
- uz
- kk
splits:
- name: test
num_bytes: 290325
num_examples: 700
download_size: 12862396
dataset_size: 290325
- config_name: uz-ky
features:
- name: translation
dtype:
translation:
languages:
- uz
- ky
splits:
- name: test
num_bytes: 209619
num_examples: 500
download_size: 12862396
dataset_size: 209619
- config_name: uz-ru
features:
- name: translation
dtype:
translation:
languages:
- uz
- ru
splits:
- name: test
num_bytes: 403551
num_examples: 900
download_size: 12862396
dataset_size: 403551
- config_name: uz-sah
features:
- name: translation
dtype:
translation:
languages:
- uz
- sah
splits:
- name: test
num_bytes: 142916
num_examples: 300
download_size: 12862396
dataset_size: 142916
- config_name: uz-tr
features:
- name: translation
dtype:
translation:
languages:
- uz
- tr
splits:
- name: test
num_bytes: 194761
num_examples: 600
download_size: 12862396
dataset_size: 194761
---
# Dataset Card for turkic_xwmt
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**[Github](https://github.com/turkic-interlingua/til-mt/tree/master/xwmt)
- **Paper:** [https://arxiv.org/abs/2109.04593](https://arxiv.org/abs/2109.04593)
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** [turkicinterlingua@gmail.com](mailto:turkicinterlingua@gmail.com)
### Dataset Summary
To establish a comprehensive and challenging evaluation benchmark for Machine Translation in Turkic languages, we translate a test set originally introduced in WMT 2020 News Translation Task for English-Russian. The original dataset is profesionally translated and consists of sentences from news articles that are both English and Russian-centric. We adopt this evaluation set (X-WMT) and begin efforts to translate it into several Turkic languages. The current version of X-WMT includes covers 8 Turkic languages and 88 language directions with a minimum of 300 sentences per language direction.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Currently covered languages are (besides English and Russian):
- Azerbaijani (az)
- Bashkir (ba)
- Karakalpak (kaa)
- Kazakh (kk)
- Kirghiz (ky)
- Turkish (tr)
- Sakha (sah)
- Uzbek (uz)
## Dataset Structure
### Data Instances
A random example from the Russian-Uzbek set:
```
{"translation": {'ru': 'Моника Мутсвангва , министр информации Зимбабве , утверждает , что полиция вмешалась в отъезд Магомбейи из соображений безопасности и вследствие состояния его здоровья .', 'uz': 'Zimbabvening Axborot vaziri , Monika Mutsvanva Magombeyining xavfsizligi va sog'ligi tufayli bo'lgan jo'nab ketishinida politsiya aralashuvini ushlab turadi .'}}
```
### Data Fields
Each example has one field "translation" that contains two subfields: one per language, e.g. for the Russian-Uzbek set:
- **translation**: a dictionary with two subfields:
- **ru**: the russian text
- **uz**: the uzbek text
### Data Splits
<details>
<summary>Click here to show the number of examples per configuration:</summary>
| | test |
|:--------|-------:|
| az-ba | 600 |
| az-en | 600 |
| az-kaa | 300 |
| az-kk | 500 |
| az-ky | 500 |
| az-ru | 600 |
| az-sah | 300 |
| az-tr | 500 |
| az-uz | 600 |
| ba-az | 600 |
| ba-en | 1000 |
| ba-kaa | 300 |
| ba-kk | 700 |
| ba-ky | 500 |
| ba-ru | 1000 |
| ba-sah | 300 |
| ba-tr | 700 |
| ba-uz | 900 |
| en-az | 600 |
| en-ba | 1000 |
| en-kaa | 300 |
| en-kk | 700 |
| en-ky | 500 |
| en-ru | 1000 |
| en-sah | 300 |
| en-tr | 700 |
| en-uz | 900 |
| kaa-az | 300 |
| kaa-ba | 300 |
| kaa-en | 300 |
| kaa-kk | 300 |
| kaa-ky | 300 |
| kaa-ru | 300 |
| kaa-sah | 300 |
| kaa-tr | 300 |
| kaa-uz | 300 |
| kk-az | 500 |
| kk-ba | 700 |
| kk-en | 700 |
| kk-kaa | 300 |
| kk-ky | 500 |
| kk-ru | 700 |
| kk-sah | 300 |
| kk-tr | 500 |
| kk-uz | 700 |
| ky-az | 500 |
| ky-ba | 500 |
| ky-en | 500 |
| ky-kaa | 300 |
| ky-kk | 500 |
| ky-ru | 500 |
| ky-sah | 300 |
| ky-tr | 400 |
| ky-uz | 500 |
| ru-az | 600 |
| ru-ba | 1000 |
| ru-en | 1000 |
| ru-kaa | 300 |
| ru-kk | 700 |
| ru-ky | 500 |
| ru-sah | 300 |
| ru-tr | 700 |
| ru-uz | 900 |
| sah-az | 300 |
| sah-ba | 300 |
| sah-en | 300 |
| sah-kaa | 300 |
| sah-kk | 300 |
| sah-ky | 300 |
| sah-ru | 300 |
| sah-tr | 300 |
| sah-uz | 300 |
| tr-az | 500 |
| tr-ba | 700 |
| tr-en | 700 |
| tr-kaa | 300 |
| tr-kk | 500 |
| tr-ky | 400 |
| tr-ru | 700 |
| tr-sah | 300 |
| tr-uz | 600 |
| uz-az | 600 |
| uz-ba | 900 |
| uz-en | 900 |
| uz-kaa | 300 |
| uz-kk | 700 |
| uz-ky | 500 |
| uz-ru | 900 |
| uz-sah | 300 |
| uz-tr | 600 |
</details>
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
**Translators, annotators and dataset contributors** (in alphabetical order)
Abilxayr Zholdybai
Aigiz Kunafin
Akylbek Khamitov
Alperen Cantez
Aydos Muxammadiyarov
Doniyorbek Rafikjonov
Erkinbek Vokhabov
Ipek Baris
Iskander Shakirov
Madina Zokirjonova
Mohiyaxon Uzoqova
Mukhammadbektosh Khaydarov
Nurlan Maharramli
Petr Popov
Rasul Karimov
Sariya Kagarmanova
Ziyodabonu Qobiljon qizi
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[MIT License](https://github.com/turkic-interlingua/til-mt/blob/master/xwmt/LICENSE)
### Citation Information
```
@inproceedings{mirzakhalov2021large,
title={A Large-Scale Study of Machine Translation in Turkic Languages},
author={Mirzakhalov, Jamshidbek and Babu, Anoop and Ataman, Duygu and Kariev, Sherzod and Tyers, Francis and Abduraufov, Otabek and Hajili, Mammad and Ivanova, Sardana and Khaytbaev, Abror and Laverghetta Jr, Antonio and others},
booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
pages={5876--5890},
year={2021}
}
```
### Contributions
This project was carried out with the help and contributions from dozens of individuals and organizations. We acknowledge and greatly appreciate each and every one of them:
**Authors on the publications** (in alphabetical order)
Abror Khaytbaev
Ahsan Wahab
Aigiz Kunafin
Anoop Babu
Antonio Laverghetta Jr.
Behzodbek Moydinboyev
Dr. Duygu Ataman
Esra Onal
Dr. Francis Tyers
Jamshidbek Mirzakhalov
Dr. John Licato
Dr. Julia Kreutzer
Mammad Hajili
Mokhiyakhon Uzokova
Dr. Orhan Firat
Otabek Abduraufov
Sardana Ivanova
Shaxnoza Pulatova
Sherzod Kariev
Dr. Sriram Chellappan
**Translators, annotators and dataset contributors** (in alphabetical order)
Abilxayr Zholdybai
Aigiz Kunafin
Akylbek Khamitov
Alperen Cantez
Aydos Muxammadiyarov
Doniyorbek Rafikjonov
Erkinbek Vokhabov
Ipek Baris
Iskander Shakirov
Madina Zokirjonova
Mohiyaxon Uzoqova
Mukhammadbektosh Khaydarov
Nurlan Maharramli
Petr Popov
Rasul Karimov
Sariya Kagarmanova
Ziyodabonu Qobiljon qizi
**Industry supporters**
[Google Cloud](https://cloud.google.com/solutions/education)
[Khan Academy Oʻzbek](https://uz.khanacademy.org/)
[The Foundation for the Preservation and Development of the Bashkir Language](https://bsfond.ru/)
Thanks to [@mirzakhalov](https://github.com/mirzakhalov) for adding this dataset. |
turkish_movie_sentiment | ---
annotations_creators:
- found
language_creators:
- found
language:
- tr
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
- sentiment-scoring
paperswithcode_id: null
pretty_name: 'TurkishMovieSentiment: This dataset contains turkish movie reviews.'
dataset_info:
features:
- name: point
dtype: float32
- name: comment
dtype: string
- name: film_name
dtype: string
config_name: turkishmoviesentiment
splits:
- name: train
num_bytes: 33954560
num_examples: 83227
download_size: 0
dataset_size: 33954560
---
# Dataset Card for TurkishMovieSentiment: This dataset contains turkish movie reviews.
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://www.kaggle.com/mustfkeskin/turkish-movie-sentiment-analysis-dataset/tasks](https://www.kaggle.com/mustfkeskin/turkish-movie-sentiment-analysis-dataset/tasks)
- **Point of Contact:** [Mustafa Keskin](https://www.linkedin.com/in/mustfkeskin/)
### Dataset Summary
This data set is a dataset from kaggle consisting of Turkish movie reviews and scored between 0-5.
### Languages
The dataset is based on Turkish.
## Dataset Structure
### Data Instances
**Example 1:**
**Comment:** Jean Reno denince zaten leon filmi gelir akla izlemeyen kalmamıştır ama kaldıysada ee ne duruyorsun hemen izle :),
**Film_name:** Sevginin Gücü,
**Point:** 5,0
**Example 2:**
**Comment:** Bence güzel bi film olmush.İzlenmeli.İnsana şükretmek gerektini hatırlatıyor.Ama cok da poh pohlanacak bi sey yapmamıslar,
**Film_name:** Cinderella Man,
**Point:** 2,5
### Data Fields
- **comment**(string) : Contatins turkish movie review
- **film_name**(string) : Film name in Turkish.
- **point**(float) : [0-5] floating point
### Data Splits
It is not divided into Train set and Test set.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
The dataset does not contain any additional annotations.
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Discussion of Social Impact and Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset was created by [Mustafa Keskin](https://www.linkedin.com/in/mustfkeskin/).
### Licensing Information
The data is under the [CC0: Public Domain](https://creativecommons.org/publicdomain/zero/1.0/)
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@yavuzKomecoglu](https://github.com/yavuzKomecoglu) for adding this dataset. |
turkish_ner | ---
annotations_creators:
- machine-generated
language_creators:
- expert-generated
language:
- tr
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: TurkishNer
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: domain
dtype:
class_label:
names:
'0': architecture
'1': basketball
'2': book
'3': business
'4': education
'5': fictional_universe
'6': film
'7': food
'8': geography
'9': government
'10': law
'11': location
'12': military
'13': music
'14': opera
'15': organization
'16': people
'17': religion
'18': royalty
'19': soccer
'20': sports
'21': theater
'22': time
'23': travel
'24': tv
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PERSON
'2': I-PERSON
'3': B-ORGANIZATION
'4': I-ORGANIZATION
'5': B-LOCATION
'6': I-LOCATION
'7': B-MISC
'8': I-MISC
splits:
- name: train
num_bytes: 177658278
num_examples: 532629
download_size: 204393976
dataset_size: 177658278
---
# Dataset Card for turkish_ner
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://arxiv.org/abs/1702.02363
- **Repository:** [Needs More Information]
- **Paper:** http://arxiv.org/abs/1702.02363
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** erayyildiz@ktu.edu.tr
### Dataset Summary
Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Turkish
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
There's only the training set.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
H. Bahadir Sahin, Caglar Tirkaz, Eray Yildiz, Mustafa Tolga Eren and Omer Ozan Sonmez
### Licensing Information
Creative Commons Attribution 4.0 International
### Citation Information
@InProceedings@article{DBLP:journals/corr/SahinTYES17,
author = {H. Bahadir Sahin and
Caglar Tirkaz and
Eray Yildiz and
Mustafa Tolga Eren and
Omer Ozan Sonmez},
title = {Automatically Annotated Turkish Corpus for Named Entity Recognition
and Text Categorization using Large-Scale Gazetteers},
journal = {CoRR},
volume = {abs/1702.02363},
year = {2017},
url = {http://arxiv.org/abs/1702.02363},
archivePrefix = {arXiv},
eprint = {1702.02363},
timestamp = {Mon, 13 Aug 2018 16:46:36 +0200},
biburl = {https://dblp.org/rec/journals/corr/SahinTYES17.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
### Contributions
Thanks to [@merveenoyan](https://github.com/merveenoyan) for adding this dataset. |
turkish_product_reviews | ---
annotations_creators:
- found
language_creators:
- found
language:
- tr
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: Turkish Product Reviews
dataset_info:
features:
- name: sentence
dtype: string
- name: sentiment
dtype:
class_label:
names:
'0': negative
'1': positive
splits:
- name: train
num_bytes: 43369710
num_examples: 235165
download_size: 13184332
dataset_size: 43369710
---
# Dataset Card for Turkish Product Reviews
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [turkish-text-data](https://github.com/fthbrmnby/turkish-text-data)
- **Point of Contact:** [Fatih Barmanbay](https://github.com/fthbrmnby)
### Dataset Summary
This Turkish Product Reviews Dataset contains 235.165 product reviews collected online. There are 220.284 positive, 14881 negative reviews.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is based on Turkish.
## Dataset Structure
### Data Instances
**Example 1:**
**sentence:** beklentimin altında bir ürün kaliteli değil
**sentiment:** 0 (negative)
**Example 2:**
**sentence:** fiyat ve performans olarak gayet iyi
**sentiment:** 1 (positive)
### Data Fields
- **sentence**(string) : Contatins turkish product review
- **sentiment**(int) : 0 (negative) or 1 (positive)
### Data Splits
It is not divided into Train set and Test set.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
The dataset does not contain any additional annotations.
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset was created by [Fatih Barmanbay](https://github.com/fthbrmnby).
### Licensing Information
The data is under the [CC-BY-SA-4.0 License](https://github.com/fthbrmnby/turkish-text-data/blob/master/LICENCE)
### Citation Information
No citation available for this dataset.
### Contributions
Thanks to [@basakbuluz](https://github.com/basakbuluz) for adding this dataset. |
turkish_shrinked_ner | ---
annotations_creators:
- machine-generated
language_creators:
- expert-generated
language:
- tr
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- extended|other-turkish_ner
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: TurkishShrinkedNer
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-academic
'2': I-academic
'3': B-academic_person
'4': I-academic_person
'5': B-aircraft
'6': I-aircraft
'7': B-album_person
'8': I-album_person
'9': B-anatomy
'10': I-anatomy
'11': B-animal
'12': I-animal
'13': B-architect_person
'14': I-architect_person
'15': B-capital
'16': I-capital
'17': B-chemical
'18': I-chemical
'19': B-clothes
'20': I-clothes
'21': B-country
'22': I-country
'23': B-culture
'24': I-culture
'25': B-currency
'26': I-currency
'27': B-date
'28': I-date
'29': B-food
'30': I-food
'31': B-genre
'32': I-genre
'33': B-government
'34': I-government
'35': B-government_person
'36': I-government_person
'37': B-language
'38': I-language
'39': B-location
'40': I-location
'41': B-material
'42': I-material
'43': B-measure
'44': I-measure
'45': B-medical
'46': I-medical
'47': B-military
'48': I-military
'49': B-military_person
'50': I-military_person
'51': B-nation
'52': I-nation
'53': B-newspaper
'54': I-newspaper
'55': B-organization
'56': I-organization
'57': B-organization_person
'58': I-organization_person
'59': B-person
'60': I-person
'61': B-production_art_music
'62': I-production_art_music
'63': B-production_art_music_person
'64': I-production_art_music_person
'65': B-quantity
'66': I-quantity
'67': B-religion
'68': I-religion
'69': B-science
'70': I-science
'71': B-shape
'72': I-shape
'73': B-ship
'74': I-ship
'75': B-software
'76': I-software
'77': B-space
'78': I-space
'79': B-space_person
'80': I-space_person
'81': B-sport
'82': I-sport
'83': B-sport_name
'84': I-sport_name
'85': B-sport_person
'86': I-sport_person
'87': B-structure
'88': I-structure
'89': B-subject
'90': I-subject
'91': B-tech
'92': I-tech
'93': B-train
'94': I-train
'95': B-vehicle
'96': I-vehicle
splits:
- name: train
num_bytes: 200728389
num_examples: 614515
download_size: 0
dataset_size: 200728389
---
# Dataset Card for turkish_shrinked_ner
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar
- **Repository:** [Needs More Information]
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** https://www.kaggle.com/behcetsenturk
### Dataset Summary
Shrinked processed version (48 entity type) of the turkish_ner.
Original turkish_ner dataset: Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains.
Shrinked entity types are: academic, academic_person, aircraft, album_person, anatomy, animal, architect_person, capital, chemical, clothes, country, culture, currency, date, food, genre, government, government_person, language, location, material, measure, medical, military, military_person, nation, newspaper, organization, organization_person, person, production_art_music, production_art_music_person, quantity, religion, science, shape, ship, software, space, space_person, sport, sport_name, sport_person, structure, subject, tech, train, vehicle
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Turkish
## Dataset Structure
### Data Instances
[Needs More Information]
### Data Fields
[Needs More Information]
### Data Splits
There's only the training set.
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
Behcet Senturk
### Licensing Information
Creative Commons Attribution 4.0 International
### Citation Information
[Needs More Information]
### Contributions
Thanks to [@bhctsntrk](https://github.com/bhctsntrk) for adding this dataset. |
turku_ner_corpus | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- fi
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: Turku NER corpus
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-DATE
'1': B-EVENT
'2': B-LOC
'3': B-ORG
'4': B-PER
'5': B-PRO
'6': I-DATE
'7': I-EVENT
'8': I-LOC
'9': I-ORG
'10': I-PER
'11': I-PRO
'12': O
splits:
- name: train
num_bytes: 3257447
num_examples: 12217
- name: validation
num_bytes: 364223
num_examples: 1364
- name: test
num_bytes: 416644
num_examples: 1555
download_size: 1659911
dataset_size: 4038314
---
# Dataset Card for Turku NER corpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://turkunlp.org/fin-ner.html
- **Repository:** https://github.com/TurkuNLP/turku-ner-corpus/
- **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.567/
- **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
- **Point of Contact:** {jouni.a.luoma,mhtoin,maria.h.pyykonen,mavela,sampo.pyysalo}@utu.f
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
tweet_eval | ---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- extended|other-tweet-datasets
task_categories:
- text-classification
task_ids:
- intent-classification
- multi-class-classification
- sentiment-classification
paperswithcode_id: tweeteval
pretty_name: TweetEval
configs:
- emoji
- emotion
- hate
- irony
- offensive
- sentiment
- stance_abortion
- stance_atheism
- stance_climate
- stance_feminist
- stance_hillary
dataset_info:
- config_name: emoji
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': ❤
'1': 😍
'2': 😂
'3': 💕
'4': 🔥
'5': 😊
'6': 😎
'7': ✨
'8': 💙
'9': 😘
'10': 📷
'11': 🇺🇸
'12': ☀
'13': 💜
'14': 😉
'15': 💯
'16': 😁
'17': 🎄
'18': 📸
'19': 😜
splits:
- name: train
num_bytes: 3803187
num_examples: 45000
- name: test
num_bytes: 4255921
num_examples: 50000
- name: validation
num_bytes: 396083
num_examples: 5000
download_size: 7628721
dataset_size: 8455191
- config_name: emotion
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': anger
'1': joy
'2': optimism
'3': sadness
splits:
- name: train
num_bytes: 338875
num_examples: 3257
- name: test
num_bytes: 146649
num_examples: 1421
- name: validation
num_bytes: 38277
num_examples: 374
download_size: 483813
dataset_size: 523801
- config_name: hate
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': non-hate
'1': hate
splits:
- name: train
num_bytes: 1223654
num_examples: 9000
- name: test
num_bytes: 428938
num_examples: 2970
- name: validation
num_bytes: 154148
num_examples: 1000
download_size: 1703208
dataset_size: 1806740
- config_name: irony
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': non_irony
'1': irony
splits:
- name: train
num_bytes: 259191
num_examples: 2862
- name: test
num_bytes: 75901
num_examples: 784
- name: validation
num_bytes: 86021
num_examples: 955
download_size: 385613
dataset_size: 421113
- config_name: offensive
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': non-offensive
'1': offensive
splits:
- name: train
num_bytes: 1648069
num_examples: 11916
- name: test
num_bytes: 135477
num_examples: 860
- name: validation
num_bytes: 192421
num_examples: 1324
download_size: 1863383
dataset_size: 1975967
- config_name: sentiment
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative
'1': neutral
'2': positive
splits:
- name: train
num_bytes: 5425142
num_examples: 45615
- name: test
num_bytes: 1279548
num_examples: 12284
- name: validation
num_bytes: 239088
num_examples: 2000
download_size: 6465841
dataset_size: 6943778
- config_name: stance_abortion
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': none
'1': against
'2': favor
splits:
- name: train
num_bytes: 68698
num_examples: 587
- name: test
num_bytes: 33175
num_examples: 280
- name: validation
num_bytes: 7661
num_examples: 66
download_size: 102062
dataset_size: 109534
- config_name: stance_atheism
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': none
'1': against
'2': favor
splits:
- name: train
num_bytes: 54779
num_examples: 461
- name: test
num_bytes: 25720
num_examples: 220
- name: validation
num_bytes: 6324
num_examples: 52
download_size: 80947
dataset_size: 86823
- config_name: stance_climate
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': none
'1': against
'2': favor
splits:
- name: train
num_bytes: 40253
num_examples: 355
- name: test
num_bytes: 19929
num_examples: 169
- name: validation
num_bytes: 4805
num_examples: 40
download_size: 60463
dataset_size: 64987
- config_name: stance_feminist
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': none
'1': against
'2': favor
splits:
- name: train
num_bytes: 70513
num_examples: 597
- name: test
num_bytes: 33309
num_examples: 285
- name: validation
num_bytes: 8039
num_examples: 67
download_size: 104257
dataset_size: 111861
- config_name: stance_hillary
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': none
'1': against
'2': favor
splits:
- name: train
num_bytes: 69600
num_examples: 620
- name: test
num_bytes: 34491
num_examples: 295
- name: validation
num_bytes: 7536
num_examples: 69
download_size: 103745
dataset_size: 111627
train-eval-index:
- config: emotion
task: text-classification
task_id: multi_class_classification
splits:
train_split: train
eval_split: test
col_mapping:
text: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
- config: hate
task: text-classification
task_id: binary_classification
splits:
train_split: train
eval_split: test
col_mapping:
text: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 binary
args:
average: binary
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
- config: irony
task: text-classification
task_id: binary_classification
splits:
train_split: train
eval_split: test
col_mapping:
text: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 binary
args:
average: binary
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
- config: offensive
task: text-classification
task_id: binary_classification
splits:
train_split: train
eval_split: test
col_mapping:
text: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 binary
args:
average: binary
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
- config: sentiment
task: text-classification
task_id: multi_class_classification
splits:
train_split: train
eval_split: test
col_mapping:
text: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
# Dataset Card for tweet_eval
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** [GitHub](https://github.com/cardiffnlp/tweeteval)
- **Paper:** [EMNLP Paper](https://arxiv.org/pdf/2010.12421.pdf)
- **Leaderboard:** [GitHub Leaderboard](https://github.com/cardiffnlp/tweeteval)
- **Point of Contact:** [Needs More Information]
### Dataset Summary
TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. The tasks include - irony, hate, offensive, stance, emoji, emotion, and sentiment. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.
### Supported Tasks and Leaderboards
- `text_classification`: The dataset can be trained using a SentenceClassification model from HuggingFace transformers.
### Languages
The text in the dataset is in English, as spoken by Twitter users.
## Dataset Structure
### Data Instances
An instance from `emoji` config:
```
{'label': 12, 'text': 'Sunday afternoon walking through Venice in the sun with @user ️ ️ ️ @ Abbot Kinney, Venice'}
```
An instance from `emotion` config:
```
{'label': 2, 'text': "“Worry is a down payment on a problem you may never have'. \xa0Joyce Meyer. #motivation #leadership #worry"}
```
An instance from `hate` config:
```
{'label': 0, 'text': '@user nice new signage. Are you not concerned by Beatlemania -style hysterical crowds crongregating on you…'}
```
An instance from `irony` config:
```
{'label': 1, 'text': 'seeing ppl walking w/ crutches makes me really excited for the next 3 weeks of my life'}
```
An instance from `offensive` config:
```
{'label': 0, 'text': '@user Bono... who cares. Soon people will understand that they gain nothing from following a phony celebrity. Become a Leader of your people instead or help and support your fellow countrymen.'}
```
An instance from `sentiment` config:
```
{'label': 2, 'text': '"QT @user In the original draft of the 7th book, Remus Lupin survived the Battle of Hogwarts. #HappyBirthdayRemusLupin"'}
```
An instance from `stance_abortion` config:
```
{'label': 1, 'text': 'we remind ourselves that love means to be willing to give until it hurts - Mother Teresa'}
```
An instance from `stance_atheism` config:
```
{'label': 1, 'text': '@user Bless Almighty God, Almighty Holy Spirit and the Messiah. #SemST'}
```
An instance from `stance_climate` config:
```
{'label': 0, 'text': 'Why Is The Pope Upset? via @user #UnzippedTruth #PopeFrancis #SemST'}
```
An instance from `stance_feminist` config:
```
{'label': 1, 'text': "@user @user is the UK's answer to @user and @user #GamerGate #SemST"}
```
An instance from `stance_hillary` config:
```
{'label': 1, 'text': "If a man demanded staff to get him an ice tea he'd be called a sexists elitist pig.. Oink oink #Hillary #SemST"}
```
### Data Fields
For `emoji` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: ❤
`1`: 😍
`2`: 😂
`3`: 💕
`4`: 🔥
`5`: 😊
`6`: 😎
`7`: ✨
`8`: 💙
`9`: 😘
`10`: 📷
`11`: 🇺🇸
`12`: ☀
`13`: 💜
`14`: 😉
`15`: 💯
`16`: 😁
`17`: 🎄
`18`: 📸
`19`: 😜
For `emotion` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: anger
`1`: joy
`2`: optimism
`3`: sadness
For `hate` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: non-hate
`1`: hate
For `irony` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: non_irony
`1`: irony
For `offensive` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: non-offensive
`1`: offensive
For `sentiment` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: negative
`1`: neutral
`2`: positive
For `stance_abortion` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: none
`1`: against
`2`: favor
For `stance_atheism` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: none
`1`: against
`2`: favor
For `stance_climate` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: none
`1`: against
`2`: favor
For `stance_feminist` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: none
`1`: against
`2`: favor
For `stance_hillary` config:
- `text`: a `string` feature containing the tweet.
- `label`: an `int` classification label with the following mapping:
`0`: none
`1`: against
`2`: favor
### Data Splits
| name | train | validation | test |
| --------------- | ----- | ---------- | ----- |
| emoji | 45000 | 5000 | 50000 |
| emotion | 3257 | 374 | 1421 |
| hate | 9000 | 1000 | 2970 |
| irony | 2862 | 955 | 784 |
| offensive | 11916 | 1324 | 860 |
| sentiment | 45615 | 2000 | 12284 |
| stance_abortion | 587 | 66 | 280 |
| stance_atheism | 461 | 52 | 220 |
| stance_climate | 355 | 40 | 169 |
| stance_feminist | 597 | 67 | 285 |
| stance_hillary | 620 | 69 | 295 |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
Francesco Barbieri, Jose Camacho-Collados, Luis Espiinosa-Anke and Leonardo Neves through Cardiff NLP.
### Licensing Information
This is not a single dataset, therefore each subset has its own license (the collection itself does not have additional restrictions).
All of the datasets require complying with Twitter [Terms Of Service](https://twitter.com/tos) and Twitter API [Terms Of Service](https://developer.twitter.com/en/developer-terms/agreement-and-policy)
Additionally the license are:
- emoji: Undefined
- emotion(EmoInt): Undefined
- hate (HateEval): Need permission [here](http://hatespeech.di.unito.it/hateval.html)
- irony: Undefined
- Offensive: Undefined
- Sentiment: [Creative Commons Attribution 3.0 Unported License](https://groups.google.com/g/semevaltweet/c/k5DDcvVb_Vo/m/zEOdECFyBQAJ)
- Stance: Undefined
### Citation Information
```
@inproceedings{barbieri2020tweeteval,
title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},
author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},
booktitle={Proceedings of Findings of EMNLP},
year={2020}
}
```
If you use any of the TweetEval datasets, please cite their original publications:
#### Emotion Recognition:
```
@inproceedings{mohammad2018semeval,
title={Semeval-2018 task 1: Affect in tweets},
author={Mohammad, Saif and Bravo-Marquez, Felipe and Salameh, Mohammad and Kiritchenko, Svetlana},
booktitle={Proceedings of the 12th international workshop on semantic evaluation},
pages={1--17},
year={2018}
}
```
#### Emoji Prediction:
```
@inproceedings{barbieri2018semeval,
title={Semeval 2018 task 2: Multilingual emoji prediction},
author={Barbieri, Francesco and Camacho-Collados, Jose and Ronzano, Francesco and Espinosa-Anke, Luis and
Ballesteros, Miguel and Basile, Valerio and Patti, Viviana and Saggion, Horacio},
booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation},
pages={24--33},
year={2018}
}
```
#### Irony Detection:
```
@inproceedings{van2018semeval,
title={Semeval-2018 task 3: Irony detection in english tweets},
author={Van Hee, Cynthia and Lefever, Els and Hoste, V{\'e}ronique},
booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation},
pages={39--50},
year={2018}
}
```
#### Hate Speech Detection:
```
@inproceedings{basile-etal-2019-semeval,
title = "{S}em{E}val-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in {T}witter",
author = "Basile, Valerio and Bosco, Cristina and Fersini, Elisabetta and Nozza, Debora and Patti, Viviana and
Rangel Pardo, Francisco Manuel and Rosso, Paolo and Sanguinetti, Manuela",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/S19-2007",
doi = "10.18653/v1/S19-2007",
pages = "54--63"
}
```
#### Offensive Language Identification:
```
@inproceedings{zampieri2019semeval,
title={SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)},
author={Zampieri, Marcos and Malmasi, Shervin and Nakov, Preslav and Rosenthal, Sara and Farra, Noura and Kumar, Ritesh},
booktitle={Proceedings of the 13th International Workshop on Semantic Evaluation},
pages={75--86},
year={2019}
}
```
#### Sentiment Analysis:
```
@inproceedings{rosenthal2017semeval,
title={SemEval-2017 task 4: Sentiment analysis in Twitter},
author={Rosenthal, Sara and Farra, Noura and Nakov, Preslav},
booktitle={Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017)},
pages={502--518},
year={2017}
}
```
#### Stance Detection:
```
@inproceedings{mohammad2016semeval,
title={Semeval-2016 task 6: Detecting stance in tweets},
author={Mohammad, Saif and Kiritchenko, Svetlana and Sobhani, Parinaz and Zhu, Xiaodan and Cherry, Colin},
booktitle={Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)},
pages={31--41},
year={2016}
}
```
### Contributions
Thanks to [@gchhablani](https://github.com/gchhablani) and [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
tweet_qa | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: tweetqa
pretty_name: TweetQA
dataset_info:
features:
- name: Question
dtype: string
- name: Answer
sequence: string
- name: Tweet
dtype: string
- name: qid
dtype: string
splits:
- name: train
num_bytes: 2770036
num_examples: 10692
- name: test
num_bytes: 473730
num_examples: 1979
- name: validation
num_bytes: 295435
num_examples: 1086
download_size: 1573980
dataset_size: 3539201
---
# Dataset Card for TweetQA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [TweetQA homepage](https://tweetqa.github.io/)
- **Repository:**
- **Paper:** [TWEETQA: A Social Media Focused Question Answering Dataset](https://arxiv.org/abs/1907.06292)
- **Leaderboard:** [TweetQA Leaderboard](https://tweetqa.github.io/)
- **Point of Contact:** [Wenhan Xiong](xwhan@cs.ucsb.edu)
### Dataset Summary
With social media becoming increasingly popular on which lots of news and real-time events are reported, developing automated question answering systems is critical to the effectiveness of many applications that rely on real-time knowledge. While previous question answering (QA) datasets have concentrated on formal text like news and Wikipedia, the first large-scale dataset for QA over social media data is presented. To make sure the tweets are meaningful and contain interesting information, tweets used by journalists to write news articles are gathered. Then human annotators are asked to write questions and answers upon these tweets. Unlike other QA datasets like SQuAD in which the answers are extractive, the answer are allowed to be abstractive. The task requires model to read a short tweet and a question and outputs a text phrase (does not need to be in the tweet) as the answer.
### Supported Tasks and Leaderboards
- `question-answering`: The dataset can be used to train a model for Open-Domain Question Answering where the task is to answer the given questions for a tweet. The performance is measured by comparing the model answers to the the annoted groundtruth and calculating the BLEU-1/Meteor/ROUGE-L score. This task has an active leaderboard which can be found [here](https://tweetqa.github.io/) and ranks models based on [BLEU-1](https://huggingface.co/metrics/blue), [Meteor](https://huggingface.co/metrics/meteor) and [ROUGLE-L](https://huggingface.co/metrics/rouge).
### Languages
English.
## Dataset Structure
### Data Instances
Sample data:
```
{
"Question": "who is the tallest host?",
"Answer": ["sam bee","sam bee"],
"Tweet": "Don't believe @ConanOBrien's height lies. Sam Bee is the tallest host in late night. #alternativefacts\u2014 Full Frontal (@FullFrontalSamB) January 22, 2017",
"qid": "3554ee17d86b678be34c4dc2c04e334f"
}
```
The test split doesn't include answers so the Answer field is an empty list.
### Data Fields
- `Question`: a question based on information from a tweet
- `Answer`: list of possible answers from the tweet
- `Tweet`: source tweet
- `qid`: question id
### Data Splits
The dataset is split in train, validation and test set. The train set cointains 10692 examples, the validation set 1086 and the test set 1979 examples.
## Dataset Creation
### Curation Rationale
With social media becoming increasingly popular on which lots of news and real-time events are reported, developing automated question answering systems is critical to the effectiveness of many applications that rely on real-time knowledge. While previous question answering (QA) datasets have concentrated on formal text like news and Wikipedia, the first large-scale dataset for QA over social media data is presented. To make sure the tweets are meaningful and contain interesting information, tweets used by journalists to write news articles are gathered. Then human annotators are asked to write questions and answers upon these tweets. Unlike other QA datasets like SQuAD in which the answers are extractive, the answer are allowed to be abstractive. The task requires model to read a short tweet and a question and outputs a text phrase (does not need to be in the tweet) as the answer.
### Source Data
#### Initial Data Collection and Normalization
The authors look into the the archived snapshots of two major news websites (CNN, NBC), and then extract the tweet blocks that are embedded in the news articles. In order to get enough data, they first extract the URLs of all section pages (e.g. World, Politics, Money, Tech) from the snapshot of each home page and then crawl all articles with tweets from these section pages. Then, they filter out the tweets that heavily rely on attached media to convey information, for which they utilize a state-of-the-art semantic role labeling model trained on CoNLL-2005 (He et al., 2017) to analyze the predicate-argument structure of the tweets collected from news articles and keep
only the tweets with more than two labeled arguments. This filtering process also automatically
filters out most of the short tweets. For the tweets collected from CNN, 22.8% of them were filtered
via semantic role labeling. For tweets from NBC, 24.1% of the tweets were filtered.
#### Who are the source language producers?
Twitter users.
### Annotations
#### Annotation process
The Amazon Mechanical Turk workers were used to collect question-answer
pairs for the filtered tweets. For each Human Intelligence Task (HIT), the authors ask the worker to read three tweets and write two question-answer pairs for each tweet. To ensure the quality, they require the workers to be located in major English speaking countries (i.e. Canada, US, and UK) and have an acceptance rate larger than 95%. Since the authors use tweets as context, lots of important information are contained in hashtags or even emojis. Instead of only showing the text to the workers, they use javascript to directly embed the whole tweet into each HIT. This gives workers the same experience as reading tweets via web browsers and help them to better compose questions. To avoid trivial questions that can be simply answered by superficial text matching methods or too challenging questions that require background knowledge, the authors explicitly state the following items in the HIT instructions for question writing:
- No Yes-no questions should be asked.
- The question should have at least five words.
- Videos, images or inserted links should not
be considered.
- No background knowledge should be required to answer the question.
To help the workers better follow the instructions, they also include a representative example showing both good and bad questions or answers in the instructions. As for the answers, since the context they consider is relatively shorter than the context of previous datasets, they do not restrict the answers to be in the tweet, otherwise, the task may potentially be simplified as a classification problem. The workers are allowed to write their answers in their own words, but the authors require the answers to be brief and can be directly inferred from the tweets. After they retrieve the QA pairs from all HITs, they conduct further post-filtering to filter out the pairs from workers that obviously do not follow instructions. They remove QA pairs with yes/no answers. Questions with less than five words are also filtered out. This process filtered 13% of the QA pairs. The dataset now includes 10,898 articles, 17,794 tweets, and 13,757 crowdsourced question-answer pairs. All QA pairs were written by 492 individual workers.
#### Who are the annotators?
Amazon Mechanical Turk workers.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
From the paper:
> It is also worth noting that the data collected from social media can not only capture events and developments in real-time but also capture individual opinions and thus requires reasoning related to the authorship of the content as is illustrated in Table 1.
> Specifically, a significant amount of questions require certain reasoning skills that are specific to social media data:
- Understanding authorship: Since tweets are highly personal, it is critical to understand how questions/tweets related to the authors.
- Oral English & Tweet English: Tweets are often oral and informal. QA over tweets requires the understanding of common oral English. Our TWEETQA also requires understanding some tweet-specific English, like conversation-style English.
- Understanding of user IDs & hashtags: Tweets often contains user IDs and hashtags, which are single special tokens. Understanding these special tokens is important to answer person- or event-related questions.
### Other Known Limitations
[More Information Needed]
## Additional Information
The annotated answers are validated by the authors as follows:
For the purposes of human performance evaluation and inter-annotator agreement checking, the authors launch a different set of HITs to ask workers to answer questions in the test and development set. The workers are shown with the tweet blocks as well as the questions collected in the previous step. At this step, workers are allowed to label the questions as “NA” if they think the questions are not answerable. They find that 3.1% of the questions are labeled as unanswerable by the workers (for SQuAD, the ratio is 2.6%). Since the answers collected at this step and previous step are written by different workers, the answers can be written in different text forms even they are semantically equal to each other. For example, one answer can be “Hillary Clinton” while the other is “@HillaryClinton”. As it is not straightforward to automatically calculate the overall agreement, they manually check the agreement on a subset of 200 random samples from the development set and ask an independent human moderator to verify the result. It turns out that 90% of the answers pairs are semantically equivalent, 2% of them are partially equivalent (one of them is incomplete) and 8% are totally inconsistent. The answers collected at this step are also used to measure the human performance. 59 individual workers participated in this process.
### Dataset Curators
Xiong, Wenhan and Wu, Jiawei and Wang, Hong and Kulkarni, Vivek and Yu, Mo and Guo, Xiaoxiao and Chang, Shiyu and Wang, William Yang.
### Licensing Information
CC BY-SA 4.0.
### Citation Information
```
@inproceedings{xiong2019tweetqa,
title={TweetQA: A Social Media Focused Question Answering Dataset},
author={Xiong, Wenhan and Wu, Jiawei and Wang, Hong and Kulkarni, Vivek and Yu, Mo and Guo, Xiaoxiao and Chang, Shiyu and Wang, William Yang},
booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},
year={2019}
}
```
### Contributions
Thanks to [@anaerobeth](https://github.com/anaerobeth) for adding this dataset. |
tweets_ar_en_parallel | ---
annotations_creators:
- expert-generated
- no-annotation
language_creators:
- found
language:
- ar
- en
license:
- apache-2.0
multilinguality:
- translation
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: bilingual-corpus-of-arabic-english-parallel
pretty_name: Bilingual Corpus of Arabic-English Parallel Tweets
tags:
- tweets-translation
dataset_info:
- config_name: parallelTweets
features:
- name: ArabicTweetID
dtype: int64
- name: EnglishTweetID
dtype: int64
splits:
- name: test
num_bytes: 2667296
num_examples: 166706
download_size: 2937626
dataset_size: 2667296
- config_name: accountList
features:
- name: account
dtype: string
splits:
- name: test
num_bytes: 20108
num_examples: 1389
download_size: 2937626
dataset_size: 20108
- config_name: countryTopicAnnotation
features:
- name: account
dtype: string
- name: country
dtype:
class_label:
names:
'0': QA
'1': BH
'2': AE
'3': OM
'4': SA
'5': PL
'6': JO
'7': IQ
'8': Other
'9': EG
'10': KW
'11': SY
- name: topic
dtype:
class_label:
names:
'0': Gov
'1': Culture
'2': Education
'3': Sports
'4': Travel
'5': Events
'6': Business
'7': Science
'8': Politics
'9': Health
'10': Governoment
'11': Media
splits:
- name: test
num_bytes: 6036
num_examples: 200
download_size: 2937626
dataset_size: 6036
---
# Dataset Card for Bilingual Corpus of Arabic-English Parallel Tweets
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Bilingual Corpus of Arabic-English Parallel Tweets](https://alt.qcri.org/resources/bilingual_corpus_of_parallel_tweets)
- **Repository:**
- **Paper:** [Aclweb](https://www.aclweb.org/anthology/2020.bucc-1.3/)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
Twitter users often post parallel tweets—tweets that contain the same content but are written in different languages. Parallel tweets can be an important resource for developing machine translation (MT) systems among other natural language processing (NLP) tasks. This resource is a result of a generic method for collecting parallel tweets. Using the method, we compiled a bilingual corpus of English-Arabic parallel tweets and a list of Twitter accounts who post English-Arabic tweets regularly. Additionally, we annotate a subset of Twitter accounts with their countries of origin and topic of interest, which provides insights about the population who post parallel tweets.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
parallelTweets:
```
{
"ArabicTweetID": 981111245209243600,
"EnglishTweetID": 981111450432401400
}
```
accountList:
```
{
'account': 'HukoomiQatar'
}
```
countryTopicAnnotation:
```
{
'account': 'HukoomiQatar',
'country': 'QA',
'topic': 'Gov'
}
```
### Data Fields
parallelTweets:
- `ArabicTweetID` (int)
- `EnglishTweetID` (int)
accountList:
- `account` (str)
countryTopicAnnotation:
- `account` (str)
- `country` (class label): One of:
- "QA",
- "BH",
- "AE",
- "OM",
- "SA",
- "PL",
- "JO",
- "IQ",
- "Other",
- "EG",
- "KW",
- "SY"
- `topic` (class label): One of:
- "Gov",
- "Culture",
- "Education",
- "Sports",
- "Travel",
- "Events",
- "Business",
- "Science",
- "Politics",
- "Health",
- "Governoment",
- "Media",
### Data Splits
All configuration have only one split: "test".
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
It is licensed under the [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0).
### Citation Information
```
@inproceedings{Mubarak2020bilingualtweets,
title={Constructing a Bilingual Corpus of Parallel Tweets},
author={Mubarak, Hamdy and Hassan, Sabit and Abdelali, Ahmed},
booktitle={Proceedings of 13th Workshop on Building and Using Comparable Corpora (BUCC)},
address={Marseille, France},
year={2020}
}
```
[More Information Needed]
### Contributions
Thanks to [@sumanthd17](https://github.com/sumanthd17) for adding this dataset. |
tweets_hate_speech_detection | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- gpl-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: Tweets Hate Speech Detection
dataset_info:
features:
- name: label
dtype:
class_label:
names:
'0': no-hate-speech
'1': hate-speech
- name: tweet
dtype: string
splits:
- name: train
num_bytes: 3191888
num_examples: 31962
- name: test
num_bytes: 1711606
num_examples: 17197
download_size: 4738708
dataset_size: 4903494
train-eval-index:
- config: default
task: text-classification
task_id: binary_classification
splits:
train_split: train
col_mapping:
tweet: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 binary
args:
average: binary
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
# Dataset Card for Tweets Hate Speech Detection
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Home](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis)
- **Repository:** [Repo](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/train_tweet.csv)
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [Darshan Gandhi](darshangandhi1151@gmail.com)
### Dataset Summary
The objective of this task is to detect hate speech in tweets. For the sake of simplicity, we say a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets.
Formally, given a training sample of tweets and labels, where label ‘1’ denotes the tweet is racist/sexist and label ‘0’ denotes the tweet is not racist/sexist, your objective is to predict the labels on the given test dataset.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The tweets are primarily in English Language.
## Dataset Structure
### Data Instances
The dataset contains a label denoting is the tweet a hate speech or not
```
{'label': 0, # not a hate speech
'tweet': ' @user when a father is dysfunctional and is so selfish he drags his kids into his dysfunction. #run'}
```
### Data Fields
* label : 1 - it is a hate speech, 0 - not a hate speech.
* tweet: content of the tweet as a string.
### Data Splits
The data contains training data with :31962 entries
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Crowdsourced from tweets of users
#### Who are the source language producers?
Cwodsourced from twitter
### Annotations
#### Annotation process
The data has been precprocessed and a model has been trained to assign the relevant label to the tweet
#### Who are the annotators?
The data has been provided by Roshan Sharma
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
With the help of this dataset, one can understand more about the human sentiments and also analye the situations when a particular person intends to make use of hatred/racist comments
### Discussion of Biases
The data could be cleaned up further for additional purposes such as applying a better feature extraction techniques
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Roshan Sharma
### Licensing Information
[Information](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/LICENSE)
### Citation Information
[Citation](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/CONTRIBUTING.md)
### Contributions
Thanks to [@darshan-gandhi](https://github.com/darshan-gandhi) for adding this dataset. |
twi_text_c3 | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- tw
license:
- cc-by-nc-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: null
pretty_name: Twi Text C3
dataset_info:
features:
- name: text
dtype: string
config_name: plain_text
splits:
- name: train
num_bytes: 71198430
num_examples: 675772
download_size: 69170842
dataset_size: 71198430
---
# Dataset Card for Twi Text C3
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.aclweb.org/anthology/2020.lrec-1.335
- **Repository:** https://github.com/ajesujoba/YorubaTwi-Embedding/
- **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.335
- **Leaderboard:**
- **Point of Contact:** [Kwabena Amponsah-Kaakyire](mailto:s8kwampo@stud.uni-saarland.de)
### Dataset Summary
Twi Text C3 was collected from various sources from the web (Bible, JW300, wikipedia, etc)
to compare pre-trained word embeddings (Fasttext) and embeddings and embeddings trained on curated Twi Texts.
The dataset consists of clean texts (i.e the Bible) and noisy texts (with incorrect orthography and mixed dialects)
from other online sources like Wikipedia and JW300
### Supported Tasks and Leaderboards
For training word embeddings and language models on Twi texts.
### Languages
The language supported is Twi.
## Dataset Structure
### Data Instances
A data point is a sentence in each line.
{
'text': 'mfitiaseɛ no onyankopɔn bɔɔ ɔsoro ne asaase'
}
### Data Fields
- `text`: a `string` feature.
a sentence text per line
### Data Splits
Contains only the training split.
## Dataset Creation
### Curation Rationale
The data was created to help introduce resources to new language - Twi.
### Source Data
#### Initial Data Collection and Normalization
The dataset comes from various sources of the web: Bible, JW300, and wikipedia.
See Table 1 in the [paper](https://www.aclweb.org/anthology/2020.lrec-1.335/) for the summary of the dataset and statistics
#### Who are the source language producers?
[Jehovah Witness](https://www.jw.org/) (JW300)
[Twi Bible](http://www.bible.com/)
[Yorùbá Wikipedia](dumps.wikimedia.org/twwiki)
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
The dataset is biased to the religion domain (Christianity) because of the inclusion of JW300 and the Bible.
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The data sets were curated by Kwabena Amponsah-Kaakyire, Jesujoba Alabi, and David Adelani, students of Saarland University, Saarbrücken, Germany .
### Licensing Information
The data is under the [Creative Commons Attribution-NonCommercial 4.0 ](https://creativecommons.org/licenses/by-nc/4.0/legalcode)
### Citation Information
```
@inproceedings{alabi-etal-2020-massive,
title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\`u}b{\'a} and {T}wi",
author = "Alabi, Jesujoba and
Amponsah-Kaakyire, Kwabena and
Adelani, David and
Espa{\~n}a-Bonet, Cristina",
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
pages = "2754--2762",
abstract = "The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yor{\`u}b{\'a} and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yor{\`u}b{\'a} and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yor{\`u}b{\'a}. As output of the work, we provide corpora, embeddings and the test suits for both languages.",
language = "English",
ISBN = "979-10-95546-34-4",
}
```
### Contributions
Thanks to [@dadelani](https://github.com/dadelani) for adding this dataset. |
twi_wordsim353 | ---
annotations_creators:
- crowdsourced
language_creators:
- expert-generated
language:
- en
- tw
license:
- unknown
multilinguality:
- multilingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
- semantic-similarity-scoring
paperswithcode_id: null
pretty_name: Yorùbá Wordsim-353
dataset_info:
features:
- name: twi1
dtype: string
- name: twi2
dtype: string
- name: similarity
dtype: float32
splits:
- name: test
num_bytes: 7285
num_examples: 274
download_size: 6141
dataset_size: 7285
---
# Dataset Card for Yorùbá Wordsim-353
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** -https://www.aclweb.org/anthology/2020.lrec-1.335/
- **Repository:** https://github.com/ajesujoba/YorubaTwi-Embedding
- **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.335/
- **Leaderboard:** -
- **Point of Contact:** [Kwabena Amponsah-Kaakyire](mailto:s8kwampo@stud.uni-saarland.de)
### Dataset Summary
A translation of the word pair similarity dataset wordsim-353 to Twi. However, only 274 (out of 353) pairs of words were translated
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Twi (ISO 639-1: tw)
## Dataset Structure
### Data Instances
An instance consists of a pair of words as well as their similarity. The dataset contains both the original English words (from wordsim-353) as well as their translation to Twi.
### Data Fields
- `twi1`: the first word of the pair; translation to Twi
- `twi2`: the second word of the pair; translation to Twi
- `similarity`: similarity rating according to the English dataset
### Data Splits
Only the test data is available
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inproceedings{alabi-etal-2020-massive,
title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\`u}b{\'a} and {T}wi",
author = "Alabi, Jesujoba and
Amponsah-Kaakyire, Kwabena and
Adelani, David and
Espa{\~n}a-Bonet, Cristina",
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
pages = "2754--2762",
abstract = "The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yor{\`u}b{\'a} and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yor{\`u}b{\'a} and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yor{\`u}b{\'a}. As output of the work, we provide corpora, embeddings and the test suits for both languages.",
language = "English",
ISBN = "979-10-95546-34-4",
}
```
### Contributions
Thanks to [@dadelani](https://github.com/dadelani) for adding this dataset. |
tydiqa | ---
pretty_name: TyDi QA
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- ar
- bn
- en
- fi
- id
- ja
- ko
- ru
- sw
- te
- th
license:
- apache-2.0
multilinguality:
- multilingual
size_categories:
- unknown
source_datasets:
- extended|wikipedia
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: tydi-qa
dataset_info:
- config_name: primary_task
features:
- name: passage_answer_candidates
sequence:
- name: plaintext_start_byte
dtype: int32
- name: plaintext_end_byte
dtype: int32
- name: question_text
dtype: string
- name: document_title
dtype: string
- name: language
dtype: string
- name: annotations
sequence:
- name: passage_answer_candidate_index
dtype: int32
- name: minimal_answers_start_byte
dtype: int32
- name: minimal_answers_end_byte
dtype: int32
- name: yes_no_answer
dtype: string
- name: document_plaintext
dtype: string
- name: document_url
dtype: string
splits:
- name: train
num_bytes: 5550574617
num_examples: 166916
- name: validation
num_bytes: 484380443
num_examples: 18670
download_size: 1953887429
dataset_size: 6034955060
- config_name: secondary_task
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: train
num_bytes: 52948607
num_examples: 49881
- name: validation
num_bytes: 5006461
num_examples: 5077
download_size: 1953887429
dataset_size: 57955068
---
# Dataset Card for "tydiqa"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/google-research-datasets/tydiqa](https://github.com/google-research-datasets/tydiqa)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 3.91 GB
- **Size of the generated dataset:** 6.10 GB
- **Total amount of disk used:** 10.00 GB
### Dataset Summary
TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.
The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language
expresses -- such that we expect models performing well on this set to generalize across a large number of the languages
in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic
information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but
don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without
the use of translation (unlike MLQA and XQuAD).
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### primary_task
- **Size of downloaded dataset files:** 1.95 GB
- **Size of the generated dataset:** 6.04 GB
- **Total amount of disk used:** 7.99 GB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"annotations": {
"minimal_answers_end_byte": [-1, -1, -1],
"minimal_answers_start_byte": [-1, -1, -1],
"passage_answer_candidate_index": [-1, -1, -1],
"yes_no_answer": ["NONE", "NONE", "NONE"]
},
"document_plaintext": "\"\\nรองศาสตราจารย์[1] หม่อมราชวงศ์สุขุมพันธุ์ บริพัตร (22 กันยายน 2495 -) ผู้ว่าราชการกรุงเทพมหานครคนที่ 15 อดีตรองหัวหน้าพรรคปร...",
"document_title": "หม่อมราชวงศ์สุขุมพันธุ์ บริพัตร",
"document_url": "\"https://th.wikipedia.org/wiki/%E0%B8%AB%E0%B8%A1%E0%B9%88%E0%B8%AD%E0%B8%A1%E0%B8%A3%E0%B8%B2%E0%B8%8A%E0%B8%A7%E0%B8%87%E0%B8%...",
"language": "thai",
"passage_answer_candidates": "{\"plaintext_end_byte\": [494, 1779, 2931, 3904, 4506, 5588, 6383, 7122, 8224, 9375, 10473, 12563, 15134, 17765, 19863, 21902, 229...",
"question_text": "\"หม่อมราชวงศ์สุขุมพันธุ์ บริพัตร เรียนจบจากที่ไหน ?\"..."
}
```
#### secondary_task
- **Size of downloaded dataset files:** 1.95 GB
- **Size of the generated dataset:** 58.03 MB
- **Total amount of disk used:** 2.01 GB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"answers": {
"answer_start": [394],
"text": ["بطولتين"]
},
"context": "\"أقيمت البطولة 21 مرة، شارك في النهائيات 78 دولة، وعدد الفرق التي فازت بالبطولة حتى الآن 8 فرق، ويعد المنتخب البرازيلي الأكثر تت...",
"id": "arabic-2387335860751143628-1",
"question": "\"كم عدد مرات فوز الأوروغواي ببطولة كاس العالم لكرو القدم؟\"...",
"title": "قائمة نهائيات كأس العالم"
}
```
### Data Fields
The data fields are the same among all splits.
#### primary_task
- `passage_answer_candidates`: a dictionary feature containing:
- `plaintext_start_byte`: a `int32` feature.
- `plaintext_end_byte`: a `int32` feature.
- `question_text`: a `string` feature.
- `document_title`: a `string` feature.
- `language`: a `string` feature.
- `annotations`: a dictionary feature containing:
- `passage_answer_candidate_index`: a `int32` feature.
- `minimal_answers_start_byte`: a `int32` feature.
- `minimal_answers_end_byte`: a `int32` feature.
- `yes_no_answer`: a `string` feature.
- `document_plaintext`: a `string` feature.
- `document_url`: a `string` feature.
#### secondary_task
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
### Data Splits
| name | train | validation |
| -------------- | -----: | ---------: |
| primary_task | 166916 | 18670 |
| secondary_task | 49881 | 5077 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{tydiqa,
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
year = {2020},
journal = {Transactions of the Association for Computational Linguistics}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@albertvillanova](https://github.com/albertvillanova), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
ubuntu_dialogs_corpus | ---
annotations_creators:
- found
language:
- en
language_creators:
- found
license:
- unknown
multilinguality:
- monolingual
pretty_name: UDC (Ubuntu Dialogue Corpus)
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- conversational
task_ids:
- dialogue-generation
paperswithcode_id: ubuntu-dialogue-corpus
dataset_info:
- config_name: train
features:
- name: Context
dtype: string
- name: Utterance
dtype: string
- name: Label
dtype: int32
splits:
- name: train
num_bytes: 525126729
num_examples: 1000000
download_size: 0
dataset_size: 525126729
- config_name: dev_test
features:
- name: Context
dtype: string
- name: Ground Truth Utterance
dtype: string
- name: Distractor_0
dtype: string
- name: Distractor_1
dtype: string
- name: Distractor_2
dtype: string
- name: Distractor_3
dtype: string
- name: Distractor_4
dtype: string
- name: Distractor_5
dtype: string
- name: Distractor_6
dtype: string
- name: Distractor_7
dtype: string
- name: Distractor_8
dtype: string
splits:
- name: test
num_bytes: 27060502
num_examples: 18920
- name: validation
num_bytes: 27663181
num_examples: 19560
download_size: 0
dataset_size: 54723683
---
# Dataset Card for "ubuntu_dialogs_corpus"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/rkadlec/ubuntu-ranking-dataset-creator
- **Paper:** [The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems](https://arxiv.org/abs/1506.08909)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 0.00 MB
- **Size of the generated dataset:** 65.49 MB
- **Total amount of disk used:** 65.49 MB
### Dataset Summary
Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words. This provides a unique resource for research into building dialogue managers based on neural language models that can make use of large amounts of unlabeled data. The dataset has both the multi-turn property of conversations in the Dialog State Tracking Challenge datasets, and the unstructured nature of interactions from microblog services such as Twitter.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### train
- **Size of downloaded dataset files:** 0.00 MB
- **Size of the generated dataset:** 65.49 MB
- **Total amount of disk used:** 65.49 MB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
"Context": "\"i think we could import the old comment via rsync , but from there we need to go via email . i think it be easier than cach the...",
"Label": 1,
"Utterance": "basic each xfree86 upload will not forc user to upgrad 100mb of font for noth __eou__ no someth i do in my spare time . __eou__"
}
```
### Data Fields
The data fields are the same among all splits.
#### train
- `Context`: a `string` feature.
- `Utterance`: a `string` feature.
- `Label`: a `int32` feature.
### Data Splits
|name |train |
|-----|-----:|
|train|127422|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{DBLP:journals/corr/LowePSP15,
author = {Ryan Lowe and
Nissan Pow and
Iulian Serban and
Joelle Pineau},
title = {The Ubuntu Dialogue Corpus: {A} Large Dataset for Research in Unstructured
Multi-Turn Dialogue Systems},
journal = {CoRR},
volume = {abs/1506.08909},
year = {2015},
url = {http://arxiv.org/abs/1506.08909},
archivePrefix = {arXiv},
eprint = {1506.08909},
timestamp = {Mon, 13 Aug 2018 16:48:23 +0200},
biburl = {https://dblp.org/rec/journals/corr/LowePSP15.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun) for adding this dataset. |
udhr | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- aa
- ab
- ace
- acu
- ada
- ady
- af
- agr
- aii
- ajg
- als
- alt
- am
- amc
- ame
- ami
- amr
- ar
- arl
- arn
- ast
- auc
- ay
- az
- ban
- bax
- bba
- bci
- be
- bem
- bfa
- bg
- bho
- bi
- bik
- bin
- blt
- bm
- bn
- bo
- boa
- br
- bs
- buc
- bug
- bum
- ca
- cab
- cak
- cbi
- cbr
- cbs
- cbt
- cbu
- ccp
- ceb
- cfm
- ch
- chj
- chk
- chr
- cic
- cjk
- cjs
- cjy
- ckb
- cnh
- cni
- cnr
- co
- cof
- cot
- cpu
- crh
- cri
- crs
- cs
- csa
- csw
- ctd
- cy
- da
- dag
- ddn
- de
- dga
- dip
- duu
- dv
- dyo
- dyu
- dz
- ee
- el
- en
- eo
- es
- ese
- et
- eu
- eve
- evn
- fa
- fat
- fi
- fj
- fkv
- fo
- fon
- fr
- fuf
- fur
- fuv
- fvr
- fy
- ga
- gaa
- gag
- gan
- gd
- gjn
- gkp
- gl
- gld
- gn
- gsw
- gu
- guc
- guu
- gv
- gyr
- ha
- hak
- haw
- he
- hi
- hil
- hlt
- hmn
- hms
- hna
- hni
- hnj
- hns
- hr
- hsb
- hsn
- ht
- hu
- hus
- huu
- hy
- ia
- ibb
- id
- idu
- ig
- ii
- ijs
- ilo
- io
- is
- it
- iu
- ja
- jiv
- jv
- ka
- kaa
- kbd
- kbp
- kde
- kdh
- kea
- kek
- kg
- kha
- kjh
- kk
- kkh
- kl
- km
- kmb
- kn
- ko
- koi
- koo
- kqn
- kqs
- kr
- kri
- krl
- ktu
- ku
- kwi
- ky
- la
- lad
- lah
- lb
- lg
- lia
- lij
- lld
- ln
- lns
- lo
- lob
- lot
- loz
- lt
- lua
- lue
- lun
- lus
- lv
- mad
- mag
- mai
- mam
- man
- maz
- mcd
- mcf
- men
- mfq
- mg
- mh
- mi
- mic
- min
- miq
- mk
- ml
- mn
- mnw
- mor
- mos
- mr
- mt
- mto
- mxi
- mxv
- my
- mzi
- nan
- nb
- nba
- nds
- ne
- ng
- nhn
- nio
- niu
- niv
- njo
- nku
- nl
- nn
- not
- nr
- nso
- nv
- ny
- nym
- nyn
- nzi
- oaa
- oc
- ojb
- oki
- om
- orh
- os
- ote
- pa
- pam
- pap
- pau
- pbb
- pcd
- pcm
- pis
- piu
- pl
- pon
- pov
- ppl
- prq
- ps
- pt
- qu
- quc
- qug
- quh
- quy
- qva
- qvc
- qvh
- qvm
- qvn
- qwh
- qxn
- qxu
- rar
- rgn
- rm
- rmn
- rn
- ro
- ru
- rup
- rw
- sa
- sah
- sc
- sco
- se
- sey
- sg
- shk
- shn
- shp
- si
- sk
- skr
- sl
- slr
- sm
- sn
- snk
- snn
- so
- sr
- srr
- ss
- st
- su
- suk
- sus
- sv
- sw
- swb
- ta
- taj
- tbz
- tca
- tdt
- te
- tem
- tet
- tg
- th
- ti
- tiv
- tk
- tl
- tly
- tn
- to
- tob
- toi
- toj
- top
- tpi
- tr
- ts
- tsz
- tt
- tw
- ty
- tyv
- tzh
- tzm
- tzo
- udu
- ug
- uk
- umb
- und
- ur
- ura
- uz
- vai
- ve
- vec
- vep
- vi
- vmw
- wa
- war
- wo
- wuu
- wwa
- xh
- xsm
- yad
- yao
- yap
- yi
- ykg
- yo
- yrk
- yua
- yue
- za
- zam
- zdj
- zgh
- zh
- zlm
- zro
- ztu
- zu
language_bcp47:
- az-Cyrl
- az-Latn
- bs-Cyrl
- bs-Latn
- ckb-Latn
- de-1901
- de-1996
- el-monoton
- el-polyton
- fa-AF
- fuf-Adlm
- ha-NE
- ha-NG
- jv-Java
- kg-AO
- kkh-Lana
- mn-Cyrl
- pt-BR
- pt-PT
- rm-puter
- rm-rumgr
- rm-surmiran
- rm-sursilv
- rm-sutsilv
- rm-vallader
- sa-Gran
- sr-Cyrl
- sr-Latn
- ta-LK
- tk-Cyrl
- tk-Latn
- tw-akuapem
- tw-asante
- ug-Arab
- ug-Latn
- uz-Cyrl
- uz-Latn
- vi-Hani
- zh-Hant
- zlm-Arab
- zlm-Latn
license:
- unknown
multilinguality:
- multilingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: The Universal Declaration of Human Rights (UDHR)
dataset_info:
features:
- name: text
dtype: string
- name: lang_key
dtype: string
- name: lang_name
dtype: string
- name: iso639-3
dtype: string
- name: iso15924
dtype: string
- name: bcp47
dtype: string
splits:
- name: train
num_bytes: 6753383
num_examples: 488
download_size: 2389690
dataset_size: 6753383
---
# Dataset Card for The Universal Declaration of Human Rights (UDHR)
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.ohchr.org/en/universal-declaration-of-human-rights, https://unicode.org/udhr/index.html
- **Repository:** https://github.com/unicode-org/udhr
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The Universal Declaration of Human Rights (UDHR) is a milestone document in the history of human rights. Drafted by
representatives with different legal and cultural backgrounds from all regions of the world, it set out, for the
first time, fundamental human rights to be universally protected. The Declaration was adopted by the UN General
Assembly in Paris on 10 December 1948 during its 183rd plenary meeting.
© 1996 – 2009 The Office of the High Commissioner for Human Rights
This plain text version prepared by the "UDHR in Unicode" project, https://www.unicode.org/udhr.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset includes translations of the document in over 400 languages and dialects. The list of languages can be found
[here](https://unicode.org/udhr/translations.html).
## Dataset Structure
### Data Instances
Each instance corresponds to a different language and includes information about the language and the full document
text.
### Data Fields
- `text`: The full document text with each line of text delimited by a newline (`\n`).
- `lang_key`: The unique identifier of a given translation.
- `lang_name`: The textual description of language/dialect.
- `iso639-3`: The [iso639-3](https://iso639-3.sil.org/) language identifier.
- `iso15924`: The [iso15924](https://unicode.org/iso15924/iso15924-codes.html) language identifier.
- `bcp47`: The [BCP 47](https://www.rfc-editor.org/info/bcp47) language identifier.
### Data Splits
Only a `train` split included which includes the full document in all languages.
| | train |
|--------------------|------:|
| Number of examples | 488 |
## Dataset Creation
### Curation Rationale
In addition to its social significance, the document set a world record in 1999 for being the most translated
document in the world and as such can be useful for settings requiring paired text between many languages.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
In addition to the social and political significance of the United Nations' Universal Declaration of Human Rights,
the document set a world record in 1999 for being the most translated document in the world and as such can be useful
for settings requiring paired text between many languages including those that are low resource and significantly
underrepresented in NLP research.
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Although the document is translated into a very large number of languages, the text is very short and therefore may
have limited usefulness for most types of modeling and evaluation.
## Additional Information
### Dataset Curators
The txt/xml data files used here were compiled by The Unicode Consortium, which can be found
[here](https://unicode.org/udhr/index.html). The original texts can be found on the
[United Nations website](https://www.ohchr.org/EN/UDHR/Pages/UDHRIndex.aspx).
### Licensing Information
Source text © 1996 – 2022 The Office of the High Commissioner for Human Rights
The [Unicode license](https://www.unicode.org/license.txt) applies to these translations.
### Citation Information
United Nations. (1998). The Universal Declaration of Human Rights, 1948-1998. New York: United Nations Dept. of Public Information.
### Contributions
Thanks to [@joeddav](https://github.com/joeddav) for adding this dataset. Updated May 2022 [@leondz](https://github.com/leondz). |
um005 | ---
annotations_creators:
- no-annotation
language_creators:
- other
language:
- en
- ur
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: umc005-english-urdu
pretty_name: UMC005 English-Urdu
dataset_info:
- config_name: bible
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ur
- en
splits:
- name: train
num_bytes: 2350730
num_examples: 7400
- name: validation
num_bytes: 113476
num_examples: 300
- name: test
num_bytes: 104678
num_examples: 257
download_size: 3683565
dataset_size: 2568884
- config_name: quran
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ur
- en
splits:
- name: train
num_bytes: 2929711
num_examples: 6000
- name: validation
num_bytes: 43499
num_examples: 214
- name: test
num_bytes: 44413
num_examples: 200
download_size: 3683565
dataset_size: 3017623
- config_name: all
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ur
- en
splits:
- name: train
num_bytes: 5280441
num_examples: 13400
- name: validation
num_bytes: 156963
num_examples: 514
- name: test
num_bytes: 149079
num_examples: 457
download_size: 3683565
dataset_size: 5586483
---
# Dataset Card for UMC005 English-Urdu
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://ufal.ms.mff.cuni.cz/umc/005-en-ur/
- **Repository:** None
- **Paper:** https://www.researchgate.net/publication/268008206_Word-Order_Issues_in_English-to-Urdu_Statistical_Machine_Translation
- **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
- **Point of Contact:** Bushra Jawaid and Daniel Zeman
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
un_ga | ---
annotations_creators:
- found
language_creators:
- found
language:
- ar
- en
- es
- fr
- ru
- zh
license:
- unknown
multilinguality:
- translation
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: UnGa
configs:
- ar-to-en
- ar-to-es
- ar-to-fr
- ar-to-ru
- ar-to-zh
- en-to-es
- en-to-fr
- en-to-ru
- en-to-zh
- es-to-fr
- es-to-ru
- es-to-zh
- fr-to-ru
- fr-to-zh
- ru-to-zh
dataset_info:
- config_name: ar_to_en
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ar
- en
splits:
- name: train
num_bytes: 53122872
num_examples: 74067
download_size: 10584906
dataset_size: 53122872
- config_name: ar_to_es
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ar
- es
splits:
- name: train
num_bytes: 55728711
num_examples: 74067
download_size: 11084275
dataset_size: 55728711
- config_name: ar_to_fr
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ar
- fr
splits:
- name: train
num_bytes: 55930898
num_examples: 74067
download_size: 11248563
dataset_size: 55930898
- config_name: ar_to_ru
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ar
- ru
splits:
- name: train
num_bytes: 72657721
num_examples: 74067
download_size: 12852834
dataset_size: 72657721
- config_name: ar_to_zh
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ar
- zh
splits:
- name: train
num_bytes: 48217675
num_examples: 74067
download_size: 10254078
dataset_size: 48217675
- config_name: en_to_es
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- es
splits:
- name: train
num_bytes: 45358866
num_examples: 74067
download_size: 9850684
dataset_size: 45358866
- config_name: en_to_fr
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- fr
splits:
- name: train
num_bytes: 45561053
num_examples: 74067
download_size: 10014972
dataset_size: 45561053
- config_name: en_to_ru
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: train
num_bytes: 62287876
num_examples: 74067
download_size: 11619243
dataset_size: 62287876
- config_name: en_to_zh
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- zh
splits:
- name: train
num_bytes: 37847830
num_examples: 74067
download_size: 9020487
dataset_size: 37847830
- config_name: es_to_fr
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- es
- fr
splits:
- name: train
num_bytes: 48166892
num_examples: 74067
download_size: 10514341
dataset_size: 48166892
- config_name: es_to_ru
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- es
- ru
splits:
- name: train
num_bytes: 64893715
num_examples: 74067
download_size: 12118612
dataset_size: 64893715
- config_name: es_to_zh
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- es
- zh
splits:
- name: train
num_bytes: 40453669
num_examples: 74067
download_size: 9519856
dataset_size: 40453669
- config_name: fr_to_ru
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- fr
- ru
splits:
- name: train
num_bytes: 65095902
num_examples: 74067
download_size: 12282900
dataset_size: 65095902
- config_name: fr_to_zh
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- fr
- zh
splits:
- name: train
num_bytes: 40655856
num_examples: 74067
download_size: 9684144
dataset_size: 40655856
- config_name: ru_to_zh
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- ru
- zh
splits:
- name: train
num_bytes: 57382679
num_examples: 74067
download_size: 11288415
dataset_size: 57382679
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://opus.nlpl.eu/UN.php
- **Repository:**
- **Paper:** https://www.researchgate.net/publication/228579662_United_nations_general_assembly_resolutions_A_six-language_parallel_corpus
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This is a collection of translated documents from the United Nations originally compiled into a translation memory by Alexandre Rafalovitch, Robert Dale (see http://uncorpora.org).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
@inproceedings{title = "United Nations General Assembly Resolutions: a six-language parallel corpus",
abstract = "In this paper we describe a six-ways parallel public-domain corpus consisting of 2100 United Nations General Assembly Resolutions with translations in the six official languages of the United Nations, with an average of around 3 million tokens per language. The corpus is available in a preprocessed, formatting-normalized TMX format with paragraphs aligned across multiple languages. We describe the background to the corpus and its content, the process of its construction, and some of its interesting properties.",
author = "Alexandre Rafalovitch and Robert Dale",
year = "2009",
language = "English",
booktitle = "MT Summit XII proceedings",
publisher = "International Association of Machine Translation",
}
### Contributions
Thanks to [@param087](https://github.com/param087) for adding this dataset. |
un_multi | ---
annotations_creators:
- found
language_creators:
- found
language:
- ar
- de
- en
- es
- fr
- ru
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: multiun
pretty_name: Multilingual Corpus from United Nation Documents
configs:
- ar-de
- ar-en
- ar-es
- ar-fr
- ar-ru
- ar-zh
- de-en
- de-es
- de-fr
- de-ru
- de-zh
- en-es
- en-fr
- en-ru
- en-zh
- es-fr
- es-ru
- es-zh
- fr-ru
- fr-zh
- ru-zh
dataset_info:
- config_name: ar-de
features:
- name: translation
dtype:
translation:
languages:
- ar
- de
splits:
- name: train
num_bytes: 94466397
num_examples: 165090
download_size: 21869935
dataset_size: 94466397
- config_name: ar-en
features:
- name: translation
dtype:
translation:
languages:
- ar
- en
splits:
- name: train
num_bytes: 4189852369
num_examples: 9759125
download_size: 1036296368
dataset_size: 4189852369
- config_name: ar-es
features:
- name: translation
dtype:
translation:
languages:
- ar
- es
splits:
- name: train
num_bytes: 4509675284
num_examples: 10119379
download_size: 1101206667
dataset_size: 4509675284
- config_name: ar-fr
features:
- name: translation
dtype:
translation:
languages:
- ar
- fr
splits:
- name: train
num_bytes: 4516850009
num_examples: 9929567
download_size: 1109705925
dataset_size: 4516850009
- config_name: ar-ru
features:
- name: translation
dtype:
translation:
languages:
- ar
- ru
splits:
- name: train
num_bytes: 5932866867
num_examples: 10206243
download_size: 1261123878
dataset_size: 5932866867
- config_name: ar-zh
features:
- name: translation
dtype:
translation:
languages:
- ar
- zh
splits:
- name: train
num_bytes: 3781658413
num_examples: 9832293
download_size: 1009696775
dataset_size: 3781658413
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 76684549
num_examples: 162981
download_size: 19468529
dataset_size: 76684549
- config_name: de-es
features:
- name: translation
dtype:
translation:
languages:
- de
- es
splits:
- name: train
num_bytes: 80936653
num_examples: 162078
download_size: 20266591
dataset_size: 80936653
- config_name: de-fr
features:
- name: translation
dtype:
translation:
languages:
- de
- fr
splits:
- name: train
num_bytes: 81888435
num_examples: 164025
download_size: 20692837
dataset_size: 81888435
- config_name: de-ru
features:
- name: translation
dtype:
translation:
languages:
- de
- ru
splits:
- name: train
num_bytes: 111517934
num_examples: 164792
download_size: 23507789
dataset_size: 111517934
- config_name: de-zh
features:
- name: translation
dtype:
translation:
languages:
- de
- zh
splits:
- name: train
num_bytes: 70534818
num_examples: 176933
download_size: 19927209
dataset_size: 70534818
- config_name: en-es
features:
- name: translation
dtype:
translation:
languages:
- en
- es
splits:
- name: train
num_bytes: 4128141663
num_examples: 11350967
download_size: 1123164180
dataset_size: 4128141663
- config_name: en-fr
features:
- name: translation
dtype:
translation:
languages:
- en
- fr
splits:
- name: train
num_bytes: 4678055160
num_examples: 13172019
download_size: 1355002731
dataset_size: 4678055160
- config_name: en-ru
features:
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: train
num_bytes: 5632662839
num_examples: 11654416
download_size: 1285801078
dataset_size: 5632662839
- config_name: en-zh
features:
- name: translation
dtype:
translation:
languages:
- en
- zh
splits:
- name: train
num_bytes: 2960376046
num_examples: 9564315
download_size: 900076520
dataset_size: 2960376046
- config_name: es-fr
features:
- name: translation
dtype:
translation:
languages:
- es
- fr
splits:
- name: train
num_bytes: 4454712498
num_examples: 11441889
download_size: 1195733510
dataset_size: 4454712498
- config_name: es-ru
features:
- name: translation
dtype:
translation:
languages:
- es
- ru
splits:
- name: train
num_bytes: 5442655730
num_examples: 10605056
download_size: 1228045966
dataset_size: 5442655730
- config_name: es-zh
features:
- name: translation
dtype:
translation:
languages:
- es
- zh
splits:
- name: train
num_bytes: 3223871198
num_examples: 9847770
download_size: 953250084
dataset_size: 3223871198
- config_name: fr-ru
features:
- name: translation
dtype:
translation:
languages:
- fr
- ru
splits:
- name: train
num_bytes: 5979879089
num_examples: 11761738
download_size: 1364307157
dataset_size: 5979879089
- config_name: fr-zh
features:
- name: translation
dtype:
translation:
languages:
- fr
- zh
splits:
- name: train
num_bytes: 3241098333
num_examples: 9690914
download_size: 962824881
dataset_size: 3241098333
- config_name: ru-zh
features:
- name: translation
dtype:
translation:
languages:
- ru
- zh
splits:
- name: train
num_bytes: 4233875537
num_examples: 9557007
download_size: 1037881127
dataset_size: 4233875537
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**[MultiUN](http://www.euromatrixplus.net/multi-unp)
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This is a collection of translated documents from the United Nations.
This corpus is available in all 6 official languages of the UN
consisting of around 300 million words per language
### Supported Tasks and Leaderboards
The underlying task is machine translation.
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inproceedings{eisele-chen-2010-multiun,
title = "{M}ulti{UN}: A Multilingual Corpus from United Nation Documents",
author = "Eisele, Andreas and
Chen, Yu",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf",
abstract = "This paper describes the acquisition, preparation and properties of a corpus extracted from the official documents of the United Nations (UN). This corpus is available in all 6 official languages of the UN, consisting of around 300 million words per language. We describe the methods we used for crawling, document formatting, and sentence alignment. This corpus also includes a common test set for machine translation. We present the results of a French-Chinese machine translation experiment performed on this corpus.",
}
```
```
@InProceedings{TIEDEMANN12.463,
author = {J�rg Tiedemann},
title = {Parallel Data, Tools and Interfaces in OPUS},
booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
year = {2012},
month = {may},
date = {23-25},
address = {Istanbul, Turkey},
editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Ugur Dogan and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis},
publisher = {European Language Resources Association (ELRA)},
isbn = {978-2-9517408-7-7},
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
un_pc | ---
annotations_creators:
- found
language_creators:
- found
language:
- ar
- en
- es
- fr
- ru
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 10M<n<100M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: united-nations-parallel-corpus
pretty_name: United Nations Parallel Corpus
configs:
- ar-en
- ar-es
- ar-fr
- ar-ru
- ar-zh
- en-es
- en-fr
- en-ru
- en-zh
- es-fr
- es-ru
- es-zh
- fr-ru
- fr-zh
- ru-zh
dataset_info:
- config_name: ar-en
features:
- name: translation
dtype:
translation:
languages:
- ar
- en
splits:
- name: train
num_bytes: 8039689939
num_examples: 20044478
download_size: 2025106743
dataset_size: 8039689939
- config_name: ar-es
features:
- name: translation
dtype:
translation:
languages:
- ar
- es
splits:
- name: train
num_bytes: 8715754848
num_examples: 20532014
download_size: 2167791297
dataset_size: 8715754848
- config_name: ar-fr
features:
- name: translation
dtype:
translation:
languages:
- ar
- fr
splits:
- name: train
num_bytes: 8897848038
num_examples: 20281645
download_size: 2188765415
dataset_size: 8897848038
- config_name: ar-ru
features:
- name: translation
dtype:
translation:
languages:
- ar
- ru
splits:
- name: train
num_bytes: 11395923083
num_examples: 20571334
download_size: 2476562835
dataset_size: 11395923083
- config_name: ar-zh
features:
- name: translation
dtype:
translation:
languages:
- ar
- zh
splits:
- name: train
num_bytes: 6447658008
num_examples: 17306056
download_size: 1738869755
dataset_size: 6447658008
- config_name: en-es
features:
- name: translation
dtype:
translation:
languages:
- en
- es
splits:
- name: train
num_bytes: 8241635322
num_examples: 25227004
download_size: 2300411698
dataset_size: 8241635322
- config_name: en-fr
features:
- name: translation
dtype:
translation:
languages:
- en
- fr
splits:
- name: train
num_bytes: 9718522775
num_examples: 30340652
download_size: 2657208676
dataset_size: 9718522775
- config_name: en-ru
features:
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: train
num_bytes: 11156164691
num_examples: 25173398
download_size: 2589707636
dataset_size: 11156164691
- config_name: en-zh
features:
- name: translation
dtype:
translation:
languages:
- en
- zh
splits:
- name: train
num_bytes: 4988812558
num_examples: 17451549
download_size: 1535707641
dataset_size: 4988812558
- config_name: es-fr
features:
- name: translation
dtype:
translation:
languages:
- es
- fr
splits:
- name: train
num_bytes: 9230891207
num_examples: 25887160
download_size: 2492342915
dataset_size: 9230891207
- config_name: es-ru
features:
- name: translation
dtype:
translation:
languages:
- es
- ru
splits:
- name: train
num_bytes: 10789780134
num_examples: 22294106
download_size: 2487664520
dataset_size: 10789780134
- config_name: es-zh
features:
- name: translation
dtype:
translation:
languages:
- es
- zh
splits:
- name: train
num_bytes: 5475365986
num_examples: 17599223
download_size: 1639717723
dataset_size: 5475365986
- config_name: fr-ru
features:
- name: translation
dtype:
translation:
languages:
- fr
- ru
splits:
- name: train
num_bytes: 12099669711
num_examples: 25219973
download_size: 2762585269
dataset_size: 12099669711
- config_name: fr-zh
features:
- name: translation
dtype:
translation:
languages:
- fr
- zh
splits:
- name: train
num_bytes: 5679222134
num_examples: 17521170
download_size: 1668823634
dataset_size: 5679222134
- config_name: ru-zh
features:
- name: translation
dtype:
translation:
languages:
- ru
- zh
splits:
- name: train
num_bytes: 7905443441
num_examples: 17920922
download_size: 1934425373
dataset_size: 7905443441
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**[UNPC](http://opus.nlpl.eu/UNPC.php)
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This parallel corpus consists of manually translated UN documents from the last 25 years (1990 to 2014) \
for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish.
6 languages, 15 bitexts
### Supported Tasks and Leaderboards
The underlying task is machine translation.
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inproceedings{ziemski-etal-2016-united,
title = "The {U}nited {N}ations Parallel Corpus v1.0",
author = "Ziemski, Micha{\\l} and
Junczys-Dowmunt, Marcin and
Pouliquen, Bruno",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://www.aclweb.org/anthology/L16-1561",
pages = "3530--3534",
abstract = "This paper describes the creation process and statistics of the official United Nations Parallel Corpus, the first parallel corpus composed from United Nations documents published by the original data creator. The parallel corpus presented consists of manually translated UN documents from the last 25 years (1990 to 2014) for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish. The corpus is freely available for download under a liberal license. Apart from the pairwise aligned documents, a fully aligned subcorpus for the six official UN languages is distributed. We provide baseline BLEU scores of our Moses-based SMT systems trained with the full data of language pairs involving English and for all possible translation directions of the six-way subcorpus.",
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
universal_dependencies | ---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- af
- aii
- ajp
- akk
- am
- apu
- aqz
- ar
- be
- bg
- bho
- bm
- br
- bxr
- ca
- ckt
- cop
- cs
- cu
- cy
- da
- de
- el
- en
- es
- et
- eu
- fa
- fi
- fo
- fr
- fro
- ga
- gd
- gl
- got
- grc
- gsw
- gun
- gv
- he
- hi
- hr
- hsb
- hu
- hy
- id
- is
- it
- ja
- kfm
- kk
- kmr
- ko
- koi
- kpv
- krl
- la
- lt
- lv
- lzh
- mdf
- mr
- mt
- myu
- myv
- nl
- 'no'
- nyq
- olo
- orv
- otk
- pcm
- pl
- pt
- ro
- ru
- sa
- sk
- sl
- sme
- sms
- soj
- sq
- sr
- sv
- swl
- ta
- te
- th
- tl
- tpn
- tr
- ug
- uk
- ur
- vi
- wbp
- wo
- yo
- yue
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- parsing
paperswithcode_id: universal-dependencies
pretty_name: Universal Dependencies Treebank
configs:
- af_afribooms
- aii_as
- ajp_madar
- akk_pisandub
- akk_riao
- am_att
- apu_ufpa
- aqz_tudet
- ar_nyuad
- ar_padt
- ar_pud
- be_hse
- bg_btb
- bho_bhtb
- bm_crb
- br_keb
- bxr_bdt
- ca_ancora
- ckt_hse
- cop_scriptorium
- cs_cac
- cs_cltt
- cs_fictree
- cs_pdt
- cs_pud
- cu_proiel
- cy_ccg
- da_ddt
- de_gsd
- de_hdt
- de_lit
- de_pud
- el_gdt
- en_esl
- en_ewt
- en_gum
- en_gumreddit
- en_lines
- en_partut
- en_pronouns
- en_pud
- es_ancora
- es_gsd
- es_pud
- et_edt
- et_ewt
- eu_bdt
- fa_perdt
- fa_seraji
- fi_ftb
- fi_ood
- fi_pud
- fi_tdt
- fo_farpahc
- fo_oft
- fr_fqb
- fr_ftb
- fr_gsd
- fr_partut
- fr_pud
- fr_sequoia
- fr_spoken
- fro_srcmf
- ga_idt
- gd_arcosg
- gl_ctg
- gl_treegal
- got_proiel
- grc_perseus
- grc_proiel
- gsw_uzh
- gun_dooley
- gun_thomas
- gv_cadhan
- he_htb
- hi_hdtb
- hi_pud
- hr_set
- hsb_ufal
- hu_szeged
- hy_armtdp
- id_csui
- id_gsd
- id_pud
- is_icepahc
- is_pud
- it_isdt
- it_partut
- it_postwita
- it_pud
- it_twittiro
- it_vit
- ja_bccwj
- ja_gsd
- ja_modern
- ja_pud
- kfm_aha
- kk_ktb
- kmr_mg
- ko_gsd
- ko_kaist
- ko_pud
- koi_uh
- kpv_ikdp
- kpv_lattice
- krl_kkpp
- la_ittb
- la_llct
- la_perseus
- la_proiel
- lt_alksnis
- lt_hse
- lv_lvtb
- lzh_kyoto
- mdf_jr
- mr_ufal
- mt_mudt
- myu_tudet
- myv_jr
- nl_alpino
- nl_lassysmall
- no_bokmaal
- no_nynorsk
- no_nynorsklia
- nyq_aha
- olo_kkpp
- orv_rnc
- orv_torot
- otk_tonqq
- pcm_nsc
- pl_lfg
- pl_pdb
- pl_pud
- pt_bosque
- pt_gsd
- pt_pud
- qhe_hiencs
- qtd_sagt
- ro_nonstandard
- ro_rrt
- ro_simonero
- ru_gsd
- ru_pud
- ru_syntagrus
- ru_taiga
- sa_ufal
- sa_vedic
- sk_snk
- sl_ssj
- sl_sst
- sme_giella
- sms_giellagas
- soj_aha
- sq_tsa
- sr_set
- sv_lines
- sv_pud
- sv_talbanken
- swl_sslc
- ta_mwtt
- ta_ttb
- te_mtg
- th_pud
- tl_trg
- tl_ugnayan
- tpn_tudet
- tr_boun
- tr_gb
- tr_imst
- tr_pud
- ug_udt
- uk_iu
- ur_udtb
- vi_vtb
- wbp_ufal
- wo_wtb
- yo_ytb
- yue_hk
- zh_cfl
- zh_gsd
- zh_gsdsimp
- zh_hk
- zh_pud
tags:
- constituency-parsing
- dependency-parsing
dataset_info:
- config_name: af_afribooms
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 3523113
num_examples: 1315
- name: validation
num_bytes: 547285
num_examples: 194
- name: test
num_bytes: 1050299
num_examples: 425
download_size: 3088237
dataset_size: 5120697
- config_name: akk_pisandub
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 153470
num_examples: 101
download_size: 101789
dataset_size: 153470
- config_name: akk_riao
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 3374577
num_examples: 1804
download_size: 2022357
dataset_size: 3374577
- config_name: aqz_tudet
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 8286
num_examples: 24
download_size: 5683
dataset_size: 8286
- config_name: sq_tsa
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 116034
num_examples: 60
download_size: 68875
dataset_size: 116034
- config_name: am_att
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 1554859
num_examples: 1074
download_size: 1019607
dataset_size: 1554859
- config_name: grc_perseus
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 22611612
num_examples: 11476
- name: validation
num_bytes: 3152233
num_examples: 1137
- name: test
num_bytes: 3004502
num_examples: 1306
download_size: 18898313
dataset_size: 28768347
- config_name: grc_proiel
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 30938089
num_examples: 15014
- name: validation
num_bytes: 2264551
num_examples: 1019
- name: test
num_bytes: 2192289
num_examples: 1047
download_size: 23715831
dataset_size: 35394929
- config_name: apu_ufpa
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 75578
num_examples: 76
download_size: 69565
dataset_size: 75578
- config_name: ar_nyuad
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 79064476
num_examples: 15789
- name: validation
num_bytes: 9859912
num_examples: 1986
- name: test
num_bytes: 9880240
num_examples: 1963
download_size: 58583673
dataset_size: 98804628
- config_name: ar_padt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 58537298
num_examples: 6075
- name: validation
num_bytes: 7787253
num_examples: 909
- name: test
num_bytes: 7428063
num_examples: 680
download_size: 51208169
dataset_size: 73752614
- config_name: ar_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2816625
num_examples: 1000
download_size: 2084082
dataset_size: 2816625
- config_name: hy_armtdp
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 7697891
num_examples: 1975
- name: validation
num_bytes: 988849
num_examples: 249
- name: test
num_bytes: 947287
num_examples: 278
download_size: 6886567
dataset_size: 9634027
- config_name: aii_as
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 52540
num_examples: 57
download_size: 32639
dataset_size: 52540
- config_name: bm_crb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 1502886
num_examples: 1026
download_size: 892924
dataset_size: 1502886
- config_name: eu_bdt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 8199861
num_examples: 5396
- name: validation
num_bytes: 2701073
num_examples: 1798
- name: test
num_bytes: 2734601
num_examples: 1799
download_size: 8213576
dataset_size: 13635535
- config_name: be_hse
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 34880663
num_examples: 21555
- name: validation
num_bytes: 1745668
num_examples: 1090
- name: test
num_bytes: 1818113
num_examples: 889
download_size: 26433402
dataset_size: 38444444
- config_name: bho_bhtb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 947740
num_examples: 357
download_size: 614159
dataset_size: 947740
- config_name: br_keb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 1026257
num_examples: 888
download_size: 679680
dataset_size: 1026257
- config_name: bg_btb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 18545312
num_examples: 8907
- name: validation
num_bytes: 2393174
num_examples: 1115
- name: test
num_bytes: 2344136
num_examples: 1116
download_size: 14910603
dataset_size: 23282622
- config_name: bxr_bdt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 17364
num_examples: 19
- name: test
num_bytes: 1116630
num_examples: 908
download_size: 726053
dataset_size: 1133994
- config_name: yue_hk
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 1242850
num_examples: 1004
download_size: 710060
dataset_size: 1242850
- config_name: ca_ancora
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 46502842
num_examples: 13123
- name: validation
num_bytes: 6282364
num_examples: 1709
- name: test
num_bytes: 6441038
num_examples: 1846
download_size: 35924146
dataset_size: 59226244
- config_name: zh_cfl
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 660584
num_examples: 451
download_size: 384725
dataset_size: 660584
- config_name: zh_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 9268661
num_examples: 3997
- name: validation
num_bytes: 1188371
num_examples: 500
- name: test
num_bytes: 1130467
num_examples: 500
download_size: 6828367
dataset_size: 11587499
- config_name: zh_gsdsimp
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 9268663
num_examples: 3997
- name: validation
num_bytes: 1188383
num_examples: 500
- name: test
num_bytes: 1130459
num_examples: 500
download_size: 6828419
dataset_size: 11587505
- config_name: zh_hk
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 880193
num_examples: 1004
download_size: 494447
dataset_size: 880193
- config_name: zh_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2425817
num_examples: 1000
download_size: 1606982
dataset_size: 2425817
- config_name: ckt_hse
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 808669
num_examples: 1004
download_size: 771943
dataset_size: 808669
- config_name: lzh_kyoto
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 26615708
num_examples: 38669
- name: validation
num_bytes: 3770507
num_examples: 5296
- name: test
num_bytes: 3155207
num_examples: 4469
download_size: 22658287
dataset_size: 33541422
- config_name: cop_scriptorium
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 3944468
num_examples: 1089
- name: validation
num_bytes: 1566786
num_examples: 381
- name: test
num_bytes: 1487709
num_examples: 403
download_size: 4502996
dataset_size: 6998963
- config_name: hr_set
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 19104315
num_examples: 6914
- name: validation
num_bytes: 2787184
num_examples: 960
- name: test
num_bytes: 3035797
num_examples: 1136
download_size: 15103034
dataset_size: 24927296
- config_name: cs_cac
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 81527862
num_examples: 23478
- name: validation
num_bytes: 1898678
num_examples: 603
- name: test
num_bytes: 1878841
num_examples: 628
download_size: 55990235
dataset_size: 85305381
- config_name: cs_cltt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 4277239
num_examples: 860
- name: validation
num_bytes: 752253
num_examples: 129
- name: test
num_bytes: 646103
num_examples: 136
download_size: 3745656
dataset_size: 5675595
- config_name: cs_fictree
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 21490020
num_examples: 10160
- name: validation
num_bytes: 2677727
num_examples: 1309
- name: test
num_bytes: 2679930
num_examples: 1291
download_size: 17464342
dataset_size: 26847677
- config_name: cs_pdt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 201356662
num_examples: 68495
- name: validation
num_bytes: 27366981
num_examples: 9270
- name: test
num_bytes: 29817339
num_examples: 10148
download_size: 171506068
dataset_size: 258540982
- config_name: cs_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 3195818
num_examples: 1000
download_size: 2231853
dataset_size: 3195818
- config_name: da_ddt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 8689809
num_examples: 4383
- name: validation
num_bytes: 1117939
num_examples: 564
- name: test
num_bytes: 1082651
num_examples: 565
download_size: 6425281
dataset_size: 10890399
- config_name: nl_alpino
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 22503950
num_examples: 12264
- name: validation
num_bytes: 1411253
num_examples: 718
- name: test
num_bytes: 1354908
num_examples: 596
download_size: 16858557
dataset_size: 25270111
- config_name: nl_lassysmall
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 9001614
num_examples: 5787
- name: validation
num_bytes: 1361552
num_examples: 676
- name: test
num_bytes: 1391136
num_examples: 875
download_size: 8034396
dataset_size: 11754302
- config_name: en_esl
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 5335977
num_examples: 4124
- name: validation
num_bytes: 648562
num_examples: 500
- name: test
num_bytes: 651829
num_examples: 500
download_size: 3351548
dataset_size: 6636368
- config_name: en_ewt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 22755753
num_examples: 12543
- name: validation
num_bytes: 2829889
num_examples: 2002
- name: test
num_bytes: 2820398
num_examples: 2077
download_size: 16893922
dataset_size: 28406040
- config_name: en_gum
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 8999554
num_examples: 4287
- name: validation
num_bytes: 1704949
num_examples: 784
- name: test
num_bytes: 1743317
num_examples: 890
download_size: 7702761
dataset_size: 12447820
- config_name: en_gumreddit
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1365930
num_examples: 587
- name: validation
num_bytes: 317546
num_examples: 150
- name: test
num_bytes: 374707
num_examples: 158
download_size: 1195979
dataset_size: 2058183
- config_name: en_lines
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 5728898
num_examples: 3176
- name: validation
num_bytes: 1911762
num_examples: 1032
- name: test
num_bytes: 1766797
num_examples: 1035
download_size: 5522254
dataset_size: 9407457
- config_name: en_partut
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 4133445
num_examples: 1781
- name: validation
num_bytes: 265039
num_examples: 156
- name: test
num_bytes: 326834
num_examples: 153
download_size: 2720286
dataset_size: 4725318
- config_name: en_pronouns
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 207364
num_examples: 285
download_size: 147181
dataset_size: 207364
- config_name: en_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2282027
num_examples: 1000
download_size: 1340563
dataset_size: 2282027
- config_name: myv_jr
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2763297
num_examples: 1690
download_size: 1945981
dataset_size: 2763297
- config_name: et_edt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 42901059
num_examples: 24633
- name: validation
num_bytes: 5551620
num_examples: 3125
- name: test
num_bytes: 5994421
num_examples: 3214
download_size: 32393618
dataset_size: 54447100
- config_name: et_ewt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 4199896
num_examples: 2837
- name: validation
num_bytes: 1089459
num_examples: 743
- name: test
num_bytes: 1600116
num_examples: 913
download_size: 4044147
dataset_size: 6889471
- config_name: fo_farpahc
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 2114958
num_examples: 1020
- name: validation
num_bytes: 809707
num_examples: 300
- name: test
num_bytes: 798245
num_examples: 301
download_size: 2186706
dataset_size: 3722910
- config_name: fo_oft
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 1220792
num_examples: 1208
download_size: 802681
dataset_size: 1220792
- config_name: fi_ftb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 16800109
num_examples: 14981
- name: validation
num_bytes: 2074201
num_examples: 1875
- name: test
num_bytes: 2144908
num_examples: 1867
download_size: 13132466
dataset_size: 21019218
- config_name: fi_ood
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2366923
num_examples: 2122
download_size: 1480506
dataset_size: 2366923
- config_name: fi_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2086421
num_examples: 1000
download_size: 1411514
dataset_size: 2086421
- config_name: fi_tdt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 22065448
num_examples: 12217
- name: validation
num_bytes: 2483303
num_examples: 1364
- name: test
num_bytes: 2855263
num_examples: 1555
download_size: 16692242
dataset_size: 27404014
- config_name: fr_fqb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2674644
num_examples: 2289
download_size: 1556235
dataset_size: 2674644
- config_name: fr_ftb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 44714315
num_examples: 14759
- name: validation
num_bytes: 3929428
num_examples: 1235
- name: test
num_bytes: 7583038
num_examples: 2541
download_size: 30926802
dataset_size: 56226781
- config_name: fr_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 38329902
num_examples: 14449
- name: validation
num_bytes: 3861548
num_examples: 1476
- name: test
num_bytes: 1086926
num_examples: 416
download_size: 25492044
dataset_size: 43278376
- config_name: fr_partut
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 2620477
num_examples: 803
- name: validation
num_bytes: 205839
num_examples: 107
- name: test
num_bytes: 288829
num_examples: 110
download_size: 1817897
dataset_size: 3115145
- config_name: fr_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2660405
num_examples: 1000
download_size: 1685033
dataset_size: 2660405
- config_name: fr_sequoia
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 5370647
num_examples: 2231
- name: validation
num_bytes: 1065411
num_examples: 412
- name: test
num_bytes: 1067676
num_examples: 456
download_size: 4415282
dataset_size: 7503734
- config_name: fr_spoken
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1625626
num_examples: 1167
- name: validation
num_bytes: 1091750
num_examples: 909
- name: test
num_bytes: 1078438
num_examples: 730
download_size: 2483341
dataset_size: 3795814
- config_name: gl_ctg
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 8157432
num_examples: 2272
- name: validation
num_bytes: 3057483
num_examples: 860
- name: test
num_bytes: 3053764
num_examples: 861
download_size: 8230649
dataset_size: 14268679
- config_name: gl_treegal
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1804389
num_examples: 600
- name: test
num_bytes: 1174023
num_examples: 400
download_size: 1741471
dataset_size: 2978412
- config_name: de_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 32297384
num_examples: 13814
- name: validation
num_bytes: 1504189
num_examples: 799
- name: test
num_bytes: 2000117
num_examples: 977
download_size: 21507364
dataset_size: 35801690
- config_name: de_hdt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 334214761
num_examples: 153035
- name: validation
num_bytes: 39099013
num_examples: 18434
- name: test
num_bytes: 39519143
num_examples: 18459
download_size: 249243037
dataset_size: 412832917
- config_name: de_lit
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 3327891
num_examples: 1922
download_size: 2060988
dataset_size: 3327891
- config_name: de_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2684407
num_examples: 1000
download_size: 1731875
dataset_size: 2684407
- config_name: got_proiel
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 5175361
num_examples: 3387
- name: validation
num_bytes: 1498101
num_examples: 985
- name: test
num_bytes: 1518642
num_examples: 1029
download_size: 5225655
dataset_size: 8192104
- config_name: el_gdt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 6028077
num_examples: 1662
- name: validation
num_bytes: 1492610
num_examples: 403
- name: test
num_bytes: 1521094
num_examples: 456
download_size: 5788161
dataset_size: 9041781
- config_name: he_htb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 17324640
num_examples: 5241
- name: validation
num_bytes: 1440985
num_examples: 484
- name: test
num_bytes: 1550465
num_examples: 491
download_size: 12054025
dataset_size: 20316090
- config_name: qhe_hiencs
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1510145
num_examples: 1448
- name: validation
num_bytes: 244129
num_examples: 225
- name: test
num_bytes: 236291
num_examples: 225
download_size: 914584
dataset_size: 1990565
- config_name: hi_hdtb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 61893814
num_examples: 13304
- name: validation
num_bytes: 7748544
num_examples: 1659
- name: test
num_bytes: 7786343
num_examples: 1684
download_size: 51589681
dataset_size: 77428701
- config_name: hi_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 3384789
num_examples: 1000
download_size: 2303495
dataset_size: 3384789
- config_name: hu_szeged
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 2822934
num_examples: 910
- name: validation
num_bytes: 1584932
num_examples: 441
- name: test
num_bytes: 1419130
num_examples: 449
download_size: 3687905
dataset_size: 5826996
- config_name: is_icepahc
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 97197159
num_examples: 34007
- name: validation
num_bytes: 18931295
num_examples: 4865
- name: test
num_bytes: 19039838
num_examples: 5157
download_size: 85106126
dataset_size: 135168292
- config_name: is_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2304432
num_examples: 1000
download_size: 1525635
dataset_size: 2304432
- config_name: id_csui
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1611334
num_examples: 656
- name: test
num_bytes: 888832
num_examples: 374
download_size: 1448601
dataset_size: 2500166
- config_name: id_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 11728948
num_examples: 4477
- name: validation
num_bytes: 1513894
num_examples: 559
- name: test
num_bytes: 1417208
num_examples: 557
download_size: 9487349
dataset_size: 14660050
- config_name: id_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 1768596
num_examples: 1000
download_size: 1149692
dataset_size: 1768596
- config_name: ga_idt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 10327215
num_examples: 4005
- name: validation
num_bytes: 1057313
num_examples: 451
- name: test
num_bytes: 1109028
num_examples: 454
download_size: 7417728
dataset_size: 12493556
- config_name: it_isdt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 33510781
num_examples: 13121
- name: validation
num_bytes: 1439348
num_examples: 564
- name: test
num_bytes: 1267932
num_examples: 482
download_size: 20998527
dataset_size: 36218061
- config_name: it_partut
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 5428686
num_examples: 1781
- name: validation
num_bytes: 335085
num_examples: 156
- name: test
num_bytes: 413752
num_examples: 153
download_size: 3582155
dataset_size: 6177523
- config_name: it_postwita
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 10523322
num_examples: 5368
- name: validation
num_bytes: 1299818
num_examples: 671
- name: test
num_bytes: 1344079
num_examples: 674
download_size: 7611319
dataset_size: 13167219
- config_name: it_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2612838
num_examples: 1000
download_size: 1641073
dataset_size: 2612838
- config_name: it_twittiro
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 2536429
num_examples: 1138
- name: validation
num_bytes: 323504
num_examples: 144
- name: test
num_bytes: 316211
num_examples: 142
download_size: 1894686
dataset_size: 3176144
- config_name: it_vit
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 24536095
num_examples: 8277
- name: validation
num_bytes: 3144507
num_examples: 743
- name: test
num_bytes: 2870355
num_examples: 1067
download_size: 17605311
dataset_size: 30550957
- config_name: ja_bccwj
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 119164443
num_examples: 40740
- name: validation
num_bytes: 23390188
num_examples: 8417
- name: test
num_bytes: 21904413
num_examples: 7871
download_size: 87340125
dataset_size: 164459044
- config_name: ja_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 36905139
num_examples: 7027
- name: validation
num_bytes: 2662999
num_examples: 501
- name: test
num_bytes: 2858141
num_examples: 543
download_size: 30397358
dataset_size: 42426279
- config_name: ja_modern
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 3062149
num_examples: 822
download_size: 2163988
dataset_size: 3062149
- config_name: ja_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 6322307
num_examples: 1000
download_size: 4661525
dataset_size: 6322307
- config_name: krl_kkpp
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 370378
num_examples: 228
download_size: 226103
dataset_size: 370378
- config_name: kk_ktb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 64737
num_examples: 31
- name: test
num_bytes: 1263246
num_examples: 1047
download_size: 849300
dataset_size: 1327983
- config_name: kfm_aha
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 8464
num_examples: 10
download_size: 6290
dataset_size: 8464
- config_name: koi_uh
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 117629
num_examples: 81
download_size: 91509
dataset_size: 117629
- config_name: kpv_ikdp
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 182189
num_examples: 132
download_size: 121684
dataset_size: 182189
- config_name: kpv_lattice
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 685683
num_examples: 435
download_size: 467085
dataset_size: 685683
- config_name: ko_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 5480313
num_examples: 4400
- name: validation
num_bytes: 1156603
num_examples: 950
- name: test
num_bytes: 1129555
num_examples: 989
download_size: 4882238
dataset_size: 7766471
- config_name: ko_kaist
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 29037654
num_examples: 23010
- name: validation
num_bytes: 2511880
num_examples: 2066
- name: test
num_bytes: 2792215
num_examples: 2287
download_size: 21855177
dataset_size: 34341749
- config_name: ko_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2511856
num_examples: 1000
download_size: 2024810
dataset_size: 2511856
- config_name: kmr_mg
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 30374
num_examples: 20
- name: test
num_bytes: 1248564
num_examples: 734
download_size: 765158
dataset_size: 1278938
- config_name: la_ittb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 54306304
num_examples: 22775
- name: validation
num_bytes: 4236222
num_examples: 2101
- name: test
num_bytes: 4221459
num_examples: 2101
download_size: 40247546
dataset_size: 62763985
- config_name: la_llct
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 26885433
num_examples: 7289
- name: validation
num_bytes: 3363915
num_examples: 850
- name: test
num_bytes: 3352500
num_examples: 884
download_size: 21975884
dataset_size: 33601848
- config_name: la_perseus
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 2542043
num_examples: 1334
- name: test
num_bytes: 1575350
num_examples: 939
download_size: 2573703
dataset_size: 4117393
- config_name: la_proiel
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 24956038
num_examples: 15917
- name: validation
num_bytes: 2020476
num_examples: 1234
- name: test
num_bytes: 2029828
num_examples: 1260
download_size: 18434442
dataset_size: 29006342
- config_name: lv_lvtb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 29167529
num_examples: 10156
- name: validation
num_bytes: 4501172
num_examples: 1664
- name: test
num_bytes: 4565919
num_examples: 1823
download_size: 25227301
dataset_size: 38234620
- config_name: lt_alksnis
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 7272501
num_examples: 2341
- name: validation
num_bytes: 1763901
num_examples: 617
- name: test
num_bytes: 1648521
num_examples: 684
download_size: 7008248
dataset_size: 10684923
- config_name: lt_hse
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 433214
num_examples: 153
- name: validation
num_bytes: 433214
num_examples: 153
- name: test
num_bytes: 433214
num_examples: 153
download_size: 265619
dataset_size: 1299642
- config_name: olo_kkpp
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 18096
num_examples: 19
- name: test
num_bytes: 175355
num_examples: 106
download_size: 121837
dataset_size: 193451
- config_name: mt_mudt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1858001
num_examples: 1123
- name: validation
num_bytes: 826004
num_examples: 433
- name: test
num_bytes: 892629
num_examples: 518
download_size: 2011753
dataset_size: 3576634
- config_name: gv_cadhan
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 483042
num_examples: 291
download_size: 287206
dataset_size: 483042
- config_name: mr_ufal
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 420345
num_examples: 373
- name: validation
num_bytes: 60791
num_examples: 46
- name: test
num_bytes: 56582
num_examples: 47
download_size: 339354
dataset_size: 537718
- config_name: gun_dooley
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 1037858
num_examples: 1046
download_size: 571571
dataset_size: 1037858
- config_name: gun_thomas
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 143111
num_examples: 98
download_size: 92963
dataset_size: 143111
- config_name: mdf_jr
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 234147
num_examples: 167
download_size: 162330
dataset_size: 234147
- config_name: myu_tudet
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 26202
num_examples: 62
download_size: 20315
dataset_size: 26202
- config_name: pcm_nsc
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 16079391
num_examples: 7279
- name: validation
num_bytes: 2099571
num_examples: 991
- name: test
num_bytes: 2063685
num_examples: 972
download_size: 14907410
dataset_size: 20242647
- config_name: nyq_aha
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 8723
num_examples: 10
download_size: 6387
dataset_size: 8723
- config_name: sme_giella
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1987666
num_examples: 2257
- name: test
num_bytes: 1142396
num_examples: 865
download_size: 1862302
dataset_size: 3130062
- config_name: no_bokmaal
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 25647647
num_examples: 15696
- name: validation
num_bytes: 3828310
num_examples: 2409
- name: test
num_bytes: 3151638
num_examples: 1939
download_size: 19177350
dataset_size: 32627595
- config_name: no_nynorsk
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 25630539
num_examples: 14174
- name: validation
num_bytes: 3277649
num_examples: 1890
- name: test
num_bytes: 2601676
num_examples: 1511
download_size: 18532495
dataset_size: 31509864
- config_name: no_nynorsklia
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 3500907
num_examples: 3412
- name: validation
num_bytes: 1003845
num_examples: 881
- name: test
num_bytes: 999943
num_examples: 957
download_size: 3349676
dataset_size: 5504695
- config_name: cu_proiel
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 6106144
num_examples: 4124
- name: validation
num_bytes: 1639912
num_examples: 1073
- name: test
num_bytes: 1648459
num_examples: 1141
download_size: 6239839
dataset_size: 9394515
- config_name: fro_srcmf
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 11959859
num_examples: 13909
- name: validation
num_bytes: 1526574
num_examples: 1842
- name: test
num_bytes: 1535923
num_examples: 1927
download_size: 9043098
dataset_size: 15022356
- config_name: orv_rnc
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1527306
num_examples: 320
- name: test
num_bytes: 2552216
num_examples: 637
download_size: 2627398
dataset_size: 4079522
- config_name: orv_torot
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 18077991
num_examples: 13336
- name: validation
num_bytes: 2408313
num_examples: 1852
- name: test
num_bytes: 2347934
num_examples: 1756
download_size: 15296362
dataset_size: 22834238
- config_name: otk_tonqq
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 22829
num_examples: 18
download_size: 14389
dataset_size: 22829
- config_name: fa_perdt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 48654947
num_examples: 26196
- name: validation
num_bytes: 2687750
num_examples: 1456
- name: test
num_bytes: 2600303
num_examples: 1455
download_size: 33606395
dataset_size: 53943000
- config_name: fa_seraji
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 12627691
num_examples: 4798
- name: validation
num_bytes: 1634327
num_examples: 599
- name: test
num_bytes: 1675134
num_examples: 600
download_size: 9890107
dataset_size: 15937152
- config_name: pl_lfg
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 16810910
num_examples: 13774
- name: validation
num_bytes: 2093712
num_examples: 1745
- name: test
num_bytes: 2100915
num_examples: 1727
download_size: 14865541
dataset_size: 21005537
- config_name: pl_pdb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 44652289
num_examples: 17722
- name: validation
num_bytes: 5494883
num_examples: 2215
- name: test
num_bytes: 5322608
num_examples: 2215
download_size: 36340919
dataset_size: 55469780
- config_name: pl_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2943603
num_examples: 1000
download_size: 1943983
dataset_size: 2943603
- config_name: pt_bosque
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 22808617
num_examples: 8328
- name: validation
num_bytes: 1201577
num_examples: 560
- name: test
num_bytes: 1131511
num_examples: 476
download_size: 15201503
dataset_size: 25141705
- config_name: pt_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 22208385
num_examples: 9664
- name: validation
num_bytes: 2805628
num_examples: 1210
- name: test
num_bytes: 2732063
num_examples: 1204
download_size: 15300844
dataset_size: 27746076
- config_name: pt_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2431942
num_examples: 1000
download_size: 1516883
dataset_size: 2431942
- config_name: ro_nonstandard
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 74489083
num_examples: 24121
- name: validation
num_bytes: 2663152
num_examples: 1052
- name: test
num_bytes: 3017162
num_examples: 1052
download_size: 50345748
dataset_size: 80169397
- config_name: ro_rrt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 23695399
num_examples: 8043
- name: validation
num_bytes: 2190973
num_examples: 752
- name: test
num_bytes: 2092520
num_examples: 729
download_size: 17187956
dataset_size: 27978892
- config_name: ro_simonero
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 15390734
num_examples: 3747
- name: validation
num_bytes: 1926639
num_examples: 443
- name: test
num_bytes: 1940787
num_examples: 491
download_size: 11409378
dataset_size: 19258160
- config_name: ru_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 10504099
num_examples: 3850
- name: validation
num_bytes: 1635884
num_examples: 579
- name: test
num_bytes: 1597603
num_examples: 601
download_size: 8830986
dataset_size: 13737586
- config_name: ru_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2695958
num_examples: 1000
download_size: 1869304
dataset_size: 2695958
- config_name: ru_syntagrus
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 126305584
num_examples: 48814
- name: validation
num_bytes: 17043673
num_examples: 6584
- name: test
num_bytes: 16880203
num_examples: 6491
download_size: 102745164
dataset_size: 160229460
- config_name: ru_taiga
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 5802733
num_examples: 3138
- name: validation
num_bytes: 1382140
num_examples: 945
- name: test
num_bytes: 1314084
num_examples: 881
download_size: 5491427
dataset_size: 8498957
- config_name: sa_ufal
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 431697
num_examples: 230
download_size: 424675
dataset_size: 431697
- config_name: sa_vedic
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 2179608
num_examples: 2524
- name: test
num_bytes: 1209605
num_examples: 1473
download_size: 2041583
dataset_size: 3389213
- config_name: gd_arcosg
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 3952356
num_examples: 1990
- name: validation
num_bytes: 1038211
num_examples: 645
- name: test
num_bytes: 1034788
num_examples: 538
download_size: 3474087
dataset_size: 6025355
- config_name: sr_set
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 9309552
num_examples: 3328
- name: validation
num_bytes: 1503953
num_examples: 536
- name: test
num_bytes: 1432672
num_examples: 520
download_size: 7414381
dataset_size: 12246177
- config_name: sms_giellagas
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 174744
num_examples: 104
download_size: 116491
dataset_size: 174744
- config_name: sk_snk
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 12017312
num_examples: 8483
- name: validation
num_bytes: 1863926
num_examples: 1060
- name: test
num_bytes: 1943012
num_examples: 1061
download_size: 10013420
dataset_size: 15824250
- config_name: sl_ssj
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 16713639
num_examples: 6478
- name: validation
num_bytes: 2070847
num_examples: 734
- name: test
num_bytes: 2083062
num_examples: 788
download_size: 12455962
dataset_size: 20867548
- config_name: sl_sst
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 2903675
num_examples: 2078
- name: test
num_bytes: 1493885
num_examples: 1110
download_size: 2655777
dataset_size: 4397560
- config_name: soj_aha
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 6218
num_examples: 8
download_size: 4577
dataset_size: 6218
- config_name: ajp_madar
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 71956
num_examples: 100
download_size: 43174
dataset_size: 71956
- config_name: es_ancora
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 50101327
num_examples: 14305
- name: validation
num_bytes: 5883940
num_examples: 1654
- name: test
num_bytes: 5928986
num_examples: 1721
download_size: 37668083
dataset_size: 61914253
- config_name: es_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 39582074
num_examples: 14187
- name: validation
num_bytes: 3834443
num_examples: 1400
- name: test
num_bytes: 1253720
num_examples: 426
download_size: 26073760
dataset_size: 44670237
- config_name: es_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2595946
num_examples: 1000
download_size: 1628475
dataset_size: 2595946
- config_name: swl_sslc
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 57443
num_examples: 87
- name: validation
num_bytes: 59002
num_examples: 82
- name: test
num_bytes: 24542
num_examples: 34
download_size: 81699
dataset_size: 140987
- config_name: sv_lines
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 6731662
num_examples: 3176
- name: validation
num_bytes: 2239951
num_examples: 1032
- name: test
num_bytes: 2070626
num_examples: 1035
download_size: 7245283
dataset_size: 11042239
- config_name: sv_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2554725
num_examples: 1000
download_size: 1722516
dataset_size: 2554725
- config_name: sv_talbanken
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 9287256
num_examples: 4303
- name: validation
num_bytes: 1361535
num_examples: 504
- name: test
num_bytes: 2835742
num_examples: 1219
download_size: 8476012
dataset_size: 13484533
- config_name: gsw_uzh
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 111357
num_examples: 100
download_size: 59675
dataset_size: 111357
- config_name: tl_trg
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 86696
num_examples: 128
download_size: 61344
dataset_size: 86696
- config_name: tl_ugnayan
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 90863
num_examples: 94
download_size: 55207
dataset_size: 90863
- config_name: ta_mwtt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 522349
num_examples: 534
download_size: 414263
dataset_size: 522349
- config_name: ta_ttb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1538780
num_examples: 400
- name: validation
num_bytes: 305206
num_examples: 80
- name: test
num_bytes: 478941
num_examples: 120
download_size: 1753448
dataset_size: 2322927
- config_name: te_mtg
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 703512
num_examples: 1051
- name: validation
num_bytes: 91547
num_examples: 131
- name: test
num_bytes: 99757
num_examples: 146
download_size: 643764
dataset_size: 894816
- config_name: th_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2341697
num_examples: 1000
download_size: 1606517
dataset_size: 2341697
- config_name: tpn_tudet
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 8089
num_examples: 8
download_size: 5447
dataset_size: 8089
- config_name: qtd_sagt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 583697
num_examples: 285
- name: validation
num_bytes: 1564765
num_examples: 801
- name: test
num_bytes: 1710777
num_examples: 805
download_size: 2299611
dataset_size: 3859239
- config_name: tr_boun
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 12827173
num_examples: 7803
- name: validation
num_bytes: 1577760
num_examples: 979
- name: test
num_bytes: 1580727
num_examples: 979
download_size: 9742035
dataset_size: 15985660
- config_name: tr_gb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2146729
num_examples: 2880
download_size: 1474083
dataset_size: 2146729
- config_name: tr_imst
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 5063905
num_examples: 3664
- name: validation
num_bytes: 1342351
num_examples: 988
- name: test
num_bytes: 1347524
num_examples: 983
download_size: 4711018
dataset_size: 7753780
- config_name: tr_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 2021772
num_examples: 1000
download_size: 1359487
dataset_size: 2021772
- config_name: uk_iu
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 18886802
num_examples: 5496
- name: validation
num_bytes: 2592721
num_examples: 672
- name: test
num_bytes: 3561164
num_examples: 892
download_size: 17344586
dataset_size: 25040687
- config_name: hsb_ufal
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 54257
num_examples: 23
- name: test
num_bytes: 1246592
num_examples: 623
download_size: 781067
dataset_size: 1300849
- config_name: ur_udtb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 19808745
num_examples: 4043
- name: validation
num_bytes: 2652349
num_examples: 552
- name: test
num_bytes: 2702596
num_examples: 535
download_size: 15901007
dataset_size: 25163690
- config_name: ug_udt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 2570856
num_examples: 1656
- name: validation
num_bytes: 1406032
num_examples: 900
- name: test
num_bytes: 1371993
num_examples: 900
download_size: 3455092
dataset_size: 5348881
- config_name: vi_vtb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1689772
num_examples: 1400
- name: validation
num_bytes: 948019
num_examples: 800
- name: test
num_bytes: 987207
num_examples: 800
download_size: 2055529
dataset_size: 3624998
- config_name: wbp_ufal
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 48533
num_examples: 55
download_size: 38326
dataset_size: 48533
- config_name: cy_ccg
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 1629465
num_examples: 704
- name: test
num_bytes: 1779002
num_examples: 953
download_size: 1984759
dataset_size: 3408467
- config_name: wo_wtb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: train
num_bytes: 2781883
num_examples: 1188
- name: validation
num_bytes: 1204839
num_examples: 449
- name: test
num_bytes: 1227124
num_examples: 470
download_size: 3042699
dataset_size: 5213846
- config_name: yo_ytb
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: upos
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': _
'14': ADV
'15': INTJ
'16': VERB
'17': AUX
- name: xpos
sequence: string
- name: feats
sequence: string
- name: head
sequence: string
- name: deprel
sequence: string
- name: deps
sequence: string
- name: misc
sequence: string
splits:
- name: test
num_bytes: 905766
num_examples: 318
download_size: 567955
dataset_size: 905766
---
# Dataset Card for Universal Dependencies Treebank
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Universal Dependencies](https://universaldependencies.org/)
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@jplu](https://github.com/jplu) for adding this dataset. |
universal_morphologies | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- ady
- ang
- ar
- arn
- ast
- az
- ba
- be
- bg
- bn
- bo
- br
- ca
- ckb
- crh
- cs
- csb
- cu
- cy
- da
- de
- dsb
- el
- en
- es
- et
- eu
- fa
- fi
- fo
- fr
- frm
- fro
- frr
- fur
- fy
- ga
- gal
- gd
- gmh
- gml
- got
- grc
- gv
- hai
- he
- hi
- hu
- hy
- is
- it
- izh
- ka
- kbd
- kjh
- kk
- kl
- klr
- kmr
- kn
- krl
- kw
- la
- liv
- lld
- lt
- lud
- lv
- mk
- mt
- mwf
- nap
- nb
- nds
- nl
- nn
- nv
- oc
- olo
- osx
- pl
- ps
- pt
- qu
- ro
- ru
- sa
- sga
- sh
- sl
- sme
- sq
- sv
- swc
- syc
- te
- tg
- tk
- tr
- tt
- uk
- ur
- uz
- vec
- vep
- vot
- xcl
- xno
- yi
- zu
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- original
task_categories:
- token-classification
- text-classification
task_ids:
- multi-class-classification
- multi-label-classification
paperswithcode_id: null
pretty_name: UniversalMorphologies
configs:
- ady
- ang
- ara
- arn
- ast
- aze
- bak
- bel
- ben
- bod
- bre
- bul
- cat
- ces
- chu
- ckb
- cor
- crh
- csb
- cym
- dan
- deu
- dsb
- ell
- eng
- est
- eus
- fao
- fas
- fin
- fra
- frm
- fro
- frr
- fry
- fur
- gal
- gla
- gle
- glv
- gmh
- gml
- got
- grc
- hai
- hbs
- heb
- hin
- hun
- hye
- isl
- ita
- izh
- kal
- kan
- kat
- kaz
- kbd
- kjh
- klr
- kmr
- krl
- lat
- lav
- lit
- liv
- lld
- lud
- mkd
- mlt
- mwf
- nap
- nav
- nds
- nld
- nno
- nob
- oci
- olo
- osx
- pol
- por
- pus
- que
- ron
- rus
- san
- sga
- slv
- sme
- spa
- sqi
- swc
- swe
- syc
- tat
- tel
- tgk
- tuk
- tur
- ukr
- urd
- uzb
- vec
- vep
- vot
- xcl
- xno
- yid
- zul
tags:
- morphology
dataset_info:
- config_name: ady
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 3428235
num_examples: 1666
download_size: 1008487
dataset_size: 3428235
- config_name: ang
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 6569844
num_examples: 1867
download_size: 1435972
dataset_size: 6569844
- config_name: ara
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 24388295
num_examples: 4134
download_size: 7155824
dataset_size: 24388295
- config_name: arn
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 124050
num_examples: 26
download_size: 20823
dataset_size: 124050
- config_name: ast
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 4913008
num_examples: 436
download_size: 1175901
dataset_size: 4913008
- config_name: aze
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1248687
num_examples: 340
download_size: 276306
dataset_size: 1248687
- config_name: bak
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1984657
num_examples: 1084
download_size: 494758
dataset_size: 1984657
- config_name: bel
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 2626405
num_examples: 1027
download_size: 739537
dataset_size: 2626405
- config_name: ben
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 746181
num_examples: 136
download_size: 251991
dataset_size: 746181
- config_name: bod
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 880074
num_examples: 1335
download_size: 197523
dataset_size: 880074
- config_name: bre
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 387583
num_examples: 44
download_size: 82159
dataset_size: 387583
- config_name: bul
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 9589915
num_examples: 2468
download_size: 3074574
dataset_size: 9589915
- config_name: cat
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 12988492
num_examples: 1547
download_size: 2902458
dataset_size: 12988492
- config_name: ces
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 21056640
num_examples: 5125
download_size: 4875288
dataset_size: 21056640
- config_name: chu
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 628237
num_examples: 152
download_size: 149081
dataset_size: 628237
- config_name: ckb
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 3843267
num_examples: 274
download_size: 914302
dataset_size: 3843267
- config_name: cor
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 83434
num_examples: 9
download_size: 17408
dataset_size: 83434
- config_name: crh
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1154595
num_examples: 1230
download_size: 186325
dataset_size: 1154595
- config_name: csb
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 82172
num_examples: 37
download_size: 14259
dataset_size: 82172
- config_name: cym
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1748431
num_examples: 183
download_size: 374501
dataset_size: 1748431
- config_name: dan
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 4204551
num_examples: 3193
download_size: 845939
dataset_size: 4204551
- config_name: deu
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 28436466
num_examples: 15060
download_size: 5966618
dataset_size: 28436466
- config_name: dsb
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 2985168
num_examples: 994
download_size: 536096
dataset_size: 2985168
- config_name: ell
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 34112450
num_examples: 11906
download_size: 11222248
dataset_size: 34112450
- config_name: eng
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 18455909
num_examples: 22765
download_size: 3285554
dataset_size: 18455909
- config_name: est
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 6125879
num_examples: 886
download_size: 1397385
dataset_size: 6125879
- config_name: eus
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 2444247
num_examples: 26
download_size: 876480
dataset_size: 2444247
- config_name: fao
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 7117926
num_examples: 3077
download_size: 1450065
dataset_size: 7117926
- config_name: fas
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 6382709
num_examples: 273
download_size: 2104724
dataset_size: 6382709
- config_name: fin
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: '1'
num_bytes: 331855860
num_examples: 46152
- name: '2'
num_bytes: 81091817
num_examples: 11491
download_size: 109324828
dataset_size: 412947677
- config_name: fra
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 58747699
num_examples: 7535
download_size: 13404983
dataset_size: 58747699
- config_name: frm
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 6015940
num_examples: 603
download_size: 1441122
dataset_size: 6015940
- config_name: fro
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 20260793
num_examples: 1700
download_size: 4945582
dataset_size: 20260793
- config_name: frr
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 526898
num_examples: 51
download_size: 112236
dataset_size: 526898
- config_name: fry
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 222067
num_examples: 85
download_size: 38227
dataset_size: 222067
- config_name: fur
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1282374
num_examples: 168
download_size: 258793
dataset_size: 1282374
- config_name: gal
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 5844604
num_examples: 486
download_size: 1259120
dataset_size: 5844604
- config_name: gla
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 126847
num_examples: 73
download_size: 25025
dataset_size: 126847
- config_name: gle
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 17065939
num_examples: 7464
download_size: 3853188
dataset_size: 17065939
- config_name: glv
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 7523
num_examples: 1
download_size: 401
dataset_size: 7523
- config_name: gmh
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 114677
num_examples: 29
download_size: 20851
dataset_size: 114677
- config_name: gml
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 233831
num_examples: 52
download_size: 47151
dataset_size: 233831
- config_name: got
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
download_size: 2
dataset_size: 0
- config_name: grc
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 6779867
num_examples: 2431
download_size: 2057514
dataset_size: 6779867
- config_name: hai
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1166240
num_examples: 41
download_size: 329817
dataset_size: 1166240
- config_name: hbs
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 132933961
num_examples: 24419
download_size: 32194142
dataset_size: 132933961
- config_name: heb
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 2211208
num_examples: 510
download_size: 498065
dataset_size: 2211208
- config_name: hin
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 10083004
num_examples: 258
download_size: 3994359
dataset_size: 10083004
- config_name: hun
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 83517327
num_examples: 14892
download_size: 19544319
dataset_size: 83517327
- config_name: hye
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 56537127
num_examples: 7033
download_size: 17810316
dataset_size: 56537127
- config_name: isl
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 12120572
num_examples: 4775
download_size: 2472980
dataset_size: 12120572
- config_name: ita
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 81905203
num_examples: 10009
download_size: 19801423
dataset_size: 81905203
- config_name: izh
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 170094
num_examples: 50
download_size: 28558
dataset_size: 170094
- config_name: kal
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 60434
num_examples: 23
download_size: 9795
dataset_size: 60434
- config_name: kan
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1052294
num_examples: 159
download_size: 318512
dataset_size: 1052294
- config_name: kat
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 12532540
num_examples: 3782
download_size: 4678979
dataset_size: 12532540
- config_name: kaz
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 62519
num_examples: 26
download_size: 14228
dataset_size: 62519
- config_name: kbd
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 511406
num_examples: 250
download_size: 133788
dataset_size: 511406
- config_name: kjh
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 193741
num_examples: 75
download_size: 44907
dataset_size: 193741
- config_name: klr
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 28909688
num_examples: 591
download_size: 7561829
dataset_size: 28909688
- config_name: kmr
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 35504487
num_examples: 15083
download_size: 8592722
dataset_size: 35504487
- config_name: krl
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 106475
num_examples: 20
download_size: 19024
dataset_size: 106475
- config_name: lat
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 81932667
num_examples: 17214
download_size: 19567252
dataset_size: 81932667
- config_name: lav
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 21219584
num_examples: 7548
download_size: 5048680
dataset_size: 21219584
- config_name: lit
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 5287268
num_examples: 1458
download_size: 1191554
dataset_size: 5287268
- config_name: liv
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 642166
num_examples: 203
download_size: 141467
dataset_size: 642166
- config_name: lld
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1240257
num_examples: 180
download_size: 278592
dataset_size: 1240257
- config_name: lud
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: mikhailovskoye
num_bytes: 11361
num_examples: 2
- name: new_written
num_bytes: 35132
num_examples: 94
- name: southern_ludian_svjatozero
num_bytes: 57276
num_examples: 71
download_size: 14697
dataset_size: 103769
- config_name: mkd
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 27800390
num_examples: 10313
download_size: 8157589
dataset_size: 27800390
- config_name: mlt
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 604577
num_examples: 112
download_size: 124584
dataset_size: 604577
- config_name: mwf
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 172890
num_examples: 29
download_size: 25077
dataset_size: 172890
- config_name: nap
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 293699
num_examples: 40
download_size: 64163
dataset_size: 293699
- config_name: nav
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 2051393
num_examples: 674
download_size: 523673
dataset_size: 2051393
- config_name: nds
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
download_size: 2
dataset_size: 0
- config_name: nld
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 8813867
num_examples: 4993
download_size: 1874427
dataset_size: 8813867
- config_name: nno
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 2704566
num_examples: 4689
download_size: 420695
dataset_size: 2704566
- config_name: nob
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 3359706
num_examples: 5527
download_size: 544432
dataset_size: 3359706
- config_name: oci
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1327716
num_examples: 174
download_size: 276611
dataset_size: 1327716
- config_name: olo
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: kotkozero
num_bytes: 7682
num_examples: 5
- name: new_written
num_bytes: 11158424
num_examples: 15293
- name: syamozero
num_bytes: 6379
num_examples: 2
- name: vedlozero
num_bytes: 6120
num_examples: 1
- name: vidlitsa
num_bytes: 54363
num_examples: 3
download_size: 2130154
dataset_size: 11232968
- config_name: osx
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 3500590
num_examples: 863
download_size: 759997
dataset_size: 3500590
- config_name: pol
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 30855235
num_examples: 10185
download_size: 6666266
dataset_size: 30855235
- config_name: por
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 48530106
num_examples: 4001
download_size: 10982524
dataset_size: 48530106
- config_name: pus
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1176421
num_examples: 395
download_size: 297043
dataset_size: 1176421
- config_name: que
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 27823298
num_examples: 1006
download_size: 6742890
dataset_size: 27823298
- config_name: ron
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 13187957
num_examples: 4405
download_size: 2990521
dataset_size: 13187957
- config_name: rus
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 77484460
num_examples: 28068
download_size: 25151401
dataset_size: 77484460
- config_name: san
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 5500001
num_examples: 917
download_size: 1788739
dataset_size: 5500001
- config_name: sga
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 190479
num_examples: 49
download_size: 43469
dataset_size: 190479
- config_name: slv
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 9071547
num_examples: 2535
download_size: 1911039
dataset_size: 9071547
- config_name: sme
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 9764653
num_examples: 2103
download_size: 2050015
dataset_size: 9764653
- config_name: spa
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 61472202
num_examples: 5460
download_size: 14386131
dataset_size: 61472202
- config_name: sqi
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 5422400
num_examples: 589
download_size: 1261468
dataset_size: 5422400
- config_name: swc
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1694529
num_examples: 100
download_size: 414624
dataset_size: 1694529
- config_name: swe
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 12897827
num_examples: 10553
download_size: 2709960
dataset_size: 12897827
- config_name: syc
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 553392
num_examples: 160
download_size: 130000
dataset_size: 553392
- config_name: tat
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1203356
num_examples: 1283
download_size: 194277
dataset_size: 1203356
- config_name: tel
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 285769
num_examples: 127
download_size: 95069
dataset_size: 285769
- config_name: tgk
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 25276
num_examples: 75
download_size: 2366
dataset_size: 25276
- config_name: tuk
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 127712
num_examples: 68
download_size: 20540
dataset_size: 127712
- config_name: tur
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 44723850
num_examples: 3579
download_size: 11552946
dataset_size: 44723850
- config_name: ukr
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 3299187
num_examples: 1493
download_size: 870660
dataset_size: 3299187
- config_name: urd
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 2197237
num_examples: 182
download_size: 685613
dataset_size: 2197237
- config_name: uzb
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 196802
num_examples: 15
download_size: 41921
dataset_size: 196802
- config_name: vec
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 2892987
num_examples: 368
download_size: 615931
dataset_size: 2892987
- config_name: vep
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: central_eastern
num_bytes: 500981
num_examples: 65
- name: central_western
num_bytes: 2527618
num_examples: 111
- name: new_written
num_bytes: 79899484
num_examples: 9304
- name: northern
num_bytes: 175242
num_examples: 21
- name: southern
num_bytes: 206289
num_examples: 17
download_size: 20131151
dataset_size: 83309614
- config_name: vot
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 217663
num_examples: 55
download_size: 37179
dataset_size: 217663
- config_name: xcl
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 16856327
num_examples: 4300
download_size: 4950513
dataset_size: 16856327
- config_name: xno
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 48938
num_examples: 5
download_size: 9641
dataset_size: 48938
- config_name: yid
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 1409582
num_examples: 803
download_size: 429391
dataset_size: 1409582
- config_name: zul
features:
- name: lemma
dtype: string
- name: forms
sequence:
- name: word
dtype: string
- name: Aktionsart
sequence:
class_label:
names:
0: STAT
1: DYN
2: TEL
3: ATEL
4: PCT
5: DUR
6: ACH
7: ACCMP
8: SEMEL
9: ACTY
- name: Animacy
sequence:
class_label:
names:
0: ANIM
1: INAN
2: HUM
3: NHUM
- name: Argument_Marking
sequence:
class_label:
names:
0: ARGNO1S
1: ARGNO2S
2: ARGNO3S
3: ARGNO1P
4: ARGNO2P
5: ARGNO3P
6: ARGAC1S
7: ARGAC2S
8: ARGAC3S
9: ARGAC1P
10: ARGAC2P
11: ARGAC3P
12: ARGAB1S
13: ARGAB2S
14: ARGAB3S
15: ARGAB1P
16: ARGAB2P
17: ARGAB3P
18: ARGER1S
19: ARGER2S
20: ARGER3S
21: ARGER1P
22: ARGER2P
23: ARGER3P
24: ARGDA1S
25: ARGDA2S
26: ARGDA3S
27: ARGDA1P
28: ARGDA2P
29: ARGDA3P
30: ARGBE1S
31: ARGBE2S
32: ARGBE3S
33: ARGBE1P
34: ARGBE2P
35: ARGBE3P
- name: Aspect
sequence:
class_label:
names:
0: IPFV
1: PFV
2: PRF
3: PROG
4: PROSP
5: ITER
6: HAB
- name: Case
sequence:
class_label:
names:
0: NOM
1: ACC
2: ERG
3: ABS
4: NOMS
5: DAT
6: BEN
7: PRP
8: GEN
9: REL
10: PRT
11: INS
12: COM
13: VOC
14: COMPV
15: EQTV
16: PRIV
17: PROPR
18: AVR
19: FRML
20: TRANS
21: BYWAY
22: INTER
23: AT
24: POST
25: IN
26: CIRC
27: ANTE
28: APUD
29: 'ON'
30: ONHR
31: ONVR
32: SUB
33: REM
34: PROXM
35: ESS
36: ALL
37: ABL
38: APPRX
39: TERM
- name: Comparison
sequence:
class_label:
names:
0: CMPR
1: SPRL
2: AB
3: RL
4: EQT
- name: Definiteness
sequence:
class_label:
names:
0: DEF
1: INDF
2: SPEC
3: NSPEC
- name: Deixis
sequence:
class_label:
names:
0: PROX
1: MED
2: REMT
3: REF1
4: REF2
5: NOREF
6: PHOR
7: VIS
8: NVIS
9: ABV
10: EVEN
11: BEL
- name: Evidentiality
sequence:
class_label:
names:
0: FH
1: DRCT
2: SEN
3: VISU
4: NVSEN
5: AUD
6: NFH
7: QUOT
8: RPRT
9: HRSY
10: INFER
11: ASSUM
- name: Finiteness
sequence:
class_label:
names:
0: FIN
1: NFIN
- name: Gender
sequence:
class_label:
names:
0: MASC
1: FEM
2: NEUT
3: NAKH1
4: NAKH2
5: NAKH3
6: NAKH4
7: NAKH5
8: NAKH6
9: NAKH7
10: NAKH8
11: BANTU1
12: BANTU2
13: BANTU3
14: BANTU4
15: BANTU5
16: BANTU6
17: BANTU7
18: BANTU8
19: BANTU9
20: BANTU10
21: BANTU11
22: BANTU12
23: BANTU13
24: BANTU14
25: BANTU15
26: BANTU16
27: BANTU17
28: BANTU18
29: BANTU19
30: BANTU20
31: BANTU21
32: BANTU22
33: BANTU23
- name: Information_Structure
sequence:
class_label:
names:
0: TOP
1: FOC
- name: Interrogativity
sequence:
class_label:
names:
0: DECL
1: INT
- name: Language_Specific
sequence:
class_label:
names:
0: LGSPEC1
1: LGSPEC2
2: LGSPEC3
3: LGSPEC4
4: LGSPEC5
5: LGSPEC6
6: LGSPEC7
7: LGSPEC8
8: LGSPEC9
9: LGSPEC10
- name: Mood
sequence:
class_label:
names:
0: IND
1: SBJV
2: REAL
3: IRR
4: AUPRP
5: AUNPRP
6: IMP
7: COND
8: PURP
9: INTEN
10: POT
11: LKLY
12: ADM
13: OBLIG
14: DEB
15: PERM
16: DED
17: SIM
18: OPT
- name: Number
sequence:
class_label:
names:
0: SG
1: PL
2: GRPL
3: DU
4: TRI
5: PAUC
6: GRPAUC
7: INVN
- name: Part_Of_Speech
sequence:
class_label:
names:
0: N
1: PROPN
2: ADJ
3: PRO
4: CLF
5: ART
6: DET
7: V
8: ADV
9: AUX
10: V.PTCP
11: V.MSDR
12: V.CVB
13: ADP
14: COMP
15: CONJ
16: NUM
17: PART
18: INTJ
- name: Person
sequence:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: INCL
6: EXCL
7: PRX
8: OBV
- name: Polarity
sequence:
class_label:
names:
0: POS
1: NEG
- name: Politeness
sequence:
class_label:
names:
0: INFM
1: FORM
2: ELEV
3: HUMB
4: POL
5: AVOID
6: LOW
7: HIGH
8: STELEV
9: STSUPR
10: LIT
11: FOREG
12: COL
- name: Possession
sequence:
class_label:
names:
0: ALN
1: NALN
2: PSS1S
3: PSS2S
4: PSS2SF
5: PSS2SM
6: PSS2SINFM
7: PSS2SFORM
8: PSS3S
9: PSS3SF
10: PSS3SM
11: PSS1D
12: PSS1DI
13: PSS1DE
14: PSS2D
15: PSS2DM
16: PSS2DF
17: PSS3D
18: PSS3DF
19: PSS3DM
20: PSS1P
21: PSS1PI
22: PSS1PE
23: PSS2P
24: PSS2PF
25: PSS2PM
26: PSS3PF
27: PSS3PM
- name: Switch_Reference
sequence:
class_label:
names:
0: SS
1: SSADV
2: DS
3: DSADV
4: OR
5: SIMMA
6: SEQMA
7: LOG
- name: Tense
sequence:
class_label:
names:
0: PRS
1: PST
2: FUT
3: IMMED
4: HOD
5: 1DAY
6: RCT
7: RMT
- name: Valency
sequence:
class_label:
names:
0: IMPRS
1: INTR
2: TR
3: DITR
4: REFL
5: RECP
6: CAUS
7: APPL
- name: Voice
sequence:
class_label:
names:
0: ACT
1: MID
2: PASS
3: ANTIP
4: DIR
5: INV
6: AGFOC
7: PFOC
8: LFOC
9: BFOC
10: ACFOC
11: IFOC
12: CFOC
- name: Other
sequence: string
splits:
- name: train
num_bytes: 7152507
num_examples: 566
download_size: 1581402
dataset_size: 7152507
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [UniMorph Homepage](https://unimorph.github.io/)
- **Repository:** [List of UniMorph repositories](https://github.com/unimorph)
- **Paper:** [The Composition and Use of the Universal Morphological Feature Schema (UniMorph Schema)](https://unimorph.github.io/doc/unimorph-schema.pdf)
- **Point of Contact:** [Arya McCarthy](mailto:arya@jhu.edu)
### Dataset Summary
The Universal Morphology (UniMorph) project is a collaborative effort to improve how NLP handles complex morphology in the world’s languages.
The goal of UniMorph is to annotate morphological data in a universal schema that allows an inflected word from any language to be defined by its lexical meaning,
typically carried by the lemma, and by a rendering of its inflectional form in terms of a bundle of morphological features from our schema.
The specification of the schema is described in Sylak-Glassman (2016).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The current version of the UniMorph dataset covers 110 languages.
## Dataset Structure
### Data Instances
Each data instance comprises of a lemma and a set of possible realizations with morphological and meaning annotations. For example:
```
{'forms': {'Aktionsart': [[], [], [], [], []],
'Animacy': [[], [], [], [], []],
...
'Finiteness': [[], [], [], [1], []],
...
'Number': [[], [], [0], [], []],
'Other': [[], [], [], [], []],
'Part_Of_Speech': [[7], [10], [7], [7], [10]],
...
'Tense': [[1], [1], [0], [], [0]],
...
'word': ['ablated', 'ablated', 'ablates', 'ablate', 'ablating']},
'lemma': 'ablate'}
```
### Data Fields
Each instance in the dataset has the following fields:
- `lemma`: the common lemma for all all_forms
- `forms`: all annotated forms for this lemma, with:
- `word`: the full word form
- [`category`]: a categorical variable denoting one or several tags in a category (several to represent composite tags, originally denoted with `A+B`). The full list of categories and possible tags for each can be found [here](https://github.com/unimorph/unimorph.github.io/blob/master/unimorph-schema-json/dimensions-to-features.json)
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@yjernite](https://github.com/yjernite) for adding this dataset. |
urdu_fake_news | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- ur
license:
- unknown
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- fact-checking
- intent-classification
pretty_name: Bend the Truth (Urdu Fake News)
dataset_info:
features:
- name: news
dtype: string
- name: label
dtype:
class_label:
names:
'0': Fake
'1': Real
- name: category
dtype:
class_label:
names:
'0': bus
'1': hlth
'2': sp
'3': tch
'4': sbz
splits:
- name: train
num_bytes: 1762905
num_examples: 638
- name: test
num_bytes: 799587
num_examples: 262
download_size: 1042653
dataset_size: 2562492
---
# Dataset Card for Bend the Truth (Urdu Fake News)
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Github](https://github.com/MaazAmjad/Datasets-for-Urdu-news/)
- **Repository:** [Github](https://github.com/MaazAmjad/Datasets-for-Urdu-news/)
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [Maaz Amjad](https://github.com/MaazAmjad)
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- news: a string in urdu
- label: the label indicating whethere the provided news is real or fake.
- category: The intent of the news being presented. The available 5 classes are Sports, Health, Technology, Entertainment, and Business.
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@chaitnayabasava](https://github.com/chaitnayabasava) for adding this dataset. |
urdu_sentiment_corpus | ---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- ur
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: urdu-sentiment-corpus
pretty_name: Urdu Sentiment Corpus (USC)
dataset_info:
features:
- name: sentence
dtype: string
- name: sentiment
dtype:
class_label:
names:
'0': P
'1': N
'2': O
splits:
- name: train
num_bytes: 161190
num_examples: 1000
download_size: 51583
dataset_size: 161190
---
# Dataset Card for Urdu Sentiment Corpus (USC)
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Github](https://github.com/MuhammadYaseenKhan/Urdu-Sentiment-Corpus)
- **Repository:** [Github](https://github.com/MuhammadYaseenKhan/Urdu-Sentiment-Corpus)
- **Paper:** [IEEE](https://ieeexplore.ieee.org/abstract/document/9080043)
- **Leaderboard:**
- **Point of Contact:** [Muhammad Yaseen Khan](https://github.com/MuhammadYaseenKhan)
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- sentences: The Urdu tweet
- sentiment: The sentiment that was exhibited in the tweet, which can be Positive(P) or Negative(N) or Objective(O).
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@chaitnayabasava](https://github.com/chaitnayabasava) for adding this dataset. |
vctk | ---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: VCTK
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
paperswithcode_id: vctk
train-eval-index:
- config: main
task: automatic-speech-recognition
task_id: speech_recognition
splits:
train_split: train
col_mapping:
file: path
text: text
metrics:
- type: wer
name: WER
- type: cer
name: CER
dataset_info:
features:
- name: speaker_id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 48000
- name: file
dtype: string
- name: text
dtype: string
- name: text_id
dtype: string
- name: age
dtype: string
- name: gender
dtype: string
- name: accent
dtype: string
- name: region
dtype: string
- name: comment
dtype: string
config_name: main
splits:
- name: train
num_bytes: 40103111
num_examples: 88156
download_size: 11747302977
dataset_size: 40103111
---
# Dataset Card for VCTK
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Edinburg DataShare](https://doi.org/10.7488/ds/2645)
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This CSTR VCTK Corpus includes speech data uttered by 110 English speakers with various accents. Each speaker reads out about 400 sentences, which were selected from a newspaper, the rainbow passage and an elicitation paragraph used for the speech accent archive.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
A data point comprises the path to the audio file, called `file` and its transcription, called `text`.
```
{
'speaker_id': 'p225',
'text_id': '001',
'text': 'Please call Stella.',
'age': '23',
'gender': 'F',
'accent': 'English',
'region': 'Southern England',
'file': '/datasets/downloads/extracted/8ed7dad05dfffdb552a3699777442af8e8ed11e656feb277f35bf9aea448f49e/wav48_silence_trimmed/p225/p225_001_mic1.flac',
'audio':
{
'path': '/datasets/downloads/extracted/8ed7dad05dfffdb552a3699777442af8e8ed11e656feb277f35bf9aea448f49e/wav48_silence_trimmed/p225/p225_001_mic1.flac',
'array': array([0.00485229, 0.00689697, 0.00619507, ..., 0.00811768, 0.00836182, 0.00854492], dtype=float32),
'sampling_rate': 48000
},
'comment': ''
}
```
Each audio file is a single-channel FLAC with a sample rate of 48000 Hz.
### Data Fields
Each row consists of the following fields:
- `speaker_id`: Speaker ID
- `audio`: Audio recording
- `file`: Path to audio file
- `text`: Text transcription of corresponding audio
- `text_id`: Text ID
- `age`: Speaker's age
- `gender`: Speaker's gender
- `accent`: Speaker's accent
- `region`: Speaker's region, if annotation exists
- `comment`: Miscellaneous comments, if any
### Data Splits
The dataset has no predefined splits.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Public Domain, Creative Commons Attribution 4.0 International Public License ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode))
### Citation Information
```bibtex
@inproceedings{Veaux2017CSTRVC,
title = {CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit},
author = {Christophe Veaux and Junichi Yamagishi and Kirsten MacDonald},
year = 2017
}
```
### Contributions
Thanks to [@jaketae](https://github.com/jaketae) for adding this dataset. |
vivos | ---
pretty_name: VIVOS
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- vi
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
dataset_info:
features:
- name: speaker_id
dtype: string
- name: path
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: sentence
dtype: string
splits:
- name: train
num_bytes: 1722002133
num_examples: 11660
- name: test
num_bytes: 86120227
num_examples: 760
download_size: 1475540500
dataset_size: 1808122360
---
# Dataset Card for VIVOS
## Table of Contents
- [Dataset Card for VIVOS](#dataset-card-for-vivos)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://doi.org/10.5281/zenodo.7068130
- **Repository:** [Needs More Information]
- **Paper:** [A non-expert Kaldi recipe for Vietnamese Speech Recognition System](https://aclanthology.org/W16-5207/)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [AILAB](mailto:ailab@hcmus.edu.vn)
### Dataset Summary
VIVOS is a free Vietnamese speech corpus consisting of 15 hours of recording speech prepared for Vietnamese Automatic Speech Recognition task.
The corpus was prepared by AILAB, a computer science lab of VNUHCM - University of Science, with Prof. Vu Hai Quan is the head of.
We publish this corpus in hope to attract more scientists to solve Vietnamese speech recognition problems.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Vietnamese
## Dataset Structure
### Data Instances
A typical data point comprises the path to the audio file, called `path` and its transcription, called `sentence`. Some additional information about the speaker and the passage which contains the transcription is provided.
```
{'speaker_id': 'VIVOSSPK01',
'path': '/home/admin/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/vivos/train/waves/VIVOSSPK01/VIVOSSPK01_R001.wav',
'audio': {'path': '/home/admin/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/vivos/train/waves/VIVOSSPK01/VIVOSSPK01_R001.wav',
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
'sampling_rate': 16000},
'sentence': 'KHÁCH SẠN'}
```
### Data Fields
- speaker_id: An id for which speaker (voice) made the recording
- path: The path to the audio file
- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- sentence: The sentence the user was prompted to speak
### Data Splits
The speech material has been subdivided into portions for train and test.
Speech was recorded in a quiet environment with high quality microphone, speakers were asked to read one sentence at a time.
| | Train | Test |
| ---------------- | ----- | ----- |
| Speakers | 46 | 19 |
| Utterances | 11660 | 760 |
| Duration | 14:55 | 00:45 |
| Unique Syllables | 4617 | 1692 |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Dataset provided for research purposes only. Please check dataset license for additional information.
## Additional Information
### Dataset Curators
The dataset was initially prepared by AILAB, a computer science lab of VNUHCM - University of Science.
### Licensing Information
Public Domain, Creative Commons Attribution NonCommercial ShareAlike v4.0 ([CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode))
### Citation Information
```
@inproceedings{luong-vu-2016-non,
title = "A non-expert {K}aldi recipe for {V}ietnamese Speech Recognition System",
author = "Luong, Hieu-Thi and
Vu, Hai-Quan",
booktitle = "Proceedings of the Third International Workshop on Worldwide Language Service Infrastructure and Second Workshop on Open Infrastructures and Analysis Frameworks for Human Language Technologies ({WLSI}/{OIAF}4{HLT}2016)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-5207",
pages = "51--55",
}
```
### Contributions
Thanks to [@binh234](https://github.com/binh234) for adding this dataset. |
web_nlg | ---
annotations_creators:
- found
language_creators:
- crowdsourced
language:
- en
- ru
license:
- cc-by-sa-3.0
- cc-by-nc-sa-4.0
- gfdl
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-db_pedia
- original
task_categories:
- tabular-to-text
task_ids:
- rdf-to-text
paperswithcode_id: webnlg
pretty_name: WebNLG
configs:
- release_v1
- release_v2
- release_v2.1
- release_v2.1_constrained
- release_v2_constrained
- release_v3.0_en
- release_v3.0_ru
- webnlg_challenge_2017
dataset_info:
- config_name: webnlg_challenge_2017
features:
- name: category
dtype: string
- name: size
dtype: int32
- name: eid
dtype: string
- name: original_triple_sets
sequence:
- name: otriple_set
sequence: string
- name: modified_triple_sets
sequence:
- name: mtriple_set
sequence: string
- name: shape
dtype: string
- name: shape_type
dtype: string
- name: lex
sequence:
- name: comment
dtype: string
- name: lid
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: test_category
dtype: string
- name: dbpedia_links
sequence: string
- name: links
sequence: string
splits:
- name: train
num_bytes: 5594812
num_examples: 6940
- name: dev
num_bytes: 706653
num_examples: 872
- name: test
num_bytes: 3122533
num_examples: 4615
download_size: 25499351
dataset_size: 9423998
- config_name: release_v1
features:
- name: category
dtype: string
- name: size
dtype: int32
- name: eid
dtype: string
- name: original_triple_sets
sequence:
- name: otriple_set
sequence: string
- name: modified_triple_sets
sequence:
- name: mtriple_set
sequence: string
- name: shape
dtype: string
- name: shape_type
dtype: string
- name: lex
sequence:
- name: comment
dtype: string
- name: lid
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: test_category
dtype: string
- name: dbpedia_links
sequence: string
- name: links
sequence: string
splits:
- name: full
num_bytes: 11684308
num_examples: 14237
download_size: 25499351
dataset_size: 11684308
- config_name: release_v2
features:
- name: category
dtype: string
- name: size
dtype: int32
- name: eid
dtype: string
- name: original_triple_sets
sequence:
- name: otriple_set
sequence: string
- name: modified_triple_sets
sequence:
- name: mtriple_set
sequence: string
- name: shape
dtype: string
- name: shape_type
dtype: string
- name: lex
sequence:
- name: comment
dtype: string
- name: lid
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: test_category
dtype: string
- name: dbpedia_links
sequence: string
- name: links
sequence: string
splits:
- name: train
num_bytes: 10830413
num_examples: 12876
- name: dev
num_bytes: 1360033
num_examples: 1619
- name: test
num_bytes: 1324934
num_examples: 1600
download_size: 25499351
dataset_size: 13515380
- config_name: release_v2_constrained
features:
- name: category
dtype: string
- name: size
dtype: int32
- name: eid
dtype: string
- name: original_triple_sets
sequence:
- name: otriple_set
sequence: string
- name: modified_triple_sets
sequence:
- name: mtriple_set
sequence: string
- name: shape
dtype: string
- name: shape_type
dtype: string
- name: lex
sequence:
- name: comment
dtype: string
- name: lid
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: test_category
dtype: string
- name: dbpedia_links
sequence: string
- name: links
sequence: string
splits:
- name: train
num_bytes: 10853434
num_examples: 12895
- name: dev
num_bytes: 1421590
num_examples: 1594
- name: test
num_bytes: 1243182
num_examples: 1606
download_size: 25499351
dataset_size: 13518206
- config_name: release_v2.1
features:
- name: category
dtype: string
- name: size
dtype: int32
- name: eid
dtype: string
- name: original_triple_sets
sequence:
- name: otriple_set
sequence: string
- name: modified_triple_sets
sequence:
- name: mtriple_set
sequence: string
- name: shape
dtype: string
- name: shape_type
dtype: string
- name: lex
sequence:
- name: comment
dtype: string
- name: lid
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: test_category
dtype: string
- name: dbpedia_links
sequence: string
- name: links
sequence: string
splits:
- name: train
num_bytes: 10848793
num_examples: 12876
- name: dev
num_bytes: 1362072
num_examples: 1619
- name: test
num_bytes: 1325860
num_examples: 1600
download_size: 25499351
dataset_size: 13536725
- config_name: release_v2.1_constrained
features:
- name: category
dtype: string
- name: size
dtype: int32
- name: eid
dtype: string
- name: original_triple_sets
sequence:
- name: otriple_set
sequence: string
- name: modified_triple_sets
sequence:
- name: mtriple_set
sequence: string
- name: shape
dtype: string
- name: shape_type
dtype: string
- name: lex
sequence:
- name: comment
dtype: string
- name: lid
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: test_category
dtype: string
- name: dbpedia_links
sequence: string
- name: links
sequence: string
splits:
- name: train
num_bytes: 11040016
num_examples: 12895
- name: dev
num_bytes: 1284044
num_examples: 1594
- name: test
num_bytes: 1212665
num_examples: 1606
download_size: 25499351
dataset_size: 13536725
- config_name: release_v3.0_en
features:
- name: category
dtype: string
- name: size
dtype: int32
- name: eid
dtype: string
- name: original_triple_sets
sequence:
- name: otriple_set
sequence: string
- name: modified_triple_sets
sequence:
- name: mtriple_set
sequence: string
- name: shape
dtype: string
- name: shape_type
dtype: string
- name: lex
sequence:
- name: comment
dtype: string
- name: lid
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: test_category
dtype: string
- name: dbpedia_links
sequence: string
- name: links
sequence: string
splits:
- name: train
num_bytes: 11084860
num_examples: 13211
- name: dev
num_bytes: 1394243
num_examples: 1667
- name: test
num_bytes: 4039282
num_examples: 5713
download_size: 25499351
dataset_size: 16518385
- config_name: release_v3.0_ru
features:
- name: category
dtype: string
- name: size
dtype: int32
- name: eid
dtype: string
- name: original_triple_sets
sequence:
- name: otriple_set
sequence: string
- name: modified_triple_sets
sequence:
- name: mtriple_set
sequence: string
- name: shape
dtype: string
- name: shape_type
dtype: string
- name: lex
sequence:
- name: comment
dtype: string
- name: lid
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: test_category
dtype: string
- name: dbpedia_links
sequence: string
- name: links
sequence: string
splits:
- name: train
num_bytes: 9550340
num_examples: 5573
- name: dev
num_bytes: 1314226
num_examples: 790
- name: test
num_bytes: 3656501
num_examples: 3410
download_size: 25499351
dataset_size: 14521067
---
# Dataset Card for WebNLG
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [WebNLG challenge website](https://webnlg-challenge.loria.fr/)
- **Repository:** [WebNLG GitLab repository](https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/)
- **Paper:** [Creating Training Corpora for NLG Micro-Planning](https://www.aclweb.org/anthology/P17-1017.pdf)
- **Leaderboard:** [WebNLG leaderboards](https://gerbil-nlg.dice-research.org/gerbil/webnlg2020results)
- **Point of Contact:** [anastasia.shimorina@loria.fr](anastasia.shimorina@loria.fr)
### Dataset Summary
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
```
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
```
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
### Supported Tasks and Leaderboards
The dataset supports a Structured to Text task which requires a model takes a set of RDF (Resource Description Format) triples from a database (DBpedia) of the form (subject, property, object) as input and write out a natural language sentence expressing the information contained in the triples. The dataset has supportd two challenges: the [WebNLG2017](https://www.aclweb.org/anthology/W17-3518/) and [WebNLG2020](https://gerbil-nlg.dice-research.org/gerbil/webnlg2020results) challenge. Results were ordered by their [METEOR](https://huggingface.co/metrics/meteor) to the reference, but the leaderboards report a range of other metrics including [BLEU](https://huggingface.co/metrics/bleu), [BERTscore](https://huggingface.co/metrics/bertscore), and [BLEURT](https://huggingface.co/metrics/bleurt). The v3 release (`release_v3.0_en`, `release_v3.0_ru`) for the WebNLG2020 challenge also supports a semantic `parsing` task.
### Languages
All releases contain English (`en`) data. The v3 release (`release_v3.0_ru`) also contains Russian (`ru`) examples.
## Dataset Structure
### Data Instances
A typical example contains the original RDF triples in the set, a modified version which presented to crowd workers, and a set of possible verbalizations for this set of triples:
```
{'2017_test_category': '',
'category': 'Politician',
'eid': 'Id10',
'lex': {'comment': ['good', 'good', 'good'],
'lid': ['Id1', 'Id2', 'Id3'],
'text': ['World War II had Chiang Kai-shek as a commander and United States Army soldier Abner W. Sibal.',
'Abner W. Sibal served in the United States Army during the Second World War and during that war Chiang Kai-shek was one of the commanders.',
'Abner W. Sibal, served in the United States Army and fought in World War II, one of the commanders of which, was Chiang Kai-shek.']},
'modified_triple_sets': {'mtriple_set': [['Abner_W._Sibal | battle | World_War_II',
'World_War_II | commander | Chiang_Kai-shek',
'Abner_W._Sibal | militaryBranch | United_States_Army']]},
'original_triple_sets': {'otriple_set': [['Abner_W._Sibal | battles | World_War_II', 'World_War_II | commander | Chiang_Kai-shek', 'Abner_W._Sibal | branch | United_States_Army'],
['Abner_W._Sibal | militaryBranch | United_States_Army',
'Abner_W._Sibal | battles | World_War_II',
'World_War_II | commander | Chiang_Kai-shek']]},
'shape': '(X (X) (X (X)))',
'shape_type': 'mixed',
'size': 3}
```
### Data Fields
The following fields can be found in the instances:
- `category`: the category of the DBpedia entities present in the RDF triples.
- `eid`: an example ID, only unique per split per category.
- `size`: number of RDF triples in the set.
- `shape`: (since v2) Each set of RDF-triples is a tree, which is characterised by its shape and shape type. `shape` is a string representation of the tree with nested parentheses where X is a node (see [Newick tree format](https://en.wikipedia.org/wiki/Newick_format))
- `shape_type`: (since v2) is a type of the tree shape, which can be: `chain` (the object of one triple is the subject of the other); `sibling` (triples with a shared subject); `mixed` (both chain and sibling types present).
- `test_category`: (for `webnlg_challenge_2017` and `v3`) tells whether the set of RDF triples was present in the training set or not. Several splits of the test set are available: with and without references, and for RDF-to-text generation / for semantic parsing.
- `lex`: the lexicalizations, with:
- `text`: the text to be predicted.
- `lid`: a lexicalization ID, unique per example.
- `comment`: the lexicalizations were rated by crowd workers are either `good` or `bad`
- `lang`: (for `release_v3.0_ru`) the language used because original English texts were kept in the Russian version.
Russian data has additional optional fields comparing to English:
- `dbpedialinks`: RDF triples extracted from DBpedia between English and Russian entities by means of the property `sameAs`.
- `links`: RDF triples created manually for some entities to serve as pointers to translators. There are two types of them:
* with `sameAs` (`Spaniards | sameAs | испанцы`)
* with `includes` (`Tomatoes, guanciale, cheese, olive oil | includes | гуанчиале`). Those were mostly created for string literals to translate some parts of them.
### Data Splits
For `v3.0` releases:
| English (v3.0) | Train | Dev | Test (data-to-text) |
|-----------------|--------|-------|-------|
| **triple sets** | 13,211 | 1,667 | 1,779 |
| **texts** | 35,426 | 4,464 | 5,150 |
|**properties** | 372 | 290 | 220 |
| Russian (v3.0) | Train | Dev | Test (data-to-text) |
|-----------------|--------|-------|---------------------|
| **triple sets** | 5,573 | 790 | 1,102 |
| **texts** | 14,239 | 2,026 | 2,780 |
|**properties** | 226 | 115 | 192 |
## Dataset Creation
### Curation Rationale
The WebNLG dataset was created to promote the development _(i)_ of RDF verbalisers and _(ii)_ of microplanners able to handle a wide range of linguistic constructions. The dataset aims at covering knowledge in different domains ("categories"). The same properties and entities can appear in several categories.
### Source Data
The data was compiled from raw DBpedia triples. [This paper](https://www.aclweb.org/anthology/C16-1141/) explains how the triples were selected.
#### Initial Data Collection and Normalization
Initial triples extracted from DBpedia were modified in several ways. See [official documentation](https://webnlg-challenge.loria.fr/docs/) for the most frequent changes that have been made. An original tripleset and a modified tripleset usually represent a one-to-one mapping. However, there are cases with many-to-one mappings when several original triplesets are mapped to one modified tripleset.
Entities that served as roots of RDF trees are listed in [this file](https://gitlab.com/shimorina/webnlg-dataset/-/blob/master/supplementary/entities_dict.json).
The English WebNLG 2020 dataset (v3.0) for training comprises data-text pairs for 16 distinct DBpedia categories:
- The 10 seen categories used in the 2017 version: Airport, Astronaut, Building, City, ComicsCharacter, Food, Monument, SportsTeam, University, and WrittenWork.
- The 5 unseen categories of 2017, which are now part of the seen data: Athlete, Artist, CelestialBody, MeanOfTransportation, Politician.
- 1 new category: Company.
The Russian dataset (v3.0) comprises data-text pairs for 9 distinct categories: Airport, Astronaut, Building, CelestialBody, ComicsCharacter, Food, Monument, SportsTeam, and University.
#### Who are the source language producers?
There are no source texts, all textual material was compiled during the annotation process.
### Annotations
#### Annotation process
Annotators were first asked to create sentences that verbalise single triples. In a second round, annotators were asked to combine single-triple sentences together into sentences that cover 2 triples. And so on until 7 triples. Quality checks were performed to ensure the quality of the annotations. See Section 3.3 in [the dataset paper](https://www.aclweb.org/anthology/P17-1017.pdf).
Russian data was translated from English with an MT system and then was post-edited by crowdworkers. See Section 2.2 of [this paper](https://webnlg-challenge.loria.fr/files/2020.webnlg-papers.7.pdf).
#### Who are the annotators?
All references were collected through crowdsourcing platforms (CrowdFlower/Figure 8 and Amazon Mechanical Turk). For Russian, post-editing was done using the Yandex.Toloka crowdsourcing platform.
### Personal and Sensitive Information
Neither the dataset as published or the annotation process involves the collection or sharing of any kind of personal / demographic information.
## Considerations for Using the Data
### Social Impact of Dataset
We do not foresee any negative social impact in particular from this dataset or task.
Positive outlooks: Being able to generate good quality text from RDF data would permit, e.g., making this data more accessible to lay users, enriching existing text with information drawn from knowledge bases such as DBpedia or describing, comparing and relating entities present in these knowledge bases.
### Discussion of Biases
This dataset is created using DBpedia RDF triples which naturally exhibit biases that have been found to exist in Wikipedia such as some forms of, e.g., gender bias.
The choice of [entities](https://gitlab.com/shimorina/webnlg-dataset/-/blob/master/supplementary/entities_dict.json), described by RDF trees, was not controlled. As such, they may contain gender biases; for instance, all the astronauts described by RDF triples are male. Hence, in texts, pronouns _he/him/his_ occur more often. Similarly, entities can be related to the Western culture more often than to other cultures.
### Other Known Limitations
The quality of the crowdsourced references is limited, in particular in terms of fluency/naturalness of the collected texts.
Russian data was machine-translated and then post-edited by crowdworkers, so some examples may still exhibit issues related to bad translations.
## Additional Information
### Dataset Curators
The principle curator of the dataset is Anastasia Shimorina (Université de Lorraine / LORIA, France). Throughout the WebNLG releases, several people contributed to their construction: Claire Gardent (CNRS / LORIA, France), Shashi Narayan (Google, UK), Laura Perez-Beltrachini (University of Edinburgh, UK), Elena Khasanova, and Thiago Castro Ferreira (Federal University of Minas Gerais, Brazil).
The dataset construction was funded by the French National Research Agency (ANR).
### Licensing Information
The dataset uses the `cc-by-nc-sa-4.0` license. The source DBpedia project uses the `cc-by-sa-3.0` and `gfdl-1.1` licenses.
### Citation Information
- If you use the WebNLG corpus, cite:
```
@inproceedings{web_nlg,
author = {Claire Gardent and
Anastasia Shimorina and
Shashi Narayan and
Laura Perez{-}Beltrachini},
editor = {Regina Barzilay and
Min{-}Yen Kan},
title = {Creating Training Corpora for {NLG} Micro-Planners},
booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, {ACL} 2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers},
pages = {179--188},
publisher = {Association for Computational Linguistics},
year = {2017},
url = {https://doi.org/10.18653/v1/P17-1017},
doi = {10.18653/v1/P17-1017}
}
```
- If you use `release_v2_constrained` in particular, cite:
```
@InProceedings{shimorina2018handling,
author = "Shimorina, Anastasia
and Gardent, Claire",
title = "Handling Rare Items in Data-to-Text Generation",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
year = "2018",
publisher = "Association for Computational Linguistics",
pages = "360--370",
location = "Tilburg University, The Netherlands",
url = "http://aclweb.org/anthology/W18-6543"
}
```
### Contributions
Thanks to [@Shimorina](https://github.com/Shimorina), [@yjernite](https://github.com/yjernite) for adding this dataset. |
web_of_science | ---
language:
- en
paperswithcode_id: web-of-science-dataset
pretty_name: Web of Science Dataset
dataset_info:
- config_name: WOS5736
features:
- name: input_data
dtype: string
- name: label
dtype: int32
- name: label_level_1
dtype: int32
- name: label_level_2
dtype: int32
splits:
- name: train
num_bytes: 8051533
num_examples: 5736
download_size: 60222421
dataset_size: 8051533
- config_name: WOS11967
features:
- name: input_data
dtype: string
- name: label
dtype: int32
- name: label_level_1
dtype: int32
- name: label_level_2
dtype: int32
splits:
- name: train
num_bytes: 16248391
num_examples: 11967
download_size: 60222421
dataset_size: 16248391
- config_name: WOS46985
features:
- name: input_data
dtype: string
- name: label
dtype: int32
- name: label_level_1
dtype: int32
- name: label_level_2
dtype: int32
splits:
- name: train
num_bytes: 65471726
num_examples: 46985
download_size: 60222421
dataset_size: 65471726
---
# Dataset Card for "web_of_science"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://data.mendeley.com/datasets/9rw3vkcfy4/6](https://data.mendeley.com/datasets/9rw3vkcfy4/6)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 180.67 MB
- **Size of the generated dataset:** 89.81 MB
- **Total amount of disk used:** 270.48 MB
### Dataset Summary
Copyright (c) 2017 Kamran Kowsari
Permission is hereby granted, free of charge, to any person obtaining a copy of this dataset and associated documentation files (the "Dataset"), to deal
in the dataset without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Dataset, and to permit persons to whom the dataset is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Dataset.
If you use this dataset please cite: Referenced paper: HDLTex: Hierarchical Deep Learning for Text Classification
Description of Dataset:
Here is three datasets which include WOS-11967 , WOS-46985, and WOS-5736
Each folder contains:
-X.txt
-Y.txt
-YL1.txt
-YL2.txt
X is input data that include text sequences
Y is target value
YL1 is target value of level one (parent label)
YL2 is target value of level one (child label)
Web of Science Dataset WOS-5736
-This dataset contains 5,736 documents with 11 categories which include 3 parents categories.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### WOS11967
- **Size of downloaded dataset files:** 60.22 MB
- **Size of the generated dataset:** 16.25 MB
- **Total amount of disk used:** 76.48 MB
An example of 'train' looks as follows.
```
```
#### WOS46985
- **Size of downloaded dataset files:** 60.22 MB
- **Size of the generated dataset:** 65.50 MB
- **Total amount of disk used:** 125.72 MB
An example of 'train' looks as follows.
```
```
#### WOS5736
- **Size of downloaded dataset files:** 60.22 MB
- **Size of the generated dataset:** 8.05 MB
- **Total amount of disk used:** 68.27 MB
An example of 'train' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### WOS11967
- `input_data`: a `string` feature.
- `label`: a `int32` feature.
- `label_level_1`: a `int32` feature.
- `label_level_2`: a `int32` feature.
#### WOS46985
- `input_data`: a `string` feature.
- `label`: a `int32` feature.
- `label_level_1`: a `int32` feature.
- `label_level_2`: a `int32` feature.
#### WOS5736
- `input_data`: a `string` feature.
- `label`: a `int32` feature.
- `label_level_1`: a `int32` feature.
- `label_level_2`: a `int32` feature.
### Data Splits
| name |train|
|--------|----:|
|WOS11967|11967|
|WOS46985|46985|
|WOS5736 | 5736|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{kowsari2017HDLTex,
title={HDLTex: Hierarchical Deep Learning for Text Classification},
author={Kowsari, Kamran and Brown, Donald E and Heidarysafa, Mojtaba and Jafari Meimandi, Kiana and and Gerber, Matthew S and Barnes, Laura E},
booktitle={Machine Learning and Applications (ICMLA), 2017 16th IEEE International Conference on},
year={2017},
organization={IEEE}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@mariamabarham](https://github.com/mariamabarham), [@lewtun](https://github.com/lewtun) for adding this dataset. |
web_questions | ---
annotations_creators:
- crowdsourced
language:
- en
language_creators:
- found
license:
- unknown
multilinguality:
- monolingual
pretty_name: WebQuestions
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: webquestions
dataset_info:
features:
- name: url
dtype: string
- name: question
dtype: string
- name: answers
sequence: string
splits:
- name: train
num_bytes: 533736
num_examples: 3778
- name: test
num_bytes: 289824
num_examples: 2032
download_size: 1272965
dataset_size: 823560
---
# Dataset Card for "web_questions"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a](https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [Semantic Parsing on Freebase from Question-Answer Pairs](https://aclanthology.org/D13-1160/)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.27 MB
- **Size of the generated dataset:** 0.83 MB
- **Total amount of disk used:** 2.10 MB
### Dataset Summary
This dataset consists of 6,642 question/answer pairs.
The questions are supposed to be answerable by Freebase, a large knowledge graph.
The questions are mostly centered around a single named entity.
The questions are popular ones asked on the web (at least in 2013).
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 1.27 MB
- **Size of the generated dataset:** 0.83 MB
- **Total amount of disk used:** 2.10 MB
An example of 'train' looks as follows.
```
{
"answers": ["Jamaican Creole English Language", "Jamaican English"],
"question": "what does jamaican people speak?",
"url": "http://www.freebase.com/view/en/jamaica"
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `url`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a `list` of `string` features.
### Data Splits
| name |train|test|
|-------|----:|---:|
|default| 3778|2032|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{berant-etal-2013-semantic,
title = "Semantic Parsing on {F}reebase from Question-Answer Pairs",
author = "Berant, Jonathan and
Chou, Andrew and
Frostig, Roy and
Liang, Percy",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D13-1160",
pages = "1533--1544",
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@lewtun](https://github.com/lewtun) for adding this dataset. |
weibo_ner | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- zh
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: weibo-ner
pretty_name: Weibo NER
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-GPE.NAM
'1': B-GPE.NOM
'2': B-LOC.NAM
'3': B-LOC.NOM
'4': B-ORG.NAM
'5': B-ORG.NOM
'6': B-PER.NAM
'7': B-PER.NOM
'8': I-GPE.NAM
'9': I-GPE.NOM
'10': I-LOC.NAM
'11': I-LOC.NOM
'12': I-ORG.NAM
'13': I-ORG.NOM
'14': I-PER.NAM
'15': I-PER.NOM
'16': O
splits:
- name: train
num_bytes: 1179589
num_examples: 1350
- name: validation
num_bytes: 232380
num_examples: 270
- name: test
num_bytes: 237407
num_examples: 270
download_size: 750687
dataset_size: 1649376
train-eval-index:
- config: default
task: token-classification
task_id: entity_extraction
splits:
train_split: train
eval_split: test
col_mapping:
tokens: tokens
ner_tags: tags
metrics:
- type: seqeval
name: seqeval
---
# Dataset Card for "Weibo NER"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** None
- **Repository:** https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/Weibo
- **Paper:** [More Information Needed]
- **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
- **Point of Contact:** [More Information Needed]
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
wi_locness | ---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
license:
- other
multilinguality:
- monolingual
- other-language-learner
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text2text-generation
task_ids: []
paperswithcode_id: locness-corpus
pretty_name: Cambridge English Write & Improve + LOCNESS
configs:
- locness
- wi
tags:
- grammatical-error-correction
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: userid
dtype: string
- name: cefr
dtype: string
- name: text
dtype: string
- name: edits
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 4375795
num_examples: 3000
- name: validation
num_bytes: 447055
num_examples: 300
download_size: 6120469
dataset_size: 4822850
- config_name: wi
features:
- name: id
dtype: string
- name: userid
dtype: string
- name: cefr
dtype: string
- name: text
dtype: string
- name: edits
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 4375795
num_examples: 3000
- name: validation
num_bytes: 447055
num_examples: 300
download_size: 6120469
dataset_size: 4822850
- config_name: locness
features:
- name: id
dtype: string
- name: cefr
dtype: string
- name: text
dtype: string
- name: edits
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 138176
num_examples: 50
download_size: 6120469
dataset_size: 138176
---
# Dataset Card for Cambridge English Write & Improve + LOCNESS Dataset
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
- **Repository:**
- **Paper:** https://www.aclweb.org/anthology/W19-4406/
- **Leaderboard:** https://competitions.codalab.org/competitions/20228#results
- **Point of Contact:**
### Dataset Summary
Write & Improve (Yannakoudakis et al., 2018) is an online web platform that assists non-native English students with their writing. Specifically, students from around the world submit letters, stories, articles and essays in response to various prompts, and the W&I system provides instant feedback. Since W&I went live in 2014, W&I annotators have manually annotated some of these submissions and assigned them a CEFR level.
The LOCNESS corpus (Granger, 1998) consists of essays written by native English students. It was originally compiled by researchers at the Centre for English Corpus Linguistics at the University of Louvain. Since native English students also sometimes make mistakes, we asked the W&I annotators to annotate a subsection of LOCNESS so researchers can test the effectiveness of their systems on the full range of English levels and abilities.
### Supported Tasks and Leaderboards
Grammatical error correction (GEC) is the task of automatically correcting grammatical errors in text; e.g. [I follows his advices -> I followed his advice]. It can be used to not only help language learners improve their writing skills, but also alert native speakers to accidental mistakes or typos.
The aim of the task of this dataset is to correct all types of errors in written text. This includes grammatical, lexical and orthographical errors.
The following Codalab competition contains the latest leaderboard, along with information on how to submit to the withheld W&I+LOCNESS test set: https://competitions.codalab.org/competitions/20228
### Languages
The dataset is in English.
## Dataset Structure
### Data Instances
An example from the `wi` configuration:
```
{
'id': '1-140178',
'userid': '21251',
'cefr': 'A2.i',
'text': 'My town is a medium size city with eighty thousand inhabitants. It has a high density population because its small territory. Despite of it is an industrial city, there are many shops and department stores. I recommend visiting the artificial lake in the certer of the city which is surrounded by a park. Pasteries are very common and most of them offer the special dessert from the city. There are a comercial zone along the widest street of the city where you can find all kind of establishments: banks, bars, chemists, cinemas, pet shops, restaurants, fast food restaurants, groceries, travel agencies, supermarkets and others. Most of the shops have sales and offers at least three months of the year: January, June and August. The quality of the products and services are quite good, because there are a huge competition, however I suggest you taking care about some fakes or cheats.',
'edits': {
'start': [13, 77, 104, 126, 134, 256, 306, 375, 396, 402, 476, 484, 579, 671, 774, 804, 808, 826, 838, 850, 857, 862, 868],
'end': [24, 78, 104, 133, 136, 262, 315, 379, 399, 411, 480, 498, 588, 671, 777, 807, 810, 835, 845, 856, 861, 867, 873],
'text': ['medium-sized', '-', ' of', 'Although', '', 'center', None, 'of', 'is', 'commercial', 'kinds', 'businesses', 'grocers', ' in', 'is', 'is', '', '. However,', 'recommend', 'be', 'careful', 'of', '']
}
}
```
An example from the `locness` configuration:
```
{
'id': '7-5819177',
'cefr': 'N',
'text': 'Boxing is a common, well known and well loved sport amongst most countries in the world however it is also punishing, dangerous and disliked to the extent that many people want it banned, possibly with good reason.\nBoxing is a dangerous sport, there are relatively common deaths, tragic injuries and even disease. All professional boxers are at risk from being killed in his next fight. If not killed then more likely paralysed. There have been a number of cases in the last ten years of the top few boxers having tragic losses throughout their ranks. This is just from the elite few, and theres more from those below them.\nMore deaths would occur through boxing if it were banned. The sport would go underground, there would be no safety measures like gloves, a doctor, paramedics or early stopping of the fight if someone looked unable to continue. With this going on the people taking part will be dangerous, and on the streets. Dangerous dogs who were trained to kill and maim in similar underound dog fights have already proved deadly to innocent people, the new boxers could be even more at risk.\nOnce boxing is banned and no-one grows up knowing it as acceptable there will be no interest in boxing and hopefully less all round interest in violence making towns and cities much safer places to live in, there will be less fighting outside pubs and clubs and less violent attacks with little or no reason.\nchange the rules of boxing slightly would much improve the safety risks of the sport and not detract form the entertainment. There are all sorts of proposals, lighter and more cushioning gloves could be worn, ban punches to the head, headguards worn or make fights shorter, as most of the serious injuries occur in the latter rounds, these would all show off the boxers skill and tallent and still be entertaining to watch.\nEven if a boxer is a success and manages not to be seriously hurt he still faces serious consequences in later life diseases that attack the brains have been known to set in as a direct result of boxing, even Muhamed Ali, who was infamous(?) both for his boxing and his quick-witted intelligence now has Alzheimer disease and can no longer do many everyday acts.\nMany other sports are more dangerous than boxing, motor sports and even mountaineering has risks that are real. Boxers chose to box, just as racing drivers drive.',
'edits': {
'start': [24, 39, 52, 87, 242, 371, 400, 528, 589, 713, 869, 992, 1058, 1169, 1209, 1219, 1255, 1308, 1386, 1412, 1513, 1569, 1661, 1731, 1744, 1781, 1792, 1901, 1951, 2038, 2131, 2149, 2247, 2286],
'end': [25, 40, 59, 95, 249, 374, 400, 538, 595, 713, 869, 1001, 1063, 1169, 1209, 1219, 1255, 1315, 1390, 1418, 1517, 1570, 1661, 1737, 1751, 1781, 1799, 1901, 1960, 2044, 2131, 2149, 2248, 2289],
'text': ['-', '-', 'in', '. However,', '. There', 'their', ',', 'among', "there's", ' and', ',', 'underground', '. The', ',', ',', ',', ',', '. There', 'for', 'Changing', 'from', ';', ',', 'later', '. These', "'", 'talent', ',', '. Diseases', '. Even', ',', "'s", ';', 'have']
}
}
```
### Data Fields
The fields of the dataset are:
- `id`: the id of the text as a string
- `cefr`: the [CEFR level](https://www.cambridgeenglish.org/exams-and-tests/cefr/) of the text as a string
- `userid`: id of the user
- `text`: the text of the submission as a string
- `edits`: the edits from W&I:
- `start`: start indexes of each edit as a list of integers
- `end`: end indexes of each edit as a list of integers
- `text`: the text content of each edit as a list of strings
- `from`: the original text of each edit as a list of strings
### Data Splits
| name |train|validation|
|----------|----:|---------:|
| wi | 3000| 300|
| locness | N/A| 50|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Write & Improve License:
```
Cambridge English Write & Improve (CEWI) Dataset Licence Agreement
1. By downloading this dataset and licence, this licence agreement is
entered into, effective this date, between you, the Licensee, and the
University of Cambridge, the Licensor.
2. Copyright of the entire licensed dataset is held by the Licensor.
No ownership or interest in the dataset is transferred to the
Licensee.
3. The Licensor hereby grants the Licensee a non-exclusive
non-transferable right to use the licensed dataset for
non-commercial research and educational purposes.
4. Non-commercial purposes exclude without limitation any use of the
licensed dataset or information derived from the dataset for or as
part of a product or service which is sold, offered for sale,
licensed, leased or rented.
5. The Licensee shall acknowledge use of the licensed dataset in all
publications of research based on it, in whole or in part, through
citation of the following publication:
Helen Yannakoudakis, Øistein E. Andersen, Ardeshir Geranpayeh,
Ted Briscoe and Diane Nicholls. 2018. Developing an automated writing
placement system for ESL learners. Applied Measurement in Education.
6. The Licensee may publish excerpts of less than 100 words from the
licensed dataset pursuant to clause 3.
7. The Licensor grants the Licensee this right to use the licensed dataset
"as is". Licensor does not make, and expressly disclaims, any express or
implied warranties, representations or endorsements of any kind
whatsoever.
8. This Agreement shall be governed by and construed in accordance with
the laws of England and the English courts shall have exclusive
jurisdiction.
```
LOCNESS License:
```
LOCNESS Dataset Licence Agreement
1. The corpus is to be used for non-commercial purposes only
2. All publications on research partly or wholly based on the corpus should give credit to the Centre for English Corpus Linguistics (CECL), Université catholique de Louvain, Belgium. A scanned copy or offprint of the publication should also be sent to <sylviane.granger@uclouvain.be>.
3. No part of the corpus is to be distributed to a third party without specific authorization from CECL. The corpus can only be used by the person agreeing to the licence terms and researchers working in close collaboration with him/her or students under his/her supervision, attached to the same institution, within the framework of the research project.
```
### Citation Information
```
@inproceedings{bryant-etal-2019-bea,
title = "The {BEA}-2019 Shared Task on Grammatical Error Correction",
author = "Bryant, Christopher and
Felice, Mariano and
Andersen, {\O}istein E. and
Briscoe, Ted",
booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W19-4406",
doi = "10.18653/v1/W19-4406",
pages = "52--75",
abstract = "This paper reports on the BEA-2019 Shared Task on Grammatical Error Correction (GEC). As with the CoNLL-2014 shared task, participants are required to correct all types of errors in test data. One of the main contributions of the BEA-2019 shared task is the introduction of a new dataset, the Write{\&}Improve+LOCNESS corpus, which represents a wider range of native and learner English levels and abilities. Another contribution is the introduction of tracks, which control the amount of annotated data available to participants. Systems are evaluated in terms of ERRANT F{\_}0.5, which allows us to report a much wider range of performance statistics. The competition was hosted on Codalab and remains open for further submissions on the blind test set.",
}
```
### Contributions
Thanks to [@aseifert](https://github.com/aseifert) for adding this dataset. |
wider_face | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-nc-nd-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-wider
task_categories:
- object-detection
task_ids:
- face-detection
paperswithcode_id: wider-face-1
pretty_name: WIDER FACE
dataset_info:
features:
- name: image
dtype: image
- name: faces
sequence:
- name: bbox
sequence: float32
length: 4
- name: blur
dtype:
class_label:
names:
'0': clear
'1': normal
'2': heavy
- name: expression
dtype:
class_label:
names:
'0': typical
'1': exaggerate
- name: illumination
dtype:
class_label:
names:
'0': normal
'1': 'exaggerate '
- name: occlusion
dtype:
class_label:
names:
'0': 'no'
'1': partial
'2': heavy
- name: pose
dtype:
class_label:
names:
'0': typical
'1': atypical
- name: invalid
dtype: bool
splits:
- name: train
num_bytes: 12049881
num_examples: 12880
- name: test
num_bytes: 3761103
num_examples: 16097
- name: validation
num_bytes: 2998735
num_examples: 3226
download_size: 3676086479
dataset_size: 18809719
---
# Dataset Card for WIDER FACE
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://shuoyang1213.me/WIDERFACE/index.html
- **Repository:**
- **Paper:** [WIDER FACE: A Face Detection Benchmark](https://arxiv.org/abs/1511.06523)
- **Leaderboard:** http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html
- **Point of Contact:** shuoyang.1213@gmail.com
### Dataset Summary
WIDER FACE dataset is a face detection benchmark dataset, of which images are
selected from the publicly available WIDER dataset. We choose 32,203 images and
label 393,703 faces with a high degree of variability in scale, pose and
occlusion as depicted in the sample images. WIDER FACE dataset is organized
based on 61 event classes. For each event class, we randomly select 40%/10%/50%
data as training, validation and testing sets. We adopt the same evaluation
metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets,
we do not release bounding box ground truth for the test images. Users are
required to submit final prediction files, which we shall proceed to evaluate.
### Supported Tasks and Leaderboards
- `face-detection`: The dataset can be used to train a model for Face Detection. More information on evaluating the model's performance can be found [here](http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html).
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its face annotations.
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1024x755 at 0x19FA12186D8>, 'faces': {
'bbox': [
[178.0, 238.0, 55.0, 73.0],
[248.0, 235.0, 59.0, 73.0],
[363.0, 157.0, 59.0, 73.0],
[468.0, 153.0, 53.0, 72.0],
[629.0, 110.0, 56.0, 81.0],
[745.0, 138.0, 55.0, 77.0]
],
'blur': [2, 2, 2, 2, 2, 2],
'expression': [0, 0, 0, 0, 0, 0],
'illumination': [0, 0, 0, 0, 0, 0],
'occlusion': [1, 2, 1, 2, 1, 2],
'pose': [0, 0, 0, 0, 0, 0],
'invalid': [False, False, False, False, False, False]
}
}
```
### Data Fields
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `faces`: a dictionary of face attributes for the faces present on the image
- `bbox`: the bounding box of each face (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `blur`: the blur level of each face, with possible values including `clear` (0), `normal` (1) and `heavy`
- `expression`: the facial expression of each face, with possible values including `typical` (0) and `exaggerate` (1)
- `illumination`: the lightning condition of each face, with possible values including `normal` (0) and `exaggerate` (1)
- `occlusion`: the level of occlusion of each face, with possible values including `no` (0), `partial` (1) and `heavy` (2)
- `pose`: the pose of each face, with possible values including `typical` (0) and `atypical` (1)
- `invalid`: whether the image is valid or invalid.
### Data Splits
The data is split into training, validation and testing set. WIDER FACE dataset is organized
based on 61 event classes. For each event class, 40%/10%/50%
data is randomly selected as training, validation and testing sets. The training set contains 12880 images, the validation set 3226 images and test set 16097 images.
## Dataset Creation
### Curation Rationale
The curators state that the current face detection datasets typically contain a few thousand faces, with limited variations in pose, scale, facial expression, occlusion, and background clutters,
making it difficult to assess for real world performance. They argue that the limitations of datasets have partially contributed to the failure of some algorithms in coping
with heavy occlusion, small scale, and atypical pose.
### Source Data
#### Initial Data Collection and Normalization
WIDER FACE dataset is a subset of the WIDER dataset.
The images in WIDER were collected in the following three steps: 1) Event categories
were defined and chosen following the Large Scale Ontology for Multimedia (LSCOM) [22], which provides around 1000 concepts relevant to video event analysis. 2) Images
are retrieved using search engines like Google and Bing. For
each category, 1000-3000 images were collected. 3) The
data were cleaned by manually examining all the images
and filtering out images without human face. Then, similar
images in each event category were removed to ensure large
diversity in face appearance. A total of 32203 images are
eventually included in the WIDER FACE dataset.
#### Who are the source language producers?
The images are selected from publicly available WIDER dataset.
### Annotations
#### Annotation process
The curators label the bounding boxes for all
the recognizable faces in the WIDER FACE dataset. The
bounding box is required to tightly contain the forehead,
chin, and cheek.. If a face is occluded, they still label it with a bounding box but with an estimation on the scale of occlusion. Similar to the PASCAL VOC dataset [6], they assign an ’Ignore’ flag to the face
which is very difficult to be recognized due to low resolution and small scale (10 pixels or less). After annotating
the face bounding boxes, they further annotate the following
attributes: pose (typical, atypical) and occlusion level (partial, heavy). Each annotation is labeled by one annotator
and cross-checked by two different people.
#### Who are the annotators?
Shuo Yang, Ping Luo, Chen Change Loy and Xiaoou Tang.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Shuo Yang, Ping Luo, Chen Change Loy and Xiaoou Tang
### Licensing Information
[Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)](https://creativecommons.org/licenses/by-nc-nd/4.0/).
### Citation Information
```
@inproceedings{yang2016wider,
Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
Title = {WIDER FACE: A Face Detection Benchmark},
Year = {2016}}
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset. |
wiki40b | ---
language:
- en
paperswithcode_id: wiki-40b
pretty_name: Wiki-40B
dataset_info:
features:
- name: wikidata_id
dtype: string
- name: text
dtype: string
- name: version_id
dtype: string
config_name: en
splits:
- name: train
num_bytes: 9423623904
num_examples: 2926536
- name: validation
num_bytes: 527383016
num_examples: 163597
- name: test
num_bytes: 522219464
num_examples: 162274
download_size: 0
dataset_size: 10473226384
---
# Dataset Card for "wiki40b"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://research.google/pubs/pub49029/](https://research.google/pubs/pub49029/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 0.00 MB
- **Size of the generated dataset:** 10.47 GB
- **Total amount of disk used:** 10.47 GB
### Dataset Summary
Clean-up text for 40+ Wikipedia languages editions of pages
correspond to entities. The datasets have train/dev/test splits per language.
The dataset is cleaned up by page filtering to remove disambiguation pages,
redirect pages, deleted pages, and non-entity pages. Each example contains the
wikidata id of the entity, and the full Wikipedia article after page processing
that removes non-content sections and structured objects.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### en
- **Size of downloaded dataset files:** 0.00 MB
- **Size of the generated dataset:** 10.47 GB
- **Total amount of disk used:** 10.47 GB
An example of 'train' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### en
- `wikidata_id`: a `string` feature.
- `text`: a `string` feature.
- `version_id`: a `string` feature.
### Data Splits
|name| train |validation| test |
|----|------:|---------:|-----:|
|en |2926536| 163597|162274|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
```
### Contributions
Thanks to [@jplu](https://github.com/jplu), [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf), [@albertvillanova](https://github.com/albertvillanova), [@lhoestq](https://github.com/lhoestq) for adding this dataset. |
wiki_asp | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- summarization
task_ids: []
paperswithcode_id: wikiasp
pretty_name: WikiAsp
tags:
- aspect-based-summarization
dataset_info:
- config_name: album
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1907323642
num_examples: 24434
- name: test
num_bytes: 232999001
num_examples: 3038
- name: validation
num_bytes: 234990092
num_examples: 3104
download_size: 644173065
dataset_size: 2375312735
- config_name: animal
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 497474133
num_examples: 16540
- name: test
num_bytes: 61315970
num_examples: 2007
- name: validation
num_bytes: 57943532
num_examples: 2005
download_size: 150974930
dataset_size: 616733635
- config_name: artist
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1876134255
num_examples: 26754
- name: test
num_bytes: 237751553
num_examples: 3329
- name: validation
num_bytes: 223240910
num_examples: 3194
download_size: 626686303
dataset_size: 2337126718
- config_name: building
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1100057273
num_examples: 20449
- name: test
num_bytes: 134357678
num_examples: 2482
- name: validation
num_bytes: 139387376
num_examples: 2607
download_size: 346224042
dataset_size: 1373802327
- config_name: company
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1606057076
num_examples: 24353
- name: test
num_bytes: 199282041
num_examples: 3029
- name: validation
num_bytes: 200498778
num_examples: 2946
download_size: 504194353
dataset_size: 2005837895
- config_name: educational_institution
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1623000534
num_examples: 17634
- name: test
num_bytes: 200476681
num_examples: 2267
- name: validation
num_bytes: 203262430
num_examples: 2141
download_size: 471033992
dataset_size: 2026739645
- config_name: event
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 748201660
num_examples: 6475
- name: test
num_bytes: 96212295
num_examples: 828
- name: validation
num_bytes: 97431395
num_examples: 807
download_size: 240072903
dataset_size: 941845350
- config_name: film
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 2370068027
num_examples: 32129
- name: test
num_bytes: 294918370
num_examples: 3981
- name: validation
num_bytes: 290240851
num_examples: 4014
download_size: 808231638
dataset_size: 2955227248
- config_name: group
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1025166800
num_examples: 11966
- name: test
num_bytes: 114239405
num_examples: 1444
- name: validation
num_bytes: 120863870
num_examples: 1462
download_size: 344498865
dataset_size: 1260270075
- config_name: historic_place
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 256158020
num_examples: 4919
- name: test
num_bytes: 31201154
num_examples: 600
- name: validation
num_bytes: 29058067
num_examples: 601
download_size: 77289509
dataset_size: 316417241
- config_name: infrastructure
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1124486451
num_examples: 17226
- name: test
num_bytes: 134820330
num_examples: 2091
- name: validation
num_bytes: 125193140
num_examples: 1984
download_size: 328804337
dataset_size: 1384499921
- config_name: mean_of_transportation
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 650424738
num_examples: 9277
- name: test
num_bytes: 89759392
num_examples: 1170
- name: validation
num_bytes: 88440901
num_examples: 1215
download_size: 210234418
dataset_size: 828625031
- config_name: office_holder
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1643899203
num_examples: 18177
- name: test
num_bytes: 207433317
num_examples: 2333
- name: validation
num_bytes: 202624275
num_examples: 2218
download_size: 524721727
dataset_size: 2053956795
- config_name: plant
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 239150885
num_examples: 6107
- name: test
num_bytes: 31340125
num_examples: 774
- name: validation
num_bytes: 28752150
num_examples: 786
download_size: 77890632
dataset_size: 299243160
- config_name: single
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1277277277
num_examples: 14217
- name: test
num_bytes: 152328537
num_examples: 1712
- name: validation
num_bytes: 160312594
num_examples: 1734
download_size: 429214401
dataset_size: 1589918408
- config_name: soccer_player
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 604502541
num_examples: 17599
- name: test
num_bytes: 72820378
num_examples: 2280
- name: validation
num_bytes: 76705685
num_examples: 2150
download_size: 193347234
dataset_size: 754028604
- config_name: software
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1122906186
num_examples: 13516
- name: test
num_bytes: 133717992
num_examples: 1638
- name: validation
num_bytes: 134578157
num_examples: 1637
download_size: 356764908
dataset_size: 1391202335
- config_name: television_show
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 893325347
num_examples: 8717
- name: test
num_bytes: 115155155
num_examples: 1072
- name: validation
num_bytes: 119461892
num_examples: 1128
download_size: 302093407
dataset_size: 1127942394
- config_name: town
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 772504751
num_examples: 14818
- name: test
num_bytes: 100975827
num_examples: 1831
- name: validation
num_bytes: 101522638
num_examples: 1911
download_size: 243261734
dataset_size: 975003216
- config_name: written_work
features:
- name: exid
dtype: string
- name: inputs
sequence: string
- name: targets
sequence:
sequence: string
splits:
- name: train
num_bytes: 1491395960
num_examples: 15065
- name: test
num_bytes: 189537205
num_examples: 1931
- name: validation
num_bytes: 185707567
num_examples: 1843
download_size: 498307235
dataset_size: 1866640732
---
# Dataset Card for WikiAsp
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Wiki Asp](https://github.com/neulab/wikiasp)
- **Repository:** [GitHub](https://github.com/neulab/wikiasp)
- **Paper:** [WikiAsp: A Dataset for Multi-domain Aspect-based Summarization](https://arxiv.org/abs/2011.07832)
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
An example from the "plant" configuration:
```
{
'exid': 'train-78-8',
'inputs': ['< EOT > calcareous rocks and barrens , wooded cliff edges .',
'plant an erect short - lived perennial ( or biennial ) herb whose slender leafy stems radiate from the base , and are 3 - 5 dm tall , giving it a bushy appearance .',
'leaves densely hairy , grayish - green , simple and alternate on the stem .',
'flowers are bright yellow to yellow - orange , cross - shaped , each having 4 spatula - shaped petals about 5 mm long .',
'fruit is a nearly globe - shaped capsule , about 3 mm in diameter , with 1 or 2 seeds in each cell .',
'flowering period : early april to late may .',
'even though there are many members of the mustard family in the range of this species , no other plant shares this combination of characters : bright yellow flowers , grayish - green stems and foliage , globe - shaped fruits with a long style , perennial habit , and the habitat of limestone rocky cliffs .',
'timber removal may be beneficial and even needed to maintain the open character of the habitat for this species .',
'hand removal of trees in the vicinity of the population is necessary to avoid impacts from timber operations .',
'southwest indiana , north central kentucky , and north central tennessee .',
'email : naturepreserves @ ky . gov feedback naturepreserves @ ky . gov | about the agency | about this site copyright © 2003 - 2013 commonwealth of kentucky .',
'all rights reserved .',
'<EOS>'
],
'targets': [
['description',
'physaria globosa is a small plant covered with dense hairs giving it a grayish appearance . it produces yellow flowers in the spring , and its fruit is globe - shaped . its preferred habitat is dry limestone cliffs , barrens , cedar glades , steep wooded slopes , and talus areas . some have also been found in areas of deeper soil and roadsides .'
],
['conservation',
'the population fluctuates year to year , but on average there are about 2000 living plants at any one time , divided among 33 known locations . threats include forms of habitat degradation and destruction , including road construction and grading , mowing , dumping , herbicides , alteration of waterways , livestock damage , and invasive species of plants such as japanese honeysuckle , garlic mustard , alsike clover , sweet clover , meadow fescue , and multiflora rose . all populations are considered vulnerable to extirpation .'
]
]
}
```
### Data Fields
- `exid`: a unique identifier
- `input`: the cited references and consists of tokenized sentences (with NLTK)
- `targets`: a list of aspect-based summaries, where each element is a pair of a) the target aspect and b) the aspect-based summary
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@katnoria](https://github.com/katnoria) for adding this dataset. |
wiki_atomic_edits | ---
annotations_creators:
- found
language_creators:
- found
language:
- de
- en
- es
- fr
- it
- ja
- ru
- zh
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
- 10M<n<100M
- 1M<n<10M
source_datasets:
- original
task_categories:
- summarization
task_ids: []
paperswithcode_id: wikiatomicedits
pretty_name: WikiAtomicEdits
configs:
- chinese_deletions
- chinese_insertions
- english_deletions
- english_insertions
- french_deletions
- french_insertions
- german_deletions
- german_insertions
- italian_deletions
- italian_insertions
- japanese_deletions
- japanese_insertions
- russian_deletions
- russian_insertions
- spanish_deletions
- spanish_insertions
dataset_info:
- config_name: german_insertions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 1072443082
num_examples: 3343403
download_size: 274280387
dataset_size: 1072443082
- config_name: german_deletions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 624070402
num_examples: 1994329
download_size: 160133549
dataset_size: 624070402
- config_name: english_insertions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 4258411914
num_examples: 13737796
download_size: 1090652177
dataset_size: 4258411914
- config_name: english_deletions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 2865754626
num_examples: 9352389
download_size: 736560902
dataset_size: 2865754626
- config_name: spanish_insertions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 481145004
num_examples: 1380934
download_size: 118837934
dataset_size: 481145004
- config_name: spanish_deletions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 317253196
num_examples: 908276
download_size: 78485695
dataset_size: 317253196
- config_name: french_insertions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 651525210
num_examples: 2038305
download_size: 160442894
dataset_size: 651525210
- config_name: french_deletions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 626323354
num_examples: 2060242
download_size: 155263358
dataset_size: 626323354
- config_name: italian_insertions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 372950256
num_examples: 1078814
download_size: 92302006
dataset_size: 372950256
- config_name: italian_deletions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 198598618
num_examples: 583316
download_size: 49048596
dataset_size: 198598618
- config_name: japanese_insertions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 765754162
num_examples: 2249527
download_size: 185766012
dataset_size: 765754162
- config_name: japanese_deletions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 459683880
num_examples: 1352162
download_size: 110513593
dataset_size: 459683880
- config_name: russian_insertions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 790822192
num_examples: 1471638
download_size: 152985812
dataset_size: 790822192
- config_name: russian_deletions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 514750186
num_examples: 960976
download_size: 100033230
dataset_size: 514750186
- config_name: chinese_insertions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 233367646
num_examples: 746509
download_size: 66124094
dataset_size: 233367646
- config_name: chinese_deletions
features:
- name: id
dtype: int32
- name: base_sentence
dtype: string
- name: phrase
dtype: string
- name: edited_sentence
dtype: string
splits:
- name: train
num_bytes: 144269112
num_examples: 467271
download_size: 40898651
dataset_size: 144269112
---
# Dataset Card for WikiAtomicEdits
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** None
- **Repository:** https://github.com/google-research-datasets/wiki-atomic-edits
- **Paper:** https://www.aclweb.org/anthology/D18-1028/
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** [More Information Needed]
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The languages in the dataset are:
- de
- en
- es
- fr
- it
- jp: Japanese (`ja`)
- ru
- zh
## Dataset Structure
### Data Instances
Here are some examples of questions and facts:
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
wiki_auto | ---
annotations_creators:
- crowdsourced
- machine-generated
language_creators:
- found
language:
- en
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- extended|other-wikipedia
task_categories:
- text2text-generation
task_ids:
- text-simplification
pretty_name: WikiAuto
configs:
- auto
- auto_acl
- auto_full_no_split
- auto_full_with_split
- manual
dataset_info:
- config_name: manual
features:
- name: alignment_label
dtype:
class_label:
names:
'0': notAligned
'1': aligned
'2': partialAligned
- name: normal_sentence_id
dtype: string
- name: simple_sentence_id
dtype: string
- name: normal_sentence
dtype: string
- name: simple_sentence
dtype: string
- name: gleu_score
dtype: float32
splits:
- name: train
num_bytes: 110838475
num_examples: 373801
- name: dev
num_bytes: 21112775
num_examples: 73249
- name: test
num_bytes: 33851634
num_examples: 118074
download_size: 168957430
dataset_size: 165802884
- config_name: auto_acl
features:
- name: normal_sentence
dtype: string
- name: simple_sentence
dtype: string
splits:
- name: full
num_bytes: 121975414
num_examples: 488332
download_size: 118068366
dataset_size: 121975414
- config_name: auto
features:
- name: example_id
dtype: string
- name: normal
struct:
- name: normal_article_id
dtype: int32
- name: normal_article_title
dtype: string
- name: normal_article_url
dtype: string
- name: normal_article_content
sequence:
- name: normal_sentence_id
dtype: string
- name: normal_sentence
dtype: string
- name: simple
struct:
- name: simple_article_id
dtype: int32
- name: simple_article_title
dtype: string
- name: simple_article_url
dtype: string
- name: simple_article_content
sequence:
- name: simple_sentence_id
dtype: string
- name: simple_sentence
dtype: string
- name: paragraph_alignment
sequence:
- name: normal_paragraph_id
dtype: string
- name: simple_paragraph_id
dtype: string
- name: sentence_alignment
sequence:
- name: normal_sentence_id
dtype: string
- name: simple_sentence_id
dtype: string
splits:
- name: part_1
num_bytes: 1773240295
num_examples: 125059
- name: part_2
num_bytes: 80417651
num_examples: 13036
download_size: 2160638921
dataset_size: 1853657946
- config_name: auto_full_no_split
features:
- name: normal_sentence
dtype: string
- name: simple_sentence
dtype: string
splits:
- name: full
num_bytes: 146310611
num_examples: 591994
download_size: 141574179
dataset_size: 146310611
- config_name: auto_full_with_split
features:
- name: normal_sentence
dtype: string
- name: simple_sentence
dtype: string
splits:
- name: full
num_bytes: 124549115
num_examples: 483801
download_size: 120678315
dataset_size: 124549115
---
# Dataset Card for WikiAuto
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [WikiAuto github repository](https://github.com/chaojiang06/wiki-auto)
- **Paper:** [Neural CRF Model for Sentence Alignment in Text Simplification](https://arxiv.org/abs/2005.02324)
- **Point of Contact:** [Chao Jiang](jiang.1530@osu.edu)
### Dataset Summary
WikiAuto provides a set of aligned sentences from English Wikipedia and Simple English Wikipedia as a resource to train sentence simplification systems.
The authors first crowd-sourced a set of manual alignments between sentences in a subset of the Simple English Wikipedia and their corresponding versions in English Wikipedia (this corresponds to the `manual` config in this version of dataset), then trained a neural CRF system to predict these alignments.
The trained alignment prediction model was then applied to the other articles in Simple English Wikipedia with an English counterpart to create a larger corpus of aligned sentences (corresponding to the `auto`, `auto_acl`, `auto_full_no_split`, and `auto_full_with_split` configs here).
### Supported Tasks and Leaderboards
The dataset was created to support a `text-simplification` task. Success in these tasks is typically measured using the [SARI](https://huggingface.co/metrics/sari) and [FKBLEU](https://huggingface.co/metrics/fkbleu) metrics described in the paper [Optimizing Statistical Machine Translation for Text Simplification](https://www.aclweb.org/anthology/Q16-1029.pdf).
### Languages
While both the input and output of the proposed task are in English (`en`), it should be noted that it is presented as a translation task where Wikipedia Simple English is treated as its own idiom. For a statement of what is intended (but not always observed) to constitute Simple English on this platform, see [Simple English in Wikipedia](https://simple.wikipedia.org/wiki/Wikipedia:About#Simple_English).
## Dataset Structure
### Data Instances
The data in all of the configurations looks a little different.
A `manual` config instance consists of a sentence from the Simple English Wikipedia article, one from the linked English Wikipedia article, IDs for each of them, and a label indicating whether they are aligned. Sentences on either side can be repeated so that the aligned sentences are in the same instances. For example:
```
{'alignment_label': 1,
'normal_sentence_id': '0_66252-1-0-0',
'simple_sentence_id': '0_66252-0-0-0',
'normal_sentence': 'The Local Government Act 1985 is an Act of Parliament in the United Kingdom.', 'simple_sentence': 'The Local Government Act 1985 was an Act of Parliament in the United Kingdom', 'gleu_score': 0.800000011920929}
```
Is followed by
```
{'alignment_label': 0,
'normal_sentence_id': '0_66252-1-0-1',
'simple_sentence_id': '0_66252-0-0-0',
'normal_sentence': 'Its main effect was to abolish the six county councils of the metropolitan counties that had been set up in 1974, 11 years earlier, by the Local Government Act 1972, along with the Greater London Council that had been established in 1965.',
'simple_sentence': 'The Local Government Act 1985 was an Act of Parliament in the United Kingdom', 'gleu_score': 0.08641975373029709}
```
The `auto` config shows a pair of an English and corresponding Simple English Wikipedia as an instance, with an alignment at the paragraph and sentence level:
```
{'example_id': '0',
'normal': {'normal_article_content': {'normal_sentence': ["Lata Mondal ( ; born: 16 January 1993, Dhaka) is a Bangladeshi cricketer who plays for the Bangladesh national women's cricket team.",
'She is a right handed batter.',
'Mondal was born on January 16, 1993 in Dhaka, Bangladesh.',
"Mondal made her ODI career against the Ireland women's cricket team on November 26, 2011.",
"Mondal made her T20I career against the Ireland women's cricket team on August 28, 2012.",
"In October 2018, she was named in Bangladesh's squad for the 2018 ICC Women's World Twenty20 tournament in the West Indies.",
"Mondal was a member of the team that won a silver medal in cricket against the China national women's cricket team at the 2010 Asian Games in Guangzhou, China."],
'normal_sentence_id': ['normal-41918715-0-0',
'normal-41918715-0-1',
'normal-41918715-1-0',
'normal-41918715-2-0',
'normal-41918715-3-0',
'normal-41918715-3-1',
'normal-41918715-4-0']},
'normal_article_id': 41918715,
'normal_article_title': 'Lata Mondal',
'normal_article_url': 'https://en.wikipedia.org/wiki?curid=41918715'},
'paragraph_alignment': {'normal_paragraph_id': ['normal-41918715-0'],
'simple_paragraph_id': ['simple-702227-0']},
'sentence_alignment': {'normal_sentence_id': ['normal-41918715-0-0',
'normal-41918715-0-1'],
'simple_sentence_id': ['simple-702227-0-0', 'simple-702227-0-1']},
'simple': {'simple_article_content': {'simple_sentence': ["Lata Mondal (born: 16 January 1993) is a Bangladeshi cricketer who plays for the Bangladesh national women's cricket team.",
'She is a right handed bat.'],
'simple_sentence_id': ['simple-702227-0-0', 'simple-702227-0-1']},
'simple_article_id': 702227,
'simple_article_title': 'Lata Mondal',
'simple_article_url': 'https://simple.wikipedia.org/wiki?curid=702227'}}
```
Finally, the `auto_acl`, the `auto_full_no_split`, and the `auto_full_with_split` configs were obtained by selecting the aligned pairs of sentences from `auto` to provide a ready-to-go aligned dataset to train a sequence-to-sequence system. While `auto_acl` corresponds to the filtered version of the data used to train the systems in the paper, `auto_full_no_split` and `auto_full_with_split` correspond to the unfiltered versions with and without sentence splits respectively. In the `auto_full_with_split` config, we join the sentences in the simple article mapped to the same sentence in the complex article to capture sentence splitting. Split sentences are separated by a `<SEP>` token. In the `auto_full_no_split` config, we do not join the splits and treat them as separate pairs. An instance is a single pair of sentences:
```
{'normal_sentence': 'In early work , Rutherford discovered the concept of radioactive half-life , the radioactive element radon , and differentiated and named alpha and beta radiation .\n',
'simple_sentence': 'Rutherford discovered the radioactive half-life , and the three parts of radiation which he named Alpha , Beta , and Gamma .\n'}
```
### Data Fields
The data has the following field:
- `normal_sentence`: a sentence from English Wikipedia.
- `normal_sentence_id`: a unique ID for each English Wikipedia sentence. The last two dash-separated numbers correspond to the paragraph number in the article and the sentence number in the paragraph.
- `simple_sentence`: a sentence from Simple English Wikipedia.
- `simple_sentence_id`: a unique ID for each Simple English Wikipedia sentence. The last two dash-separated numbers correspond to the paragraph number in the article and the sentence number in the paragraph.
- `alignment_label`: signifies whether a pair of sentences is aligned: labels are `2:partialAligned`, `1:aligned` and `0:notAligned`
- `paragraph_alignment`: a first step of alignment mapping English and Simple English paragraphs from linked articles
- `sentence_alignment`: the full alignment mapping English and Simple English sentences from linked articles
- `gleu_score`: the sentence level GLEU (Google-BLEU) score for each pair.
### Data Splits
In `auto`, the `part_2` split corresponds to the articles used in `manual`, and `part_1` has the rest of Wikipedia.
The `manual` config is provided with a `train`/`dev`/`test` split with the following amounts of data:
| | train | validation | test |
|------------------------|--------:|-----------:|--------:|
| Total sentence pairs | 373801 | 73249 | 118074 |
| Aligned sentence pairs | 1889 | 346 | 677 |
## Dataset Creation
### Curation Rationale
Simple English Wikipedia provides a ready source of training data for text simplification systems, as 1. articles in different languages are linked, making it easier to find parallel data and 2. the Simple English data is written by users for users rather than by professional translators. However, even though articles are aligned, finding a good sentence-level alignment can remain challenging. This work aims to provide a solution for this problem. By manually annotating a sub-set of the articles, they manage to achieve an F1 score of over 88% on predicting alignment, which allows to create a good quality sentence level aligned corpus using all of Simple English Wikipedia.
### Source Data
#### Initial Data Collection and Normalization
The authors mention that they "extracted 138,095 article pairs from the 2019/09 Wikipedia dump [...] using an improved version of the [WikiExtractor](https://github.com/attardi/wikiextractor) library". The [SpaCy](https://spacy.io/) library is used for sentence splitting.
#### Who are the source language producers?
The dataset uses langauge from Wikipedia: some demographic information is provided [here](https://en.wikipedia.org/wiki/Wikipedia:Who_writes_Wikipedia%3F).
### Annotations
#### Annotation process
Sentence alignment labels were obtained for 500 randomly sampled document pairs (10,123 sentence pairs total). The authors pre-selected several alignment candidates from English Wikipedia for each Simple Wikipedia sentence based on various similarity metrics, then asked the crowd-workers to annotate these pairs.
#### Who are the annotators?
No demographic annotation is provided for the crowd workers.
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset was created by Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, and Wei Xu working at Ohio State University.
### Licensing Information
The dataset is not licensed by itself, but the source Wikipedia data is under a `cc-by-sa-3.0` license.
### Citation Information
You can cite the paper presenting the dataset as:
```
@inproceedings{acl/JiangMLZX20,
author = {Chao Jiang and
Mounica Maddela and
Wuwei Lan and
Yang Zhong and
Wei Xu},
editor = {Dan Jurafsky and
Joyce Chai and
Natalie Schluter and
Joel R. Tetreault},
title = {Neural {CRF} Model for Sentence Alignment in Text Simplification},
booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, {ACL} 2020, Online, July 5-10, 2020},
pages = {7943--7960},
publisher = {Association for Computational Linguistics},
year = {2020},
url = {https://www.aclweb.org/anthology/2020.acl-main.709/}
}
```
### Contributions
Thanks to [@yjernite](https://github.com/yjernite), [@mounicam](https://github.com/mounicam) for adding this dataset. |
wiki_bio | ---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- table-to-text
task_ids: []
paperswithcode_id: wikibio
pretty_name: WikiBio
dataset_info:
features:
- name: input_text
struct:
- name: table
sequence:
- name: column_header
dtype: string
- name: row_number
dtype: int16
- name: content
dtype: string
- name: context
dtype: string
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 619269257
num_examples: 582659
- name: test
num_bytes: 77264695
num_examples: 72831
- name: val
num_bytes: 77335069
num_examples: 72831
download_size: 333998704
dataset_size: 773869021
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/DavidGrangier/wikipedia-biography-dataset
- **Paper:** https://arxiv.org/pdf/1603.07771.pdf
- **GitHub:** https://github.com/DavidGrangier/wikipedia-biography-dataset
### Dataset Summary
This Dataset contains 728321 biographies extracted from Wikipedia containing the first paragraph of the biography and the tabular infobox.
### Supported Tasks and Leaderboards
The main purpose of this dataset is developing text generation models.
### Languages
English.
## Dataset Structure
### Data Instances
More Information Needed
### Data Fields
The structure of a single sample is the following:
```json
{
"input_text":{
"context":"pope michael iii of alexandria\n",
"table":{
"column_header":[
"type",
"ended",
"death_date",
"title",
"enthroned",
"name",
"buried",
"religion",
"predecessor",
"nationality",
"article_title",
"feast_day",
"birth_place",
"residence",
"successor"
],
"content":[
"pope",
"16 march 907",
"16 march 907",
"56th of st. mark pope of alexandria & patriarch of the see",
"25 april 880",
"michael iii of alexandria",
"monastery of saint macarius the great",
"coptic orthodox christian",
"shenouda i",
"egyptian",
"pope michael iii of alexandria\n",
"16 -rrb- march -lrb- 20 baramhat in the coptic calendar",
"egypt",
"saint mark 's church",
"gabriel i"
],
"row_number":[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
}
},
"target_text":"pope michael iii of alexandria -lrb- also known as khail iii -rrb- was the coptic pope of alexandria and patriarch of the see of st. mark -lrb- 880 -- 907 -rrb- .\nin 882 , the governor of egypt , ahmad ibn tulun , forced khail to pay heavy contributions , forcing him to sell a church and some attached properties to the local jewish community .\nthis building was at one time believed to have later become the site of the cairo geniza .\n"
}
```
where, in the `"table"` field, all the information of the Wikpedia infobox is stored (the header of the infobox is stored in `"column_header"` and the information in the `"content"` field).
### Data Splits
- Train: 582659 samples.
- Test: 72831 samples.
- Validation: 72831 samples.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
This dataset was announced in the paper <em>Neural Text Generation from Structured Data with Application to the Biography Domain</em> [(arxiv link)](https://arxiv.org/pdf/1603.07771.pdf) and is stored in [this](https://github.com/DavidGrangier/wikipedia-biography-dataset) repo (owned by DavidGrangier).
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
This dataset is ditributed under Creative Comons CC BY-SA 3.0 License.
### Citation Information
For refering the original paper in BibTex format:
```
@article{DBLP:journals/corr/LebretGA16,
author = {R{\'{e}}mi Lebret and
David Grangier and
Michael Auli},
title = {Generating Text from Structured Data with Application to the Biography
Domain},
journal = {CoRR},
volume = {abs/1603.07771},
year = {2016},
url = {http://arxiv.org/abs/1603.07771},
archivePrefix = {arXiv},
eprint = {1603.07771},
timestamp = {Mon, 13 Aug 2018 16:48:30 +0200},
biburl = {https://dblp.org/rec/journals/corr/LebretGA16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@alejandrocros](https://github.com/alejandrocros) for adding this dataset. |
wiki_dpr | ---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-sa-3.0
- gfdl
multilinguality:
- multilingual
size_categories:
- 10M<n<100M
source_datasets:
- original
task_categories:
- fill-mask
- text-generation
task_ids:
- language-modeling
- masked-language-modeling
pretty_name: Wiki-DPR
tags:
- text-search
dataset_info:
- config_name: psgs_w100.nq.exact
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: embeddings
sequence: float32
splits:
- name: train
num_bytes: 78419281788
num_examples: 21015300
download_size: 70965697456
dataset_size: 78419281788
- config_name: psgs_w100.nq.compressed
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: embeddings
sequence: float32
splits:
- name: train
num_bytes: 78419281788
num_examples: 21015300
download_size: 70965697456
dataset_size: 78419281788
- config_name: psgs_w100.nq.no_index
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: embeddings
sequence: float32
splits:
- name: train
num_bytes: 78419281788
num_examples: 21015300
download_size: 70965697456
dataset_size: 78419281788
- config_name: psgs_w100.multiset.exact
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: embeddings
sequence: float32
splits:
- name: train
num_bytes: 78419281788
num_examples: 21015300
download_size: 70965697456
dataset_size: 78419281788
- config_name: psgs_w100.multiset.compressed
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: embeddings
sequence: float32
splits:
- name: train
num_bytes: 78419281788
num_examples: 21015300
download_size: 70965697456
dataset_size: 78419281788
- config_name: psgs_w100.multiset.no_index
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: embeddings
sequence: float32
splits:
- name: train
num_bytes: 78419281788
num_examples: 21015300
download_size: 70965697456
dataset_size: 78419281788
---
# Dataset Card for "wiki_dpr"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/facebookresearch/DPR](https://github.com/facebookresearch/DPR)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 425.79 GB
- **Size of the generated dataset:** 470.52 GB
- **Total amount of disk used:** 978.05 GB
### Dataset Summary
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
The wikipedia dump is the one from Dec. 20, 2018.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
Each instance contains a paragraph of at most 100 words, as well as the title of the wikipedia page it comes from, and the DPR embedding (a 768-d vector).
#### psgs_w100.multiset.compressed
- **Size of downloaded dataset files:** 70.97 GB
- **Size of the generated dataset:** 78.42 GB
- **Total amount of disk used:** 152.26 GB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{'id': '1',
'text': 'Aaron Aaron ( or ; "Ahärôn") is a prophet, high priest, and the brother of Moses in the Abrahamic religions. Knowledge of Aaron, along with his brother Moses, comes exclusively from religious texts, such as the Bible and Quran. The Hebrew Bible relates that, unlike Moses, who grew up in the Egyptian royal court, Aaron and his elder sister Miriam remained with their kinsmen in the eastern border-land of Egypt (Goshen). When Moses first confronted the Egyptian king about the Israelites, Aaron served as his brother\'s spokesman ("prophet") to the Pharaoh. Part of the Law (Torah) that Moses received from'],
'title': 'Aaron',
'embeddings': [-0.07233893871307373,
0.48035329580307007,
0.18650995194911957,
-0.5287084579467773,
-0.37329429388046265,
0.37622880935668945,
0.25524479150772095,
...
-0.336689829826355,
0.6313082575798035,
-0.7025573253631592]}
```
#### psgs_w100.multiset.exact
- **Size of downloaded dataset files:** 70.97 GB
- **Size of the generated dataset:** 78.42 GB
- **Total amount of disk used:** 187.38 GB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{'id': '1',
'text': 'Aaron Aaron ( or ; "Ahärôn") is a prophet, high priest, and the brother of Moses in the Abrahamic religions. Knowledge of Aaron, along with his brother Moses, comes exclusively from religious texts, such as the Bible and Quran. The Hebrew Bible relates that, unlike Moses, who grew up in the Egyptian royal court, Aaron and his elder sister Miriam remained with their kinsmen in the eastern border-land of Egypt (Goshen). When Moses first confronted the Egyptian king about the Israelites, Aaron served as his brother\'s spokesman ("prophet") to the Pharaoh. Part of the Law (Torah) that Moses received from'],
'title': 'Aaron',
'embeddings': [-0.07233893871307373,
0.48035329580307007,
0.18650995194911957,
-0.5287084579467773,
-0.37329429388046265,
0.37622880935668945,
0.25524479150772095,
...
-0.336689829826355,
0.6313082575798035,
-0.7025573253631592]}
```
#### psgs_w100.multiset.no_index
- **Size of downloaded dataset files:** 70.97 GB
- **Size of the generated dataset:** 78.42 GB
- **Total amount of disk used:** 149.38 GB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{'id': '1',
'text': 'Aaron Aaron ( or ; "Ahärôn") is a prophet, high priest, and the brother of Moses in the Abrahamic religions. Knowledge of Aaron, along with his brother Moses, comes exclusively from religious texts, such as the Bible and Quran. The Hebrew Bible relates that, unlike Moses, who grew up in the Egyptian royal court, Aaron and his elder sister Miriam remained with their kinsmen in the eastern border-land of Egypt (Goshen). When Moses first confronted the Egyptian king about the Israelites, Aaron served as his brother\'s spokesman ("prophet") to the Pharaoh. Part of the Law (Torah) that Moses received from'],
'title': 'Aaron',
'embeddings': [-0.07233893871307373,
0.48035329580307007,
0.18650995194911957,
-0.5287084579467773,
-0.37329429388046265,
0.37622880935668945,
0.25524479150772095,
...
-0.336689829826355,
0.6313082575798035,
-0.7025573253631592]}
```
#### psgs_w100.nq.compressed
- **Size of downloaded dataset files:** 70.97 GB
- **Size of the generated dataset:** 78.42 GB
- **Total amount of disk used:** 152.26 GB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{'id': '1',
'text': 'Aaron Aaron ( or ; "Ahärôn") is a prophet, high priest, and the brother of Moses in the Abrahamic religions. Knowledge of Aaron, along with his brother Moses, comes exclusively from religious texts, such as the Bible and Quran. The Hebrew Bible relates that, unlike Moses, who grew up in the Egyptian royal court, Aaron and his elder sister Miriam remained with their kinsmen in the eastern border-land of Egypt (Goshen). When Moses first confronted the Egyptian king about the Israelites, Aaron served as his brother\'s spokesman ("prophet") to the Pharaoh. Part of the Law (Torah) that Moses received from'],
'title': 'Aaron',
'embeddings': [0.013342111371457577,
0.582173764705658,
-0.31309744715690613,
-0.6991612911224365,
-0.5583199858665466,
0.5187504887580872,
0.7152731418609619,
...
-0.5385938286781311,
0.8093984127044678,
-0.4741983711719513]}
```
#### psgs_w100.nq.exact
- **Size of downloaded dataset files:** 70.97 GB
- **Size of the generated dataset:** 78.42 GB
- **Total amount of disk used:** 187.38 GB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{'id': '1',
'text': 'Aaron Aaron ( or ; "Ahärôn") is a prophet, high priest, and the brother of Moses in the Abrahamic religions. Knowledge of Aaron, along with his brother Moses, comes exclusively from religious texts, such as the Bible and Quran. The Hebrew Bible relates that, unlike Moses, who grew up in the Egyptian royal court, Aaron and his elder sister Miriam remained with their kinsmen in the eastern border-land of Egypt (Goshen). When Moses first confronted the Egyptian king about the Israelites, Aaron served as his brother\'s spokesman ("prophet") to the Pharaoh. Part of the Law (Torah) that Moses received from'],
'title': 'Aaron',
'embeddings': [0.013342111371457577,
0.582173764705658,
-0.31309744715690613,
-0.6991612911224365,
-0.5583199858665466,
0.5187504887580872,
0.7152731418609619,
...
-0.5385938286781311,
0.8093984127044678,
-0.4741983711719513]}
```
### Data Fields
The data fields are the same among all splits.
#### psgs_w100.multiset.compressed
- `id`: a `string` feature.
- `text`: a `string` feature.
- `title`: a `string` feature.
- `embeddings`: a `list` of `float32` features.
#### psgs_w100.multiset.exact
- `id`: a `string` feature.
- `text`: a `string` feature.
- `title`: a `string` feature.
- `embeddings`: a `list` of `float32` features.
#### psgs_w100.multiset.no_index
- `id`: a `string` feature.
- `text`: a `string` feature.
- `title`: a `string` feature.
- `embeddings`: a `list` of `float32` features.
#### psgs_w100.nq.compressed
- `id`: a `string` feature.
- `text`: a `string` feature.
- `title`: a `string` feature.
- `embeddings`: a `list` of `float32` features.
#### psgs_w100.nq.exact
- `id`: a `string` feature.
- `text`: a `string` feature.
- `title`: a `string` feature.
- `embeddings`: a `list` of `float32` features.
### Data Splits
| name | train |
|-----------------------------|-------:|
|psgs_w100.multiset.compressed|21015300|
|psgs_w100.multiset.exact |21015300|
|psgs_w100.multiset.no_index |21015300|
|psgs_w100.nq.compressed |21015300|
|psgs_w100.nq.exact |21015300|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@misc{karpukhin2020dense,
title={Dense Passage Retrieval for Open-Domain Question Answering},
author={Vladimir Karpukhin and Barlas Oğuz and Sewon Min and Patrick Lewis and Ledell Wu and Sergey Edunov and Danqi Chen and Wen-tau Yih},
year={2020},
eprint={2004.04906},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@lhoestq](https://github.com/lhoestq) for adding this dataset. |
wiki_hop | ---
annotations_creators:
- crowdsourced
language_creators:
- expert-generated
language:
- en
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: wikihop
pretty_name: WikiHop
tags:
- multi-hop
dataset_info:
- config_name: original
features:
- name: id
dtype: string
- name: query
dtype: string
- name: answer
dtype: string
- name: candidates
sequence: string
- name: supports
sequence: string
- name: annotations
sequence:
sequence: string
splits:
- name: train
num_bytes: 325952974
num_examples: 43738
- name: validation
num_bytes: 41246536
num_examples: 5129
download_size: 339843061
dataset_size: 367199510
- config_name: masked
features:
- name: id
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
- name: candidates
sequence: string
- name: supports
sequence: string
- name: annotations
sequence:
sequence: string
splits:
- name: train
num_bytes: 348249138
num_examples: 43738
- name: validation
num_bytes: 44066862
num_examples: 5129
download_size: 339843061
dataset_size: 392316000
---
# Dataset Card for WikiHop
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [QAngaroo](http://qangaroo.cs.ucl.ac.uk/)
- **Repository:** [If the dataset is hosted on github or has a github homepage, add URL here]()
- **Paper:** [Constructing Datasets for Multi-hop Reading Comprehension Across Documents](https://arxiv.org/abs/1710.06481)
- **Leaderboard:** [leaderboard](http://qangaroo.cs.ucl.ac.uk/leaderboard.html)
- **Point of Contact:** [Johannes Welbl](j.welbl@cs.ucl.ac.uk)
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
wiki_lingua | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- ar
- cs
- de
- en
- es
- fr
- hi
- id
- it
- ja
- ko
- nl
- pt
- ru
- th
- tr
- vi
- zh
license:
- cc-by-3.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
- 1K<n<10K
source_datasets:
- original
task_categories:
- summarization
task_ids: []
paperswithcode_id: wikilingua
pretty_name: WikiLingua
configs:
- arabic
- chinese
- czech
- dutch
- english
- french
- german
- hindi
- indonesian
- italian
- japanese
- korean
- portuguese
- russian
- spanish
- thai
- turkish
- vietnamese
dataset_info:
- config_name: arabic
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 119116119
num_examples: 9995
download_size: 119358890
dataset_size: 119116119
- config_name: chinese
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 41170689
num_examples: 6541
download_size: 41345464
dataset_size: 41170689
- config_name: czech
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 20816390
num_examples: 2520
download_size: 20894511
dataset_size: 20816390
- config_name: dutch
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 87258040
num_examples: 10862
download_size: 87533442
dataset_size: 87258040
- config_name: english
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
splits:
- name: train
num_bytes: 333700114
num_examples: 57945
download_size: 338036185
dataset_size: 333700114
- config_name: french
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 197550376
num_examples: 21690
download_size: 198114157
dataset_size: 197550376
- config_name: german
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 168674340
num_examples: 20103
download_size: 169195050
dataset_size: 168674340
- config_name: hindi
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 63785051
num_examples: 3402
download_size: 63874759
dataset_size: 63785051
- config_name: indonesian
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 136408861
num_examples: 16308
download_size: 136833587
dataset_size: 136408861
- config_name: italian
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 138119527
num_examples: 17673
download_size: 138578956
dataset_size: 138119527
- config_name: japanese
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 40145031
num_examples: 4372
download_size: 40259570
dataset_size: 40145031
- config_name: korean
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 38647614
num_examples: 4111
download_size: 38748961
dataset_size: 38647614
- config_name: portuguese
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 204270845
num_examples: 28143
download_size: 204997686
dataset_size: 204270845
- config_name: russian
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 241924032
num_examples: 18143
download_size: 242377242
dataset_size: 241924032
- config_name: spanish
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 314618618
num_examples: 38795
download_size: 315609530
dataset_size: 314618618
- config_name: thai
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 86982851
num_examples: 5093
download_size: 87104200
dataset_size: 86982851
- config_name: turkish
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 11371821
num_examples: 1512
download_size: 11405793
dataset_size: 11371821
- config_name: vietnamese
features:
- name: url
dtype: string
- name: article
sequence:
- name: section_name
dtype: string
- name: document
dtype: string
- name: summary
dtype: string
- name: english_url
dtype: string
- name: english_section_name
dtype: string
splits:
- name: train
num_bytes: 69868788
num_examples: 6616
download_size: 70024093
dataset_size: 69868788
---
# Dataset Card for "wiki_lingua"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [URL](https://github.com/esdurmus/Wikilingua)
- **Paper:** [WikiLingua: A Multilingual Abstractive Summarization Dataset](https://arxiv.org/abs/2010.03093)
### Dataset Summary
We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The table below shows number of article-summary pairs with a parallel article-summary pair in English.
______________________________
| Language | Num. parallel |
| ----------- | --------------|
| English | 141,457 |
| Spanish | 113,215 |
| Portuguese | 81,695 |
| French | 63,692 |
| German | 58,375 |
| Russian | 52,928 |
| Italian | 50,968 |
| Indonesian | 47,511 |
| Dutch | 31,270 |
| Arabic | 29,229 |
| Vietnamese | 19,600 |
| Chinese | 18,887 |
| Thai | 14,770 |
| Japanese | 12,669 |
| Korean | 12,189 |
| Hindi | 9,929 |
| Czech | 7,200 |
| Turkish | 4,503 |
## Dataset Structure
### Data Instances
```
{
'article': {
'document': ['make sure that the area is a safe place, especially if you plan on walking home at night. It’s always a good idea to practice the buddy system. Have a friend meet up and walk with you. Research the bus, train, or streetcar routes available in your area to find safe and affordable travel to your destination. Make sure you check the schedule for your outgoing and return travel. Some public transportation will cease to run late at night. Be sure if you take public transportation to the venue that you will also be able to get home late at night. Check the routes. Even if some public transit is still running late at night, the routing may change. Some may run express past many of the stops, or not travel all the way to the ends. Be sure that your stop will still be available when you need it for your return trip. If you are taking public transit in a vulnerable state after drinking, it is always a good idea to travel in groups. Having friends available is a good way to stay safe and make sure that you reach your destination. This is more expensive option than a taxi or ride share service, but could be a fun and fancy way to stay safe and ensure that you will have a ride home. Plan this service in advance with a scheduled time to pick you up from your home and the venue. You want to be sure that the service will still be available when you need to get home. This may be easy in a large city, but taxis may be less frequent in smaller towns. This is especially true late at night, so this is a less reliable option than scheduling a ride in advance. Have a friend accompany you and help you flag a cab to make sure you are able to get one. Set up a plan to call a friend when you get home to make sure that you made it safely to your destination. If there are no taxis readily available call a local service to send a car to pick you up. You can share a ride with your friends, or other people using the app at the same moment. If you are in a vulnerable state it is best to share the ride with your friends to make sure you get home safe. You can request the car to yourself rather than sharing rides with strangers. If you travel home on your own or are the last of your group to be dropped off, make plans to call a friend when you get home so they know you made it safely to your destination. There may be a designated driver service in your area which can chauffeur your group. Make reservations with them in advance and keep their contact information handy while you are drinking.',
"Designating a driver is a very popular tactic to avoid drinking and driving. It is important to plan in advance, because your brain function will slow down and your decision making skills will be impaired once you start drinking. Decide before you begin drinking that you will not drive. Figure out who will be getting you home before you leave. Make sure this person is responsible and keep them in your sight while you are drinking. Have their contact information handy in case you can’t find them when you are ready to leave. Choose a friend who doesn’t drink alcohol. You likely have someone in your friend group who doesn’t drink. This person is the most likely to remain sober. Decide on one person who will remain sober. You can take turns within your friend group, alternating who will be the designated driver on each occasion. Be sure that the designated driver actually remains sober. The person who has drank the least is still not sober. If you don’t have your car with you, you can guarantee that you won’t make the choice to drive it home. If you are drinking at your home. Give your keys to a responsible friend to ensure that you don't choose to drive somewhere after you have been drinking. It may be tempting to stay longer or leave with someone else. Stick to the plan you made in advance and only leave with your sober, designated driver. Keep the phone number of your driver handy in case you can't find them when you are ready to leave. If your designated driver drinks alcohol, find alternate transportation to get home.",
'If you have been drinking at all you are at least on the spectrum of drunkenness. You could be showing signs of impairment and slower brain function including lack of motor skills and slower reaction time, leading to the inability to operate a motor vehicle. Some of these signs could be: Poor balance or stumbling. Difficulty speaking clearly and slurred words. Abnormal behavior leading to you doing things you wouldn’t normally do if you were sober. As soon as you notice that you are showing signs of impairment, give your keys to a friend, the host or the bartender to ensure that you won’t drive until you are sober. Make sure to only give them your car key. Hold onto your house keys. If your friend, the host or the bartender are advising you not to drive, you are likely too drunk. Listen to their advice and acknowledge that they are trying to help you. Bystander intervention is common when it comes to drinking and driving. Many people will be willing to step in, take your keys and help you get home safely. If no one if offering to help, you may need to ask. Take a ride from a sober friend. It is best to get in a car with someone you trust when you are in this vulnerable state. Allow the host or bartender to call a cab or car service to take you home. If you are having a difficult time finding a safe way to get home, find a place to stay which does not involve you driving. Ask the host of the party if there is a place you can sleep. Give them your keys and ask that they keep them in a safe place until the morning. Stay with a friend if they live nearby and are on their way home. Find a hotel within walking distance. Call them to book a room, or have a friend help you secure one. Ask the friend if they will walk you to the hotel and make sure you get checked in safely. There are people in your life who care about you and want to be sure that you are safe. It may seem scary or embarrassing to call your parents or your siblings if you are too drunk to drive, but they will be glad you did. Your safety is the most important. You may need your phone to call someone for a ride or get help from a friend. Be sure to charge your phone before you leave the house. It is also a good idea to bring a charger with you in case your battery dies before the end of the night or you end up staying where you are and need to get home the next morning. You may also want to invest in a portable battery charger for your phone should there not be a power outlet available. Make sure it is fully charged before you leave your house. Keep it handy in your pocket or your bag throughout the night.'
],
'section_name': ['Finding Other Transportation',
'Designating a Driver',
'Staying Safe'
],
'summary': ['Walk to the venue where you will be drinking if it is close enough. Take public transit. Show up in style by hiring a limo or black car service. Flag a taxi cab for a convenient option to get where you’re going. Request a rideshare service like Uber or Lyft using an app on your phone. Reserve a designated driver service.',
'Plan in advance. Assign a designated driver. Leave your car at home. Leave the venue with your designated driver.',
'Pay attention to your body. Give up your keys. Listen to other people. Accept help. Stay where you are. Have an emergency back-up plan. Make sure that your phone is charged.'
]
},
'url': 'https://www.wikihow.com/Avoid-Drinking-and-Driving'
}
```
### Data Fields
- `url`: WikiHow URL of the article
- `article`: A dictionary containing `section_name`, `document` and `summary`
- `section_name`: List of section headings in an article
- `document`: List of documents, one for each section in the `section_name` list
- `summary`: List of summarized document
### Data Splits
| | train |
|:-----------|--------:|
| arabic | 9995 |
| chinese | 6541 |
| czech | 2520 |
| dutch | 10862 |
| english | 57945 |
| french | 21690 |
| german | 20103 |
| hindi | 3402 |
| indonesian | 16308 |
| italian | 17673 |
| japanese | 4372 |
| korean | 4111 |
| portuguese | 28143 |
| russian | 18143 |
| spanish | 6616 |
| thai | 5093 |
| turkish | 1512 |
| vietnamese | 6616 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
- Article provided by wikiHow https://www.wikihow.com/Main-Page, a wiki building the world's largest, highest quality how-to manual. Please edit this article and find author credits at wikiHow.com. Content on wikiHow can be shared under a [Creative Commons license](http://creativecommons.org/licenses/by-nc-sa/3.0/).
- Refer to [this webpage](https://www.wikihow.com/wikiHow:Attribution) for the specific attribution guidelines.
- also see https://gem-benchmark.com/data_cards/WikiLingua
### Citation Information
```bibtex
@article{ladhak-wiki-2020,
title = {WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization},
authors = {Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
journal = {arXiv preprint arXiv:2010.03093},
year = {2020},
url = {https://arxiv.org/abs/2010.03093}
}
```
### Contributions
Thanks to [@katnoria](https://github.com/katnoria) for adding this dataset. |
wiki_movies | ---
pretty_name: WikiMovies
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-3.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- closed-domain-qa
paperswithcode_id: wikimovies
dataset_info:
features:
- name: question
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 7274490
num_examples: 96185
- name: test
num_bytes: 755258
num_examples: 9952
- name: validation
num_bytes: 754755
num_examples: 10000
download_size: 57070041
dataset_size: 8784503
---
# Dataset Card for WikiMovies
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [WikiMovies Homepage](https://research.fb.com/downloads/babi/)
- **Repository:**
- **Paper:** [Key-Value Memory Networks for Directly Reading Documents](https://arxiv.org/pdf/1606.03126.pdf)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The WikiMovies dataset consists of roughly 100k (templated) questions over 75k entitiesbased on questions with answers in the open movie database (OMDb). It is the QA part of the Movie Dialog dataset.
### Supported Tasks and Leaderboards
- Question Answering
### Languages
The text in the dataset is written in English.
## Dataset Structure
### Data Instances
The raw data consists of question answer pairs separated by a tab. Here are 3 examples:
```buildoutcfg
1 what does Grégoire Colin appear in? Before the Rain
1 Joe Thomas appears in which movies? The Inbetweeners Movie, The Inbetweeners 2
1 what films did Michelle Trachtenberg star in? Inspector Gadget, Black Christmas, Ice Princess, Harriet the Spy, The Scribbler
```
It is unclear what the `1` is for at the beginning of each line, but it has been removed in the `Dataset` object.
### Data Fields
Here is an example of the raw data ingested by `Datasets`:
```buildoutcfg
{
'answer': 'Before the Rain',
'question': 'what does Grégoire Colin appear in?'
}
```
`answer`: a string containing the answer to a corresponding question.
`question`: a string containing the relevant question.
### Data Splits
The data is split into train, test, and dev sets. The split sizes are as follows:
| wiki-entities_qa_* | n examples|
| ----- | ---- |
| train.txt | 96185 |
| dev.txt | 10000 |
| test.txt | 9952 |
## Dataset Creation
### Curation Rationale
WikiMovies was built with the following goals in mind: (i) machine learning techniques should have ample training examples for learning; and (ii) one can analyze easily the performance of different representations of knowledge and break down the results by question type. The datasetcan be downloaded fromhttp://fb.ai/babi
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@misc{miller2016keyvalue,
title={Key-Value Memory Networks for Directly Reading Documents},
author={Alexander Miller and Adam Fisch and Jesse Dodge and Amir-Hossein Karimi and Antoine Bordes and Jason Weston},
year={2016},
eprint={1606.03126},
archivePrefix={arXiv},
primaryClass={cs.CL}
```
### Contributions
Thanks to [@aclifton314](https://github.com/aclifton314) for adding this dataset. |
wiki_qa | ---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: wikiqa
pretty_name: WikiQA
dataset_info:
features:
- name: question_id
dtype: string
- name: question
dtype: string
- name: document_title
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
splits:
- name: test
num_bytes: 1337903
num_examples: 6165
- name: train
num_bytes: 4469148
num_examples: 20360
- name: validation
num_bytes: 591833
num_examples: 2733
download_size: 7094233
dataset_size: 6398884
---
# Dataset Card for "wiki_qa"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://www.microsoft.com/en-us/download/details.aspx?id=52419](https://www.microsoft.com/en-us/download/details.aspx?id=52419)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [WikiQA: A Challenge Dataset for Open-Domain Question Answering](https://aclanthology.org/D15-1237/)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 7.10 MB
- **Size of the generated dataset:** 6.40 MB
- **Total amount of disk used:** 13.50 MB
### Dataset Summary
Wiki Question Answering corpus from Microsoft.
The WikiQA corpus is a publicly available set of question and sentence pairs, collected and annotated for research on open-domain question answering.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 7.10 MB
- **Size of the generated dataset:** 6.40 MB
- **Total amount of disk used:** 13.50 MB
An example of 'train' looks as follows.
```
{
"answer": "Glacier caves are often called ice caves , but this term is properly used to describe bedrock caves that contain year-round ice.",
"document_title": "Glacier cave",
"label": 0,
"question": "how are glacier caves formed?",
"question_id": "Q1"
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `question_id`: a `string` feature.
- `question`: a `string` feature.
- `document_title`: a `string` feature.
- `answer`: a `string` feature.
- `label`: a classification label, with possible values including `0` (0), `1` (1).
### Data Splits
| name |train|validation|test|
|-------|----:|---------:|---:|
|default|20360| 2733|6165|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
MICROSOFT RESEARCH DATA LICENSE AGREEMENT
FOR
MICROSOFT RESEARCH WIKIQA CORPUS
These license terms are an agreement between Microsoft Corporation (or based on where you live, one of its
affiliates) and you. Please read them. They apply to the data associated with this license above, which includes
the media on which you received it, if any. The terms also apply to any Microsoft:
- updates,
- supplements,
- Internet-based services, and
- support services
for this data, unless other terms accompany those items. If so, those terms apply.
BY USING THE DATA, YOU ACCEPT THESE TERMS. IF YOU DO NOT ACCEPT THEM, DO NOT USE THE DATA.
If you comply with these license terms, you have the rights below.
1. SCOPE OF LICENSE.
a. You may use, copy, modify, create derivative works, and distribute the Dataset:
i. for research and technology development purposes only. Examples of research and technology
development uses are teaching, academic research, public demonstrations and experimentation ;
and
ii. to publish (or present papers or articles) on your results from using such Dataset.
b. The data is licensed, not sold. This agreement only gives you some rights to use the data. Microsoft reserves
all other rights. Unless applicable law gives you more rights despite this limitation, you may use the data only
as expressly permitted in this agreement. In doing so, you must comply with any technical limitations in the
data that only allow you to use it in certain ways.
You may not
- work around any technical limitations in the data;
- reverse engineer, decompile or disassemble the data, except and only to the extent that applicable law
expressly permits, despite this limitation;
- rent, lease or lend the data;
- transfer the data or this agreement to any third party; or
- use the data directly in a commercial product without Microsoft’s permission.
2. DISTRIBUTION REQUIREMENTS:
a. If you distribute the Dataset or any derivative works of the Dataset, you will distribute them under the
same terms and conditions as in this Agreement, and you will not grant other rights to the Dataset or
derivative works that are different from those provided by this Agreement.
b. If you have created derivative works of the Dataset, and distribute such derivative works, you will
cause the modified files to carry prominent notices so that recipients know that they are not receiving
Page 1 of 3the original Dataset. Such notices must state: (i) that you have changed the Dataset; and (ii) the date
of any changes.
3. DISTRIBUTION RESTRICTIONS. You may not: (a) alter any copyright, trademark or patent notice in the
Dataset; (b) use Microsoft’s trademarks in a way that suggests your derivative works or modifications come from
or are endorsed by Microsoft; (c) include the Dataset in malicious, deceptive or unlawful programs.
4. OWNERSHIP. Microsoft retains all right, title, and interest in and to any Dataset provided to you under this
Agreement. You acquire no interest in the Dataset you may receive under the terms of this Agreement.
5. LICENSE TO MICROSOFT. Microsoft is granted back, without any restrictions or limitations, a non-exclusive,
perpetual, irrevocable, royalty-free, assignable and sub-licensable license, to reproduce, publicly perform or
display, use, modify, post, distribute, make and have made, sell and transfer your modifications to and/or
derivative works of the Dataset, for any purpose.
6. FEEDBACK. If you give feedback about the Dataset to Microsoft, you give to Microsoft, without charge, the right
to use, share and commercialize your feedback in any way and for any purpose. You also give to third parties,
without charge, any patent rights needed for their products, technologies and services to use or interface with
any specific parts of a Microsoft dataset or service that includes the feedback. You will not give feedback that is
subject to a license that requires Microsoft to license its Dataset or documentation to third parties because we
include your feedback in them. These rights survive this Agreement.
7. EXPORT RESTRICTIONS. The Dataset is subject to United States export laws and regulations. You must
comply with all domestic and international export laws and regulations that apply to the Dataset. These laws
include restrictions on destinations, end users and end use. For additional information, see
www.microsoft.com/exporting.
8. ENTIRE AGREEMENT. This Agreement, and the terms for supplements, updates, Internet-based services and
support services that you use, are the entire agreement for the Dataset.
9. SUPPORT SERVICES. Because this data is “as is,” we may not provide support services for it.
10. APPLICABLE LAW.
a. United States. If you acquired the software in the United States, Washington state law governs the
interpretation of this agreement and applies to claims for breach of it, regardless of conflict of laws principles.
The laws of the state where you live govern all other claims, including claims under state consumer protection
laws, unfair competition laws, and in tort.
b. Outside the United States. If you acquired the software in any other country, the laws of that country
apply.
11. LEGAL EFFECT. This Agreement describes certain legal rights. You may have other rights under the laws of your
country. You may also have rights with respect to the party from whom you acquired the Dataset. This
Agreement does not change your rights under the laws of your country if the laws of your country do not permit
it to do so.
12. DISCLAIMER OF WARRANTY. The Dataset is licensed “as-is.” You bear the risk of using it. Microsoft gives no
express warranties, guarantees or conditions. You may have additional consumer rights or statutory guarantees
under your local laws which this agreement cannot change. To the extent permitted under your local laws,
Microsoft excludes the implied warranties of merchantability, fitness for a particular purpose and non-
infringement.
13. LIMITATION ON AND EXCLUSION OF REMEDIES AND DAMAGES. YOU CAN RECOVER FROM
MICROSOFT AND ITS SUPPLIERS ONLY DIRECT DAMAGES UP TO U.S. $5.00. YOU CANNOT RECOVER ANY
OTHER DAMAGES, INCLUDING CONSEQUENTIAL, LOST PROFITS, SPECIAL, INDIRECT OR INCIDENTAL
DAMAGES.
This limitation applies to
- anything related to the software, services, content (including code) on third party Internet sites, or third party
programs; and Page 2 of 3
- claims for breach of contract, breach of warranty, guarantee or condition, strict liability, negligence, or other
tort to the extent permitted by applicable law.
It also applies even if Microsoft knew or should have known about the possibility of the damages. The above
limitation or exclusion may not apply to you because your country may not allow the exclusion or limitation of
incidental, consequential or other damages.
### Citation Information
```
@inproceedings{yang-etal-2015-wikiqa,
title = "{W}iki{QA}: A Challenge Dataset for Open-Domain Question Answering",
author = "Yang, Yi and
Yih, Wen-tau and
Meek, Christopher",
booktitle = "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2015",
address = "Lisbon, Portugal",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D15-1237",
doi = "10.18653/v1/D15-1237",
pages = "2013--2018",
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |
wiki_qa_ar | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- ar
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: wikiqaar
pretty_name: English-Arabic Wikipedia Question-Answering
dataset_info:
features:
- name: question_id
dtype: string
- name: question
dtype: string
- name: document_id
dtype: string
- name: answer_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
config_name: plain_text
splits:
- name: test
num_bytes: 7563127
num_examples: 20632
- name: validation
num_bytes: 3740721
num_examples: 10387
- name: train
num_bytes: 26009979
num_examples: 70264
download_size: 35226436
dataset_size: 37313827
---
# Dataset Card for WikiQAar
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [WikiQaAr](https://github.com/qcri/WikiQAar)
- **Repository:** [WikiQaAr](https://github.com/qcri/WikiQAar)
- **Paper:**
- **Point of Contact:** [Ines Abbes
](abbes.ines@yahoo.com)
### Dataset Summary
Arabic Version of WikiQA by automatic automatic machine translators
and crowdsourced the selection of the best one to be incorporated into the corpus
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is based on Arabic.
## Dataset Structure
### Data Instances
Each data point contains the question and whether the answer is a valid or not.
### Data Fields
- `question_id`: the question id.
- `question`: the question text.
- `document_id`: the wikipedia document id.
- `answer_id` : the answer id.
- `answer` : a candidate answer to the question.
- `label` : 1 if the `answer` is correct or 0 otherwise.
### Data Splits
The dataset is not split.
| | train | validation | test |
|------------|-------:|-----------:|-------:|
| Data split | 70,264 | 20,632 | 10,387 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
Translation of WikiQA.
#### Who are the source language producers?
Translation of WikiQA.
### Annotations
The dataset does not contain any additional annotations.
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@InProceedings{YangYihMeek:EMNLP2015:WikiQA,
author = {{Yi}, Yang and {Wen-tau}, Yih and {Christopher} Meek},
title = "{WikiQA: A Challenge Dataset for Open-Domain Question Answering}",
journal = {Association for Computational Linguistics},
year = 2015,
doi = {10.18653/v1/D15-1237},
pages = {2013–2018},
}
```
### Contributions
Thanks to [@zaidalyafeai](https://github.com/zaidalyafeai) for adding this dataset. |
wiki_snippets | ---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- en
license:
- unknown
multilinguality:
- multilingual
pretty_name: WikiSnippets
size_categories:
- 10M<n<100M
source_datasets:
- extended|wiki40b
- extended|wikipedia
task_categories:
- text-generation
- other
task_ids:
- language-modeling
paperswithcode_id: null
tags:
- text-search
dataset_info:
- config_name: wiki40b_en_100_0
features:
- name: _id
dtype: string
- name: datasets_id
dtype: int32
- name: wiki_id
dtype: string
- name: start_paragraph
dtype: int32
- name: start_character
dtype: int32
- name: end_paragraph
dtype: int32
- name: end_character
dtype: int32
- name: article_title
dtype: string
- name: section_title
dtype: string
- name: passage_text
dtype: string
splits:
- name: train
num_bytes: 12938641686
num_examples: 17553713
download_size: 0
dataset_size: 12938641686
- config_name: wikipedia_en_100_0
features:
- name: _id
dtype: string
- name: datasets_id
dtype: int32
- name: wiki_id
dtype: string
- name: start_paragraph
dtype: int32
- name: start_character
dtype: int32
- name: end_paragraph
dtype: int32
- name: end_character
dtype: int32
- name: article_title
dtype: string
- name: section_title
dtype: string
- name: passage_text
dtype: string
splits:
- name: train
num_bytes: 26407884393
num_examples: 33849898
download_size: 0
dataset_size: 26407884393
---
# Dataset Card for "wiki_snippets"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://dumps.wikimedia.org](https://dumps.wikimedia.org)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Dataset Summary
Wikipedia version split into plain text snippets for dense semantic indexing.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
We show detailed information for 2 configurations of the dataset (with 100 snippet passage length and 0 overlap) in
English:
- wiki40b_en_100_0: Wiki-40B
- wikipedia_en_100_0: Wikipedia
### Data Instances
#### wiki40b_en_100_0
- **Size of downloaded dataset files:** 0.00 MB
- **Size of the generated dataset:** 12.94 GB
- **Total amount of disk used:** 12.94 GB
An example of 'train' looks as follows:
```
{'_id': '{"datasets_id": 0, "wiki_id": "Q1294448", "sp": 2, "sc": 0, "ep": 6, "ec": 610}',
'datasets_id': 0,
'wiki_id': 'Q1294448',
'start_paragraph': 2,
'start_character': 0,
'end_paragraph': 6,
'end_character': 610,
'article_title': 'Ági Szalóki',
'section_title': 'Life',
'passage_text': "Ági Szalóki Life She started singing as a toddler, considering Márta Sebestyén a role model. Her musical background is traditional folk music; she first won recognition for singing with Ökrös in a traditional folk style, and Besh o droM, a Balkan gypsy brass band. With these ensembles she toured around the world from the Montreal Jazz Festival, through Glastonbury Festival to the Théatre de la Ville in Paris, from New York to Beijing.\nSince 2005, she began to pursue her solo career and explore various genres, such as jazz, thirties ballads, or children's songs.\nUntil now, three of her six released albums"}
```
#### wikipedia_en_100_0
- **Size of downloaded dataset files:** 0.00 MB
- **Size of the generated dataset:** 26.41 GB
- **Total amount of disk used:** 26.41 GB
An example of 'train' looks as follows:
```
{'_id': '{"datasets_id": 0, "wiki_id": "Anarchism", "sp": 0, "sc": 0, "ep": 2, "ec": 129}',
'datasets_id': 0,
'wiki_id': 'Anarchism',
'start_paragraph': 0,
'start_character': 0,
'end_paragraph': 2,
'end_character': 129,
'article_title': 'Anarchism',
'section_title': 'Start',
'passage_text': 'Anarchism is a political philosophy and movement that is sceptical of authority and rejects all involuntary, coercive forms of hierarchy. Anarchism calls for the abolition of the state, which it holds to be unnecessary, undesirable, and harmful. As a historically left-wing movement, placed on the farthest left of the political spectrum, it is usually described alongside communalism and libertarian Marxism as the libertarian wing (libertarian socialism) of the socialist movement, and has a strong historical association with anti-capitalism and socialism. Humans lived in societies without formal hierarchies long before the establishment of formal states, realms, or empires. With the'}
```
### Data Fields
The data fields are the same for all configurations:
- `_id`: a `string` feature.
- `datasets_id`: a `int32` feature.
- `wiki_id`: a `string` feature.
- `start_paragraph`: a `int32` feature.
- `start_character`: a `int32` feature.
- `end_paragraph`: a `int32` feature.
- `end_character`: a `int32` feature.
- `article_title`: a `string` feature.
- `section_title`: a `string` feature.
- `passage_text`: a `string` feature.
### Data Splits
| name | train |
|:-------------------|---------:|
| wiki40b_en_100_0 | 17553713 |
| wikipedia_en_100_0 | 33849898 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
See licensing information of source datasets.
### Citation Information
Cite source datasets:
- Wiki-40B:
```
@inproceedings{49029,
title = {Wiki-40B: Multilingual Language Model Dataset},
author = {Mandy Guo and Zihang Dai and Denny Vrandecic and Rami Al-Rfou},
year = {2020},
booktitle = {LREC 2020}
}
```
- Wikipedia:
```
@ONLINE{wikidump,
author = "Wikimedia Foundation",
title = "Wikimedia Downloads",
url = "https://dumps.wikimedia.org"
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@mariamabarham](https://github.com/mariamabarham), [@yjernite](https://github.com/yjernite) for adding this dataset. |
wiki_source | ---
annotations_creators:
- found
language_creators:
- found
language:
- en
- sv
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: WikiSource
dataset_info:
features:
- name: id
dtype: string
- name: translation
dtype:
translation:
languages:
- en
- sv
config_name: en-sv
splits:
- name: train
num_bytes: 8153542
num_examples: 33283
download_size: 2375052
dataset_size: 8153542
---
# Dataset Card for WikiSource
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://opus.nlpl.eu/WikiSource.php
- **Repository:** None
- **Paper:** http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** [More Information Needed]
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset. |
wiki_split | ---
annotations_creators:
- machine-generated
language:
- en
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: WikiSplit
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text2text-generation
task_ids: []
paperswithcode_id: wikisplit
tags:
- split-and-rephrase
dataset_info:
features:
- name: complex_sentence
dtype: string
- name: simple_sentence_1
dtype: string
- name: simple_sentence_2
dtype: string
splits:
- name: test
num_bytes: 1949294
num_examples: 5000
- name: train
num_bytes: 384513073
num_examples: 989944
- name: validation
num_bytes: 1935459
num_examples: 5000
download_size: 100279164
dataset_size: 388397826
---
# Dataset Card for "wiki_split"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://dataset-homepage/](https://dataset-homepage/)
- **Repository:** https://github.com/google-research-datasets/wiki-split
- **Paper:** [Learning To Split and Rephrase From Wikipedia Edit History](https://arxiv.org/abs/1808.09468)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 100.28 MB
- **Size of the generated dataset:** 388.40 MB
- **Total amount of disk used:** 488.68 MB
### Dataset Summary
One million English sentences, each split into two sentences that together preserve the original meaning, extracted from Wikipedia
Google's WikiSplit dataset was constructed automatically from the publicly available Wikipedia revision history. Although
the dataset contains some inherent noise, it can serve as valuable training data for models that split or merge sentences.
### Supported Tasks and Leaderboards
- Split and Rephrase
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 100.28 MB
- **Size of the generated dataset:** 388.40 MB
- **Total amount of disk used:** 488.68 MB
An example of 'train' looks as follows.
```
{
"complex_sentence": " '' As she translates from one language to another , she tries to find the appropriate wording and context in English that would correspond to the work in Spanish her poems and stories started to have differing meanings in their respective languages .",
"simple_sentence_1": "' '' As she translates from one language to another , she tries to find the appropriate wording and context in English that would correspond to the work in Spanish . ",
"simple_sentence_2": " Ergo , her poems and stories started to have differing meanings in their respective languages ."
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `complex_sentence`: a `string` feature.
- `simple_sentence_1`: a `string` feature.
- `simple_sentence_2`: a `string` feature.
### Data Splits
| name |train |validation|test|
|-------|-----:|---------:|---:|
|default|989944| 5000|5000|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The WikiSplit dataset is a verbatim copy of certain content from the publicly available Wikipedia revision history.
The dataset is therefore licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/).
Any third party content or data is provided "As Is" without any warranty, express or implied.
### Citation Information
```
@inproceedings{botha-etal-2018-learning,
title = "Learning To Split and Rephrase From {W}ikipedia Edit History",
author = "Botha, Jan A. and
Faruqui, Manaal and
Alex, John and
Baldridge, Jason and
Das, Dipanjan",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1080",
doi = "10.18653/v1/D18-1080",
pages = "732--737",
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@albertvillanova](https://github.com/albertvillanova), [@lewtun](https://github.com/lewtun) for adding this dataset. |
wiki_summary | ---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- fa
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text2text-generation
- translation
- question-answering
- summarization
task_ids:
- abstractive-qa
- explanation-generation
- extractive-qa
- open-domain-qa
- open-domain-abstractive-qa
- text-simplification
pretty_name: WikiSummary
dataset_info:
features:
- name: id
dtype: string
- name: link
dtype: string
- name: title
dtype: string
- name: article
dtype: string
- name: highlights
dtype: string
splits:
- name: train
num_bytes: 207186608
num_examples: 45654
- name: test
num_bytes: 25693509
num_examples: 5638
- name: validation
num_bytes: 23130954
num_examples: 5074
download_size: 255168504
dataset_size: 256011071
---
# Dataset Card for [Needs More Information]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/m3hrdadfi/wiki-summary
- **Repository:** https://github.com/m3hrdadfi/wiki-summary
- **Paper:** [More Information Needed]
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** [Mehrdad Farahani](mailto:m3hrdadphi@gmail.com)
### Dataset Summary
The dataset extracted from Persian Wikipedia into the form of articles and highlights and cleaned the dataset into pairs of articles and highlights and reduced the articles' length (only version 1.0.0) and highlights' length to a maximum of 512 and 128, respectively, suitable for parsBERT. This dataset is created to achieve state-of-the-art results on some interesting NLP tasks like Text Summarization.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The text in the dataset is in Percy.
## Dataset Structure
### Data Instances
```
{
'id' :'0598cfd2ac491a928615945054ab7602034a8f4f',
'link': 'https://fa.wikipedia.org/wiki/انقلاب_1917_روسیه',
'title': 'انقلاب 1917 روسیه',
'article': 'نخست انقلاب فوریه ۱۹۱۷ رخ داد . در این انقلاب پس از یکسری اعتصابات ، تظاهرات و درگیریها ، نیکولای دوم ، آخرین تزار روسیه از سلطنت خلع شد و یک دولت موقت به قدرت رسید . دولت موقت زیر نظر گئورگی لووف و الکساندر کرنسکی تشکیل شد . اکثر اعضای دولت موقت ، از شاخه منشویک حزب سوسیال دموکرات کارگری روسیه بودند . دومین مرحله ، انقلاب اکتبر ۱۹۱۷ بود . انقلاب اکتبر ، تحت نظارت حزب بلشویک (شاخه رادیکال از حزب سوسیال دموکرات کارگری روسیه) و به رهبری ولادیمیر لنین به پیش رفت و طی یک یورش نظامی همهجانبه به کاخ زمستانی سن پترزبورگ و سایر اماکن مهم ، قدرت را از دولت موقت گرفت . در این انقلاب افراد بسیار کمی کشته شدند . از زمان شکست روسیه در جنگ ۱۹۰۵ با ژاپن ، اوضاع بد اقتصادی ، گرسنگی ، عقبماندگی و سرمایهداری و نارضایتیهای گوناگون در بین مردم ، سربازان ، کارگران ، کشاورزان و نخبگان روسیه بهوجود آمدهبود . سرکوبهای تزار و ایجاد مجلس دوما نظام مشروطه حاصل آن دوران است . حزب سوسیال دموکرات ، اصلیترین معترض به سیاستهای نیکلای دوم بود که بهطور گسترده بین دهقانان کشاورزان و کارگران کارخانجات صنعتی علیه سیاستهای سیستم تزار فعالیت داشت . در اوت ۱۹۱۴ میلادی ، امپراتوری روسیه به دستور تزار وقت و به منظور حمایت از اسلاوهای صربستان وارد جنگ جهانی اول در برابر امپراتوری آلمان و امپراتوری اتریش-مجارستان شد . نخست فقط بلشویکها ، مخالف ورود روسیه به این جنگ بودند و میگفتند که این جنگ ، سبب بدتر شدن اوضاع نابسامان اقتصادی و اجتماعی روسیه خواهد شد . در سال ۱۹۱۴ میلادی ، یعنی در آغاز جنگ جهانی اول ، روسیه بزرگترین ارتش جهان را داشت ، حدود ۱۲ میلیون سرباز و ۶ میلیون سرباز ذخیره ؛ ولی در پایان سال ۱۹۱۶ میلادی ، پنج میلیون نفر از سربازان روسیه کشته ، زخمی یا اسیر شده بودند . حدود دو میلیون سرباز نیز محل خدمت خود را ترک کرده و غالبا با اسلحه به شهر و دیار خود بازگشته بودند . در میان ۱۰ یا ۱۱ میلیون سرباز باقیمانده نیز ، اعتبار تزار و سلسله مراتب ارتش و اتوریته افسران بالا دست از بین رفته بود . عوامل نابسامان داخلی اعم از اجتماعی کشاورزی و فرماندهی نظامی در شکستهای روسیه بسیار مؤثر بود . شکستهای روسیه در جنگ جهانی اول ، حامیان نیکلای دوم در روسیه را به حداقل خود رساند . در اوایل فوریه ۱۹۱۷ میلادی اکثر کارگران صنعتی در پتروگراد و مسکو دست به اعتصاب زدند . سپس شورش به پادگانها و سربازان رسید . اعتراضات دهقانان نیز گسترش یافت . سوسیال دموکراتها هدایت اعتراضات را در دست گرفتند . در ۱۱ مارس ۱۹۱۷ میلادی ، تزار وقت روسیه ، نیکلای دوم ، فرمان انحلال مجلس روسیه را صادر کرد ، اما اکثر نمایندگان مجلس متفرق نشدند و با تصمیمات نیکلای دوم مخالفت کردند . سرانجام در پی تظاهرات گسترده کارگران و سپس نافرمانی سربازان در سرکوب تظاهرکنندگان در پتروگراد ، نیکلای دوم از مقام خود استعفا داد . بدین ترتیب حکمرانی دودمان رومانوفها بر روسیه پس از حدود سیصد سال پایان یافت .',
'highlights': 'انقلاب ۱۹۱۷ روسیه ، جنبشی اعتراضی ، ضد امپراتوری روسیه بود که در سال ۱۹۱۷ رخ داد و به سرنگونی حکومت تزارها و برپایی اتحاد جماهیر شوروی انجامید . مبانی انقلاب بر پایه صلح-نان-زمین استوار بود . این انقلاب در دو مرحله صورت گرفت : در طول این انقلاب در شهرهای اصلی روسیه همانند مسکو و سن پترزبورگ رویدادهای تاریخی برجستهای رخ داد . انقلاب در مناطق روستایی و رعیتی نیز پا به پای مناطق شهری در حال پیشروی بود و دهقانان زمینها را تصرف کرده و در حال بازتوزیع آن در میان خود بودند .'
}
```
### Data Fields
- `id`: Article id
- `link`: Article link
- `title`: Title of the article
- `article`: Full text content in the article
- `highlights`: Summary of the article
### Data Splits
| Train | Test | Validation |
|-------------|-------------|-------------|
| 45,654 | 5,638 | 5,074 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
No annotations.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset was created by Mehrdad Farahani.
### Licensing Information
[Apache License 2.0](https://github.com/m3hrdadfi/wiki-summary/blob/master/LICENSE)
### Citation Information
```
@misc{Bert2BertWikiSummaryPersian,
author = {Mehrdad Farahani},
title = {Summarization using Bert2Bert model on WikiSummary dataset},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {https://github.com/m3hrdadfi/wiki-summary},
}
```
### Contributions
Thanks to [@tanmoyio](https://github.com/tanmoyio) for adding this dataset. |
wikiann | ---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
language:
- ace
- af
- als
- am
- an
- ang
- ar
- arc
- arz
- as
- ast
- ay
- az
- ba
- bar
- be
- bg
- bh
- bn
- bo
- br
- bs
- ca
- cbk
- cdo
- ce
- ceb
- ckb
- co
- crh
- cs
- csb
- cv
- cy
- da
- de
- diq
- dv
- el
- eml
- en
- eo
- es
- et
- eu
- ext
- fa
- fi
- fo
- fr
- frr
- fur
- fy
- ga
- gan
- gd
- gl
- gn
- gu
- hak
- he
- hi
- hr
- hsb
- hu
- hy
- ia
- id
- ig
- ilo
- io
- is
- it
- ja
- jbo
- jv
- ka
- kk
- km
- kn
- ko
- ksh
- ku
- ky
- la
- lb
- li
- lij
- lmo
- ln
- lt
- lv
- lzh
- mg
- mhr
- mi
- min
- mk
- ml
- mn
- mr
- ms
- mt
- mwl
- my
- mzn
- nan
- nap
- nds
- ne
- nl
- nn
- 'no'
- nov
- oc
- or
- os
- pa
- pdc
- pl
- pms
- pnb
- ps
- pt
- qu
- rm
- ro
- ru
- rw
- sa
- sah
- scn
- sco
- sd
- sgs
- sh
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- szl
- ta
- te
- tg
- th
- tk
- tl
- tr
- tt
- ug
- uk
- ur
- uz
- vec
- vep
- vi
- vls
- vo
- vro
- wa
- war
- wuu
- xmf
- yi
- yo
- yue
- zea
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: wikiann-1
pretty_name: WikiANN
configs:
- 'no'
- ace
- af
- als
- am
- an
- ang
- ar
- arc
- arz
- as
- ast
- ay
- az
- ba
- bar
- be
- bg
- bh
- bn
- bo
- br
- bs
- ca
- cdo
- ce
- ceb
- ckb
- co
- crh
- cs
- csb
- cv
- cy
- da
- de
- diq
- dv
- el
- en
- eo
- es
- et
- eu
- ext
- fa
- fi
- fo
- fr
- frr
- fur
- fy
- ga
- gan
- gd
- gl
- gn
- gu
- hak
- he
- hi
- hr
- hsb
- hu
- hy
- ia
- id
- ig
- ilo
- io
- is
- it
- ja
- jbo
- jv
- ka
- kk
- km
- kn
- ko
- ksh
- ku
- ky
- la
- lb
- li
- lij
- lmo
- ln
- lt
- lv
- mg
- mhr
- mi
- min
- mk
- ml
- mn
- mr
- ms
- mt
- mwl
- my
- mzn
- nap
- nds
- ne
- nl
- nn
- nov
- oc
- or
- os
- other-bat-smg
- other-be-x-old
- other-cbk-zam
- other-eml
- other-fiu-vro
- other-map-bms
- other-simple
- other-zh-classical
- other-zh-min-nan
- other-zh-yue
- pa
- pdc
- pl
- pms
- pnb
- ps
- pt
- qu
- rm
- ro
- ru
- rw
- sa
- sah
- scn
- sco
- sd
- sh
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- szl
- ta
- te
- tg
- th
- tk
- tl
- tr
- tt
- ug
- uk
- ur
- uz
- vec
- vep
- vi
- vls
- vo
- wa
- war
- wuu
- xmf
- yi
- yo
- zea
- zh
language_bcp47:
- be-tarask
- en-basiceng
- jv-x-bms
dataset_info:
- config_name: ace
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 22453
num_examples: 100
- name: test
num_bytes: 25752
num_examples: 100
- name: train
num_bytes: 23231
num_examples: 100
download_size: 234008884
dataset_size: 71436
- config_name: af
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 299137
num_examples: 1000
- name: test
num_bytes: 295849
num_examples: 1000
- name: train
num_bytes: 1521604
num_examples: 5000
download_size: 234008884
dataset_size: 2116590
- config_name: als
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 34318
num_examples: 100
- name: test
num_bytes: 36345
num_examples: 100
- name: train
num_bytes: 34968
num_examples: 100
download_size: 234008884
dataset_size: 105631
- config_name: am
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 21429
num_examples: 100
- name: test
num_bytes: 23811
num_examples: 100
- name: train
num_bytes: 22214
num_examples: 100
download_size: 234008884
dataset_size: 67454
- config_name: an
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 180609
num_examples: 1000
- name: test
num_bytes: 174992
num_examples: 1000
- name: train
num_bytes: 180967
num_examples: 1000
download_size: 234008884
dataset_size: 536568
- config_name: ang
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 21925
num_examples: 100
- name: test
num_bytes: 24523
num_examples: 100
- name: train
num_bytes: 23296
num_examples: 100
download_size: 234008884
dataset_size: 69744
- config_name: ar
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2325688
num_examples: 10000
- name: test
num_bytes: 2334664
num_examples: 10000
- name: train
num_bytes: 4671669
num_examples: 20000
download_size: 234008884
dataset_size: 9332021
- config_name: arc
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 15726
num_examples: 100
- name: test
num_bytes: 16641
num_examples: 100
- name: train
num_bytes: 18536
num_examples: 100
download_size: 234008884
dataset_size: 50903
- config_name: arz
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 26609
num_examples: 100
- name: test
num_bytes: 25663
num_examples: 100
- name: train
num_bytes: 26375
num_examples: 100
download_size: 234008884
dataset_size: 78647
- config_name: as
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 25736
num_examples: 100
- name: test
num_bytes: 23350
num_examples: 100
- name: train
num_bytes: 24984
num_examples: 100
download_size: 234008884
dataset_size: 74070
- config_name: ast
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 217477
num_examples: 1000
- name: test
num_bytes: 220874
num_examples: 1000
- name: train
num_bytes: 228238
num_examples: 1000
download_size: 234008884
dataset_size: 666589
- config_name: ay
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 11684
num_examples: 100
- name: test
num_bytes: 13379
num_examples: 100
- name: train
num_bytes: 12596
num_examples: 100
download_size: 234008884
dataset_size: 37659
- config_name: az
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 272066
num_examples: 1000
- name: test
num_bytes: 267935
num_examples: 1000
- name: train
num_bytes: 2645552
num_examples: 10000
download_size: 234008884
dataset_size: 3185553
- config_name: ba
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 29262
num_examples: 100
- name: test
num_bytes: 30502
num_examples: 100
- name: train
num_bytes: 31123
num_examples: 100
download_size: 234008884
dataset_size: 90887
- config_name: bar
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 17374
num_examples: 100
- name: test
num_bytes: 17839
num_examples: 100
- name: train
num_bytes: 16796
num_examples: 100
download_size: 234008884
dataset_size: 52009
- config_name: bat-smg
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 26496
num_examples: 100
- name: test
num_bytes: 26093
num_examples: 100
- name: train
num_bytes: 24677
num_examples: 100
download_size: 234008884
dataset_size: 77266
- config_name: be
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 262042
num_examples: 1000
- name: test
num_bytes: 266104
num_examples: 1000
- name: train
num_bytes: 3983322
num_examples: 15000
download_size: 234008884
dataset_size: 4511468
- config_name: be-x-old
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 342654
num_examples: 1000
- name: test
num_bytes: 337599
num_examples: 1000
- name: train
num_bytes: 1704256
num_examples: 5000
download_size: 234008884
dataset_size: 2384509
- config_name: bg
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2840907
num_examples: 10000
- name: test
num_bytes: 2830213
num_examples: 10000
- name: train
num_bytes: 5665063
num_examples: 20000
download_size: 234008884
dataset_size: 11336183
- config_name: bh
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 33682
num_examples: 100
- name: test
num_bytes: 30692
num_examples: 100
- name: train
num_bytes: 36374
num_examples: 100
download_size: 234008884
dataset_size: 100748
- config_name: bn
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 238446
num_examples: 1000
- name: test
num_bytes: 237218
num_examples: 1000
- name: train
num_bytes: 2351591
num_examples: 10000
download_size: 234008884
dataset_size: 2827255
- config_name: bo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 22688
num_examples: 100
- name: test
num_bytes: 15437
num_examples: 100
- name: train
num_bytes: 14085
num_examples: 100
download_size: 234008884
dataset_size: 52210
- config_name: br
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 206839
num_examples: 1000
- name: test
num_bytes: 222083
num_examples: 1000
- name: train
num_bytes: 221495
num_examples: 1000
download_size: 234008884
dataset_size: 650417
- config_name: bs
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 246378
num_examples: 1000
- name: test
num_bytes: 247331
num_examples: 1000
- name: train
num_bytes: 3669346
num_examples: 15000
download_size: 234008884
dataset_size: 4163055
- config_name: ca
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 1836319
num_examples: 10000
- name: test
num_bytes: 1847746
num_examples: 10000
- name: train
num_bytes: 3689342
num_examples: 20000
download_size: 234008884
dataset_size: 7373407
- config_name: cbk-zam
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 47060
num_examples: 100
- name: test
num_bytes: 47277
num_examples: 100
- name: train
num_bytes: 52545
num_examples: 100
download_size: 234008884
dataset_size: 146882
- config_name: cdo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 37479
num_examples: 100
- name: test
num_bytes: 34319
num_examples: 100
- name: train
num_bytes: 36204
num_examples: 100
download_size: 234008884
dataset_size: 108002
- config_name: ce
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 40303
num_examples: 100
- name: test
num_bytes: 38640
num_examples: 100
- name: train
num_bytes: 38284
num_examples: 100
download_size: 234008884
dataset_size: 117227
- config_name: ceb
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 22789
num_examples: 100
- name: test
num_bytes: 23950
num_examples: 100
- name: train
num_bytes: 21365
num_examples: 100
download_size: 234008884
dataset_size: 68104
- config_name: ckb
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 214231
num_examples: 1000
- name: test
num_bytes: 211988
num_examples: 1000
- name: train
num_bytes: 217066
num_examples: 1000
download_size: 234008884
dataset_size: 643285
- config_name: co
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 15968
num_examples: 100
- name: test
num_bytes: 15880
num_examples: 100
- name: train
num_bytes: 18032
num_examples: 100
download_size: 234008884
dataset_size: 49880
- config_name: crh
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 20230
num_examples: 100
- name: test
num_bytes: 23879
num_examples: 100
- name: train
num_bytes: 23336
num_examples: 100
download_size: 234008884
dataset_size: 67445
- config_name: cs
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2456654
num_examples: 10000
- name: test
num_bytes: 2458155
num_examples: 10000
- name: train
num_bytes: 4944758
num_examples: 20000
download_size: 234008884
dataset_size: 9859567
- config_name: csb
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 28841
num_examples: 100
- name: test
num_bytes: 27840
num_examples: 100
- name: train
num_bytes: 31640
num_examples: 100
download_size: 234008884
dataset_size: 88321
- config_name: cv
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 24787
num_examples: 100
- name: test
num_bytes: 26403
num_examples: 100
- name: train
num_bytes: 26956
num_examples: 100
download_size: 234008884
dataset_size: 78146
- config_name: cy
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 228586
num_examples: 1000
- name: test
num_bytes: 233869
num_examples: 1000
- name: train
num_bytes: 2337116
num_examples: 10000
download_size: 234008884
dataset_size: 2799571
- config_name: da
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2422976
num_examples: 10000
- name: test
num_bytes: 2432324
num_examples: 10000
- name: train
num_bytes: 4882222
num_examples: 20000
download_size: 234008884
dataset_size: 9737522
- config_name: de
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2754550
num_examples: 10000
- name: test
num_bytes: 2750996
num_examples: 10000
- name: train
num_bytes: 5510641
num_examples: 20000
download_size: 234008884
dataset_size: 11016187
- config_name: diq
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 24147
num_examples: 100
- name: test
num_bytes: 22476
num_examples: 100
- name: train
num_bytes: 24131
num_examples: 100
download_size: 234008884
dataset_size: 70754
- config_name: dv
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 30322
num_examples: 100
- name: test
num_bytes: 27279
num_examples: 100
- name: train
num_bytes: 31033
num_examples: 100
download_size: 234008884
dataset_size: 88634
- config_name: el
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 3027962
num_examples: 10000
- name: test
num_bytes: 3034329
num_examples: 10000
- name: train
num_bytes: 6046638
num_examples: 20000
download_size: 234008884
dataset_size: 12108929
- config_name: eml
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 30050
num_examples: 100
- name: test
num_bytes: 35880
num_examples: 100
- name: train
num_bytes: 30792
num_examples: 100
download_size: 234008884
dataset_size: 96722
- config_name: en
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2336353
num_examples: 10000
- name: test
num_bytes: 2330245
num_examples: 10000
- name: train
num_bytes: 4649601
num_examples: 20000
download_size: 234008884
dataset_size: 9316199
- config_name: eo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 1968690
num_examples: 10000
- name: test
num_bytes: 1961486
num_examples: 10000
- name: train
num_bytes: 2952610
num_examples: 15000
download_size: 234008884
dataset_size: 6882786
- config_name: es
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 1976935
num_examples: 10000
- name: test
num_bytes: 1986664
num_examples: 10000
- name: train
num_bytes: 3972292
num_examples: 20000
download_size: 234008884
dataset_size: 7935891
- config_name: et
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2403361
num_examples: 10000
- name: test
num_bytes: 2392424
num_examples: 10000
- name: train
num_bytes: 3579264
num_examples: 15000
download_size: 234008884
dataset_size: 8375049
- config_name: eu
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2677036
num_examples: 10000
- name: test
num_bytes: 2628951
num_examples: 10000
- name: train
num_bytes: 2672353
num_examples: 10000
download_size: 234008884
dataset_size: 7978340
- config_name: ext
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 30821
num_examples: 100
- name: test
num_bytes: 29483
num_examples: 100
- name: train
num_bytes: 23110
num_examples: 100
download_size: 234008884
dataset_size: 83414
- config_name: fa
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2328640
num_examples: 10000
- name: test
num_bytes: 2314687
num_examples: 10000
- name: train
num_bytes: 4618098
num_examples: 20000
download_size: 234008884
dataset_size: 9261425
- config_name: fi
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2500586
num_examples: 10000
- name: test
num_bytes: 2505161
num_examples: 10000
- name: train
num_bytes: 5020655
num_examples: 20000
download_size: 234008884
dataset_size: 10026402
- config_name: fiu-vro
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 27672
num_examples: 100
- name: test
num_bytes: 27728
num_examples: 100
- name: train
num_bytes: 28689
num_examples: 100
download_size: 234008884
dataset_size: 84089
- config_name: fo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 26094
num_examples: 100
- name: test
num_bytes: 23531
num_examples: 100
- name: train
num_bytes: 26178
num_examples: 100
download_size: 234008884
dataset_size: 75803
- config_name: fr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2058004
num_examples: 10000
- name: test
num_bytes: 2073593
num_examples: 10000
- name: train
num_bytes: 4123995
num_examples: 20000
download_size: 234008884
dataset_size: 8255592
- config_name: frr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 15883
num_examples: 100
- name: test
num_bytes: 15736
num_examples: 100
- name: train
num_bytes: 16654
num_examples: 100
download_size: 234008884
dataset_size: 48273
- config_name: fur
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 25264
num_examples: 100
- name: test
num_bytes: 30562
num_examples: 100
- name: train
num_bytes: 33654
num_examples: 100
download_size: 234008884
dataset_size: 89480
- config_name: fy
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 226436
num_examples: 1000
- name: test
num_bytes: 229700
num_examples: 1000
- name: train
num_bytes: 223013
num_examples: 1000
download_size: 234008884
dataset_size: 679149
- config_name: ga
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 234092
num_examples: 1000
- name: test
num_bytes: 235083
num_examples: 1000
- name: train
num_bytes: 238047
num_examples: 1000
download_size: 234008884
dataset_size: 707222
- config_name: gan
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 17533
num_examples: 100
- name: test
num_bytes: 13879
num_examples: 100
- name: train
num_bytes: 14398
num_examples: 100
download_size: 234008884
dataset_size: 45810
- config_name: gd
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 23230
num_examples: 100
- name: test
num_bytes: 20308
num_examples: 100
- name: train
num_bytes: 20154
num_examples: 100
download_size: 234008884
dataset_size: 63692
- config_name: gl
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2029683
num_examples: 10000
- name: test
num_bytes: 2031150
num_examples: 10000
- name: train
num_bytes: 3030993
num_examples: 15000
download_size: 234008884
dataset_size: 7091826
- config_name: gn
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 29132
num_examples: 100
- name: test
num_bytes: 24263
num_examples: 100
- name: train
num_bytes: 28220
num_examples: 100
download_size: 234008884
dataset_size: 81615
- config_name: gu
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 48009
num_examples: 100
- name: test
num_bytes: 45417
num_examples: 100
- name: train
num_bytes: 42625
num_examples: 100
download_size: 234008884
dataset_size: 136051
- config_name: hak
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 17977
num_examples: 100
- name: test
num_bytes: 18155
num_examples: 100
- name: train
num_bytes: 16208
num_examples: 100
download_size: 234008884
dataset_size: 52340
- config_name: he
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2801392
num_examples: 10000
- name: test
num_bytes: 2785474
num_examples: 10000
- name: train
num_bytes: 5600488
num_examples: 20000
download_size: 234008884
dataset_size: 11187354
- config_name: hi
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 261207
num_examples: 1000
- name: test
num_bytes: 267255
num_examples: 1000
- name: train
num_bytes: 1315829
num_examples: 5000
download_size: 234008884
dataset_size: 1844291
- config_name: hr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2417450
num_examples: 10000
- name: test
num_bytes: 2430440
num_examples: 10000
- name: train
num_bytes: 4877331
num_examples: 20000
download_size: 234008884
dataset_size: 9725221
- config_name: hsb
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 24695
num_examples: 100
- name: test
num_bytes: 24348
num_examples: 100
- name: train
num_bytes: 24228
num_examples: 100
download_size: 234008884
dataset_size: 73271
- config_name: hu
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2590116
num_examples: 10000
- name: test
num_bytes: 2626771
num_examples: 10000
- name: train
num_bytes: 5263122
num_examples: 20000
download_size: 234008884
dataset_size: 10480009
- config_name: hy
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 237560
num_examples: 1000
- name: test
num_bytes: 237121
num_examples: 1000
- name: train
num_bytes: 3634065
num_examples: 15000
download_size: 234008884
dataset_size: 4108746
- config_name: ia
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 32064
num_examples: 100
- name: test
num_bytes: 37617
num_examples: 100
- name: train
num_bytes: 32928
num_examples: 100
download_size: 234008884
dataset_size: 102609
- config_name: id
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 1901625
num_examples: 10000
- name: test
num_bytes: 1902732
num_examples: 10000
- name: train
num_bytes: 3814047
num_examples: 20000
download_size: 234008884
dataset_size: 7618404
- config_name: ig
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 17721
num_examples: 100
- name: test
num_bytes: 18432
num_examples: 100
- name: train
num_bytes: 15988
num_examples: 100
download_size: 234008884
dataset_size: 52141
- config_name: ilo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 16675
num_examples: 100
- name: test
num_bytes: 17245
num_examples: 100
- name: train
num_bytes: 17152
num_examples: 100
download_size: 234008884
dataset_size: 51072
- config_name: io
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 19026
num_examples: 100
- name: test
num_bytes: 17231
num_examples: 100
- name: train
num_bytes: 20781
num_examples: 100
download_size: 234008884
dataset_size: 57038
- config_name: is
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 243667
num_examples: 1000
- name: test
num_bytes: 235946
num_examples: 1000
- name: train
num_bytes: 243465
num_examples: 1000
download_size: 234008884
dataset_size: 723078
- config_name: it
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2282947
num_examples: 10000
- name: test
num_bytes: 2307618
num_examples: 10000
- name: train
num_bytes: 4633575
num_examples: 20000
download_size: 234008884
dataset_size: 9224140
- config_name: ja
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 6775608
num_examples: 10000
- name: test
num_bytes: 6898538
num_examples: 10000
- name: train
num_bytes: 13578325
num_examples: 20000
download_size: 234008884
dataset_size: 27252471
- config_name: jbo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 15618
num_examples: 100
- name: test
num_bytes: 19586
num_examples: 100
- name: train
num_bytes: 15070
num_examples: 100
download_size: 234008884
dataset_size: 50274
- config_name: jv
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 17691
num_examples: 100
- name: test
num_bytes: 20203
num_examples: 100
- name: train
num_bytes: 19409
num_examples: 100
download_size: 234008884
dataset_size: 57303
- config_name: ka
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 3454381
num_examples: 10000
- name: test
num_bytes: 3480870
num_examples: 10000
- name: train
num_bytes: 3428008
num_examples: 10000
download_size: 234008884
dataset_size: 10363259
- config_name: kk
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 286502
num_examples: 1000
- name: test
num_bytes: 284503
num_examples: 1000
- name: train
num_bytes: 287952
num_examples: 1000
download_size: 234008884
dataset_size: 858957
- config_name: km
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 29310
num_examples: 100
- name: test
num_bytes: 36101
num_examples: 100
- name: train
num_bytes: 31938
num_examples: 100
download_size: 234008884
dataset_size: 97349
- config_name: kn
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 36853
num_examples: 100
- name: test
num_bytes: 32278
num_examples: 100
- name: train
num_bytes: 34346
num_examples: 100
download_size: 234008884
dataset_size: 103477
- config_name: ko
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2553068
num_examples: 10000
- name: test
num_bytes: 2547800
num_examples: 10000
- name: train
num_bytes: 5107090
num_examples: 20000
download_size: 234008884
dataset_size: 10207958
- config_name: ksh
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 26338
num_examples: 100
- name: test
num_bytes: 25249
num_examples: 100
- name: train
num_bytes: 25941
num_examples: 100
download_size: 234008884
dataset_size: 77528
- config_name: ku
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 22597
num_examples: 100
- name: test
num_bytes: 20795
num_examples: 100
- name: train
num_bytes: 22669
num_examples: 100
download_size: 234008884
dataset_size: 66061
- config_name: ky
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 31010
num_examples: 100
- name: test
num_bytes: 31896
num_examples: 100
- name: train
num_bytes: 32768
num_examples: 100
download_size: 234008884
dataset_size: 95674
- config_name: la
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 207205
num_examples: 1000
- name: test
num_bytes: 198910
num_examples: 1000
- name: train
num_bytes: 999050
num_examples: 5000
download_size: 234008884
dataset_size: 1405165
- config_name: lb
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 253774
num_examples: 1000
- name: test
num_bytes: 249989
num_examples: 1000
- name: train
num_bytes: 1260939
num_examples: 5000
download_size: 234008884
dataset_size: 1764702
- config_name: li
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 20201
num_examples: 100
- name: test
num_bytes: 18817
num_examples: 100
- name: train
num_bytes: 20211
num_examples: 100
download_size: 234008884
dataset_size: 59229
- config_name: lij
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 28005
num_examples: 100
- name: test
num_bytes: 27882
num_examples: 100
- name: train
num_bytes: 30581
num_examples: 100
download_size: 234008884
dataset_size: 86468
- config_name: lmo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 26575
num_examples: 100
- name: test
num_bytes: 29453
num_examples: 100
- name: train
num_bytes: 24161
num_examples: 100
download_size: 234008884
dataset_size: 80189
- config_name: ln
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 21709
num_examples: 100
- name: test
num_bytes: 27003
num_examples: 100
- name: train
num_bytes: 22227
num_examples: 100
download_size: 234008884
dataset_size: 70939
- config_name: lt
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2192874
num_examples: 10000
- name: test
num_bytes: 2191269
num_examples: 10000
- name: train
num_bytes: 2199946
num_examples: 10000
download_size: 234008884
dataset_size: 6584089
- config_name: lv
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2173420
num_examples: 10000
- name: test
num_bytes: 2190458
num_examples: 10000
- name: train
num_bytes: 2206943
num_examples: 10000
download_size: 234008884
dataset_size: 6570821
- config_name: map-bms
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 19780
num_examples: 100
- name: test
num_bytes: 20558
num_examples: 100
- name: train
num_bytes: 21639
num_examples: 100
download_size: 234008884
dataset_size: 61977
- config_name: mg
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 24861
num_examples: 100
- name: test
num_bytes: 22570
num_examples: 100
- name: train
num_bytes: 25739
num_examples: 100
download_size: 234008884
dataset_size: 73170
- config_name: mhr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 23263
num_examples: 100
- name: test
num_bytes: 23639
num_examples: 100
- name: train
num_bytes: 18648
num_examples: 100
download_size: 234008884
dataset_size: 65550
- config_name: mi
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 39399
num_examples: 100
- name: test
num_bytes: 40147
num_examples: 100
- name: train
num_bytes: 37896
num_examples: 100
download_size: 234008884
dataset_size: 117442
- config_name: min
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 28719
num_examples: 100
- name: test
num_bytes: 24741
num_examples: 100
- name: train
num_bytes: 26620
num_examples: 100
download_size: 234008884
dataset_size: 80080
- config_name: mk
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 333193
num_examples: 1000
- name: test
num_bytes: 337757
num_examples: 1000
- name: train
num_bytes: 3355936
num_examples: 10000
download_size: 234008884
dataset_size: 4026886
- config_name: ml
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 363008
num_examples: 1000
- name: test
num_bytes: 349383
num_examples: 1000
- name: train
num_bytes: 3582066
num_examples: 10000
download_size: 234008884
dataset_size: 4294457
- config_name: mn
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 22006
num_examples: 100
- name: test
num_bytes: 23538
num_examples: 100
- name: train
num_bytes: 23244
num_examples: 100
download_size: 234008884
dataset_size: 68788
- config_name: mr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 314858
num_examples: 1000
- name: test
num_bytes: 326290
num_examples: 1000
- name: train
num_bytes: 1598804
num_examples: 5000
download_size: 234008884
dataset_size: 2239952
- config_name: ms
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 183944
num_examples: 1000
- name: test
num_bytes: 183539
num_examples: 1000
- name: train
num_bytes: 3699238
num_examples: 20000
download_size: 234008884
dataset_size: 4066721
- config_name: mt
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 24571
num_examples: 100
- name: test
num_bytes: 24662
num_examples: 100
- name: train
num_bytes: 24956
num_examples: 100
download_size: 234008884
dataset_size: 74189
- config_name: mwl
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 51987
num_examples: 100
- name: test
num_bytes: 43008
num_examples: 100
- name: train
num_bytes: 44605
num_examples: 100
download_size: 234008884
dataset_size: 139600
- config_name: my
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 48953
num_examples: 100
- name: test
num_bytes: 45956
num_examples: 100
- name: train
num_bytes: 41371
num_examples: 100
download_size: 234008884
dataset_size: 136280
- config_name: mzn
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 25304
num_examples: 100
- name: test
num_bytes: 25947
num_examples: 100
- name: train
num_bytes: 24841
num_examples: 100
download_size: 234008884
dataset_size: 76092
- config_name: nap
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 21546
num_examples: 100
- name: test
num_bytes: 24194
num_examples: 100
- name: train
num_bytes: 26596
num_examples: 100
download_size: 234008884
dataset_size: 72336
- config_name: nds
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 28388
num_examples: 100
- name: test
num_bytes: 26571
num_examples: 100
- name: train
num_bytes: 24679
num_examples: 100
download_size: 234008884
dataset_size: 79638
- config_name: ne
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 33932
num_examples: 100
- name: test
num_bytes: 33227
num_examples: 100
- name: train
num_bytes: 36173
num_examples: 100
download_size: 234008884
dataset_size: 103332
- config_name: nl
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2378080
num_examples: 10000
- name: test
num_bytes: 2403076
num_examples: 10000
- name: train
num_bytes: 4784289
num_examples: 20000
download_size: 234008884
dataset_size: 9565445
- config_name: nn
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 274140
num_examples: 1000
- name: test
num_bytes: 269631
num_examples: 1000
- name: train
num_bytes: 5436185
num_examples: 20000
download_size: 234008884
dataset_size: 5979956
- config_name: 'no'
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2576669
num_examples: 10000
- name: test
num_bytes: 2563559
num_examples: 10000
- name: train
num_bytes: 5139548
num_examples: 20000
download_size: 234008884
dataset_size: 10279776
- config_name: nov
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 14856
num_examples: 100
- name: test
num_bytes: 14830
num_examples: 100
- name: train
num_bytes: 17270
num_examples: 100
download_size: 234008884
dataset_size: 46956
- config_name: oc
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 20428
num_examples: 100
- name: test
num_bytes: 18600
num_examples: 100
- name: train
num_bytes: 19319
num_examples: 100
download_size: 234008884
dataset_size: 58347
- config_name: or
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 32131
num_examples: 100
- name: test
num_bytes: 29508
num_examples: 100
- name: train
num_bytes: 27822
num_examples: 100
download_size: 234008884
dataset_size: 89461
- config_name: os
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 26779
num_examples: 100
- name: test
num_bytes: 25995
num_examples: 100
- name: train
num_bytes: 26033
num_examples: 100
download_size: 234008884
dataset_size: 78807
- config_name: pa
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 25230
num_examples: 100
- name: test
num_bytes: 23708
num_examples: 100
- name: train
num_bytes: 24171
num_examples: 100
download_size: 234008884
dataset_size: 73109
- config_name: pdc
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 24419
num_examples: 100
- name: test
num_bytes: 24674
num_examples: 100
- name: train
num_bytes: 23991
num_examples: 100
download_size: 234008884
dataset_size: 73084
- config_name: pl
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2448324
num_examples: 10000
- name: test
num_bytes: 2463783
num_examples: 10000
- name: train
num_bytes: 4851527
num_examples: 20000
download_size: 234008884
dataset_size: 9763634
- config_name: pms
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 28369
num_examples: 100
- name: test
num_bytes: 24015
num_examples: 100
- name: train
num_bytes: 27429
num_examples: 100
download_size: 234008884
dataset_size: 79813
- config_name: pnb
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 19070
num_examples: 100
- name: test
num_bytes: 21206
num_examples: 100
- name: train
num_bytes: 19504
num_examples: 100
download_size: 234008884
dataset_size: 59780
- config_name: ps
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 49901
num_examples: 100
- name: test
num_bytes: 43621
num_examples: 100
- name: train
num_bytes: 63501
num_examples: 100
download_size: 234008884
dataset_size: 157023
- config_name: pt
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 1962145
num_examples: 10000
- name: test
num_bytes: 1946729
num_examples: 10000
- name: train
num_bytes: 3917453
num_examples: 20000
download_size: 234008884
dataset_size: 7826327
- config_name: qu
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 18231
num_examples: 100
- name: test
num_bytes: 17675
num_examples: 100
- name: train
num_bytes: 16989
num_examples: 100
download_size: 234008884
dataset_size: 52895
- config_name: rm
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 32776
num_examples: 100
- name: test
num_bytes: 35880
num_examples: 100
- name: train
num_bytes: 30489
num_examples: 100
download_size: 234008884
dataset_size: 99145
- config_name: ro
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2063860
num_examples: 10000
- name: test
num_bytes: 2060933
num_examples: 10000
- name: train
num_bytes: 4179869
num_examples: 20000
download_size: 234008884
dataset_size: 8304662
- config_name: ru
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2574546
num_examples: 10000
- name: test
num_bytes: 2597248
num_examples: 10000
- name: train
num_bytes: 5175665
num_examples: 20000
download_size: 234008884
dataset_size: 10347459
- config_name: rw
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 17999
num_examples: 100
- name: test
num_bytes: 14445
num_examples: 100
- name: train
num_bytes: 16778
num_examples: 100
download_size: 234008884
dataset_size: 49222
- config_name: sa
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 45721
num_examples: 100
- name: test
num_bytes: 49209
num_examples: 100
- name: train
num_bytes: 52504
num_examples: 100
download_size: 234008884
dataset_size: 147434
- config_name: sah
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 27875
num_examples: 100
- name: test
num_bytes: 26853
num_examples: 100
- name: train
num_bytes: 27041
num_examples: 100
download_size: 234008884
dataset_size: 81769
- config_name: scn
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 20105
num_examples: 100
- name: test
num_bytes: 17384
num_examples: 100
- name: train
num_bytes: 21032
num_examples: 100
download_size: 234008884
dataset_size: 58521
- config_name: sco
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 22215
num_examples: 100
- name: test
num_bytes: 21589
num_examples: 100
- name: train
num_bytes: 20308
num_examples: 100
download_size: 234008884
dataset_size: 64112
- config_name: sd
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 51555
num_examples: 100
- name: test
num_bytes: 38534
num_examples: 100
- name: train
num_bytes: 56925
num_examples: 100
download_size: 234008884
dataset_size: 147014
- config_name: sh
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 1789918
num_examples: 10000
- name: test
num_bytes: 1791491
num_examples: 10000
- name: train
num_bytes: 3583633
num_examples: 20000
download_size: 234008884
dataset_size: 7165042
- config_name: si
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 30845
num_examples: 100
- name: test
num_bytes: 29341
num_examples: 100
- name: train
num_bytes: 31255
num_examples: 100
download_size: 234008884
dataset_size: 91441
- config_name: simple
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 247147
num_examples: 1000
- name: test
num_bytes: 245358
num_examples: 1000
- name: train
num_bytes: 4921916
num_examples: 20000
download_size: 234008884
dataset_size: 5414421
- config_name: sk
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2342061
num_examples: 10000
- name: test
num_bytes: 2335009
num_examples: 10000
- name: train
num_bytes: 4701553
num_examples: 20000
download_size: 234008884
dataset_size: 9378623
- config_name: sl
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2090247
num_examples: 10000
- name: test
num_bytes: 2133491
num_examples: 10000
- name: train
num_bytes: 3158676
num_examples: 15000
download_size: 234008884
dataset_size: 7382414
- config_name: so
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 21864
num_examples: 100
- name: test
num_bytes: 17219
num_examples: 100
- name: train
num_bytes: 23780
num_examples: 100
download_size: 234008884
dataset_size: 62863
- config_name: sq
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 210888
num_examples: 1000
- name: test
num_bytes: 209824
num_examples: 1000
- name: train
num_bytes: 1052387
num_examples: 5000
download_size: 234008884
dataset_size: 1473099
- config_name: sr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2548390
num_examples: 10000
- name: test
num_bytes: 2564831
num_examples: 10000
- name: train
num_bytes: 5105569
num_examples: 20000
download_size: 234008884
dataset_size: 10218790
- config_name: su
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 22605
num_examples: 100
- name: test
num_bytes: 21861
num_examples: 100
- name: train
num_bytes: 20839
num_examples: 100
download_size: 234008884
dataset_size: 65305
- config_name: sv
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2678672
num_examples: 10000
- name: test
num_bytes: 2719077
num_examples: 10000
- name: train
num_bytes: 5395722
num_examples: 20000
download_size: 234008884
dataset_size: 10793471
- config_name: sw
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 168819
num_examples: 1000
- name: test
num_bytes: 172693
num_examples: 1000
- name: train
num_bytes: 168749
num_examples: 1000
download_size: 234008884
dataset_size: 510261
- config_name: szl
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 19397
num_examples: 100
- name: test
num_bytes: 18967
num_examples: 100
- name: train
num_bytes: 17646
num_examples: 100
download_size: 234008884
dataset_size: 56010
- config_name: ta
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 354957
num_examples: 1000
- name: test
num_bytes: 357667
num_examples: 1000
- name: train
num_bytes: 5275759
num_examples: 15000
download_size: 234008884
dataset_size: 5988383
- config_name: te
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 356189
num_examples: 1000
- name: test
num_bytes: 359780
num_examples: 1000
- name: train
num_bytes: 358792
num_examples: 1000
download_size: 234008884
dataset_size: 1074761
- config_name: tg
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 27130
num_examples: 100
- name: test
num_bytes: 28821
num_examples: 100
- name: train
num_bytes: 27200
num_examples: 100
download_size: 234008884
dataset_size: 83151
- config_name: th
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 14189743
num_examples: 10000
- name: test
num_bytes: 14505054
num_examples: 10000
- name: train
num_bytes: 28968916
num_examples: 20000
download_size: 234008884
dataset_size: 57663713
- config_name: tk
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 21611
num_examples: 100
- name: test
num_bytes: 20302
num_examples: 100
- name: train
num_bytes: 19521
num_examples: 100
download_size: 234008884
dataset_size: 61434
- config_name: tl
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 148682
num_examples: 1000
- name: test
num_bytes: 152964
num_examples: 1000
- name: train
num_bytes: 1518784
num_examples: 10000
download_size: 234008884
dataset_size: 1820430
- config_name: tr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2280517
num_examples: 10000
- name: test
num_bytes: 2276920
num_examples: 10000
- name: train
num_bytes: 4501912
num_examples: 20000
download_size: 234008884
dataset_size: 9059349
- config_name: tt
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 282535
num_examples: 1000
- name: test
num_bytes: 282691
num_examples: 1000
- name: train
num_bytes: 283392
num_examples: 1000
download_size: 234008884
dataset_size: 848618
- config_name: ug
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 35219
num_examples: 100
- name: test
num_bytes: 31129
num_examples: 100
- name: train
num_bytes: 26620
num_examples: 100
download_size: 234008884
dataset_size: 92968
- config_name: uk
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 2934897
num_examples: 10000
- name: test
num_bytes: 2928200
num_examples: 10000
- name: train
num_bytes: 5928026
num_examples: 20000
download_size: 234008884
dataset_size: 11791123
- config_name: ur
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 203747
num_examples: 1000
- name: test
num_bytes: 203138
num_examples: 1000
- name: train
num_bytes: 4108707
num_examples: 20000
download_size: 234008884
dataset_size: 4515592
- config_name: uz
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 184625
num_examples: 1000
- name: test
num_bytes: 184713
num_examples: 1000
- name: train
num_bytes: 186105
num_examples: 1000
download_size: 234008884
dataset_size: 555443
- config_name: vec
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 19335
num_examples: 100
- name: test
num_bytes: 20254
num_examples: 100
- name: train
num_bytes: 20437
num_examples: 100
download_size: 234008884
dataset_size: 60026
- config_name: vep
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 22306
num_examples: 100
- name: test
num_bytes: 21371
num_examples: 100
- name: train
num_bytes: 21387
num_examples: 100
download_size: 234008884
dataset_size: 65064
- config_name: vi
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 1944856
num_examples: 10000
- name: test
num_bytes: 1960024
num_examples: 10000
- name: train
num_bytes: 3915944
num_examples: 20000
download_size: 234008884
dataset_size: 7820824
- config_name: vls
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 27895
num_examples: 100
- name: test
num_bytes: 26778
num_examples: 100
- name: train
num_bytes: 26183
num_examples: 100
download_size: 234008884
dataset_size: 80856
- config_name: vo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 14385
num_examples: 100
- name: test
num_bytes: 14001
num_examples: 100
- name: train
num_bytes: 14442
num_examples: 100
download_size: 234008884
dataset_size: 42828
- config_name: wa
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 22493
num_examples: 100
- name: test
num_bytes: 21581
num_examples: 100
- name: train
num_bytes: 23072
num_examples: 100
download_size: 234008884
dataset_size: 67146
- config_name: war
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 16834
num_examples: 100
- name: test
num_bytes: 19912
num_examples: 100
- name: train
num_bytes: 18829
num_examples: 100
download_size: 234008884
dataset_size: 55575
- config_name: wuu
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 15123
num_examples: 100
- name: test
num_bytes: 15067
num_examples: 100
- name: train
num_bytes: 17016
num_examples: 100
download_size: 234008884
dataset_size: 47206
- config_name: xmf
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 39979
num_examples: 100
- name: test
num_bytes: 36081
num_examples: 100
- name: train
num_bytes: 31796
num_examples: 100
download_size: 234008884
dataset_size: 107856
- config_name: yi
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 25269
num_examples: 100
- name: test
num_bytes: 25005
num_examples: 100
- name: train
num_bytes: 27303
num_examples: 100
download_size: 234008884
dataset_size: 77577
- config_name: yo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 17738
num_examples: 100
- name: test
num_bytes: 17996
num_examples: 100
- name: train
num_bytes: 18984
num_examples: 100
download_size: 234008884
dataset_size: 54718
- config_name: zea
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 24916
num_examples: 100
- name: test
num_bytes: 22997
num_examples: 100
- name: train
num_bytes: 21252
num_examples: 100
download_size: 234008884
dataset_size: 69165
- config_name: zh
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 4839728
num_examples: 10000
- name: test
num_bytes: 4709458
num_examples: 10000
- name: train
num_bytes: 9524981
num_examples: 20000
download_size: 234008884
dataset_size: 19074167
- config_name: zh-classical
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 59980
num_examples: 100
- name: test
num_bytes: 65885
num_examples: 100
- name: train
num_bytes: 56238
num_examples: 100
download_size: 234008884
dataset_size: 182103
- config_name: zh-min-nan
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 24533
num_examples: 100
- name: test
num_bytes: 24326
num_examples: 100
- name: train
num_bytes: 19358
num_examples: 100
download_size: 234008884
dataset_size: 68217
- config_name: zh-yue
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
- name: spans
sequence: string
splits:
- name: validation
num_bytes: 4934158
num_examples: 10000
- name: test
num_bytes: 4964029
num_examples: 10000
- name: train
num_bytes: 9950629
num_examples: 20000
download_size: 234008884
dataset_size: 19848816
---
# Dataset Card for WikiANN
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Massively Multilingual Transfer for NER](https://github.com/afshinrahimi/mmner)
- **Repository:** [Massively Multilingual Transfer for NER](https://github.com/afshinrahimi/mmner)
- **Paper:** The original datasets come from the _Cross-lingual name tagging and linking for 282 languages_ [paper](https://www.aclweb.org/anthology/P17-1178/) by Xiaoman Pan et al. (2018). This version corresponds to the balanced train, dev, and test splits of the original data from the _Massively Multilingual Transfer for NER_ [paper](https://arxiv.org/abs/1902.00193) by Afshin Rahimi et al. (2019).
- **Leaderboard:**
- **Point of Contact:** [Afshin Rahimi](mailto:afshinrahimi@gmail.com) or [Lewis Tunstall](mailto:lewis.c.tunstall@gmail.com) or [Albert Villanova del Moral](albert@huggingface.co)
### Dataset Summary
WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of Rahimi et al. (2019), which supports 176 of the 282 languages from the original WikiANN corpus.
### Supported Tasks and Leaderboards
- `named-entity-recognition`: The dataset can be used to train a model for named entity recognition in many languages, or evaluate the zero-shot cross-lingual capabilities of multilingual models.
### Languages
The dataset contains 176 languages, one in each of the configuration subsets. The corresponding BCP 47 language tags
are:
| | Language tag |
|:-------------------|:---------------|
| ace | ace |
| af | af |
| als | als |
| am | am |
| an | an |
| ang | ang |
| ar | ar |
| arc | arc |
| arz | arz |
| as | as |
| ast | ast |
| ay | ay |
| az | az |
| ba | ba |
| bar | bar |
| be | be |
| bg | bg |
| bh | bh |
| bn | bn |
| bo | bo |
| br | br |
| bs | bs |
| ca | ca |
| cdo | cdo |
| ce | ce |
| ceb | ceb |
| ckb | ckb |
| co | co |
| crh | crh |
| cs | cs |
| csb | csb |
| cv | cv |
| cy | cy |
| da | da |
| de | de |
| diq | diq |
| dv | dv |
| el | el |
| en | en |
| eo | eo |
| es | es |
| et | et |
| eu | eu |
| ext | ext |
| fa | fa |
| fi | fi |
| fo | fo |
| fr | fr |
| frr | frr |
| fur | fur |
| fy | fy |
| ga | ga |
| gan | gan |
| gd | gd |
| gl | gl |
| gn | gn |
| gu | gu |
| hak | hak |
| he | he |
| hi | hi |
| hr | hr |
| hsb | hsb |
| hu | hu |
| hy | hy |
| ia | ia |
| id | id |
| ig | ig |
| ilo | ilo |
| io | io |
| is | is |
| it | it |
| ja | ja |
| jbo | jbo |
| jv | jv |
| ka | ka |
| kk | kk |
| km | km |
| kn | kn |
| ko | ko |
| ksh | ksh |
| ku | ku |
| ky | ky |
| la | la |
| lb | lb |
| li | li |
| lij | lij |
| lmo | lmo |
| ln | ln |
| lt | lt |
| lv | lv |
| mg | mg |
| mhr | mhr |
| mi | mi |
| min | min |
| mk | mk |
| ml | ml |
| mn | mn |
| mr | mr |
| ms | ms |
| mt | mt |
| mwl | mwl |
| my | my |
| mzn | mzn |
| nap | nap |
| nds | nds |
| ne | ne |
| nl | nl |
| nn | nn |
| no | no |
| nov | nov |
| oc | oc |
| or | or |
| os | os |
| other-bat-smg | sgs |
| other-be-x-old | be-tarask |
| other-cbk-zam | cbk |
| other-eml | eml |
| other-fiu-vro | vro |
| other-map-bms | jv-x-bms |
| other-simple | en-basiceng |
| other-zh-classical | lzh |
| other-zh-min-nan | nan |
| other-zh-yue | yue |
| pa | pa |
| pdc | pdc |
| pl | pl |
| pms | pms |
| pnb | pnb |
| ps | ps |
| pt | pt |
| qu | qu |
| rm | rm |
| ro | ro |
| ru | ru |
| rw | rw |
| sa | sa |
| sah | sah |
| scn | scn |
| sco | sco |
| sd | sd |
| sh | sh |
| si | si |
| sk | sk |
| sl | sl |
| so | so |
| sq | sq |
| sr | sr |
| su | su |
| sv | sv |
| sw | sw |
| szl | szl |
| ta | ta |
| te | te |
| tg | tg |
| th | th |
| tk | tk |
| tl | tl |
| tr | tr |
| tt | tt |
| ug | ug |
| uk | uk |
| ur | ur |
| uz | uz |
| vec | vec |
| vep | vep |
| vi | vi |
| vls | vls |
| vo | vo |
| wa | wa |
| war | war |
| wuu | wuu |
| xmf | xmf |
| yi | yi |
| yo | yo |
| zea | zea |
| zh | zh |
## Dataset Structure
### Data Instances
This is an example in the "train" split of the "af" (Afrikaans language) configuration subset:
```python
{
'tokens': ['Sy', 'ander', 'seun', ',', 'Swjatopolk', ',', 'was', 'die', 'resultaat', 'van', '’n', 'buite-egtelike', 'verhouding', '.'],
'ner_tags': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'langs': ['af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af', 'af'],
'spans': ['PER: Swjatopolk']
}
```
### Data Fields
- `tokens`: a `list` of `string` features.
- `langs`: a `list` of `string` features that correspond to the language of each token.
- `ner_tags`: a `list` of classification labels, with possible values including `O` (0), `B-PER` (1), `I-PER` (2), `B-ORG` (3), `I-ORG` (4), `B-LOC` (5), `I-LOC` (6).
- `spans`: a `list` of `string` features, that is the list of named entities in the input text formatted as ``<TAG>: <mention>``
### Data Splits
For each configuration subset, the data is split into "train", "validation" and "test" sets, each containing the
following number of examples:
| | Train | Validation | Test |
|:-------------|--------:|-------------:|-------:|
| ace | 100 | 100 | 100 |
| af | 5000 | 1000 | 1000 |
| als | 100 | 100 | 100 |
| am | 100 | 100 | 100 |
| an | 1000 | 1000 | 1000 |
| ang | 100 | 100 | 100 |
| ar | 20000 | 10000 | 10000 |
| arc | 100 | 100 | 100 |
| arz | 100 | 100 | 100 |
| as | 100 | 100 | 100 |
| ast | 1000 | 1000 | 1000 |
| ay | 100 | 100 | 100 |
| az | 10000 | 1000 | 1000 |
| ba | 100 | 100 | 100 |
| bar | 100 | 100 | 100 |
| bat-smg | 100 | 100 | 100 |
| be | 15000 | 1000 | 1000 |
| be-x-old | 5000 | 1000 | 1000 |
| bg | 20000 | 10000 | 10000 |
| bh | 100 | 100 | 100 |
| bn | 10000 | 1000 | 1000 |
| bo | 100 | 100 | 100 |
| br | 1000 | 1000 | 1000 |
| bs | 15000 | 1000 | 1000 |
| ca | 20000 | 10000 | 10000 |
| cbk-zam | 100 | 100 | 100 |
| cdo | 100 | 100 | 100 |
| ce | 100 | 100 | 100 |
| ceb | 100 | 100 | 100 |
| ckb | 1000 | 1000 | 1000 |
| co | 100 | 100 | 100 |
| crh | 100 | 100 | 100 |
| cs | 20000 | 10000 | 10000 |
| csb | 100 | 100 | 100 |
| cv | 100 | 100 | 100 |
| cy | 10000 | 1000 | 1000 |
| da | 20000 | 10000 | 10000 |
| de | 20000 | 10000 | 10000 |
| diq | 100 | 100 | 100 |
| dv | 100 | 100 | 100 |
| el | 20000 | 10000 | 10000 |
| eml | 100 | 100 | 100 |
| en | 20000 | 10000 | 10000 |
| eo | 15000 | 10000 | 10000 |
| es | 20000 | 10000 | 10000 |
| et | 15000 | 10000 | 10000 |
| eu | 10000 | 10000 | 10000 |
| ext | 100 | 100 | 100 |
| fa | 20000 | 10000 | 10000 |
| fi | 20000 | 10000 | 10000 |
| fiu-vro | 100 | 100 | 100 |
| fo | 100 | 100 | 100 |
| fr | 20000 | 10000 | 10000 |
| frr | 100 | 100 | 100 |
| fur | 100 | 100 | 100 |
| fy | 1000 | 1000 | 1000 |
| ga | 1000 | 1000 | 1000 |
| gan | 100 | 100 | 100 |
| gd | 100 | 100 | 100 |
| gl | 15000 | 10000 | 10000 |
| gn | 100 | 100 | 100 |
| gu | 100 | 100 | 100 |
| hak | 100 | 100 | 100 |
| he | 20000 | 10000 | 10000 |
| hi | 5000 | 1000 | 1000 |
| hr | 20000 | 10000 | 10000 |
| hsb | 100 | 100 | 100 |
| hu | 20000 | 10000 | 10000 |
| hy | 15000 | 1000 | 1000 |
| ia | 100 | 100 | 100 |
| id | 20000 | 10000 | 10000 |
| ig | 100 | 100 | 100 |
| ilo | 100 | 100 | 100 |
| io | 100 | 100 | 100 |
| is | 1000 | 1000 | 1000 |
| it | 20000 | 10000 | 10000 |
| ja | 20000 | 10000 | 10000 |
| jbo | 100 | 100 | 100 |
| jv | 100 | 100 | 100 |
| ka | 10000 | 10000 | 10000 |
| kk | 1000 | 1000 | 1000 |
| km | 100 | 100 | 100 |
| kn | 100 | 100 | 100 |
| ko | 20000 | 10000 | 10000 |
| ksh | 100 | 100 | 100 |
| ku | 100 | 100 | 100 |
| ky | 100 | 100 | 100 |
| la | 5000 | 1000 | 1000 |
| lb | 5000 | 1000 | 1000 |
| li | 100 | 100 | 100 |
| lij | 100 | 100 | 100 |
| lmo | 100 | 100 | 100 |
| ln | 100 | 100 | 100 |
| lt | 10000 | 10000 | 10000 |
| lv | 10000 | 10000 | 10000 |
| map-bms | 100 | 100 | 100 |
| mg | 100 | 100 | 100 |
| mhr | 100 | 100 | 100 |
| mi | 100 | 100 | 100 |
| min | 100 | 100 | 100 |
| mk | 10000 | 1000 | 1000 |
| ml | 10000 | 1000 | 1000 |
| mn | 100 | 100 | 100 |
| mr | 5000 | 1000 | 1000 |
| ms | 20000 | 1000 | 1000 |
| mt | 100 | 100 | 100 |
| mwl | 100 | 100 | 100 |
| my | 100 | 100 | 100 |
| mzn | 100 | 100 | 100 |
| nap | 100 | 100 | 100 |
| nds | 100 | 100 | 100 |
| ne | 100 | 100 | 100 |
| nl | 20000 | 10000 | 10000 |
| nn | 20000 | 1000 | 1000 |
| no | 20000 | 10000 | 10000 |
| nov | 100 | 100 | 100 |
| oc | 100 | 100 | 100 |
| or | 100 | 100 | 100 |
| os | 100 | 100 | 100 |
| pa | 100 | 100 | 100 |
| pdc | 100 | 100 | 100 |
| pl | 20000 | 10000 | 10000 |
| pms | 100 | 100 | 100 |
| pnb | 100 | 100 | 100 |
| ps | 100 | 100 | 100 |
| pt | 20000 | 10000 | 10000 |
| qu | 100 | 100 | 100 |
| rm | 100 | 100 | 100 |
| ro | 20000 | 10000 | 10000 |
| ru | 20000 | 10000 | 10000 |
| rw | 100 | 100 | 100 |
| sa | 100 | 100 | 100 |
| sah | 100 | 100 | 100 |
| scn | 100 | 100 | 100 |
| sco | 100 | 100 | 100 |
| sd | 100 | 100 | 100 |
| sh | 20000 | 10000 | 10000 |
| si | 100 | 100 | 100 |
| simple | 20000 | 1000 | 1000 |
| sk | 20000 | 10000 | 10000 |
| sl | 15000 | 10000 | 10000 |
| so | 100 | 100 | 100 |
| sq | 5000 | 1000 | 1000 |
| sr | 20000 | 10000 | 10000 |
| su | 100 | 100 | 100 |
| sv | 20000 | 10000 | 10000 |
| sw | 1000 | 1000 | 1000 |
| szl | 100 | 100 | 100 |
| ta | 15000 | 1000 | 1000 |
| te | 1000 | 1000 | 1000 |
| tg | 100 | 100 | 100 |
| th | 20000 | 10000 | 10000 |
| tk | 100 | 100 | 100 |
| tl | 10000 | 1000 | 1000 |
| tr | 20000 | 10000 | 10000 |
| tt | 1000 | 1000 | 1000 |
| ug | 100 | 100 | 100 |
| uk | 20000 | 10000 | 10000 |
| ur | 20000 | 1000 | 1000 |
| uz | 1000 | 1000 | 1000 |
| vec | 100 | 100 | 100 |
| vep | 100 | 100 | 100 |
| vi | 20000 | 10000 | 10000 |
| vls | 100 | 100 | 100 |
| vo | 100 | 100 | 100 |
| wa | 100 | 100 | 100 |
| war | 100 | 100 | 100 |
| wuu | 100 | 100 | 100 |
| xmf | 100 | 100 | 100 |
| yi | 100 | 100 | 100 |
| yo | 100 | 100 | 100 |
| zea | 100 | 100 | 100 |
| zh | 20000 | 10000 | 10000 |
| zh-classical | 100 | 100 | 100 |
| zh-min-nan | 100 | 100 | 100 |
| zh-yue | 20000 | 10000 | 10000 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
The original 282 datasets are associated with this article
```
@inproceedings{pan-etal-2017-cross,
title = "Cross-lingual Name Tagging and Linking for 282 Languages",
author = "Pan, Xiaoman and
Zhang, Boliang and
May, Jonathan and
Nothman, Joel and
Knight, Kevin and
Ji, Heng",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P17-1178",
doi = "10.18653/v1/P17-1178",
pages = "1946--1958",
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
}
```
while the 176 languages supported in this version are associated with the following article
```
@inproceedings{rahimi-etal-2019-massively,
title = "Massively Multilingual Transfer for {NER}",
author = "Rahimi, Afshin and
Li, Yuan and
Cohn, Trevor",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1015",
pages = "151--164",
}
```
### Contributions
Thanks to [@lewtun](https://github.com/lewtun) and [@rabeehk](https://github.com/rabeehk) for adding this dataset. |
wikicorpus | ---
pretty_name: Wikicorpus
annotations_creators:
- machine-generated
- no-annotation
language_creators:
- found
language:
- ca
- en
- es
license:
- gfdl
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10M<n<100M
- 1M<n<10M
source_datasets:
- original
task_categories:
- fill-mask
- text-classification
- text-generation
- token-classification
task_ids:
- language-modeling
- masked-language-modeling
- part-of-speech
paperswithcode_id: null
configs:
- raw_ca
- raw_en
- raw_es
- tagged_ca
- tagged_en
- tagged_es
tags:
- word-sense-disambiguation
- lemmatization
dataset_info:
- config_name: raw_ca
features:
- name: id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 263170192
num_examples: 143883
download_size: 96437841
dataset_size: 263170192
- config_name: raw_es
features:
- name: id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 671295359
num_examples: 259409
download_size: 252926918
dataset_size: 671295359
- config_name: raw_en
features:
- name: id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 3388801074
num_examples: 1359146
download_size: 1346378932
dataset_size: 3388801074
- config_name: tagged_ca
features:
- name: id
dtype: string
- name: title
dtype: string
- name: sentence
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence: string
- name: wordnet_senses
sequence: string
splits:
- name: train
num_bytes: 1666129919
num_examples: 2016221
download_size: 226390380
dataset_size: 1666129919
- config_name: tagged_es
features:
- name: id
dtype: string
- name: title
dtype: string
- name: sentence
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence: string
- name: wordnet_senses
sequence: string
splits:
- name: train
num_bytes: 4100040390
num_examples: 5039367
download_size: 604910899
dataset_size: 4100040390
- config_name: tagged_en
features:
- name: id
dtype: string
- name: title
dtype: string
- name: sentence
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence: string
- name: wordnet_senses
sequence: string
splits:
- name: train
num_bytes: 18077275300
num_examples: 26350272
download_size: 2477450893
dataset_size: 18077275300
---
# Dataset Card for Wikicorpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.cs.upc.edu/~nlp/wikicorpus/
- **Repository:**
- **Paper:** https://www.cs.upc.edu/~nlp/papers/reese10.pdf
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The Wikicorpus is a trilingual corpus (Catalan, Spanish, English) that contains large portions of the Wikipedia (based on a 2006 dump) and has been automatically enriched with linguistic information. In its present version, it contains over 750 million words.
The corpora have been annotated with lemma and part of speech information using the open source library FreeLing. Also, they have been sense annotated with the state of the art Word Sense Disambiguation algorithm UKB. As UKB assigns WordNet senses, and WordNet has been aligned across languages via the InterLingual Index, this sort of annotation opens the way to massive explorations in lexical semantics that were not possible before.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Each sub-dataset is monolingual in the languages:
- ca: Catalan
- en: English
- es: Spanish
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The WikiCorpus is licensed under the same license as Wikipedia, that is, the [GNU Free Documentation License](http://www.fsf.org/licensing/licenses/fdl.html)
### Citation Information
```
@inproceedings{reese-etal-2010-wikicorpus,
title = "{W}ikicorpus: A Word-Sense Disambiguated Multilingual {W}ikipedia Corpus",
author = "Reese, Samuel and
Boleda, Gemma and
Cuadros, Montse and
Padr{\'o}, Llu{\'i}s and
Rigau, German",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/222_Paper.pdf",
abstract = "This article presents a new freely available trilingual corpus (Catalan, Spanish, English) that contains large portions of the Wikipedia and has been automatically enriched with linguistic information. To our knowledge, this is the largest such corpus that is freely available to the community: In its present version, it contains over 750 million words. The corpora have been annotated with lemma and part of speech information using the open source library FreeLing. Also, they have been sense annotated with the state of the art Word Sense Disambiguation algorithm UKB. As UKB assigns WordNet senses, and WordNet has been aligned across languages via the InterLingual Index, this sort of annotation opens the way to massive explorations in lexical semantics that were not possible before. We present a first attempt at creating a trilingual lexical resource from the sense-tagged Wikipedia corpora, namely, WikiNet. Moreover, we present two by-products of the project that are of use for the NLP community: An open source Java-based parser for Wikipedia pages developed for the construction of the corpus, and the integration of the WSD algorithm UKB in FreeLing.",
}
```
### Contributions
Thanks to [@albertvillanova](https://github.com/albertvillanova) for adding this dataset. |
wikihow | ---
paperswithcode_id: wikihow
pretty_name: WikiHow
dataset_info:
- config_name: all
features:
- name: text
dtype: string
- name: headline
dtype: string
- name: title
dtype: string
splits:
- name: train
num_bytes: 513238309
num_examples: 157252
- name: validation
num_bytes: 18246897
num_examples: 5599
- name: test
num_bytes: 18276023
num_examples: 5577
download_size: 5460385
dataset_size: 549761229
- config_name: sep
features:
- name: text
dtype: string
- name: headline
dtype: string
- name: title
dtype: string
- name: overview
dtype: string
- name: sectionLabel
dtype: string
splits:
- name: train
num_bytes: 990499776
num_examples: 1060732
- name: validation
num_bytes: 35173966
num_examples: 37932
- name: test
num_bytes: 35271826
num_examples: 37800
download_size: 5460385
dataset_size: 1060945568
---
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
wikipedia | ---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
pretty_name: Wikipedia
paperswithcode_id: null
license:
- cc-by-sa-3.0
- gfdl
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
source_datasets:
- original
multilinguality:
- multilingual
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
- 100K<n<1M
- 1M<n<10M
language:
- aa
- ab
- ace
- af
- ak
- als
- am
- an
- ang
- ar
- arc
- arz
- as
- ast
- atj
- av
- ay
- az
- azb
- ba
- bar
- bcl
- be
- bg
- bh
- bi
- bjn
- bm
- bn
- bo
- bpy
- br
- bs
- bug
- bxr
- ca
- cbk
- cdo
- ce
- ceb
- ch
- cho
- chr
- chy
- ckb
- co
- cr
- crh
- cs
- csb
- cu
- cv
- cy
- da
- de
- din
- diq
- dsb
- dty
- dv
- dz
- ee
- el
- eml
- en
- eo
- es
- et
- eu
- ext
- fa
- ff
- fi
- fj
- fo
- fr
- frp
- frr
- fur
- fy
- ga
- gag
- gan
- gd
- gl
- glk
- gn
- gom
- gor
- got
- gu
- gv
- ha
- hak
- haw
- he
- hi
- hif
- ho
- hr
- hsb
- ht
- hu
- hy
- ia
- id
- ie
- ig
- ii
- ik
- ilo
- inh
- io
- is
- it
- iu
- ja
- jam
- jbo
- jv
- ka
- kaa
- kab
- kbd
- kbp
- kg
- ki
- kj
- kk
- kl
- km
- kn
- ko
- koi
- krc
- ks
- ksh
- ku
- kv
- kw
- ky
- la
- lad
- lb
- lbe
- lez
- lfn
- lg
- li
- lij
- lmo
- ln
- lo
- lrc
- lt
- ltg
- lv
- lzh
- mai
- mdf
- mg
- mh
- mhr
- mi
- min
- mk
- ml
- mn
- mr
- mrj
- ms
- mt
- mus
- mwl
- my
- myv
- mzn
- na
- nah
- nan
- nap
- nds
- ne
- new
- ng
- nl
- nn
- 'no'
- nov
- nrf
- nso
- nv
- ny
- oc
- olo
- om
- or
- os
- pa
- pag
- pam
- pap
- pcd
- pdc
- pfl
- pi
- pih
- pl
- pms
- pnb
- pnt
- ps
- pt
- qu
- rm
- rmy
- rn
- ro
- ru
- rue
- rup
- rw
- sa
- sah
- sat
- sc
- scn
- sco
- sd
- se
- sg
- sgs
- sh
- si
- sk
- sl
- sm
- sn
- so
- sq
- sr
- srn
- ss
- st
- stq
- su
- sv
- sw
- szl
- ta
- tcy
- tdt
- te
- tg
- th
- ti
- tk
- tl
- tn
- to
- tpi
- tr
- ts
- tt
- tum
- tw
- ty
- tyv
- udm
- ug
- uk
- ur
- uz
- ve
- vec
- vep
- vi
- vls
- vo
- vro
- wa
- war
- wo
- wuu
- xal
- xh
- xmf
- yi
- yo
- yue
- za
- zea
- zh
- zu
language_bcp47:
- nds-nl
configs:
- 20220301.aa
- 20220301.ab
- 20220301.ace
- 20220301.ady
- 20220301.af
- 20220301.ak
- 20220301.als
- 20220301.am
- 20220301.an
- 20220301.ang
- 20220301.ar
- 20220301.arc
- 20220301.arz
- 20220301.as
- 20220301.ast
- 20220301.atj
- 20220301.av
- 20220301.ay
- 20220301.az
- 20220301.azb
- 20220301.ba
- 20220301.bar
- 20220301.bat-smg
- 20220301.bcl
- 20220301.be
- 20220301.be-x-old
- 20220301.bg
- 20220301.bh
- 20220301.bi
- 20220301.bjn
- 20220301.bm
- 20220301.bn
- 20220301.bo
- 20220301.bpy
- 20220301.br
- 20220301.bs
- 20220301.bug
- 20220301.bxr
- 20220301.ca
- 20220301.cbk-zam
- 20220301.cdo
- 20220301.ce
- 20220301.ceb
- 20220301.ch
- 20220301.cho
- 20220301.chr
- 20220301.chy
- 20220301.ckb
- 20220301.co
- 20220301.cr
- 20220301.crh
- 20220301.cs
- 20220301.csb
- 20220301.cu
- 20220301.cv
- 20220301.cy
- 20220301.da
- 20220301.de
- 20220301.din
- 20220301.diq
- 20220301.dsb
- 20220301.dty
- 20220301.dv
- 20220301.dz
- 20220301.ee
- 20220301.el
- 20220301.eml
- 20220301.en
- 20220301.eo
- 20220301.es
- 20220301.et
- 20220301.eu
- 20220301.ext
- 20220301.fa
- 20220301.ff
- 20220301.fi
- 20220301.fiu-vro
- 20220301.fj
- 20220301.fo
- 20220301.fr
- 20220301.frp
- 20220301.frr
- 20220301.fur
- 20220301.fy
- 20220301.ga
- 20220301.gag
- 20220301.gan
- 20220301.gd
- 20220301.gl
- 20220301.glk
- 20220301.gn
- 20220301.gom
- 20220301.gor
- 20220301.got
- 20220301.gu
- 20220301.gv
- 20220301.ha
- 20220301.hak
- 20220301.haw
- 20220301.he
- 20220301.hi
- 20220301.hif
- 20220301.ho
- 20220301.hr
- 20220301.hsb
- 20220301.ht
- 20220301.hu
- 20220301.hy
- 20220301.ia
- 20220301.id
- 20220301.ie
- 20220301.ig
- 20220301.ii
- 20220301.ik
- 20220301.ilo
- 20220301.inh
- 20220301.io
- 20220301.is
- 20220301.it
- 20220301.iu
- 20220301.ja
- 20220301.jam
- 20220301.jbo
- 20220301.jv
- 20220301.ka
- 20220301.kaa
- 20220301.kab
- 20220301.kbd
- 20220301.kbp
- 20220301.kg
- 20220301.ki
- 20220301.kj
- 20220301.kk
- 20220301.kl
- 20220301.km
- 20220301.kn
- 20220301.ko
- 20220301.koi
- 20220301.krc
- 20220301.ks
- 20220301.ksh
- 20220301.ku
- 20220301.kv
- 20220301.kw
- 20220301.ky
- 20220301.la
- 20220301.lad
- 20220301.lb
- 20220301.lbe
- 20220301.lez
- 20220301.lfn
- 20220301.lg
- 20220301.li
- 20220301.lij
- 20220301.lmo
- 20220301.ln
- 20220301.lo
- 20220301.lrc
- 20220301.lt
- 20220301.ltg
- 20220301.lv
- 20220301.mai
- 20220301.map-bms
- 20220301.mdf
- 20220301.mg
- 20220301.mh
- 20220301.mhr
- 20220301.mi
- 20220301.min
- 20220301.mk
- 20220301.ml
- 20220301.mn
- 20220301.mr
- 20220301.mrj
- 20220301.ms
- 20220301.mt
- 20220301.mus
- 20220301.mwl
- 20220301.my
- 20220301.myv
- 20220301.mzn
- 20220301.na
- 20220301.nah
- 20220301.nap
- 20220301.nds
- 20220301.nds-nl
- 20220301.ne
- 20220301.new
- 20220301.ng
- 20220301.nl
- 20220301.nn
- 20220301.no
- 20220301.nov
- 20220301.nrm
- 20220301.nso
- 20220301.nv
- 20220301.ny
- 20220301.oc
- 20220301.olo
- 20220301.om
- 20220301.or
- 20220301.os
- 20220301.pa
- 20220301.pag
- 20220301.pam
- 20220301.pap
- 20220301.pcd
- 20220301.pdc
- 20220301.pfl
- 20220301.pi
- 20220301.pih
- 20220301.pl
- 20220301.pms
- 20220301.pnb
- 20220301.pnt
- 20220301.ps
- 20220301.pt
- 20220301.qu
- 20220301.rm
- 20220301.rmy
- 20220301.rn
- 20220301.ro
- 20220301.roa-rup
- 20220301.roa-tara
- 20220301.ru
- 20220301.rue
- 20220301.rw
- 20220301.sa
- 20220301.sah
- 20220301.sat
- 20220301.sc
- 20220301.scn
- 20220301.sco
- 20220301.sd
- 20220301.se
- 20220301.sg
- 20220301.sh
- 20220301.si
- 20220301.simple
- 20220301.sk
- 20220301.sl
- 20220301.sm
- 20220301.sn
- 20220301.so
- 20220301.sq
- 20220301.sr
- 20220301.srn
- 20220301.ss
- 20220301.st
- 20220301.stq
- 20220301.su
- 20220301.sv
- 20220301.sw
- 20220301.szl
- 20220301.ta
- 20220301.tcy
- 20220301.te
- 20220301.tet
- 20220301.tg
- 20220301.th
- 20220301.ti
- 20220301.tk
- 20220301.tl
- 20220301.tn
- 20220301.to
- 20220301.tpi
- 20220301.tr
- 20220301.ts
- 20220301.tt
- 20220301.tum
- 20220301.tw
- 20220301.ty
- 20220301.tyv
- 20220301.udm
- 20220301.ug
- 20220301.uk
- 20220301.ur
- 20220301.uz
- 20220301.ve
- 20220301.vec
- 20220301.vep
- 20220301.vi
- 20220301.vls
- 20220301.vo
- 20220301.wa
- 20220301.war
- 20220301.wo
- 20220301.wuu
- 20220301.xal
- 20220301.xh
- 20220301.xmf
- 20220301.yi
- 20220301.yo
- 20220301.za
- 20220301.zea
- 20220301.zh
- 20220301.zh-classical
- 20220301.zh-min-nan
- 20220301.zh-yue
- 20220301.zu
dataset_info:
- config_name: 20220301.de
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 8905282792
num_examples: 2665357
download_size: 6523215105
dataset_size: 8905282792
- config_name: 20220301.en
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 20275516160
num_examples: 6458670
download_size: 20598313936
dataset_size: 20275516160
- config_name: 20220301.fr
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 7375920768
num_examples: 2402095
download_size: 5602565274
dataset_size: 7375920768
- config_name: 20220301.frr
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 9129760
num_examples: 15199
download_size: 12438017
dataset_size: 9129760
- config_name: 20220301.it
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 4539944448
num_examples: 1743035
download_size: 3516441239
dataset_size: 4539944448
- config_name: 20220301.simple
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 235072360
num_examples: 205328
download_size: 239682796
dataset_size: 235072360
---
# Dataset Card for Wikipedia
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://dumps.wikimedia.org](https://dumps.wikimedia.org)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Dataset Summary
Wikipedia dataset containing cleaned articles of all languages.
The datasets are built from the Wikipedia dump
(https://dumps.wikimedia.org/) with one split per language. Each example
contains the content of one full Wikipedia article with cleaning to strip
markdown and unwanted sections (references, etc.).
The articles are parsed using the ``mwparserfromhell`` tool.
To load this dataset you need to install Apache Beam and ``mwparserfromhell`` first:
```
pip install apache_beam mwparserfromhell
```
Then, you can load any subset of Wikipedia per language and per date this way:
```python
from datasets import load_dataset
load_dataset("wikipedia", language="sw", date="20220120", beam_runner=...)
```
where you can pass as `beam_runner` any Apache Beam supported runner for (distributed) data processing
(see [here](https://beam.apache.org/documentation/runners/capability-matrix/)).
Pass "DirectRunner" to run it on your machine.
You can find the full list of languages and dates [here](https://dumps.wikimedia.org/backup-index.html).
Some subsets of Wikipedia have already been processed by HuggingFace, and you can load them just with:
```python
from datasets import load_dataset
load_dataset("wikipedia", "20220301.en")
```
The list of pre-processed subsets is:
- "20220301.de"
- "20220301.en"
- "20220301.fr"
- "20220301.frr"
- "20220301.it"
- "20220301.simple"
### Supported Tasks and Leaderboards
The dataset is generally used for Language Modeling.
### Languages
You can find the list of languages [here](https://meta.wikimedia.org/wiki/List_of_Wikipedias).
## Dataset Structure
### Data Instances
An example looks as follows:
```
{'id': '1',
'url': 'https://simple.wikipedia.org/wiki/April',
'title': 'April',
'text': 'April is the fourth month...'
}
```
Some subsets of Wikipedia have already been processed by HuggingFace, as you can see below:
#### 20220301.de
- **Size of downloaded dataset files:** 6.84 GB
- **Size of the generated dataset:** 9.34 GB
- **Total amount of disk used:** 16.18 GB
#### 20220301.en
- **Size of downloaded dataset files:** 21.60 GB
- **Size of the generated dataset:** 21.26 GB
- **Total amount of disk used:** 42.86 GB
#### 20220301.fr
- **Size of downloaded dataset files:** 5.87 GB
- **Size of the generated dataset:** 7.73 GB
- **Total amount of disk used:** 13.61 GB
#### 20220301.frr
- **Size of downloaded dataset files:** 13.04 MB
- **Size of the generated dataset:** 9.57 MB
- **Total amount of disk used:** 22.62 MB
#### 20220301.it
- **Size of downloaded dataset files:** 3.69 GB
- **Size of the generated dataset:** 4.76 GB
- **Total amount of disk used:** 8.45 GB
#### 20220301.simple
- **Size of downloaded dataset files:** 251.32 MB
- **Size of the generated dataset:** 246.49 MB
- **Total amount of disk used:** 497.82 MB
### Data Fields
The data fields are the same among all configurations:
- `id` (`str`): ID of the article.
- `url` (`str`): URL of the article.
- `title` (`str`): Title of the article.
- `text` (`str`): Text content of the article.
### Data Splits
Here are the number of examples for several configurations:
| name | train |
|-----------------|--------:|
| 20220301.de | 2665357 |
| 20220301.en | 6458670 |
| 20220301.fr | 2402095 |
| 20220301.frr | 15199 |
| 20220301.it | 1743035 |
| 20220301.simple | 205328 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
Most of Wikipedia's text and many of its images are co-licensed under the
[Creative Commons Attribution-ShareAlike 3.0 Unported License](https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License)
(CC BY-SA) and the [GNU Free Documentation License](https://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License)
(GFDL) (unversioned, with no invariant sections, front-cover texts, or back-cover texts).
Some text has been imported only under CC BY-SA and CC BY-SA-compatible license and cannot be reused under GFDL; such
text will be identified on the page footer, in the page history, or on the discussion page of the article that utilizes
the text.
### Citation Information
```
@ONLINE{wikidump,
author = "Wikimedia Foundation",
title = "Wikimedia Downloads",
url = "https://dumps.wikimedia.org"
}
```
### Contributions
Thanks to [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
wikisql | ---
annotations_creators:
- crowdsourced
language:
- en
language_creators:
- found
- machine-generated
license:
- unknown
multilinguality:
- monolingual
pretty_name: WikiSQL
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text2text-generation
task_ids: []
paperswithcode_id: wikisql
tags:
- text-to-sql
dataset_info:
features:
- name: phase
dtype: int32
- name: question
dtype: string
- name: table
struct:
- name: header
sequence: string
- name: page_title
dtype: string
- name: page_id
dtype: string
- name: types
sequence: string
- name: id
dtype: string
- name: section_title
dtype: string
- name: caption
dtype: string
- name: rows
sequence:
sequence: string
- name: name
dtype: string
- name: sql
struct:
- name: human_readable
dtype: string
- name: sel
dtype: int32
- name: agg
dtype: int32
- name: conds
sequence:
- name: column_index
dtype: int32
- name: operator_index
dtype: int32
- name: condition
dtype: string
splits:
- name: test
num_bytes: 32234761
num_examples: 15878
- name: validation
num_bytes: 15159314
num_examples: 8421
- name: train
num_bytes: 107345917
num_examples: 56355
download_size: 26164664
dataset_size: 154739992
---
# Dataset Card for "wikisql"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/salesforce/WikiSQL
- **Paper:** [Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning](https://arxiv.org/abs/1709.00103)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 26.16 MB
- **Size of the generated dataset:** 154.74 MB
- **Total amount of disk used:** 180.90 MB
### Dataset Summary
A large crowd-sourced dataset for developing natural language interfaces for relational databases.
WikiSQL is a dataset of 80654 hand-annotated examples
of questions and SQL queries distributed across 24241 tables from Wikipedia.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 26.16 MB
- **Size of the generated dataset:** 154.74 MB
- **Total amount of disk used:** 180.90 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"phase": 1,
"question": "How would you answer a second test question?",
"sql": {
"agg": 0,
"conds": {
"column_index": [2],
"condition": ["Some Entity"],
"operator_index": [0]
},
"human_readable": "SELECT Header1 FROM table WHERE Another Header = Some Entity",
"sel": 0
},
"table": "{\"caption\": \"L\", \"header\": [\"Header1\", \"Header 2\", \"Another Header\"], \"id\": \"1-10015132-9\", \"name\": \"table_10015132_11\", \"page_i..."
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `phase`: a `int32` feature.
- `question`: a `string` feature.
- `header`: a `list` of `string` features.
- `page_title`: a `string` feature.
- `page_id`: a `string` feature.
- `types`: a `list` of `string` features.
- `id`: a `string` feature.
- `section_title`: a `string` feature.
- `caption`: a `string` feature.
- `rows`: a dictionary feature containing:
- `feature`: a `string` feature.
- `name`: a `string` feature.
- `human_readable`: a `string` feature.
- `sel`: a `int32` feature.
- `agg`: a `int32` feature.
- `conds`: a dictionary feature containing:
- `column_index`: a `int32` feature.
- `operator_index`: a `int32` feature.
- `condition`: a `string` feature.
### Data Splits
| name |train|validation|test |
|-------|----:|---------:|----:|
|default|56355| 8421|15878|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{zhongSeq2SQL2017,
author = {Victor Zhong and
Caiming Xiong and
Richard Socher},
title = {Seq2SQL: Generating Structured Queries from Natural Language using
Reinforcement Learning},
journal = {CoRR},
volume = {abs/1709.00103},
year = {2017}
}
```
### Contributions
Thanks to [@lewtun](https://github.com/lewtun), [@ghomasHudson](https://github.com/ghomasHudson), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |
wikitext | ---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-sa-3.0
- gfdl
multilinguality:
- monolingual
paperswithcode_id: wikitext-2
pretty_name: WikiText
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
dataset_info:
- config_name: wikitext-103-v1
features:
- name: text
dtype: string
splits:
- name: test
num_bytes: 1295579
num_examples: 4358
- name: train
num_bytes: 545142639
num_examples: 1801350
- name: validation
num_bytes: 1154755
num_examples: 3760
download_size: 190229076
dataset_size: 547592973
- config_name: wikitext-2-v1
features:
- name: text
dtype: string
splits:
- name: test
num_bytes: 1270951
num_examples: 4358
- name: train
num_bytes: 10918134
num_examples: 36718
- name: validation
num_bytes: 1134127
num_examples: 3760
download_size: 4475746
dataset_size: 13323212
- config_name: wikitext-103-raw-v1
features:
- name: text
dtype: string
splits:
- name: test
num_bytes: 1305092
num_examples: 4358
- name: train
num_bytes: 546501673
num_examples: 1801350
- name: validation
num_bytes: 1159292
num_examples: 3760
download_size: 191984949
dataset_size: 548966057
- config_name: wikitext-2-raw-v1
features:
- name: text
dtype: string
splits:
- name: test
num_bytes: 1305092
num_examples: 4358
- name: train
num_bytes: 11061733
num_examples: 36718
- name: validation
num_bytes: 1159292
num_examples: 3760
download_size: 4721645
dataset_size: 13526117
---
# Dataset Card for "wikitext"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [Pointer Sentinel Mixture Models](https://arxiv.org/abs/1609.07843)
- **Point of Contact:** [Stephen Merity](mailto:smerity@salesforce.com)
- **Size of downloaded dataset files:** 391.41 MB
- **Size of the generated dataset:** 1.12 GB
- **Total amount of disk used:** 1.52 GB
### Dataset Summary
The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified
Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike License.
Compared to the preprocessed version of Penn Treebank (PTB), WikiText-2 is over 2 times larger and WikiText-103 is over
110 times larger. The WikiText dataset also features a far larger vocabulary and retains the original case, punctuation
and numbers - all of which are removed in PTB. As it is composed of full articles, the dataset is well suited for models
that can take advantage of long term dependencies.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### wikitext-103-raw-v1
- **Size of downloaded dataset files:** 191.98 MB
- **Size of the generated dataset:** 549.42 MB
- **Total amount of disk used:** 741.41 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"text": "\" The gold dollar or gold one @-@ dollar piece was a coin struck as a regular issue by the United States Bureau of the Mint from..."
}
```
#### wikitext-103-v1
- **Size of downloaded dataset files:** 190.23 MB
- **Size of the generated dataset:** 548.05 MB
- **Total amount of disk used:** 738.27 MB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
"text": "\" Senjō no Valkyria 3 : <unk> Chronicles ( Japanese : 戦場のヴァルキュリア3 , lit . Valkyria of the Battlefield 3 ) , commonly referred to..."
}
```
#### wikitext-2-raw-v1
- **Size of downloaded dataset files:** 4.72 MB
- **Size of the generated dataset:** 13.54 MB
- **Total amount of disk used:** 18.26 MB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
"text": "\" The Sinclair Scientific Programmable was introduced in 1975 , with the same case as the Sinclair Oxford . It was larger than t..."
}
```
#### wikitext-2-v1
- **Size of downloaded dataset files:** 4.48 MB
- **Size of the generated dataset:** 13.34 MB
- **Total amount of disk used:** 17.82 MB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
"text": "\" Senjō no Valkyria 3 : <unk> Chronicles ( Japanese : 戦場のヴァルキュリア3 , lit . Valkyria of the Battlefield 3 ) , commonly referred to..."
}
```
### Data Fields
The data fields are the same among all splits.
#### wikitext-103-raw-v1
- `text`: a `string` feature.
#### wikitext-103-v1
- `text`: a `string` feature.
#### wikitext-2-raw-v1
- `text`: a `string` feature.
#### wikitext-2-v1
- `text`: a `string` feature.
### Data Splits
| name | train |validation|test|
|-------------------|------:|---------:|---:|
|wikitext-103-raw-v1|1801350| 3760|4358|
|wikitext-103-v1 |1801350| 3760|4358|
|wikitext-2-raw-v1 | 36718| 3760|4358|
|wikitext-2-v1 | 36718| 3760|4358|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The dataset is available under the [Creative Commons Attribution-ShareAlike License (CC BY-SA 4.0)](https://creativecommons.org/licenses/by-sa/4.0/).
### Citation Information
```
@misc{merity2016pointer,
title={Pointer Sentinel Mixture Models},
author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
year={2016},
eprint={1609.07843},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset. |
wikitext_tl39 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- fil
- tl
license:
- gpl-3.0
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: wikitext-tl-39
pretty_name: WikiText-TL-39
dataset_info:
features:
- name: text
dtype: string
config_name: wikitext-tl-39
splits:
- name: test
num_bytes: 46182996
num_examples: 376737
- name: train
num_bytes: 217182748
num_examples: 1766072
- name: validation
num_bytes: 46256674
num_examples: 381763
download_size: 116335234
dataset_size: 309622418
---
# Dataset Card for WikiText-TL-39
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Filipino Text Benchmarks](https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks)
- **Repository:**
- **Paper:** [Evaluating language model finetuning techniques for low-resource languages](https://arxiv.org/abs/1907.00409)
- **Leaderboard:**
- **Point of Contact:** Jan Christian Blaise Cruz (jan_christian_cruz@dlsu.edu.ph)
### Dataset Summary
Large scale, unlabeled text dataset with 39 Million tokens in the training set. Inspired by the original WikiText Long Term Dependency dataset (Merity et al., 2016). TL means "Tagalog." Published in Cruz & Cheng (2019).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Filipino/Tagalog
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- `text` (`str`)
The dataset is in plaintext and only has one field ("text") as it is compiled for language modeling.
### Data Splits
Split | Documents | Tokens
------|-----------|-------
Train | 120,975 | 39M
Valid | 25,919 | 8M
Test | 25,921 | 8M
Please see the paper for more details on the dataset splits
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
Tagalog Wikipedia
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@jcblaisecruz02](https://github.com/jcblaisecruz02) for adding this dataset. |
wili_2018 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- ace
- af
- als
- am
- an
- ang
- ar
- arz
- as
- ast
- av
- ay
- az
- azb
- ba
- bar
- bcl
- be
- bg
- bho
- bjn
- bn
- bo
- bpy
- br
- bs
- bxr
- ca
- cbk
- cdo
- ce
- ceb
- chr
- ckb
- co
- crh
- cs
- csb
- cv
- cy
- da
- de
- diq
- dsb
- dty
- dv
- egl
- el
- en
- eo
- es
- et
- eu
- ext
- fa
- fi
- fo
- fr
- frp
- fur
- fy
- ga
- gag
- gd
- gl
- glk
- gn
- gu
- gv
- ha
- hak
- he
- hi
- hif
- hr
- hsb
- ht
- hu
- hy
- ia
- id
- ie
- ig
- ilo
- io
- is
- it
- ja
- jam
- jbo
- jv
- ka
- kaa
- kab
- kbd
- kk
- km
- kn
- ko
- koi
- kok
- krc
- ksh
- ku
- kv
- kw
- ky
- la
- lad
- lb
- lez
- lg
- li
- lij
- lmo
- ln
- lo
- lrc
- lt
- ltg
- lv
- lzh
- mai
- map
- mdf
- mg
- mhr
- mi
- min
- mk
- ml
- mn
- mr
- mrj
- ms
- mt
- mwl
- my
- myv
- mzn
- nan
- nap
- nb
- nci
- nds
- ne
- new
- nl
- nn
- nrm
- nso
- nv
- oc
- olo
- om
- or
- os
- pa
- pag
- pam
- pap
- pcd
- pdc
- pfl
- pl
- pnb
- ps
- pt
- qu
- rm
- ro
- roa
- ru
- rue
- rup
- rw
- sa
- sah
- sc
- scn
- sco
- sd
- sgs
- sh
- si
- sk
- sl
- sme
- sn
- so
- sq
- sr
- srn
- stq
- su
- sv
- sw
- szl
- ta
- tcy
- te
- tet
- tg
- th
- tk
- tl
- tn
- to
- tr
- tt
- tyv
- udm
- ug
- uk
- ur
- uz
- vec
- vep
- vi
- vls
- vo
- vro
- wa
- war
- wo
- wuu
- xh
- xmf
- yi
- yo
- zea
- zh
license:
- odbl
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: wili-2018
pretty_name: Wili2018
language_bcp47:
- be-tarask
- map-bms
- nds-nl
- roa-tara
- zh-yue
tags:
- language-identification
dataset_info:
features:
- name: sentence
dtype: string
- name: label
dtype:
class_label:
names:
'0': cdo
'1': glk
'2': jam
'3': lug
'4': san
'5': rue
'6': wol
'7': new
'8': mwl
'9': bre
'10': ara
'11': hye
'12': xmf
'13': ext
'14': cor
'15': yor
'16': div
'17': asm
'18': lat
'19': cym
'20': hif
'21': ace
'22': kbd
'23': tgk
'24': rus
'25': nso
'26': mya
'27': msa
'28': ava
'29': cbk
'30': urd
'31': deu
'32': swa
'33': pus
'34': bxr
'35': udm
'36': csb
'37': yid
'38': vro
'39': por
'40': pdc
'41': eng
'42': tha
'43': hat
'44': lmo
'45': pag
'46': jav
'47': chv
'48': nan
'49': sco
'50': kat
'51': bho
'52': bos
'53': kok
'54': oss
'55': mri
'56': fry
'57': cat
'58': azb
'59': kin
'60': hin
'61': sna
'62': dan
'63': egl
'64': mkd
'65': ron
'66': bul
'67': hrv
'68': som
'69': pam
'70': nav
'71': ksh
'72': nci
'73': khm
'74': sgs
'75': srn
'76': bar
'77': cos
'78': ckb
'79': pfl
'80': arz
'81': roa-tara
'82': fra
'83': mai
'84': zh-yue
'85': guj
'86': fin
'87': kir
'88': vol
'89': hau
'90': afr
'91': uig
'92': lao
'93': swe
'94': slv
'95': kor
'96': szl
'97': srp
'98': dty
'99': nrm
'100': dsb
'101': ind
'102': wln
'103': pnb
'104': ukr
'105': bpy
'106': vie
'107': tur
'108': aym
'109': lit
'110': zea
'111': pol
'112': est
'113': scn
'114': vls
'115': stq
'116': gag
'117': grn
'118': kaz
'119': ben
'120': pcd
'121': bjn
'122': krc
'123': amh
'124': diq
'125': ltz
'126': ita
'127': kab
'128': bel
'129': ang
'130': mhr
'131': che
'132': koi
'133': glv
'134': ido
'135': fao
'136': bak
'137': isl
'138': bcl
'139': tet
'140': jpn
'141': kur
'142': map-bms
'143': tyv
'144': olo
'145': arg
'146': ori
'147': lim
'148': tel
'149': lin
'150': roh
'151': sqi
'152': xho
'153': mlg
'154': fas
'155': hbs
'156': tam
'157': aze
'158': lad
'159': nob
'160': sin
'161': gla
'162': nap
'163': snd
'164': ast
'165': mal
'166': mdf
'167': tsn
'168': nds
'169': tgl
'170': nno
'171': sun
'172': lzh
'173': jbo
'174': crh
'175': pap
'176': oci
'177': hak
'178': uzb
'179': zho
'180': hsb
'181': sme
'182': mlt
'183': vep
'184': lez
'185': nld
'186': nds-nl
'187': mrj
'188': spa
'189': ceb
'190': ina
'191': heb
'192': hun
'193': que
'194': kaa
'195': mar
'196': vec
'197': frp
'198': ell
'199': sah
'200': eus
'201': ces
'202': slk
'203': chr
'204': lij
'205': nep
'206': srd
'207': ilo
'208': be-tarask
'209': bod
'210': orm
'211': war
'212': glg
'213': mon
'214': gle
'215': min
'216': ibo
'217': ile
'218': epo
'219': lav
'220': lrc
'221': als
'222': mzn
'223': rup
'224': fur
'225': tat
'226': myv
'227': pan
'228': ton
'229': kom
'230': wuu
'231': tcy
'232': tuk
'233': kan
'234': ltg
config_name: WiLI-2018 dataset
splits:
- name: train
num_bytes: 65408201
num_examples: 117500
- name: test
num_bytes: 66491260
num_examples: 117500
download_size: 130516351
dataset_size: 131899461
---
# Dataset Card for wili_2018
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://zenodo.org/record/841984
- **Repository:** [Needs More Information]
- **Paper:** https://arxiv.org/pdf/1801.07779
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** Thoma, Martin (Email: info@martin-thoma.de)
### Dataset Summary
WiLI-2018, the Wikipedia language identification benchmark dataset, contains 235000 paragraphs of 235 languages. The dataset is balanced and a train-test split is provided.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
235 Different Languages
## Dataset Structure
### Data Instances
```
{
'label': 207,
'sentence': 'Ti Turkia ket maysa a demokrata, sekular, unitario, batay-linteg a republika nga addaan ti taga-ugma a tinawtawid a kultura. Ti Turkia ket umadadu a naipatipon iti Laud babaen ti panagkameng kadagiti organisasion a kas ti Konsilo iti Europa, NATO, OECD, OSCE ken ti G-20 a dagiti kangrunaan nga ekonomia. Ti Turkia ket nangrugi a nakitulag ti napno a panagkameng iti Kappon ti Europa idi 2005, nga isu ket maysa idin a kumaduaan a kameng iti Europeano a Komunidad ti Ekonomia manipud idi 1963 ken nakadanon ti maysa a tulagan ti kappon ti aduana idi 1995. Ti Turkia ket nagtaraken iti asideg a kultural, politikal, ekonomiko ken industria a panakibiang iti Tengnga a Daya, dagiti Turko nga estado iti Tengnga nga Asia ken dagiti pagilian ti Aprika babaen ti panagkameng kadagiti organisasion a kas ti Turko a Konsilo, Nagsaupan nga Administrasion iti Turko nga Arte ken Kultura, Organisasion iti Islamiko a Panagtitinnulong ken ti Organisasion ti Ekonomiko a Panagtitinnulong.'
}
```
### Data Fields
[Needs More Information]
### Data Splits
175000 lines of text each for train and test data.
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
The dataset was initially created by Thomas Martin
### Licensing Information
ODC Open Database License v1.0
### Citation Information
```
@dataset{thoma_martin_2018_841984,
author = {Thoma, Martin},
title = {{WiLI-2018 - Wikipedia Language Identification database}},
month = jan,
year = 2018,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.841984},
url = {https://doi.org/10.5281/zenodo.841984}
}
```
### Contributions
Thanks to [@Shubhambindal2017](https://github.com/Shubhambindal2017) for adding this dataset. |
wino_bias | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- coreference-resolution
paperswithcode_id: winobias
pretty_name: WinoBias
dataset_info:
- config_name: wino_bias
features:
- name: document_id
dtype: string
- name: part_number
dtype: string
- name: word_number
sequence: int32
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': '"'
'1': ''''''
'2': '#'
'3': $
'4': (
'5': )
'6': ','
'7': .
'8': ':'
'9': '``'
'10': CC
'11': CD
'12': DT
'13': EX
'14': FW
'15': IN
'16': JJ
'17': JJR
'18': JJS
'19': LS
'20': MD
'21': NN
'22': NNP
'23': NNPS
'24': NNS
'25': NN|SYM
'26': PDT
'27': POS
'28': PRP
'29': PRP$
'30': RB
'31': RBR
'32': RBS
'33': RP
'34': SYM
'35': TO
'36': UH
'37': VB
'38': VBD
'39': VBG
'40': VBN
'41': VBP
'42': VBZ
'43': WDT
'44': WP
'45': WP$
'46': WRB
'47': HYPH
'48': XX
'49': NFP
'50': AFX
'51': ADD
'52': -LRB-
'53': -RRB-
- name: parse_bit
sequence: string
- name: predicate_lemma
sequence: string
- name: predicate_framenet_id
sequence: string
- name: word_sense
sequence: string
- name: speaker
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-PERSON
'1': I-PERSON
'2': B-NORP
'3': I-NORP
'4': B-FAC
'5': I-FAC
'6': B-ORG
'7': I-ORG
'8': B-GPE
'9': I-GPE
'10': B-LOC
'11': I-LOC
'12': B-PRODUCT
'13': I-PRODUCT
'14': B-EVENT
'15': I-EVENT
'16': B-WORK_OF_ART
'17': I-WORK_OF_ART
'18': B-LAW
'19': I-LAW
'20': B-LANGUAGE
'21': I-LANGUAGE
'22': B-DATE
'23': I-DATE
'24': B-TIME
'25': I-TIME
'26': B-PERCENT
'27': I-PERCENT
'28': B-MONEY
'29': I-MONEY
'30': B-QUANTITY
'31': I-QUANTITY
'32': B-ORDINAL
'33': I-ORDINAL
'34': B-CARDINAL
'35': I-CARDINAL
'36': '*'
'37': '0'
- name: verbal_predicates
sequence: string
splits:
- name: train
num_bytes: 173899234
num_examples: 150335
download_size: 268725744
dataset_size: 173899234
- config_name: type1_pro
features:
- name: document_id
dtype: string
- name: part_number
dtype: string
- name: word_number
sequence: int32
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': '"'
'1': ''''''
'2': '#'
'3': $
'4': (
'5': )
'6': ','
'7': .
'8': ':'
'9': '``'
'10': CC
'11': CD
'12': DT
'13': EX
'14': FW
'15': IN
'16': JJ
'17': JJR
'18': JJS
'19': LS
'20': MD
'21': NN
'22': NNP
'23': NNPS
'24': NNS
'25': NN|SYM
'26': PDT
'27': POS
'28': PRP
'29': PRP$
'30': RB
'31': RBR
'32': RBS
'33': RP
'34': SYM
'35': TO
'36': UH
'37': VB
'38': VBD
'39': VBG
'40': VBN
'41': VBP
'42': VBZ
'43': WDT
'44': WP
'45': WP$
'46': WRB
'47': HYPH
'48': XX
'49': NFP
'50': AFX
'51': ADD
'52': -LRB-
'53': -RRB-
'54': '-'
- name: parse_bit
sequence: string
- name: predicate_lemma
sequence: string
- name: predicate_framenet_id
sequence: string
- name: word_sense
sequence: string
- name: speaker
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-PERSON
'1': I-PERSON
'2': B-NORP
'3': I-NORP
'4': B-FAC
'5': I-FAC
'6': B-ORG
'7': I-ORG
'8': B-GPE
'9': I-GPE
'10': B-LOC
'11': I-LOC
'12': B-PRODUCT
'13': I-PRODUCT
'14': B-EVENT
'15': I-EVENT
'16': B-WORK_OF_ART
'17': I-WORK_OF_ART
'18': B-LAW
'19': I-LAW
'20': B-LANGUAGE
'21': I-LANGUAGE
'22': B-DATE
'23': I-DATE
'24': B-TIME
'25': I-TIME
'26': B-PERCENT
'27': I-PERCENT
'28': B-MONEY
'29': I-MONEY
'30': B-QUANTITY
'31': I-QUANTITY
'32': B-ORDINAL
'33': I-ORDINAL
'34': B-CARDINAL
'35': I-CARDINAL
'36': '*'
'37': '0'
'38': '-'
- name: verbal_predicates
sequence: string
- name: coreference_clusters
sequence: string
splits:
- name: validation
num_bytes: 379380
num_examples: 396
- name: test
num_bytes: 402041
num_examples: 396
download_size: 846198
dataset_size: 781421
- config_name: type1_anti
features:
- name: document_id
dtype: string
- name: part_number
dtype: string
- name: word_number
sequence: int32
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': '"'
'1': ''''''
'2': '#'
'3': $
'4': (
'5': )
'6': ','
'7': .
'8': ':'
'9': '``'
'10': CC
'11': CD
'12': DT
'13': EX
'14': FW
'15': IN
'16': JJ
'17': JJR
'18': JJS
'19': LS
'20': MD
'21': NN
'22': NNP
'23': NNPS
'24': NNS
'25': NN|SYM
'26': PDT
'27': POS
'28': PRP
'29': PRP$
'30': RB
'31': RBR
'32': RBS
'33': RP
'34': SYM
'35': TO
'36': UH
'37': VB
'38': VBD
'39': VBG
'40': VBN
'41': VBP
'42': VBZ
'43': WDT
'44': WP
'45': WP$
'46': WRB
'47': HYPH
'48': XX
'49': NFP
'50': AFX
'51': ADD
'52': -LRB-
'53': -RRB-
'54': '-'
- name: parse_bit
sequence: string
- name: predicate_lemma
sequence: string
- name: predicate_framenet_id
sequence: string
- name: word_sense
sequence: string
- name: speaker
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-PERSON
'1': I-PERSON
'2': B-NORP
'3': I-NORP
'4': B-FAC
'5': I-FAC
'6': B-ORG
'7': I-ORG
'8': B-GPE
'9': I-GPE
'10': B-LOC
'11': I-LOC
'12': B-PRODUCT
'13': I-PRODUCT
'14': B-EVENT
'15': I-EVENT
'16': B-WORK_OF_ART
'17': I-WORK_OF_ART
'18': B-LAW
'19': I-LAW
'20': B-LANGUAGE
'21': I-LANGUAGE
'22': B-DATE
'23': I-DATE
'24': B-TIME
'25': I-TIME
'26': B-PERCENT
'27': I-PERCENT
'28': B-MONEY
'29': I-MONEY
'30': B-QUANTITY
'31': I-QUANTITY
'32': B-ORDINAL
'33': I-ORDINAL
'34': B-CARDINAL
'35': I-CARDINAL
'36': '*'
'37': '0'
'38': '-'
- name: verbal_predicates
sequence: string
- name: coreference_clusters
sequence: string
splits:
- name: validation
num_bytes: 380846
num_examples: 396
- name: test
num_bytes: 403229
num_examples: 396
download_size: 894311
dataset_size: 784075
- config_name: type2_pro
features:
- name: document_id
dtype: string
- name: part_number
dtype: string
- name: word_number
sequence: int32
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': '"'
'1': ''''''
'2': '#'
'3': $
'4': (
'5': )
'6': ','
'7': .
'8': ':'
'9': '``'
'10': CC
'11': CD
'12': DT
'13': EX
'14': FW
'15': IN
'16': JJ
'17': JJR
'18': JJS
'19': LS
'20': MD
'21': NN
'22': NNP
'23': NNPS
'24': NNS
'25': NN|SYM
'26': PDT
'27': POS
'28': PRP
'29': PRP$
'30': RB
'31': RBR
'32': RBS
'33': RP
'34': SYM
'35': TO
'36': UH
'37': VB
'38': VBD
'39': VBG
'40': VBN
'41': VBP
'42': VBZ
'43': WDT
'44': WP
'45': WP$
'46': WRB
'47': HYPH
'48': XX
'49': NFP
'50': AFX
'51': ADD
'52': -LRB-
'53': -RRB-
'54': '-'
- name: parse_bit
sequence: string
- name: predicate_lemma
sequence: string
- name: predicate_framenet_id
sequence: string
- name: word_sense
sequence: string
- name: speaker
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-PERSON
'1': I-PERSON
'2': B-NORP
'3': I-NORP
'4': B-FAC
'5': I-FAC
'6': B-ORG
'7': I-ORG
'8': B-GPE
'9': I-GPE
'10': B-LOC
'11': I-LOC
'12': B-PRODUCT
'13': I-PRODUCT
'14': B-EVENT
'15': I-EVENT
'16': B-WORK_OF_ART
'17': I-WORK_OF_ART
'18': B-LAW
'19': I-LAW
'20': B-LANGUAGE
'21': I-LANGUAGE
'22': B-DATE
'23': I-DATE
'24': B-TIME
'25': I-TIME
'26': B-PERCENT
'27': I-PERCENT
'28': B-MONEY
'29': I-MONEY
'30': B-QUANTITY
'31': I-QUANTITY
'32': B-ORDINAL
'33': I-ORDINAL
'34': B-CARDINAL
'35': I-CARDINAL
'36': '*'
'37': '0'
'38': '-'
- name: verbal_predicates
sequence: string
- name: coreference_clusters
sequence: string
splits:
- name: validation
num_bytes: 367293
num_examples: 396
- name: test
num_bytes: 375480
num_examples: 396
download_size: 802425
dataset_size: 742773
- config_name: type2_anti
features:
- name: document_id
dtype: string
- name: part_number
dtype: string
- name: word_number
sequence: int32
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': '"'
'1': ''''''
'2': '#'
'3': $
'4': (
'5': )
'6': ','
'7': .
'8': ':'
'9': '``'
'10': CC
'11': CD
'12': DT
'13': EX
'14': FW
'15': IN
'16': JJ
'17': JJR
'18': JJS
'19': LS
'20': MD
'21': NN
'22': NNP
'23': NNPS
'24': NNS
'25': NN|SYM
'26': PDT
'27': POS
'28': PRP
'29': PRP$
'30': RB
'31': RBR
'32': RBS
'33': RP
'34': SYM
'35': TO
'36': UH
'37': VB
'38': VBD
'39': VBG
'40': VBN
'41': VBP
'42': VBZ
'43': WDT
'44': WP
'45': WP$
'46': WRB
'47': HYPH
'48': XX
'49': NFP
'50': AFX
'51': ADD
'52': -LRB-
'53': -RRB-
'54': '-'
- name: parse_bit
sequence: string
- name: predicate_lemma
sequence: string
- name: predicate_framenet_id
sequence: string
- name: word_sense
sequence: string
- name: speaker
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-PERSON
'1': I-PERSON
'2': B-NORP
'3': I-NORP
'4': B-FAC
'5': I-FAC
'6': B-ORG
'7': I-ORG
'8': B-GPE
'9': I-GPE
'10': B-LOC
'11': I-LOC
'12': B-PRODUCT
'13': I-PRODUCT
'14': B-EVENT
'15': I-EVENT
'16': B-WORK_OF_ART
'17': I-WORK_OF_ART
'18': B-LAW
'19': I-LAW
'20': B-LANGUAGE
'21': I-LANGUAGE
'22': B-DATE
'23': I-DATE
'24': B-TIME
'25': I-TIME
'26': B-PERCENT
'27': I-PERCENT
'28': B-MONEY
'29': I-MONEY
'30': B-QUANTITY
'31': I-QUANTITY
'32': B-ORDINAL
'33': I-ORDINAL
'34': B-CARDINAL
'35': I-CARDINAL
'36': '*'
'37': '0'
'38': '-'
- name: verbal_predicates
sequence: string
- name: coreference_clusters
sequence: string
splits:
- name: validation
num_bytes: 368757
num_examples: 396
- name: test
num_bytes: 377262
num_examples: 396
download_size: 848804
dataset_size: 746019
---
# Dataset Card for Wino_Bias dataset
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [WinoBias](https://uclanlp.github.io/corefBias/overview)
- **Repository:**
- **Paper:** [Arxiv](https://arxiv.org/abs/1804.06876)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
WinoBias, a Winograd-schema dataset for coreference resolution focused on gender bias.
The corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter).
### Supported Tasks and Leaderboards
The underlying task is coreference resolution.
### Languages
English
## Dataset Structure
### Data Instances
The dataset has 4 subsets: `type1_pro`, `type1_anti`, `type2_pro` and `type2_anti`.
The `*_pro` subsets contain sentences that reinforce gender stereotypes (e.g. mechanics are male, nurses are female), whereas the `*_anti` datasets contain "anti-stereotypical" sentences (e.g. mechanics are female, nurses are male).
The `type1` (*WB-Knowledge*) subsets contain sentences for which world knowledge is necessary to resolve the co-references, and `type2` (*WB-Syntax*) subsets require only the syntactic information present in the sentence to resolve them.
### Data Fields
- document_id = This is a variation on the document filename
- part_number = Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
- word_num = This is the word index of the word in that sentence.
- tokens = This is the token as segmented/tokenized in the Treebank.
- pos_tags = This is the Penn Treebank style part of speech. When parse information is missing, all part of speeches except the one for which there is some sense or proposition annotation are marked with a XX tag. The verb is marked with just a VERB tag.
- parse_bit = This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. When the parse information is missing, the first word of a sentence is tagged as "(TOP*" and the last word is tagged as "*)" and all intermediate words are tagged with a "*".
- predicate_lemma = The predicate lemma is mentioned for the rows for which we have semantic role information or word sense information. All other rows are marked with a "-".
- predicate_framenet_id = This is the PropBank frameset ID of the predicate in predicate_lemma.
- word_sense = This is the word sense of the word in Column tokens.
- speaker = This is the speaker or author name where available.
- ner_tags = These columns identifies the spans representing various named entities. For documents which do not have named entity annotation, each line is represented with an "*".
- verbal_predicates = There is one column each of predicate argument structure information for the predicate mentioned in predicate_lemma. If there are no predicates tagged in a sentence this is a single column with all rows marked with an "*".
### Data Splits
Dev and Test Split available
## Dataset Creation
### Curation Rationale
The WinoBias dataset was introduced in 2018 (see [paper](https://arxiv.org/abs/1804.06876)), with its original task being *coreference resolution*, which is a task that aims to identify mentions that refer to the same entity or person.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
The dataset was created by researchers familiar with the WinoBias project, based on two prototypical templates provided by the authors, in which entities interact in plausible ways.
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
"Researchers familiar with the [WinoBias] project"
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[Recent work](https://www.microsoft.com/en-us/research/uploads/prod/2021/06/The_Salmon_paper.pdf) has shown that this dataset contains grammatical issues, incorrect or ambiguous labels, and stereotype conflation, among other limitations.
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez and Kai-Wei Chan
### Licensing Information
MIT Licence
### Citation Information
@article{DBLP:journals/corr/abs-1804-06876,
author = {Jieyu Zhao and
Tianlu Wang and
Mark Yatskar and
Vicente Ordonez and
Kai{-}Wei Chang},
title = {Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods},
journal = {CoRR},
volume = {abs/1804.06876},
year = {2018},
url = {http://arxiv.org/abs/1804.06876},
archivePrefix = {arXiv},
eprint = {1804.06876},
timestamp = {Mon, 13 Aug 2018 16:47:01 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1804-06876.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
### Contributions
Thanks to [@akshayb7](https://github.com/akshayb7) for adding this dataset. Updated by [@JieyuZhao](https://github.com/JieyuZhao). |
winograd_wsc | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- multiple-choice
task_ids:
- multiple-choice-coreference-resolution
paperswithcode_id: wsc
pretty_name: Winograd Schema Challenge
dataset_info:
- config_name: wsc285
features:
- name: text
dtype: string
- name: pronoun
dtype: string
- name: pronoun_loc
dtype: int32
- name: quote
dtype: string
- name: quote_loc
dtype: int32
- name: options
sequence: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
- name: source
dtype: string
splits:
- name: test
num_bytes: 52281
num_examples: 285
download_size: 113235
dataset_size: 52281
- config_name: wsc273
features:
- name: text
dtype: string
- name: pronoun
dtype: string
- name: pronoun_loc
dtype: int32
- name: quote
dtype: string
- name: quote_loc
dtype: int32
- name: options
sequence: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
- name: source
dtype: string
splits:
- name: test
num_bytes: 49674
num_examples: 273
download_size: 113235
dataset_size: 49674
---
# Dataset Card for The Winograd Schema Challenge
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html
- **Repository:**
- **Paper:** https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.729.9814&rep=rep1&type=pdf
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
A Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is
resolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its
resolution. The schema takes its name from a well-known example by Terry Winograd:
> The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.
If the word is ``feared'', then ``they'' presumably refers to the city council; if it is ``advocated'' then ``they''
presumably refers to the demonstrators.
### Supported Tasks and Leaderboards
From the official webpage:
> A contest, entitled the Winograd Schema Challenge was run once, in 2016. At that time, there was a cash prize
offered for achieving human-level performance in the contest. Since then, the sponsor has withdrawn; therefore NO
CASH PRIZES CAN BE OFFERED OR WILL BE AWARDED FOR ANY KIND OF PERFORMANCE OR ACHIEVEMENT ON THIS CHALLENGE.
### Languages
The dataset is in English.
[Translation of 12 WSs into Chinese ](https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSChinese.html)(translated by Wei Xu).
Translations into Japanese, by Soichiro Tanaka, Rafal Rzepka, and Shiho Katajima\
**Translation changing English names to Japanese **[PDF ](https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/collection_ja.pdf) [HTML](http://arakilab.media.eng.hokudai.ac.jp/~kabura/collection_ja.html)\
**Translation preserving English names** [PDF ](https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/collection_katakana.pdf) [HTML](http://arakilab.media.eng.hokudai.ac.jp/~kabura/collection_katakana.html)
[Translation into French, ](http://www.llf.cnrs.fr/winograd-fr)by Pascal Amsili and Olga Seminck
[Winograd Schemas in Portuguese](https://sol.sbc.org.br/index.php/eniac/article/view/9334) by Gabriela Melo, Vinicius Imaizumi, and Fábio Cozman.
[Mandarinograd: A Chinese Collection of Winograd Schemas](https://www.aclweb.org/anthology/2020.lrec-1.3) by Timothée Bernard and Ting Han, LREC-2020.
## Dataset Structure
### Data Instances
Each instance contains a text passage with a designated pronoun and two possible answers indicating which entity in
the passage the pronoun represents. An example instance looks like the following:
```python
{
'label': 0,
'options': ['The city councilmen', 'The demonstrators'],
'pronoun': 'they',
'pronoun_loc': 63,
'quote': 'they feared violence',
'quote_loc': 63,
'source': '(Winograd 1972)',
'text': 'The city councilmen refused the demonstrators a permit because they feared violence.'
}
```
### Data Fields
- `text` (str): The text sequence
- `options` (list[str]): The two entity options that the pronoun may be referring to
- `label` (int): The index of the correct option in the `options` field
- `pronoun` (str): The pronoun in the sequence to be resolved
- `pronoun_loc` (int): The starting position of the pronoun in the sequence
- `quote` (str): The substr with the key action or context surrounding the pronoun
- `quote_loc` (int): The starting position of the quote in the sequence
- `source` (str): A description of the source who contributed the example
### Data Splits
Only a test split is included.
## Dataset Creation
### Curation Rationale
The Winograd Schema Challenge was proposed as an automated evaluation of an AI system's commonsense linguistic
understanding. From the webpage:
> The strengths of the challenge are that it is clear-cut, in that the answer to each schema is a binary choice;
vivid, in that it is obvious to non-experts that a program that fails to get the right answers clearly has serious
gaps in its understanding; and difficult, in that it is far beyond the current state of the art.
### Source Data
#### Initial Data Collection and Normalization
This data was manually written by experts such that the schemas are:
- easily disambiguated by the human reader (ideally, so easily that the reader does not even notice that there is an ambiguity);
- not solvable by simple techniques such as selectional restrictions;
- Google-proof; that is, there is no obvious statistical test over text corpora that will reliably disambiguate these correctly.
#### Who are the source language producers?
This dataset has grown over time, and so was produced by a variety of lingustic and AI researchers. See the `source`
field for the source of each instance.
### Annotations
#### Annotation process
Annotations are produced by the experts who construct the examples.
#### Who are the annotators?
See above.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
This dataset has grown over time, and so was produced by a variety of lingustic and AI researchers. See the `source`
field for the source of each instance.
### Licensing Information
This work is licensed under a [Creative Commons Attribution 4.0 International
License](https://creativecommons.org/licenses/by/4.0/).
### Citation Information
The Winograd Schema Challenge including many of the examples here was proposed by
[Levesque et al 2012](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.729.9814&rep=rep1&type=pdf):
```
@inproceedings{levesque2012winograd,
title={The winograd schema challenge},
author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
year={2012},
organization={Citeseer}
}
```
### Contributions
Thanks to [@joeddav](https://github.com/joeddav) for adding this dataset. |
winogrande | ---
language:
- en
paperswithcode_id: winogrande
pretty_name: WinoGrande
dataset_info:
- config_name: winogrande_xs
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 20704
num_examples: 160
- name: test
num_bytes: 227649
num_examples: 1767
- name: validation
num_bytes: 164199
num_examples: 1267
download_size: 3395492
dataset_size: 412552
- config_name: winogrande_s
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 82308
num_examples: 640
- name: test
num_bytes: 227649
num_examples: 1767
- name: validation
num_bytes: 164199
num_examples: 1267
download_size: 3395492
dataset_size: 474156
- config_name: winogrande_m
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 329001
num_examples: 2558
- name: test
num_bytes: 227649
num_examples: 1767
- name: validation
num_bytes: 164199
num_examples: 1267
download_size: 3395492
dataset_size: 720849
- config_name: winogrande_l
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 1319576
num_examples: 10234
- name: test
num_bytes: 227649
num_examples: 1767
- name: validation
num_bytes: 164199
num_examples: 1267
download_size: 3395492
dataset_size: 1711424
- config_name: winogrande_xl
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 5185832
num_examples: 40398
- name: test
num_bytes: 227649
num_examples: 1767
- name: validation
num_bytes: 164199
num_examples: 1267
download_size: 3395492
dataset_size: 5577680
- config_name: winogrande_debiased
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 1203420
num_examples: 9248
- name: test
num_bytes: 227649
num_examples: 1767
- name: validation
num_bytes: 164199
num_examples: 1267
download_size: 3395492
dataset_size: 1595268
---
# Dataset Card for "winogrande"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://leaderboard.allenai.org/winogrande/submissions/get-started](https://leaderboard.allenai.org/winogrande/submissions/get-started)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 20.37 MB
- **Size of the generated dataset:** 10.50 MB
- **Total amount of disk used:** 30.87 MB
### Dataset Summary
WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern
2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a
fill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires
commonsense reasoning.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### winogrande_debiased
- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 1.59 MB
- **Total amount of disk used:** 4.99 MB
An example of 'train' looks as follows.
```
```
#### winogrande_l
- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 1.71 MB
- **Total amount of disk used:** 5.11 MB
An example of 'validation' looks as follows.
```
```
#### winogrande_m
- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 0.72 MB
- **Total amount of disk used:** 4.12 MB
An example of 'validation' looks as follows.
```
```
#### winogrande_s
- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 0.47 MB
- **Total amount of disk used:** 3.87 MB
An example of 'validation' looks as follows.
```
```
#### winogrande_xl
- **Size of downloaded dataset files:** 3.40 MB
- **Size of the generated dataset:** 5.58 MB
- **Total amount of disk used:** 8.98 MB
An example of 'train' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### winogrande_debiased
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.
#### winogrande_l
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.
#### winogrande_m
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.
#### winogrande_s
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.
#### winogrande_xl
- `sentence`: a `string` feature.
- `option1`: a `string` feature.
- `option2`: a `string` feature.
- `answer`: a `string` feature.
### Data Splits
| name |train|validation|test|
|-------------------|----:|---------:|---:|
|winogrande_debiased| 9248| 1267|1767|
|winogrande_l |10234| 1267|1767|
|winogrande_m | 2558| 1267|1767|
|winogrande_s | 640| 1267|1767|
|winogrande_xl |40398| 1267|1767|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{ai2:winogrande,
title = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
authors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi
},
year={2019}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@TevenLeScao](https://github.com/TevenLeScao), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun) for adding this dataset. |
wiqa | ---
language:
- en
paperswithcode_id: wiqa
pretty_name: What-If Question Answering
dataset_info:
features:
- name: question_stem
dtype: string
- name: question_para_step
sequence: string
- name: answer_label
dtype: string
- name: answer_label_as_choice
dtype: string
- name: choices
sequence:
- name: text
dtype: string
- name: label
dtype: string
- name: metadata_question_id
dtype: string
- name: metadata_graph_id
dtype: string
- name: metadata_para_id
dtype: string
- name: metadata_question_type
dtype: string
- name: metadata_path_len
dtype: int32
splits:
- name: train
num_bytes: 17089298
num_examples: 29808
- name: test
num_bytes: 1532223
num_examples: 3003
- name: validation
num_bytes: 3779584
num_examples: 6894
download_size: 5247733
dataset_size: 22401105
---
# Dataset Card for "wiqa"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://allenai.org/data/wiqa](https://allenai.org/data/wiqa)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 5.24 MB
- **Size of the generated dataset:** 22.40 MB
- **Total amount of disk used:** 27.65 MB
### Dataset Summary
The WIQA dataset V1 has 39705 questions containing a perturbation and a possible effect in the context of a paragraph.
The dataset is split into 29808 train questions, 6894 dev questions and 3003 test questions.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 5.24 MB
- **Size of the generated dataset:** 22.40 MB
- **Total amount of disk used:** 27.65 MB
An example of 'validation' looks as follows.
```
{
"answer_label": "more",
"answer_label_as_choice": "A",
"choices": {
"label": ["A", "B", "C"],
"text": ["more", "less", "no effect"]
},
"metadata_graph_id": "481",
"metadata_para_id": "528",
"metadata_path_len": 3,
"metadata_question_id": "influence_graph:528:481:77#0",
"metadata_question_type": "INPARA_EFFECT",
"question_para_step": ["A male and female rabbit mate", "The female rabbit becomes pregnant", "Baby rabbits form inside of the mother rabbit", "The female rabbit gives birth to a litter", "The newborn rabbits grow up to become adults", "The adult rabbits find mates."],
"question_stem": "suppose the female is sterile happens, how will it affect LESS rabbits."
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `question_stem`: a `string` feature.
- `question_para_step`: a `list` of `string` features.
- `answer_label`: a `string` feature.
- `answer_label_as_choice`: a `string` feature.
- `choices`: a dictionary feature containing:
- `text`: a `string` feature.
- `label`: a `string` feature.
- `metadata_question_id`: a `string` feature.
- `metadata_graph_id`: a `string` feature.
- `metadata_para_id`: a `string` feature.
- `metadata_question_type`: a `string` feature.
- `metadata_path_len`: a `int32` feature.
### Data Splits
| name |train|validation|test|
|-------|----:|---------:|---:|
|default|29808| 6894|3003|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{wiqa,
author = {Niket Tandon and Bhavana Dalvi Mishra and Keisuke Sakaguchi and Antoine Bosselut and Peter Clark}
title = {WIQA: A dataset for "What if..." reasoning over procedural text},
journal = {arXiv:1909.04739v1},
year = {2019},
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@lhoestq](https://github.com/lhoestq) for adding this dataset. |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.