input
stringlengths
16
191
output
stringlengths
6
29k
instruction
stringclasses
1 value
prompt
stringlengths
296
29.3k
What is (are) Chronic Lymphocytic Leukemia ?
Key Points - Chronic lymphocytic leukemia is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell). - Leukemia may affect red blood cells, white blood cells, and platelets. - Older age can affect the risk of developing chronic lymphocytic leukemia. - Signs and symptoms of chronic lymphocytic leukemia include swollen lymph nodes and tiredness. - Tests that examine the blood, bone marrow, and lymph nodes are used to detect (find) and diagnose chronic lymphocytic leukemia. - Certain factors affect treatment options and prognosis (chance of recovery). Chronic lymphocytic leukemia is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell). Chronic lymphocytic leukemia (also called CLL) is a blood and bone marrow disease that usually gets worse slowly. CLL is one of the most common types of leukemia in adults. It often occurs during or after middle age; it rarely occurs in children. Leukemia may affect red blood cells, white blood cells, and platelets. Normally, the body makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A myeloid stem cell becomes one of three types of mature blood cells: - Red blood cells that carry oxygen and other substances to all tissues of the body. - White blood cells that fight infection and disease. - Platelets that form blood clots to stop bleeding. A lymphoid stem cell becomes a lymphoblast cell and then one of three types of lymphocytes (white blood cells): - B lymphocytes that make antibodies to help fight infection. - T lymphocytes that help B lymphocytes make antibodies to fight infection. - Natural killer cells that attack cancer cells and viruses. In CLL, too many blood stem cells become abnormal lymphocytes and do not become healthy white blood cells. The abnormal lymphocytes may also be called leukemia cells. The lymphocytes are not able to fight infection very well. Also, as the number of lymphocytes increases in the blood and bone marrow, there is less room for healthy white blood cells, red blood cells, and platelets. This may cause infection, anemia, and easy bleeding. This summary is about chronic lymphocytic leukemia. See the following PDQ summaries for more information about leukemia: - Adult Acute Lymphoblastic Leukemia Treatment. - Childhood Acute Lymphoblastic Leukemia Treatment. - Adult Acute Myeloid Leukemia Treatment. - Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment. - Chronic Myelogenous Leukemia Treatment. - Hairy Cell Leukemia Treatment.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Chronic Lymphocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Chronic lymphocytic leukemia is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell). - Leukemia may affect red blood cells, white blood cells, and platelets. - Older age can affect the risk of developing chronic lymphocytic leukemia. - Signs and symptoms of chronic lymphocytic leukemia include swollen lymph nodes and tiredness. - Tests that examine the blood, bone marrow, and lymph nodes are used to detect (find) and diagnose chronic lymphocytic leukemia. - Certain factors affect treatment options and prognosis (chance of recovery). Chronic lymphocytic leukemia is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell). Chronic lymphocytic leukemia (also called CLL) is a blood and bone marrow disease that usually gets worse slowly. CLL is one of the most common types of leukemia in adults. It often occurs during or after middle age; it rarely occurs in children. Leukemia may affect red blood cells, white blood cells, and platelets. Normally, the body makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A myeloid stem cell becomes one of three types of mature blood cells: - Red blood cells that carry oxygen and other substances to all tissues of the body. - White blood cells that fight infection and disease. - Platelets that form blood clots to stop bleeding. A lymphoid stem cell becomes a lymphoblast cell and then one of three types of lymphocytes (white blood cells): - B lymphocytes that make antibodies to help fight infection. - T lymphocytes that help B lymphocytes make antibodies to fight infection. - Natural killer cells that attack cancer cells and viruses. In CLL, too many blood stem cells become abnormal lymphocytes and do not become healthy white blood cells. The abnormal lymphocytes may also be called leukemia cells. The lymphocytes are not able to fight infection very well. Also, as the number of lymphocytes increases in the blood and bone marrow, there is less room for healthy white blood cells, red blood cells, and platelets. This may cause infection, anemia, and easy bleeding. This summary is about chronic lymphocytic leukemia. See the following PDQ summaries for more information about leukemia: - Adult Acute Lymphoblastic Leukemia Treatment. - Childhood Acute Lymphoblastic Leukemia Treatment. - Adult Acute Myeloid Leukemia Treatment. - Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment. - Chronic Myelogenous Leukemia Treatment. - Hairy Cell Leukemia Treatment.<|eot_id|>
Who is at risk for Chronic Lymphocytic Leukemia? ?
Older age can affect the risk of developing chronic lymphocytic leukemia. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for CLL include the following: - Being middle-aged or older, male, or white. - A family history of CLL or cancer of the lymph system. - Having relatives who are Russian Jews or Eastern European Jews.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Chronic Lymphocytic Leukemia? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Older age can affect the risk of developing chronic lymphocytic leukemia. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for CLL include the following: - Being middle-aged or older, male, or white. - A family history of CLL or cancer of the lymph system. - Having relatives who are Russian Jews or Eastern European Jews.<|eot_id|>
What are the symptoms of Chronic Lymphocytic Leukemia ?
Signs and symptoms of chronic lymphocytic leukemia include swollen lymph nodes and tiredness. Usually CLL does not cause any signs or symptoms and is found during a routine blood test. Signs and symptoms may be caused by CLL or by other conditions. Check with your doctor if you have any of the following: - Painless swelling of the lymph nodes in the neck, underarm, stomach, or groin. - Feeling very tired. - Pain or fullness below the ribs. - Fever and infection. - Weight loss for no known reason.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Chronic Lymphocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of chronic lymphocytic leukemia include swollen lymph nodes and tiredness. Usually CLL does not cause any signs or symptoms and is found during a routine blood test. Signs and symptoms may be caused by CLL or by other conditions. Check with your doctor if you have any of the following: - Painless swelling of the lymph nodes in the neck, underarm, stomach, or groin. - Feeling very tired. - Pain or fullness below the ribs. - Fever and infection. - Weight loss for no known reason.<|eot_id|>
How to diagnose Chronic Lymphocytic Leukemia ?
Tests that examine the blood, bone marrow, and lymph nodes are used to detect (find) and diagnose chronic lymphocytic leukemia. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Complete blood count (CBC) with differential : A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells and platelets. - The number and type of white blood cells. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Immunophenotyping : A laboratory test in which the antigens or markers on the surface of a blood or bone marrow cell are checked to see if they are lymphocytes or myeloid cells. If the cells are malignant lymphocytes (cancer), they are checked to see if they are B lymphocytes or T lymphocytes. - FISH (fluorescence in situ hybridization): A laboratory technique used to look at genes or chromosomes in cells and tissues. Pieces of DNA that contain a fluorescent dye are made in the laboratory and added to cells or tissues on a glass slide. When these pieces of DNA bind to specific genes or areas of chromosomes on the slide, they light up when viewed under a microscope with a special light. - Flow cytometry : A laboratory test that measures the number of cells in a sample, the percentage of live cells in a sample, and certain characteristics of cells, such as size, shape, and the presence of tumor markers on the cell surface. The cells are stained with a light-sensitive dye, placed in a fluid, and passed in a stream before a laser or other type of light. The measurements are based on how the light-sensitive dye reacts to the light. - IgVH gene mutation test: A laboratory test done on a bone marrow or blood sample to check for an IgVH gene mutation. Patients with an IgVH gene mutation have a better prognosis. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for abnormal cells.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Chronic Lymphocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the blood, bone marrow, and lymph nodes are used to detect (find) and diagnose chronic lymphocytic leukemia. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Complete blood count (CBC) with differential : A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells and platelets. - The number and type of white blood cells. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Immunophenotyping : A laboratory test in which the antigens or markers on the surface of a blood or bone marrow cell are checked to see if they are lymphocytes or myeloid cells. If the cells are malignant lymphocytes (cancer), they are checked to see if they are B lymphocytes or T lymphocytes. - FISH (fluorescence in situ hybridization): A laboratory technique used to look at genes or chromosomes in cells and tissues. Pieces of DNA that contain a fluorescent dye are made in the laboratory and added to cells or tissues on a glass slide. When these pieces of DNA bind to specific genes or areas of chromosomes on the slide, they light up when viewed under a microscope with a special light. - Flow cytometry : A laboratory test that measures the number of cells in a sample, the percentage of live cells in a sample, and certain characteristics of cells, such as size, shape, and the presence of tumor markers on the cell surface. The cells are stained with a light-sensitive dye, placed in a fluid, and passed in a stream before a laser or other type of light. The measurements are based on how the light-sensitive dye reacts to the light. - IgVH gene mutation test: A laboratory test done on a bone marrow or blood sample to check for an IgVH gene mutation. Patients with an IgVH gene mutation have a better prognosis. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for abnormal cells.<|eot_id|>
What is the outlook for Chronic Lymphocytic Leukemia ?
Certain factors affect treatment options and prognosis (chance of recovery). Treatment options depend on: - The stage of the disease. - Red blood cell, white blood cell, and platelet blood counts. - Whether there are signs or symptoms, such as fever, chills, or weight loss. - Whether the liver, spleen, or lymph nodes are larger than normal. - The response to initial treatment. - Whether the CLL has recurred (come back). The prognosis (chance of recovery) depends on: - Whether there is a change in the DNA and the type of change, if there is one. - Whether lymphocytes are spread throughout the bone marrow. - The stage of the disease. - Whether the CLL gets better with treatment or has recurred (come back). - Whether the CLL progresses to lymphoma or prolymphocytic leukemia. - The patient's general health.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Chronic Lymphocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect treatment options and prognosis (chance of recovery). Treatment options depend on: - The stage of the disease. - Red blood cell, white blood cell, and platelet blood counts. - Whether there are signs or symptoms, such as fever, chills, or weight loss. - Whether the liver, spleen, or lymph nodes are larger than normal. - The response to initial treatment. - Whether the CLL has recurred (come back). The prognosis (chance of recovery) depends on: - Whether there is a change in the DNA and the type of change, if there is one. - Whether lymphocytes are spread throughout the bone marrow. - The stage of the disease. - Whether the CLL gets better with treatment or has recurred (come back). - Whether the CLL progresses to lymphoma or prolymphocytic leukemia. - The patient's general health.<|eot_id|>
what research (or clinical trials) is being done for Chronic Lymphocytic Leukemia ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemotherapy with stem cell transplant Chemotherapy with stem cell transplant is a method of giving chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Chimeric antigen receptor (CAR) T-cell therapy CAR T-cell therapy is a type of immunotherapy that changes the patient's T cells (a type of immune system cell) so they will attack certain proteins on the surface of cancer cells. T cells are taken from the patient and special receptors are added to their surface in the laboratory. The changed cells are called chimeric antigen receptor (CAR) T cells. The CAR T cells are grown in the laboratory and given to the patient by infusion. The CAR T cells multiply in the patient's blood and attack cancer cells. CAR T-cell therapy is being studied in the treatment of chronic lymphocytic leukemia. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Chronic Lymphocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemotherapy with stem cell transplant Chemotherapy with stem cell transplant is a method of giving chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Chimeric antigen receptor (CAR) T-cell therapy CAR T-cell therapy is a type of immunotherapy that changes the patient's T cells (a type of immune system cell) so they will attack certain proteins on the surface of cancer cells. T cells are taken from the patient and special receptors are added to their surface in the laboratory. The changed cells are called chimeric antigen receptor (CAR) T cells. The CAR T cells are grown in the laboratory and given to the patient by infusion. The CAR T cells multiply in the patient's blood and attack cancer cells. CAR T-cell therapy is being studied in the treatment of chronic lymphocytic leukemia. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What are the treatments for Chronic Lymphocytic Leukemia ?
Key Points - There are different types of treatment for patients with chronic lymphocytic leukemia. - Five types of standard treatment are used: - Watchful waiting - Radiation therapy - Chemotherapy - Surgery - Targeted therapy - New types of treatment are being tested in clinical trials. - Chemotherapy with stem cell transplant - Biologic therapy - Chimeric antigen receptor (CAR) T-cell therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with chronic lymphocytic leukemia. Different types of treatment are available for patients with chronic lymphocytic leukemia. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Five types of standard treatment are used: Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. This is also called observation. During this time, problems caused by the disease, such as infection, are treated. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer being treated. External radiation therapy is used to treat chronic lymphocytic leukemia. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, or the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Chronic Lymphocytic Leukemia for more information. Surgery Splenectomy is surgery to remove the spleen. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy, tyrosine kinase inhibitor therapy, and BCL2 inhibitor therapy are types of targeted therapy used in the treatment of chronic lymphocytic leukemia. Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances in the body that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Tyrosine kinase inhibitor therapy is a cancer treatment that blocks signals needed for tumors to grow. BCL2 inhibitor therapy is a cancer treatment that blocks a protein called BCL2. BCL2 inhibitor therapy may kill cancer cells and may make them more sensitive to other anticancer drugs. See Drugs Approved for Chronic Lymphocytic Leukemia for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemotherapy with stem cell transplant Chemotherapy with stem cell transplant is a method of giving chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Chimeric antigen receptor (CAR) T-cell therapy CAR T-cell therapy is a type of immunotherapy that changes the patient's T cells (a type of immune system cell) so they will attack certain proteins on the surface of cancer cells. T cells are taken from the patient and special receptors are added to their surface in the laboratory. The changed cells are called chimeric antigen receptor (CAR) T cells. The CAR T cells are grown in the laboratory and given to the patient by infusion. The CAR T cells multiply in the patient's blood and attack cancer cells. CAR T-cell therapy is being studied in the treatment of chronic lymphocytic leukemia. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Stage 0 Chronic Lymphocytic Leukemia Treatment of stage 0 chronic lymphocytic leukemia is usually watchful waiting. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage 0 chronic lymphocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage I, Stage II, Stage III, and Stage IV Chronic Lymphocytic Leukemia Treatment of stage I, stage II, stage III, and stage IV chronic lymphocytic leukemia may include the following: - Watchful waiting when there are few or no signs or symptoms. - Targeted therapy with a monoclonal antibody, a tyrosine kinase inhibitor, or a BCL2 inhibitor. - Chemotherapy with 1 or more drugs, with or without steroids or monoclonal antibody therapy. - Low-dose external radiation therapy to areas of the body where cancer is found, such as the spleen or lymph nodes. - A clinical trial of chemotherapy and biologic therapy with stem cell transplant. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I chronic lymphocytic leukemia, stage II chronic lymphocytic leukemia, stage III chronic lymphocytic leukemia and stage IV chronic lymphocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Chronic Lymphocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with chronic lymphocytic leukemia. - Five types of standard treatment are used: - Watchful waiting - Radiation therapy - Chemotherapy - Surgery - Targeted therapy - New types of treatment are being tested in clinical trials. - Chemotherapy with stem cell transplant - Biologic therapy - Chimeric antigen receptor (CAR) T-cell therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with chronic lymphocytic leukemia. Different types of treatment are available for patients with chronic lymphocytic leukemia. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Five types of standard treatment are used: Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. This is also called observation. During this time, problems caused by the disease, such as infection, are treated. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer being treated. External radiation therapy is used to treat chronic lymphocytic leukemia. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, or the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Chronic Lymphocytic Leukemia for more information. Surgery Splenectomy is surgery to remove the spleen. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy, tyrosine kinase inhibitor therapy, and BCL2 inhibitor therapy are types of targeted therapy used in the treatment of chronic lymphocytic leukemia. Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances in the body that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Tyrosine kinase inhibitor therapy is a cancer treatment that blocks signals needed for tumors to grow. BCL2 inhibitor therapy is a cancer treatment that blocks a protein called BCL2. BCL2 inhibitor therapy may kill cancer cells and may make them more sensitive to other anticancer drugs. See Drugs Approved for Chronic Lymphocytic Leukemia for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemotherapy with stem cell transplant Chemotherapy with stem cell transplant is a method of giving chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Chimeric antigen receptor (CAR) T-cell therapy CAR T-cell therapy is a type of immunotherapy that changes the patient's T cells (a type of immune system cell) so they will attack certain proteins on the surface of cancer cells. T cells are taken from the patient and special receptors are added to their surface in the laboratory. The changed cells are called chimeric antigen receptor (CAR) T cells. The CAR T cells are grown in the laboratory and given to the patient by infusion. The CAR T cells multiply in the patient's blood and attack cancer cells. CAR T-cell therapy is being studied in the treatment of chronic lymphocytic leukemia. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Stage 0 Chronic Lymphocytic Leukemia Treatment of stage 0 chronic lymphocytic leukemia is usually watchful waiting. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage 0 chronic lymphocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage I, Stage II, Stage III, and Stage IV Chronic Lymphocytic Leukemia Treatment of stage I, stage II, stage III, and stage IV chronic lymphocytic leukemia may include the following: - Watchful waiting when there are few or no signs or symptoms. - Targeted therapy with a monoclonal antibody, a tyrosine kinase inhibitor, or a BCL2 inhibitor. - Chemotherapy with 1 or more drugs, with or without steroids or monoclonal antibody therapy. - Low-dose external radiation therapy to areas of the body where cancer is found, such as the spleen or lymph nodes. - A clinical trial of chemotherapy and biologic therapy with stem cell transplant. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I chronic lymphocytic leukemia, stage II chronic lymphocytic leukemia, stage III chronic lymphocytic leukemia and stage IV chronic lymphocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Adult Central Nervous System Tumors ?
Key Points - An adult central nervous system tumor is a disease in which abnormal cells form in the tissues of the brain and/or spinal cord. - A tumor that starts in another part of the body and spreads to the brain is called a metastatic brain tumor. - The brain controls many important body functions. - The spinal cord connects the brain to nerves in most parts of the body. - There are different types of brain and spinal cord tumors. - Astrocytic Tumors - Oligodendroglial Tumors - Mixed Gliomas - Ependymal Tumors - Medulloblastomas - Pineal Parenchymal Tumors - Meningeal Tumors - Germ Cell Tumors - Craniopharyngioma (Grade I) - Having certain genetic syndromes may increase the risk of a central nervous system tumor. - The cause of most adult brain and spinal cord tumors is not known. - The signs and symptoms of adult brain and spinal cord tumors are not the same in every person. - Tests that examine the brain and spinal cord are used to diagnose adult brain and spinal cord tumors. - A biopsy is also used to diagnose a brain tumor. - Sometimes a biopsy or surgery cannot be done. - Certain factors affect prognosis (chance of recovery) and treatment options. An adult central nervous system tumor is a disease in which abnormal cells form in the tissues of the brain and/or spinal cord. There are many types of brain and spinal cord tumors. The tumors are formed by the abnormal growth of cells and may begin in different parts of the brain or spinal cord. Together, the brain and spinal cord make up the central nervous system (CNS). The tumors may be either benign (not cancer) or malignant (cancer): - Benign brain and spinal cord tumors grow and press on nearby areas of the brain. They rarely spread into other tissues and may recur (come back). - Malignant brain and spinal cord tumors are likely to grow quickly and spread into other brain tissue. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Both benign and malignant brain tumors cause signs and symptoms and need treatment. Brain and spinal cord tumors can occur in both adults and children. However, treatment for children may be different than treatment for adults. (See the PDQ summary on Childhood Brain and Spinal Cord Tumors Treatment Overview for more information on the treatment of children.) For information about lymphoma that begins in the brain, see the PDQ summary on Primary CNS Lymphoma Treatment. A tumor that starts in another part of the body and spreads to the brain is called a metastatic brain tumor. Tumors that start in the brain are called primary brain tumors. Primary brain tumors may spread to other parts of the brain or to the spine. They rarely spread to other parts of the body. Often, tumors found in the brain have started somewhere else in the body and spread to one or more parts of the brain. These are called metastatic brain tumors (or brain metastases). Metastatic brain tumors are more common than primary brain tumors. Up to half of metastatic brain tumors are from lung cancer. Other types of cancer that commonly spread to the brain include: - Melanoma. - Breast cancer. - Colon cancer. - Kidney cancer. - Nasopharyngeal cancer. - Cancer of unknown primary site. Cancer may spread to the leptomeninges (the two innermost membranes covering the brain and spinal cord). This is called leptomeningeal carcinomatosis. The most common cancers that spread to the leptomeninges include: - Breast cancer. - Lung cancer. - Leukemia. - Lymphoma. See the following for more information from PDQ about cancers that commonly spread to the brain or spinal cord: - Adult Hodgkin Lymphoma Treatment - Adult Non-Hodgkin Lymphoma Treatment - Breast Cancer Treatment - Carcinoma of Unknown Primary Treatment - Colon Cancer Treatment - Leukemia Home Page - Melanoma Treatment - Nasopharyngeal Cancer Treatment - Non-Small Cell Lung Cancer Treatment - Renal Cell Cancer Treatment - Small Cell Lung Cancer Treatment The brain controls many important body functions. The brain has three major parts: - The cerebrum is the largest part of the brain. It is at the top of the head. The cerebrum controls thinking, learning, problem solving, emotions, speech, reading, writing, and voluntary movement. - The cerebellum is in the lower back of the brain (near the middle of the back of the head). It controls movement, balance, and posture. - The brain stem connects the brain to the spinal cord. It is in the lowest part of the brain (just above the back of the neck). The brain stem controls breathing, heart rate, and the nerves and muscles used to see, hear, walk, talk, and eat. The spinal cord connects the brain to nerves in most parts of the body. The spinal cord is a column of nerve tissue that runs from the brain stem down the center of the back. It is covered by three thin layers of tissue called membranes. These membranes are surrounded by the vertebrae (back bones). Spinal cord nerves carry messages between the brain and the rest of the body, such as a message from the brain to cause muscles to move or a message from the skin to the brain to feel touch. There are different types of brain and spinal cord tumors. Brain and spinal cord tumors are named based on the type of cell they formed in and where the tumor first formed in the CNS. The grade of a tumor may be used to tell the difference between slow-growing and fast-growing types of the tumor. The World Health Organization (WHO) tumor grades are based on how abnormal the cancer cells look under a microscope and how quickly the tumor is likely to grow and spread. WHO Tumor Grading System - Grade I (low-grade) The tumor cells look more like normal cells under a microscope and grow and spread more slowly than grade II, III, and IV tumor cells. They rarely spread into nearby tissues. Grade I brain tumors may be cured if they are completely removed by surgery. - Grade II The tumor cells grow and spread more slowly than grade III and IV tumor cells. They may spread into nearby tissue and may recur (come back). Some tumors may become a higher-grade tumor. - Grade III The tumor cells look very different from normal cells under a microscope and grow more quickly than grade I and II tumor cells. They are likely to spread into nearby tissue. - Grade IV (high-grade) The tumor cells do not look like normal cells under a microscope and grow and spread very quickly. There may be areas of dead cells in the tumor. Grade IV tumors usually cannot be cured. The following types of primary tumors can form in the brain or spinal cord: Astrocytic Tumors An astrocytic tumor begins in star-shaped brain cells called astrocytes, which help keep nerve cells healthy. An astrocyte is a type of glial cell. Glial cells sometimes form tumors called gliomas. Astrocytic tumors include the following: - Brain stem glioma (usually high grade): A brain stem glioma forms in the brain stem, which is the part of the brain connected to the spinal cord. It is often a high-grade tumor, which spreads widely through the brain stem and is hard to cure. Brain stem gliomas are rare in adults. (See the PDQ summary on Childhood Brain Stem Glioma Treatment for more information.) - Pineal astrocytic tumor (any grade): A pineal astrocytic tumor forms in tissue around the pineal gland and may be any grade. The pineal gland is a tiny organ in the brain that makes melatonin, a hormone that helps control the sleeping and waking cycle. - Pilocytic astrocytoma (grade I): A pilocytic astrocytoma grows slowly in the brain or spinal cord. It may be in the form of a cyst and rarely spreads into nearby tissues. Pilocytic astrocytomas can often be cured. - Diffuse astrocytoma (grade II): A diffuse astrocytoma grows slowly, but often spreads into nearby tissues. The tumor cells look something like normal cells. In some cases, a diffuse astrocytoma can be cured. It is also called a low-grade diffuse astrocytoma. - Anaplastic astrocytoma (grade III): An anaplastic astrocytoma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor usually cannot be cured. An anaplastic astrocytoma is also called a malignant astrocytoma or high-grade astrocytoma. - Glioblastoma (grade IV): A glioblastoma grows and spreads very quickly. The tumor cells look very different from normal cells. This type of tumor usually cannot be cured. It is also called glioblastoma multiforme. See the PDQ summary on Childhood Astrocytomas Treatment for more information about astrocytomas in children. Oligodendroglial Tumors An oligodendroglial tumor begins in brain cells called oligodendrocytes, which help keep nerve cells healthy. An oligodendrocyte is a type of glial cell. Oligodendrocytes sometimes form tumors called oligodendrogliomas. Grades of oligodendroglial tumors include the following: - Oligodendroglioma (grade II): An oligodendroglioma grows slowly, but often spreads into nearby tissues. The tumor cells look something like normal cells. In some cases, an oligodendroglioma can be cured. - Anaplastic oligodendroglioma (grade III): An anaplastic oligodendroglioma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor usually cannot be cured. See the PDQ summary on Childhood Astrocytomas Treatment for more information about oligodendroglial tumors in children. Mixed Gliomas A mixed glioma is a brain tumor that has two types of tumor cells in it oligodendrocytes and astrocytes. This type of mixed tumor is called an oligoastrocytoma. - Oligoastrocytoma (grade II): An oligoastrocytoma is a slow-growing tumor. The tumor cells look something like normal cells. In some cases, an oligoastrocytoma can be cured. - Anaplastic oligoastrocytoma (grade III): An anaplastic oligoastrocytoma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor has a worse prognosis than oligoastrocytoma (grade II). See the PDQ summary on Childhood Astrocytomas Treatment for more information about mixed gliomas in children. Ependymal Tumors An ependymal tumor usually begins in cells that line the fluid -filled spaces in the brain and around the spinal cord. An ependymal tumor may also be called an ependymoma. Grades of ependymomas include the following: - Ependymoma (grade I or II): A grade I or II ependymoma grows slowly and has cells that look something like normal cells. There are two types of grade I ependymoma myxopapillary ependymoma and subependymoma. A grade II ependymoma grows in a ventricle (fluid-filled space in the brain) and its connecting paths or in the spinal cord. In some cases, a grade I or II ependymoma can be cured. - Anaplastic ependymoma (grade III): An anaplastic ependymoma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor usually has a worse prognosis than a grade I or II ependymoma. See the PDQ summary on Childhood Ependymoma Treatment for more information about ependymoma in children. Medulloblastomas A medulloblastoma is a type of embryonal tumor. Medulloblastomas are most common in children or young adults. See the PDQ summary on Childhood Central Nervous System Embryonal Tumors Treatment for more information about medulloblastomas in children. Pineal Parenchymal Tumors A pineal parenchymal tumor forms in parenchymal cells or pineocytes, which are the cells that make up most of the pineal gland. These tumors are different from pineal astrocytic tumors. Grades of pineal parenchymal tumors include the following: - Pineocytoma (grade II): A pineocytoma is a slow-growing pineal tumor. - Pineoblastoma (grade IV): A pineoblastoma is a rare tumor that is very likely to spread. See the PDQ summary on Childhood Central Nervous System Embryonal Tumors Treatment for more information about pineal parenchymal tumors in children. Meningeal Tumors A meningeal tumor, also called a meningioma, forms in the meninges (thin layers of tissue that cover the brain and spinal cord). It can form from different types of brain or spinal cord cells. Meningiomas are most common in adults. Types of meningeal tumors include the following: - Meningioma (grade I): A grade I meningioma is the most common type of meningeal tumor. A grade I meningioma is a slow-growing tumor. It forms most often in the dura mater. A grade I meningioma can be cured if it is completely removed by surgery. - Meningioma (grade II and III): This is a rare meningeal tumor. It grows quickly and is likely to spread within the brain and spinal cord. The prognosis is worse than a grade I meningioma because the tumor usually cannot be completely removed by surgery. A hemangiopericytoma is not a meningeal tumor but is treated like a grade II or III meningioma. A hemangiopericytoma usually forms in the dura mater. The prognosis is worse than a grade I meningioma because the tumor usually cannot be completely removed by surgery. Germ Cell Tumors A germ cell tumor forms in germ cells, which are the cells that develop into sperm in men or ova (eggs) in women. There are different types of germ cell tumors. These include germinomas, teratomas, embryonal yolk sac carcinomas, and choriocarcinomas. Germ cell tumors can be either benign or malignant. See the PDQ summary on Childhood Central Nervous System Germ Cell Tumors Treatment for more information about childhood germ cell tumors in the brain. Craniopharyngioma (Grade I) A craniopharyngioma is a rare tumor that usually forms in the center of the brain just above the pituitary gland (a pea-sized organ at the bottom of the brain that controls other glands). Craniopharyngiomas can form from different types of brain or spinal cord cells. See the PDQ summary on Childhood Craniopharyngioma Treatment for more information about craniopharyngioma in children.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Adult Central Nervous System Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - An adult central nervous system tumor is a disease in which abnormal cells form in the tissues of the brain and/or spinal cord. - A tumor that starts in another part of the body and spreads to the brain is called a metastatic brain tumor. - The brain controls many important body functions. - The spinal cord connects the brain to nerves in most parts of the body. - There are different types of brain and spinal cord tumors. - Astrocytic Tumors - Oligodendroglial Tumors - Mixed Gliomas - Ependymal Tumors - Medulloblastomas - Pineal Parenchymal Tumors - Meningeal Tumors - Germ Cell Tumors - Craniopharyngioma (Grade I) - Having certain genetic syndromes may increase the risk of a central nervous system tumor. - The cause of most adult brain and spinal cord tumors is not known. - The signs and symptoms of adult brain and spinal cord tumors are not the same in every person. - Tests that examine the brain and spinal cord are used to diagnose adult brain and spinal cord tumors. - A biopsy is also used to diagnose a brain tumor. - Sometimes a biopsy or surgery cannot be done. - Certain factors affect prognosis (chance of recovery) and treatment options. An adult central nervous system tumor is a disease in which abnormal cells form in the tissues of the brain and/or spinal cord. There are many types of brain and spinal cord tumors. The tumors are formed by the abnormal growth of cells and may begin in different parts of the brain or spinal cord. Together, the brain and spinal cord make up the central nervous system (CNS). The tumors may be either benign (not cancer) or malignant (cancer): - Benign brain and spinal cord tumors grow and press on nearby areas of the brain. They rarely spread into other tissues and may recur (come back). - Malignant brain and spinal cord tumors are likely to grow quickly and spread into other brain tissue. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Both benign and malignant brain tumors cause signs and symptoms and need treatment. Brain and spinal cord tumors can occur in both adults and children. However, treatment for children may be different than treatment for adults. (See the PDQ summary on Childhood Brain and Spinal Cord Tumors Treatment Overview for more information on the treatment of children.) For information about lymphoma that begins in the brain, see the PDQ summary on Primary CNS Lymphoma Treatment. A tumor that starts in another part of the body and spreads to the brain is called a metastatic brain tumor. Tumors that start in the brain are called primary brain tumors. Primary brain tumors may spread to other parts of the brain or to the spine. They rarely spread to other parts of the body. Often, tumors found in the brain have started somewhere else in the body and spread to one or more parts of the brain. These are called metastatic brain tumors (or brain metastases). Metastatic brain tumors are more common than primary brain tumors. Up to half of metastatic brain tumors are from lung cancer. Other types of cancer that commonly spread to the brain include: - Melanoma. - Breast cancer. - Colon cancer. - Kidney cancer. - Nasopharyngeal cancer. - Cancer of unknown primary site. Cancer may spread to the leptomeninges (the two innermost membranes covering the brain and spinal cord). This is called leptomeningeal carcinomatosis. The most common cancers that spread to the leptomeninges include: - Breast cancer. - Lung cancer. - Leukemia. - Lymphoma. See the following for more information from PDQ about cancers that commonly spread to the brain or spinal cord: - Adult Hodgkin Lymphoma Treatment - Adult Non-Hodgkin Lymphoma Treatment - Breast Cancer Treatment - Carcinoma of Unknown Primary Treatment - Colon Cancer Treatment - Leukemia Home Page - Melanoma Treatment - Nasopharyngeal Cancer Treatment - Non-Small Cell Lung Cancer Treatment - Renal Cell Cancer Treatment - Small Cell Lung Cancer Treatment The brain controls many important body functions. The brain has three major parts: - The cerebrum is the largest part of the brain. It is at the top of the head. The cerebrum controls thinking, learning, problem solving, emotions, speech, reading, writing, and voluntary movement. - The cerebellum is in the lower back of the brain (near the middle of the back of the head). It controls movement, balance, and posture. - The brain stem connects the brain to the spinal cord. It is in the lowest part of the brain (just above the back of the neck). The brain stem controls breathing, heart rate, and the nerves and muscles used to see, hear, walk, talk, and eat. The spinal cord connects the brain to nerves in most parts of the body. The spinal cord is a column of nerve tissue that runs from the brain stem down the center of the back. It is covered by three thin layers of tissue called membranes. These membranes are surrounded by the vertebrae (back bones). Spinal cord nerves carry messages between the brain and the rest of the body, such as a message from the brain to cause muscles to move or a message from the skin to the brain to feel touch. There are different types of brain and spinal cord tumors. Brain and spinal cord tumors are named based on the type of cell they formed in and where the tumor first formed in the CNS. The grade of a tumor may be used to tell the difference between slow-growing and fast-growing types of the tumor. The World Health Organization (WHO) tumor grades are based on how abnormal the cancer cells look under a microscope and how quickly the tumor is likely to grow and spread. WHO Tumor Grading System - Grade I (low-grade) The tumor cells look more like normal cells under a microscope and grow and spread more slowly than grade II, III, and IV tumor cells. They rarely spread into nearby tissues. Grade I brain tumors may be cured if they are completely removed by surgery. - Grade II The tumor cells grow and spread more slowly than grade III and IV tumor cells. They may spread into nearby tissue and may recur (come back). Some tumors may become a higher-grade tumor. - Grade III The tumor cells look very different from normal cells under a microscope and grow more quickly than grade I and II tumor cells. They are likely to spread into nearby tissue. - Grade IV (high-grade) The tumor cells do not look like normal cells under a microscope and grow and spread very quickly. There may be areas of dead cells in the tumor. Grade IV tumors usually cannot be cured. The following types of primary tumors can form in the brain or spinal cord: Astrocytic Tumors An astrocytic tumor begins in star-shaped brain cells called astrocytes, which help keep nerve cells healthy. An astrocyte is a type of glial cell. Glial cells sometimes form tumors called gliomas. Astrocytic tumors include the following: - Brain stem glioma (usually high grade): A brain stem glioma forms in the brain stem, which is the part of the brain connected to the spinal cord. It is often a high-grade tumor, which spreads widely through the brain stem and is hard to cure. Brain stem gliomas are rare in adults. (See the PDQ summary on Childhood Brain Stem Glioma Treatment for more information.) - Pineal astrocytic tumor (any grade): A pineal astrocytic tumor forms in tissue around the pineal gland and may be any grade. The pineal gland is a tiny organ in the brain that makes melatonin, a hormone that helps control the sleeping and waking cycle. - Pilocytic astrocytoma (grade I): A pilocytic astrocytoma grows slowly in the brain or spinal cord. It may be in the form of a cyst and rarely spreads into nearby tissues. Pilocytic astrocytomas can often be cured. - Diffuse astrocytoma (grade II): A diffuse astrocytoma grows slowly, but often spreads into nearby tissues. The tumor cells look something like normal cells. In some cases, a diffuse astrocytoma can be cured. It is also called a low-grade diffuse astrocytoma. - Anaplastic astrocytoma (grade III): An anaplastic astrocytoma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor usually cannot be cured. An anaplastic astrocytoma is also called a malignant astrocytoma or high-grade astrocytoma. - Glioblastoma (grade IV): A glioblastoma grows and spreads very quickly. The tumor cells look very different from normal cells. This type of tumor usually cannot be cured. It is also called glioblastoma multiforme. See the PDQ summary on Childhood Astrocytomas Treatment for more information about astrocytomas in children. Oligodendroglial Tumors An oligodendroglial tumor begins in brain cells called oligodendrocytes, which help keep nerve cells healthy. An oligodendrocyte is a type of glial cell. Oligodendrocytes sometimes form tumors called oligodendrogliomas. Grades of oligodendroglial tumors include the following: - Oligodendroglioma (grade II): An oligodendroglioma grows slowly, but often spreads into nearby tissues. The tumor cells look something like normal cells. In some cases, an oligodendroglioma can be cured. - Anaplastic oligodendroglioma (grade III): An anaplastic oligodendroglioma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor usually cannot be cured. See the PDQ summary on Childhood Astrocytomas Treatment for more information about oligodendroglial tumors in children. Mixed Gliomas A mixed glioma is a brain tumor that has two types of tumor cells in it oligodendrocytes and astrocytes. This type of mixed tumor is called an oligoastrocytoma. - Oligoastrocytoma (grade II): An oligoastrocytoma is a slow-growing tumor. The tumor cells look something like normal cells. In some cases, an oligoastrocytoma can be cured. - Anaplastic oligoastrocytoma (grade III): An anaplastic oligoastrocytoma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor has a worse prognosis than oligoastrocytoma (grade II). See the PDQ summary on Childhood Astrocytomas Treatment for more information about mixed gliomas in children. Ependymal Tumors An ependymal tumor usually begins in cells that line the fluid -filled spaces in the brain and around the spinal cord. An ependymal tumor may also be called an ependymoma. Grades of ependymomas include the following: - Ependymoma (grade I or II): A grade I or II ependymoma grows slowly and has cells that look something like normal cells. There are two types of grade I ependymoma myxopapillary ependymoma and subependymoma. A grade II ependymoma grows in a ventricle (fluid-filled space in the brain) and its connecting paths or in the spinal cord. In some cases, a grade I or II ependymoma can be cured. - Anaplastic ependymoma (grade III): An anaplastic ependymoma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor usually has a worse prognosis than a grade I or II ependymoma. See the PDQ summary on Childhood Ependymoma Treatment for more information about ependymoma in children. Medulloblastomas A medulloblastoma is a type of embryonal tumor. Medulloblastomas are most common in children or young adults. See the PDQ summary on Childhood Central Nervous System Embryonal Tumors Treatment for more information about medulloblastomas in children. Pineal Parenchymal Tumors A pineal parenchymal tumor forms in parenchymal cells or pineocytes, which are the cells that make up most of the pineal gland. These tumors are different from pineal astrocytic tumors. Grades of pineal parenchymal tumors include the following: - Pineocytoma (grade II): A pineocytoma is a slow-growing pineal tumor. - Pineoblastoma (grade IV): A pineoblastoma is a rare tumor that is very likely to spread. See the PDQ summary on Childhood Central Nervous System Embryonal Tumors Treatment for more information about pineal parenchymal tumors in children. Meningeal Tumors A meningeal tumor, also called a meningioma, forms in the meninges (thin layers of tissue that cover the brain and spinal cord). It can form from different types of brain or spinal cord cells. Meningiomas are most common in adults. Types of meningeal tumors include the following: - Meningioma (grade I): A grade I meningioma is the most common type of meningeal tumor. A grade I meningioma is a slow-growing tumor. It forms most often in the dura mater. A grade I meningioma can be cured if it is completely removed by surgery. - Meningioma (grade II and III): This is a rare meningeal tumor. It grows quickly and is likely to spread within the brain and spinal cord. The prognosis is worse than a grade I meningioma because the tumor usually cannot be completely removed by surgery. A hemangiopericytoma is not a meningeal tumor but is treated like a grade II or III meningioma. A hemangiopericytoma usually forms in the dura mater. The prognosis is worse than a grade I meningioma because the tumor usually cannot be completely removed by surgery. Germ Cell Tumors A germ cell tumor forms in germ cells, which are the cells that develop into sperm in men or ova (eggs) in women. There are different types of germ cell tumors. These include germinomas, teratomas, embryonal yolk sac carcinomas, and choriocarcinomas. Germ cell tumors can be either benign or malignant. See the PDQ summary on Childhood Central Nervous System Germ Cell Tumors Treatment for more information about childhood germ cell tumors in the brain. Craniopharyngioma (Grade I) A craniopharyngioma is a rare tumor that usually forms in the center of the brain just above the pituitary gland (a pea-sized organ at the bottom of the brain that controls other glands). Craniopharyngiomas can form from different types of brain or spinal cord cells. See the PDQ summary on Childhood Craniopharyngioma Treatment for more information about craniopharyngioma in children.<|eot_id|>
Who is at risk for Adult Central Nervous System Tumors? ?
Having certain genetic syndromes may increase the risk of a central nervous system tumor. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. There are few known risk factors for brain tumors. The following conditions may increase the risk of certain types of brain tumors: - Being exposed to vinyl chloride may increase the risk of glioma. - Infection with the Epstein-Barr virus, having AIDS (acquired immunodeficiency syndrome), or receiving an organ transplant may increase the risk of primary CNS lymphoma. (See the PDQ summary on Primary CNS Lymphoma for more information.) - Having certain genetic syndromes may increase the risk brain tumors: - Neurofibromatosis type 1 (NF1) or 2 (NF2). - von Hippel-Lindau disease. - Tuberous sclerosis. - Li-Fraumeni syndrome. - Turcot syndrome type 1 or 2. - Nevoid basal cell carcinoma syndrome.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Adult Central Nervous System Tumors? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Having certain genetic syndromes may increase the risk of a central nervous system tumor. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. There are few known risk factors for brain tumors. The following conditions may increase the risk of certain types of brain tumors: - Being exposed to vinyl chloride may increase the risk of glioma. - Infection with the Epstein-Barr virus, having AIDS (acquired immunodeficiency syndrome), or receiving an organ transplant may increase the risk of primary CNS lymphoma. (See the PDQ summary on Primary CNS Lymphoma for more information.) - Having certain genetic syndromes may increase the risk brain tumors: - Neurofibromatosis type 1 (NF1) or 2 (NF2). - von Hippel-Lindau disease. - Tuberous sclerosis. - Li-Fraumeni syndrome. - Turcot syndrome type 1 or 2. - Nevoid basal cell carcinoma syndrome.<|eot_id|>
What causes Adult Central Nervous System Tumors ?
The cause of most adult brain and spinal cord tumors is not known.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What causes Adult Central Nervous System Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> The cause of most adult brain and spinal cord tumors is not known.<|eot_id|>
What are the symptoms of Adult Central Nervous System Tumors ?
The signs and symptoms of adult brain and spinal cord tumors are not the same in every person. Signs and symptoms depend on the following: - Where the tumor forms in the brain or spinal cord. - What the affected part of the brain controls. - The size of the tumor. Signs and symptoms may be caused by CNS tumors or by other conditions, including cancer that has spread to the brain. Check with your doctor if you have any of the following: Brain Tumor Symptoms - Morning headache or headache that goes away after vomiting. - Seizures. - Vision, hearing, and speech problems. - Loss of appetite. - Frequent nausea and vomiting. - Changes in personality, mood, ability to focus, or behavior. - Loss of balance and trouble walking. - Weakness. - Unusual sleepiness or change in activity level. Spinal Cord Tumor Symptoms - Back pain or pain that spreads from the back towards the arms or legs. - A change in bowel habits or trouble urinating. - Weakness or numbness in the arms or legs. - Trouble walking.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Adult Central Nervous System Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> The signs and symptoms of adult brain and spinal cord tumors are not the same in every person. Signs and symptoms depend on the following: - Where the tumor forms in the brain or spinal cord. - What the affected part of the brain controls. - The size of the tumor. Signs and symptoms may be caused by CNS tumors or by other conditions, including cancer that has spread to the brain. Check with your doctor if you have any of the following: Brain Tumor Symptoms - Morning headache or headache that goes away after vomiting. - Seizures. - Vision, hearing, and speech problems. - Loss of appetite. - Frequent nausea and vomiting. - Changes in personality, mood, ability to focus, or behavior. - Loss of balance and trouble walking. - Weakness. - Unusual sleepiness or change in activity level. Spinal Cord Tumor Symptoms - Back pain or pain that spreads from the back towards the arms or legs. - A change in bowel habits or trouble urinating. - Weakness or numbness in the arms or legs. - Trouble walking.<|eot_id|>
How to diagnose Adult Central Nervous System Tumors ?
Tests that examine the brain and spinal cord are used to diagnose adult brain and spinal cord tumors. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - Visual field exam: An exam to check a persons field of vision (the total area in which objects can be seen). This test measures both central vision (how much a person can see when looking straight ahead) and peripheral vision (how much a person can see in all other directions while staring straight ahead). Any loss of vision may be a sign of a tumor that has damaged or pressed on the parts of the brain that affect eyesight. - Tumor marker test : A procedure in which a sample of blood, urine, or tissue is checked to measure the amounts of certain substances made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. This test may be done to diagnose a germ cell tumor. - Gene testing : A laboratory test in which a sample of blood or tissue is tested for changes in a chromosome that has been linked with a certain type of brain tumor. This test may be done to diagnose an inherited syndrome. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of the brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). MRI is often used to diagnose tumors in the spinal cord. Sometimes a procedure called magnetic resonance spectroscopy (MRS) is done during the MRI scan. An MRS is used to diagnose tumors, based on their chemical make-up. - SPECT scan (single photon emission computed tomography scan): A procedure that uses a special camera linked to a computer to make a 3-dimensional (3-D) picture of the brain. A very small amount of a radioactive substance is injected into a vein or inhaled through the nose. As the substance travels through the blood, the camera rotates around the head and takes pictures of the brain. Blood flow and metabolism are higher than normal in areas where cancer cells are growing. These areas will show up brighter in the picture. This procedure may be done just before or after a CT scan. SPECT is used to tell the difference between a primary tumor and a tumor that has spread to the brain from somewhere else in the body. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the brain. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. PET is used to tell the difference between a primary tumor and a tumor that has spread to the brain from somewhere else in the body. A biopsy is also used to diagnose a brain tumor. If imaging tests show there may be a brain tumor, a biopsy is usually done. One of the following types of biopsies may be used: - Stereotactic biopsy : When imaging tests show there may be a tumor deep in the brain in a hard to reach place, a stereotactic brain biopsy may be done. This kind of biopsy uses a computer and a 3-dimensional (3-D) scanning device to find the tumor and guide the needle used to remove the tissue. A small incision is made in the scalp and a small hole is drilled through the skull. A biopsy needle is inserted through the hole to remove cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. - Open biopsy : When imaging tests show that there may be a tumor that can be removed by surgery, an open biopsy may be done. A part of the skull is removed in an operation called a craniotomy. A sample of brain tissue is removed and viewed under a microscope by a pathologist. If cancer cells are found, some or all of the tumor may be removed during the same surgery. Tests are done before surgery to find the areas around the tumor that are important for normal brain function. There are also ways to test brain function during surgery. The doctor will use the results of these tests to remove as much of the tumor as possible with the least damage to normal tissue in the brain. The pathologist checks the biopsy sample to find out the type and grade of brain tumor. The grade of the tumor is based on how the tumor cells look under a microscope and how quickly the tumor is likely to grow and spread. The following tests may be done on the tumor tissue that is removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - Light and electron microscopy : A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells. - Cytogenetic analysis : A laboratory test in which cells in a sample of tissue are viewed under a microscope to look for certain changes in the chromosomes. Sometimes a biopsy or surgery cannot be done. For some tumors, a biopsy or surgery cannot be done safely because of where the tumor formed in the brain or spinal cord. These tumors are diagnosed and treated based on the results of imaging tests and other procedures. Sometimes the results of imaging tests and other procedures show that the tumor is very likely to be benign and a biopsy is not done.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Adult Central Nervous System Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the brain and spinal cord are used to diagnose adult brain and spinal cord tumors. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - Visual field exam: An exam to check a persons field of vision (the total area in which objects can be seen). This test measures both central vision (how much a person can see when looking straight ahead) and peripheral vision (how much a person can see in all other directions while staring straight ahead). Any loss of vision may be a sign of a tumor that has damaged or pressed on the parts of the brain that affect eyesight. - Tumor marker test : A procedure in which a sample of blood, urine, or tissue is checked to measure the amounts of certain substances made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. This test may be done to diagnose a germ cell tumor. - Gene testing : A laboratory test in which a sample of blood or tissue is tested for changes in a chromosome that has been linked with a certain type of brain tumor. This test may be done to diagnose an inherited syndrome. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of the brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). MRI is often used to diagnose tumors in the spinal cord. Sometimes a procedure called magnetic resonance spectroscopy (MRS) is done during the MRI scan. An MRS is used to diagnose tumors, based on their chemical make-up. - SPECT scan (single photon emission computed tomography scan): A procedure that uses a special camera linked to a computer to make a 3-dimensional (3-D) picture of the brain. A very small amount of a radioactive substance is injected into a vein or inhaled through the nose. As the substance travels through the blood, the camera rotates around the head and takes pictures of the brain. Blood flow and metabolism are higher than normal in areas where cancer cells are growing. These areas will show up brighter in the picture. This procedure may be done just before or after a CT scan. SPECT is used to tell the difference between a primary tumor and a tumor that has spread to the brain from somewhere else in the body. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the brain. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. PET is used to tell the difference between a primary tumor and a tumor that has spread to the brain from somewhere else in the body. A biopsy is also used to diagnose a brain tumor. If imaging tests show there may be a brain tumor, a biopsy is usually done. One of the following types of biopsies may be used: - Stereotactic biopsy : When imaging tests show there may be a tumor deep in the brain in a hard to reach place, a stereotactic brain biopsy may be done. This kind of biopsy uses a computer and a 3-dimensional (3-D) scanning device to find the tumor and guide the needle used to remove the tissue. A small incision is made in the scalp and a small hole is drilled through the skull. A biopsy needle is inserted through the hole to remove cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. - Open biopsy : When imaging tests show that there may be a tumor that can be removed by surgery, an open biopsy may be done. A part of the skull is removed in an operation called a craniotomy. A sample of brain tissue is removed and viewed under a microscope by a pathologist. If cancer cells are found, some or all of the tumor may be removed during the same surgery. Tests are done before surgery to find the areas around the tumor that are important for normal brain function. There are also ways to test brain function during surgery. The doctor will use the results of these tests to remove as much of the tumor as possible with the least damage to normal tissue in the brain. The pathologist checks the biopsy sample to find out the type and grade of brain tumor. The grade of the tumor is based on how the tumor cells look under a microscope and how quickly the tumor is likely to grow and spread. The following tests may be done on the tumor tissue that is removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - Light and electron microscopy : A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells. - Cytogenetic analysis : A laboratory test in which cells in a sample of tissue are viewed under a microscope to look for certain changes in the chromosomes. Sometimes a biopsy or surgery cannot be done. For some tumors, a biopsy or surgery cannot be done safely because of where the tumor formed in the brain or spinal cord. These tumors are diagnosed and treated based on the results of imaging tests and other procedures. Sometimes the results of imaging tests and other procedures show that the tumor is very likely to be benign and a biopsy is not done.<|eot_id|>
What is the outlook for Adult Central Nervous System Tumors ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options for primary brain and spinal cord tumors depend on the following: - The type and grade of the tumor. - Where the tumor is in the brain or spinal cord. - Whether the tumor can be removed by surgery. - Whether cancer cells remain after surgery. - Whether there are certain changes in the chromosomes. - Whether the cancer has just been diagnosed or has recurred (come back). - The patient's general health. The prognosis and treatment options for metastatic brain and spinal cord tumors depend on the following: - Whether there are more than two tumors in the brain or spinal cord. - Where the tumor is in the brain or spinal cord. - How well the tumor responds to treatment. - Whether the primary tumor continues to grow or spread.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Adult Central Nervous System Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options for primary brain and spinal cord tumors depend on the following: - The type and grade of the tumor. - Where the tumor is in the brain or spinal cord. - Whether the tumor can be removed by surgery. - Whether cancer cells remain after surgery. - Whether there are certain changes in the chromosomes. - Whether the cancer has just been diagnosed or has recurred (come back). - The patient's general health. The prognosis and treatment options for metastatic brain and spinal cord tumors depend on the following: - Whether there are more than two tumors in the brain or spinal cord. - Where the tumor is in the brain or spinal cord. - How well the tumor responds to treatment. - Whether the primary tumor continues to grow or spread.<|eot_id|>
What are the stages of Adult Central Nervous System Tumors ?
Key Points - There is no standard staging system for adult brain and spinal cord tumors. - Imaging tests may be repeated after surgery to help plan more treatment. There is no standard staging system for adult brain and spinal cord tumors. The extent or spread of cancer is usually described as stages. There is no standard staging system for brain and spinal cord tumors. Brain tumors that begin in the brain may spread to other parts of the brain and spinal cord, but they rarely spread to other parts of the body. Treatment of primary brain and spinal cord tumors is based on the following: - The type of cell in which the tumor began. - Where the tumor formed in the brain or spinal cord. - The amount of cancer left after surgery. - The grade of the tumor. Treatment of tumors that have spread to the brain from other parts of the body is based on the number of tumors in the brain. Imaging tests may be repeated after surgery to help plan more treatment. Some of the tests and procedures used to diagnose a brain or spinal cord tumor may be repeated after treatment to find out how much tumor is left.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Adult Central Nervous System Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There is no standard staging system for adult brain and spinal cord tumors. - Imaging tests may be repeated after surgery to help plan more treatment. There is no standard staging system for adult brain and spinal cord tumors. The extent or spread of cancer is usually described as stages. There is no standard staging system for brain and spinal cord tumors. Brain tumors that begin in the brain may spread to other parts of the brain and spinal cord, but they rarely spread to other parts of the body. Treatment of primary brain and spinal cord tumors is based on the following: - The type of cell in which the tumor began. - Where the tumor formed in the brain or spinal cord. - The amount of cancer left after surgery. - The grade of the tumor. Treatment of tumors that have spread to the brain from other parts of the body is based on the number of tumors in the brain. Imaging tests may be repeated after surgery to help plan more treatment. Some of the tests and procedures used to diagnose a brain or spinal cord tumor may be repeated after treatment to find out how much tumor is left.<|eot_id|>
what research (or clinical trials) is being done for Adult Central Nervous System Tumors ?
New types of treatment are being tested in clinical trials. This summary section refers to new treatments being studied in clinical trials, but it may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Proton beam radiation therapy Proton beam radiation therapy is a type of high-energy, external radiation therapy that uses streams of protons (small, positively-charged pieces of matter) to make radiation. This type of radiation kills tumor cells with little damage to nearby tissues. It is used to treat cancers of the head, neck, and spine and organs such as the brain, eye, lung, and prostate. Proton beam radiation is different from x-ray radiation. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Biologic therapy is being studied for the treatment of some types of brain tumors. Treatments may include the following: - Dendritic cell vaccine therapy. - Gene therapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Adult Central Nervous System Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. This summary section refers to new treatments being studied in clinical trials, but it may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Proton beam radiation therapy Proton beam radiation therapy is a type of high-energy, external radiation therapy that uses streams of protons (small, positively-charged pieces of matter) to make radiation. This type of radiation kills tumor cells with little damage to nearby tissues. It is used to treat cancers of the head, neck, and spine and organs such as the brain, eye, lung, and prostate. Proton beam radiation is different from x-ray radiation. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Biologic therapy is being studied for the treatment of some types of brain tumors. Treatments may include the following: - Dendritic cell vaccine therapy. - Gene therapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What are the treatments for Adult Central Nervous System Tumors ?
Key Points - There are different types of treatment for patients with adult brain and spinal cord tumors. - Five types of standard treatment are used: - Active surveillance - Surgery - Radiation therapy - Chemotherapy - Targeted therapy - Supportive care is given to lessen the problems caused by the disease or its treatment. - New types of treatment are being tested in clinical trials. - Proton beam radiation therapy - Biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with adult brain and spinal cord tumors. Different types of treatment are available for patients with adult brain and spinal cord tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Five types of standard treatment are used: Active surveillance Active surveillance is closely watching a patients condition but not giving any treatment unless there are changes in test results that show the condition is getting worse. Active surveillance may be used to avoid or delay the need for treatments such as radiation therapy or surgery, which can cause side effects or other problems. During active surveillance, certain exams and tests are done on a regular schedule. Active surveillance may be used for very slow-growing tumors that do not cause symptoms. Surgery Surgery may be used to diagnose and treat adult brain and spinal cord tumors. Removing tumor tissue helps decrease pressure of the tumor on nearby parts of the brain. See the General Information section of this summary. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. - Intensity-modulated radiation therapy (IMRT): IMRT is a type of 3-dimensional (3-D) external radiation therapy that uses a computer to make pictures of the size and shape of the tumor. Thin beams of radiation of different intensities (strengths) are aimed at the tumor from many angles. - Stereotactic radiosurgery: Stereotactic radiosurgery is a type of external radiation therapy. A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims a single large dose of radiation directly at the tumor. This procedure does not involve surgery. It is also called stereotaxic radiosurgery, radiosurgery, and radiation surgery. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and grade of tumor and where it is in the brain or spinal cord. External radiation therapy is used to treat adult central nervous system tumors. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. To treat brain tumors, a wafer that dissolves may be used to deliver an anticancer drug directly to the brain tumor site after the tumor has been removed by surgery. The way the chemotherapy is given depends on the type and grade of tumor and where it is in the brain. Anticancer drugs given by mouth or vein to treat brain and spinal cord tumors cannot cross the blood-brain barrier and enter the fluid that surrounds the brain and spinal cord. Instead, an anticancer drug is injected into the fluid-filled space to kill cancer cells there. This is called intrathecal chemotherapy. See Drugs Approved for Brain Tumors for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy is a type of targeted therapy that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Bevacizumab is a monoclonal antibody that binds to a protein called vascular endothelial growth factor (VEGF) and may prevent the growth of new blood vessels that tumors need to grow. Bevacizumab is used in the treatment of recurrent glioblastoma. Other types of targeted therapies are being studied for adult brain tumors, including tyrosine kinase inhibitors and new VEGF inhibitors. See Drugs Approved for Brain Tumors for more information. Supportive care is given to lessen the problems caused by the disease or its treatment. This therapy controls problems or side effects caused by the disease or its treatment and improves quality of life. For brain tumors, supportive care includes drugs to control seizures and fluid buildup or swelling in the brain. New types of treatment are being tested in clinical trials. This summary section refers to new treatments being studied in clinical trials, but it may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Proton beam radiation therapy Proton beam radiation therapy is a type of high-energy, external radiation therapy that uses streams of protons (small, positively-charged pieces of matter) to make radiation. This type of radiation kills tumor cells with little damage to nearby tissues. It is used to treat cancers of the head, neck, and spine and organs such as the brain, eye, lung, and prostate. Proton beam radiation is different from x-ray radiation. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Biologic therapy is being studied for the treatment of some types of brain tumors. Treatments may include the following: - Dendritic cell vaccine therapy. - Gene therapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The following tests and procedures may be used to check whether a brain tumor has come back after treatment: - SPECT scan (single photon emission computed tomography scan): A procedure that uses a special camera linked to a computer to make a 3-dimensional (3-D) picture of the brain. A very small amount of a radioactive substance is injected into a vein or inhaled through the nose. As the substance travels through the blood, the camera rotates around the head and takes pictures of the brain. Blood flow and metabolism are higher than normal in areas where cancer cells are growing. These areas will show up brighter in the picture. This procedure may be done just before or after a CT scan. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the brain. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. Treatment Options by Type of Primary Adult Brain Tumor Astrocytic Tumors Brain Stem Gliomas Treatment of brain stem gliomas may include the following: - Radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult brain stem glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Pineal Astrocytic Tumors Treatment of pineal astrocytic tumors may include the following: - Surgery and radiation therapy. For high-grade tumors, chemotherapy may also be given. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult pineal gland astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Pilocytic Astrocytomas Treatment of pilocytic astrocytomas may include the following: - Surgery to remove the tumor. Radiation therapy may also be given if tumor remains after surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult pilocytic astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Diffuse Astrocytomas Treatment of diffuse astrocytomas may include the following: - Surgery with or without radiation therapy. - Surgery followed by radiation therapy and chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult diffuse astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Anaplastic Astrocytomas Treatment of anaplastic astrocytomas may include the following: - Surgery and radiation therapy. Chemotherapy may also be given. - Surgery and chemotherapy. - A clinical trial of chemotherapy placed into the brain during surgery. - A clinical trial of a new treatment added to standard treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult anaplastic astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Glioblastomas Treatment of glioblastomas may include the following: - Surgery followed by radiation therapy and chemotherapy given at the same time, followed by chemotherapy alone. - Surgery followed by radiation therapy. - Chemotherapy placed into the brain during surgery. - Radiation therapy and chemotherapy given at the same time. - A clinical trial of a new treatment added to standard treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult glioblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Oligodendroglial Tumors Treatment of oligodendrogliomas may include the following: - Surgery with or without radiation therapy. Chemotherapy may be given after radiation therapy. Treatment of anaplastic oligodendroglioma may include the following: - Surgery followed by radiation therapy with or without chemotherapy. - A clinical trial of a new treatment added to standard treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult oligodendroglial tumors. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Mixed Gliomas Treatment of mixed gliomas may include the following: - Surgery and radiation therapy. Sometimes chemotherapy is also given. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult mixed glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Ependymal Tumors Treatment of grade I and grade II ependymomas may include the following: - Surgery to remove the tumor. Radiation therapy may also be given if tumor remains after surgery. Treatment of grade III anaplastic ependymoma may include the following: - Surgery and radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult ependymal tumors. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Medulloblastomas Treatment of medulloblastomas may include the following: - Surgery and radiation therapy to the brain and spine. - A clinical trial of chemotherapy added to surgery and radiation therapy to the brain and spine Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult medulloblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Pineal Parenchymal Tumors Treatment of pineal parenchymal tumors may include the following: - For pineocytomas, surgery and radiation therapy. - For pineoblastomas, surgery, radiation therapy, and chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult pineal parenchymal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Meningeal Tumors Treatment of grade I meningiomas may include the following: - Active surveillance for tumors with no signs or symptoms. - Surgery to remove the tumor. Radiation therapy may also be given if tumor remains after surgery. - Stereotactic radiosurgery for tumors smaller than 3 centimeters. - Radiation therapy for tumors that cannot be removed by surgery. Treatment of grade II and III meningiomas and hemangiopericytoma s may include the following: - Surgery and radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult meningeal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Germ Cell Tumors There is no standard treatment for germ cell tumors (germinoma, embryonal carcinoma, choriocarcinoma, and teratoma). Treatment depends on what the tumor cells look like under a microscope, the tumor markers, where the tumor is in the brain, and whether it can be removed by surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult central nervous system germ cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Craniopharyngiomas Treatment of craniopharyngiomas may include the following: - Surgery to completely remove the tumor. - Surgery to remove as much of the tumor as possible, followed by radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult craniopharyngioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Adult Central Nervous System Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with adult brain and spinal cord tumors. - Five types of standard treatment are used: - Active surveillance - Surgery - Radiation therapy - Chemotherapy - Targeted therapy - Supportive care is given to lessen the problems caused by the disease or its treatment. - New types of treatment are being tested in clinical trials. - Proton beam radiation therapy - Biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with adult brain and spinal cord tumors. Different types of treatment are available for patients with adult brain and spinal cord tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Five types of standard treatment are used: Active surveillance Active surveillance is closely watching a patients condition but not giving any treatment unless there are changes in test results that show the condition is getting worse. Active surveillance may be used to avoid or delay the need for treatments such as radiation therapy or surgery, which can cause side effects or other problems. During active surveillance, certain exams and tests are done on a regular schedule. Active surveillance may be used for very slow-growing tumors that do not cause symptoms. Surgery Surgery may be used to diagnose and treat adult brain and spinal cord tumors. Removing tumor tissue helps decrease pressure of the tumor on nearby parts of the brain. See the General Information section of this summary. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. - Intensity-modulated radiation therapy (IMRT): IMRT is a type of 3-dimensional (3-D) external radiation therapy that uses a computer to make pictures of the size and shape of the tumor. Thin beams of radiation of different intensities (strengths) are aimed at the tumor from many angles. - Stereotactic radiosurgery: Stereotactic radiosurgery is a type of external radiation therapy. A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims a single large dose of radiation directly at the tumor. This procedure does not involve surgery. It is also called stereotaxic radiosurgery, radiosurgery, and radiation surgery. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and grade of tumor and where it is in the brain or spinal cord. External radiation therapy is used to treat adult central nervous system tumors. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. To treat brain tumors, a wafer that dissolves may be used to deliver an anticancer drug directly to the brain tumor site after the tumor has been removed by surgery. The way the chemotherapy is given depends on the type and grade of tumor and where it is in the brain. Anticancer drugs given by mouth or vein to treat brain and spinal cord tumors cannot cross the blood-brain barrier and enter the fluid that surrounds the brain and spinal cord. Instead, an anticancer drug is injected into the fluid-filled space to kill cancer cells there. This is called intrathecal chemotherapy. See Drugs Approved for Brain Tumors for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy is a type of targeted therapy that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Bevacizumab is a monoclonal antibody that binds to a protein called vascular endothelial growth factor (VEGF) and may prevent the growth of new blood vessels that tumors need to grow. Bevacizumab is used in the treatment of recurrent glioblastoma. Other types of targeted therapies are being studied for adult brain tumors, including tyrosine kinase inhibitors and new VEGF inhibitors. See Drugs Approved for Brain Tumors for more information. Supportive care is given to lessen the problems caused by the disease or its treatment. This therapy controls problems or side effects caused by the disease or its treatment and improves quality of life. For brain tumors, supportive care includes drugs to control seizures and fluid buildup or swelling in the brain. New types of treatment are being tested in clinical trials. This summary section refers to new treatments being studied in clinical trials, but it may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Proton beam radiation therapy Proton beam radiation therapy is a type of high-energy, external radiation therapy that uses streams of protons (small, positively-charged pieces of matter) to make radiation. This type of radiation kills tumor cells with little damage to nearby tissues. It is used to treat cancers of the head, neck, and spine and organs such as the brain, eye, lung, and prostate. Proton beam radiation is different from x-ray radiation. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Biologic therapy is being studied for the treatment of some types of brain tumors. Treatments may include the following: - Dendritic cell vaccine therapy. - Gene therapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The following tests and procedures may be used to check whether a brain tumor has come back after treatment: - SPECT scan (single photon emission computed tomography scan): A procedure that uses a special camera linked to a computer to make a 3-dimensional (3-D) picture of the brain. A very small amount of a radioactive substance is injected into a vein or inhaled through the nose. As the substance travels through the blood, the camera rotates around the head and takes pictures of the brain. Blood flow and metabolism are higher than normal in areas where cancer cells are growing. These areas will show up brighter in the picture. This procedure may be done just before or after a CT scan. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the brain. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. Treatment Options by Type of Primary Adult Brain Tumor Astrocytic Tumors Brain Stem Gliomas Treatment of brain stem gliomas may include the following: - Radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult brain stem glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Pineal Astrocytic Tumors Treatment of pineal astrocytic tumors may include the following: - Surgery and radiation therapy. For high-grade tumors, chemotherapy may also be given. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult pineal gland astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Pilocytic Astrocytomas Treatment of pilocytic astrocytomas may include the following: - Surgery to remove the tumor. Radiation therapy may also be given if tumor remains after surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult pilocytic astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Diffuse Astrocytomas Treatment of diffuse astrocytomas may include the following: - Surgery with or without radiation therapy. - Surgery followed by radiation therapy and chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult diffuse astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Anaplastic Astrocytomas Treatment of anaplastic astrocytomas may include the following: - Surgery and radiation therapy. Chemotherapy may also be given. - Surgery and chemotherapy. - A clinical trial of chemotherapy placed into the brain during surgery. - A clinical trial of a new treatment added to standard treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult anaplastic astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Glioblastomas Treatment of glioblastomas may include the following: - Surgery followed by radiation therapy and chemotherapy given at the same time, followed by chemotherapy alone. - Surgery followed by radiation therapy. - Chemotherapy placed into the brain during surgery. - Radiation therapy and chemotherapy given at the same time. - A clinical trial of a new treatment added to standard treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult glioblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Oligodendroglial Tumors Treatment of oligodendrogliomas may include the following: - Surgery with or without radiation therapy. Chemotherapy may be given after radiation therapy. Treatment of anaplastic oligodendroglioma may include the following: - Surgery followed by radiation therapy with or without chemotherapy. - A clinical trial of a new treatment added to standard treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult oligodendroglial tumors. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Mixed Gliomas Treatment of mixed gliomas may include the following: - Surgery and radiation therapy. Sometimes chemotherapy is also given. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult mixed glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Ependymal Tumors Treatment of grade I and grade II ependymomas may include the following: - Surgery to remove the tumor. Radiation therapy may also be given if tumor remains after surgery. Treatment of grade III anaplastic ependymoma may include the following: - Surgery and radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult ependymal tumors. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Medulloblastomas Treatment of medulloblastomas may include the following: - Surgery and radiation therapy to the brain and spine. - A clinical trial of chemotherapy added to surgery and radiation therapy to the brain and spine Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult medulloblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Pineal Parenchymal Tumors Treatment of pineal parenchymal tumors may include the following: - For pineocytomas, surgery and radiation therapy. - For pineoblastomas, surgery, radiation therapy, and chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult pineal parenchymal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Meningeal Tumors Treatment of grade I meningiomas may include the following: - Active surveillance for tumors with no signs or symptoms. - Surgery to remove the tumor. Radiation therapy may also be given if tumor remains after surgery. - Stereotactic radiosurgery for tumors smaller than 3 centimeters. - Radiation therapy for tumors that cannot be removed by surgery. Treatment of grade II and III meningiomas and hemangiopericytoma s may include the following: - Surgery and radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult meningeal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Germ Cell Tumors There is no standard treatment for germ cell tumors (germinoma, embryonal carcinoma, choriocarcinoma, and teratoma). Treatment depends on what the tumor cells look like under a microscope, the tumor markers, where the tumor is in the brain, and whether it can be removed by surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult central nervous system germ cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Craniopharyngiomas Treatment of craniopharyngiomas may include the following: - Surgery to completely remove the tumor. - Surgery to remove as much of the tumor as possible, followed by radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult craniopharyngioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Essential Thrombocythemia ?
Key Points - Essential thrombocythemia is a disease in which too many platelets are made in the bone marrow. - Patients with essential thrombocythemia may have no signs or symptoms. - Certain factors affect prognosis (chance of recovery) and treatment options for essential thrombocythemia. Essential thrombocythemia is a disease in which too many platelets are made in the bone marrow. Essential thrombocythemia causes an abnormal increase in the number of platelets made in the blood and bone marrow.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Essential Thrombocythemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Essential thrombocythemia is a disease in which too many platelets are made in the bone marrow. - Patients with essential thrombocythemia may have no signs or symptoms. - Certain factors affect prognosis (chance of recovery) and treatment options for essential thrombocythemia. Essential thrombocythemia is a disease in which too many platelets are made in the bone marrow. Essential thrombocythemia causes an abnormal increase in the number of platelets made in the blood and bone marrow.<|eot_id|>
What are the symptoms of Essential Thrombocythemia ?
Patients with essential thrombocythemia may have no signs or symptoms. Essential thrombocythemia often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by essential thrombocytopenia or by other conditions. Check with your doctor if you have any of the following: - Headache. - Burning or tingling in the hands or feet. - Redness and warmth of the hands or feet. - Vision or hearing problems. Platelets are sticky. When there are too many platelets, they may clump together and make it hard for the blood to flow. Clots may form in blood vessels and there may also be increased bleeding. These can cause serious health problems such as stroke or heart attack.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Essential Thrombocythemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Patients with essential thrombocythemia may have no signs or symptoms. Essential thrombocythemia often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by essential thrombocytopenia or by other conditions. Check with your doctor if you have any of the following: - Headache. - Burning or tingling in the hands or feet. - Redness and warmth of the hands or feet. - Vision or hearing problems. Platelets are sticky. When there are too many platelets, they may clump together and make it hard for the blood to flow. Clots may form in blood vessels and there may also be increased bleeding. These can cause serious health problems such as stroke or heart attack.<|eot_id|>
What is the outlook for Essential Thrombocythemia ?
Certain factors affect prognosis (chance of recovery) and treatment options for essential thrombocythemia. Prognosis (chance of recovery) and treatment options depend on the following: - The age of the patient. - Whether the patient has signs or symptoms or other problems related to essential thrombocythemia.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Essential Thrombocythemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options for essential thrombocythemia. Prognosis (chance of recovery) and treatment options depend on the following: - The age of the patient. - Whether the patient has signs or symptoms or other problems related to essential thrombocythemia.<|eot_id|>
What are the treatments for Essential Thrombocythemia ?
Treatment of essential thrombocythemia in patients younger than 60 years who have no signs or symptoms and an acceptable platelet count is usually watchful waiting. Treatment of other patients may include the following: - Chemotherapy. - Anagrelide therapy. - Biologic therapy using interferon alfa or pegylated interferon alpha. - Platelet apheresis. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with essential thrombocythemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Essential Thrombocythemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Treatment of essential thrombocythemia in patients younger than 60 years who have no signs or symptoms and an acceptable platelet count is usually watchful waiting. Treatment of other patients may include the following: - Chemotherapy. - Anagrelide therapy. - Biologic therapy using interferon alfa or pegylated interferon alpha. - Platelet apheresis. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with essential thrombocythemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
Who is at risk for Childhood Rhabdomyosarcoma? ?
Certain genetic conditions increase the risk of childhood rhabdomyosarcoma. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your childs doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: - Li-Fraumeni syndrome. - Pleuropulmonary blastoma. - Neurofibromatosis type 1 (NF1). - Costello syndrome. - Beckwith-Wiedemann syndrome. - Noonan syndrome. Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Childhood Rhabdomyosarcoma? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain genetic conditions increase the risk of childhood rhabdomyosarcoma. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your childs doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: - Li-Fraumeni syndrome. - Pleuropulmonary blastoma. - Neurofibromatosis type 1 (NF1). - Costello syndrome. - Beckwith-Wiedemann syndrome. - Noonan syndrome. Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known.<|eot_id|>
What are the symptoms of Childhood Rhabdomyosarcoma ?
A sign of childhood rhabdomyosarcoma is a lump or swelling that keeps getting bigger. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: - A lump or swelling that keeps getting bigger or does not go away. It may be painful. - Bulging of the eye. - Headache. - Trouble urinating or having bowel movements. - Blood in the urine. - Bleeding in the nose, throat, vagina, or rectum.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Childhood Rhabdomyosarcoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> A sign of childhood rhabdomyosarcoma is a lump or swelling that keeps getting bigger. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: - A lump or swelling that keeps getting bigger or does not go away. It may be painful. - Bulging of the eye. - Headache. - Trouble urinating or having bowel movements. - Blood in the urine. - Bleeding in the nose, throat, vagina, or rectum.<|eot_id|>
How to diagnose Childhood Rhabdomyosarcoma ?
Diagnostic tests and a biopsy are used to detect (find) and diagnose childhood rhabdomyosarcoma. The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - X-ray : An x-ray of the organs and bones inside the body, such as the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen, pelvis, or lymph nodes, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas of the body, such as the skull, brain, and lymph nodes. This procedure is also called nuclear magnetic resonance imaging (NMRI). - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones with cancer and is detected by a scanner. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone. Samples are removed from both hipbones. A pathologist views the bone marrow, blood, and bone under a microscope to look for signs of cancer. - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs of cancer cells. This procedure is also called an LP or spinal tap. If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: - Fine-needle aspiration (FNA) biopsy : The removal of tissue or fluid using a thin needle. - Core needle biopsy : The removal of tissue using a wide needle. This procedure may be guided using ultrasound, CT scan, or MRI. - Open biopsy : The removal of tissue through an incision (cut) made in the skin. - Sentinel lymph node biopsy : The removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node to receive lymphatic drainage from a tumor. It is the first lymph node the cancer is likely to spread to from the tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. The following tests may be done on the sample of tissue that is removed: - Light microscopy: A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells. - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - FISH (fluorescence in situ hybridization): A laboratory test used to look at genes or chromosomes in cells and tissues. Pieces of DNA that contain a fluorescent dye are made in the laboratory and added to cells or tissues on a glass slide. When these pieces of DNA attach to certain genes or areas of chromosomes on the slide, they light up when viewed under a microscope with a special light. This type of test is used to find certain gene changes. - Reverse transcriptionpolymerase chain reaction (RTPCR) test: A laboratory test in which cells in a sample of tissue are studied using chemicals to look for certain changes in the structure or function of genes. - Cytogenetic analysis : A laboratory test in which cells in a sample of tissue are viewed under a microscope to look for certain changes in the chromosomes.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Childhood Rhabdomyosarcoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Diagnostic tests and a biopsy are used to detect (find) and diagnose childhood rhabdomyosarcoma. The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - X-ray : An x-ray of the organs and bones inside the body, such as the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen, pelvis, or lymph nodes, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas of the body, such as the skull, brain, and lymph nodes. This procedure is also called nuclear magnetic resonance imaging (NMRI). - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones with cancer and is detected by a scanner. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone. Samples are removed from both hipbones. A pathologist views the bone marrow, blood, and bone under a microscope to look for signs of cancer. - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs of cancer cells. This procedure is also called an LP or spinal tap. If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: - Fine-needle aspiration (FNA) biopsy : The removal of tissue or fluid using a thin needle. - Core needle biopsy : The removal of tissue using a wide needle. This procedure may be guided using ultrasound, CT scan, or MRI. - Open biopsy : The removal of tissue through an incision (cut) made in the skin. - Sentinel lymph node biopsy : The removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node to receive lymphatic drainage from a tumor. It is the first lymph node the cancer is likely to spread to from the tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. The following tests may be done on the sample of tissue that is removed: - Light microscopy: A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells. - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - FISH (fluorescence in situ hybridization): A laboratory test used to look at genes or chromosomes in cells and tissues. Pieces of DNA that contain a fluorescent dye are made in the laboratory and added to cells or tissues on a glass slide. When these pieces of DNA attach to certain genes or areas of chromosomes on the slide, they light up when viewed under a microscope with a special light. This type of test is used to find certain gene changes. - Reverse transcriptionpolymerase chain reaction (RTPCR) test: A laboratory test in which cells in a sample of tissue are studied using chemicals to look for certain changes in the structure or function of genes. - Cytogenetic analysis : A laboratory test in which cells in a sample of tissue are viewed under a microscope to look for certain changes in the chromosomes.<|eot_id|>
What is the outlook for Childhood Rhabdomyosarcoma ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The patient's age. - Where in the body the tumor started. - The size of the tumor at the time of diagnosis. - Whether the tumor has been completely removed by surgery. - The type of rhabdomyosarcoma (embryonal, alveolar, or anaplastic). - Whether there are certain changes in the genes. - Whether the tumor had spread to other parts of the body at the time of diagnosis. - Whether the tumor was in the lymph nodes at the time of diagnosis. - Whether the tumor responds to chemotherapy and/or radiation therapy. For patients with recurrent cancer, prognosis and treatment also depend on the following: - Where in the body the tumor recurred (came back). - How much time passed between the end of cancer treatment and when the cancer recurred. - Whether the tumor was treated with radiation therapy.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Childhood Rhabdomyosarcoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The patient's age. - Where in the body the tumor started. - The size of the tumor at the time of diagnosis. - Whether the tumor has been completely removed by surgery. - The type of rhabdomyosarcoma (embryonal, alveolar, or anaplastic). - Whether there are certain changes in the genes. - Whether the tumor had spread to other parts of the body at the time of diagnosis. - Whether the tumor was in the lymph nodes at the time of diagnosis. - Whether the tumor responds to chemotherapy and/or radiation therapy. For patients with recurrent cancer, prognosis and treatment also depend on the following: - Where in the body the tumor recurred (came back). - How much time passed between the end of cancer treatment and when the cancer recurred. - Whether the tumor was treated with radiation therapy.<|eot_id|>
What are the stages of Childhood Rhabdomyosarcoma ?
Key Points - After childhood rhabdomyosarcoma has been diagnosed, treatment is based in part on the stage of the cancer and sometimes it is based on whether all the cancer was removed by surgery. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - Staging of childhood rhabdomyosarcoma is done in three parts. - The staging system is based on the size of the tumor, where it is in the body, and whether it has spread to other parts of the body: - Stage 1 - Stage 2 - Stage 3 - Stage 4 - The grouping system is based on whether the cancer has spread and whether all the cancer was removed by surgery: - Group I - Group II - Group III - Group IV - The risk group is based on the staging system and the grouping system. - Low-risk childhood rhabdomyosarcoma - Intermediate-risk childhood rhabdomyosarcoma - High-risk childhood rhabdomyosarcoma After childhood rhabdomyosarcoma has been diagnosed, treatment is based in part on the stage of the cancer and sometimes it is based on whether all the cancer was removed by surgery. The process used to find out if cancer has spread within the tissue or to other parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer. Staging of childhood rhabdomyosarcoma is done in three parts. Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: - A staging system. - A grouping system. - A risk group. The staging system is based on the size of the tumor, where it is in the body, and whether it has spread to other parts of the body: Stage 1 In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: - Eye or area around the eye. - Head and neck (but not in the tissue next to the brain and spinal cord). - Gallbladder and bile ducts. - Ureters or urethra. - Testes, ovary, vagina, or uterus. Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. Stage 2 In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes. Stage 3 In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true: - The tumor is no larger than 5 centimeters and cancer has spread to nearby lymph nodes. - The tumor is larger than 5 centimeters and cancer may have spread to nearby lymph nodes. Stage 4 In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone. The grouping system is based on whether the cancer has spread and whether all the cancer was removed by surgery: Group I Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. The tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II Group II is divided into groups IIA, IIB, and IIC. - IIA: Cancer was removed by surgery but cancer cells were seen when the tissue, taken from the edges of where the tumor was removed, was viewed under a microscope by a pathologist. - IIB: Cancer had spread to nearby lymph nodes and the cancer and lymph nodes were removed by surgery. - IIC: Cancer had spread to nearby lymph nodes, the cancer and lymph nodes were removed by surgery, and at least one of the following is true: - Tissue taken from the edges of where the tumor was removed was checked under a microscope by a pathologist and cancer cells were seen. - The furthest lymph node from the tumor that was removed was checked under a microscope by a pathologist and cancer cells were seen. Group III Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Group IV Cancer had spread to distant parts of the body when the cancer was diagnosed. - Cancer cells are found by an imaging test; or - There are cancer cells in the fluid around the brain, spinal cord, or lungs, or in fluid in the abdomen; or tumors are found in those areas. The risk group is based on the staging system and the grouping system. The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma Low-risk childhood rhabdomyosarcoma is one of the following: - An embryonal tumor of any size that is found in a "favorable" site. There may be tumor remaining after surgery that can be seen with or without a microscope. The cancer may have spread to nearby lymph nodes. The following areas are "favorable" sites: - Eye or area around the eye. - Head or neck (but not in the tissue near the ear, nose, sinuses, or base of the skull). - Gallbladder and bile ducts. - Ureter or urethra. - Testes, ovary, vagina, or uterus. - An embryonal tumor of any size that is not found in a "favorable" site. There may be tumor remaining after surgery that can be seen only with a microscope. The cancer may have spread to nearby lymph nodes. Intermediate-risk childhood rhabdomyosarcoma Intermediate-risk childhood rhabdomyosarcoma is one of the following: - An embryonal tumor of any size that is not found in one of the "favorable" sites listed above. There is tumor remaining after surgery, that can be seen with or without a microscope. The cancer may have spread to nearby lymph nodes. - An alveolar tumor of any size in a "favorable" or "unfavorable" site. There may be tumor remaining after surgery that can be seen with or without a microscope. The cancer may have spread to nearby lymph nodes. High-risk childhood rhabdomyosarcoma High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: - Other parts of the body that are not near where the tumor first formed. - Fluid around the brain or spinal cord. - Fluid in the lung or abdomen.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Childhood Rhabdomyosarcoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After childhood rhabdomyosarcoma has been diagnosed, treatment is based in part on the stage of the cancer and sometimes it is based on whether all the cancer was removed by surgery. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - Staging of childhood rhabdomyosarcoma is done in three parts. - The staging system is based on the size of the tumor, where it is in the body, and whether it has spread to other parts of the body: - Stage 1 - Stage 2 - Stage 3 - Stage 4 - The grouping system is based on whether the cancer has spread and whether all the cancer was removed by surgery: - Group I - Group II - Group III - Group IV - The risk group is based on the staging system and the grouping system. - Low-risk childhood rhabdomyosarcoma - Intermediate-risk childhood rhabdomyosarcoma - High-risk childhood rhabdomyosarcoma After childhood rhabdomyosarcoma has been diagnosed, treatment is based in part on the stage of the cancer and sometimes it is based on whether all the cancer was removed by surgery. The process used to find out if cancer has spread within the tissue or to other parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer. Staging of childhood rhabdomyosarcoma is done in three parts. Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: - A staging system. - A grouping system. - A risk group. The staging system is based on the size of the tumor, where it is in the body, and whether it has spread to other parts of the body: Stage 1 In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: - Eye or area around the eye. - Head and neck (but not in the tissue next to the brain and spinal cord). - Gallbladder and bile ducts. - Ureters or urethra. - Testes, ovary, vagina, or uterus. Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. Stage 2 In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes. Stage 3 In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true: - The tumor is no larger than 5 centimeters and cancer has spread to nearby lymph nodes. - The tumor is larger than 5 centimeters and cancer may have spread to nearby lymph nodes. Stage 4 In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone. The grouping system is based on whether the cancer has spread and whether all the cancer was removed by surgery: Group I Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. The tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II Group II is divided into groups IIA, IIB, and IIC. - IIA: Cancer was removed by surgery but cancer cells were seen when the tissue, taken from the edges of where the tumor was removed, was viewed under a microscope by a pathologist. - IIB: Cancer had spread to nearby lymph nodes and the cancer and lymph nodes were removed by surgery. - IIC: Cancer had spread to nearby lymph nodes, the cancer and lymph nodes were removed by surgery, and at least one of the following is true: - Tissue taken from the edges of where the tumor was removed was checked under a microscope by a pathologist and cancer cells were seen. - The furthest lymph node from the tumor that was removed was checked under a microscope by a pathologist and cancer cells were seen. Group III Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Group IV Cancer had spread to distant parts of the body when the cancer was diagnosed. - Cancer cells are found by an imaging test; or - There are cancer cells in the fluid around the brain, spinal cord, or lungs, or in fluid in the abdomen; or tumors are found in those areas. The risk group is based on the staging system and the grouping system. The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma Low-risk childhood rhabdomyosarcoma is one of the following: - An embryonal tumor of any size that is found in a "favorable" site. There may be tumor remaining after surgery that can be seen with or without a microscope. The cancer may have spread to nearby lymph nodes. The following areas are "favorable" sites: - Eye or area around the eye. - Head or neck (but not in the tissue near the ear, nose, sinuses, or base of the skull). - Gallbladder and bile ducts. - Ureter or urethra. - Testes, ovary, vagina, or uterus. - An embryonal tumor of any size that is not found in a "favorable" site. There may be tumor remaining after surgery that can be seen only with a microscope. The cancer may have spread to nearby lymph nodes. Intermediate-risk childhood rhabdomyosarcoma Intermediate-risk childhood rhabdomyosarcoma is one of the following: - An embryonal tumor of any size that is not found in one of the "favorable" sites listed above. There is tumor remaining after surgery, that can be seen with or without a microscope. The cancer may have spread to nearby lymph nodes. - An alveolar tumor of any size in a "favorable" or "unfavorable" site. There may be tumor remaining after surgery that can be seen with or without a microscope. The cancer may have spread to nearby lymph nodes. High-risk childhood rhabdomyosarcoma High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: - Other parts of the body that are not near where the tumor first formed. - Fluid around the brain or spinal cord. - Fluid in the lung or abdomen.<|eot_id|>
what research (or clinical trials) is being done for Childhood Rhabdomyosarcoma ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biologic therapy or biotherapy. There are different types of immunotherapy: - Immune checkpoint inhibitor therapy uses the body's immune system to kill cancer cells. Two types of immune checkpoint inhibitors are being studied in the treatment of childhood rhabdomyosarcoma that has come back after treatment: - CTLA-4 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When CTLA-4 attaches to another protein called B7 on a cancer cell, it stops the T cell from killing the cancer cell. CTLA-4 inhibitors attach to CTLA-4 and allow the T cells to kill cancer cells. Ipilimumab is a type of CTLA-4 inhibitor. - PD-1 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When PD-1 attaches to another protein called PDL-1 on a cancer cell, it stops the T cell from killing the cancer cell. PD-1 inhibitors attach to PDL-1 and allow the T cells to kill cancer cells. Nivolumab and pembrolizumab are PD-1 inhibitors. - Vaccine therapy is a type of immunotherapy being studied to treat metastatic rhabdomyosarcoma. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation do. There are different types of targeted therapy: - mTOR inhibitors stop the protein that helps cells divide and survive. Sirolimus is a type of mTOR inhibitor therapy being studied in the treatment of recurrent rhabdomyosarcoma. - Tyrosine kinase inhibitors are small-molecule drugs that go through the cell membrane and work inside cancer cells to block signals that cancer cells need to grow and divide. MK-1775 is a tyrosine kinase inhibitor being studied in the treatment of recurrent rhabdomyosarcoma. - Antibody-drug conjugates are made up of a monoclonal antibody attached to a drug. The monoclonal antibody binds to specific proteins or receptors found on certain cells, including cancer cells. The drug enters these cells and kills them without harming other cells. Lorvotuzumab mertansine is an antibody-drug conjugate being studied in the treatment of recurrent rhabdomyosarcoma. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Childhood Rhabdomyosarcoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biologic therapy or biotherapy. There are different types of immunotherapy: - Immune checkpoint inhibitor therapy uses the body's immune system to kill cancer cells. Two types of immune checkpoint inhibitors are being studied in the treatment of childhood rhabdomyosarcoma that has come back after treatment: - CTLA-4 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When CTLA-4 attaches to another protein called B7 on a cancer cell, it stops the T cell from killing the cancer cell. CTLA-4 inhibitors attach to CTLA-4 and allow the T cells to kill cancer cells. Ipilimumab is a type of CTLA-4 inhibitor. - PD-1 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When PD-1 attaches to another protein called PDL-1 on a cancer cell, it stops the T cell from killing the cancer cell. PD-1 inhibitors attach to PDL-1 and allow the T cells to kill cancer cells. Nivolumab and pembrolizumab are PD-1 inhibitors. - Vaccine therapy is a type of immunotherapy being studied to treat metastatic rhabdomyosarcoma. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation do. There are different types of targeted therapy: - mTOR inhibitors stop the protein that helps cells divide and survive. Sirolimus is a type of mTOR inhibitor therapy being studied in the treatment of recurrent rhabdomyosarcoma. - Tyrosine kinase inhibitors are small-molecule drugs that go through the cell membrane and work inside cancer cells to block signals that cancer cells need to grow and divide. MK-1775 is a tyrosine kinase inhibitor being studied in the treatment of recurrent rhabdomyosarcoma. - Antibody-drug conjugates are made up of a monoclonal antibody attached to a drug. The monoclonal antibody binds to specific proteins or receptors found on certain cells, including cancer cells. The drug enters these cells and kills them without harming other cells. Lorvotuzumab mertansine is an antibody-drug conjugate being studied in the treatment of recurrent rhabdomyosarcoma. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What are the treatments for Childhood Rhabdomyosarcoma ?
Key Points - There are different types of treatment for patients with childhood rhabdomyosarcoma. - Children with rhabdomyosarcoma should have their treatment planned by a team of health care providers who are experts in treating cancer in children. - Treatment for childhood rhabdomyosarcoma may cause side effects. - Three types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - New types of treatment are being tested in clinical trials. - High-dose chemotherapy with stem cell transplant - Immunotherapy - Targeted therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with childhood rhabdomyosarcoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children with rhabdomyosarcoma should have their treatment planned by a team of health care providers who are experts in treating cancer in children. Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Pediatric surgeon. - Radiation oncologist. - Pediatric hematologist. - Pediatric radiologist. - Pediatric nurse specialist. - Geneticist or cancer genetics risk counselor. - Social worker. - Rehabilitation specialist. Treatment for childhood rhabdomyosarcoma may cause side effects. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.) Three types of standard treatment are used: Surgery Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: - Where in the body the tumor started. - The effect the surgery will have on the way the child will look. - The effect the surgery will have on the child's important body functions. - How the tumor responded to chemotherapy or radiation therapy that may have been given first. In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. Even if the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of external radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. This allows a high dose of radiation to reach the tumor and causes less damage to nearby healthy tissue. - Intensity-modulated radiation therapy (IMRT): IMRT is a type of 3-dimensional (3-D) radiation therapy that uses a computer to make pictures of the size and shape of the tumor. Thin beams of radiation of different intensities (strengths) are aimed at the tumor from many angles. - Volumetrical modulated arc therapy (VMAT): VMAT is type of 3-D radiation therapy that uses a computer to make pictures of the size and shape of the tumor. The radiation machine moves in a circle around the patient once during treatment and sends thin beams of radiation of different intensities (strengths) at the tumor. Treatment with VMAT is delivered faster than treatment with IMRT. - Stereotactic body radiation therapy: Stereotactic body radiation therapy is a type of external radiation therapy. Special equipment is used to place the patient in the same position for each radiation treatment. Once a day for several days, a radiation machine aims a larger than usual dose of radiation directly at the tumor. By having the patient in the same position for each treatment, there is less damage to nearby healthy tissue. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Proton beam radiation therapy: Proton-beam therapy is a type of high-energy, external radiation therapy. A radiation therapy machine aims streams of protons (tiny, invisible, positively-charged particles) at the cancer cells to kill them. This type of treatment causes less damage to nearby healthy tissue. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. It is used to treat cancer in areas such as the vagina, vulva, uterus, bladder, prostate, head, or neck. Internal radiation therapy is also called brachytherapy, internal radiation, implant radiation, or interstitial radiation therapy. The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Childhood Rhabdomyosarcoma Previously Untreated Childhood Rhabdomyosarcoma The treatment of childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck - For tumors of the brain: Treatment may include surgery to remove the tumor, radiation therapy, and chemotherapy. - For tumors of the head and neck that are in or near the eye: Treatment may include chemotherapy and radiation therapy. If the tumor remains or comes back after treatment with chemotherapy and radiation therapy, surgery to remove the eye and some tissues around the eye may be needed. - For tumors of the head and neck that are near the ear, nose, sinuses, or base of the skull but not in or near the eye: Treatment may include radiation therapy and chemotherapy. - For tumors of the head and neck that are not in or near the eye and not near the ear, nose, sinuses, or base of the skull: Treatment may include chemotherapy, radiation therapy, and surgery to remove the tumor. - For tumors of the head and neck that cannot be removed by surgery: Treatment may include chemotherapy and radiation therapy including stereotactic body radiation therapy. - For tumors of the larynx (voice box): Treatment may include chemotherapy and radiation therapy. Surgery to remove the larynx is usually not done, so that the voice is not harmed. Rhabdomyosarcoma of the arms or legs - Chemotherapy followed by surgery to remove the tumor. If the tumor was not completely removed, a second surgery to remove the tumor may be done. Radiation therapy may also be given. - For tumors of the hand or foot, radiation therapy and chemotherapy may be given. The tumor may not be removed because it would affect the function of the hand or foot. - Lymph node dissection (one or more lymph nodes are removed and a sample of tissue is checked under a microscope for signs of cancer). - For tumors in the arms, lymph nodes near the tumor and in the armpit area are removed. - For tumors in the legs, lymph nodes near the tumor and in the groin area are removed. Rhabdomyosarcoma of the chest, abdomen, or pelvis - For tumors in the chest or abdomen (including the chest wall or abdominal wall): Surgery (wide local excision) may be done. If the tumor is large, chemotherapy and radiation therapy are given to shrink the tumor before surgery. - For tumors of the pelvis: Surgery (wide local excision) may be done. If the tumor is large, chemotherapy is given to shrink the tumor before surgery. Radiation therapy may be given after surgery. - For tumors of the diaphragm: A biopsy of the tumor is followed by chemotherapy and radiation therapy to shrink the tumor. Surgery may be done later to remove any remaining cancer cells. - For tumors of the gallbladder or bile ducts: A biopsy of the tumor is followed by chemotherapy and radiation therapy. - For tumors of the muscles or tissues around the anus or between the vulva and the anus or the scrotum and the anus: Surgery is done to remove as much of the tumor as possible and some nearby lymph nodes, followed by chemotherapy and radiation therapy. Rhabdomyosarcoma of the kidney - For tumors of the kidney: Surgery to remove as much of the tumor as possible. Chemotherapy and radiation therapy may also be given. Rhabdomyosarcoma of the bladder and prostate - For tumors that are only at the top of the bladder: Surgery (wide local excision) is done. - For tumors of the prostate or bladder (other than the top of the bladder): - Chemotherapy and radiation therapy are given first to shrink the tumor. If cancer cells remain after chemotherapy and radiation therapy, the tumor is removed by surgery. Surgery may include removal of the prostate, part of the bladder, or pelvic exenteration without removal of the rectum. (This may include removal of the lower colon and bladder. In girls, the cervix, vagina, ovaries, and nearby lymph nodes may be removed). - Chemotherapy is given first to shrink the tumor. Surgery to remove the tumor, but not the bladder or prostate, is done. Internal or external radiation therapy may be given after surgery. Rhabdomyosarcoma of the area near the testicles - Surgery to remove the testicle and spermatic cord. The lymph nodes in the back of the abdomen may be checked for cancer, especially if the lymph nodes are large or the child is 10 years or older. - Radiation therapy may be given if the tumor cannot be completely removed by surgery. Rhabdomyosarcoma of the vulva, vagina, uterus, cervix, or ovary - For tumors of the vulva and vagina: Treatment may include chemotherapy followed by surgery to remove the tumor. Internal or external radiation therapy may be given after surgery. - For tumors of the uterus: Treatment may include chemotherapy with or without radiation therapy. Sometimes surgery may be needed to remove any remaining cancer cells. - For tumors of the cervix: Treatment may include chemotherapy followed by surgery to remove any remaining tumor. - For tumors of the ovary: Treatment may include chemotherapy followed by surgery to remove any remaining tumor. Metastatic rhabdomyosarcoma Treatment, such as chemotherapy, radiation therapy, or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: - A clinical trial of immunotherapy (vaccine therapy). Check the list of NCI-supported cancer clinical trials that are now accepting patients with previously untreated childhood rhabdomyosarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Childhood Rhabdomyosarcoma Treatment options for recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of recurrent rhabdomyosarcoma may include one or more of the following: - Surgery. - Radiation therapy. - Chemotherapy. - A clinical trial of high-dose chemotherapy followed by stem cell transplant using the patient's own stem cells. - A clinical trial of targeted therapy or immunotherapy (sirolimus, lorvotuzumab, ipilimumab, nivolumab, or pembrolizumab). - A clinical trial of targeted therapy with a tyrosine kinase inhibitor (MK-1775) and chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood rhabdomyosarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biologic therapy or biotherapy. There are different types of immunotherapy: - Immune checkpoint inhibitor therapy uses the body's immune system to kill cancer cells. Two types of immune checkpoint inhibitors are being studied in the treatment of childhood rhabdomyosarcoma that has come back after treatment: - CTLA-4 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When CTLA-4 attaches to another protein called B7 on a cancer cell, it stops the T cell from killing the cancer cell. CTLA-4 inhibitors attach to CTLA-4 and allow the T cells to kill cancer cells. Ipilimumab is a type of CTLA-4 inhibitor. - PD-1 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When PD-1 attaches to another protein called PDL-1 on a cancer cell, it stops the T cell from killing the cancer cell. PD-1 inhibitors attach to PDL-1 and allow the T cells to kill cancer cells. Nivolumab and pembrolizumab are PD-1 inhibitors. - Vaccine therapy is a type of immunotherapy being studied to treat metastatic rhabdomyosarcoma. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation do. There are different types of targeted therapy: - mTOR inhibitors stop the protein that helps cells divide and survive. Sirolimus is a type of mTOR inhibitor therapy being studied in the treatment of recurrent rhabdomyosarcoma. - Tyrosine kinase inhibitors are small-molecule drugs that go through the cell membrane and work inside cancer cells to block signals that cancer cells need to grow and divide. MK-1775 is a tyrosine kinase inhibitor being studied in the treatment of recurrent rhabdomyosarcoma. - Antibody-drug conjugates are made up of a monoclonal antibody attached to a drug. The monoclonal antibody binds to specific proteins or receptors found on certain cells, including cancer cells. The drug enters these cells and kills them without harming other cells. Lorvotuzumab mertansine is an antibody-drug conjugate being studied in the treatment of recurrent rhabdomyosarcoma. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Childhood Rhabdomyosarcoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with childhood rhabdomyosarcoma. - Children with rhabdomyosarcoma should have their treatment planned by a team of health care providers who are experts in treating cancer in children. - Treatment for childhood rhabdomyosarcoma may cause side effects. - Three types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - New types of treatment are being tested in clinical trials. - High-dose chemotherapy with stem cell transplant - Immunotherapy - Targeted therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with childhood rhabdomyosarcoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children with rhabdomyosarcoma should have their treatment planned by a team of health care providers who are experts in treating cancer in children. Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Pediatric surgeon. - Radiation oncologist. - Pediatric hematologist. - Pediatric radiologist. - Pediatric nurse specialist. - Geneticist or cancer genetics risk counselor. - Social worker. - Rehabilitation specialist. Treatment for childhood rhabdomyosarcoma may cause side effects. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.) Three types of standard treatment are used: Surgery Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: - Where in the body the tumor started. - The effect the surgery will have on the way the child will look. - The effect the surgery will have on the child's important body functions. - How the tumor responded to chemotherapy or radiation therapy that may have been given first. In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. Even if the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of external radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. This allows a high dose of radiation to reach the tumor and causes less damage to nearby healthy tissue. - Intensity-modulated radiation therapy (IMRT): IMRT is a type of 3-dimensional (3-D) radiation therapy that uses a computer to make pictures of the size and shape of the tumor. Thin beams of radiation of different intensities (strengths) are aimed at the tumor from many angles. - Volumetrical modulated arc therapy (VMAT): VMAT is type of 3-D radiation therapy that uses a computer to make pictures of the size and shape of the tumor. The radiation machine moves in a circle around the patient once during treatment and sends thin beams of radiation of different intensities (strengths) at the tumor. Treatment with VMAT is delivered faster than treatment with IMRT. - Stereotactic body radiation therapy: Stereotactic body radiation therapy is a type of external radiation therapy. Special equipment is used to place the patient in the same position for each radiation treatment. Once a day for several days, a radiation machine aims a larger than usual dose of radiation directly at the tumor. By having the patient in the same position for each treatment, there is less damage to nearby healthy tissue. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Proton beam radiation therapy: Proton-beam therapy is a type of high-energy, external radiation therapy. A radiation therapy machine aims streams of protons (tiny, invisible, positively-charged particles) at the cancer cells to kill them. This type of treatment causes less damage to nearby healthy tissue. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. It is used to treat cancer in areas such as the vagina, vulva, uterus, bladder, prostate, head, or neck. Internal radiation therapy is also called brachytherapy, internal radiation, implant radiation, or interstitial radiation therapy. The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Childhood Rhabdomyosarcoma Previously Untreated Childhood Rhabdomyosarcoma The treatment of childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck - For tumors of the brain: Treatment may include surgery to remove the tumor, radiation therapy, and chemotherapy. - For tumors of the head and neck that are in or near the eye: Treatment may include chemotherapy and radiation therapy. If the tumor remains or comes back after treatment with chemotherapy and radiation therapy, surgery to remove the eye and some tissues around the eye may be needed. - For tumors of the head and neck that are near the ear, nose, sinuses, or base of the skull but not in or near the eye: Treatment may include radiation therapy and chemotherapy. - For tumors of the head and neck that are not in or near the eye and not near the ear, nose, sinuses, or base of the skull: Treatment may include chemotherapy, radiation therapy, and surgery to remove the tumor. - For tumors of the head and neck that cannot be removed by surgery: Treatment may include chemotherapy and radiation therapy including stereotactic body radiation therapy. - For tumors of the larynx (voice box): Treatment may include chemotherapy and radiation therapy. Surgery to remove the larynx is usually not done, so that the voice is not harmed. Rhabdomyosarcoma of the arms or legs - Chemotherapy followed by surgery to remove the tumor. If the tumor was not completely removed, a second surgery to remove the tumor may be done. Radiation therapy may also be given. - For tumors of the hand or foot, radiation therapy and chemotherapy may be given. The tumor may not be removed because it would affect the function of the hand or foot. - Lymph node dissection (one or more lymph nodes are removed and a sample of tissue is checked under a microscope for signs of cancer). - For tumors in the arms, lymph nodes near the tumor and in the armpit area are removed. - For tumors in the legs, lymph nodes near the tumor and in the groin area are removed. Rhabdomyosarcoma of the chest, abdomen, or pelvis - For tumors in the chest or abdomen (including the chest wall or abdominal wall): Surgery (wide local excision) may be done. If the tumor is large, chemotherapy and radiation therapy are given to shrink the tumor before surgery. - For tumors of the pelvis: Surgery (wide local excision) may be done. If the tumor is large, chemotherapy is given to shrink the tumor before surgery. Radiation therapy may be given after surgery. - For tumors of the diaphragm: A biopsy of the tumor is followed by chemotherapy and radiation therapy to shrink the tumor. Surgery may be done later to remove any remaining cancer cells. - For tumors of the gallbladder or bile ducts: A biopsy of the tumor is followed by chemotherapy and radiation therapy. - For tumors of the muscles or tissues around the anus or between the vulva and the anus or the scrotum and the anus: Surgery is done to remove as much of the tumor as possible and some nearby lymph nodes, followed by chemotherapy and radiation therapy. Rhabdomyosarcoma of the kidney - For tumors of the kidney: Surgery to remove as much of the tumor as possible. Chemotherapy and radiation therapy may also be given. Rhabdomyosarcoma of the bladder and prostate - For tumors that are only at the top of the bladder: Surgery (wide local excision) is done. - For tumors of the prostate or bladder (other than the top of the bladder): - Chemotherapy and radiation therapy are given first to shrink the tumor. If cancer cells remain after chemotherapy and radiation therapy, the tumor is removed by surgery. Surgery may include removal of the prostate, part of the bladder, or pelvic exenteration without removal of the rectum. (This may include removal of the lower colon and bladder. In girls, the cervix, vagina, ovaries, and nearby lymph nodes may be removed). - Chemotherapy is given first to shrink the tumor. Surgery to remove the tumor, but not the bladder or prostate, is done. Internal or external radiation therapy may be given after surgery. Rhabdomyosarcoma of the area near the testicles - Surgery to remove the testicle and spermatic cord. The lymph nodes in the back of the abdomen may be checked for cancer, especially if the lymph nodes are large or the child is 10 years or older. - Radiation therapy may be given if the tumor cannot be completely removed by surgery. Rhabdomyosarcoma of the vulva, vagina, uterus, cervix, or ovary - For tumors of the vulva and vagina: Treatment may include chemotherapy followed by surgery to remove the tumor. Internal or external radiation therapy may be given after surgery. - For tumors of the uterus: Treatment may include chemotherapy with or without radiation therapy. Sometimes surgery may be needed to remove any remaining cancer cells. - For tumors of the cervix: Treatment may include chemotherapy followed by surgery to remove any remaining tumor. - For tumors of the ovary: Treatment may include chemotherapy followed by surgery to remove any remaining tumor. Metastatic rhabdomyosarcoma Treatment, such as chemotherapy, radiation therapy, or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: - A clinical trial of immunotherapy (vaccine therapy). Check the list of NCI-supported cancer clinical trials that are now accepting patients with previously untreated childhood rhabdomyosarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Childhood Rhabdomyosarcoma Treatment options for recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of recurrent rhabdomyosarcoma may include one or more of the following: - Surgery. - Radiation therapy. - Chemotherapy. - A clinical trial of high-dose chemotherapy followed by stem cell transplant using the patient's own stem cells. - A clinical trial of targeted therapy or immunotherapy (sirolimus, lorvotuzumab, ipilimumab, nivolumab, or pembrolizumab). - A clinical trial of targeted therapy with a tyrosine kinase inhibitor (MK-1775) and chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood rhabdomyosarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biologic therapy or biotherapy. There are different types of immunotherapy: - Immune checkpoint inhibitor therapy uses the body's immune system to kill cancer cells. Two types of immune checkpoint inhibitors are being studied in the treatment of childhood rhabdomyosarcoma that has come back after treatment: - CTLA-4 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When CTLA-4 attaches to another protein called B7 on a cancer cell, it stops the T cell from killing the cancer cell. CTLA-4 inhibitors attach to CTLA-4 and allow the T cells to kill cancer cells. Ipilimumab is a type of CTLA-4 inhibitor. - PD-1 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When PD-1 attaches to another protein called PDL-1 on a cancer cell, it stops the T cell from killing the cancer cell. PD-1 inhibitors attach to PDL-1 and allow the T cells to kill cancer cells. Nivolumab and pembrolizumab are PD-1 inhibitors. - Vaccine therapy is a type of immunotherapy being studied to treat metastatic rhabdomyosarcoma. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation do. There are different types of targeted therapy: - mTOR inhibitors stop the protein that helps cells divide and survive. Sirolimus is a type of mTOR inhibitor therapy being studied in the treatment of recurrent rhabdomyosarcoma. - Tyrosine kinase inhibitors are small-molecule drugs that go through the cell membrane and work inside cancer cells to block signals that cancer cells need to grow and divide. MK-1775 is a tyrosine kinase inhibitor being studied in the treatment of recurrent rhabdomyosarcoma. - Antibody-drug conjugates are made up of a monoclonal antibody attached to a drug. The monoclonal antibody binds to specific proteins or receptors found on certain cells, including cancer cells. The drug enters these cells and kills them without harming other cells. Lorvotuzumab mertansine is an antibody-drug conjugate being studied in the treatment of recurrent rhabdomyosarcoma. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Pituitary Tumors ?
Key Points - A pituitary tumor is a growth of abnormal cells in the tissues of the pituitary gland. - The pituitary gland hormones control many other glands in the body. - Having certain genetic conditions increases the risk of developing a pituitary tumor. - Signs of a pituitary tumor include problems with vision and certain physical changes. - Imaging studies and tests that examine the blood and urine are used to detect (find) and diagnose a pituitary tumor. - Certain factors affect prognosis (chance of recovery) and treatment options. A pituitary tumor is a growth of abnormal cells in the tissues of the pituitary gland. Pituitary tumors form in the pituitary gland, a pea-sized organ in the center of the brain, just above the back of the nose. The pituitary gland is sometimes called the "master endocrine gland" because it makes hormones that affect the way many parts of the body work. It also controls hormones made by many other glands in the body. Pituitary tumors are divided into three groups: - Benign pituitary adenomas: Tumors that are not cancer. These tumors grow very slowly and do not spread from the pituitary gland to other parts of the body. - Invasive pituitary adenomas: Benign tumors that may spread to bones of the skull or the sinus cavity below the pituitary gland. - Pituitary carcinomas: Tumors that are malignant (cancer). These pituitary tumors spread into other areas of the central nervous system (brain and spinal cord) or outside of the central nervous system. Very few pituitary tumors are malignant. Pituitary tumors may be either non-functioning or functioning. - Non-functioning pituitary tumors do not make extra amounts of hormones. - Functioning pituitary tumors make more than the normal amount of one or more hormones. Most pituitary tumors are functioning tumors. The extra hormones made by pituitary tumors may cause certain signs or symptoms of disease. The pituitary gland hormones control many other glands in the body. Hormones made by the pituitary gland include: - Prolactin: A hormone that causes a womans breasts to make milk during and after pregnancy. - Adrenocorticotropic hormone (ACTH): A hormone that causes the adrenal glands to make a hormone called cortisol. Cortisol helps control the use of sugar, protein, and fats in the body and helps the body deal with stress. - Growth hormone: A hormone that helps control body growth and the use of sugar and fat in the body. Growth hormone is also called somatotropin. - Thyroid-stimulating hormone: A hormone that causes the thyroid gland to make other hormones that control growth, body temperature, and heart rate. Thyroid-stimulating hormone is also called thyrotropin. - Luteinizing hormone (LH) and follicle-stimulating hormone (FSH): Hormones that control the menstrual cycle in women and the making of sperm in men.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Pituitary Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - A pituitary tumor is a growth of abnormal cells in the tissues of the pituitary gland. - The pituitary gland hormones control many other glands in the body. - Having certain genetic conditions increases the risk of developing a pituitary tumor. - Signs of a pituitary tumor include problems with vision and certain physical changes. - Imaging studies and tests that examine the blood and urine are used to detect (find) and diagnose a pituitary tumor. - Certain factors affect prognosis (chance of recovery) and treatment options. A pituitary tumor is a growth of abnormal cells in the tissues of the pituitary gland. Pituitary tumors form in the pituitary gland, a pea-sized organ in the center of the brain, just above the back of the nose. The pituitary gland is sometimes called the "master endocrine gland" because it makes hormones that affect the way many parts of the body work. It also controls hormones made by many other glands in the body. Pituitary tumors are divided into three groups: - Benign pituitary adenomas: Tumors that are not cancer. These tumors grow very slowly and do not spread from the pituitary gland to other parts of the body. - Invasive pituitary adenomas: Benign tumors that may spread to bones of the skull or the sinus cavity below the pituitary gland. - Pituitary carcinomas: Tumors that are malignant (cancer). These pituitary tumors spread into other areas of the central nervous system (brain and spinal cord) or outside of the central nervous system. Very few pituitary tumors are malignant. Pituitary tumors may be either non-functioning or functioning. - Non-functioning pituitary tumors do not make extra amounts of hormones. - Functioning pituitary tumors make more than the normal amount of one or more hormones. Most pituitary tumors are functioning tumors. The extra hormones made by pituitary tumors may cause certain signs or symptoms of disease. The pituitary gland hormones control many other glands in the body. Hormones made by the pituitary gland include: - Prolactin: A hormone that causes a womans breasts to make milk during and after pregnancy. - Adrenocorticotropic hormone (ACTH): A hormone that causes the adrenal glands to make a hormone called cortisol. Cortisol helps control the use of sugar, protein, and fats in the body and helps the body deal with stress. - Growth hormone: A hormone that helps control body growth and the use of sugar and fat in the body. Growth hormone is also called somatotropin. - Thyroid-stimulating hormone: A hormone that causes the thyroid gland to make other hormones that control growth, body temperature, and heart rate. Thyroid-stimulating hormone is also called thyrotropin. - Luteinizing hormone (LH) and follicle-stimulating hormone (FSH): Hormones that control the menstrual cycle in women and the making of sperm in men.<|eot_id|>
Who is at risk for Pituitary Tumors? ?
Having certain genetic conditions increases the risk of developing a pituitary tumor.Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for pituitary tumors include having the following hereditary diseases: - Multiple endocrine neoplasia type 1 (MEN1) syndrome. - Carney complex. - Isolated familial acromegaly.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Pituitary Tumors? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Having certain genetic conditions increases the risk of developing a pituitary tumor.Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for pituitary tumors include having the following hereditary diseases: - Multiple endocrine neoplasia type 1 (MEN1) syndrome. - Carney complex. - Isolated familial acromegaly.<|eot_id|>
What are the symptoms of Pituitary Tumors ?
Signs of a pituitary tumor include problems with vision and certain physical changes. Signs and symptoms can be caused by the growth of the tumor and/or by hormones the tumor makes or by other conditions. Some tumors may not cause signs or symptoms. Check with your doctor if you have any of these problems. Signs and symptoms of a non-functioning pituitary tumor Sometimes, a pituitary tumor may press on or damage parts of the pituitary gland, causing it to stop making one or more hormones. Too little of a certain hormone will affect the work of the gland or organ that the hormone controls. The following signs and symptoms may occur: - Headache. - Some loss of vision. - Loss of body hair. - In women, less frequent or no menstrual periods or no milk from the breasts. - In men, loss of facial hair, growth of breast tissue, and impotence. - In women and men, lower sex drive. - In children, slowed growth and sexual development. Most of the tumors that make LH and FSH do not make enough extra hormone to cause signs and symptoms. These tumors are considered to be non-functioning tumors. Signs and symptoms of a functioning pituitary tumor When a functioning pituitary tumor makes extra hormones, the signs and symptoms will depend on the type of hormone being made. Too much prolactin may cause: - Headache. - Some loss of vision. - Less frequent or no menstrual periods or menstrual periods with a very light flow. - Trouble becoming pregnant or an inability to become pregnant. - Impotence in men. - Lower sex drive. - Flow of breast milk in a woman who is not pregnant or breast-feeding. Too much ACTH may cause: - Headache. - Some loss of vision. - Weight gain in the face, neck, and trunk of the body, and thin arms and legs. - A lump of fat on the back of the neck. - Thin skin that may have purple or pink stretch marks on the chest or abdomen. - Easy bruising. - Growth of fine hair on the face, upper back, or arms. - Bones that break easily. - Anxiety, irritability, and depression. Too much growth hormone may cause: - Headache. - Some loss of vision. - In adults, acromegaly (growth of the bones in the face, hands, and feet). In children, the whole body may grow much taller and larger than normal. - Tingling or numbness in the hands and fingers. - Snoring or pauses in breathing during sleep. - Joint pain. - Sweating more than usual. - Dysmorphophobia (extreme dislike of or concern about one or more parts of the body). Too much thyroid-stimulating hormone may cause: - Irregular heartbeat. - Shakiness. - Weight loss. - Trouble sleeping. - Frequent bowel movements. - Sweating. Other general signs and symptoms of pituitary tumors: - Nausea and vomiting. - Confusion. - Dizziness. - Seizures. - Runny or "drippy" nose (cerebrospinal fluid that surrounds the brain and spinal cord leaks into the nose).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Pituitary Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs of a pituitary tumor include problems with vision and certain physical changes. Signs and symptoms can be caused by the growth of the tumor and/or by hormones the tumor makes or by other conditions. Some tumors may not cause signs or symptoms. Check with your doctor if you have any of these problems. Signs and symptoms of a non-functioning pituitary tumor Sometimes, a pituitary tumor may press on or damage parts of the pituitary gland, causing it to stop making one or more hormones. Too little of a certain hormone will affect the work of the gland or organ that the hormone controls. The following signs and symptoms may occur: - Headache. - Some loss of vision. - Loss of body hair. - In women, less frequent or no menstrual periods or no milk from the breasts. - In men, loss of facial hair, growth of breast tissue, and impotence. - In women and men, lower sex drive. - In children, slowed growth and sexual development. Most of the tumors that make LH and FSH do not make enough extra hormone to cause signs and symptoms. These tumors are considered to be non-functioning tumors. Signs and symptoms of a functioning pituitary tumor When a functioning pituitary tumor makes extra hormones, the signs and symptoms will depend on the type of hormone being made. Too much prolactin may cause: - Headache. - Some loss of vision. - Less frequent or no menstrual periods or menstrual periods with a very light flow. - Trouble becoming pregnant or an inability to become pregnant. - Impotence in men. - Lower sex drive. - Flow of breast milk in a woman who is not pregnant or breast-feeding. Too much ACTH may cause: - Headache. - Some loss of vision. - Weight gain in the face, neck, and trunk of the body, and thin arms and legs. - A lump of fat on the back of the neck. - Thin skin that may have purple or pink stretch marks on the chest or abdomen. - Easy bruising. - Growth of fine hair on the face, upper back, or arms. - Bones that break easily. - Anxiety, irritability, and depression. Too much growth hormone may cause: - Headache. - Some loss of vision. - In adults, acromegaly (growth of the bones in the face, hands, and feet). In children, the whole body may grow much taller and larger than normal. - Tingling or numbness in the hands and fingers. - Snoring or pauses in breathing during sleep. - Joint pain. - Sweating more than usual. - Dysmorphophobia (extreme dislike of or concern about one or more parts of the body). Too much thyroid-stimulating hormone may cause: - Irregular heartbeat. - Shakiness. - Weight loss. - Trouble sleeping. - Frequent bowel movements. - Sweating. Other general signs and symptoms of pituitary tumors: - Nausea and vomiting. - Confusion. - Dizziness. - Seizures. - Runny or "drippy" nose (cerebrospinal fluid that surrounds the brain and spinal cord leaks into the nose).<|eot_id|>
How to diagnose Pituitary Tumors ?
Imaging studies and tests that examine the blood and urine are used to detect (find) and diagnose a pituitary tumor. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Eye exam: An exam to check vision and the general health of the eyes. - Visual field exam: An exam to check a persons field of vision (the total area in which objects can be seen). This test measures both central vision (how much a person can see when looking straight ahead) and peripheral vision (how much a person can see in all other directions while staring straight ahead). The eyes are tested one at a time. The eye not being tested is covered. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Blood chemistry study : A procedure in which a blood sample is checked to measure the amounts of certain substances, such as glucose (sugar), released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Blood tests: Tests to measure the levels of testosterone or estrogen in the blood. A higher or lower than normal amount of these hormones may be a sign of pituitary tumor. - Twenty-four-hour urine test: A test in which urine is collected for 24 hours to measure the amounts of certain substances. An unusual (higher or lower than normal) amount of a substance can be a sign of disease in the organ or tissue that makes it. A higher than normal amount of the hormone cortisol may be a sign of a pituitary tumor and Cushing syndrome. - High-dose dexamethasone suppression test: A test in which one or more high doses of dexamethasone are given. The level of cortisol is checked from a sample of blood or from urine that is collected for three days. This test is done to check if the adrenal gland is making too much cortisol or if the pituitary gland is telling the adrenal glands to make too much cortisol. - Low-dose dexamethasone suppression test: A test in which one or more small doses of dexamethasone are given. The level of cortisol is checked from a sample of blood or from urine that is collected for three days. This test is done to check if the adrenal gland is making too much cortisol. - Venous sampling for pituitary tumors: A procedure in which a sample of blood is taken from veins coming from the pituitary gland. The sample is checked to measure the amount of ACTH released into the blood by the gland. Venous sampling may be done if blood tests show there is a tumor making ACTH, but the pituitary gland looks normal in the imaging tests. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The following tests may be done on the sample of tissue that is removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - Immunocytochemistry : A test that uses antibodies to check for certain antigens in a sample of cells. The antibody is usually linked to a radioactive substance or a dye that causes the cells to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - Light and electron microscopy : A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Pituitary Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Imaging studies and tests that examine the blood and urine are used to detect (find) and diagnose a pituitary tumor. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Eye exam: An exam to check vision and the general health of the eyes. - Visual field exam: An exam to check a persons field of vision (the total area in which objects can be seen). This test measures both central vision (how much a person can see when looking straight ahead) and peripheral vision (how much a person can see in all other directions while staring straight ahead). The eyes are tested one at a time. The eye not being tested is covered. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Blood chemistry study : A procedure in which a blood sample is checked to measure the amounts of certain substances, such as glucose (sugar), released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Blood tests: Tests to measure the levels of testosterone or estrogen in the blood. A higher or lower than normal amount of these hormones may be a sign of pituitary tumor. - Twenty-four-hour urine test: A test in which urine is collected for 24 hours to measure the amounts of certain substances. An unusual (higher or lower than normal) amount of a substance can be a sign of disease in the organ or tissue that makes it. A higher than normal amount of the hormone cortisol may be a sign of a pituitary tumor and Cushing syndrome. - High-dose dexamethasone suppression test: A test in which one or more high doses of dexamethasone are given. The level of cortisol is checked from a sample of blood or from urine that is collected for three days. This test is done to check if the adrenal gland is making too much cortisol or if the pituitary gland is telling the adrenal glands to make too much cortisol. - Low-dose dexamethasone suppression test: A test in which one or more small doses of dexamethasone are given. The level of cortisol is checked from a sample of blood or from urine that is collected for three days. This test is done to check if the adrenal gland is making too much cortisol. - Venous sampling for pituitary tumors: A procedure in which a sample of blood is taken from veins coming from the pituitary gland. The sample is checked to measure the amount of ACTH released into the blood by the gland. Venous sampling may be done if blood tests show there is a tumor making ACTH, but the pituitary gland looks normal in the imaging tests. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The following tests may be done on the sample of tissue that is removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - Immunocytochemistry : A test that uses antibodies to check for certain antigens in a sample of cells. The antibody is usually linked to a radioactive substance or a dye that causes the cells to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - Light and electron microscopy : A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells.<|eot_id|>
What is the outlook for Pituitary Tumors ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) depends on the type of tumor and whether the tumor has spread into other areas of the central nervous system (brain and spinal cord) or outside of the central nervous system to other parts of the body. Treatment options depend on the following: - The type and size of the tumor. - Whether the tumor is making hormones. - Whether the tumor is causing problems with vision or other signs or symptoms. - Whether the tumor has spread into the brain around the pituitary gland or to other parts of the body. - Whether the tumor has just been diagnosed or has recurred (come back).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Pituitary Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) depends on the type of tumor and whether the tumor has spread into other areas of the central nervous system (brain and spinal cord) or outside of the central nervous system to other parts of the body. Treatment options depend on the following: - The type and size of the tumor. - Whether the tumor is making hormones. - Whether the tumor is causing problems with vision or other signs or symptoms. - Whether the tumor has spread into the brain around the pituitary gland or to other parts of the body. - Whether the tumor has just been diagnosed or has recurred (come back).<|eot_id|>
What are the stages of Pituitary Tumors ?
Key Points - Once a pituitary tumor has been diagnosed, tests are done to find out if it has spread within the central nervous system (brain and spinal cord) or to other parts of the body. - Pituitary tumors are described in several ways. Once a pituitary tumor has been diagnosed, tests are done to find out if it has spread within the central nervous system (brain and spinal cord) or to other parts of the body. The extent or spread of cancer is usually described as stages. There is no standard staging system for pituitary tumors. Once a pituitary tumor is found, tests are done to find out if the tumor has spread into the brain or to other parts of the body. The following test may be used: - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). Pituitary tumors are described in several ways. Pituitary tumors are described by their size and grade, whether or not they make extra hormones, and whether the tumor has spread to other parts of the body. The following sizes are used: - Microadenoma: The tumor is smaller than 1 centimeter. - Macroadenoma: The tumor is 1 centimeter or larger. Most pituitary adenomas are microadenomas. The grade of a pituitary tumor is based on how far it has grown into the surrounding area of the brain, including the sella (the bone at the base of the skull, where the pituitary gland sits).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Pituitary Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Once a pituitary tumor has been diagnosed, tests are done to find out if it has spread within the central nervous system (brain and spinal cord) or to other parts of the body. - Pituitary tumors are described in several ways. Once a pituitary tumor has been diagnosed, tests are done to find out if it has spread within the central nervous system (brain and spinal cord) or to other parts of the body. The extent or spread of cancer is usually described as stages. There is no standard staging system for pituitary tumors. Once a pituitary tumor is found, tests are done to find out if the tumor has spread into the brain or to other parts of the body. The following test may be used: - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). Pituitary tumors are described in several ways. Pituitary tumors are described by their size and grade, whether or not they make extra hormones, and whether the tumor has spread to other parts of the body. The following sizes are used: - Microadenoma: The tumor is smaller than 1 centimeter. - Macroadenoma: The tumor is 1 centimeter or larger. Most pituitary adenomas are microadenomas. The grade of a pituitary tumor is based on how far it has grown into the surrounding area of the brain, including the sella (the bone at the base of the skull, where the pituitary gland sits).<|eot_id|>
What are the treatments for Pituitary Tumors ?
Key Points - There are different types of treatment for patients with pituitary tumors. - Four types of standard treatment are used: - Surgery - Radiation therapy - Drug therapy - Chemotherapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with pituitary tumors. Different types of treatments are available for patients with pituitary tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Four types of standard treatment are used: Surgery Many pituitary tumors can be removed by surgery using one of the following operations: - Transsphenoidal surgery: A type of surgery in which the instruments are inserted into part of the brain by going through an incision (cut) made under the upper lip or at the bottom of the nose between the nostrils and then through the sphenoid bone (a butterfly-shaped bone at the base of the skull) to reach the pituitary gland. The pituitary gland lies just above the sphenoid bone. - Endoscopic transsphenoidal surgery: A type of surgery in which an endoscope is inserted through an incision (cut) made at the back of the inside of the nose and then through the sphenoid bone to reach the pituitary gland. An endoscope is a thin, tube-like instrument with a light, a lens for viewing, and a tool for removing tumor tissue. - Craniotomy: Surgery to remove the tumor through an opening made in the skull. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. This type of radiation therapy may include the following: - Stereotactic radiosurgery: A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims a single large dose of radiation directly at the tumor. This procedure does not involve surgery. It is also called stereotaxic radiosurgery, radiosurgery, and radiation surgery. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of the cancer being treated. External radiation therapy is used to treat pituitary tumors. Drug therapy Drugs may be given to stop a functioning pituitary tumor from making too many hormones. Chemotherapy Chemotherapy may be used as palliative treatment for pituitary carcinomas, to relieve symptoms and improve the patient's quality of life. Chemotherapy uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type of the cancer being treated. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Pituitary Tumors Non-functioning Pituitary Tumors Treatment may include the following: - Surgery (transsphenoidal surgery, if possible) to remove the tumor, followed by watchful waiting (closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change). Radiation therapy is given if the tumor comes back. - Radiation therapy alone. Treatment for luteinizing hormone -producing and follicle-stimulating hormone -producing tumors is usually transsphenoidal surgery to remove the tumor. Prolactin-Producing Pituitary Tumors Treatment may include the following: - Drug therapy to stop the tumor from making prolactin and to stop the tumor from growing. - Surgery to remove the tumor (transsphenoidal surgery or craniotomy) when the tumor does not respond to drug therapy or when the patient cannot take the drug. - Radiation therapy. - Surgery followed by radiation therapy. ACTH-Producing Pituitary Tumors Treatment may include the following: - Surgery (usually transsphenoidal surgery) to remove the tumor, with or without radiation therapy. - Radiation therapy alone. - Drug therapy to stop the tumor from making ACTH. - A clinical trial of stereotactic radiation surgery. Growth HormoneProducing Pituitary Tumors Treatment may include the following: - Surgery (usually transsphenoidal or endoscopic transsphenoidal surgery) to remove the tumor, with or without radiation therapy. - Drug therapy to stop the tumor from making growth hormone. Thyroid-Stimulating HormoneProducing Tumors Treatment may include the following: - Surgery (usually transsphenoidal surgery) to remove the tumor, with or without radiation therapy. - Drug therapy to stop the tumor from making hormones. Pituitary Carcinomas Treatment of pituitary carcinomas is palliative, to relieve symptoms and improve the quality of life. Treatment may include the following: - Surgery (transsphenoidal surgery or craniotomy) to remove the cancer, with or without radiation therapy. - Drug therapy to stop the tumor from making hormones. - Chemotherapy. Recurrent Pituitary Tumors Treatment may include the following: - Radiation therapy. - A clinical trial of stereotactic radiation surgery.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Pituitary Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with pituitary tumors. - Four types of standard treatment are used: - Surgery - Radiation therapy - Drug therapy - Chemotherapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with pituitary tumors. Different types of treatments are available for patients with pituitary tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Four types of standard treatment are used: Surgery Many pituitary tumors can be removed by surgery using one of the following operations: - Transsphenoidal surgery: A type of surgery in which the instruments are inserted into part of the brain by going through an incision (cut) made under the upper lip or at the bottom of the nose between the nostrils and then through the sphenoid bone (a butterfly-shaped bone at the base of the skull) to reach the pituitary gland. The pituitary gland lies just above the sphenoid bone. - Endoscopic transsphenoidal surgery: A type of surgery in which an endoscope is inserted through an incision (cut) made at the back of the inside of the nose and then through the sphenoid bone to reach the pituitary gland. An endoscope is a thin, tube-like instrument with a light, a lens for viewing, and a tool for removing tumor tissue. - Craniotomy: Surgery to remove the tumor through an opening made in the skull. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. This type of radiation therapy may include the following: - Stereotactic radiosurgery: A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims a single large dose of radiation directly at the tumor. This procedure does not involve surgery. It is also called stereotaxic radiosurgery, radiosurgery, and radiation surgery. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of the cancer being treated. External radiation therapy is used to treat pituitary tumors. Drug therapy Drugs may be given to stop a functioning pituitary tumor from making too many hormones. Chemotherapy Chemotherapy may be used as palliative treatment for pituitary carcinomas, to relieve symptoms and improve the patient's quality of life. Chemotherapy uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type of the cancer being treated. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Pituitary Tumors Non-functioning Pituitary Tumors Treatment may include the following: - Surgery (transsphenoidal surgery, if possible) to remove the tumor, followed by watchful waiting (closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change). Radiation therapy is given if the tumor comes back. - Radiation therapy alone. Treatment for luteinizing hormone -producing and follicle-stimulating hormone -producing tumors is usually transsphenoidal surgery to remove the tumor. Prolactin-Producing Pituitary Tumors Treatment may include the following: - Drug therapy to stop the tumor from making prolactin and to stop the tumor from growing. - Surgery to remove the tumor (transsphenoidal surgery or craniotomy) when the tumor does not respond to drug therapy or when the patient cannot take the drug. - Radiation therapy. - Surgery followed by radiation therapy. ACTH-Producing Pituitary Tumors Treatment may include the following: - Surgery (usually transsphenoidal surgery) to remove the tumor, with or without radiation therapy. - Radiation therapy alone. - Drug therapy to stop the tumor from making ACTH. - A clinical trial of stereotactic radiation surgery. Growth HormoneProducing Pituitary Tumors Treatment may include the following: - Surgery (usually transsphenoidal or endoscopic transsphenoidal surgery) to remove the tumor, with or without radiation therapy. - Drug therapy to stop the tumor from making growth hormone. Thyroid-Stimulating HormoneProducing Tumors Treatment may include the following: - Surgery (usually transsphenoidal surgery) to remove the tumor, with or without radiation therapy. - Drug therapy to stop the tumor from making hormones. Pituitary Carcinomas Treatment of pituitary carcinomas is palliative, to relieve symptoms and improve the quality of life. Treatment may include the following: - Surgery (transsphenoidal surgery or craniotomy) to remove the cancer, with or without radiation therapy. - Drug therapy to stop the tumor from making hormones. - Chemotherapy. Recurrent Pituitary Tumors Treatment may include the following: - Radiation therapy. - A clinical trial of stereotactic radiation surgery.<|eot_id|>
what research (or clinical trials) is being done for Pituitary Tumors ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Pituitary Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Chronic Myelomonocytic Leukemia ?
Key Points - Chronic myelomonocytic leukemia is a disease in which too many myelocytes and monocytes (immature white blood cells) are made in the bone marrow. - Older age and being male increase the risk of chronic myelomonocytic leukemia. - Signs and symptoms of chronic myelomonocytic leukemia include fever, weight loss, and feeling very tired. - Certain factors affect prognosis (chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes and monocytes (immature white blood cells) are made in the bone marrow. In chronic myelomonocytic leukemia (CMML), the body tells too many blood stem cells to become two types of white blood cells called myelocytes and monocytes. Some of these blood stem cells never become mature white blood cells. These immature white blood cells are called blasts. Over time, the myelocytes, monocytes, and blasts crowd out the red blood cells and platelets in the bone marrow. When this happens, infection, anemia, or easy bleeding may occur.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Chronic Myelomonocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Chronic myelomonocytic leukemia is a disease in which too many myelocytes and monocytes (immature white blood cells) are made in the bone marrow. - Older age and being male increase the risk of chronic myelomonocytic leukemia. - Signs and symptoms of chronic myelomonocytic leukemia include fever, weight loss, and feeling very tired. - Certain factors affect prognosis (chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes and monocytes (immature white blood cells) are made in the bone marrow. In chronic myelomonocytic leukemia (CMML), the body tells too many blood stem cells to become two types of white blood cells called myelocytes and monocytes. Some of these blood stem cells never become mature white blood cells. These immature white blood cells are called blasts. Over time, the myelocytes, monocytes, and blasts crowd out the red blood cells and platelets in the bone marrow. When this happens, infection, anemia, or easy bleeding may occur.<|eot_id|>
Who is at risk for Chronic Myelomonocytic Leukemia? ?
Older age and being male increase the risk of chronic myelomonocytic leukemia. Anything that increases your chance of getting a disease is called a risk factor. Possible risk factors for CMML include the following: - Older age. - Being male. - Being exposed to certain substances at work or in the environment. - Being exposed to radiation. - Past treatment with certain anticancer drugs.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Chronic Myelomonocytic Leukemia? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Older age and being male increase the risk of chronic myelomonocytic leukemia. Anything that increases your chance of getting a disease is called a risk factor. Possible risk factors for CMML include the following: - Older age. - Being male. - Being exposed to certain substances at work or in the environment. - Being exposed to radiation. - Past treatment with certain anticancer drugs.<|eot_id|>
What are the symptoms of Chronic Myelomonocytic Leukemia ?
Signs and symptoms of chronic myelomonocytic leukemia include fever, weight loss, and feeling very tired. These and other signs and symptoms may be caused by CMML or by other conditions. Check with your doctor if you have any of the following: - Fever for no known reason. - Infection. - Feeling very tired. - Weight loss for no known reason. - Easy bruising or bleeding. - Pain or a feeling of fullness below the ribs.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Chronic Myelomonocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of chronic myelomonocytic leukemia include fever, weight loss, and feeling very tired. These and other signs and symptoms may be caused by CMML or by other conditions. Check with your doctor if you have any of the following: - Fever for no known reason. - Infection. - Feeling very tired. - Weight loss for no known reason. - Easy bruising or bleeding. - Pain or a feeling of fullness below the ribs.<|eot_id|>
What is the outlook for Chronic Myelomonocytic Leukemia ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options for CMML depend on the following: - The number of white blood cells or platelets in the blood or bone marrow. - Whether the patient is anemic. - The amount of blasts in the blood or bone marrow. - The amount of hemoglobin in red blood cells. - Whether there are certain changes in the chromosomes.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Chronic Myelomonocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options for CMML depend on the following: - The number of white blood cells or platelets in the blood or bone marrow. - Whether the patient is anemic. - The amount of blasts in the blood or bone marrow. - The amount of hemoglobin in red blood cells. - Whether there are certain changes in the chromosomes.<|eot_id|>
What are the treatments for Chronic Myelomonocytic Leukemia ?
Treatment of chronic myelomonocytic leukemia (CMML) may include the following: - Chemotherapy with one or more agents. - Stem cell transplant. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with chronic myelomonocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Chronic Myelomonocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Treatment of chronic myelomonocytic leukemia (CMML) may include the following: - Chemotherapy with one or more agents. - Stem cell transplant. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with chronic myelomonocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Nasopharyngeal Cancer ?
Key Points - Nasopharyngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the nasopharynx. - Ethnic background and being exposed to the Epstein-Barr virus can affect the risk of nasopharyngeal cancer. - Signs of nasopharyngeal cancer include trouble breathing, speaking, or hearing. - Tests that examine the nose and throat are used to detect (find) and diagnose nasopharyngeal cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Nasopharyngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the nasopharynx. The nasopharynx is the upper part of the pharynx (throat) behind the nose. The pharynx is a hollow tube about 5 inches long that starts behind the nose and ends at the top of the trachea (windpipe) and esophagus (the tube that goes from the throat to the stomach). Air and food pass through the pharynx on the way to the trachea or the esophagus. The nostrils lead into the nasopharynx. An opening on each side of the nasopharynx leads into an ear. Nasopharyngeal cancer most commonly starts in the squamous cells that line the nasopharynx. Nasopharyngeal cancer is a type of head and neck cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Nasopharyngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Nasopharyngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the nasopharynx. - Ethnic background and being exposed to the Epstein-Barr virus can affect the risk of nasopharyngeal cancer. - Signs of nasopharyngeal cancer include trouble breathing, speaking, or hearing. - Tests that examine the nose and throat are used to detect (find) and diagnose nasopharyngeal cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Nasopharyngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the nasopharynx. The nasopharynx is the upper part of the pharynx (throat) behind the nose. The pharynx is a hollow tube about 5 inches long that starts behind the nose and ends at the top of the trachea (windpipe) and esophagus (the tube that goes from the throat to the stomach). Air and food pass through the pharynx on the way to the trachea or the esophagus. The nostrils lead into the nasopharynx. An opening on each side of the nasopharynx leads into an ear. Nasopharyngeal cancer most commonly starts in the squamous cells that line the nasopharynx. Nasopharyngeal cancer is a type of head and neck cancer.<|eot_id|>
Who is at risk for Nasopharyngeal Cancer? ?
Ethnic background and being exposed to the Epstein-Barr virus can affect the risk of nasopharyngeal cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for nasopharyngeal cancer include the following: - Having Chinese or Asian ancestry. - Being exposed to the Epstein-Barr virus: The Epstein-Barr virus has been associated with certain cancers, including nasopharyngeal cancer and some lymphomas. - Drinking large amounts of alcohol.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Nasopharyngeal Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Ethnic background and being exposed to the Epstein-Barr virus can affect the risk of nasopharyngeal cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for nasopharyngeal cancer include the following: - Having Chinese or Asian ancestry. - Being exposed to the Epstein-Barr virus: The Epstein-Barr virus has been associated with certain cancers, including nasopharyngeal cancer and some lymphomas. - Drinking large amounts of alcohol.<|eot_id|>
What are the symptoms of Nasopharyngeal Cancer ?
Signs of nasopharyngeal cancer include trouble breathing, speaking, or hearing. These and other signs and symptoms may be caused by nasopharyngeal cancer or by other conditions. Check with your doctor if you have any of the following: - A lump in the nose or neck. - A sore throat. - Trouble breathing or speaking. - Nosebleeds. - Trouble hearing. - Pain or ringing in the ear. - Headaches.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Nasopharyngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs of nasopharyngeal cancer include trouble breathing, speaking, or hearing. These and other signs and symptoms may be caused by nasopharyngeal cancer or by other conditions. Check with your doctor if you have any of the following: - A lump in the nose or neck. - A sore throat. - Trouble breathing or speaking. - Nosebleeds. - Trouble hearing. - Pain or ringing in the ear. - Headaches.<|eot_id|>
How to diagnose Nasopharyngeal Cancer ?
Tests that examine the nose and throat are used to detect (find) and diagnose nasopharyngeal cancer. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as swollen lymph nodes in the neck or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The tissue sample is removed during one of the following procedures: - Nasoscopy : A procedure to look inside the nose for abnormal areas. A nasoscope is inserted through the nose. A nasoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples, which are checked under a microscope for signs of cancer. - Upper endoscopy : A procedure to look at the inside of the nose, throat, esophagus, stomach, and duodenum (first part of the small intestine, near the stomach). An endoscope is inserted through the mouth and into the esophagus, stomach, and duodenum. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples. The tissue samples are checked under a microscope for signs of cancer. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. PET scans may be used to find nasopharyngeal cancers that have spread to the bone. Sometimes a PET scan and a CT scan are done at the same time. If there is any cancer, this increases the chance that it will be found. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells, white blood cells, and platelets. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Epstein-Barr virus (EBV) test: A blood test to check for antibodies to the Epstein-Barr virus and DNA markers of the Epstein-Barr virus. These are found in the blood of patients who have been infected with EBV. - Hearing test: A procedure to check whether soft and loud sounds and low- and high-pitched sounds can be heard. Each ear is checked separately.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Nasopharyngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the nose and throat are used to detect (find) and diagnose nasopharyngeal cancer. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as swollen lymph nodes in the neck or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The tissue sample is removed during one of the following procedures: - Nasoscopy : A procedure to look inside the nose for abnormal areas. A nasoscope is inserted through the nose. A nasoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples, which are checked under a microscope for signs of cancer. - Upper endoscopy : A procedure to look at the inside of the nose, throat, esophagus, stomach, and duodenum (first part of the small intestine, near the stomach). An endoscope is inserted through the mouth and into the esophagus, stomach, and duodenum. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples. The tissue samples are checked under a microscope for signs of cancer. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. PET scans may be used to find nasopharyngeal cancers that have spread to the bone. Sometimes a PET scan and a CT scan are done at the same time. If there is any cancer, this increases the chance that it will be found. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells, white blood cells, and platelets. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Epstein-Barr virus (EBV) test: A blood test to check for antibodies to the Epstein-Barr virus and DNA markers of the Epstein-Barr virus. These are found in the blood of patients who have been infected with EBV. - Hearing test: A procedure to check whether soft and loud sounds and low- and high-pitched sounds can be heard. Each ear is checked separately.<|eot_id|>
What is the outlook for Nasopharyngeal Cancer ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer (whether it affects part of the nasopharynx, involves the whole nasopharynx, or has spread to other places in the body). - The type of nasopharyngeal cancer. - The size of the tumor. - The patients age and general health.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Nasopharyngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer (whether it affects part of the nasopharynx, involves the whole nasopharynx, or has spread to other places in the body). - The type of nasopharyngeal cancer. - The size of the tumor. - The patients age and general health.<|eot_id|>
What are the stages of Nasopharyngeal Cancer ?
Key Points - After nasopharyngeal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the nasopharynx or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for nasopharyngeal cancer: - Stage 0 (Carcinoma in Situ) - Stage I - Stage II - Stage III - Stage IV After nasopharyngeal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the nasopharynx or to other parts of the body. The process used to find out whether cancer has spread within the nasopharynx or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The results of the tests used to diagnose nasopharyngeal cancer are often also used to stage the disease. (See the General Information section.) There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if nasopharyngeal cancer spreads to the lung, the cancer cells in the lung are actually nasopharyngeal cancer cells. The disease is metastatic nasopharyngeal cancer, not lung cancer. The following stages are used for nasopharyngeal cancer: Stage 0 (Carcinoma in Situ) In stage 0, abnormal cells are found in the lining of the nasopharynx. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I In stage I, cancer has formed and the cancer: - is found in the nasopharynx only; or - has spread from the nasopharynx to the oropharynx and/or to the nasal cavity. The oropharynx is the middle part of the throat and includes the soft palate, the base of the tongue, and the tonsils. Stage II In stage II nasopharyngeal cancer, the cancer: - is found in the nasopharynx only or has spread from the nasopharynx to the oropharynx and/or to the nasal cavity. Cancer has spread to one or more lymph nodes on one side of the neck and/or to lymph nodes behind the pharynx. The affected lymph nodes are 6 centimeters or smaller; or - is found in the parapharyngeal space. Cancer may have spread to one or more lymph nodes on one side of the neck and/or to lymph nodes behind the pharynx. The affected lymph nodes are 6 centimeters or smaller. The oropharynx is the middle part of the throat and includes the soft palate, the base of the tongue, and the tonsils. The parapharyngeal space is a fat-filled, triangular area near the pharynx, between the base of the skull and the lower jaw. Stage III In stage III nasopharyngeal cancer, the cancer: - is found in the nasopharynx only or has spread from the nasopharynx to the oropharynx and/or to the nasal cavity. Cancer has spread to one or more lymph nodes on both sides of the neck. The affected lymph nodes are 6 centimeters or smaller; or - is found in the parapharyngeal space. Cancer has spread to one or more lymph nodes on both sides of the neck. The affected lymph nodes are 6 centimeters or smaller; or - has spread to nearby bones or sinuses. Cancer may have spread to one or more lymph nodes on one or both sides of the neck and/or to lymph nodes behind the pharynx. The affected lymph nodes are 6 centimeters or smaller. The oropharynx is the middle part of the throat and includes the soft palate, the base of the tongue, and the tonsils. The parapharyngeal space is a fat-filled, triangular area near the pharynx, between the base of the skull and the lower jaw. Stage IV Stage IV nasopharyngeal cancer is divided into stages IVA, IVB, and IVC. - Stage IVA: Cancer has spread beyond the nasopharynx and may have spread to the cranial nerves, the hypopharynx (bottom part of the throat), areas in and around the side of the skull or jawbone, and/or the bone around the eye. Cancer may also have spread to one or more lymph nodes on one or both sides of the neck and/or to lymph nodes behind the pharynx. The affected lymph nodes are 6 centimeters or smaller. - Stage IVB: Cancer has spread to lymph nodes between the collarbone and the top of the shoulder and/or the affected lymph nodes are larger than 6 centimeters. - Stage IVC: Cancer has spread beyond nearby lymph nodes to other parts of the body.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Nasopharyngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After nasopharyngeal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the nasopharynx or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for nasopharyngeal cancer: - Stage 0 (Carcinoma in Situ) - Stage I - Stage II - Stage III - Stage IV After nasopharyngeal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the nasopharynx or to other parts of the body. The process used to find out whether cancer has spread within the nasopharynx or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The results of the tests used to diagnose nasopharyngeal cancer are often also used to stage the disease. (See the General Information section.) There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if nasopharyngeal cancer spreads to the lung, the cancer cells in the lung are actually nasopharyngeal cancer cells. The disease is metastatic nasopharyngeal cancer, not lung cancer. The following stages are used for nasopharyngeal cancer: Stage 0 (Carcinoma in Situ) In stage 0, abnormal cells are found in the lining of the nasopharynx. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I In stage I, cancer has formed and the cancer: - is found in the nasopharynx only; or - has spread from the nasopharynx to the oropharynx and/or to the nasal cavity. The oropharynx is the middle part of the throat and includes the soft palate, the base of the tongue, and the tonsils. Stage II In stage II nasopharyngeal cancer, the cancer: - is found in the nasopharynx only or has spread from the nasopharynx to the oropharynx and/or to the nasal cavity. Cancer has spread to one or more lymph nodes on one side of the neck and/or to lymph nodes behind the pharynx. The affected lymph nodes are 6 centimeters or smaller; or - is found in the parapharyngeal space. Cancer may have spread to one or more lymph nodes on one side of the neck and/or to lymph nodes behind the pharynx. The affected lymph nodes are 6 centimeters or smaller. The oropharynx is the middle part of the throat and includes the soft palate, the base of the tongue, and the tonsils. The parapharyngeal space is a fat-filled, triangular area near the pharynx, between the base of the skull and the lower jaw. Stage III In stage III nasopharyngeal cancer, the cancer: - is found in the nasopharynx only or has spread from the nasopharynx to the oropharynx and/or to the nasal cavity. Cancer has spread to one or more lymph nodes on both sides of the neck. The affected lymph nodes are 6 centimeters or smaller; or - is found in the parapharyngeal space. Cancer has spread to one or more lymph nodes on both sides of the neck. The affected lymph nodes are 6 centimeters or smaller; or - has spread to nearby bones or sinuses. Cancer may have spread to one or more lymph nodes on one or both sides of the neck and/or to lymph nodes behind the pharynx. The affected lymph nodes are 6 centimeters or smaller. The oropharynx is the middle part of the throat and includes the soft palate, the base of the tongue, and the tonsils. The parapharyngeal space is a fat-filled, triangular area near the pharynx, between the base of the skull and the lower jaw. Stage IV Stage IV nasopharyngeal cancer is divided into stages IVA, IVB, and IVC. - Stage IVA: Cancer has spread beyond the nasopharynx and may have spread to the cranial nerves, the hypopharynx (bottom part of the throat), areas in and around the side of the skull or jawbone, and/or the bone around the eye. Cancer may also have spread to one or more lymph nodes on one or both sides of the neck and/or to lymph nodes behind the pharynx. The affected lymph nodes are 6 centimeters or smaller. - Stage IVB: Cancer has spread to lymph nodes between the collarbone and the top of the shoulder and/or the affected lymph nodes are larger than 6 centimeters. - Stage IVC: Cancer has spread beyond nearby lymph nodes to other parts of the body.<|eot_id|>
What are the treatments for Nasopharyngeal Cancer ?
Key Points - There are different types of treatment for patients with nasopharyngeal cancer. - Three types of standard treatment are used: - Radiation therapy - Chemotherapy - Surgery - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with nasopharyngeal cancer. Different types of treatment are available for patients with nasopharyngeal cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Three types of standard treatment are used: Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of radiation therapy include the following: - Intensity-modulated radiation therapy (IMRT): IMRT is a type of 3-dimensional (3-D) radiation therapy that uses a computer to make pictures of the size and shape of the tumor. Thin beams of radiation of different intensities (strengths) are aimed at the tumor from many angles. Compared to standard radiation therapy, intensity-modulated radiation therapy may be less likely to cause dry mouth. - Stereotactic radiation therapy: A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims radiation directly at the tumor. The total dose of radiation is divided into several smaller doses given over several days. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External and internal radiation therapy are used to treat nasopharyngeal cancer. External radiation therapy to the thyroid or the pituitary gland may change the way the thyroid gland works. A blood test to check the thyroid hormone level in the blood is done before and after therapy to make sure the thyroid gland is working properly. It is also important that a dentist check the patients teeth, gums, and mouth, and fix any existing problems before radiation therapy begins. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Chemotherapy may be given after radiation therapy to kill any cancer cells that are left. Treatment given after radiation therapy, to lower the risk that the cancer will come back, is called adjuvant therapy. See Drugs Approved for Head and Neck Cancer for more information. (Nasopharyngeal cancer is a type of head and neck cancer.) Surgery Surgery is a procedure to find out whether cancer is present, to remove cancer from the body, or to repair a body part. Also called an operation. Surgery is sometimes used for nasopharyngeal cancer that does not respond to radiation therapy. If cancer has spread to the lymph nodes, the doctor may remove lymph nodes and other tissues in the neck. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Stage I Nasopharyngeal Cancer Treatment of stage I nasopharyngeal cancer is usually radiation therapy to the tumor and lymph nodes in the neck. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I nasopharyngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage II Nasopharyngeal Cancer Treatment of stage II nasopharyngeal cancer may include the following: - Chemotherapy given with radiation therapy, followed by more chemotherapy. - Radiation therapy to the tumor and lymph nodes in the neck. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II nasopharyngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage III Nasopharyngeal Cancer Treatment of stage III nasopharyngeal cancer may include the following: - Chemotherapy given with radiation therapy, which may be followed by more chemotherapy. - Radiation therapy. - Radiation therapy followed by surgery to remove cancer -containing lymph nodes in the neck that remain or come back after radiation therapy. - A clinical trial of chemotherapy given before, with, or after radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III nasopharyngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IV Nasopharyngeal Cancer Treatment of stage IV nasopharyngeal cancer may include the following: - Chemotherapy given with radiation therapy, followed by more chemotherapy. - Radiation therapy. - Radiation therapy followed by surgery to remove cancer -containing lymph nodes in the neck that remain or come back after radiation therapy. - Chemotherapy for cancer that has metastasized (spread) to other parts of the body. - A clinical trial of chemotherapy given before, with, or after radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV nasopharyngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Nasopharyngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with nasopharyngeal cancer. - Three types of standard treatment are used: - Radiation therapy - Chemotherapy - Surgery - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with nasopharyngeal cancer. Different types of treatment are available for patients with nasopharyngeal cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Three types of standard treatment are used: Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of radiation therapy include the following: - Intensity-modulated radiation therapy (IMRT): IMRT is a type of 3-dimensional (3-D) radiation therapy that uses a computer to make pictures of the size and shape of the tumor. Thin beams of radiation of different intensities (strengths) are aimed at the tumor from many angles. Compared to standard radiation therapy, intensity-modulated radiation therapy may be less likely to cause dry mouth. - Stereotactic radiation therapy: A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims radiation directly at the tumor. The total dose of radiation is divided into several smaller doses given over several days. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External and internal radiation therapy are used to treat nasopharyngeal cancer. External radiation therapy to the thyroid or the pituitary gland may change the way the thyroid gland works. A blood test to check the thyroid hormone level in the blood is done before and after therapy to make sure the thyroid gland is working properly. It is also important that a dentist check the patients teeth, gums, and mouth, and fix any existing problems before radiation therapy begins. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Chemotherapy may be given after radiation therapy to kill any cancer cells that are left. Treatment given after radiation therapy, to lower the risk that the cancer will come back, is called adjuvant therapy. See Drugs Approved for Head and Neck Cancer for more information. (Nasopharyngeal cancer is a type of head and neck cancer.) Surgery Surgery is a procedure to find out whether cancer is present, to remove cancer from the body, or to repair a body part. Also called an operation. Surgery is sometimes used for nasopharyngeal cancer that does not respond to radiation therapy. If cancer has spread to the lymph nodes, the doctor may remove lymph nodes and other tissues in the neck. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Stage I Nasopharyngeal Cancer Treatment of stage I nasopharyngeal cancer is usually radiation therapy to the tumor and lymph nodes in the neck. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I nasopharyngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage II Nasopharyngeal Cancer Treatment of stage II nasopharyngeal cancer may include the following: - Chemotherapy given with radiation therapy, followed by more chemotherapy. - Radiation therapy to the tumor and lymph nodes in the neck. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II nasopharyngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage III Nasopharyngeal Cancer Treatment of stage III nasopharyngeal cancer may include the following: - Chemotherapy given with radiation therapy, which may be followed by more chemotherapy. - Radiation therapy. - Radiation therapy followed by surgery to remove cancer -containing lymph nodes in the neck that remain or come back after radiation therapy. - A clinical trial of chemotherapy given before, with, or after radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III nasopharyngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IV Nasopharyngeal Cancer Treatment of stage IV nasopharyngeal cancer may include the following: - Chemotherapy given with radiation therapy, followed by more chemotherapy. - Radiation therapy. - Radiation therapy followed by surgery to remove cancer -containing lymph nodes in the neck that remain or come back after radiation therapy. - Chemotherapy for cancer that has metastasized (spread) to other parts of the body. - A clinical trial of chemotherapy given before, with, or after radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV nasopharyngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
what research (or clinical trials) is being done for Nasopharyngeal Cancer ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Nasopharyngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Gastrointestinal Stromal Tumors ?
Key Points - Gastrointestinal stromal tumor is a disease in which abnormal cells form in the tissues of the gastrointestinal tract. - Genetic factors can increase the risk of having a gastrointestinal stromal tumor. - Signs of gastrointestinal stromal tumors include blood in the stool or vomit. - Tests that examine the GI tract are used to detect (find) and diagnose gastrointestinal stromal tumors. - Very small GISTs are common. - Certain factors affect prognosis (chance of recovery) and treatment options. Gastrointestinal stromal tumor is a disease in which abnormal cells form in the tissues of the gastrointestinal tract. The gastrointestinal (GI) tract is part of the bodys digestive system. It helps to digest food and takes nutrients (vitamins, minerals, carbohydrates, fats, proteins, and water) from food so they can be used by the body. The GI tract is made up of the following organs: - Stomach. - Small intestine. - Large intestine (colon). Gastrointestinal stromal tumors (GISTs) may be malignant (cancer) or benign (not cancer). They are most common in the stomach and small intestine but may be found anywhere in or near the GI tract. Some scientists believe that GISTs begin in cells called interstitial cells of Cajal (ICC), in the wall of the GI tract. See the PDQ summary about Unusual Cancers of Childhood Treatment for information on the treatment of GIST in children. Very small GISTs are common. Sometimes GISTs are smaller than the eraser on top of a pencil. Tumors may be found during a procedure that is done for another reason, such as an x-ray or surgery. Some of these small tumors will not grow and cause signs or symptoms or spread to the abdomen or other parts of the body. Doctors do not agree on whether these small tumors should be removed or whether they should be watched to see if they begin to grow.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Gastrointestinal Stromal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Gastrointestinal stromal tumor is a disease in which abnormal cells form in the tissues of the gastrointestinal tract. - Genetic factors can increase the risk of having a gastrointestinal stromal tumor. - Signs of gastrointestinal stromal tumors include blood in the stool or vomit. - Tests that examine the GI tract are used to detect (find) and diagnose gastrointestinal stromal tumors. - Very small GISTs are common. - Certain factors affect prognosis (chance of recovery) and treatment options. Gastrointestinal stromal tumor is a disease in which abnormal cells form in the tissues of the gastrointestinal tract. The gastrointestinal (GI) tract is part of the bodys digestive system. It helps to digest food and takes nutrients (vitamins, minerals, carbohydrates, fats, proteins, and water) from food so they can be used by the body. The GI tract is made up of the following organs: - Stomach. - Small intestine. - Large intestine (colon). Gastrointestinal stromal tumors (GISTs) may be malignant (cancer) or benign (not cancer). They are most common in the stomach and small intestine but may be found anywhere in or near the GI tract. Some scientists believe that GISTs begin in cells called interstitial cells of Cajal (ICC), in the wall of the GI tract. See the PDQ summary about Unusual Cancers of Childhood Treatment for information on the treatment of GIST in children. Very small GISTs are common. Sometimes GISTs are smaller than the eraser on top of a pencil. Tumors may be found during a procedure that is done for another reason, such as an x-ray or surgery. Some of these small tumors will not grow and cause signs or symptoms or spread to the abdomen or other parts of the body. Doctors do not agree on whether these small tumors should be removed or whether they should be watched to see if they begin to grow.<|eot_id|>
Who is at risk for Gastrointestinal Stromal Tumors? ?
Genetic factors can increase the risk of having a gastrointestinal stromal tumor. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. The genes in cells carry the hereditary information received from a persons parents. The risk of GIST is increased in people who have inherited a mutation (change) in a certain gene. In rare cases, GISTs can be found in several members of the same family. GIST may be part of a genetic syndrome, but this is rare. A genetic syndrome is a set of symptoms or conditions that occur together and is usually caused by abnormal genes. The following genetic syndromes have been linked to GIST: - Neurofibromatosis type 1 (NF1). - Carney triad.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Gastrointestinal Stromal Tumors? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Genetic factors can increase the risk of having a gastrointestinal stromal tumor. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. The genes in cells carry the hereditary information received from a persons parents. The risk of GIST is increased in people who have inherited a mutation (change) in a certain gene. In rare cases, GISTs can be found in several members of the same family. GIST may be part of a genetic syndrome, but this is rare. A genetic syndrome is a set of symptoms or conditions that occur together and is usually caused by abnormal genes. The following genetic syndromes have been linked to GIST: - Neurofibromatosis type 1 (NF1). - Carney triad.<|eot_id|>
What are the symptoms of Gastrointestinal Stromal Tumors ?
Signs of gastrointestinal stromal tumors include blood in the stool or vomit. These and other signs and symptoms may be caused by a GIST or by other conditions. Check with your doctor if you have any of the following: - Blood (either bright red or very dark) in the stool or vomit. - Pain in the abdomen, which may be severe. - Feeling very tired. - Trouble or pain when swallowing. - Feeling full after only a little food is eaten.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Gastrointestinal Stromal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs of gastrointestinal stromal tumors include blood in the stool or vomit. These and other signs and symptoms may be caused by a GIST or by other conditions. Check with your doctor if you have any of the following: - Blood (either bright red or very dark) in the stool or vomit. - Pain in the abdomen, which may be severe. - Feeling very tired. - Trouble or pain when swallowing. - Feeling full after only a little food is eaten.<|eot_id|>
What are the stages of Gastrointestinal Stromal Tumors ?
Key Points - After a gastrointestinal stromal tumor has been diagnosed, tests are done to find out if cancer cells have spread within the gastrointestinal tract or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The results of diagnostic and staging tests are used to plan treatment. After a gastrointestinal stromal tumor has been diagnosed, tests are done to find out if cancer cells have spread within the gastrointestinal tract or to other parts of the body. The process used to find out if cancer has spread within the gastrointestinal (GI) tract or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The following tests and procedures may be used in the staging process: - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones and is detected by a scanner. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of tumor as the primary tumor. For example, if a gastrointestinal stromal tumor (GIST) spreads to the liver, the tumor cells in the liver are actually GIST cells. The disease is metastatic GIST, not liver cancer. The results of diagnostic and staging tests are used to plan treatment. For many cancers it is important to know the stage of the cancer in order to plan treatment. However, the treatment of GIST is not based on the stage of the cancer. Treatment is based on whether the tumor can be removed by surgery and if the tumor has spread to other parts of the abdomen or to distant parts of the body. Treatment is based on whether the tumor is: - Resectable: These tumors can be removed by surgery . - Unresectable: These tumors cannot be completely removed by surgery. - Metastatic and recurrent: Metastatic tumors have spread to other parts of the body. Recurrent tumors have recurred (come back) after treatment. Recurrent GISTs may come back in the gastrointestinal tract or in other parts of the body. They are usually found in the abdomen, peritoneum, and/or liver. - Refractory: These tumors have not gotten better with treatment.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Gastrointestinal Stromal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After a gastrointestinal stromal tumor has been diagnosed, tests are done to find out if cancer cells have spread within the gastrointestinal tract or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The results of diagnostic and staging tests are used to plan treatment. After a gastrointestinal stromal tumor has been diagnosed, tests are done to find out if cancer cells have spread within the gastrointestinal tract or to other parts of the body. The process used to find out if cancer has spread within the gastrointestinal (GI) tract or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The following tests and procedures may be used in the staging process: - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones and is detected by a scanner. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of tumor as the primary tumor. For example, if a gastrointestinal stromal tumor (GIST) spreads to the liver, the tumor cells in the liver are actually GIST cells. The disease is metastatic GIST, not liver cancer. The results of diagnostic and staging tests are used to plan treatment. For many cancers it is important to know the stage of the cancer in order to plan treatment. However, the treatment of GIST is not based on the stage of the cancer. Treatment is based on whether the tumor can be removed by surgery and if the tumor has spread to other parts of the abdomen or to distant parts of the body. Treatment is based on whether the tumor is: - Resectable: These tumors can be removed by surgery . - Unresectable: These tumors cannot be completely removed by surgery. - Metastatic and recurrent: Metastatic tumors have spread to other parts of the body. Recurrent tumors have recurred (come back) after treatment. Recurrent GISTs may come back in the gastrointestinal tract or in other parts of the body. They are usually found in the abdomen, peritoneum, and/or liver. - Refractory: These tumors have not gotten better with treatment.<|eot_id|>
what research (or clinical trials) is being done for Gastrointestinal Stromal Tumors ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Gastrointestinal Stromal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What are the treatments for Gastrointestinal Stromal Tumors ?
Key Points - There are different types of treatment for patients with gastrointestinal stromal tumors. - Four types of standard treatment are used: - Surgery - Targeted therapy - Watchful waiting - Supportive care - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with gastrointestinal stromal tumors. Different types of treatments are available for patients with gastrointestinal stromal tumors (GISTs). Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Four types of standard treatment are used: Surgery If the GIST has not spread and is in a place where surgery can be safely done, the tumor and some of the tissue around it may be removed. Sometimes surgery is done using a laparoscope (a thin, lighted tube) to see inside the body. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope is inserted into one of the incisions. Instruments may be inserted through the same incision or through other incisions to remove organs or tissues. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Tyrosine kinase inhibitors (TKIs) are targeted therapy drugs that block signals needed for tumors to grow. TKIs may be used to treat GISTs that cannot be removed by surgery or to shrink GISTs so they become small enough to be removed by surgery. Imatinib mesylate and sunitinib are two TKIs used to treat GISTs. TKIs are sometimes given for as long as the tumor does not grow and serious side effects do not occur. See Drugs Approved for Gastrointestinal Stromal Tumors for more information. Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. Supportive care If a GIST gets worse during treatment or there are side effects, supportive care is usually given. The goal of supportive care is to prevent or treat the symptoms of a disease, side effects caused by treatment, and psychological, social, and spiritual problems related to a disease or its treatment. Supportive care helps improve the quality of life of patients who have a serious or life-threatening disease. Radiation therapy is sometimes given as supportive care to relieve pain in patients with large tumors that have spread. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Follow-up for GISTs that were removed by surgery may include CT scan of the liver and pelvis or watchful waiting. For GISTs that are treated with tyrosine kinase inhibitors, follow-up tests, such as CT, MRI, or PET scans, may be done to check how well the targeted therapy is working. Treatment Options for Gastrointestinal Stromal Tumors Resectable Gastrointestinal Stromal Tumors Resectable gastrointestinal stromal tumors (GISTs) can be completely or almost completely removed by surgery. Treatment may include the following: - Surgery to remove tumors that are 2 centimeters or larger. Laparoscopic surgery may be done if the tumor is 5 cm or smaller. If there are cancer cells remaining at the edges of the area where the tumor was removed, watchful waiting or targeted therapy with imatinib mesylate may follow. - A clinical trial of targeted therapy with imatinib mesylate following surgery, to decrease the chance the tumor will recur (come back). Unresectable Gastrointestinal Stromal Tumors Unresectable GISTs cannot be completely removed by surgery because they are too large or in a place where there would be too much damage to nearby organs if the tumor is removed. Treatment is usually a clinical trial of targeted therapy with imatinib mesylate to shrink the tumor, followed by surgery to remove as much of the tumor as possible. Metastatic and Recurrent Gastrointestinal Stromal Tumors Treatment of GISTs that are metastatic (spread to other parts of the body) or recurrent (came back after treatment) may include the following: - Targeted therapy with imatinib mesylate. - Targeted therapy with sunitinib, if the tumor begins to grow during imatinib mesylate therapy or if the side effects are too bad. - Surgery to remove tumors that have been treated with targeted therapy and are shrinking, stable (not changing), or that have slightly increased in size. Targeted therapy may continue after surgery. - Surgery to remove tumors when there are serious complications, such as bleeding, a hole in the gastrointestinal (GI) tract, a blocked GI tract, or infection. - A clinical trial of a new treatment. Refractory Gastrointestinal Stromal Tumors Many GISTs treated with a tyrosine kinase inhibitor (TKI) become refractory (stop responding) to the drug after a while. Treatment is usually a clinical trial with a different TKI or a clinical trial of a new drug. Treatment Options in Clinical Trials Check the list of NCI-supported cancer clinical trials that are now accepting patients with gastrointestinal stromal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Gastrointestinal Stromal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with gastrointestinal stromal tumors. - Four types of standard treatment are used: - Surgery - Targeted therapy - Watchful waiting - Supportive care - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with gastrointestinal stromal tumors. Different types of treatments are available for patients with gastrointestinal stromal tumors (GISTs). Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Four types of standard treatment are used: Surgery If the GIST has not spread and is in a place where surgery can be safely done, the tumor and some of the tissue around it may be removed. Sometimes surgery is done using a laparoscope (a thin, lighted tube) to see inside the body. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope is inserted into one of the incisions. Instruments may be inserted through the same incision or through other incisions to remove organs or tissues. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Tyrosine kinase inhibitors (TKIs) are targeted therapy drugs that block signals needed for tumors to grow. TKIs may be used to treat GISTs that cannot be removed by surgery or to shrink GISTs so they become small enough to be removed by surgery. Imatinib mesylate and sunitinib are two TKIs used to treat GISTs. TKIs are sometimes given for as long as the tumor does not grow and serious side effects do not occur. See Drugs Approved for Gastrointestinal Stromal Tumors for more information. Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. Supportive care If a GIST gets worse during treatment or there are side effects, supportive care is usually given. The goal of supportive care is to prevent or treat the symptoms of a disease, side effects caused by treatment, and psychological, social, and spiritual problems related to a disease or its treatment. Supportive care helps improve the quality of life of patients who have a serious or life-threatening disease. Radiation therapy is sometimes given as supportive care to relieve pain in patients with large tumors that have spread. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Follow-up for GISTs that were removed by surgery may include CT scan of the liver and pelvis or watchful waiting. For GISTs that are treated with tyrosine kinase inhibitors, follow-up tests, such as CT, MRI, or PET scans, may be done to check how well the targeted therapy is working. Treatment Options for Gastrointestinal Stromal Tumors Resectable Gastrointestinal Stromal Tumors Resectable gastrointestinal stromal tumors (GISTs) can be completely or almost completely removed by surgery. Treatment may include the following: - Surgery to remove tumors that are 2 centimeters or larger. Laparoscopic surgery may be done if the tumor is 5 cm or smaller. If there are cancer cells remaining at the edges of the area where the tumor was removed, watchful waiting or targeted therapy with imatinib mesylate may follow. - A clinical trial of targeted therapy with imatinib mesylate following surgery, to decrease the chance the tumor will recur (come back). Unresectable Gastrointestinal Stromal Tumors Unresectable GISTs cannot be completely removed by surgery because they are too large or in a place where there would be too much damage to nearby organs if the tumor is removed. Treatment is usually a clinical trial of targeted therapy with imatinib mesylate to shrink the tumor, followed by surgery to remove as much of the tumor as possible. Metastatic and Recurrent Gastrointestinal Stromal Tumors Treatment of GISTs that are metastatic (spread to other parts of the body) or recurrent (came back after treatment) may include the following: - Targeted therapy with imatinib mesylate. - Targeted therapy with sunitinib, if the tumor begins to grow during imatinib mesylate therapy or if the side effects are too bad. - Surgery to remove tumors that have been treated with targeted therapy and are shrinking, stable (not changing), or that have slightly increased in size. Targeted therapy may continue after surgery. - Surgery to remove tumors when there are serious complications, such as bleeding, a hole in the gastrointestinal (GI) tract, a blocked GI tract, or infection. - A clinical trial of a new treatment. Refractory Gastrointestinal Stromal Tumors Many GISTs treated with a tyrosine kinase inhibitor (TKI) become refractory (stop responding) to the drug after a while. Treatment is usually a clinical trial with a different TKI or a clinical trial of a new drug. Treatment Options in Clinical Trials Check the list of NCI-supported cancer clinical trials that are now accepting patients with gastrointestinal stromal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Adult Primary Liver Cancer ?
Key Points - Adult primary liver cancer is a disease in which malignant (cancer) cells form in the tissues of the liver. - There are two types of adult primary liver cancer. - Having hepatitis or cirrhosis can affect the risk of adult primary liver cancer. - Signs and symptoms of adult primary liver cancer include a lump or pain on the right side. - Tests that examine the liver and the blood are used to detect (find) and diagnose adult primary liver cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Adult primary liver cancer is a disease in which malignant (cancer) cells form in the tissues of the liver. The liver is one of the largest organs in the body. It has four lobes and fills the upper right side of the abdomen inside the rib cage. Three of the many important functions of the liver are: - To filter harmful substances from the blood so they can be passed from the body in stools and urine. - To make bile to help digest fat that comes from food. - To store glycogen (sugar), which the body uses for energy. There are two types of adult primary liver cancer. The two types of adult primary liver cancer are: - Hepatocellular carcinoma. - Cholangiocarcinoma (bile duct cancer). (See the PDQ summary on Bile Duct Cancer Treatment for more information.) The most common type of adult primary liver cancer is hepatocellular carcinoma. This type of liver cancer is the third leading cause of cancer-related deaths worldwide. This summary is about the treatment of primary liver cancer (cancer that begins in the liver). Treatment of cancer that begins in other parts of the body and spreads to the liver is not covered in this summary. Primary liver cancer can occur in both adults and children. However, treatment for children is different than treatment for adults. (See the PDQ summary on Childhood Liver Cancer Treatment for more information.)
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Adult Primary Liver Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Adult primary liver cancer is a disease in which malignant (cancer) cells form in the tissues of the liver. - There are two types of adult primary liver cancer. - Having hepatitis or cirrhosis can affect the risk of adult primary liver cancer. - Signs and symptoms of adult primary liver cancer include a lump or pain on the right side. - Tests that examine the liver and the blood are used to detect (find) and diagnose adult primary liver cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Adult primary liver cancer is a disease in which malignant (cancer) cells form in the tissues of the liver. The liver is one of the largest organs in the body. It has four lobes and fills the upper right side of the abdomen inside the rib cage. Three of the many important functions of the liver are: - To filter harmful substances from the blood so they can be passed from the body in stools and urine. - To make bile to help digest fat that comes from food. - To store glycogen (sugar), which the body uses for energy. There are two types of adult primary liver cancer. The two types of adult primary liver cancer are: - Hepatocellular carcinoma. - Cholangiocarcinoma (bile duct cancer). (See the PDQ summary on Bile Duct Cancer Treatment for more information.) The most common type of adult primary liver cancer is hepatocellular carcinoma. This type of liver cancer is the third leading cause of cancer-related deaths worldwide. This summary is about the treatment of primary liver cancer (cancer that begins in the liver). Treatment of cancer that begins in other parts of the body and spreads to the liver is not covered in this summary. Primary liver cancer can occur in both adults and children. However, treatment for children is different than treatment for adults. (See the PDQ summary on Childhood Liver Cancer Treatment for more information.)<|eot_id|>
Who is at risk for Adult Primary Liver Cancer? ?
Having hepatitis or cirrhosis can affect the risk of adult primary liver cancer. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. The following are risk factors for adult primary liver cancer: - Having hepatitis B or hepatitis C. Having both hepatitis B and hepatitis C increases the risk even more. - Having cirrhosis, which can be caused by: - hepatitis (especially hepatitis C); or - drinking large amounts of alcohol for many years or being an alcoholic. - Having metabolic syndrome, a set of conditions that occur together, including extra fat around the abdomen, high blood sugar, high blood pressure, high levels of triglycerides and low levels of high-density lipoproteins in the blood. - Having liver injury that is long-lasting, especially if it leads to cirrhosis. - Having hemochromatosis, a condition in which the body takes up and stores more iron than it needs. The extra iron is stored in the liver, heart, and pancreas - Eating foods tainted with aflatoxin (poison from a fungus that can grow on foods, such as grains and nuts, that have not been stored properly).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Adult Primary Liver Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Having hepatitis or cirrhosis can affect the risk of adult primary liver cancer. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. The following are risk factors for adult primary liver cancer: - Having hepatitis B or hepatitis C. Having both hepatitis B and hepatitis C increases the risk even more. - Having cirrhosis, which can be caused by: - hepatitis (especially hepatitis C); or - drinking large amounts of alcohol for many years or being an alcoholic. - Having metabolic syndrome, a set of conditions that occur together, including extra fat around the abdomen, high blood sugar, high blood pressure, high levels of triglycerides and low levels of high-density lipoproteins in the blood. - Having liver injury that is long-lasting, especially if it leads to cirrhosis. - Having hemochromatosis, a condition in which the body takes up and stores more iron than it needs. The extra iron is stored in the liver, heart, and pancreas - Eating foods tainted with aflatoxin (poison from a fungus that can grow on foods, such as grains and nuts, that have not been stored properly).<|eot_id|>
What are the symptoms of Adult Primary Liver Cancer ?
Signs and symptoms of adult primary liver cancer include a lump or pain on the right side. These and other signs and symptoms may be caused by adult primary liver cancer or by other conditions. Check with your doctor if you have any of the following: - A hard lump on the right side just below the rib cage. - Discomfort in the upper abdomen on the right side. - A swollen abdomen. - Pain near the right shoulder blade or in the back. - Jaundice (yellowing of the skin and whites of the eyes). - Easy bruising or bleeding. - Unusual tiredness or weakness. - Nausea and vomiting. - Loss of appetite or feelings of fullness after eating a small meal. - Weight loss for no known reason. - Pale, chalky bowel movements and dark urine. - Fever.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Adult Primary Liver Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of adult primary liver cancer include a lump or pain on the right side. These and other signs and symptoms may be caused by adult primary liver cancer or by other conditions. Check with your doctor if you have any of the following: - A hard lump on the right side just below the rib cage. - Discomfort in the upper abdomen on the right side. - A swollen abdomen. - Pain near the right shoulder blade or in the back. - Jaundice (yellowing of the skin and whites of the eyes). - Easy bruising or bleeding. - Unusual tiredness or weakness. - Nausea and vomiting. - Loss of appetite or feelings of fullness after eating a small meal. - Weight loss for no known reason. - Pale, chalky bowel movements and dark urine. - Fever.<|eot_id|>
How to diagnose Adult Primary Liver Cancer ?
Tests that examine the liver and the blood are used to detect (find) and diagnose adult primary liver cancer. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Serum tumor marker test : A procedure in which a sample of blood is examined to measure the amounts of certain substances released into the blood by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the blood. These are called tumor markers. An increased level of alpha-fetoprotein (AFP) in the blood may be a sign of liver cancer. Other cancers and certain noncancerous conditions, including cirrhosis and hepatitis, may also increase AFP levels. Sometimes the AFP level is normal even when there is liver cancer. - Liver function tests : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by the liver. A higher than normal amount of a substance can be a sign of liver cancer. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. Images may be taken at three different times after the dye is injected, to get the best picture of abnormal areas in the liver. This is called triple-phase CT. A spiral or helical CT scan makes a series of very detailed pictures of areas inside the body using an x-ray machine that scans the body in a spiral path. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the liver. This procedure is also called nuclear magnetic resonance imaging (NMRI). To create detailed pictures of blood vessels in and near the liver, dye is injected into a vein. This procedure is called MRA (magnetic resonance angiography). Images may be taken at three different times after the dye is injected, to get the best picture of abnormal areas in the liver. This is called triple-phase MRI. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Procedures used to collect the sample of cells or tissues include the following: - Fine-needle aspiration biopsy : The removal of cells, tissue or fluid using a thin needle. - Core needle biopsy : The removal of cells or tissue using a slightly wider needle. - Laparoscopy : A surgical procedure to look at the organs inside the abdomen to check for signs of disease. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope (a thin, lighted tube) is inserted into one of the incisions. Another instrument is inserted through the same or another incision to remove the tissue samples. A biopsy is not always needed to diagnose adult primary liver cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Adult Primary Liver Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the liver and the blood are used to detect (find) and diagnose adult primary liver cancer. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Serum tumor marker test : A procedure in which a sample of blood is examined to measure the amounts of certain substances released into the blood by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the blood. These are called tumor markers. An increased level of alpha-fetoprotein (AFP) in the blood may be a sign of liver cancer. Other cancers and certain noncancerous conditions, including cirrhosis and hepatitis, may also increase AFP levels. Sometimes the AFP level is normal even when there is liver cancer. - Liver function tests : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by the liver. A higher than normal amount of a substance can be a sign of liver cancer. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. Images may be taken at three different times after the dye is injected, to get the best picture of abnormal areas in the liver. This is called triple-phase CT. A spiral or helical CT scan makes a series of very detailed pictures of areas inside the body using an x-ray machine that scans the body in a spiral path. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the liver. This procedure is also called nuclear magnetic resonance imaging (NMRI). To create detailed pictures of blood vessels in and near the liver, dye is injected into a vein. This procedure is called MRA (magnetic resonance angiography). Images may be taken at three different times after the dye is injected, to get the best picture of abnormal areas in the liver. This is called triple-phase MRI. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Procedures used to collect the sample of cells or tissues include the following: - Fine-needle aspiration biopsy : The removal of cells, tissue or fluid using a thin needle. - Core needle biopsy : The removal of cells or tissue using a slightly wider needle. - Laparoscopy : A surgical procedure to look at the organs inside the abdomen to check for signs of disease. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope (a thin, lighted tube) is inserted into one of the incisions. Another instrument is inserted through the same or another incision to remove the tissue samples. A biopsy is not always needed to diagnose adult primary liver cancer.<|eot_id|>
What is the outlook for Adult Primary Liver Cancer ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer (the size of the tumor, whether it affects part or all of the liver, or has spread to other places in the body). - How well the liver is working. - The patients general health, including whether there is cirrhosis of the liver.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Adult Primary Liver Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer (the size of the tumor, whether it affects part or all of the liver, or has spread to other places in the body). - How well the liver is working. - The patients general health, including whether there is cirrhosis of the liver.<|eot_id|>
What are the stages of Adult Primary Liver Cancer ?
Key Points - After adult primary liver cancer has been diagnosed, tests are done to find out if cancer cells have spread within the liver or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The Barcelona Clinic Liver Cancer Staging System may be used to stage adult primary liver cancer. - The following groups are used to plan treatment. - BCLC stages 0, A, and B - BCLC stages C and D After adult primary liver cancer has been diagnosed, tests are done to find out if cancer cells have spread within the liver or to other parts of the body. The process used to find out if cancer has spread within the liver or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the chest, abdomen, and pelvis, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if primary liver cancer spreads to the lung, the cancer cells in the lung are actually liver cancer cells. The disease is metastatic liver cancer, not lung cancer. The Barcelona Clinic Liver Cancer Staging System may be used to stage adult primary liver cancer. There are several staging systems for liver cancer. The Barcelona Clinic Liver Cancer (BCLC) Staging System is widely used and is described below. This system is used to predict the patient's chance of recovery and to plan treatment, based on the following: - Whether the cancer has spread within the liver or to other parts of the body. - How well the liver is working. - The general health and wellness of the patient. - The symptoms caused by the cancer. The BCLC staging system has five stages: - Stage 0: Very early - Stage A: Early - Stage B: Intermediate - Stage C: Advanced - Stage D: End-stage The following groups are used to plan treatment. BCLC stages 0, A, and B Treatment to cure the cancer is given for BCLC stages 0, A, and B. BCLC stages C and D Treatment to relieve the symptoms caused by liver cancer and improve the patient's quality of life is given for BCLC stages C and D. Treatments are not likely to cure the cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Adult Primary Liver Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After adult primary liver cancer has been diagnosed, tests are done to find out if cancer cells have spread within the liver or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The Barcelona Clinic Liver Cancer Staging System may be used to stage adult primary liver cancer. - The following groups are used to plan treatment. - BCLC stages 0, A, and B - BCLC stages C and D After adult primary liver cancer has been diagnosed, tests are done to find out if cancer cells have spread within the liver or to other parts of the body. The process used to find out if cancer has spread within the liver or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the chest, abdomen, and pelvis, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if primary liver cancer spreads to the lung, the cancer cells in the lung are actually liver cancer cells. The disease is metastatic liver cancer, not lung cancer. The Barcelona Clinic Liver Cancer Staging System may be used to stage adult primary liver cancer. There are several staging systems for liver cancer. The Barcelona Clinic Liver Cancer (BCLC) Staging System is widely used and is described below. This system is used to predict the patient's chance of recovery and to plan treatment, based on the following: - Whether the cancer has spread within the liver or to other parts of the body. - How well the liver is working. - The general health and wellness of the patient. - The symptoms caused by the cancer. The BCLC staging system has five stages: - Stage 0: Very early - Stage A: Early - Stage B: Intermediate - Stage C: Advanced - Stage D: End-stage The following groups are used to plan treatment. BCLC stages 0, A, and B Treatment to cure the cancer is given for BCLC stages 0, A, and B. BCLC stages C and D Treatment to relieve the symptoms caused by liver cancer and improve the patient's quality of life is given for BCLC stages C and D. Treatments are not likely to cure the cancer.<|eot_id|>
what research (or clinical trials) is being done for Adult Primary Liver Cancer ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Adult Primary Liver Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What are the treatments for Adult Primary Liver Cancer ?
Key Points - There are different types of treatment for patients with adult primary liver cancer. - Patients with liver cancer are treated by a team of specialists who are experts in treating liver cancer. - Seven types of standard treatment are used: - Surveillance - Surgery - Liver transplant - Ablation therapy - Embolization therapy - Targeted therapy - Radiation therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with adult primary liver cancer. Different types of treatments are available for patients with adult primary liver cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Patients with liver cancer are treated by a team of specialists who are experts in treating liver cancer. The patient's treatment will be overseen by a medical oncologist, a doctor who specializes in treating people with cancer. The medical oncologist may refer the patient to other health professionals who have special training in treating patients with liver cancer. These may include the following specialists: - Hepatologist (specialist in liver disease). - Surgical oncologist. - Transplant surgeon. - Radiation oncologist. - Interventional radiologist (a specialist who diagnoses and treats diseases using imaging and the smallest incisions possible). - Pathologist. Seven types of standard treatment are used: Surveillance Surveillance for lesions smaller than 1 centimeter found during screening. Follow-up every three months is common. Surgery A partial hepatectomy (surgery to remove the part of the liver where cancer is found) may be done. A wedge of tissue, an entire lobe, or a larger part of the liver, along with some of the healthy tissue around it is removed. The remaining liver tissue takes over the functions of the liver and may regrow. Liver transplant In a liver transplant, the entire liver is removed and replaced with a healthy donated liver. A liver transplant may be done when the disease is in the liver only and a donated liver can be found. If the patient has to wait for a donated liver, other treatment is given as needed. Ablation therapy Ablation therapy removes or destroys tissue. Different types of ablation therapy are used for liver cancer: - Radiofrequency ablation: The use of special needles that are inserted directly through the skin or through an incision in the abdomen to reach the tumor. High-energy radio waves heat the needles and tumor which kills cancer cells. - Microwave therapy: A type of treatment in which the tumor is exposed to high temperatures created by microwaves. This can damage and kill cancer cells or make them more sensitive to the effects of radiation and certain anticancer drugs. - Percutaneous ethanol injection: A cancer treatment in which a small needle is used to inject ethanol (pure alcohol) directly into a tumor to kill cancer cells. Several treatments may be needed. Usually local anesthesia is used, but if the patient has many tumors in the liver, general anesthesia may be used. - Cryoablation: A treatment that uses an instrument to freeze and destroy cancer cells. This type of treatment is also called cryotherapy and cryosurgery. The doctor may use ultrasound to guide the instrument. - Electroporation therapy: A treatment that sends electrical pulses through an electrode placed in a tumor to kill cancer cells. Electroporation therapy is being studied in clinical trials. Embolization therapy Embolization therapy is the use of substances to block or decrease the flow of blood through the hepatic artery to the tumor. When the tumor does not get the oxygen and nutrients it needs, it will not continue to grow. Embolization therapy is used for patients who cannot have surgery to remove the tumor or ablation therapy and whose tumor has not spread outside the liver. The liver receives blood from the hepatic portal vein and the hepatic artery. Blood that comes into the liver from the hepatic portal vein usually goes to the healthy liver tissue. Blood that comes from the hepatic artery usually goes to the tumor. When the hepatic artery is blocked during embolization therapy, the healthy liver tissue continues to receive blood from the hepatic portal vein. There are two main types of embolization therapy: - Transarterial embolization (TAE): A small incision (cut) is made in the inner thigh and a catheter (thin, flexible tube) is inserted and threaded up into the hepatic artery. Once the catheter is in place, a substance that blocks the hepatic artery and stops blood flow to the tumor is injected. - Transarterial chemoembolization (TACE): This procedure is like TAE except an anticancer drug is also given. The procedure can be done by attaching the anticancer drug to small beads that are injected into the hepatic artery or by injecting the anticancer drug through the catheter into the hepatic artery and then injecting the substance to block the hepatic artery. Most of the anticancer drug is trapped near the tumor and only a small amount of the drug reaches other parts of the body. This type of treatment is also called chemoembolization. Targeted therapy Targeted therapy is a treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Adult liver cancer may be treated with a targeted therapy drug that stops cells from dividing and prevents the growth of new blood vessels that tumors need to grow. See Drugs Approved for Liver Cancer for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of external radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. This allows a high dose of radiation to reach the tumor and causes less damage to nearby healthy tissue. - Stereotactic body radiation therapy: Stereotactic body radiation therapy is a type of external radiation therapy. Special equipment is used to place the patient in the same position for each radiation treatment. Once a day for several days, a radiation machine aims a larger than usual dose of radiation directly at the tumor. By having the patient in the same position for each treatment, there is less damage to nearby healthy tissue. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Proton beam radiation therapy: Proton-beam therapy is a type of high-energy, external radiation therapy. A radiation therapy machine aims streams of protons (tiny, invisible, positively-charged particles) at the cancer cells to kill them. This type of treatment causes less damage to nearby healthy tissue. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat adult primary liver cancer. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Adult Primary Liver Cancer Stages 0, A, and B Adult Primary Liver Cancer Treatment of stages 0, A, and B adult primary liver cancer may include the following: - Surveillance for lesions smaller than 1 centimeter. - Partial hepatectomy. - Total hepatectomy and liver transplant. - Ablation of the tumor using one of the following methods: - Radiofrequency ablation. - Microwave therapy. - Percutaneous ethanol injection. - Cryoablation. - A clinical trial of electroporation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage 0 adult primary liver cancer (BCLC), stage A adult primary liver cancer (BCLC) and stage B adult primary liver cancer (BCLC). For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stages C and D Adult Primary Liver Cancer Treatment of stages C and D adult primary liver cancer may include the following: - Embolization therapy using one of the following methods: - Transarterial embolization (TAE). - Transarterial chemoembolization (TACE). - Targeted therapy. - Radiation therapy. - A clinical trial of targeted therapy after chemoembolization or combined with chemotherapy. - A clinical trial of new targeted therapy drugs. - A clinical trial of targeted therapy with or without stereotactic body radiation therapy. - A clinical trial of stereotactic body radiation therapy or proton-beam radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage C adult primary liver cancer (BCLC) and stage D adult primary liver cancer (BCLC). For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Adult Primary Liver Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with adult primary liver cancer. - Patients with liver cancer are treated by a team of specialists who are experts in treating liver cancer. - Seven types of standard treatment are used: - Surveillance - Surgery - Liver transplant - Ablation therapy - Embolization therapy - Targeted therapy - Radiation therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with adult primary liver cancer. Different types of treatments are available for patients with adult primary liver cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Patients with liver cancer are treated by a team of specialists who are experts in treating liver cancer. The patient's treatment will be overseen by a medical oncologist, a doctor who specializes in treating people with cancer. The medical oncologist may refer the patient to other health professionals who have special training in treating patients with liver cancer. These may include the following specialists: - Hepatologist (specialist in liver disease). - Surgical oncologist. - Transplant surgeon. - Radiation oncologist. - Interventional radiologist (a specialist who diagnoses and treats diseases using imaging and the smallest incisions possible). - Pathologist. Seven types of standard treatment are used: Surveillance Surveillance for lesions smaller than 1 centimeter found during screening. Follow-up every three months is common. Surgery A partial hepatectomy (surgery to remove the part of the liver where cancer is found) may be done. A wedge of tissue, an entire lobe, or a larger part of the liver, along with some of the healthy tissue around it is removed. The remaining liver tissue takes over the functions of the liver and may regrow. Liver transplant In a liver transplant, the entire liver is removed and replaced with a healthy donated liver. A liver transplant may be done when the disease is in the liver only and a donated liver can be found. If the patient has to wait for a donated liver, other treatment is given as needed. Ablation therapy Ablation therapy removes or destroys tissue. Different types of ablation therapy are used for liver cancer: - Radiofrequency ablation: The use of special needles that are inserted directly through the skin or through an incision in the abdomen to reach the tumor. High-energy radio waves heat the needles and tumor which kills cancer cells. - Microwave therapy: A type of treatment in which the tumor is exposed to high temperatures created by microwaves. This can damage and kill cancer cells or make them more sensitive to the effects of radiation and certain anticancer drugs. - Percutaneous ethanol injection: A cancer treatment in which a small needle is used to inject ethanol (pure alcohol) directly into a tumor to kill cancer cells. Several treatments may be needed. Usually local anesthesia is used, but if the patient has many tumors in the liver, general anesthesia may be used. - Cryoablation: A treatment that uses an instrument to freeze and destroy cancer cells. This type of treatment is also called cryotherapy and cryosurgery. The doctor may use ultrasound to guide the instrument. - Electroporation therapy: A treatment that sends electrical pulses through an electrode placed in a tumor to kill cancer cells. Electroporation therapy is being studied in clinical trials. Embolization therapy Embolization therapy is the use of substances to block or decrease the flow of blood through the hepatic artery to the tumor. When the tumor does not get the oxygen and nutrients it needs, it will not continue to grow. Embolization therapy is used for patients who cannot have surgery to remove the tumor or ablation therapy and whose tumor has not spread outside the liver. The liver receives blood from the hepatic portal vein and the hepatic artery. Blood that comes into the liver from the hepatic portal vein usually goes to the healthy liver tissue. Blood that comes from the hepatic artery usually goes to the tumor. When the hepatic artery is blocked during embolization therapy, the healthy liver tissue continues to receive blood from the hepatic portal vein. There are two main types of embolization therapy: - Transarterial embolization (TAE): A small incision (cut) is made in the inner thigh and a catheter (thin, flexible tube) is inserted and threaded up into the hepatic artery. Once the catheter is in place, a substance that blocks the hepatic artery and stops blood flow to the tumor is injected. - Transarterial chemoembolization (TACE): This procedure is like TAE except an anticancer drug is also given. The procedure can be done by attaching the anticancer drug to small beads that are injected into the hepatic artery or by injecting the anticancer drug through the catheter into the hepatic artery and then injecting the substance to block the hepatic artery. Most of the anticancer drug is trapped near the tumor and only a small amount of the drug reaches other parts of the body. This type of treatment is also called chemoembolization. Targeted therapy Targeted therapy is a treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Adult liver cancer may be treated with a targeted therapy drug that stops cells from dividing and prevents the growth of new blood vessels that tumors need to grow. See Drugs Approved for Liver Cancer for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of external radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. This allows a high dose of radiation to reach the tumor and causes less damage to nearby healthy tissue. - Stereotactic body radiation therapy: Stereotactic body radiation therapy is a type of external radiation therapy. Special equipment is used to place the patient in the same position for each radiation treatment. Once a day for several days, a radiation machine aims a larger than usual dose of radiation directly at the tumor. By having the patient in the same position for each treatment, there is less damage to nearby healthy tissue. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Proton beam radiation therapy: Proton-beam therapy is a type of high-energy, external radiation therapy. A radiation therapy machine aims streams of protons (tiny, invisible, positively-charged particles) at the cancer cells to kill them. This type of treatment causes less damage to nearby healthy tissue. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat adult primary liver cancer. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Adult Primary Liver Cancer Stages 0, A, and B Adult Primary Liver Cancer Treatment of stages 0, A, and B adult primary liver cancer may include the following: - Surveillance for lesions smaller than 1 centimeter. - Partial hepatectomy. - Total hepatectomy and liver transplant. - Ablation of the tumor using one of the following methods: - Radiofrequency ablation. - Microwave therapy. - Percutaneous ethanol injection. - Cryoablation. - A clinical trial of electroporation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage 0 adult primary liver cancer (BCLC), stage A adult primary liver cancer (BCLC) and stage B adult primary liver cancer (BCLC). For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stages C and D Adult Primary Liver Cancer Treatment of stages C and D adult primary liver cancer may include the following: - Embolization therapy using one of the following methods: - Transarterial embolization (TAE). - Transarterial chemoembolization (TACE). - Targeted therapy. - Radiation therapy. - A clinical trial of targeted therapy after chemoembolization or combined with chemotherapy. - A clinical trial of new targeted therapy drugs. - A clinical trial of targeted therapy with or without stereotactic body radiation therapy. - A clinical trial of stereotactic body radiation therapy or proton-beam radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage C adult primary liver cancer (BCLC) and stage D adult primary liver cancer (BCLC). For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Prostate Cancer ?
Key Points - Prostate cancer is a disease in which malignant (cancer) cells form in the tissues of the prostate. - Prostate cancer is the most common nonskin cancer among men in the United States. - Different factors increase or decrease the risk of developing prostate cancer. Prostate cancer is a disease in which malignant (cancer) cells form in the tissues of the prostate. The prostate is a gland in the male reproductive system located just below the bladder (the organ that collects and empties urine) and in front of the rectum (the lower part of the intestine). It is about the size of a walnut and surrounds part of the urethra (the tube that empties urine from the bladder). The prostate gland produces fluid that makes up part of semen. As men age, the prostate may get bigger. A bigger prostate may block the flow of urine from the bladder and cause problems with sexual function. This condition is called benign prostatic hyperplasia (BPH), and although it is not cancer, surgery may be needed to correct it. The symptoms of benign prostatic hyperplasia or of other problems in the prostate may be similar to symptoms of prostate cancer. See the following PDQ summaries for more information about prostate cancer: - Prostate Cancer Prevention - Prostate Cancer Treatment
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Prostate Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Prostate cancer is a disease in which malignant (cancer) cells form in the tissues of the prostate. - Prostate cancer is the most common nonskin cancer among men in the United States. - Different factors increase or decrease the risk of developing prostate cancer. Prostate cancer is a disease in which malignant (cancer) cells form in the tissues of the prostate. The prostate is a gland in the male reproductive system located just below the bladder (the organ that collects and empties urine) and in front of the rectum (the lower part of the intestine). It is about the size of a walnut and surrounds part of the urethra (the tube that empties urine from the bladder). The prostate gland produces fluid that makes up part of semen. As men age, the prostate may get bigger. A bigger prostate may block the flow of urine from the bladder and cause problems with sexual function. This condition is called benign prostatic hyperplasia (BPH), and although it is not cancer, surgery may be needed to correct it. The symptoms of benign prostatic hyperplasia or of other problems in the prostate may be similar to symptoms of prostate cancer. See the following PDQ summaries for more information about prostate cancer: - Prostate Cancer Prevention - Prostate Cancer Treatment<|eot_id|>
Who is at risk for Prostate Cancer? ?
Prostate cancer is the most common nonskin cancer among men in the United States. Prostate cancer is found mainly in older men. Although the number of men with prostate cancer is large, most men diagnosed with this disease do not die from it. Prostate cancer causes more deaths in men than any other cancer except lung cancer and colorectal cancer. Prostate cancer occurs more often in African-American men than in white men. African-American men with prostate cancer are more likely to die from the disease than white men with prostate cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Prostate Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Prostate cancer is the most common nonskin cancer among men in the United States. Prostate cancer is found mainly in older men. Although the number of men with prostate cancer is large, most men diagnosed with this disease do not die from it. Prostate cancer causes more deaths in men than any other cancer except lung cancer and colorectal cancer. Prostate cancer occurs more often in African-American men than in white men. African-American men with prostate cancer are more likely to die from the disease than white men with prostate cancer.<|eot_id|>
Who is at risk for Prostate Cancer? ?
Different factors increase or decrease the risk of developing prostate cancer. Anything that increases a person's chance of developing a disease is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for prostate cancer, see the PDQ summary on Prostate Cancer Prevention.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Prostate Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Different factors increase or decrease the risk of developing prostate cancer. Anything that increases a person's chance of developing a disease is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for prostate cancer, see the PDQ summary on Prostate Cancer Prevention.<|eot_id|>
What is (are) Childhood Central Nervous System Embryonal Tumors ?
Key Points - Central nervous system (CNS) embryonal tumors may begin in embryonic (fetal) cells that remain in the brain after birth. - There are different types of CNS embryonal tumors. - Pineoblastomas form in cells of the pineal gland. - Certain genetic conditions increase the risk of childhood CNS embryonal tumors. - Signs and symptoms of childhood CNS embryonal tumors or pineoblastomas depend on the child's age and where the tumor is. - Tests that examine the brain and spinal cord are used to detect (find) childhood CNS embryonal tumors or pineoblastomas. - A biopsy may be done to be sure of the diagnosis of CNS embryonal tumor or pineoblastoma. - Certain factors affect prognosis (chance of recovery) and treatment options. Central nervous system (CNS) embryonal tumors may begin in embryonic (fetal) cells that remain in the brain after birth. Central nervous system (CNS) embryonal tumors form in embryonic cells that remain in the brain after birth. CNS embryonal tumors tend to spread through the cerebrospinal fluid (CSF) to other parts of the brain and spinal cord. The tumors may be malignant (cancer) or benign (not cancer). Most CNS embryonal tumors in children are malignant. Malignant brain tumors are likely to grow quickly and spread into other parts of the brain. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Benign brain tumors grow and press on nearby areas of the brain. They rarely spread to other parts of the brain. Both benign and malignant brain tumors can cause signs or symptoms and need treatment. Although cancer is rare in children, brain tumors are the third most common type of childhood cancer, after leukemia and lymphoma. This summary is about the treatment of primary brain tumors (tumors that begin in the brain). The treatment of metastatic brain tumors, which begin in other parts of the body and spread to the brain, is not discussed in this summary. For information about the different types of brain and spinal cord tumors, see the PDQ summary on Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors occur in both children and adults. Treatment for adults may be different from treatment for children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. The different types of CNS embryonal tumors include: - Medulloblastomas Most CNS embryonal tumors are medulloblastomas. Medulloblastomas are fast-growing tumors that form in brain cells in the cerebellum. The cerebellum is at the lower back part of the brain between the cerebrum and the brain stem. The cerebellum controls movement, balance, and posture. Medulloblastomas sometimes spread to the bone, bone marrow, lung, or other parts of the body, but this is rare. - Nonmedulloblastoma embryonal tumors Nonmedulloblastoma embryonal tumors are fast-growing tumors that usually form in brain cells in the cerebrum. The cerebrum is at the top of the head and is the largest part of the brain. The cerebrum controls thinking, learning, problem-solving, emotions, speech, reading, writing, and voluntary movement. Nonmedulloblastoma embryonal tumors may also form in the brain stem or spinal cord. There are four types of nonmedulloblastoma embryonal tumors: - Embryonal tumors with multilayered rosettes Embryonal tumors with multilayered rosettes (ETMR) are rare tumors that form in the brain and spinal cord. ETMR most commonly occur in young children and are fast-growing tumors. - Medulloepitheliomas Medulloepitheliomas are fast-growing tumors that usually form in the brain, spinal cord or nerves just outside the spinal column. They occur most often in infants and young children. - CNS neuroblastomas CNS neuroblastomas are a very rare type of neuroblastoma that form in the nerve tissue of the cerebrum or the layers of tissue that cover the brain and spinal cord. CNS neuroblastomas may be large and spread to other parts of the brain or spinal cord. - CNS ganglioneuroblastomas CNS ganglioneuroblastomas are rare tumors that form in nerve tissue of the brain and spinal cord. They may form in one area and be fast growing or form in more than one area and be slow growing. Childhood CNS atypical teratoid/rhabdoid tumor is also a type of embryonal tumor, but it is treated differently than other childhood CNS embryonal tumors. See the PDQ summary on Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment for more information. Pineoblastomas form in cells of the pineal gland. The pineal gland is a tiny organ in the center of the brain. The gland makes melatonin, a substance that helps control our sleep cycle. Pineoblastomas form in cells of the pineal gland and are usually malignant. Pineoblastomas are fast-growing tumors with cells that look very different from normal pineal gland cells. Pineoblastomas are not a type of CNS embryonal tumor but treatment for them is a lot like treatment for CNS embryonal tumors. Pineoblastoma is linked with inherited changes in the retinoblastoma (RB1) gene. A child with the inherited form of retinoblastoma (cancer than forms in the tissues of the retina) has an increased risk of pineoblastoma. When retinoblastoma forms at the same time as a tumor in or near the pineal gland, it is called trilateral retinoblastoma. MRI (magnetic resonance imaging) testing in children with retinoblastoma may detect pineoblastoma at an early stage when it can be treated successfully.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Childhood Central Nervous System Embryonal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Central nervous system (CNS) embryonal tumors may begin in embryonic (fetal) cells that remain in the brain after birth. - There are different types of CNS embryonal tumors. - Pineoblastomas form in cells of the pineal gland. - Certain genetic conditions increase the risk of childhood CNS embryonal tumors. - Signs and symptoms of childhood CNS embryonal tumors or pineoblastomas depend on the child's age and where the tumor is. - Tests that examine the brain and spinal cord are used to detect (find) childhood CNS embryonal tumors or pineoblastomas. - A biopsy may be done to be sure of the diagnosis of CNS embryonal tumor or pineoblastoma. - Certain factors affect prognosis (chance of recovery) and treatment options. Central nervous system (CNS) embryonal tumors may begin in embryonic (fetal) cells that remain in the brain after birth. Central nervous system (CNS) embryonal tumors form in embryonic cells that remain in the brain after birth. CNS embryonal tumors tend to spread through the cerebrospinal fluid (CSF) to other parts of the brain and spinal cord. The tumors may be malignant (cancer) or benign (not cancer). Most CNS embryonal tumors in children are malignant. Malignant brain tumors are likely to grow quickly and spread into other parts of the brain. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Benign brain tumors grow and press on nearby areas of the brain. They rarely spread to other parts of the brain. Both benign and malignant brain tumors can cause signs or symptoms and need treatment. Although cancer is rare in children, brain tumors are the third most common type of childhood cancer, after leukemia and lymphoma. This summary is about the treatment of primary brain tumors (tumors that begin in the brain). The treatment of metastatic brain tumors, which begin in other parts of the body and spread to the brain, is not discussed in this summary. For information about the different types of brain and spinal cord tumors, see the PDQ summary on Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors occur in both children and adults. Treatment for adults may be different from treatment for children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. The different types of CNS embryonal tumors include: - Medulloblastomas Most CNS embryonal tumors are medulloblastomas. Medulloblastomas are fast-growing tumors that form in brain cells in the cerebellum. The cerebellum is at the lower back part of the brain between the cerebrum and the brain stem. The cerebellum controls movement, balance, and posture. Medulloblastomas sometimes spread to the bone, bone marrow, lung, or other parts of the body, but this is rare. - Nonmedulloblastoma embryonal tumors Nonmedulloblastoma embryonal tumors are fast-growing tumors that usually form in brain cells in the cerebrum. The cerebrum is at the top of the head and is the largest part of the brain. The cerebrum controls thinking, learning, problem-solving, emotions, speech, reading, writing, and voluntary movement. Nonmedulloblastoma embryonal tumors may also form in the brain stem or spinal cord. There are four types of nonmedulloblastoma embryonal tumors: - Embryonal tumors with multilayered rosettes Embryonal tumors with multilayered rosettes (ETMR) are rare tumors that form in the brain and spinal cord. ETMR most commonly occur in young children and are fast-growing tumors. - Medulloepitheliomas Medulloepitheliomas are fast-growing tumors that usually form in the brain, spinal cord or nerves just outside the spinal column. They occur most often in infants and young children. - CNS neuroblastomas CNS neuroblastomas are a very rare type of neuroblastoma that form in the nerve tissue of the cerebrum or the layers of tissue that cover the brain and spinal cord. CNS neuroblastomas may be large and spread to other parts of the brain or spinal cord. - CNS ganglioneuroblastomas CNS ganglioneuroblastomas are rare tumors that form in nerve tissue of the brain and spinal cord. They may form in one area and be fast growing or form in more than one area and be slow growing. Childhood CNS atypical teratoid/rhabdoid tumor is also a type of embryonal tumor, but it is treated differently than other childhood CNS embryonal tumors. See the PDQ summary on Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment for more information. Pineoblastomas form in cells of the pineal gland. The pineal gland is a tiny organ in the center of the brain. The gland makes melatonin, a substance that helps control our sleep cycle. Pineoblastomas form in cells of the pineal gland and are usually malignant. Pineoblastomas are fast-growing tumors with cells that look very different from normal pineal gland cells. Pineoblastomas are not a type of CNS embryonal tumor but treatment for them is a lot like treatment for CNS embryonal tumors. Pineoblastoma is linked with inherited changes in the retinoblastoma (RB1) gene. A child with the inherited form of retinoblastoma (cancer than forms in the tissues of the retina) has an increased risk of pineoblastoma. When retinoblastoma forms at the same time as a tumor in or near the pineal gland, it is called trilateral retinoblastoma. MRI (magnetic resonance imaging) testing in children with retinoblastoma may detect pineoblastoma at an early stage when it can be treated successfully.<|eot_id|>
Who is at risk for Childhood Central Nervous System Embryonal Tumors? ?
Certain genetic conditions increase the risk of childhood CNS embryonal tumors. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your childs doctor if you think your child may be at risk. Risk factors for CNS embryonal tumors include having the following inherited diseases: - Turcot syndrome. - Rubinstein-Taybi syndrome. - Nevoid basal cell carcinoma (Gorlin) syndrome. - Li-Fraumeni syndrome. - Fanconi anemia. In most cases, the cause of CNS embryonal tumors is not known.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Childhood Central Nervous System Embryonal Tumors? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain genetic conditions increase the risk of childhood CNS embryonal tumors. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your childs doctor if you think your child may be at risk. Risk factors for CNS embryonal tumors include having the following inherited diseases: - Turcot syndrome. - Rubinstein-Taybi syndrome. - Nevoid basal cell carcinoma (Gorlin) syndrome. - Li-Fraumeni syndrome. - Fanconi anemia. In most cases, the cause of CNS embryonal tumors is not known.<|eot_id|>
What are the symptoms of Childhood Central Nervous System Embryonal Tumors ?
Signs and symptoms of childhood CNS embryonal tumors or pineoblastomas depend on the child's age and where the tumor is. These and other signs and symptoms may be caused by childhood CNS embryonal tumors, pineoblastomas, or other conditions. Check with your child's doctor if your child has any of the following: - Loss of balance, trouble walking, worsening handwriting, or slow speech. - Lack of coordination. - Headache, especially in the morning, or headache that goes away after vomiting. - Double vision or other eye problems. - Nausea and vomiting. - General weakness or weakness on one side of the face. - Unusual sleepiness or change in energy level. - Seizures. Infants and young children with these tumors may be irritable or grow slowly. Also they may not eat well or meet developmental milestones such as sitting, walking, and talking in sentences.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Childhood Central Nervous System Embryonal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of childhood CNS embryonal tumors or pineoblastomas depend on the child's age and where the tumor is. These and other signs and symptoms may be caused by childhood CNS embryonal tumors, pineoblastomas, or other conditions. Check with your child's doctor if your child has any of the following: - Loss of balance, trouble walking, worsening handwriting, or slow speech. - Lack of coordination. - Headache, especially in the morning, or headache that goes away after vomiting. - Double vision or other eye problems. - Nausea and vomiting. - General weakness or weakness on one side of the face. - Unusual sleepiness or change in energy level. - Seizures. Infants and young children with these tumors may be irritable or grow slowly. Also they may not eat well or meet developmental milestones such as sitting, walking, and talking in sentences.<|eot_id|>
How to diagnose Childhood Central Nervous System Embryonal Tumors ?
Tests that examine the brain and spinal cord are used to detect (find) childhood CNS embryonal tumors or pineoblastomas. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a patient's mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - MRI (magnetic resonance imaging) of the brain and spinal cord with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). Sometimes magnetic resonance spectroscopy (MRS) is done during the MRI scan to look at the chemicals in brain tissue. - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs of tumor cells. The sample may also be checked for the amounts of protein and glucose. A higher than normal amount of protein or lower than normal amount of glucose may be a sign of a tumor. This procedure is also called an LP or spinal tap. A biopsy may be done to be sure of the diagnosis of CNS embryonal tumor or pineoblastoma. If doctors think your child may have a CNS embryonal tumor or pineoblastoma, a biopsy may be done. For brain tumors, the biopsy is done by removing part of the skull and using a needle to remove a sample of tissue. Sometimes, a computer-guided needle is used to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The piece of skull is usually put back in place after the procedure. The following test may be done on the sample of tissue that is removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of brain tumors.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Childhood Central Nervous System Embryonal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the brain and spinal cord are used to detect (find) childhood CNS embryonal tumors or pineoblastomas. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a patient's mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - MRI (magnetic resonance imaging) of the brain and spinal cord with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). Sometimes magnetic resonance spectroscopy (MRS) is done during the MRI scan to look at the chemicals in brain tissue. - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs of tumor cells. The sample may also be checked for the amounts of protein and glucose. A higher than normal amount of protein or lower than normal amount of glucose may be a sign of a tumor. This procedure is also called an LP or spinal tap. A biopsy may be done to be sure of the diagnosis of CNS embryonal tumor or pineoblastoma. If doctors think your child may have a CNS embryonal tumor or pineoblastoma, a biopsy may be done. For brain tumors, the biopsy is done by removing part of the skull and using a needle to remove a sample of tissue. Sometimes, a computer-guided needle is used to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The piece of skull is usually put back in place after the procedure. The following test may be done on the sample of tissue that is removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of brain tumors.<|eot_id|>
What is the outlook for Childhood Central Nervous System Embryonal Tumors ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on: - The type of tumor and where it is in the brain. - Whether the cancer has spread within the brain and spinal cord when the tumor is found. - The age of the child when the tumor is found. - How much of the tumor remains after surgery. - Whether there are certain changes in the chromosomes, genes, or brain cells. - Whether the tumor has just been diagnosed or has recurred (come back).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Childhood Central Nervous System Embryonal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on: - The type of tumor and where it is in the brain. - Whether the cancer has spread within the brain and spinal cord when the tumor is found. - The age of the child when the tumor is found. - How much of the tumor remains after surgery. - Whether there are certain changes in the chromosomes, genes, or brain cells. - Whether the tumor has just been diagnosed or has recurred (come back).<|eot_id|>
what research (or clinical trials) is being done for Childhood Central Nervous System Embryonal Tumors ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Childhood Central Nervous System Embryonal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What are the treatments for Childhood Central Nervous System Embryonal Tumors ?
Key Points - There are different types of treatment for children who have central nervous system (CNS) embryonal tumors. - Children who have CNS embryonal tumors should have their treatment planned by a team of health care providers who are experts in treating brain tumors in children. - Childhood brain tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. - Some cancer treatments cause side effects months or years after treatment has ended. - Five types of treatment are used: - Surgery - Radiation therapy - Chemotherapy - High-dose chemotherapy with stem cell rescue - Targeted therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for children who have central nervous system (CNS) embryonal tumors. Different types of treatment are available for children with central nervous system (CNS) embryonal tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children who have CNS embryonal tumors should have their treatment planned by a team of health care providers who are experts in treating brain tumors in children. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with brain tumors and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Neurosurgeon. - Neurologist. - Neuropathologist. - Neuroradiologist. - Rehabilitation specialist. - Radiation oncologist. - Psychologist. Childhood brain tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. Signs or symptoms caused by the tumor may begin before the cancer is diagnosed and continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Some cancer treatments cause side effects months or years after treatment has ended. Side effects from cancer treatment that begin during or after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Children diagnosed with medulloblastoma may have certain problems after surgery or radiation therapy such as changes in the ability to think, learn, and pay attention. Also, cerebellar mutism syndrome may occur after surgery. Signs of this syndrome include the following: - Delayed ability to speak. - Trouble swallowing and eating. - Loss of balance, trouble walking, and worsening handwriting. - Loss of muscle tone. - Mood swings and changes in personality. Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). Five types of treatment are used: Surgery Surgery is used to diagnose and treat a childhood CNS embryonal tumor as described in the General Information section of this summary. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. This allows a high dose of radiation to reach the tumor and causes less damage to nearby healthy tissue. - Stereotactic radiation therapy: Stereotactic radiation therapy is a type of external radiation therapy. A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims radiation directly at the tumor, causing less damage to nearby healthy tissue. The total dose of radiation is divided into several smaller doses given over several days. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. Radiation therapy to the brain can affect growth and development in young children. For this reason, clinical trials are studying new ways of giving radiation that may have fewer side effects than standard methods. The way the radiation therapy is given depends on the type of cancer being treated. External radiation therapy is used to treat childhood CNS embryonal tumors. Because radiation therapy can affect growth and brain development in young children, especially children who are three years old or younger, chemotherapy may be given to delay or reduce the need for radiation therapy. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type of cancer being treated. Regular dose anticancer drugs given by mouth or vein to treat central nervous system tumors cannot cross the blood-brain barrier and enter the fluid that surrounds the brain and spinal cord. Instead, an anticancer drug is injected into the fluid-filled space to kill cancer cells that may have spread there. This is called intrathecal or intraventricular chemotherapy. High-dose chemotherapy with stem cell rescue High-dose chemotherapy with stem cell rescue is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Signal transduction inhibitors are a type of targeted therapy used to treat recurrent medulloblastoma. Signal transduction inhibitors block signals that are passed from one molecule to another inside a cell. Blocking these signals may kill cancer cells. Vismodegib is a type of signal transduction inhibitor. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. (See the General Information section for a list of tests.) Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. This is sometimes called re-staging. Some of the imaging tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the brain tumor has recurred (come back). If the imaging tests show abnormal tissue in the brain, a biopsy may also be done to find out if the tissue is made up of dead tumor cells or if new cancer cells are growing. These tests are sometimes called follow-up tests or check-ups. Treatment Options for Childhood Central Nervous System Embryonal Tumors and Childhood Pineoblastoma Newly Diagnosed Childhood Medulloblastoma In newly diagnosed childhood medulloblastoma, the tumor itself has not been treated. The child may have received drugs or treatment to relieve signs or symptoms caused by the tumor. Children older than 3 years with average-risk medulloblastoma Standard treatment of average-risk medulloblastoma in children older than 3 years includes the following: - Surgery to remove as much of the tumor as possible. This is followed by radiation therapy to the brain and spinal cord. Chemotherapy is also given during and after radiation therapy. - Surgery to remove the tumor, radiation therapy, and high-dose chemotherapy with stem cell rescue. Children older than 3 years with high-risk medulloblastoma Standard treatment of high-risk medulloblastoma in children older than 3 years includes the following: - Surgery to remove as much of the tumor as possible. This is followed by a larger dose of radiation therapy to the brain and spinal cord than the dose given for average-risk medulloblastoma. Chemotherapy is also given during and after radiation therapy. - Surgery to remove the tumor, radiation therapy, and high-dose chemotherapy with stem cell rescue. - A clinical trial of new combinations of radiation therapy and chemotherapy. Children aged 3 years and younger Standard treatment of medulloblastoma in children aged 3 years and younger is: - Surgery to remove as much of the tumor as possible, followed by chemotherapy. Other treatments that may be given after surgery include the following: - Chemotherapy with or without radiation therapy to the area where the tumor was removed. - High-dose chemotherapy with stem cell rescue. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood medulloblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Newly Diagnosed Childhood Nonmedulloblastoma Embryonal Tumors In newly diagnosed childhood nonmedulloblastoma embryonal tumors, the tumor itself has not been treated. The child may have received drugs or treatment to relieve symptoms caused by the tumor. Children older than 3 years Standard treatment of nonmedulloblastoma embryonal tumors in children older than 3 years is: - Surgery to remove as much of the tumor as possible. This is followed by radiation therapy to the brain and spinal cord. Chemotherapy is also given during and after radiation therapy. Children aged 3 years and younger Standard treatment of nonmedulloblastoma embryonal tumors in children aged 3 years and younger is: - Surgery to remove as much of the tumor as possible, followed by chemotherapy. Other treatments that may be given after surgery include the following: - Chemotherapy and radiation therapy to the area where the tumor was removed. - High-dose chemotherapy with stem cell rescue. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood nonmedulloblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Newly Diagnosed Childhood Medulloepithelioma In newly diagnosed childhood medulloepithelioma, the tumor itself has not been treated. The child may have received drugs or treatment to relieve symptoms caused by the tumor. Children older than 3 years Standard treatment of medulloepithelioma in children older than 3 years includes the following: - Surgery to remove as much of the tumor as possible. This is followed by radiation therapy to the brain and spinal cord. Chemotherapy is also given during and after radiation therapy. - Surgery to remove the tumor, radiation therapy, and high-dose chemotherapy with stem cell rescue. - A clinical trial of new combinations of radiation therapy and chemotherapy. Children aged 3 years and younger Standard treatment of medulloepithelioma in children aged 3 years and younger includes the following: - Surgery to remove as much of the tumor as possible, followed by chemotherapy. - High-dose chemotherapy with stem cell rescue. - Radiation therapy, when the child is older. - A clinical trial of new combinations and schedules of chemotherapy or new combinations of chemotherapy with stem cell rescue. Treatment of medulloepithelioma in children aged 3 years and younger is often within a clinical trial. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood medulloepithelioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Newly Diagnosed Childhood Pineoblastoma In newly diagnosed childhood pineoblastoma, the tumor itself has not been treated. The child may have received drugs or treatment to relieve symptoms caused by the tumor. Children older than 3 years Standard treatment of pineoblastoma in children older than 3 years includes the following: - Surgery to remove the tumor. The tumor usually cannot be completely removed because of where it is in the brain. Surgery is often followed by radiation therapy to the brain and spinal cord and chemotherapy. - A clinical trial of high-dose chemotherapy after radiation therapy and stem cell rescue. - A clinical trial of chemotherapy during radiation therapy. Children aged 3 years and younger Standard treatment of pineoblastoma in children aged 3 years and younger includes the following: - Biopsy to diagnose pineoblastoma followed by chemotherapy. - If the tumor responds to chemotherapy, radiation therapy is given when the child is older. - High-dose chemotherapy with stem cell rescue. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood pineoblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Childhood Central Nervous System Embryonal Tumors and Pineoblastomas The treatment of central nervous system (CNS) embryonal tumors and pineoblastoma that recur (come back) depends on: - The type of tumor. - Whether the tumor recurred where it first formed or has spread to other parts of the brain, spinal cord, or body. - The type of treatment given in the past. - How much time has passed since the initial treatment ended. - Whether the patient has signs or symptoms. Treatment for recurrent childhood CNS embryonal tumors and pineoblastomas may include the following: - For children who previously received radiation therapy and chemotherapy, treatment may include repeat radiation at the site where the cancer started and where the tumor has spread. Stereotactic radiation therapy and/or chemotherapy may also be used. - For infants and young children who previously received chemotherapy only and have a local recurrence, treatment may be chemotherapy with radiation therapy to the tumor and the area close to it. Surgery to remove the tumor may also be done. - For patients who previously received radiation therapy, high-dose chemotherapy and stem cell rescue may be used. It is not known whether this treatment improves survival. - Targeted therapy with a signal transduction inhibitor for patients whose cancer has certain changes in the genes. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood central nervous system embryonal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Childhood Central Nervous System Embryonal Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for children who have central nervous system (CNS) embryonal tumors. - Children who have CNS embryonal tumors should have their treatment planned by a team of health care providers who are experts in treating brain tumors in children. - Childhood brain tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. - Some cancer treatments cause side effects months or years after treatment has ended. - Five types of treatment are used: - Surgery - Radiation therapy - Chemotherapy - High-dose chemotherapy with stem cell rescue - Targeted therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for children who have central nervous system (CNS) embryonal tumors. Different types of treatment are available for children with central nervous system (CNS) embryonal tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children who have CNS embryonal tumors should have their treatment planned by a team of health care providers who are experts in treating brain tumors in children. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with brain tumors and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Neurosurgeon. - Neurologist. - Neuropathologist. - Neuroradiologist. - Rehabilitation specialist. - Radiation oncologist. - Psychologist. Childhood brain tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. Signs or symptoms caused by the tumor may begin before the cancer is diagnosed and continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Some cancer treatments cause side effects months or years after treatment has ended. Side effects from cancer treatment that begin during or after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Children diagnosed with medulloblastoma may have certain problems after surgery or radiation therapy such as changes in the ability to think, learn, and pay attention. Also, cerebellar mutism syndrome may occur after surgery. Signs of this syndrome include the following: - Delayed ability to speak. - Trouble swallowing and eating. - Loss of balance, trouble walking, and worsening handwriting. - Loss of muscle tone. - Mood swings and changes in personality. Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). Five types of treatment are used: Surgery Surgery is used to diagnose and treat a childhood CNS embryonal tumor as described in the General Information section of this summary. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. This allows a high dose of radiation to reach the tumor and causes less damage to nearby healthy tissue. - Stereotactic radiation therapy: Stereotactic radiation therapy is a type of external radiation therapy. A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims radiation directly at the tumor, causing less damage to nearby healthy tissue. The total dose of radiation is divided into several smaller doses given over several days. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. Radiation therapy to the brain can affect growth and development in young children. For this reason, clinical trials are studying new ways of giving radiation that may have fewer side effects than standard methods. The way the radiation therapy is given depends on the type of cancer being treated. External radiation therapy is used to treat childhood CNS embryonal tumors. Because radiation therapy can affect growth and brain development in young children, especially children who are three years old or younger, chemotherapy may be given to delay or reduce the need for radiation therapy. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type of cancer being treated. Regular dose anticancer drugs given by mouth or vein to treat central nervous system tumors cannot cross the blood-brain barrier and enter the fluid that surrounds the brain and spinal cord. Instead, an anticancer drug is injected into the fluid-filled space to kill cancer cells that may have spread there. This is called intrathecal or intraventricular chemotherapy. High-dose chemotherapy with stem cell rescue High-dose chemotherapy with stem cell rescue is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Signal transduction inhibitors are a type of targeted therapy used to treat recurrent medulloblastoma. Signal transduction inhibitors block signals that are passed from one molecule to another inside a cell. Blocking these signals may kill cancer cells. Vismodegib is a type of signal transduction inhibitor. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. (See the General Information section for a list of tests.) Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. This is sometimes called re-staging. Some of the imaging tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the brain tumor has recurred (come back). If the imaging tests show abnormal tissue in the brain, a biopsy may also be done to find out if the tissue is made up of dead tumor cells or if new cancer cells are growing. These tests are sometimes called follow-up tests or check-ups. Treatment Options for Childhood Central Nervous System Embryonal Tumors and Childhood Pineoblastoma Newly Diagnosed Childhood Medulloblastoma In newly diagnosed childhood medulloblastoma, the tumor itself has not been treated. The child may have received drugs or treatment to relieve signs or symptoms caused by the tumor. Children older than 3 years with average-risk medulloblastoma Standard treatment of average-risk medulloblastoma in children older than 3 years includes the following: - Surgery to remove as much of the tumor as possible. This is followed by radiation therapy to the brain and spinal cord. Chemotherapy is also given during and after radiation therapy. - Surgery to remove the tumor, radiation therapy, and high-dose chemotherapy with stem cell rescue. Children older than 3 years with high-risk medulloblastoma Standard treatment of high-risk medulloblastoma in children older than 3 years includes the following: - Surgery to remove as much of the tumor as possible. This is followed by a larger dose of radiation therapy to the brain and spinal cord than the dose given for average-risk medulloblastoma. Chemotherapy is also given during and after radiation therapy. - Surgery to remove the tumor, radiation therapy, and high-dose chemotherapy with stem cell rescue. - A clinical trial of new combinations of radiation therapy and chemotherapy. Children aged 3 years and younger Standard treatment of medulloblastoma in children aged 3 years and younger is: - Surgery to remove as much of the tumor as possible, followed by chemotherapy. Other treatments that may be given after surgery include the following: - Chemotherapy with or without radiation therapy to the area where the tumor was removed. - High-dose chemotherapy with stem cell rescue. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood medulloblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Newly Diagnosed Childhood Nonmedulloblastoma Embryonal Tumors In newly diagnosed childhood nonmedulloblastoma embryonal tumors, the tumor itself has not been treated. The child may have received drugs or treatment to relieve symptoms caused by the tumor. Children older than 3 years Standard treatment of nonmedulloblastoma embryonal tumors in children older than 3 years is: - Surgery to remove as much of the tumor as possible. This is followed by radiation therapy to the brain and spinal cord. Chemotherapy is also given during and after radiation therapy. Children aged 3 years and younger Standard treatment of nonmedulloblastoma embryonal tumors in children aged 3 years and younger is: - Surgery to remove as much of the tumor as possible, followed by chemotherapy. Other treatments that may be given after surgery include the following: - Chemotherapy and radiation therapy to the area where the tumor was removed. - High-dose chemotherapy with stem cell rescue. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood nonmedulloblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Newly Diagnosed Childhood Medulloepithelioma In newly diagnosed childhood medulloepithelioma, the tumor itself has not been treated. The child may have received drugs or treatment to relieve symptoms caused by the tumor. Children older than 3 years Standard treatment of medulloepithelioma in children older than 3 years includes the following: - Surgery to remove as much of the tumor as possible. This is followed by radiation therapy to the brain and spinal cord. Chemotherapy is also given during and after radiation therapy. - Surgery to remove the tumor, radiation therapy, and high-dose chemotherapy with stem cell rescue. - A clinical trial of new combinations of radiation therapy and chemotherapy. Children aged 3 years and younger Standard treatment of medulloepithelioma in children aged 3 years and younger includes the following: - Surgery to remove as much of the tumor as possible, followed by chemotherapy. - High-dose chemotherapy with stem cell rescue. - Radiation therapy, when the child is older. - A clinical trial of new combinations and schedules of chemotherapy or new combinations of chemotherapy with stem cell rescue. Treatment of medulloepithelioma in children aged 3 years and younger is often within a clinical trial. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood medulloepithelioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Newly Diagnosed Childhood Pineoblastoma In newly diagnosed childhood pineoblastoma, the tumor itself has not been treated. The child may have received drugs or treatment to relieve symptoms caused by the tumor. Children older than 3 years Standard treatment of pineoblastoma in children older than 3 years includes the following: - Surgery to remove the tumor. The tumor usually cannot be completely removed because of where it is in the brain. Surgery is often followed by radiation therapy to the brain and spinal cord and chemotherapy. - A clinical trial of high-dose chemotherapy after radiation therapy and stem cell rescue. - A clinical trial of chemotherapy during radiation therapy. Children aged 3 years and younger Standard treatment of pineoblastoma in children aged 3 years and younger includes the following: - Biopsy to diagnose pineoblastoma followed by chemotherapy. - If the tumor responds to chemotherapy, radiation therapy is given when the child is older. - High-dose chemotherapy with stem cell rescue. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood pineoblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Childhood Central Nervous System Embryonal Tumors and Pineoblastomas The treatment of central nervous system (CNS) embryonal tumors and pineoblastoma that recur (come back) depends on: - The type of tumor. - Whether the tumor recurred where it first formed or has spread to other parts of the brain, spinal cord, or body. - The type of treatment given in the past. - How much time has passed since the initial treatment ended. - Whether the patient has signs or symptoms. Treatment for recurrent childhood CNS embryonal tumors and pineoblastomas may include the following: - For children who previously received radiation therapy and chemotherapy, treatment may include repeat radiation at the site where the cancer started and where the tumor has spread. Stereotactic radiation therapy and/or chemotherapy may also be used. - For infants and young children who previously received chemotherapy only and have a local recurrence, treatment may be chemotherapy with radiation therapy to the tumor and the area close to it. Surgery to remove the tumor may also be done. - For patients who previously received radiation therapy, high-dose chemotherapy and stem cell rescue may be used. It is not known whether this treatment improves survival. - Targeted therapy with a signal transduction inhibitor for patients whose cancer has certain changes in the genes. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood central nervous system embryonal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Adult Hodgkin Lymphoma ?
Key Points - Adult Hodgkin lymphoma is a disease in which malignant (cancer) cells form in the lymph system. - There are two main types of Hodgkin lymphoma: classical and nodular lymphocyte-predominant. - Age, gender, and Epstein-Barr infection can affect the risk of adult Hodgkin lymphoma. - Signs of adult Hodgkin lymphoma include swollen lymph nodes, fever, night sweats, and weight loss. - Tests that examine the lymph nodes are used to detect (find) and diagnose adult Hodgkin lymphoma. - Certain factors affect prognosis (chance of recovery) and treatment options. Adult Hodgkin lymphoma is a disease in which malignant (cancer) cells form in the lymph system. Adult Hodgkin lymphoma is a type of cancer that develops in the lymph system, part of the body's immune system. The immune system protects the body from foreign substances, infection, and diseases. The lymph system is made up of the following: - Lymph: Colorless, watery fluid that carries white blood cells called lymphocytes through the lymph system. Lymphocytes protect the body against infections and the growth of tumors. - Lymph vessels: A network of thin tubes that collect lymph from different parts of the body and return it to the bloodstream. - Lymph nodes: Small, bean-shaped structures that filter lymph and store white blood cells that help fight infection and disease. Lymph nodes are located along the network of lymph vessels found throughout the body. Clusters of lymph nodes are found in the neck, underarm, abdomen, pelvis, and groin. - Spleen: An organ that makes lymphocytes, filters the blood, stores blood cells, and destroys old blood cells. It is located on the left side of the abdomen near the stomach. - Thymus: An organ in which lymphocytes grow and multiply. The thymus is in the chest behind the breastbone. - Tonsils: Two small masses of lymph tissue at the back of the throat. The tonsils make lymphocytes. - Bone marrow: The soft, spongy tissue in the center of large bones. Bone marrow makes white blood cells, red blood cells, and platelets. Lymph tissue is also found in other parts of the body such as the stomach, thyroid gland, brain, and skin. Cancer can spread to the liver and lungs. Lymphomas are divided into two general types: Hodgkin lymphoma and non-Hodgkin lymphoma. This summary is about the treatment of adult Hodgkin lymphoma. (See the PDQ summary on Adult Non-Hodgkin Lymphoma Treatment for more information.) Hodgkin lymphoma can occur in both adults and children. Treatment for adults is different than treatment for children. Hodgkin lymphoma may also occur in patients who have acquired immunodeficiency syndrome (AIDS); these patients require special treatment. See the following PDQ summaries for more information: - Childhood Hodgkin Lymphoma Treatment - AIDS-Related Lymphoma Treatment Hodgkin lymphoma in pregnant women is the same as the disease in nonpregnant women of childbearing age. However, treatment is different for pregnant women. This summary includes information about treating Hodgkin lymphoma during pregnancy. There are two main types of Hodgkin lymphoma: classical and nodular lymphocyte-predominant. Most Hodgkin lymphomas are the classical type. The classical type is broken down into the following four subtypes: - Nodular sclerosing Hodgkin lymphoma. - Mixed cellularity Hodgkin lymphoma. - Lymphocyte depletion Hodgkin lymphoma. - Lymphocyte-rich classical Hodgkin lymphoma.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Adult Hodgkin Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Adult Hodgkin lymphoma is a disease in which malignant (cancer) cells form in the lymph system. - There are two main types of Hodgkin lymphoma: classical and nodular lymphocyte-predominant. - Age, gender, and Epstein-Barr infection can affect the risk of adult Hodgkin lymphoma. - Signs of adult Hodgkin lymphoma include swollen lymph nodes, fever, night sweats, and weight loss. - Tests that examine the lymph nodes are used to detect (find) and diagnose adult Hodgkin lymphoma. - Certain factors affect prognosis (chance of recovery) and treatment options. Adult Hodgkin lymphoma is a disease in which malignant (cancer) cells form in the lymph system. Adult Hodgkin lymphoma is a type of cancer that develops in the lymph system, part of the body's immune system. The immune system protects the body from foreign substances, infection, and diseases. The lymph system is made up of the following: - Lymph: Colorless, watery fluid that carries white blood cells called lymphocytes through the lymph system. Lymphocytes protect the body against infections and the growth of tumors. - Lymph vessels: A network of thin tubes that collect lymph from different parts of the body and return it to the bloodstream. - Lymph nodes: Small, bean-shaped structures that filter lymph and store white blood cells that help fight infection and disease. Lymph nodes are located along the network of lymph vessels found throughout the body. Clusters of lymph nodes are found in the neck, underarm, abdomen, pelvis, and groin. - Spleen: An organ that makes lymphocytes, filters the blood, stores blood cells, and destroys old blood cells. It is located on the left side of the abdomen near the stomach. - Thymus: An organ in which lymphocytes grow and multiply. The thymus is in the chest behind the breastbone. - Tonsils: Two small masses of lymph tissue at the back of the throat. The tonsils make lymphocytes. - Bone marrow: The soft, spongy tissue in the center of large bones. Bone marrow makes white blood cells, red blood cells, and platelets. Lymph tissue is also found in other parts of the body such as the stomach, thyroid gland, brain, and skin. Cancer can spread to the liver and lungs. Lymphomas are divided into two general types: Hodgkin lymphoma and non-Hodgkin lymphoma. This summary is about the treatment of adult Hodgkin lymphoma. (See the PDQ summary on Adult Non-Hodgkin Lymphoma Treatment for more information.) Hodgkin lymphoma can occur in both adults and children. Treatment for adults is different than treatment for children. Hodgkin lymphoma may also occur in patients who have acquired immunodeficiency syndrome (AIDS); these patients require special treatment. See the following PDQ summaries for more information: - Childhood Hodgkin Lymphoma Treatment - AIDS-Related Lymphoma Treatment Hodgkin lymphoma in pregnant women is the same as the disease in nonpregnant women of childbearing age. However, treatment is different for pregnant women. This summary includes information about treating Hodgkin lymphoma during pregnancy. There are two main types of Hodgkin lymphoma: classical and nodular lymphocyte-predominant. Most Hodgkin lymphomas are the classical type. The classical type is broken down into the following four subtypes: - Nodular sclerosing Hodgkin lymphoma. - Mixed cellularity Hodgkin lymphoma. - Lymphocyte depletion Hodgkin lymphoma. - Lymphocyte-rich classical Hodgkin lymphoma.<|eot_id|>
Who is at risk for Adult Hodgkin Lymphoma? ?
Age, gender, and Epstein-Barr infection can affect the risk of adult Hodgkin lymphoma. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for adult Hodgkin lymphoma include the following: - Being in young or late adulthood. - Being male. - Being infected with the Epstein-Barr virus. - Having a first-degree relative (parent, brother, or sister) with Hodgkin lymphoma. Pregnancy is not a risk factor for Hodgkin lymphoma.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Adult Hodgkin Lymphoma? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Age, gender, and Epstein-Barr infection can affect the risk of adult Hodgkin lymphoma. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for adult Hodgkin lymphoma include the following: - Being in young or late adulthood. - Being male. - Being infected with the Epstein-Barr virus. - Having a first-degree relative (parent, brother, or sister) with Hodgkin lymphoma. Pregnancy is not a risk factor for Hodgkin lymphoma.<|eot_id|>
What are the symptoms of Adult Hodgkin Lymphoma ?
Signs of adult Hodgkin lymphoma include swollen lymph nodes, fever, night sweats, and weight loss. These and other signs and symptoms may be caused by adult Hodgkin lymphoma or by other conditions. Check with your doctor if any of the following do not go away: - Painless, swollen lymph nodes in the neck, underarm, or groin. - Fever for no known reason. - Drenching night sweats. - Weight loss for no known reason. - Itchy skin. - Feeling very tired.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Adult Hodgkin Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs of adult Hodgkin lymphoma include swollen lymph nodes, fever, night sweats, and weight loss. These and other signs and symptoms may be caused by adult Hodgkin lymphoma or by other conditions. Check with your doctor if any of the following do not go away: - Painless, swollen lymph nodes in the neck, underarm, or groin. - Fever for no known reason. - Drenching night sweats. - Weight loss for no known reason. - Itchy skin. - Feeling very tired.<|eot_id|>
How to diagnose Adult Hodgkin Lymphoma ?
Tests that examine the lymph nodes are used to detect (find) and diagnose adult Hodgkin lymphoma. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient's past illnesses and treatments will also be taken. - Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells, white blood cells, and platelets. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the sample made up of red blood cells. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Sedimentation rate : A procedure in which a sample of blood is drawn and checked for the rate at which the red blood cells settle to the bottom of the test tube. The sedimentation rate is a measure of how much inflammation is in the body. A higher than normal sedimentation rate may be a sign of lymphoma or another condition. Also called erythrocyte sedimentation rate, sed rate, or ESR. - Lymph node biopsy : The removal of all or part of a lymph node. One of the following types of biopsies may be done: - Excisional biopsy : The removal of an entire lymph node. - Incisional biopsy : The removal of part of a lymph node. - Core biopsy : The removal of part of a lymph node using a wide needle. A pathologist views the tissue under a microscope to look for cancer cells, especially Reed-Sternberg cells. Reed-Sternberg cells are common in classical Hodgkin lymphoma. The following test may be done on tissue that was removed: - Immunophenotyping : A laboratory test used to identify cells, based on the types of antigens or markers on the surface of the cell. This test is used to diagnose the specific type of lymphoma by comparing the cancer cells to normal cells of the immune system.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Adult Hodgkin Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the lymph nodes are used to detect (find) and diagnose adult Hodgkin lymphoma. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient's past illnesses and treatments will also be taken. - Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells, white blood cells, and platelets. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the sample made up of red blood cells. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Sedimentation rate : A procedure in which a sample of blood is drawn and checked for the rate at which the red blood cells settle to the bottom of the test tube. The sedimentation rate is a measure of how much inflammation is in the body. A higher than normal sedimentation rate may be a sign of lymphoma or another condition. Also called erythrocyte sedimentation rate, sed rate, or ESR. - Lymph node biopsy : The removal of all or part of a lymph node. One of the following types of biopsies may be done: - Excisional biopsy : The removal of an entire lymph node. - Incisional biopsy : The removal of part of a lymph node. - Core biopsy : The removal of part of a lymph node using a wide needle. A pathologist views the tissue under a microscope to look for cancer cells, especially Reed-Sternberg cells. Reed-Sternberg cells are common in classical Hodgkin lymphoma. The following test may be done on tissue that was removed: - Immunophenotyping : A laboratory test used to identify cells, based on the types of antigens or markers on the surface of the cell. This test is used to diagnose the specific type of lymphoma by comparing the cancer cells to normal cells of the immune system.<|eot_id|>
What is the outlook for Adult Hodgkin Lymphoma ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The patient's signs and symptoms. - The stage of the cancer. - The type of Hodgkin lymphoma. - Blood test results. - The patient's age, gender, and general health. - Whether the cancer is recurrent or progressive. For Hodgkin lymphoma during pregnancy, treatment options also depend on: - The wishes of the patient. - The age of the fetus. Adult Hodgkin lymphoma can usually be cured if found and treated early.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Adult Hodgkin Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The patient's signs and symptoms. - The stage of the cancer. - The type of Hodgkin lymphoma. - Blood test results. - The patient's age, gender, and general health. - Whether the cancer is recurrent or progressive. For Hodgkin lymphoma during pregnancy, treatment options also depend on: - The wishes of the patient. - The age of the fetus. Adult Hodgkin lymphoma can usually be cured if found and treated early.<|eot_id|>
what research (or clinical trials) is being done for Adult Hodgkin Lymphoma ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemotherapy and radiation therapy with stem cell transplant High-dose chemotherapy and radiation therapy with stem cell transplant is a way of giving high doses of chemotherapy and radiation therapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After therapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. The use of lower-dose chemotherapy and radiation therapy with stem cell transplant is also being studied. Monoclonal antibody therapy Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Adult Hodgkin Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemotherapy and radiation therapy with stem cell transplant High-dose chemotherapy and radiation therapy with stem cell transplant is a way of giving high doses of chemotherapy and radiation therapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After therapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. The use of lower-dose chemotherapy and radiation therapy with stem cell transplant is also being studied. Monoclonal antibody therapy Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What are the stages of Adult Hodgkin Lymphoma ?
Key Points - After adult Hodgkin lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. - There are three ways that cancer spreads in the body. - Stages of adult Hodgkin lymphoma may include A, B, E, and S. - The following stages are used for adult Hodgkin lymphoma: - Stage I - Stage II - Stage III - Stage IV - Adult Hodgkin lymphoma may be grouped for treatment as follows: - Early Favorable - Early Unfavorable - Advanced After adult Hodgkin lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. The process used to find out if cancer has spread within the lymph system or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. For adult Hodgkin lymphoma, CT scans of the neck, chest, abdomen, and pelvis are taken. - PET-CT scan : A procedure that combines the pictures from a positron emission tomography (PET) scan and a computed tomography (CT) scan. The PET and CT scans are done at the same time on the same machine. The pictures from both scans are combined to make a more detailed picture than either test would make by itself. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for signs of cancer. For pregnant women with Hodgkin lymphoma, staging tests that protect the fetus from the harms of radiation are used. These include: - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Stages of adult Hodgkin lymphoma may include A, B, E, and S. Adult Hodgkin lymphoma may be described as follows: - A: The patient does not have B symptoms (fever, weight loss, or night sweats). - B: The patient has B symptoms. - E: Cancer is found in an organ or tissue that is not part of the lymph system but which may be next to an involved area of the lymph system. - S: Cancer is found in the spleen. The following stages are used for adult Hodgkin lymphoma: Stage I Stage I is divided into stage I and stage IE. - Stage I: Cancer is found in one of the following places in the lymph system: - One or more lymph nodes in one lymph node group. - Waldeyer's ring. - Thymus. - Spleen. - Stage IE: Cancer is found outside the lymph system in one organ or area. Stage II Stage II is divided into stage II and stage IIE. - Stage II: Cancer is found in two or more lymph node groups either above or below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIE: Cancer is found in one or more lymph node groups either above or below the diaphragm and outside the lymph nodes in a nearby organ or area. Stage III Stage III is divided into stage III, stage IIIE, stage IIIS, and stage IIIE,S. - Stage III: Cancer is found in lymph node groups above and below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIIE: Cancer is found in lymph node groups above and below the diaphragm and outside the lymph nodes in a nearby organ or area. - Stage IIIS: Cancer is found in lymph node groups above and below the diaphragm, and in the spleen. - Stage IIIE,S: Cancer is found in lymph node groups above and below the diaphragm, outside the lymph nodes in a nearby organ or area, and in the spleen. Stage IV In stage IV, the cancer: - is found outside the lymph nodes throughout one or more organs, and may be in lymph nodes near those organs; or - is found outside the lymph nodes in one organ and has spread to areas far away from that organ; or - is found in the lung, liver, bone marrow, or cerebrospinal fluid (CSF). The cancer has not spread to the lung, liver, bone marrow, or CSF from nearby areas. Adult Hodgkin lymphoma may be grouped for treatment as follows: Early Favorable Early favorable adult Hodgkin lymphoma is stage I or stage II, without risk factors. Early Unfavorable Early unfavorable adult Hodgkin lymphoma is stage I or stage II with one or more of the following risk factors: - A tumor in the chest that is larger than 1/3 of the width of the chest or at least 10 centimeters. - Cancer in an organ other than the lymph nodes. - A high sedimentation rate (in a sample of blood, the red blood cells settle to the bottom of the test tube more quickly than normal). - Three or more lymph nodes with cancer. - Symptoms such as fever, weight loss, or night sweats. Advanced Advanced Hodgkin lymphoma includes some or all of the following risk factors: - Being male. - Being aged 45 years or older. - Having stage IV disease. - Having a low blood albumin (protein) level (below 4). - Having a low hemoglobin level (below 10.5). - Having a high white blood cell count (15,000 or higher). - Having a low lymphocyte count (below 600 or less than 8% of the white blood cell count).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Adult Hodgkin Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After adult Hodgkin lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. - There are three ways that cancer spreads in the body. - Stages of adult Hodgkin lymphoma may include A, B, E, and S. - The following stages are used for adult Hodgkin lymphoma: - Stage I - Stage II - Stage III - Stage IV - Adult Hodgkin lymphoma may be grouped for treatment as follows: - Early Favorable - Early Unfavorable - Advanced After adult Hodgkin lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. The process used to find out if cancer has spread within the lymph system or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. For adult Hodgkin lymphoma, CT scans of the neck, chest, abdomen, and pelvis are taken. - PET-CT scan : A procedure that combines the pictures from a positron emission tomography (PET) scan and a computed tomography (CT) scan. The PET and CT scans are done at the same time on the same machine. The pictures from both scans are combined to make a more detailed picture than either test would make by itself. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for signs of cancer. For pregnant women with Hodgkin lymphoma, staging tests that protect the fetus from the harms of radiation are used. These include: - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Stages of adult Hodgkin lymphoma may include A, B, E, and S. Adult Hodgkin lymphoma may be described as follows: - A: The patient does not have B symptoms (fever, weight loss, or night sweats). - B: The patient has B symptoms. - E: Cancer is found in an organ or tissue that is not part of the lymph system but which may be next to an involved area of the lymph system. - S: Cancer is found in the spleen. The following stages are used for adult Hodgkin lymphoma: Stage I Stage I is divided into stage I and stage IE. - Stage I: Cancer is found in one of the following places in the lymph system: - One or more lymph nodes in one lymph node group. - Waldeyer's ring. - Thymus. - Spleen. - Stage IE: Cancer is found outside the lymph system in one organ or area. Stage II Stage II is divided into stage II and stage IIE. - Stage II: Cancer is found in two or more lymph node groups either above or below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIE: Cancer is found in one or more lymph node groups either above or below the diaphragm and outside the lymph nodes in a nearby organ or area. Stage III Stage III is divided into stage III, stage IIIE, stage IIIS, and stage IIIE,S. - Stage III: Cancer is found in lymph node groups above and below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIIE: Cancer is found in lymph node groups above and below the diaphragm and outside the lymph nodes in a nearby organ or area. - Stage IIIS: Cancer is found in lymph node groups above and below the diaphragm, and in the spleen. - Stage IIIE,S: Cancer is found in lymph node groups above and below the diaphragm, outside the lymph nodes in a nearby organ or area, and in the spleen. Stage IV In stage IV, the cancer: - is found outside the lymph nodes throughout one or more organs, and may be in lymph nodes near those organs; or - is found outside the lymph nodes in one organ and has spread to areas far away from that organ; or - is found in the lung, liver, bone marrow, or cerebrospinal fluid (CSF). The cancer has not spread to the lung, liver, bone marrow, or CSF from nearby areas. Adult Hodgkin lymphoma may be grouped for treatment as follows: Early Favorable Early favorable adult Hodgkin lymphoma is stage I or stage II, without risk factors. Early Unfavorable Early unfavorable adult Hodgkin lymphoma is stage I or stage II with one or more of the following risk factors: - A tumor in the chest that is larger than 1/3 of the width of the chest or at least 10 centimeters. - Cancer in an organ other than the lymph nodes. - A high sedimentation rate (in a sample of blood, the red blood cells settle to the bottom of the test tube more quickly than normal). - Three or more lymph nodes with cancer. - Symptoms such as fever, weight loss, or night sweats. Advanced Advanced Hodgkin lymphoma includes some or all of the following risk factors: - Being male. - Being aged 45 years or older. - Having stage IV disease. - Having a low blood albumin (protein) level (below 4). - Having a low hemoglobin level (below 10.5). - Having a high white blood cell count (15,000 or higher). - Having a low lymphocyte count (below 600 or less than 8% of the white blood cell count).<|eot_id|>
What are the treatments for Adult Hodgkin Lymphoma ?
Key Points - There are different types of treatment for patients with adult Hodgkin lymphoma. - Patients with Hodgkin lymphoma should have their treatment planned by a team of health care providers with expertise in treating lymphomas. - Patients may develop late effects that appear months or years after their treatment for Hodgkin lymphoma. - Three types of standard treatment are used: - Chemotherapy - Radiation therapy - Surgery - For pregnant patients with Hodgkin lymphoma, treatment options also include: - Watchful waiting - Steroid therapy - New types of treatment are being tested in clinical trials. - Chemotherapy and radiation therapy with stem cell transplant - Monoclonal antibody therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with adult Hodgkin lymphoma. Different types of treatment are available for patients with adult Hodgkin lymphoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. For pregnant women with Hodgkin lymphoma, treatment is carefully chosen to protect the fetus. Treatment decisions are based on the mothers wishes, the stage of the Hodgkin lymphoma, and the age of the fetus. The treatment plan may change as the signs and symptoms, cancer, and pregnancy change. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Patients with Hodgkin lymphoma should have their treatment planned by a team of health care providers with expertise in treating lymphomas. Treatment will be overseen by a medical oncologist, a doctor who specializes in treating cancer. The medical oncologist may refer you to other health care providers who have experience and expertise in treating adult Hodgkin lymphoma and who specialize in certain areas of medicine. These may include the following specialists: - Neurosurgeon. - Neurologist. - Rehabilitation specialist. - Radiation oncologist. - Endocrinologist. - Hematologist. - Other oncology specialists. Patients may develop late effects that appear months or years after their treatment for Hodgkin lymphoma. Treatment with chemotherapy and/or radiation therapy for Hodgkin lymphoma may increase the risk of second cancers and other health problems for many months or years after treatment. These late effects depend on the type of treatment and the patient's age when treated, and may include: - Acute myelogenous leukemia. - Cancer of the breast, bone, cervix, gastrointestinal tract, head and neck, lung, soft tissue, and thyroid. - Heart, lung, and thyroid disease. - Avascular necrosis of bone (death of bone cells caused by lack of blood flow). - Herpes zoster (shingles) or severe infection. - Depression and fatigue. - Infertility. - Hypogonadism (low levels of testosterone and estrogen). Regular follow-up by doctors who are expert in finding and treating late effects is important for the long-term health of patients treated for Hodgkin lymphoma. Three types of standard treatment are used: Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Combination chemotherapy is treatment with more than one anticancer drug. When a pregnant woman is treated with chemotherapy for Hodgkin lymphoma, it isn't possible to protect the fetus from being exposed to the chemotherapy. Some chemotherapy regimens may cause birth defects if given in the first trimester. Vinblastine is an anticancer drug that has not been linked with birth defects when given in the second half of pregnancy. See Drugs Approved for Hodgkin Lymphoma for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat adult Hodgkin lymphoma. For a pregnant woman with Hodgkin lymphoma, radiation therapy should be postponed until after delivery, if possible, to avoid any risk to the fetus. If immediate treatment is needed, the woman may decide to continue the pregnancy and receive radiation therapy. However, lead used to shield the fetus may not protect it from scattered radiation that could possibly cause cancer in the future. Surgery Laparotomy is a procedure in which an incision (cut) is made in the wall of the abdomen to check the inside of the abdomen for signs of disease. The size of the incision depends on the reason the laparotomy is being done. Sometimes organs are removed or tissue samples are taken and checked under a microscope for signs of disease. If cancer is found, the tissue or organ is removed during the laparotomy. For pregnant patients with Hodgkin lymphoma, treatment options also include: Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment unless signs or symptoms appear or change. Delivery may be induced when the fetus is 32 to 36 weeks old, so that the mother can begin treatment. Steroid therapy Steroids are hormones made naturally in the body by the adrenal glands and by reproductive organs. Some types of steroids are made in a laboratory. Certain steroid drugs have been found to help chemotherapy work better and help stop the growth of cancer cells. Steroids can also help the lungs of the fetus develop faster than normal. This is important when delivery is induced early. See Drugs Approved for Hodgkin Lymphoma for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemotherapy and radiation therapy with stem cell transplant High-dose chemotherapy and radiation therapy with stem cell transplant is a way of giving high doses of chemotherapy and radiation therapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After therapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. The use of lower-dose chemotherapy and radiation therapy with stem cell transplant is also being studied. Monoclonal antibody therapy Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Adult Hodgkin Lymphoma Early Favorable Hodgkin Lymphoma Treatment of early favorable Hodgkin lymphoma may include the following: - Combination chemotherapy. - Combination chemotherapy with radiation therapy to parts of the body with cancer. - Radiation therapy alone to areas of the body with cancer or to the mantle field (neck, chest, armpits). Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I adult Hodgkin lymphoma and stage II adult Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Early Unfavorable Hodgkin Lymphoma Treatment of early unfavorable Hodgkin lymphoma may include the following: - Combination chemotherapy. - Combination chemotherapy with radiation therapy to parts of the body with cancer. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I adult Hodgkin lymphoma and stage II adult Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Advanced Hodgkin Lymphoma Treatment of advanced Hodgkin lymphoma may include the following: - Combination chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III adult Hodgkin lymphoma and stage IV adult Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent Adult Hodgkin Lymphoma Treatment of recurrent Hodgkin lymphoma may include the following: - Combination chemotherapy. - Combination chemotherapy followed by high-dose chemotherapy and stem cell transplant with or without radiation therapy. - Combination chemotherapy with radiation therapy to parts of the body with cancer in patients older than 60 years. - Radiation therapy with or without chemotherapy. - Chemotherapy as palliative therapy to relieve symptoms and improve quality of life. - A clinical trial of high-dose chemotherapy and stem cell transplant. - A clinical trial of lower-dose chemotherapy and radiation therapy followed by stem cell transplant. - A clinical trial of a monoclonal antibody. - A clinical trial of chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent adult Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Treatment Options for Hodgkin Lymphoma During Pregnancy Hodgkin Lymphoma During the First Trimester of Pregnancy When Hodgkin lymphoma is diagnosed in the first trimester of pregnancy, it does not necessarily mean that the woman will be advised to end the pregnancy. Each woman's treatment will depend on the stage of the lymphoma, how fast it is growing, and her wishes. For women who choose to continue the pregnancy, treatment of Hodgkin lymphoma during the first trimester of pregnancy may include the following: - Watchful waiting when the cancer is above the diaphragm and is slow-growing. Delivery may be induced when the fetus is 32 to 36 weeks old so the mother can begin treatment. - Radiation therapy above the diaphragm. (A lead shield is used to protect the fetus from the radiation as much as possible.) - Systemic chemotherapy using one or more drugs. Hodgkin Lymphoma During the Second Half of Pregnancy When Hodgkin lymphoma is diagnosed in the second half of pregnancy, most women can delay treatment until after the baby is born. Treatment of Hodgkin lymphoma during the second half of pregnancy may include the following: - Watchful waiting, with plans to induce delivery when the fetus is 32 to 36 weeks old. - Systemic chemotherapy using one or more drugs. - Steroid therapy. - Radiation therapy to relieve breathing problems caused by a large tumor in the chest.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Adult Hodgkin Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with adult Hodgkin lymphoma. - Patients with Hodgkin lymphoma should have their treatment planned by a team of health care providers with expertise in treating lymphomas. - Patients may develop late effects that appear months or years after their treatment for Hodgkin lymphoma. - Three types of standard treatment are used: - Chemotherapy - Radiation therapy - Surgery - For pregnant patients with Hodgkin lymphoma, treatment options also include: - Watchful waiting - Steroid therapy - New types of treatment are being tested in clinical trials. - Chemotherapy and radiation therapy with stem cell transplant - Monoclonal antibody therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with adult Hodgkin lymphoma. Different types of treatment are available for patients with adult Hodgkin lymphoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. For pregnant women with Hodgkin lymphoma, treatment is carefully chosen to protect the fetus. Treatment decisions are based on the mothers wishes, the stage of the Hodgkin lymphoma, and the age of the fetus. The treatment plan may change as the signs and symptoms, cancer, and pregnancy change. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Patients with Hodgkin lymphoma should have their treatment planned by a team of health care providers with expertise in treating lymphomas. Treatment will be overseen by a medical oncologist, a doctor who specializes in treating cancer. The medical oncologist may refer you to other health care providers who have experience and expertise in treating adult Hodgkin lymphoma and who specialize in certain areas of medicine. These may include the following specialists: - Neurosurgeon. - Neurologist. - Rehabilitation specialist. - Radiation oncologist. - Endocrinologist. - Hematologist. - Other oncology specialists. Patients may develop late effects that appear months or years after their treatment for Hodgkin lymphoma. Treatment with chemotherapy and/or radiation therapy for Hodgkin lymphoma may increase the risk of second cancers and other health problems for many months or years after treatment. These late effects depend on the type of treatment and the patient's age when treated, and may include: - Acute myelogenous leukemia. - Cancer of the breast, bone, cervix, gastrointestinal tract, head and neck, lung, soft tissue, and thyroid. - Heart, lung, and thyroid disease. - Avascular necrosis of bone (death of bone cells caused by lack of blood flow). - Herpes zoster (shingles) or severe infection. - Depression and fatigue. - Infertility. - Hypogonadism (low levels of testosterone and estrogen). Regular follow-up by doctors who are expert in finding and treating late effects is important for the long-term health of patients treated for Hodgkin lymphoma. Three types of standard treatment are used: Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Combination chemotherapy is treatment with more than one anticancer drug. When a pregnant woman is treated with chemotherapy for Hodgkin lymphoma, it isn't possible to protect the fetus from being exposed to the chemotherapy. Some chemotherapy regimens may cause birth defects if given in the first trimester. Vinblastine is an anticancer drug that has not been linked with birth defects when given in the second half of pregnancy. See Drugs Approved for Hodgkin Lymphoma for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat adult Hodgkin lymphoma. For a pregnant woman with Hodgkin lymphoma, radiation therapy should be postponed until after delivery, if possible, to avoid any risk to the fetus. If immediate treatment is needed, the woman may decide to continue the pregnancy and receive radiation therapy. However, lead used to shield the fetus may not protect it from scattered radiation that could possibly cause cancer in the future. Surgery Laparotomy is a procedure in which an incision (cut) is made in the wall of the abdomen to check the inside of the abdomen for signs of disease. The size of the incision depends on the reason the laparotomy is being done. Sometimes organs are removed or tissue samples are taken and checked under a microscope for signs of disease. If cancer is found, the tissue or organ is removed during the laparotomy. For pregnant patients with Hodgkin lymphoma, treatment options also include: Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment unless signs or symptoms appear or change. Delivery may be induced when the fetus is 32 to 36 weeks old, so that the mother can begin treatment. Steroid therapy Steroids are hormones made naturally in the body by the adrenal glands and by reproductive organs. Some types of steroids are made in a laboratory. Certain steroid drugs have been found to help chemotherapy work better and help stop the growth of cancer cells. Steroids can also help the lungs of the fetus develop faster than normal. This is important when delivery is induced early. See Drugs Approved for Hodgkin Lymphoma for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemotherapy and radiation therapy with stem cell transplant High-dose chemotherapy and radiation therapy with stem cell transplant is a way of giving high doses of chemotherapy and radiation therapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After therapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. The use of lower-dose chemotherapy and radiation therapy with stem cell transplant is also being studied. Monoclonal antibody therapy Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Adult Hodgkin Lymphoma Early Favorable Hodgkin Lymphoma Treatment of early favorable Hodgkin lymphoma may include the following: - Combination chemotherapy. - Combination chemotherapy with radiation therapy to parts of the body with cancer. - Radiation therapy alone to areas of the body with cancer or to the mantle field (neck, chest, armpits). Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I adult Hodgkin lymphoma and stage II adult Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Early Unfavorable Hodgkin Lymphoma Treatment of early unfavorable Hodgkin lymphoma may include the following: - Combination chemotherapy. - Combination chemotherapy with radiation therapy to parts of the body with cancer. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I adult Hodgkin lymphoma and stage II adult Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Advanced Hodgkin Lymphoma Treatment of advanced Hodgkin lymphoma may include the following: - Combination chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III adult Hodgkin lymphoma and stage IV adult Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent Adult Hodgkin Lymphoma Treatment of recurrent Hodgkin lymphoma may include the following: - Combination chemotherapy. - Combination chemotherapy followed by high-dose chemotherapy and stem cell transplant with or without radiation therapy. - Combination chemotherapy with radiation therapy to parts of the body with cancer in patients older than 60 years. - Radiation therapy with or without chemotherapy. - Chemotherapy as palliative therapy to relieve symptoms and improve quality of life. - A clinical trial of high-dose chemotherapy and stem cell transplant. - A clinical trial of lower-dose chemotherapy and radiation therapy followed by stem cell transplant. - A clinical trial of a monoclonal antibody. - A clinical trial of chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent adult Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Treatment Options for Hodgkin Lymphoma During Pregnancy Hodgkin Lymphoma During the First Trimester of Pregnancy When Hodgkin lymphoma is diagnosed in the first trimester of pregnancy, it does not necessarily mean that the woman will be advised to end the pregnancy. Each woman's treatment will depend on the stage of the lymphoma, how fast it is growing, and her wishes. For women who choose to continue the pregnancy, treatment of Hodgkin lymphoma during the first trimester of pregnancy may include the following: - Watchful waiting when the cancer is above the diaphragm and is slow-growing. Delivery may be induced when the fetus is 32 to 36 weeks old so the mother can begin treatment. - Radiation therapy above the diaphragm. (A lead shield is used to protect the fetus from the radiation as much as possible.) - Systemic chemotherapy using one or more drugs. Hodgkin Lymphoma During the Second Half of Pregnancy When Hodgkin lymphoma is diagnosed in the second half of pregnancy, most women can delay treatment until after the baby is born. Treatment of Hodgkin lymphoma during the second half of pregnancy may include the following: - Watchful waiting, with plans to induce delivery when the fetus is 32 to 36 weeks old. - Systemic chemotherapy using one or more drugs. - Steroid therapy. - Radiation therapy to relieve breathing problems caused by a large tumor in the chest.<|eot_id|>
What is (are) Adult Acute Lymphoblastic Leukemia ?
Key Points - Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell). - Leukemia may affect red blood cells, white blood cells, and platelets. - Previous chemotherapy and exposure to radiation may increase the risk of developing ALL. - Signs and symptoms of adult ALL include fever, feeling tired, and easy bruising or bleeding. - Tests that examine the blood and bone marrow are used to detect (find) and diagnose adult ALL. - Certain factors affect prognosis (chance of recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell). Adult acute lymphoblastic leukemia (ALL; also called acute lymphocytic leukemia) is a cancer of the blood and bone marrow. This type of cancer usually gets worse quickly if it is not treated. Leukemia may affect red blood cells, white blood cells, and platelets. Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A myeloid stem cell becomes one of three types of mature blood cells: - Red blood cells that carry oxygen and other substances to all tissues of the body. - Platelets that form blood clots to stop bleeding. - Granulocytes (white blood cells) that fight infection and disease. A lymphoid stem cell becomes a lymphoblast cell and then one of three types of lymphocytes (white blood cells): - B lymphocytes that make antibodies to help fight infection. - T lymphocytes that help B lymphocytes make the antibodies that help fight infection. - Natural killer cells that attack cancer cells and viruses. In ALL, too many stem cells become lymphoblasts, B lymphocytes, or T lymphocytes. These cells are also called leukemia cells. These leukemia cells are not able to fight infection very well. Also, as the number of leukemia cells increases in the blood and bone marrow, there is less room for healthy white blood cells, red blood cells, and platelets. This may cause infection, anemia, and easy bleeding. The cancer can also spread to the central nervous system (brain and spinal cord). This summary is about adult acute lymphoblastic leukemia. See the following PDQ summaries for information about other types of leukemia: - Childhood Acute Lymphoblastic Leukemia Treatment. - Adult Acute Myeloid Leukemia Treatment. - Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment. - Chronic Lymphocytic Leukemia Treatment. - Chronic Myelogenous Leukemia Treatment. - Hairy Cell Leukemia Treatment.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Adult Acute Lymphoblastic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell). - Leukemia may affect red blood cells, white blood cells, and platelets. - Previous chemotherapy and exposure to radiation may increase the risk of developing ALL. - Signs and symptoms of adult ALL include fever, feeling tired, and easy bruising or bleeding. - Tests that examine the blood and bone marrow are used to detect (find) and diagnose adult ALL. - Certain factors affect prognosis (chance of recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell). Adult acute lymphoblastic leukemia (ALL; also called acute lymphocytic leukemia) is a cancer of the blood and bone marrow. This type of cancer usually gets worse quickly if it is not treated. Leukemia may affect red blood cells, white blood cells, and platelets. Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A myeloid stem cell becomes one of three types of mature blood cells: - Red blood cells that carry oxygen and other substances to all tissues of the body. - Platelets that form blood clots to stop bleeding. - Granulocytes (white blood cells) that fight infection and disease. A lymphoid stem cell becomes a lymphoblast cell and then one of three types of lymphocytes (white blood cells): - B lymphocytes that make antibodies to help fight infection. - T lymphocytes that help B lymphocytes make the antibodies that help fight infection. - Natural killer cells that attack cancer cells and viruses. In ALL, too many stem cells become lymphoblasts, B lymphocytes, or T lymphocytes. These cells are also called leukemia cells. These leukemia cells are not able to fight infection very well. Also, as the number of leukemia cells increases in the blood and bone marrow, there is less room for healthy white blood cells, red blood cells, and platelets. This may cause infection, anemia, and easy bleeding. The cancer can also spread to the central nervous system (brain and spinal cord). This summary is about adult acute lymphoblastic leukemia. See the following PDQ summaries for information about other types of leukemia: - Childhood Acute Lymphoblastic Leukemia Treatment. - Adult Acute Myeloid Leukemia Treatment. - Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment. - Chronic Lymphocytic Leukemia Treatment. - Chronic Myelogenous Leukemia Treatment. - Hairy Cell Leukemia Treatment.<|eot_id|>
What are the symptoms of Adult Acute Lymphoblastic Leukemia ?
Signs and symptoms of adult ALL include fever, feeling tired, and easy bruising or bleeding. The early signs and symptoms of ALL may be like the flu or other common diseases. Check with your doctor if you have any of the following: - Weakness or feeling tired. - Fever or night sweats. - Easy bruising or bleeding. - Petechiae (flat, pinpoint spots under the skin, caused by bleeding). - Shortness of breath. - Weight loss or loss of appetite. - Pain in the bones or stomach. - Pain or feeling of fullness below the ribs. - Painless lumps in the neck, underarm, stomach, or groin. - Having many infections. These and other signs and symptoms may be caused by adult acute lymphoblastic leukemia or by other conditions.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Adult Acute Lymphoblastic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of adult ALL include fever, feeling tired, and easy bruising or bleeding. The early signs and symptoms of ALL may be like the flu or other common diseases. Check with your doctor if you have any of the following: - Weakness or feeling tired. - Fever or night sweats. - Easy bruising or bleeding. - Petechiae (flat, pinpoint spots under the skin, caused by bleeding). - Shortness of breath. - Weight loss or loss of appetite. - Pain in the bones or stomach. - Pain or feeling of fullness below the ribs. - Painless lumps in the neck, underarm, stomach, or groin. - Having many infections. These and other signs and symptoms may be caused by adult acute lymphoblastic leukemia or by other conditions.<|eot_id|>
How to diagnose Adult Acute Lymphoblastic Leukemia ?
Tests that examine the blood and bone marrow are used to detect (find) and diagnose adult ALL. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as infection or anything else that seems unusual. A history of the patient's health habits and past illnesses and treatments will also be taken. - Complete blood count (CBC) with differential : A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells and platelets. - The number and type of white blood cells. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Peripheral blood smear : A procedure in which a sample of blood is checked for blast cells, the number and kinds of white blood cells, the number of platelets, and changes in the shape of blood cells. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for abnormal cells. The following tests may be done on the samples of blood or bone marrow tissue that are removed: - Cytogenetic analysis: A laboratory test in which the cells in a sample of blood or bone marrow are looked at under a microscope to find out if there are certain changes in the chromosomes of lymphocytes. For example, in Philadelphia chromosome positive ALL, part of one chromosome switches places with part of another chromosome. This is called the Philadelphia chromosome. - Immunophenotyping : A process used to identify cells, based on the types of antigens or markers on the surface of the cell. This process is used to diagnose the subtype of ALL by comparing the cancer cells to normal cells of the immune system. For example, a cytochemistry study may test the cells in a sample of tissue using chemicals (dyes) to look for certain changes in the sample. A chemical may cause a color change in one type of leukemia cell but not in another type of leukemia cell.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Adult Acute Lymphoblastic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the blood and bone marrow are used to detect (find) and diagnose adult ALL. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as infection or anything else that seems unusual. A history of the patient's health habits and past illnesses and treatments will also be taken. - Complete blood count (CBC) with differential : A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells and platelets. - The number and type of white blood cells. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Peripheral blood smear : A procedure in which a sample of blood is checked for blast cells, the number and kinds of white blood cells, the number of platelets, and changes in the shape of blood cells. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for abnormal cells. The following tests may be done on the samples of blood or bone marrow tissue that are removed: - Cytogenetic analysis: A laboratory test in which the cells in a sample of blood or bone marrow are looked at under a microscope to find out if there are certain changes in the chromosomes of lymphocytes. For example, in Philadelphia chromosome positive ALL, part of one chromosome switches places with part of another chromosome. This is called the Philadelphia chromosome. - Immunophenotyping : A process used to identify cells, based on the types of antigens or markers on the surface of the cell. This process is used to diagnose the subtype of ALL by comparing the cancer cells to normal cells of the immune system. For example, a cytochemistry study may test the cells in a sample of tissue using chemicals (dyes) to look for certain changes in the sample. A chemical may cause a color change in one type of leukemia cell but not in another type of leukemia cell.<|eot_id|>
What is the outlook for Adult Acute Lymphoblastic Leukemia ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The age of the patient. - Whether the cancer has spread to the brain or spinal cord. - Whether there are certain changes in the genes, including the Philadelphia chromosome. - Whether the cancer has been treated before or has recurred (come back).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Adult Acute Lymphoblastic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The age of the patient. - Whether the cancer has spread to the brain or spinal cord. - Whether there are certain changes in the genes, including the Philadelphia chromosome. - Whether the cancer has been treated before or has recurred (come back).<|eot_id|>
Who is at risk for Adult Acute Lymphoblastic Leukemia? ?
Previous chemotherapy and exposure to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Possible risk factors for ALL include the following: - Being male. - Being white. - Being older than 70. - Past treatment with chemotherapy or radiation therapy. - Being exposed to high levels of radiation in the environment (such as nuclear radiation). - Having certain genetic disorders, such as Down syndrome.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Adult Acute Lymphoblastic Leukemia? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Previous chemotherapy and exposure to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Possible risk factors for ALL include the following: - Being male. - Being white. - Being older than 70. - Past treatment with chemotherapy or radiation therapy. - Being exposed to high levels of radiation in the environment (such as nuclear radiation). - Having certain genetic disorders, such as Down syndrome.<|eot_id|>
What are the stages of Adult Acute Lymphoblastic Leukemia ?
Key Points - Once adult ALL has been diagnosed, tests are done to find out if the cancer has spread to the central nervous system (brain and spinal cord) or to other parts of the body. - There is no standard staging system for adult ALL. Once adult ALL has been diagnosed, tests are done to find out if the cancer has spread to the central nervous system (brain and spinal cord) or to other parts of the body. The extent or spread of cancer is usually described as stages. It is important to know whether the leukemia has spread outside the blood and bone marrow in order to plan treatment. The following tests and procedures may be used to determine if the leukemia has spread: - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - Lumbar puncture : A procedure used to collect a sample of cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs that leukemia cells have spread to the brain and spinal cord. This procedure is also called an LP or spinal tap. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). There is no standard staging system for adult ALL. The disease is described as untreated, in remission, or recurrent. Untreated adult ALL The ALL is newly diagnosed and has not been treated except to relieve signs and symptoms such as fever, bleeding, or pain. - The complete blood count is abnormal. - More than 5% of the cells in the bone marrow are blasts (leukemia cells). - There are signs and symptoms of leukemia. Adult ALL in remission The ALL has been treated. - The complete blood count is normal. - 5% or fewer of the cells in the bone marrow are blasts (leukemia cells). - There are no signs or symptoms of leukemia other than in the bone marrow.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Adult Acute Lymphoblastic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Once adult ALL has been diagnosed, tests are done to find out if the cancer has spread to the central nervous system (brain and spinal cord) or to other parts of the body. - There is no standard staging system for adult ALL. Once adult ALL has been diagnosed, tests are done to find out if the cancer has spread to the central nervous system (brain and spinal cord) or to other parts of the body. The extent or spread of cancer is usually described as stages. It is important to know whether the leukemia has spread outside the blood and bone marrow in order to plan treatment. The following tests and procedures may be used to determine if the leukemia has spread: - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - Lumbar puncture : A procedure used to collect a sample of cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs that leukemia cells have spread to the brain and spinal cord. This procedure is also called an LP or spinal tap. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). There is no standard staging system for adult ALL. The disease is described as untreated, in remission, or recurrent. Untreated adult ALL The ALL is newly diagnosed and has not been treated except to relieve signs and symptoms such as fever, bleeding, or pain. - The complete blood count is abnormal. - More than 5% of the cells in the bone marrow are blasts (leukemia cells). - There are signs and symptoms of leukemia. Adult ALL in remission The ALL has been treated. - The complete blood count is normal. - 5% or fewer of the cells in the bone marrow are blasts (leukemia cells). - There are no signs or symptoms of leukemia other than in the bone marrow.<|eot_id|>
What are the treatments for Adult Acute Lymphoblastic Leukemia ?
Key Points - There are different types of treatment for patients with adult ALL. - The treatment of adult ALL usually has two phases. - Four types of standard treatment are used: - Chemotherapy - Radiation therapy - Chemotherapy with stem cell transplant - Targeted therapy - New types of treatment are being tested in clinical trials. - Biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Patients with ALL may have late effects after treatment. - Follow-up tests may be needed. There are different types of treatment for patients with adult ALL. Different types of treatment are available for patients with adult acute lymphoblastic leukemia (ALL). Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. The treatment of adult ALL usually has two phases. The treatment of adult ALL is done in phases: - Remission induction therapy: This is the first phase of treatment. The goal is to kill the leukemia cells in the blood and bone marrow. This puts the leukemia into remission. - Post-remission therapy: This is the second phase of treatment. It begins once the leukemia is in remission. The goal of post-remission therapy is to kill any remaining leukemia cells that may not be active but could begin to regrow and cause a relapse. This phase is also called remission continuation therapy. Treatment called central nervous system (CNS) sanctuary therapy is usually given during each phase of therapy. Because standard doses of chemotherapy may not reach leukemia cells in the CNS (brain and spinal cord), the cells are able to "find sanctuary" (hide) in the CNS. Systemic chemotherapy given in high doses, intrathecal chemotherapy, and radiation therapy to the brain are able to reach leukemia cells in the CNS. They are given to kill the leukemia cells and lessen the chance the leukemia will recur (come back). CNS sanctuary therapy is also called CNS prophylaxis. Four types of standard treatment are used: Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid (intrathecal chemotherapy), an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type and stage of the cancer being treated. Intrathecal chemotherapy may be used to treat adult ALL that has spread, or may spread, to the brain and spinal cord. When used to lessen the chance leukemia cells will spread to the brain and spinal cord, it is called central nervous system (CNS) sanctuary therapy or CNS prophylaxis. See Drugs Approved for Acute Lymphoblastic Leukemia for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer. External radiation therapy may be used to treat adult ALL that has spread, or may spread, to the brain and spinal cord. When used this way, it is called central nervous system (CNS) sanctuary therapy or CNS prophylaxis. External radiation therapy may also be used as palliative therapy to relieve symptoms and improve quality of life. Chemotherapy with stem cell transplant Stem cell transplant is a method of giving chemotherapy and replacing blood-forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. See Drugs Approved for Acute Lymphoblastic Leukemia for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Targeted therapy drugs called tyrosine kinase inhibitors are used to treat some types of adult ALL. These drugs block the enzyme, tyrosine kinase, that causes stem cells to develop into more white blood cells (blasts) than the body needs. Three of the drugs used are imatinib mesylate (Gleevec), dasatinib, and nilotinib. See Drugs Approved for Acute Lymphoblastic Leukemia for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Patients with ALL may have late effects after treatment. Side effects from cancer treatment that begin during or after treatment and continue for months or years are called late effects. Late effects of treatment for ALL may include the risk of second cancers (new types of cancer). Regular follow-up exams are very important for long-term survivors. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Adult Acute Lymphoblastic Leukemia Untreated Adult Acute Lymphoblastic Leukemia Standard treatment of adult acute lymphoblastic leukemia (ALL) during the remission induction phase includes the following: - Combination chemotherapy. - Tyrosine kinase inhibitor therapy with imatinib mesylate, in certain patients. Some of these patients will also have combination chemotherapy. - Supportive care including antibiotics and red blood cell and platelet transfusions. - CNS prophylaxis therapy including chemotherapy (intrathecal and/or systemic) with or without radiation therapy to the brain. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated adult acute lymphoblastic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Adult Acute Lymphoblastic Leukemia in Remission Standard treatment of adult ALL during the post-remission phase includes the following: - Chemotherapy. - Tyrosine kinase inhibitor therapy. - Chemotherapy with stem cell transplant. - CNS prophylaxis therapy including chemotherapy (intrathecal and/or systemic) with or without radiation therapy to the brain. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult acute lymphoblastic leukemia in remission. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent Adult Acute Lymphoblastic Leukemia Standard treatment of recurrent adult ALL may include the following: - Combination chemotherapy followed by stem cell transplant. - Low-dose radiation therapy as palliative care to relieve symptoms and improve the quality of life. - Tyrosine kinase inhibitor therapy with dasatinib for certain patients. Some of the treatments being studied in clinical trials for recurrent adult ALL include the following: - A clinical trial of stem cell transplant using the patient's stem cells. - A clinical trial of biologic therapy. - A clinical trial of new anticancer drugs. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent adult acute lymphoblastic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Adult Acute Lymphoblastic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with adult ALL. - The treatment of adult ALL usually has two phases. - Four types of standard treatment are used: - Chemotherapy - Radiation therapy - Chemotherapy with stem cell transplant - Targeted therapy - New types of treatment are being tested in clinical trials. - Biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Patients with ALL may have late effects after treatment. - Follow-up tests may be needed. There are different types of treatment for patients with adult ALL. Different types of treatment are available for patients with adult acute lymphoblastic leukemia (ALL). Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. The treatment of adult ALL usually has two phases. The treatment of adult ALL is done in phases: - Remission induction therapy: This is the first phase of treatment. The goal is to kill the leukemia cells in the blood and bone marrow. This puts the leukemia into remission. - Post-remission therapy: This is the second phase of treatment. It begins once the leukemia is in remission. The goal of post-remission therapy is to kill any remaining leukemia cells that may not be active but could begin to regrow and cause a relapse. This phase is also called remission continuation therapy. Treatment called central nervous system (CNS) sanctuary therapy is usually given during each phase of therapy. Because standard doses of chemotherapy may not reach leukemia cells in the CNS (brain and spinal cord), the cells are able to "find sanctuary" (hide) in the CNS. Systemic chemotherapy given in high doses, intrathecal chemotherapy, and radiation therapy to the brain are able to reach leukemia cells in the CNS. They are given to kill the leukemia cells and lessen the chance the leukemia will recur (come back). CNS sanctuary therapy is also called CNS prophylaxis. Four types of standard treatment are used: Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid (intrathecal chemotherapy), an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type and stage of the cancer being treated. Intrathecal chemotherapy may be used to treat adult ALL that has spread, or may spread, to the brain and spinal cord. When used to lessen the chance leukemia cells will spread to the brain and spinal cord, it is called central nervous system (CNS) sanctuary therapy or CNS prophylaxis. See Drugs Approved for Acute Lymphoblastic Leukemia for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer. External radiation therapy may be used to treat adult ALL that has spread, or may spread, to the brain and spinal cord. When used this way, it is called central nervous system (CNS) sanctuary therapy or CNS prophylaxis. External radiation therapy may also be used as palliative therapy to relieve symptoms and improve quality of life. Chemotherapy with stem cell transplant Stem cell transplant is a method of giving chemotherapy and replacing blood-forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. See Drugs Approved for Acute Lymphoblastic Leukemia for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Targeted therapy drugs called tyrosine kinase inhibitors are used to treat some types of adult ALL. These drugs block the enzyme, tyrosine kinase, that causes stem cells to develop into more white blood cells (blasts) than the body needs. Three of the drugs used are imatinib mesylate (Gleevec), dasatinib, and nilotinib. See Drugs Approved for Acute Lymphoblastic Leukemia for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Patients with ALL may have late effects after treatment. Side effects from cancer treatment that begin during or after treatment and continue for months or years are called late effects. Late effects of treatment for ALL may include the risk of second cancers (new types of cancer). Regular follow-up exams are very important for long-term survivors. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Adult Acute Lymphoblastic Leukemia Untreated Adult Acute Lymphoblastic Leukemia Standard treatment of adult acute lymphoblastic leukemia (ALL) during the remission induction phase includes the following: - Combination chemotherapy. - Tyrosine kinase inhibitor therapy with imatinib mesylate, in certain patients. Some of these patients will also have combination chemotherapy. - Supportive care including antibiotics and red blood cell and platelet transfusions. - CNS prophylaxis therapy including chemotherapy (intrathecal and/or systemic) with or without radiation therapy to the brain. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated adult acute lymphoblastic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Adult Acute Lymphoblastic Leukemia in Remission Standard treatment of adult ALL during the post-remission phase includes the following: - Chemotherapy. - Tyrosine kinase inhibitor therapy. - Chemotherapy with stem cell transplant. - CNS prophylaxis therapy including chemotherapy (intrathecal and/or systemic) with or without radiation therapy to the brain. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult acute lymphoblastic leukemia in remission. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent Adult Acute Lymphoblastic Leukemia Standard treatment of recurrent adult ALL may include the following: - Combination chemotherapy followed by stem cell transplant. - Low-dose radiation therapy as palliative care to relieve symptoms and improve the quality of life. - Tyrosine kinase inhibitor therapy with dasatinib for certain patients. Some of the treatments being studied in clinical trials for recurrent adult ALL include the following: - A clinical trial of stem cell transplant using the patient's stem cells. - A clinical trial of biologic therapy. - A clinical trial of new anticancer drugs. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent adult acute lymphoblastic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Chronic Myeloproliferative Neoplasms ?
Key Points - Myeloproliferative neoplasms are a group of diseases in which the bone marrow makes too many red blood cells, white blood cells, or platelets. - There are 6 types of chronic myeloproliferative neoplasms. - Tests that examine the blood and bone marrow are used to detect (find) and diagnose chronic myeloproliferative neoplasms. Myeloproliferative neoplasms are a group of diseases in which the bone marrow makes too many red blood cells, white blood cells, or platelets. Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A lymphoid stem cell becomes a white blood cell. A myeloid stem cell becomes one of three types of mature blood cells: - Red blood cells that carry oxygen and other substances to all tissues of the body. - White blood cells that fight infection and disease. - Platelets that form blood clots to stop bleeding. In myeloproliferative neoplasms, too many blood stem cells become one or more types of blood cells. The neoplasms usually get worse slowly as the number of extra blood cells increases. There are 6 types of chronic myeloproliferative neoplasms. The type of myeloproliferative neoplasm is based on whether too many red blood cells, white blood cells, or platelets are being made. Sometimes the body will make too many of more than one type of blood cell, but usually one type of blood cell is affected more than the others are. Chronic myeloproliferative neoplasms include the following 6 types: - Chronic myelogenous leukemia. - Polycythemia vera. - Primary myelofibrosis (also called chronic idiopathic myelofibrosis). - Essential thrombocythemia. - Chronic neutrophilic leukemia. - Chronic eosinophilic leukemia. These types are described below. Chronic myeloproliferative neoplasms sometimes become acute leukemia, in which too many abnormal white blood cells are made.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Chronic Myeloproliferative Neoplasms ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Myeloproliferative neoplasms are a group of diseases in which the bone marrow makes too many red blood cells, white blood cells, or platelets. - There are 6 types of chronic myeloproliferative neoplasms. - Tests that examine the blood and bone marrow are used to detect (find) and diagnose chronic myeloproliferative neoplasms. Myeloproliferative neoplasms are a group of diseases in which the bone marrow makes too many red blood cells, white blood cells, or platelets. Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A lymphoid stem cell becomes a white blood cell. A myeloid stem cell becomes one of three types of mature blood cells: - Red blood cells that carry oxygen and other substances to all tissues of the body. - White blood cells that fight infection and disease. - Platelets that form blood clots to stop bleeding. In myeloproliferative neoplasms, too many blood stem cells become one or more types of blood cells. The neoplasms usually get worse slowly as the number of extra blood cells increases. There are 6 types of chronic myeloproliferative neoplasms. The type of myeloproliferative neoplasm is based on whether too many red blood cells, white blood cells, or platelets are being made. Sometimes the body will make too many of more than one type of blood cell, but usually one type of blood cell is affected more than the others are. Chronic myeloproliferative neoplasms include the following 6 types: - Chronic myelogenous leukemia. - Polycythemia vera. - Primary myelofibrosis (also called chronic idiopathic myelofibrosis). - Essential thrombocythemia. - Chronic neutrophilic leukemia. - Chronic eosinophilic leukemia. These types are described below. Chronic myeloproliferative neoplasms sometimes become acute leukemia, in which too many abnormal white blood cells are made.<|eot_id|>
How to diagnose Chronic Myeloproliferative Neoplasms ?
Tests that examine the blood and bone marrow are used to detect (find) and diagnose chronic myeloproliferative neoplasms. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Complete blood count (CBC) with differential : A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells and platelets. - The number and type of white blood cells. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Peripheral blood smear : A procedure in which a sample of blood is checked for the following: - Whether there are red blood cells shaped like teardrops. - The number and kinds of white blood cells. - The number of platelets. - Whether there are blast cells. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for abnormal cells. - Cytogenetic analysis : A test in which cells in a sample of blood or bone marrow are viewed under a microscope to look for certain changes in the chromosomes. Certain diseases or disorders may be diagnosed or ruled out based on the chromosomal changes. - Gene mutation test: A laboratory test done on a bone marrow or blood sample to check for mutations in JAK2 , MPL , or CALR genes. A JAK2 gene mutation is often found in patients with polycythemia vera, essential thrombocythemia, or primary myelofibrosis. MPL or CALR gene mutations are found in patients with essential thrombocythemia or primary myelofibrosis.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Chronic Myeloproliferative Neoplasms ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the blood and bone marrow are used to detect (find) and diagnose chronic myeloproliferative neoplasms. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Complete blood count (CBC) with differential : A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells and platelets. - The number and type of white blood cells. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Peripheral blood smear : A procedure in which a sample of blood is checked for the following: - Whether there are red blood cells shaped like teardrops. - The number and kinds of white blood cells. - The number of platelets. - Whether there are blast cells. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for abnormal cells. - Cytogenetic analysis : A test in which cells in a sample of blood or bone marrow are viewed under a microscope to look for certain changes in the chromosomes. Certain diseases or disorders may be diagnosed or ruled out based on the chromosomal changes. - Gene mutation test: A laboratory test done on a bone marrow or blood sample to check for mutations in JAK2 , MPL , or CALR genes. A JAK2 gene mutation is often found in patients with polycythemia vera, essential thrombocythemia, or primary myelofibrosis. MPL or CALR gene mutations are found in patients with essential thrombocythemia or primary myelofibrosis.<|eot_id|>
What are the stages of Chronic Myeloproliferative Neoplasms ?
Key Points - There is no standard staging system for chronic myeloproliferative neoplasms. There is no standard staging system for chronic myeloproliferative neoplasms. Staging is the process used to find out how far the cancer has spread. There is no standard staging system for chronic myeloproliferative neoplasms. Treatment is based on the type of myeloproliferative neoplasm the patient has. It is important to know the type in order to plan treatment.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Chronic Myeloproliferative Neoplasms ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There is no standard staging system for chronic myeloproliferative neoplasms. There is no standard staging system for chronic myeloproliferative neoplasms. Staging is the process used to find out how far the cancer has spread. There is no standard staging system for chronic myeloproliferative neoplasms. Treatment is based on the type of myeloproliferative neoplasm the patient has. It is important to know the type in order to plan treatment.<|eot_id|>
What are the treatments for Chronic Myeloproliferative Neoplasms ?
Key Points - There are different types of treatment for patients with chronic myeloproliferative neoplasms. - Eleven types of standard treatment are used: - Watchful waiting - Phlebotomy - Platelet apheresis - Transfusion therapy - Chemotherapy - Radiation therapy - Other drug therapy - Surgery - Biologic therapy - Targeted therapy - High-dose chemotherapy with stem cell transplant - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with chronic myeloproliferative neoplasms. Different types of treatments are available for patients with chronic myeloproliferative neoplasms. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Eleven types of standard treatment are used: Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. Phlebotomy Phlebotomy is a procedure in which blood is taken from a vein. A sample of blood may be taken for tests such as a CBC or blood chemistry. Sometimes phlebotomy is used as a treatment and blood is taken from the body to remove extra red blood cells. Phlebotomy is used in this way to treat some chronic myeloproliferative neoplasms. Platelet apheresis Platelet apheresis is a treatment that uses a special machine to remove platelets from the blood. Blood is taken from the patient and put through a blood cell separator where the platelets are removed. The rest of the blood is then returned to the patients bloodstream. Transfusion therapy Transfusion therapy (blood transfusion) is a method of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or cancer treatment. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Myeloproliferative Neoplasms for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer being treated. External radiation therapy is used to treat chronic myeloproliferative neoplasms, and is usually directed at the spleen. Other drug therapy Prednisone and danazol are drugs that may be used to treat anemia in patients with primary myelofibrosis. Anagrelide therapy is used to reduce the risk of blood clots in patients who have too many platelets in their blood. Low-dose aspirin may also be used to reduce the risk of blood clots. Thalidomide, lenalidomide, and pomalidomide are drugs that prevent blood vessels from growing into areas of tumor cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Surgery Splenectomy (surgery to remove the spleen) may be done if the spleen is enlarged. Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer or other diseases. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against disease. This type of treatment is also called biotherapy or immunotherapy. Interferon alfa and pegylated interferon alpha are biologic agents commonly used to treat some chronic myeloproliferative neoplasms. Erythropoietic growth factors are also biologic agents. They are used to stimulate the bone marrow to make red blood cells. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Ruxolitinib is a tyrosine kinase inhibitor used to treat certain types of myelofibrosis. See Drugs Approved for Myeloproliferative Neoplasms for more information. Other types of targeted therapies are being studied in clinical trials. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a method of giving high doses of chemotherapy and replacing blood-forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Chronic Myeloproliferative Neoplasms Chronic Myelogenous Leukemia See the PDQ summary about Chronic Myelogenous Leukemia Treatment for information. Polycythemia Vera The purpose of treatment for polycythemia vera is to reduce the number of extra blood cells. Treatment of polycythemia vera may include the following: - Phlebotomy. - Chemotherapy with or without phlebotomy. - Biologic therapy using interferon alfa or pegylated interferon alpha. - Low-dose aspirin. Check the list of NCI-supported cancer clinical trials that are now accepting patients with polycythemia vera. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Primary Myelofibrosis Treatment of primary myelofibrosis in patients without signs or symptoms is usually watchful waiting. Patients with primary myelofibrosis may have signs or symptoms of anemia. Anemia is usually treated with transfusion of red blood cells to relieve symptoms and improve quality of life. In addition, anemia may be treated with: - Erythropoietic growth factors. - Prednisone. - Danazol. - Thalidomide, lenalidomide, or pomalidomide, with or without prednisone. Treatment of primary myelofibrosis in patients with other signs or symptoms may include the following: - Targeted therapy with ruxolitinib. - Chemotherapy. - Donor stem cell transplant. - Thalidomide, lenalidomide, or pomalidomide. - Splenectomy. - Radiation therapy to the spleen, lymph nodes, or other areas outside the bone marrow where blood cells are forming. - Biologic therapy using interferon alfa or erythropoietic growth factors. - A clinical trial of other targeted therapy drugs. Check the list of NCI-supported cancer clinical trials that are now accepting patients with primary myelofibrosis. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Essential Thrombocythemia Treatment of essential thrombocythemia in patients younger than 60 years who have no signs or symptoms and an acceptable platelet count is usually watchful waiting. Treatment of other patients may include the following: - Chemotherapy. - Anagrelide therapy. - Biologic therapy using interferon alfa or pegylated interferon alpha. - Platelet apheresis. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with essential thrombocythemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Chronic Neutrophilic Leukemia Treatment of chronic neutrophilic leukemia may include the following: - Donor bone marrow transplant. - Chemotherapy. - Biologic therapy using interferon alfa. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with chronic neutrophilic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Chronic Eosinophilic Leukemia Treatment of chronic eosinophilic leukemia may include the following: - Bone marrow transplant. - Biologic therapy using interferon alfa. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with chronic eosinophilic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Chronic Myeloproliferative Neoplasms ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with chronic myeloproliferative neoplasms. - Eleven types of standard treatment are used: - Watchful waiting - Phlebotomy - Platelet apheresis - Transfusion therapy - Chemotherapy - Radiation therapy - Other drug therapy - Surgery - Biologic therapy - Targeted therapy - High-dose chemotherapy with stem cell transplant - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with chronic myeloproliferative neoplasms. Different types of treatments are available for patients with chronic myeloproliferative neoplasms. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Eleven types of standard treatment are used: Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. Phlebotomy Phlebotomy is a procedure in which blood is taken from a vein. A sample of blood may be taken for tests such as a CBC or blood chemistry. Sometimes phlebotomy is used as a treatment and blood is taken from the body to remove extra red blood cells. Phlebotomy is used in this way to treat some chronic myeloproliferative neoplasms. Platelet apheresis Platelet apheresis is a treatment that uses a special machine to remove platelets from the blood. Blood is taken from the patient and put through a blood cell separator where the platelets are removed. The rest of the blood is then returned to the patients bloodstream. Transfusion therapy Transfusion therapy (blood transfusion) is a method of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or cancer treatment. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Myeloproliferative Neoplasms for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer being treated. External radiation therapy is used to treat chronic myeloproliferative neoplasms, and is usually directed at the spleen. Other drug therapy Prednisone and danazol are drugs that may be used to treat anemia in patients with primary myelofibrosis. Anagrelide therapy is used to reduce the risk of blood clots in patients who have too many platelets in their blood. Low-dose aspirin may also be used to reduce the risk of blood clots. Thalidomide, lenalidomide, and pomalidomide are drugs that prevent blood vessels from growing into areas of tumor cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Surgery Splenectomy (surgery to remove the spleen) may be done if the spleen is enlarged. Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer or other diseases. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against disease. This type of treatment is also called biotherapy or immunotherapy. Interferon alfa and pegylated interferon alpha are biologic agents commonly used to treat some chronic myeloproliferative neoplasms. Erythropoietic growth factors are also biologic agents. They are used to stimulate the bone marrow to make red blood cells. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Ruxolitinib is a tyrosine kinase inhibitor used to treat certain types of myelofibrosis. See Drugs Approved for Myeloproliferative Neoplasms for more information. Other types of targeted therapies are being studied in clinical trials. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a method of giving high doses of chemotherapy and replacing blood-forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Chronic Myeloproliferative Neoplasms Chronic Myelogenous Leukemia See the PDQ summary about Chronic Myelogenous Leukemia Treatment for information. Polycythemia Vera The purpose of treatment for polycythemia vera is to reduce the number of extra blood cells. Treatment of polycythemia vera may include the following: - Phlebotomy. - Chemotherapy with or without phlebotomy. - Biologic therapy using interferon alfa or pegylated interferon alpha. - Low-dose aspirin. Check the list of NCI-supported cancer clinical trials that are now accepting patients with polycythemia vera. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Primary Myelofibrosis Treatment of primary myelofibrosis in patients without signs or symptoms is usually watchful waiting. Patients with primary myelofibrosis may have signs or symptoms of anemia. Anemia is usually treated with transfusion of red blood cells to relieve symptoms and improve quality of life. In addition, anemia may be treated with: - Erythropoietic growth factors. - Prednisone. - Danazol. - Thalidomide, lenalidomide, or pomalidomide, with or without prednisone. Treatment of primary myelofibrosis in patients with other signs or symptoms may include the following: - Targeted therapy with ruxolitinib. - Chemotherapy. - Donor stem cell transplant. - Thalidomide, lenalidomide, or pomalidomide. - Splenectomy. - Radiation therapy to the spleen, lymph nodes, or other areas outside the bone marrow where blood cells are forming. - Biologic therapy using interferon alfa or erythropoietic growth factors. - A clinical trial of other targeted therapy drugs. Check the list of NCI-supported cancer clinical trials that are now accepting patients with primary myelofibrosis. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Essential Thrombocythemia Treatment of essential thrombocythemia in patients younger than 60 years who have no signs or symptoms and an acceptable platelet count is usually watchful waiting. Treatment of other patients may include the following: - Chemotherapy. - Anagrelide therapy. - Biologic therapy using interferon alfa or pegylated interferon alpha. - Platelet apheresis. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with essential thrombocythemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Chronic Neutrophilic Leukemia Treatment of chronic neutrophilic leukemia may include the following: - Donor bone marrow transplant. - Chemotherapy. - Biologic therapy using interferon alfa. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with chronic neutrophilic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Chronic Eosinophilic Leukemia Treatment of chronic eosinophilic leukemia may include the following: - Bone marrow transplant. - Biologic therapy using interferon alfa. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with chronic eosinophilic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Parathyroid Cancer ?
Key Points - Parathyroid cancer is a rare disease in which malignant (cancer) cells form in the tissues of a parathyroid gland. - Having certain inherited disorders can increase the risk of developing parathyroid cancer. - Signs and symptoms of parathyroid cancer include weakness, feeling tired, and a lump in the neck. - Tests that examine the neck and blood are used to detect (find) and diagnose parathyroid cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Parathyroid cancer is a rare disease in which malignant (cancer) cells form in the tissues of a parathyroid gland. The parathyroid glands are four pea-sized organs found in the neck near the thyroid gland. The parathyroid glands make parathyroid hormone (PTH or parathormone). PTH helps the body use and store calcium to keep the calcium in the blood at normal levels. A parathyroid gland may become overactive and make too much PTH, a condition called hyperparathyroidism. Hyperparathyroidism can occur when a benign tumor (noncancer), called an adenoma, forms on one of the parathyroid glands, and causes it to grow and become overactive. Sometimes hyperparathyroidism can be caused by parathyroid cancer, but this is very rare. The extra PTH causes: - The calcium stored in the bones to move into the blood. - The intestines to absorb more calcium from the food we eat. This condition is called hypercalcemia (too much calcium in the blood). The hypercalcemia caused by hyperparathyroidism is more serious and life-threatening than parathyroid cancer itself and treating hypercalcemia is as important as treating the cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Parathyroid Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Parathyroid cancer is a rare disease in which malignant (cancer) cells form in the tissues of a parathyroid gland. - Having certain inherited disorders can increase the risk of developing parathyroid cancer. - Signs and symptoms of parathyroid cancer include weakness, feeling tired, and a lump in the neck. - Tests that examine the neck and blood are used to detect (find) and diagnose parathyroid cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Parathyroid cancer is a rare disease in which malignant (cancer) cells form in the tissues of a parathyroid gland. The parathyroid glands are four pea-sized organs found in the neck near the thyroid gland. The parathyroid glands make parathyroid hormone (PTH or parathormone). PTH helps the body use and store calcium to keep the calcium in the blood at normal levels. A parathyroid gland may become overactive and make too much PTH, a condition called hyperparathyroidism. Hyperparathyroidism can occur when a benign tumor (noncancer), called an adenoma, forms on one of the parathyroid glands, and causes it to grow and become overactive. Sometimes hyperparathyroidism can be caused by parathyroid cancer, but this is very rare. The extra PTH causes: - The calcium stored in the bones to move into the blood. - The intestines to absorb more calcium from the food we eat. This condition is called hypercalcemia (too much calcium in the blood). The hypercalcemia caused by hyperparathyroidism is more serious and life-threatening than parathyroid cancer itself and treating hypercalcemia is as important as treating the cancer.<|eot_id|>
Who is at risk for Parathyroid Cancer? ?
Having certain inherited disorders can increase the risk of developing parathyroid cancer. Anything that increases the chance of getting a disease is called a risk factor. Risk factors for parathyroid cancer include the following rare disorders that are inherited (passed down from parent to child): - Familial isolated hyperparathyroidism (FIHP). - Multiple endocrine neoplasia type 1 (MEN1) syndrome. Treatment with radiation therapy may increase the risk of developing a parathyroid adenoma.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Parathyroid Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Having certain inherited disorders can increase the risk of developing parathyroid cancer. Anything that increases the chance of getting a disease is called a risk factor. Risk factors for parathyroid cancer include the following rare disorders that are inherited (passed down from parent to child): - Familial isolated hyperparathyroidism (FIHP). - Multiple endocrine neoplasia type 1 (MEN1) syndrome. Treatment with radiation therapy may increase the risk of developing a parathyroid adenoma.<|eot_id|>
What are the symptoms of Parathyroid Cancer ?
Signs and symptoms of parathyroid cancer include weakness, feeling tired, and a lump in the neck. Most parathyroid cancer signs and symptoms are caused by the hypercalcemia that develops. Signs and symptoms of hypercalcemia include the following: - Weakness. - Feeling very tired. - Nausea and vomiting. - Loss of appetite. - Weight loss for no known reason. - Being much more thirsty than usual. - Urinating much more than usual. - Constipation. - Trouble thinking clearly. Other signs and symptoms of parathyroid cancer include the following: - Pain in the abdomen, side, or back that doesn't go away. - Pain in the bones. - A broken bone. - A lump in the neck. - Change in voice such as hoarseness. - Trouble swallowing. Other conditions may cause the same signs and symptoms as parathyroid cancer. Check with your doctor if you have any of these problems.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Parathyroid Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of parathyroid cancer include weakness, feeling tired, and a lump in the neck. Most parathyroid cancer signs and symptoms are caused by the hypercalcemia that develops. Signs and symptoms of hypercalcemia include the following: - Weakness. - Feeling very tired. - Nausea and vomiting. - Loss of appetite. - Weight loss for no known reason. - Being much more thirsty than usual. - Urinating much more than usual. - Constipation. - Trouble thinking clearly. Other signs and symptoms of parathyroid cancer include the following: - Pain in the abdomen, side, or back that doesn't go away. - Pain in the bones. - A broken bone. - A lump in the neck. - Change in voice such as hoarseness. - Trouble swallowing. Other conditions may cause the same signs and symptoms as parathyroid cancer. Check with your doctor if you have any of these problems.<|eot_id|>
How to diagnose Parathyroid Cancer ?
Tests that examine the neck and blood are used to detect (find) and diagnose parathyroid cancer. Once blood tests are done and hyperparathyroidism is diagnosed, imaging tests may be done to help find which of the parathyroid glands is overactive. Sometimes the parathyroid glands are hard to find and imaging tests are done to find exactly where they are. Parathyroid cancer may be hard to diagnose because the cells of a benign parathyroid adenoma and a malignant parathyroid cancer look alike. The patient's symptoms, blood levels of calcium and parathyroid hormone, and characteristics of the tumor are also used to make a diagnosis. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. To diagnose parathyroid cancer, the sample of blood is checked for its calcium level. - Parathyroid hormone test: A procedure in which a blood sample is checked to measure the amount of parathyroid hormone released into the blood by the parathyroid glands. A higher than normal amount of parathyroid hormone can be a sign of disease. - Sestamibi scan : A type of radionuclide scan used to find an overactive parathyroid gland. A very small amount of a radioactive substance called technetium 99 is injected into a vein and travels through the bloodstream to the parathyroid gland. The radioactive substance will collect in the overactive gland and show up brightly on a special camera that detects radioactivity. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - SPECT scan (single photon emission computed tomography scan): A procedure that uses a special camera linked to a computer to make a 3-dimensional (3-D) picture. A very small amount of a radioactive substance is injected into a vein. As the substance travels through the blood, the camera rotates around the neck and takes pictures. Blood flow and metabolism are higher than normal in areas where cancer cells are growing. These areas will show up brighter in the picture. This procedure may be done just before or after a CT scan. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. - Angiogram : A procedure to look at blood vessels and the flow of blood. A contrast dye is injected into the blood vessel. As the contrast dye moves through the blood vessel, x-rays are taken to see if there are any blockages. - Venous sampling : A procedure in which a sample of blood is taken from specific veins and checked to measure the amounts of certain substances released into the blood by nearby organs and tissues. If imaging tests do not show which parathyroid gland is overactive, blood samples may be taken from veins near each parathyroid gland to find which one is making too much PTH.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Parathyroid Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the neck and blood are used to detect (find) and diagnose parathyroid cancer. Once blood tests are done and hyperparathyroidism is diagnosed, imaging tests may be done to help find which of the parathyroid glands is overactive. Sometimes the parathyroid glands are hard to find and imaging tests are done to find exactly where they are. Parathyroid cancer may be hard to diagnose because the cells of a benign parathyroid adenoma and a malignant parathyroid cancer look alike. The patient's symptoms, blood levels of calcium and parathyroid hormone, and characteristics of the tumor are also used to make a diagnosis. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. To diagnose parathyroid cancer, the sample of blood is checked for its calcium level. - Parathyroid hormone test: A procedure in which a blood sample is checked to measure the amount of parathyroid hormone released into the blood by the parathyroid glands. A higher than normal amount of parathyroid hormone can be a sign of disease. - Sestamibi scan : A type of radionuclide scan used to find an overactive parathyroid gland. A very small amount of a radioactive substance called technetium 99 is injected into a vein and travels through the bloodstream to the parathyroid gland. The radioactive substance will collect in the overactive gland and show up brightly on a special camera that detects radioactivity. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - SPECT scan (single photon emission computed tomography scan): A procedure that uses a special camera linked to a computer to make a 3-dimensional (3-D) picture. A very small amount of a radioactive substance is injected into a vein. As the substance travels through the blood, the camera rotates around the neck and takes pictures. Blood flow and metabolism are higher than normal in areas where cancer cells are growing. These areas will show up brighter in the picture. This procedure may be done just before or after a CT scan. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. - Angiogram : A procedure to look at blood vessels and the flow of blood. A contrast dye is injected into the blood vessel. As the contrast dye moves through the blood vessel, x-rays are taken to see if there are any blockages. - Venous sampling : A procedure in which a sample of blood is taken from specific veins and checked to measure the amounts of certain substances released into the blood by nearby organs and tissues. If imaging tests do not show which parathyroid gland is overactive, blood samples may be taken from veins near each parathyroid gland to find which one is making too much PTH.<|eot_id|>
What is the outlook for Parathyroid Cancer ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - Whether the calcium level in the blood can be controlled. - The stage of the cancer. - Whether the tumor and the capsule around the tumor can be completely removed by surgery. - The patient's general health.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Parathyroid Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - Whether the calcium level in the blood can be controlled. - The stage of the cancer. - Whether the tumor and the capsule around the tumor can be completely removed by surgery. - The patient's general health.<|eot_id|>
What are the stages of Parathyroid Cancer ?
Key Points - After parathyroid cancer has been diagnosed, tests are done to find out if cancer cells have spread to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - There is no standard staging process for parathyroid cancer. After parathyroid cancer has been diagnosed, tests are done to find out if cancer cells have spread to other parts of the body. The process used to find out if cancer has spread to other parts of the body is called staging. The following imaging tests may be used to determine if cancer has spread to other parts of the body such as the lungs, liver, bone, heart, pancreas, or lymph nodes: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if parathyroid cancer spreads to the lung, the cancer cells in the lung are actually parathyroid cancer cells. The disease is metastatic parathyroid cancer, not lung cancer. There is no standard staging process for parathyroid cancer. Parathyroid cancer is described as either localized or metastatic: - Localized parathyroid cancer is found in a parathyroid gland and may have spread to nearby tissues. - Metastatic parathyroid cancer has spread to other parts of the body, such as the lungs, liver, bone, sac around the heart, pancreas, or lymph nodes.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Parathyroid Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After parathyroid cancer has been diagnosed, tests are done to find out if cancer cells have spread to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - There is no standard staging process for parathyroid cancer. After parathyroid cancer has been diagnosed, tests are done to find out if cancer cells have spread to other parts of the body. The process used to find out if cancer has spread to other parts of the body is called staging. The following imaging tests may be used to determine if cancer has spread to other parts of the body such as the lungs, liver, bone, heart, pancreas, or lymph nodes: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if parathyroid cancer spreads to the lung, the cancer cells in the lung are actually parathyroid cancer cells. The disease is metastatic parathyroid cancer, not lung cancer. There is no standard staging process for parathyroid cancer. Parathyroid cancer is described as either localized or metastatic: - Localized parathyroid cancer is found in a parathyroid gland and may have spread to nearby tissues. - Metastatic parathyroid cancer has spread to other parts of the body, such as the lungs, liver, bone, sac around the heart, pancreas, or lymph nodes.<|eot_id|>
What are the treatments for Parathyroid Cancer ?
Key Points - There are different types of treatment for patients with parathyroid cancer. - Treatment includes control of hypercalcemia (too much calcium in the blood) in patients who have an overactive parathyroid gland. - Four types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Supportive care - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with parathyroid cancer. Different types of treatment are available for patients with parathyroid cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Treatment includes control of hypercalcemia (too much calcium in the blood) in patients who have an overactive parathyroid gland. In order to reduce the amount of parathyroid hormone that is being made and control the level of calcium in the blood, as much of the tumor as possible is removed in surgery. For patients who cannot have surgery, medication may be used. Four types of standard treatment are used: Surgery Surgery (removing the cancer in an operation) is the most common treatment for parathyroid cancer that is in the parathyroid glands or has spread to other parts of the body. Because parathyroid cancer grows very slowly, cancer that has spread to other parts of the body may be removed by surgery in order to cure the patient or control the effects of the disease for a long time. Before surgery, treatment is given to control hypercalcemia. The following surgical procedures may be used: - En bloc resection: Surgery to remove the entire parathyroid gland and the capsule around it. Sometimes lymph nodes, half of the thyroid gland on the same side of the body as the cancer, and muscles, tissues, and a nerve in the neck are also removed. - Tumor debulking: A surgical procedure in which as much of the tumor as possible is removed. Some tumors cannot be completely removed. - Metastasectomy: Surgery to remove any cancer that has spread to distant organs such as the lung. Surgery for parathyroid cancer sometimes damages nerves of the vocal cords. There are treatments to help with speech problems caused by this nerve damage. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat parathyroid cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Supportive care Supportive care is given to lessen the problems caused by the disease or its treatment. Supportive care for hypercalcemia caused by parathyroid cancer may include the following: - Intravenous (IV) fluids. - Drugs that increase how much urine the body makes. - Drugs that stop the body from absorbing calcium from the food we eat. - Drugs that stop the parathyroid gland from making parathyroid hormone. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Parathyroid cancer often recurs. Patients should have regular check-ups for the rest of their lives, to find and treat recurrences early. Treatment Options for Parathyroid Cancer Localized Parathyroid Cancer Treatment of localized parathyroid cancer may include the following: - Surgery (en bloc resection). - Surgery followed by radiation therapy. - Radiation therapy. - Supportive care to treat hypercalcemia (too much calcium in the blood). Check the list of NCI-supported cancer clinical trials that are now accepting patients with localized parathyroid cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Metastatic Parathyroid Cancer Treatment of metastatic parathyroid cancer may include the following: - Surgery (metastasectomy) to remove cancer from the places where it has spread. - Surgery followed by radiation therapy. - Radiation therapy. - Chemotherapy. - Supportive care to treat hypercalcemia (too much calcium in the blood). Check the list of NCI-supported cancer clinical trials that are now accepting patients with metastatic parathyroid cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent Parathyroid Cancer Treatment of recurrent parathyroid cancer may include the following: - Surgery (metastasectomy) to remove cancer from the places where it has recurred. - Surgery (tumor debulking). - Surgery followed by radiation therapy. - Radiation therapy. - Chemotherapy. - Supportive care to treat hypercalcemia (too much calcium in the blood). Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent parathyroid cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Parathyroid Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with parathyroid cancer. - Treatment includes control of hypercalcemia (too much calcium in the blood) in patients who have an overactive parathyroid gland. - Four types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Supportive care - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with parathyroid cancer. Different types of treatment are available for patients with parathyroid cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Treatment includes control of hypercalcemia (too much calcium in the blood) in patients who have an overactive parathyroid gland. In order to reduce the amount of parathyroid hormone that is being made and control the level of calcium in the blood, as much of the tumor as possible is removed in surgery. For patients who cannot have surgery, medication may be used. Four types of standard treatment are used: Surgery Surgery (removing the cancer in an operation) is the most common treatment for parathyroid cancer that is in the parathyroid glands or has spread to other parts of the body. Because parathyroid cancer grows very slowly, cancer that has spread to other parts of the body may be removed by surgery in order to cure the patient or control the effects of the disease for a long time. Before surgery, treatment is given to control hypercalcemia. The following surgical procedures may be used: - En bloc resection: Surgery to remove the entire parathyroid gland and the capsule around it. Sometimes lymph nodes, half of the thyroid gland on the same side of the body as the cancer, and muscles, tissues, and a nerve in the neck are also removed. - Tumor debulking: A surgical procedure in which as much of the tumor as possible is removed. Some tumors cannot be completely removed. - Metastasectomy: Surgery to remove any cancer that has spread to distant organs such as the lung. Surgery for parathyroid cancer sometimes damages nerves of the vocal cords. There are treatments to help with speech problems caused by this nerve damage. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat parathyroid cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Supportive care Supportive care is given to lessen the problems caused by the disease or its treatment. Supportive care for hypercalcemia caused by parathyroid cancer may include the following: - Intravenous (IV) fluids. - Drugs that increase how much urine the body makes. - Drugs that stop the body from absorbing calcium from the food we eat. - Drugs that stop the parathyroid gland from making parathyroid hormone. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Parathyroid cancer often recurs. Patients should have regular check-ups for the rest of their lives, to find and treat recurrences early. Treatment Options for Parathyroid Cancer Localized Parathyroid Cancer Treatment of localized parathyroid cancer may include the following: - Surgery (en bloc resection). - Surgery followed by radiation therapy. - Radiation therapy. - Supportive care to treat hypercalcemia (too much calcium in the blood). Check the list of NCI-supported cancer clinical trials that are now accepting patients with localized parathyroid cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Metastatic Parathyroid Cancer Treatment of metastatic parathyroid cancer may include the following: - Surgery (metastasectomy) to remove cancer from the places where it has spread. - Surgery followed by radiation therapy. - Radiation therapy. - Chemotherapy. - Supportive care to treat hypercalcemia (too much calcium in the blood). Check the list of NCI-supported cancer clinical trials that are now accepting patients with metastatic parathyroid cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent Parathyroid Cancer Treatment of recurrent parathyroid cancer may include the following: - Surgery (metastasectomy) to remove cancer from the places where it has recurred. - Surgery (tumor debulking). - Surgery followed by radiation therapy. - Radiation therapy. - Chemotherapy. - Supportive care to treat hypercalcemia (too much calcium in the blood). Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent parathyroid cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
what research (or clinical trials) is being done for Parathyroid Cancer ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Parathyroid Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Lip and Oral Cavity Cancer ?
Key Points - Lip and oral cavity cancer is a disease in which malignant (cancer) cells form in the lips or mouth. - Tobacco and alcohol use can affect the risk of lip and oral cavity cancer. - Signs of lip and oral cavity cancer include a sore or lump on the lips or in the mouth. - Tests that examine the mouth and throat are used to detect (find), diagnose, and stage lip and oral cavity cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Lip and oral cavity cancer is a disease in which malignant (cancer) cells form in the lips or mouth. The oral cavity includes the following: - The front two thirds of the tongue. - The gingiva (gums). - The buccal mucosa (the lining of the inside of the cheeks). - The floor (bottom) of the mouth under the tongue. - The hard palate (the roof of the mouth). - The retromolar trigone (the small area behind the wisdom teeth). Most lip and oral cavity cancers start in squamous cells, the thin, flat cells that line the lips and oral cavity. These are called squamous cell carcinomas. Cancer cells may spread into deeper tissue as the cancer grows. Squamous cell carcinoma usually develops in areas of leukoplakia (white patches of cells that do not rub off). Lip and oral cavity cancer is a type of head and neck cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Lip and Oral Cavity Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Lip and oral cavity cancer is a disease in which malignant (cancer) cells form in the lips or mouth. - Tobacco and alcohol use can affect the risk of lip and oral cavity cancer. - Signs of lip and oral cavity cancer include a sore or lump on the lips or in the mouth. - Tests that examine the mouth and throat are used to detect (find), diagnose, and stage lip and oral cavity cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Lip and oral cavity cancer is a disease in which malignant (cancer) cells form in the lips or mouth. The oral cavity includes the following: - The front two thirds of the tongue. - The gingiva (gums). - The buccal mucosa (the lining of the inside of the cheeks). - The floor (bottom) of the mouth under the tongue. - The hard palate (the roof of the mouth). - The retromolar trigone (the small area behind the wisdom teeth). Most lip and oral cavity cancers start in squamous cells, the thin, flat cells that line the lips and oral cavity. These are called squamous cell carcinomas. Cancer cells may spread into deeper tissue as the cancer grows. Squamous cell carcinoma usually develops in areas of leukoplakia (white patches of cells that do not rub off). Lip and oral cavity cancer is a type of head and neck cancer.<|eot_id|>