input
stringlengths
16
191
output
stringlengths
6
29k
instruction
stringclasses
1 value
prompt
stringlengths
296
29.3k
What are the treatments for Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies ?
Key Points - There are different types of treatment for children with acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), juvenile myelomonocytic leukemia (JMML), or myelodysplastic syndromes (MDS). - Treatment is planned by a team of health care providers who are experts in treating childhood leukemia and other diseases of the blood. - Some cancer treatments cause side effects months or years after treatment has ended. - The treatment of childhood AML usually has two phases. - Seven types of standard treatment are used for childhood AML, childhood CML, JMML, or MDS. - Chemotherapy - Radiation therapy - Stem cell transplant - Targeted therapy - Other drug therapy - Watchful waiting - Supportive care - New types of treatment are being tested in clinical trials. - Biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for children with acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), juvenile myelomonocytic leukemia (JMML), or myelodysplastic syndromes (MDS). Different types of treatment are available for children with AML, CML, JMML, or MDS. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Treatment is planned by a team of health care providers who are experts in treating childhood leukemia and other diseases of the blood. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other healthcare providers who are experts in treating children with leukemia and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Hematologist. - Medical oncologist. - Pediatric surgeon. - Radiation oncologist. - Neurologist. - Neuropathologist. - Neuroradiologist. - Pediatric nurse specialist. - Social worker. - Rehabilitation specialist. - Psychologist. Some cancer treatments cause side effects months or years after treatment has ended. Regular follow-up exams are very important. Some cancer treatments cause side effects that continue or appear months or years after cancer treatment has ended. These are called late effects. Late effects of cancer treatment may include: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important that parents of children who are treated for AML or other blood diseases talk with their doctors about the effects cancer treatment can have on their child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). The treatment of childhood AML usually has two phases. The treatment of childhood AML is done in phases: - Induction therapy: This is the first phase of treatment. The goal is to kill the leukemia cells in the blood and bone marrow. This puts the leukemia into remission. - Consolidation /intensification therapy: This is the second phase of treatment. It begins once the leukemia is in remission. The goal of therapy is to kill any remaining leukemia cells that may not be active but could begin to regrow and cause a relapse. Treatment called central nervous system (CNS) sanctuary therapy may be given during the induction phase of therapy. Because standard doses of chemotherapy may not reach leukemia cells in the CNS (brain and spinal cord), the cells are able to find sanctuary (hide) in the CNS. Intrathecal chemotherapy is able to reach leukemia cells in the CNS. It is given to kill the leukemia cells and lessen the chance the leukemia will recur (come back). CNS sanctuary therapy is also called CNS prophylaxis. Seven types of standard treatment are used for childhood AML, childhood CML, JMML, or MDS. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid (intrathecal chemotherapy), an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type of cancer being treated. In AML, the leukemia cells may spread to the brain and/or spinal cord. Chemotherapy given by mouth or vein to treat AML may not cross the blood-brain barrier to get into the fluid that surrounds the brain and spinal cord. Instead, chemotherapy is injected into the fluid-filled space to kill leukemia cells that may have spread there (intrathecal chemotherapy). See Drugs Approved for Acute Myeloid Leukemia for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of the cancer being treated. In childhood AML, external radiation therapy may be used to treat a chloroma that does not respond to chemotherapy. Stem cell transplant Stem cell transplant is a way of giving chemotherapy and replacing blood-forming cells that are abnormal or destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Types of targeted therapy include the following: - Tyrosine kinase inhibitor therapy: Tyrosine kinase inhibitor (TKI) therapy blocks signals needed for tumors to grow. TKIs block the enzyme (tyrosine kinase) that causes stem cells to become more white blood cells (granulocytes or blasts) than the body needs. TKIs may be used with other anticancer drugs as adjuvant therapy (treatment given after the initial treatment, to lower the risk that the cancer will come back). - Imatinib is a type of TKI that is approved to treat childhood CML. - Sorafenib, dasatinib, and nilotinib are being studied in the treatment of childhood leukemia. - Monoclonal antibody therapy: Monoclonal antibody therapy uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. - Gemtuzumab is a type of monoclonal antibody used in the treatment of a subtype of AML called acute promyelocytic leukemia (APL). Gemtuzumab is not available in the United States unless special approval is given. Monoclonal antibodies may be used with chemotherapy as adjuvant therapy. - Proteasome inhibitor therapy: Proteasome inhibitors break down proteins in cancer cells and kill them. - Bortezomib is a proteasome inhibitor used to treat childhood APL. See Drugs Approved for Leukemia for more information. Other drug therapy Lenalidomide may be used to lessen the need for transfusions in patients who have myelodysplastic syndromes caused by a specific chromosome change. Arsenic trioxide and all-trans retinoic acid (ATRA) are anticancer drugs that kill leukemia cells, stop the leukemia cells from dividing, or help the leukemia cells mature into white blood cells. These drugs are used in the treatment of acute promyelocytic leukemia. See Drugs Approved for Acute Myeloid Leukemia for more information. Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. It is sometimes used to treat MDS or TMD. Supportive care Supportive care is given to lessen the problems caused by the disease or its treatment. Supportive care may include the following: - Transfusion therapy: A way of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or cancer treatment. The blood may be donated from another person or it may have been taken from the patient earlier and stored until needed. - Drug therapy, such as antibiotics or antifungal agents. - Leukapheresis: A procedure in which a special machine is used to remove white blood cells from the blood. Blood is taken from the patient and put through a blood cell separator where the white blood cells are removed. The rest of the blood is then returned to the patient's bloodstream. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Natural killer (NK) cells are a type of biologic therapy. NK cells are white blood cells that can kill tumor cells. These may be taken from a donor and given to the patient by infusion to help kill leukemia cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Childhood Acute Myeloid Leukemia, Childhood Chronic Myelogenous Leukemia, Juvenile Myelomonocytic Leukemia, and Myelodysplastic Syndromes Newly Diagnosed Childhood Acute Myeloid Leukemia Treatment of newly diagnosed childhood acute myeloid leukemia may include the following: - Combination chemotherapy plus central nervous system sanctuary therapy with intrathecal chemotherapy. - A clinical trial comparing different chemotherapy regimens (doses and schedules of treatment). - A clinical trial of combination chemotherapy and targeted therapy with a proteasome inhibitor or a tyrosine kinase inhibitor with or without stem cell transplant. Treatment of newly diagnosed childhood acute leukemia with a granulocytic sarcoma (chloroma) may include chemotherapy with or without radiation therapy. Treatment of therapy -related AML is usually the same as for newly diagnosed AML, followed by stem cell transplant. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood acute myeloid leukemia and other myeloid malignancies. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Children with Newly Diagnosed Childhood AML and Down Syndrome Treatment of acute myeloid leukemia (AML) in children aged 4 years or younger who have Down syndrome may include the following: - Combination chemotherapy plus central nervous system sanctuary therapy with intrathecal chemotherapy. Treatment of AML in children older than 4 years who have Down syndrome may be the same as treatment for children without Down syndrome. Childhood Acute Myeloid Leukemia in Remission Treatment of childhood acute myeloid leukemia (AML) during the remission phase (consolidation /intensification therapy) depends on the subtype of AML and may include the following: - Combination chemotherapy. - High-dose chemotherapy followed by stem cell transplant using blood stem cells from a donor. - A clinical trial of chemotherapy followed by an infusion of natural killer cells. - A clinical trial of combination chemotherapy and targeted therapy with a proteasome inhibitor or a tyrosine kinase inhibitor with or without stem cell transplant. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood acute myeloid leukemia in remission. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Childhood Acute Myeloid Leukemia Treatment of recurrent childhood acute myeloid leukemia (AML) may include the following: - Combination chemotherapy. - Combination chemotherapy and stem cell transplant. - A second stem cell transplant. - A clinical trial of combinations of new anticancer drugs, new biologic agents, and stem cell transplant using different sources of stem cells. Treatment of recurrent AML in children with Down syndrome is chemotherapy. It is not clear if stem cell transplant after chemotherapy is helpful in treating these children. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood acute myeloid leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Acute Promyelocytic Leukemia Treatment of acute promyelocytic leukemia may include the following: - All-trans retinoic acid (ATRA) plus chemotherapy. - Arsenic trioxide therapy. - Central nervous system sanctuary therapy with intrathecal chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood acute promyelocytic leukemia (M3). For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Acute Promyelocytic Leukemia Treatment of recurrent acute promyelocytic leukemia may include the following: - All-trans retinoic acid therapy (ATRA) plus chemotherapy. - Arsenic trioxide therapy. - Targeted therapy with a monoclonal antibody (gemtuzumab), if special approval is given. - Stem cell transplant using blood stem cells from the patient or a donor. Childhood Chronic Myelogenous Leukemia Treatment for childhood chronic myelogenous leukemia may include the following: - Targeted therapy with a tyrosine kinase inhibitor (imatinib). - A clinical trial of targeted therapy with other tyrosine kinase inhibitors. For patients whose disease does not respond to therapy with imatinib or whose disease comes back after treatment, treatment may include the following: - Stem cell transplant using blood stem cells from a donor. - A clinical trial of targeted therapy with other tyrosine kinase inhibitors. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood chronic myelogenous leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Juvenile Myelomonocytic Leukemia Treatment of juvenile myelomonocytic leukemia (JMML) may include the following: - Combination chemotherapy followed by stem cell transplant. If JMML recurs after stem cell transplant, a second stem cell transplant may be done. Check the list of NCI-supported cancer clinical trials that are now accepting patients with juvenile myelomonocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Myelodysplastic Syndromes Treatment of myelodysplastic syndromes (MDS) may include the following: - Watchful waiting. - Stem cell transplant using blood stem cells from a donor. - Combination chemotherapy. - Lenalidomide therapy. - A clinical trial of stem cell transplant using lower doses of chemotherapy. - A clinical trial of a new anticancer drug or targeted therapy. If the MDS becomes acute myeloid leukemia (AML), treatment will be the same as treatment for newly diagnosed AML. Treatment of therapy-related MDS is usually the same as for newly diagnosed AML, followed by stem cell transplant. Transient myeloproliferative disorder (TMD), a type of MDS, usually goes away on its own. For TMD that does not go away on its own, treatment may include the following: - Transfusion therapy. - Leukapheresis. - Chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood myelodysplastic syndromes. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for children with acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), juvenile myelomonocytic leukemia (JMML), or myelodysplastic syndromes (MDS). - Treatment is planned by a team of health care providers who are experts in treating childhood leukemia and other diseases of the blood. - Some cancer treatments cause side effects months or years after treatment has ended. - The treatment of childhood AML usually has two phases. - Seven types of standard treatment are used for childhood AML, childhood CML, JMML, or MDS. - Chemotherapy - Radiation therapy - Stem cell transplant - Targeted therapy - Other drug therapy - Watchful waiting - Supportive care - New types of treatment are being tested in clinical trials. - Biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for children with acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), juvenile myelomonocytic leukemia (JMML), or myelodysplastic syndromes (MDS). Different types of treatment are available for children with AML, CML, JMML, or MDS. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Treatment is planned by a team of health care providers who are experts in treating childhood leukemia and other diseases of the blood. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other healthcare providers who are experts in treating children with leukemia and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Hematologist. - Medical oncologist. - Pediatric surgeon. - Radiation oncologist. - Neurologist. - Neuropathologist. - Neuroradiologist. - Pediatric nurse specialist. - Social worker. - Rehabilitation specialist. - Psychologist. Some cancer treatments cause side effects months or years after treatment has ended. Regular follow-up exams are very important. Some cancer treatments cause side effects that continue or appear months or years after cancer treatment has ended. These are called late effects. Late effects of cancer treatment may include: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important that parents of children who are treated for AML or other blood diseases talk with their doctors about the effects cancer treatment can have on their child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). The treatment of childhood AML usually has two phases. The treatment of childhood AML is done in phases: - Induction therapy: This is the first phase of treatment. The goal is to kill the leukemia cells in the blood and bone marrow. This puts the leukemia into remission. - Consolidation /intensification therapy: This is the second phase of treatment. It begins once the leukemia is in remission. The goal of therapy is to kill any remaining leukemia cells that may not be active but could begin to regrow and cause a relapse. Treatment called central nervous system (CNS) sanctuary therapy may be given during the induction phase of therapy. Because standard doses of chemotherapy may not reach leukemia cells in the CNS (brain and spinal cord), the cells are able to find sanctuary (hide) in the CNS. Intrathecal chemotherapy is able to reach leukemia cells in the CNS. It is given to kill the leukemia cells and lessen the chance the leukemia will recur (come back). CNS sanctuary therapy is also called CNS prophylaxis. Seven types of standard treatment are used for childhood AML, childhood CML, JMML, or MDS. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid (intrathecal chemotherapy), an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type of cancer being treated. In AML, the leukemia cells may spread to the brain and/or spinal cord. Chemotherapy given by mouth or vein to treat AML may not cross the blood-brain barrier to get into the fluid that surrounds the brain and spinal cord. Instead, chemotherapy is injected into the fluid-filled space to kill leukemia cells that may have spread there (intrathecal chemotherapy). See Drugs Approved for Acute Myeloid Leukemia for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of the cancer being treated. In childhood AML, external radiation therapy may be used to treat a chloroma that does not respond to chemotherapy. Stem cell transplant Stem cell transplant is a way of giving chemotherapy and replacing blood-forming cells that are abnormal or destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Types of targeted therapy include the following: - Tyrosine kinase inhibitor therapy: Tyrosine kinase inhibitor (TKI) therapy blocks signals needed for tumors to grow. TKIs block the enzyme (tyrosine kinase) that causes stem cells to become more white blood cells (granulocytes or blasts) than the body needs. TKIs may be used with other anticancer drugs as adjuvant therapy (treatment given after the initial treatment, to lower the risk that the cancer will come back). - Imatinib is a type of TKI that is approved to treat childhood CML. - Sorafenib, dasatinib, and nilotinib are being studied in the treatment of childhood leukemia. - Monoclonal antibody therapy: Monoclonal antibody therapy uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. - Gemtuzumab is a type of monoclonal antibody used in the treatment of a subtype of AML called acute promyelocytic leukemia (APL). Gemtuzumab is not available in the United States unless special approval is given. Monoclonal antibodies may be used with chemotherapy as adjuvant therapy. - Proteasome inhibitor therapy: Proteasome inhibitors break down proteins in cancer cells and kill them. - Bortezomib is a proteasome inhibitor used to treat childhood APL. See Drugs Approved for Leukemia for more information. Other drug therapy Lenalidomide may be used to lessen the need for transfusions in patients who have myelodysplastic syndromes caused by a specific chromosome change. Arsenic trioxide and all-trans retinoic acid (ATRA) are anticancer drugs that kill leukemia cells, stop the leukemia cells from dividing, or help the leukemia cells mature into white blood cells. These drugs are used in the treatment of acute promyelocytic leukemia. See Drugs Approved for Acute Myeloid Leukemia for more information. Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. It is sometimes used to treat MDS or TMD. Supportive care Supportive care is given to lessen the problems caused by the disease or its treatment. Supportive care may include the following: - Transfusion therapy: A way of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or cancer treatment. The blood may be donated from another person or it may have been taken from the patient earlier and stored until needed. - Drug therapy, such as antibiotics or antifungal agents. - Leukapheresis: A procedure in which a special machine is used to remove white blood cells from the blood. Blood is taken from the patient and put through a blood cell separator where the white blood cells are removed. The rest of the blood is then returned to the patient's bloodstream. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Natural killer (NK) cells are a type of biologic therapy. NK cells are white blood cells that can kill tumor cells. These may be taken from a donor and given to the patient by infusion to help kill leukemia cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Childhood Acute Myeloid Leukemia, Childhood Chronic Myelogenous Leukemia, Juvenile Myelomonocytic Leukemia, and Myelodysplastic Syndromes Newly Diagnosed Childhood Acute Myeloid Leukemia Treatment of newly diagnosed childhood acute myeloid leukemia may include the following: - Combination chemotherapy plus central nervous system sanctuary therapy with intrathecal chemotherapy. - A clinical trial comparing different chemotherapy regimens (doses and schedules of treatment). - A clinical trial of combination chemotherapy and targeted therapy with a proteasome inhibitor or a tyrosine kinase inhibitor with or without stem cell transplant. Treatment of newly diagnosed childhood acute leukemia with a granulocytic sarcoma (chloroma) may include chemotherapy with or without radiation therapy. Treatment of therapy -related AML is usually the same as for newly diagnosed AML, followed by stem cell transplant. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood acute myeloid leukemia and other myeloid malignancies. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Children with Newly Diagnosed Childhood AML and Down Syndrome Treatment of acute myeloid leukemia (AML) in children aged 4 years or younger who have Down syndrome may include the following: - Combination chemotherapy plus central nervous system sanctuary therapy with intrathecal chemotherapy. Treatment of AML in children older than 4 years who have Down syndrome may be the same as treatment for children without Down syndrome. Childhood Acute Myeloid Leukemia in Remission Treatment of childhood acute myeloid leukemia (AML) during the remission phase (consolidation /intensification therapy) depends on the subtype of AML and may include the following: - Combination chemotherapy. - High-dose chemotherapy followed by stem cell transplant using blood stem cells from a donor. - A clinical trial of chemotherapy followed by an infusion of natural killer cells. - A clinical trial of combination chemotherapy and targeted therapy with a proteasome inhibitor or a tyrosine kinase inhibitor with or without stem cell transplant. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood acute myeloid leukemia in remission. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Childhood Acute Myeloid Leukemia Treatment of recurrent childhood acute myeloid leukemia (AML) may include the following: - Combination chemotherapy. - Combination chemotherapy and stem cell transplant. - A second stem cell transplant. - A clinical trial of combinations of new anticancer drugs, new biologic agents, and stem cell transplant using different sources of stem cells. Treatment of recurrent AML in children with Down syndrome is chemotherapy. It is not clear if stem cell transplant after chemotherapy is helpful in treating these children. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood acute myeloid leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Acute Promyelocytic Leukemia Treatment of acute promyelocytic leukemia may include the following: - All-trans retinoic acid (ATRA) plus chemotherapy. - Arsenic trioxide therapy. - Central nervous system sanctuary therapy with intrathecal chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood acute promyelocytic leukemia (M3). For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Acute Promyelocytic Leukemia Treatment of recurrent acute promyelocytic leukemia may include the following: - All-trans retinoic acid therapy (ATRA) plus chemotherapy. - Arsenic trioxide therapy. - Targeted therapy with a monoclonal antibody (gemtuzumab), if special approval is given. - Stem cell transplant using blood stem cells from the patient or a donor. Childhood Chronic Myelogenous Leukemia Treatment for childhood chronic myelogenous leukemia may include the following: - Targeted therapy with a tyrosine kinase inhibitor (imatinib). - A clinical trial of targeted therapy with other tyrosine kinase inhibitors. For patients whose disease does not respond to therapy with imatinib or whose disease comes back after treatment, treatment may include the following: - Stem cell transplant using blood stem cells from a donor. - A clinical trial of targeted therapy with other tyrosine kinase inhibitors. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood chronic myelogenous leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Juvenile Myelomonocytic Leukemia Treatment of juvenile myelomonocytic leukemia (JMML) may include the following: - Combination chemotherapy followed by stem cell transplant. If JMML recurs after stem cell transplant, a second stem cell transplant may be done. Check the list of NCI-supported cancer clinical trials that are now accepting patients with juvenile myelomonocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Myelodysplastic Syndromes Treatment of myelodysplastic syndromes (MDS) may include the following: - Watchful waiting. - Stem cell transplant using blood stem cells from a donor. - Combination chemotherapy. - Lenalidomide therapy. - A clinical trial of stem cell transplant using lower doses of chemotherapy. - A clinical trial of a new anticancer drug or targeted therapy. If the MDS becomes acute myeloid leukemia (AML), treatment will be the same as treatment for newly diagnosed AML. Treatment of therapy-related MDS is usually the same as for newly diagnosed AML, followed by stem cell transplant. Transient myeloproliferative disorder (TMD), a type of MDS, usually goes away on its own. For TMD that does not go away on its own, treatment may include the following: - Transfusion therapy. - Leukapheresis. - Chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood myelodysplastic syndromes. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Non-Small Cell Lung Cancer ?
Key Points - Non-small cell lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. - There are several types of non-small cell lung cancer. - Smoking is the major risk factor for non-small cell lung cancer. - Signs of non-small cell lung cancer include a cough that doesn't go away and shortness of breath. - Tests that examine the lungs are used to detect (find), diagnose, and stage non-small cell lung cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. - For most patients with non-small cell lung cancer, current treatments do not cure the cancer. Non-small cell lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The lungs are a pair of cone-shaped breathing organs in the chest. The lungs bring oxygen into the body as you breathe in. They release carbon dioxide, a waste product of the bodys cells, as you breathe out. Each lung has sections called lobes. The left lung has two lobes. The right lung is slightly larger and has three lobes. Two tubes called bronchi lead from the trachea (windpipe) to the right and left lungs. The bronchi are sometimes also involved in lung cancer. Tiny air sacs called alveoli and small tubes called bronchioles make up the inside of the lungs. A thin membrane called the pleura covers the outside of each lung and lines the inside wall of the chest cavity. This creates a sac called the pleural cavity. The pleural cavity normally contains a small amount of fluid that helps the lungs move smoothly in the chest when you breathe. There are two main types of lung cancer: non-small cell lung cancer and small cell lung cancer. See the following PDQ summaries for more information about lung cancer: - Small Cell Lung Cancer Treatment - Unusual Cancers of Childhood Treatment - Lung Cancer Prevention - Lung Cancer Screening There are several types of non-small cell lung cancer. Each type of non-small cell lung cancer has different kinds of cancer cells. The cancer cells of each type grow and spread in different ways. The types of non-small cell lung cancer are named for the kinds of cells found in the cancer and how the cells look under a microscope: - Squamous cell carcinoma: Cancer that begins in squamous cells, which are thin, flat cells that look like fish scales. This is also called epidermoid carcinoma. - Large cell carcinoma: Cancer that may begin in several types of large cells. - Adenocarcinoma: Cancer that begins in the cells that line the alveoli and make substances such as mucus. Other less common types of non-small cell lung cancer are: pleomorphic, carcinoid tumor, salivary gland carcinoma, and unclassified carcinoma. For most patients with non-small cell lung cancer, current treatments do not cure the cancer. If lung cancer is found, taking part in one of the many clinical trials being done to improve treatment should be considered. Clinical trials are taking place in most parts of the country for patients with all stages of non-small cell lung cancer. Information about ongoing clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Non-Small Cell Lung Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Non-small cell lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. - There are several types of non-small cell lung cancer. - Smoking is the major risk factor for non-small cell lung cancer. - Signs of non-small cell lung cancer include a cough that doesn't go away and shortness of breath. - Tests that examine the lungs are used to detect (find), diagnose, and stage non-small cell lung cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. - For most patients with non-small cell lung cancer, current treatments do not cure the cancer. Non-small cell lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The lungs are a pair of cone-shaped breathing organs in the chest. The lungs bring oxygen into the body as you breathe in. They release carbon dioxide, a waste product of the bodys cells, as you breathe out. Each lung has sections called lobes. The left lung has two lobes. The right lung is slightly larger and has three lobes. Two tubes called bronchi lead from the trachea (windpipe) to the right and left lungs. The bronchi are sometimes also involved in lung cancer. Tiny air sacs called alveoli and small tubes called bronchioles make up the inside of the lungs. A thin membrane called the pleura covers the outside of each lung and lines the inside wall of the chest cavity. This creates a sac called the pleural cavity. The pleural cavity normally contains a small amount of fluid that helps the lungs move smoothly in the chest when you breathe. There are two main types of lung cancer: non-small cell lung cancer and small cell lung cancer. See the following PDQ summaries for more information about lung cancer: - Small Cell Lung Cancer Treatment - Unusual Cancers of Childhood Treatment - Lung Cancer Prevention - Lung Cancer Screening There are several types of non-small cell lung cancer. Each type of non-small cell lung cancer has different kinds of cancer cells. The cancer cells of each type grow and spread in different ways. The types of non-small cell lung cancer are named for the kinds of cells found in the cancer and how the cells look under a microscope: - Squamous cell carcinoma: Cancer that begins in squamous cells, which are thin, flat cells that look like fish scales. This is also called epidermoid carcinoma. - Large cell carcinoma: Cancer that may begin in several types of large cells. - Adenocarcinoma: Cancer that begins in the cells that line the alveoli and make substances such as mucus. Other less common types of non-small cell lung cancer are: pleomorphic, carcinoid tumor, salivary gland carcinoma, and unclassified carcinoma. For most patients with non-small cell lung cancer, current treatments do not cure the cancer. If lung cancer is found, taking part in one of the many clinical trials being done to improve treatment should be considered. Clinical trials are taking place in most parts of the country for patients with all stages of non-small cell lung cancer. Information about ongoing clinical trials is available from the NCI website.<|eot_id|>
Who is at risk for Non-Small Cell Lung Cancer? ?
Smoking is the major risk factor for non-small cell lung cancer. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for lung cancer. Risk factors for lung cancer include the following: - Smoking cigarettes, pipes, or cigars, now or in the past. This is the most important risk factor for lung cancer. The earlier in life a person starts smoking, the more often a person smokes, and the more years a person smokes, the greater the risk of lung cancer. - Being exposed to secondhand smoke. - Being exposed to radiation from any of the following: - Radiation therapy to the breast or chest. - Radon in the home or workplace. - Imaging tests such as CT scans. - Atomic bomb radiation. - Being exposed to asbestos, chromium, nickel, beryllium, arsenic, soot, or tar in the workplace. - Living where there is air pollution. - Having a family history of lung cancer. - Being infected with the human immunodeficiency virus (HIV). - Taking beta carotene supplements and being a heavy smoker. Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. When smoking is combined with other risk factors, the risk of lung cancer is increased.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Non-Small Cell Lung Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Smoking is the major risk factor for non-small cell lung cancer. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for lung cancer. Risk factors for lung cancer include the following: - Smoking cigarettes, pipes, or cigars, now or in the past. This is the most important risk factor for lung cancer. The earlier in life a person starts smoking, the more often a person smokes, and the more years a person smokes, the greater the risk of lung cancer. - Being exposed to secondhand smoke. - Being exposed to radiation from any of the following: - Radiation therapy to the breast or chest. - Radon in the home or workplace. - Imaging tests such as CT scans. - Atomic bomb radiation. - Being exposed to asbestos, chromium, nickel, beryllium, arsenic, soot, or tar in the workplace. - Living where there is air pollution. - Having a family history of lung cancer. - Being infected with the human immunodeficiency virus (HIV). - Taking beta carotene supplements and being a heavy smoker. Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. When smoking is combined with other risk factors, the risk of lung cancer is increased.<|eot_id|>
What are the symptoms of Non-Small Cell Lung Cancer ?
Signs of non-small cell lung cancer include a cough that doesn't go away and shortness of breath. Sometimes lung cancer does not cause any signs or symptoms. It may be found during a chest x-ray done for another condition. Signs and symptoms may be caused by lung cancer or by other conditions. Check with your doctor if you have any of the following: - Chest discomfort or pain. - A cough that doesnt go away or gets worse over time. - Trouble breathing. - Wheezing. - Blood in sputum (mucus coughed up from the lungs). - Hoarseness. - Loss of appetite. - Weight loss for no known reason. - Feeling very tired. - Trouble swallowing. - Swelling in the face and/or veins in the neck.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Non-Small Cell Lung Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs of non-small cell lung cancer include a cough that doesn't go away and shortness of breath. Sometimes lung cancer does not cause any signs or symptoms. It may be found during a chest x-ray done for another condition. Signs and symptoms may be caused by lung cancer or by other conditions. Check with your doctor if you have any of the following: - Chest discomfort or pain. - A cough that doesnt go away or gets worse over time. - Trouble breathing. - Wheezing. - Blood in sputum (mucus coughed up from the lungs). - Hoarseness. - Loss of appetite. - Weight loss for no known reason. - Feeling very tired. - Trouble swallowing. - Swelling in the face and/or veins in the neck.<|eot_id|>
How to diagnose Non-Small Cell Lung Cancer ?
Tests that examine the lungs are used to detect (find), diagnose, and stage non-small cell lung cancer. Tests and procedures to detect, diagnose, and stage non-small cell lung cancer are often done at the same time. Some of the following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits, including smoking, and past jobs, illnesses, and treatments will also be taken. - Laboratory tests : Medical procedures that test samples of tissue, blood, urine, or other substances in the body. These tests help to diagnose disease, plan and check treatment, or monitor the disease over time. - Chest x-ray: An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the chest, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Sputum cytology : A procedure in which a pathologist views a sample of sputum (mucus coughed up from the lungs) under a microscope, to check for cancer cells. - Fine-needle aspiration (FNA) biopsy of the lung: The removal of tissue or fluid from the lung using a thin needle. A CT scan, ultrasound, or other imaging procedure is used to locate the abnormal tissue or fluid in the lung. A small incision may be made in the skin where the biopsy needle is inserted into the abnormal tissue or fluid. A sample is removed with the needle and sent to the laboratory. A pathologist then views the sample under a microscope to look for cancer cells. A chest x-ray is done after the procedure to make sure no air is leaking from the lung into the chest. - Bronchoscopy : A procedure to look inside the trachea and large airways in the lung for abnormal areas. A bronchoscope is inserted through the nose or mouth into the trachea and lungs. A bronchoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples, which are checked under a microscope for signs of cancer. - Thoracoscopy : A surgical procedure to look at the organs inside the chest to check for abnormal areas. An incision (cut) is made between two ribs, and a thoracoscope is inserted into the chest. A thoracoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue or lymph node samples, which are checked under a microscope for signs of cancer. In some cases, this procedure is used to remove part of the esophagus or lung. If certain tissues, organs, or lymph nodes cant be reached, a thoracotomy may be done. In this procedure, a larger incision is made between the ribs and the chest is opened. - Thoracentesis : The removal of fluid from the space between the lining of the chest and the lung, using a needle. A pathologist views the fluid under a microscope to look for cancer cells. - Light and electron microscopy : A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells. - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Non-Small Cell Lung Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the lungs are used to detect (find), diagnose, and stage non-small cell lung cancer. Tests and procedures to detect, diagnose, and stage non-small cell lung cancer are often done at the same time. Some of the following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits, including smoking, and past jobs, illnesses, and treatments will also be taken. - Laboratory tests : Medical procedures that test samples of tissue, blood, urine, or other substances in the body. These tests help to diagnose disease, plan and check treatment, or monitor the disease over time. - Chest x-ray: An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the chest, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Sputum cytology : A procedure in which a pathologist views a sample of sputum (mucus coughed up from the lungs) under a microscope, to check for cancer cells. - Fine-needle aspiration (FNA) biopsy of the lung: The removal of tissue or fluid from the lung using a thin needle. A CT scan, ultrasound, or other imaging procedure is used to locate the abnormal tissue or fluid in the lung. A small incision may be made in the skin where the biopsy needle is inserted into the abnormal tissue or fluid. A sample is removed with the needle and sent to the laboratory. A pathologist then views the sample under a microscope to look for cancer cells. A chest x-ray is done after the procedure to make sure no air is leaking from the lung into the chest. - Bronchoscopy : A procedure to look inside the trachea and large airways in the lung for abnormal areas. A bronchoscope is inserted through the nose or mouth into the trachea and lungs. A bronchoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples, which are checked under a microscope for signs of cancer. - Thoracoscopy : A surgical procedure to look at the organs inside the chest to check for abnormal areas. An incision (cut) is made between two ribs, and a thoracoscope is inserted into the chest. A thoracoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue or lymph node samples, which are checked under a microscope for signs of cancer. In some cases, this procedure is used to remove part of the esophagus or lung. If certain tissues, organs, or lymph nodes cant be reached, a thoracotomy may be done. In this procedure, a larger incision is made between the ribs and the chest is opened. - Thoracentesis : The removal of fluid from the space between the lining of the chest and the lung, using a needle. A pathologist views the fluid under a microscope to look for cancer cells. - Light and electron microscopy : A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells. - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer.<|eot_id|>
What is the outlook for Non-Small Cell Lung Cancer ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer (the size of the tumor and whether it is in the lung only or has spread to other places in the body). - The type of lung cancer. - Whether the cancer has mutations (changes) in certain genes, such as the epidermal growth factor receptor (EGFR) gene or the anaplastic lymphoma kinase (ALK) gene. - Whether there are signs and symptoms such as coughing or trouble breathing. - The patients general health.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Non-Small Cell Lung Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer (the size of the tumor and whether it is in the lung only or has spread to other places in the body). - The type of lung cancer. - Whether the cancer has mutations (changes) in certain genes, such as the epidermal growth factor receptor (EGFR) gene or the anaplastic lymphoma kinase (ALK) gene. - Whether there are signs and symptoms such as coughing or trouble breathing. - The patients general health.<|eot_id|>
What are the stages of Non-Small Cell Lung Cancer ?
Key Points - After lung cancer has been diagnosed, tests are done to find out if cancer cells have spread within the lungs or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for non-small cell lung cancer: - Occult (hidden) stage - Stage 0 (carcinoma in situ) - Stage I - Stage II - Stage IIIA - Stage IIIB - Stage IV After lung cancer has been diagnosed, tests are done to find out if cancer cells have spread within the lungs or to other parts of the body. The process used to find out if cancer has spread within the lungs or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Some of the tests used to diagnose non-small cell lung cancer are also used to stage the disease. (See the General Information section.) Other tests and procedures that may be used in the staging process include the following: - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the brain. This procedure is also called nuclear magnetic resonance imaging (NMRI). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the brain and abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Radionuclide bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones and is detected by a scanner. - Pulmonary function test (PFT): A test to see how well the lungs are working. It measures how much air the lungs can hold and how quickly air moves into and out of the lungs. It also measures how much oxygen is used and how much carbon dioxide is given off during breathing. This is also called lung function test. - Endoscopic ultrasound (EUS): A procedure in which an endoscope is inserted into the body. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A probe at the end of the endoscope is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. This procedure is also called endosonography. EUS may be used to guide fine needle aspiration (FNA) biopsy of the lung, lymph nodes, or other areas. - Mediastinoscopy : A surgical procedure to look at the organs, tissues, and lymph nodes between the lungs for abnormal areas. An incision (cut) is made at the top of the breastbone and a mediastinoscope is inserted into the chest. A mediastinoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue or lymph node samples, which are checked under a microscope for signs of cancer. - Anterior mediastinotomy : A surgical procedure to look at the organs and tissues between the lungs and between the breastbone and heart for abnormal areas. An incision (cut) is made next to the breastbone and a mediastinoscope is inserted into the chest. A mediastinoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue or lymph node samples, which are checked under a microscope for signs of cancer. This is also called the Chamberlain procedure. - Lymph node biopsy : The removal of all or part of a lymph node. A pathologist views the tissue under a microscope to look for cancer cells. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for signs of cancer. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if non-small cell lung cancer spreads to the brain, the cancer cells in the brain are actually lung cancer cells. The disease is metastatic lung cancer, not brain cancer. The following stages are used for non-small cell lung cancer: Occult (hidden) stage In the occult (hidden) stage, cancer cannot be seen by imaging or bronchoscopy. Cancer cells are found in sputum (mucus coughed up from the lungs) or bronchial washing (a sample of cells taken from inside the airways that lead to the lung). Cancer may have spread to other parts of the body. Stage 0 (carcinoma in situ) In stage 0, abnormal cells are found in the lining of the airways. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I In stage I, cancer has formed. Stage I is divided into stages IA and IB: - Stage IA: The tumor is in the lung only and is 3 centimeters or smaller. - Stage IB: Cancer has not spread to the lymph nodes and one or more of the following is true: - The tumor is larger than 3 centimeters but not larger than 5 centimeters. - Cancer has spread to the main bronchus and is at least 2 centimeters below where the trachea joins the bronchus. - Cancer has spread to the innermost layer of the membrane that covers the lung. - Part of the lung has collapsed or developed pneumonitis (inflammation of the lung) in the area where the trachea joins the bronchus. Stage II Stage II is divided into stages IIA and IIB. Stage IIA and IIB are each divided into two sections depending on the size of the tumor, where the tumor is found, and whether there is cancer in the lymph nodes. - Stage IIA: (1) Cancer has spread to lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are within the lung or near the bronchus. Also, one or more of the following is true: - The tumor is not larger than 5 centimeters. - Cancer has spread to the main bronchus and is at least 2 centimeters below where the trachea joins the bronchus. - Cancer has spread to the innermost layer of the membrane that covers the lung. - Part of the lung has collapsed or developed pneumonitis (inflammation of the lung) in the area where the trachea joins the bronchus. or (2) Cancer has not spread to lymph nodes and one or more of the following is true: - The tumor is larger than 5 centimeters but not larger than 7 centimeters. - Cancer has spread to the main bronchus and is at least 2 centimeters below where the trachea joins the bronchus. - Cancer has spread to the innermost layer of the membrane that covers the lung. - Part of the lung has collapsed or developed pneumonitis (inflammation of the lung) in the area where the trachea joins the bronchus. - Stage IIB: (1) Cancer has spread to nearby lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are within the lung or near the bronchus. Also, one or more of the following is true: - The tumor is larger than 5 centimeters but not larger than 7 centimeters. - Cancer has spread to the main bronchus and is at least 2 centimeters below where the trachea joins the bronchus. - Cancer has spread to the innermost layer of the membrane that covers the lung. - Part of the lung has collapsed or developed pneumonitis (inflammation of the lung) in the area where the trachea joins the bronchus. or (2) Cancer has not spread to lymph nodes and one or more of the following is true: - The tumor is larger than 7 centimeters. - Cancer has spread to the main bronchus (and is less than 2 centimeters below where the trachea joins the bronchus), the chest wall, the diaphragm, or the nerve that controls the diaphragm. - Cancer has spread to the membrane around the heart or lining the chest wall. - The whole lung has collapsed or developed pneumonitis (inflammation of the lung). - There are one or more separate tumors in the same lobe of the lung. Stage IIIA Stage IIIA is divided into three sections depending on the size of the tumor, where the tumor is found, and which lymph nodes have cancer (if any). (1) Cancer has spread to lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are near the sternum (chest bone) or where the bronchus enters the lung. Also: - The tumor may be any size. - Part of the lung (where the trachea joins the bronchus) or the whole lung may have collapsed or developed pneumonitis (inflammation of the lung). - There may be one or more separate tumors in the same lobe of the lung. - Cancer may have spread to any of the following: - Main bronchus, but not the area where the trachea joins the bronchus. - Chest wall. - Diaphragm and the nerve that controls it. - Membrane around the lung or lining the chest wall. - Membrane around the heart. or (2) Cancer has spread to lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are within the lung or near the bronchus. Also: - The tumor may be any size. - The whole lung may have collapsed or developed pneumonitis (inflammation of the lung). - There may be one or more separate tumors in any of the lobes of the lung with cancer. - Cancer may have spread to any of the following: - Main bronchus, but not the area where the trachea joins the bronchus. - Chest wall. - Diaphragm and the nerve that controls it. - Membrane around the lung or lining the chest wall. - Heart or the membrane around it. - Major blood vessels that lead to or from the heart. - Trachea. - Esophagus. - Nerve that controls the larynx (voice box). - Sternum (chest bone) or backbone. - Carina (where the trachea joins the bronchi). or (3) Cancer has not spread to the lymph nodes and the tumor may be any size. Cancer has spread to any of the following: - Heart. - Major blood vessels that lead to or from the heart. - Trachea. - Esophagus. - Nerve that controls the larynx (voice box). - Sternum (chest bone) or backbone. - Carina (where the trachea joins the bronchi). Stage IIIB Stage IIIB is divided into two sections depending on the size of the tumor, where the tumor is found, and which lymph nodes have cancer. (1) Cancer has spread to lymph nodes above the collarbone or to lymph nodes on the opposite side of the chest as the tumor. Also: - The tumor may be any size. - Part of the lung (where the trachea joins the bronchus) or the whole lung may have collapsed or developed pneumonitis (inflammation of the lung). - There may be one or more separate tumors in any of the lobes of the lung with cancer. - Cancer may have spread to any of the following: - Main bronchus. - Chest wall. - Diaphragm and the nerve that controls it. - Membrane around the lung or lining the chest wall. - Heart or the membrane around it. - Major blood vessels that lead to or from the heart. - Trachea. - Esophagus. - Nerve that controls the larynx (voice box). - Sternum (chest bone) or backbone. - Carina (where the trachea joins the bronchi). or (2) Cancer has spread to lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are near the sternum (chest bone) or where the bronchus enters the lung. Also: - The tumor may be any size. - There may be separate tumors in different lobes of the same lung. - Cancer has spread to any of the following: - Heart. - Major blood vessels that lead to or from the heart. - Trachea. - Esophagus. - Nerve that controls the larynx (voice box). - Sternum (chest bone) or backbone. - Carina (where the trachea joins the bronchi). Stage IV In stage IV, the tumor may be any size and cancer may have spread to lymph nodes. One or more of the following is true: - There are one or more tumors in both lungs. - Cancer is found in fluid around the lungs or the heart. - Cancer has spread to other parts of the body, such as the brain, liver, adrenal glands, kidneys, or bone.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Non-Small Cell Lung Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After lung cancer has been diagnosed, tests are done to find out if cancer cells have spread within the lungs or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for non-small cell lung cancer: - Occult (hidden) stage - Stage 0 (carcinoma in situ) - Stage I - Stage II - Stage IIIA - Stage IIIB - Stage IV After lung cancer has been diagnosed, tests are done to find out if cancer cells have spread within the lungs or to other parts of the body. The process used to find out if cancer has spread within the lungs or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Some of the tests used to diagnose non-small cell lung cancer are also used to stage the disease. (See the General Information section.) Other tests and procedures that may be used in the staging process include the following: - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the brain. This procedure is also called nuclear magnetic resonance imaging (NMRI). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the brain and abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Radionuclide bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones and is detected by a scanner. - Pulmonary function test (PFT): A test to see how well the lungs are working. It measures how much air the lungs can hold and how quickly air moves into and out of the lungs. It also measures how much oxygen is used and how much carbon dioxide is given off during breathing. This is also called lung function test. - Endoscopic ultrasound (EUS): A procedure in which an endoscope is inserted into the body. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A probe at the end of the endoscope is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. This procedure is also called endosonography. EUS may be used to guide fine needle aspiration (FNA) biopsy of the lung, lymph nodes, or other areas. - Mediastinoscopy : A surgical procedure to look at the organs, tissues, and lymph nodes between the lungs for abnormal areas. An incision (cut) is made at the top of the breastbone and a mediastinoscope is inserted into the chest. A mediastinoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue or lymph node samples, which are checked under a microscope for signs of cancer. - Anterior mediastinotomy : A surgical procedure to look at the organs and tissues between the lungs and between the breastbone and heart for abnormal areas. An incision (cut) is made next to the breastbone and a mediastinoscope is inserted into the chest. A mediastinoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue or lymph node samples, which are checked under a microscope for signs of cancer. This is also called the Chamberlain procedure. - Lymph node biopsy : The removal of all or part of a lymph node. A pathologist views the tissue under a microscope to look for cancer cells. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for signs of cancer. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if non-small cell lung cancer spreads to the brain, the cancer cells in the brain are actually lung cancer cells. The disease is metastatic lung cancer, not brain cancer. The following stages are used for non-small cell lung cancer: Occult (hidden) stage In the occult (hidden) stage, cancer cannot be seen by imaging or bronchoscopy. Cancer cells are found in sputum (mucus coughed up from the lungs) or bronchial washing (a sample of cells taken from inside the airways that lead to the lung). Cancer may have spread to other parts of the body. Stage 0 (carcinoma in situ) In stage 0, abnormal cells are found in the lining of the airways. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I In stage I, cancer has formed. Stage I is divided into stages IA and IB: - Stage IA: The tumor is in the lung only and is 3 centimeters or smaller. - Stage IB: Cancer has not spread to the lymph nodes and one or more of the following is true: - The tumor is larger than 3 centimeters but not larger than 5 centimeters. - Cancer has spread to the main bronchus and is at least 2 centimeters below where the trachea joins the bronchus. - Cancer has spread to the innermost layer of the membrane that covers the lung. - Part of the lung has collapsed or developed pneumonitis (inflammation of the lung) in the area where the trachea joins the bronchus. Stage II Stage II is divided into stages IIA and IIB. Stage IIA and IIB are each divided into two sections depending on the size of the tumor, where the tumor is found, and whether there is cancer in the lymph nodes. - Stage IIA: (1) Cancer has spread to lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are within the lung or near the bronchus. Also, one or more of the following is true: - The tumor is not larger than 5 centimeters. - Cancer has spread to the main bronchus and is at least 2 centimeters below where the trachea joins the bronchus. - Cancer has spread to the innermost layer of the membrane that covers the lung. - Part of the lung has collapsed or developed pneumonitis (inflammation of the lung) in the area where the trachea joins the bronchus. or (2) Cancer has not spread to lymph nodes and one or more of the following is true: - The tumor is larger than 5 centimeters but not larger than 7 centimeters. - Cancer has spread to the main bronchus and is at least 2 centimeters below where the trachea joins the bronchus. - Cancer has spread to the innermost layer of the membrane that covers the lung. - Part of the lung has collapsed or developed pneumonitis (inflammation of the lung) in the area where the trachea joins the bronchus. - Stage IIB: (1) Cancer has spread to nearby lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are within the lung or near the bronchus. Also, one or more of the following is true: - The tumor is larger than 5 centimeters but not larger than 7 centimeters. - Cancer has spread to the main bronchus and is at least 2 centimeters below where the trachea joins the bronchus. - Cancer has spread to the innermost layer of the membrane that covers the lung. - Part of the lung has collapsed or developed pneumonitis (inflammation of the lung) in the area where the trachea joins the bronchus. or (2) Cancer has not spread to lymph nodes and one or more of the following is true: - The tumor is larger than 7 centimeters. - Cancer has spread to the main bronchus (and is less than 2 centimeters below where the trachea joins the bronchus), the chest wall, the diaphragm, or the nerve that controls the diaphragm. - Cancer has spread to the membrane around the heart or lining the chest wall. - The whole lung has collapsed or developed pneumonitis (inflammation of the lung). - There are one or more separate tumors in the same lobe of the lung. Stage IIIA Stage IIIA is divided into three sections depending on the size of the tumor, where the tumor is found, and which lymph nodes have cancer (if any). (1) Cancer has spread to lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are near the sternum (chest bone) or where the bronchus enters the lung. Also: - The tumor may be any size. - Part of the lung (where the trachea joins the bronchus) or the whole lung may have collapsed or developed pneumonitis (inflammation of the lung). - There may be one or more separate tumors in the same lobe of the lung. - Cancer may have spread to any of the following: - Main bronchus, but not the area where the trachea joins the bronchus. - Chest wall. - Diaphragm and the nerve that controls it. - Membrane around the lung or lining the chest wall. - Membrane around the heart. or (2) Cancer has spread to lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are within the lung or near the bronchus. Also: - The tumor may be any size. - The whole lung may have collapsed or developed pneumonitis (inflammation of the lung). - There may be one or more separate tumors in any of the lobes of the lung with cancer. - Cancer may have spread to any of the following: - Main bronchus, but not the area where the trachea joins the bronchus. - Chest wall. - Diaphragm and the nerve that controls it. - Membrane around the lung or lining the chest wall. - Heart or the membrane around it. - Major blood vessels that lead to or from the heart. - Trachea. - Esophagus. - Nerve that controls the larynx (voice box). - Sternum (chest bone) or backbone. - Carina (where the trachea joins the bronchi). or (3) Cancer has not spread to the lymph nodes and the tumor may be any size. Cancer has spread to any of the following: - Heart. - Major blood vessels that lead to or from the heart. - Trachea. - Esophagus. - Nerve that controls the larynx (voice box). - Sternum (chest bone) or backbone. - Carina (where the trachea joins the bronchi). Stage IIIB Stage IIIB is divided into two sections depending on the size of the tumor, where the tumor is found, and which lymph nodes have cancer. (1) Cancer has spread to lymph nodes above the collarbone or to lymph nodes on the opposite side of the chest as the tumor. Also: - The tumor may be any size. - Part of the lung (where the trachea joins the bronchus) or the whole lung may have collapsed or developed pneumonitis (inflammation of the lung). - There may be one or more separate tumors in any of the lobes of the lung with cancer. - Cancer may have spread to any of the following: - Main bronchus. - Chest wall. - Diaphragm and the nerve that controls it. - Membrane around the lung or lining the chest wall. - Heart or the membrane around it. - Major blood vessels that lead to or from the heart. - Trachea. - Esophagus. - Nerve that controls the larynx (voice box). - Sternum (chest bone) or backbone. - Carina (where the trachea joins the bronchi). or (2) Cancer has spread to lymph nodes on the same side of the chest as the tumor. The lymph nodes with cancer are near the sternum (chest bone) or where the bronchus enters the lung. Also: - The tumor may be any size. - There may be separate tumors in different lobes of the same lung. - Cancer has spread to any of the following: - Heart. - Major blood vessels that lead to or from the heart. - Trachea. - Esophagus. - Nerve that controls the larynx (voice box). - Sternum (chest bone) or backbone. - Carina (where the trachea joins the bronchi). Stage IV In stage IV, the tumor may be any size and cancer may have spread to lymph nodes. One or more of the following is true: - There are one or more tumors in both lungs. - Cancer is found in fluid around the lungs or the heart. - Cancer has spread to other parts of the body, such as the brain, liver, adrenal glands, kidneys, or bone.<|eot_id|>
What are the treatments for Non-Small Cell Lung Cancer ?
Key Points - There are different types of treatment for patients with non-small cell lung cancer. - Nine types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Targeted therapy - Laser therapy - Photodynamic therapy (PDT) - Cryosurgery - Electrocautery - Watchful waiting - New types of treatment are being tested in clinical trials. - Chemoprevention - Radiosensitizers - New combinations - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with non-small cell lung cancer. Different types of treatments are available for patients with non-small cell lung cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Nine types of standard treatment are used: Surgery Four types of surgery are used to treat lung cancer: - Wedge resection: Surgery to remove a tumor and some of the normal tissue around it. When a slightly larger amount of tissue is taken, it is called a segmental resection. - Lobectomy: Surgery to remove a whole lobe (section) of the lung. - Pneumonectomy: Surgery to remove one whole lung. - Sleeve resection: Surgery to remove part of the bronchus. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. Stereotactic body radiation therapy is a type of external radiation therapy. Special equipment is used to place the patient in the same position for each radiation treatment. Once a day for several days, a radiation machine aims a larger than usual dose of radiation directly at the tumor. By having the patient in the same position for each treatment, there is less damage to nearby healthy tissue. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. Stereotactic radiosurgery is a type of external radiation therapy used to treat lung cancer that has spread to the brain. A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims a single large dose of radiation directly at the tumor in the brain. This procedure does not involve surgery. It is also called stereotaxic radiosurgery, radiosurgery, and radiation surgery. For tumors in the airways, radiation is given directly to the tumor through an endoscope. The way the radiation therapy is given depends on the type and stage of the cancer being treated. It also depends on where the cancer is found. External and internal radiation therapy are used to treat non-small cell lung cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Non-Small Cell Lung Cancer for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies and tyrosine kinase inhibitors are the two main types of targeted therapy being used to treat advanced, metastatic, or recurrent non-small cell lung cancer. Monoclonal antibodies Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances in the blood or tissues that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. There are different types of monoclonal antibody therapy: - Vascular endothelial growth factor (VEGF) inhibitor therapy: Cancer cells make a substance called VEGF, which causes new blood vessels to form (angiogenesis) and helps the cancer grow. VEGF inhibitors block VEGF and stop new blood vessels from forming. This may kill cancer cells because they need new blood vessels to grow. Bevacizumab and ramucirumab are VEGF inhibitors and angiogenesis inhibitors. - Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on the surface of certain cells, including cancer cells. Epidermal growth factor attaches to the EGFR on the surface of the cell and causes the cells to grow and divide. EGFR inhibitors block the receptor and stop the epidermal growth factor from attaching to the cancer cell. This stops the cancer cell from growing and dividing. Cetuximab and necitumumab are EGFR inhibitors. - Immune checkpoint inhibitor therapy: PD-1 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When PD-1 attaches to another protein called PDL-1 on a cancer cell, it stops the T cell from killing the cancer cell. PD-1 inhibitors attach to PDL-1 and allow the T cells to kill cancer cells. Nivolumab, pembrolizumab, and atezolizumab are types of immune checkpoint inhibitors. Tyrosine kinase inhibitors Tyrosine kinase inhibitors are small-molecule drugs that go through the cell membrane and work inside cancer cells to block signals that cancer cells need to grow and divide. Some tyrosine kinase inhibitors also have angiogenesis inhibitor effects. There are different types of tyrosine kinase inhibitors: - Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors: EGFRs are proteins found on the surface and inside certain cells, including cancer cells. Epidermal growth factor attaches to the EGFR inside the cell and sends signals to the tyrosine kinase area of the cell, which tells the cell to grow and divide. EGFR tyrosine kinase inhibitors stop these signals and stop the cancer cell from growing and dividing. Erlotinib, gefitinib, and afatinib are types of EGFR tyrosine kinase inhibitors. Some of these drugs work better when there is also a mutation (change) in the EGFR gene. - Kinase inhibitors that affect cells with certain gene changes: Certain changes in the ALK and ROS1 genes cause too much protein to be made. Blocking these proteins may stop the cancer from growing and spreading. Crizotinib is used to stop proteins from being made by the ALK and ROS1 gene. Ceritinib is used to stop proteins from being made by the ALK gene. See Drugs Approved for Non-Small Cell Lung Cancer for more information. Laser therapy Laser therapy is a cancer treatment that uses a laser beam (a narrow beam of intense light) to kill cancer cells. Photodynamic therapy (PDT) Photodynamic therapy (PDT) is a cancer treatment that uses a drug and a certain type of laser light to kill cancer cells. A drug that is not active until it is exposed to light is injected into a vein. The drug collects more in cancer cells than in normal cells. Fiberoptic tubes are then used to carry the laser light to the cancer cells, where the drug becomes active and kills the cells. Photodynamic therapy causes little damage to healthy tissue. It is used mainly to treat tumors on or just under the skin or in the lining of internal organs. When the tumor is in the airways, PDT is given directly to the tumor through an endoscope. Cryosurgery Cryosurgery is a treatment that uses an instrument to freeze and destroy abnormal tissue, such as carcinoma in situ. This type of treatment is also called cryotherapy. For tumors in the airways, cryosurgery is done through an endoscope. Electrocautery Electrocautery is a treatment that uses a probe or needle heated by an electric current to destroy abnormal tissue. For tumors in the airways, electrocautery is done through an endoscope. Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. This may be done in certain rare cases of non-small cell lung cancer. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemoprevention Chemoprevention is the use of drugs, vitamins, or other substances to reduce the risk of cancer or to reduce the risk cancer will recur (come back). For lung cancer, chemoprevention is used to lessen the chance that a new tumor will form in the lung. Radiosensitizers Radiosensitizers are substances that make tumor cells easier to kill with radiation therapy. The combination of chemotherapy and radiation therapy given with a radiosensitizer is being studied in the treatment of non-small cell lung cancer. New combinations New combinations of treatments are being studied in clinical trials. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Occult Non-Small Cell Lung Cancer Treatment of occult non-small cell lung cancer depends on the stage of the disease. Occult tumors are often found at an early stage (the tumor is in the lung only) and sometimes can be cured by surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with occult non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage 0 (Carcinoma in Situ) Treatment of stage 0 may include the following: - Surgery (wedge resection or segmental resection). - Photodynamic therapy for tumors in or near the bronchus. - Electrocautery, cryosurgery, or laser surgery for tumors in or near the bronchus. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage 0 non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage I Non-Small Cell Lung Cancer Treatment of stage I non-small cell lung cancer may include the following: - Surgery (wedge resection, segmental resection, sleeve resection, or lobectomy). - External radiation therapy, including stereotactic body radiation therapy for patients who cannot have surgery or choose not to have surgery. - A clinical trial of chemotherapy or radiation therapy following surgery. - A clinical trial of treatment given through an endoscope, such as photodynamic therapy (PDT). - A clinical trial of surgery followed by chemoprevention. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage II Non-Small Cell Lung Cancer Treatment of stage II non-small cell lung cancer may include the following: - Surgery (wedge resection, segmental resection, sleeve resection, lobectomy, or pneumonectomy). - Chemotherapy followed by surgery. - Surgery followed by chemotherapy. - External radiation therapy for patients who cannot have surgery. - A clinical trial of radiation therapy following surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IIIA Non-Small Cell Lung Cancer Treatment of stage IIIA non-small cell lung cancer that can be removed with surgery may include the following: - Surgery followed by chemotherapy. - Surgery followed by radiation therapy. - Chemotherapy followed by surgery. - Surgery followed by chemotherapy combined with radiation therapy. - Chemotherapy and radiation therapy followed by surgery. - A clinical trial of new combinations of treatments. Treatment of stage IIIA non-small cell lung cancer that cannot be removed with surgery may include the following: - Chemotherapy and radiation therapy given over the same period of time or one followed by the other. - External radiation therapy alone for patients who cannot be treated with combined therapy, or as palliative treatment to relieve symptoms and improve the quality of life. - Internal radiation therapy or laser surgery, as palliative treatment to relieve symptoms and improve the quality of life. - A clinical trial of new combinations of treatments. For more information about supportive care for signs and symptoms including cough, shortness of breath, and chest pain, see the PDQ summary on Cardiopulmonary Syndromes. Non-small cell lung cancer of the superior sulcus, often called Pancoast tumor, begins in the upper part of the lung and spreads to nearby tissues such as the chest wall, large blood vessels, and spine. Treatment of Pancoast tumors may include the following: - Radiation therapy alone. - Radiation therapy followed by surgery. - Chemotherapy and radiation therapy given as separate treatments over the same period of time. Surgery may also be done after chemotherapy and radiation therapy. - Surgery alone. - A clinical trial of new combinations of treatments. Some stage IIIA non-small cell lung tumors that have grown into the chest wall may be completely removed. Treatment of chest wall tumors may include the following: - Surgery. - Surgery and radiation therapy. - Radiation therapy alone. - Chemotherapy combined with radiation therapy and/or surgery. - A clinical trial of new combinations of treatments. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IIIB Non-Small Cell Lung Cancer Treatment of stage IIIB non-small cell lung cancer may include the following: - Chemotherapy followed by external radiation therapy. - Chemotherapy and radiation therapy given as separate treatments over the same period of time. - Chemotherapy followed by surgery. - External radiation therapy alone for patients who cannot be treated with chemotherapy. - External radiation therapy as palliative therapy, to relieve symptoms and improve the quality of life. - Laser therapy and/or internal radiation therapy to relieve symptoms and improve the quality of life. - Clinical trials of new external radiation therapy schedules and new types of treatment. - A clinical trial of chemotherapy and radiation therapy combined with a radiosensitizer. - Clinical trials of targeted therapy combined with chemotherapy and radiation therapy. For more information about supportive care for signs and symptoms such as cough, shortness of breath, and chest pain, see the following PDQ summaries: - Cardiopulmonary Syndromes - Cancer Pain Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IV Non-Small Cell Lung Cancer Treatment of stage IV non-small cell lung cancer may include the following: - Chemotherapy. - Chemotherapy followed by more chemotherapy as maintenance therapy to help keep cancer from progressing. - Combination chemotherapy and targeted therapy with a monoclonal antibody, such as bevacizumab, cetuximab, or necitumumab. - Targeted therapy with a monoclonal antibody, such as nivolumab, pembrolizumab, or atezolizumab. - Targeted therapy with a tyrosine kinase inhibitor, such as erlotinib, gefitinib, afatinib, crizotinib, or ceritinib. - External radiation therapy as palliative therapy, to relieve symptoms and improve the quality of life. - Laser therapy and/or internal radiation therapy for tumors that are blocking the airways. - A clinical trial of new drugs and combinations of treatments. For more information about supportive care for signs and symptoms including cough, shortness of breath, and chest pain, see the following PDQ summaries: - Cardiopulmonary Syndromes - Cancer Pain - Last Days of Life Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Non-Small Cell Lung Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with non-small cell lung cancer. - Nine types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Targeted therapy - Laser therapy - Photodynamic therapy (PDT) - Cryosurgery - Electrocautery - Watchful waiting - New types of treatment are being tested in clinical trials. - Chemoprevention - Radiosensitizers - New combinations - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with non-small cell lung cancer. Different types of treatments are available for patients with non-small cell lung cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Nine types of standard treatment are used: Surgery Four types of surgery are used to treat lung cancer: - Wedge resection: Surgery to remove a tumor and some of the normal tissue around it. When a slightly larger amount of tissue is taken, it is called a segmental resection. - Lobectomy: Surgery to remove a whole lobe (section) of the lung. - Pneumonectomy: Surgery to remove one whole lung. - Sleeve resection: Surgery to remove part of the bronchus. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. Stereotactic body radiation therapy is a type of external radiation therapy. Special equipment is used to place the patient in the same position for each radiation treatment. Once a day for several days, a radiation machine aims a larger than usual dose of radiation directly at the tumor. By having the patient in the same position for each treatment, there is less damage to nearby healthy tissue. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. Stereotactic radiosurgery is a type of external radiation therapy used to treat lung cancer that has spread to the brain. A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims a single large dose of radiation directly at the tumor in the brain. This procedure does not involve surgery. It is also called stereotaxic radiosurgery, radiosurgery, and radiation surgery. For tumors in the airways, radiation is given directly to the tumor through an endoscope. The way the radiation therapy is given depends on the type and stage of the cancer being treated. It also depends on where the cancer is found. External and internal radiation therapy are used to treat non-small cell lung cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Non-Small Cell Lung Cancer for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies and tyrosine kinase inhibitors are the two main types of targeted therapy being used to treat advanced, metastatic, or recurrent non-small cell lung cancer. Monoclonal antibodies Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances in the blood or tissues that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. There are different types of monoclonal antibody therapy: - Vascular endothelial growth factor (VEGF) inhibitor therapy: Cancer cells make a substance called VEGF, which causes new blood vessels to form (angiogenesis) and helps the cancer grow. VEGF inhibitors block VEGF and stop new blood vessels from forming. This may kill cancer cells because they need new blood vessels to grow. Bevacizumab and ramucirumab are VEGF inhibitors and angiogenesis inhibitors. - Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on the surface of certain cells, including cancer cells. Epidermal growth factor attaches to the EGFR on the surface of the cell and causes the cells to grow and divide. EGFR inhibitors block the receptor and stop the epidermal growth factor from attaching to the cancer cell. This stops the cancer cell from growing and dividing. Cetuximab and necitumumab are EGFR inhibitors. - Immune checkpoint inhibitor therapy: PD-1 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When PD-1 attaches to another protein called PDL-1 on a cancer cell, it stops the T cell from killing the cancer cell. PD-1 inhibitors attach to PDL-1 and allow the T cells to kill cancer cells. Nivolumab, pembrolizumab, and atezolizumab are types of immune checkpoint inhibitors. Tyrosine kinase inhibitors Tyrosine kinase inhibitors are small-molecule drugs that go through the cell membrane and work inside cancer cells to block signals that cancer cells need to grow and divide. Some tyrosine kinase inhibitors also have angiogenesis inhibitor effects. There are different types of tyrosine kinase inhibitors: - Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors: EGFRs are proteins found on the surface and inside certain cells, including cancer cells. Epidermal growth factor attaches to the EGFR inside the cell and sends signals to the tyrosine kinase area of the cell, which tells the cell to grow and divide. EGFR tyrosine kinase inhibitors stop these signals and stop the cancer cell from growing and dividing. Erlotinib, gefitinib, and afatinib are types of EGFR tyrosine kinase inhibitors. Some of these drugs work better when there is also a mutation (change) in the EGFR gene. - Kinase inhibitors that affect cells with certain gene changes: Certain changes in the ALK and ROS1 genes cause too much protein to be made. Blocking these proteins may stop the cancer from growing and spreading. Crizotinib is used to stop proteins from being made by the ALK and ROS1 gene. Ceritinib is used to stop proteins from being made by the ALK gene. See Drugs Approved for Non-Small Cell Lung Cancer for more information. Laser therapy Laser therapy is a cancer treatment that uses a laser beam (a narrow beam of intense light) to kill cancer cells. Photodynamic therapy (PDT) Photodynamic therapy (PDT) is a cancer treatment that uses a drug and a certain type of laser light to kill cancer cells. A drug that is not active until it is exposed to light is injected into a vein. The drug collects more in cancer cells than in normal cells. Fiberoptic tubes are then used to carry the laser light to the cancer cells, where the drug becomes active and kills the cells. Photodynamic therapy causes little damage to healthy tissue. It is used mainly to treat tumors on or just under the skin or in the lining of internal organs. When the tumor is in the airways, PDT is given directly to the tumor through an endoscope. Cryosurgery Cryosurgery is a treatment that uses an instrument to freeze and destroy abnormal tissue, such as carcinoma in situ. This type of treatment is also called cryotherapy. For tumors in the airways, cryosurgery is done through an endoscope. Electrocautery Electrocautery is a treatment that uses a probe or needle heated by an electric current to destroy abnormal tissue. For tumors in the airways, electrocautery is done through an endoscope. Watchful waiting Watchful waiting is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. This may be done in certain rare cases of non-small cell lung cancer. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemoprevention Chemoprevention is the use of drugs, vitamins, or other substances to reduce the risk of cancer or to reduce the risk cancer will recur (come back). For lung cancer, chemoprevention is used to lessen the chance that a new tumor will form in the lung. Radiosensitizers Radiosensitizers are substances that make tumor cells easier to kill with radiation therapy. The combination of chemotherapy and radiation therapy given with a radiosensitizer is being studied in the treatment of non-small cell lung cancer. New combinations New combinations of treatments are being studied in clinical trials. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Occult Non-Small Cell Lung Cancer Treatment of occult non-small cell lung cancer depends on the stage of the disease. Occult tumors are often found at an early stage (the tumor is in the lung only) and sometimes can be cured by surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with occult non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage 0 (Carcinoma in Situ) Treatment of stage 0 may include the following: - Surgery (wedge resection or segmental resection). - Photodynamic therapy for tumors in or near the bronchus. - Electrocautery, cryosurgery, or laser surgery for tumors in or near the bronchus. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage 0 non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage I Non-Small Cell Lung Cancer Treatment of stage I non-small cell lung cancer may include the following: - Surgery (wedge resection, segmental resection, sleeve resection, or lobectomy). - External radiation therapy, including stereotactic body radiation therapy for patients who cannot have surgery or choose not to have surgery. - A clinical trial of chemotherapy or radiation therapy following surgery. - A clinical trial of treatment given through an endoscope, such as photodynamic therapy (PDT). - A clinical trial of surgery followed by chemoprevention. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage II Non-Small Cell Lung Cancer Treatment of stage II non-small cell lung cancer may include the following: - Surgery (wedge resection, segmental resection, sleeve resection, lobectomy, or pneumonectomy). - Chemotherapy followed by surgery. - Surgery followed by chemotherapy. - External radiation therapy for patients who cannot have surgery. - A clinical trial of radiation therapy following surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IIIA Non-Small Cell Lung Cancer Treatment of stage IIIA non-small cell lung cancer that can be removed with surgery may include the following: - Surgery followed by chemotherapy. - Surgery followed by radiation therapy. - Chemotherapy followed by surgery. - Surgery followed by chemotherapy combined with radiation therapy. - Chemotherapy and radiation therapy followed by surgery. - A clinical trial of new combinations of treatments. Treatment of stage IIIA non-small cell lung cancer that cannot be removed with surgery may include the following: - Chemotherapy and radiation therapy given over the same period of time or one followed by the other. - External radiation therapy alone for patients who cannot be treated with combined therapy, or as palliative treatment to relieve symptoms and improve the quality of life. - Internal radiation therapy or laser surgery, as palliative treatment to relieve symptoms and improve the quality of life. - A clinical trial of new combinations of treatments. For more information about supportive care for signs and symptoms including cough, shortness of breath, and chest pain, see the PDQ summary on Cardiopulmonary Syndromes. Non-small cell lung cancer of the superior sulcus, often called Pancoast tumor, begins in the upper part of the lung and spreads to nearby tissues such as the chest wall, large blood vessels, and spine. Treatment of Pancoast tumors may include the following: - Radiation therapy alone. - Radiation therapy followed by surgery. - Chemotherapy and radiation therapy given as separate treatments over the same period of time. Surgery may also be done after chemotherapy and radiation therapy. - Surgery alone. - A clinical trial of new combinations of treatments. Some stage IIIA non-small cell lung tumors that have grown into the chest wall may be completely removed. Treatment of chest wall tumors may include the following: - Surgery. - Surgery and radiation therapy. - Radiation therapy alone. - Chemotherapy combined with radiation therapy and/or surgery. - A clinical trial of new combinations of treatments. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IIIB Non-Small Cell Lung Cancer Treatment of stage IIIB non-small cell lung cancer may include the following: - Chemotherapy followed by external radiation therapy. - Chemotherapy and radiation therapy given as separate treatments over the same period of time. - Chemotherapy followed by surgery. - External radiation therapy alone for patients who cannot be treated with chemotherapy. - External radiation therapy as palliative therapy, to relieve symptoms and improve the quality of life. - Laser therapy and/or internal radiation therapy to relieve symptoms and improve the quality of life. - Clinical trials of new external radiation therapy schedules and new types of treatment. - A clinical trial of chemotherapy and radiation therapy combined with a radiosensitizer. - Clinical trials of targeted therapy combined with chemotherapy and radiation therapy. For more information about supportive care for signs and symptoms such as cough, shortness of breath, and chest pain, see the following PDQ summaries: - Cardiopulmonary Syndromes - Cancer Pain Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IV Non-Small Cell Lung Cancer Treatment of stage IV non-small cell lung cancer may include the following: - Chemotherapy. - Chemotherapy followed by more chemotherapy as maintenance therapy to help keep cancer from progressing. - Combination chemotherapy and targeted therapy with a monoclonal antibody, such as bevacizumab, cetuximab, or necitumumab. - Targeted therapy with a monoclonal antibody, such as nivolumab, pembrolizumab, or atezolizumab. - Targeted therapy with a tyrosine kinase inhibitor, such as erlotinib, gefitinib, afatinib, crizotinib, or ceritinib. - External radiation therapy as palliative therapy, to relieve symptoms and improve the quality of life. - Laser therapy and/or internal radiation therapy for tumors that are blocking the airways. - A clinical trial of new drugs and combinations of treatments. For more information about supportive care for signs and symptoms including cough, shortness of breath, and chest pain, see the following PDQ summaries: - Cardiopulmonary Syndromes - Cancer Pain - Last Days of Life Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV non-small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
what research (or clinical trials) is being done for Non-Small Cell Lung Cancer ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemoprevention Chemoprevention is the use of drugs, vitamins, or other substances to reduce the risk of cancer or to reduce the risk cancer will recur (come back). For lung cancer, chemoprevention is used to lessen the chance that a new tumor will form in the lung. Radiosensitizers Radiosensitizers are substances that make tumor cells easier to kill with radiation therapy. The combination of chemotherapy and radiation therapy given with a radiosensitizer is being studied in the treatment of non-small cell lung cancer. New combinations New combinations of treatments are being studied in clinical trials. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Non-Small Cell Lung Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Chemoprevention Chemoprevention is the use of drugs, vitamins, or other substances to reduce the risk of cancer or to reduce the risk cancer will recur (come back). For lung cancer, chemoprevention is used to lessen the chance that a new tumor will form in the lung. Radiosensitizers Radiosensitizers are substances that make tumor cells easier to kill with radiation therapy. The combination of chemotherapy and radiation therapy given with a radiosensitizer is being studied in the treatment of non-small cell lung cancer. New combinations New combinations of treatments are being studied in clinical trials. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Juvenile Myelomonocytic Leukemia ?
Key Points - Juvenile myelomonocytic leukemia is a childhood disease in which too many myelocytes and monocytes (immature white blood cells) are made in the bone marrow. - Signs and symptoms of juvenile myelomonocytic leukemia include fever, weight loss, and feeling very tired. - Certain factors affect prognosis (chance of recovery) and treatment options. Juvenile myelomonocytic leukemia is a childhood disease in which too many myelocytes and monocytes (immature white blood cells) are made in the bone marrow. Juvenile myelomonocytic leukemia (JMML) is a rare childhood cancer that occurs more often in children younger than 2 years. Children who have neurofibromatosis type 1 and males have an increased risk of juvenile myelomonocytic leukemia. In JMML, the body tells too many blood stem cells to become two types of white blood cells called myelocytes and monocytes. Some of these blood stem cells never become mature white blood cells. These immature white blood cells are called blasts. Over time, the myelocytes, monocytes, and blasts crowd out the red blood cells and platelets in the bone marrow. When this happens, infection, anemia, or easy bleeding may occur.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Juvenile Myelomonocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Juvenile myelomonocytic leukemia is a childhood disease in which too many myelocytes and monocytes (immature white blood cells) are made in the bone marrow. - Signs and symptoms of juvenile myelomonocytic leukemia include fever, weight loss, and feeling very tired. - Certain factors affect prognosis (chance of recovery) and treatment options. Juvenile myelomonocytic leukemia is a childhood disease in which too many myelocytes and monocytes (immature white blood cells) are made in the bone marrow. Juvenile myelomonocytic leukemia (JMML) is a rare childhood cancer that occurs more often in children younger than 2 years. Children who have neurofibromatosis type 1 and males have an increased risk of juvenile myelomonocytic leukemia. In JMML, the body tells too many blood stem cells to become two types of white blood cells called myelocytes and monocytes. Some of these blood stem cells never become mature white blood cells. These immature white blood cells are called blasts. Over time, the myelocytes, monocytes, and blasts crowd out the red blood cells and platelets in the bone marrow. When this happens, infection, anemia, or easy bleeding may occur.<|eot_id|>
What are the symptoms of Juvenile Myelomonocytic Leukemia ?
Signs and symptoms of juvenile myelomonocytic leukemia include fever, weight loss, and feeling very tired. These and other signs and symptoms may be caused by JMML or by other conditions. Check with your doctor if you have any of the following: - Fever for no known reason. - Having infections, such as bronchitis or tonsillitis. - Feeling very tired. - Easy bruising or bleeding. - Skin rash. - Painless swelling of the lymph nodes in the neck, underarm, stomach, or groin. - Pain or a feeling of fullness below the ribs.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Juvenile Myelomonocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of juvenile myelomonocytic leukemia include fever, weight loss, and feeling very tired. These and other signs and symptoms may be caused by JMML or by other conditions. Check with your doctor if you have any of the following: - Fever for no known reason. - Having infections, such as bronchitis or tonsillitis. - Feeling very tired. - Easy bruising or bleeding. - Skin rash. - Painless swelling of the lymph nodes in the neck, underarm, stomach, or groin. - Pain or a feeling of fullness below the ribs.<|eot_id|>
What is the outlook for Juvenile Myelomonocytic Leukemia ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options for JMML depend on the following: - The age of the child at diagnosis. - The number of platelets in the blood. - The amount of a certain type of hemoglobin in red blood cells.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Juvenile Myelomonocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options for JMML depend on the following: - The age of the child at diagnosis. - The number of platelets in the blood. - The amount of a certain type of hemoglobin in red blood cells.<|eot_id|>
What are the treatments for Juvenile Myelomonocytic Leukemia ?
Treatment of juvenile myelomonocytic leukemia (JMML) may include the following: - Combination chemotherapy. - Stem cell transplant. - 13-cis-retinoic acid therapy. - A clinical trial of a new treatment, such as targeted therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with juvenile myelomonocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Juvenile Myelomonocytic Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Treatment of juvenile myelomonocytic leukemia (JMML) may include the following: - Combination chemotherapy. - Stem cell transplant. - 13-cis-retinoic acid therapy. - A clinical trial of a new treatment, such as targeted therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with juvenile myelomonocytic leukemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Childhood Vascular Tumors ?
Key Points - Childhood vascular tumors form from cells that make blood vessels or lymph vessels. - Tests are used to detect (find) and diagnose childhood vascular tumors. - Childhood vascular tumors may be classified into four groups. - Benign tumors - Intermediate (locally aggressive) tumors - Intermediate (rarely metastasizing) tumors - Malignant tumors Childhood vascular tumors form from cells that make blood vessels or lymph vessels. Vascular tumors can form from abnormal blood vessel or lymph vessel cells anywhere in the body. They may be benign (not cancer) or malignant (cancer). There are many types of vascular tumors. The most common type of childhood vascular tumor is hemangioma, which is a benign tumor that usually goes away on its own. Because malignant vascular tumors are rare in children, there is not a lot of information about what treatment works best. Childhood vascular tumors may be classified into four groups. Benign tumors Benign tumors are not cancer. This summary has information about the following benign vascular tumors: - Infantile hemangioma. - Congenital hemangioma. - Benign vascular tumors of the liver. - Spindle cell hemangioma. - Epithelioid hemangioma. - Pyogenic granuloma (lobular capillary hemangioma). - Angiofibroma. - Juvenile nasopharyngeal angiofibroma. Intermediate (locally aggressive) tumors Intermediate tumors that are locally aggressive often spread to the area around the tumor. This summary has information about the following locally aggressive vascular tumors: - Kaposiform hemangioendothelioma and tufted angioma. Intermediate (rarely metastasizing) tumors Intermediate (rarely metastasizing) tumors sometimes spread to other parts of the body. This summary has information about the following vascular tumors that rarely metastasize: - Retiform hemangioendothelioma. - Papillary intralymphatic angioendothelioma. - Composite hemangioendothelioma. - Kaposi sarcoma. Malignant tumors Malignant tumors are cancer. This summary has information about the following malignant vascular tumors: - Epithelioid hemangioendothelioma. - Angiosarcoma of soft tissue. Benign Tumors Infantile Hemangioma Infantile hemangiomas are the most common type of benign vascular tumor in children. An infantile hemangioma may also be called a "strawberry mark." Immature cells that are meant to form blood vessels form a tumor instead. These tumors are not usually seen at birth but appear when the infant is 3 to 6 weeks old. Most hemangiomas get bigger for about 5 months, then stop growing and slowly fade away completely during the next several years. It is rare for them to come back. Hemangiomas may be on the skin, in the tissue below the skin, and/or in an organ. They are usually on the head and neck but can be anywhere on or in the body. Hemangiomas may appear as a single lesion, one or more lesions spread over a larger area of the body, or multiple lesions in more than one part of the body. Lesions that are spread over a larger area of the body or multiple lesions are more likely to cause problems. Risk Factors Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get the disease; not having risk factors doesnt mean that you will not get the disease. Talk with your child's doctor if you think your child may be at risk. Infantile hemangiomas are more common in the following: - Girls. - Whites. - Premature babies. - Twins, triplets, or other multiple births. - Babies of mothers who are older at time of the pregnancy or who have problems with the placenta during pregnancy. Other risk factors for infantile hemangiomas include the following: - Having certain syndromes. - PHACE syndrome: A syndrome in which the hemangioma spreads across a large area of the body (usually the head or face). Other health problems involving the large blood vessels, heart, eyes, and/or brain may also occur. - LUMBAR/PELVIS/SACRAL syndrome: A syndrome in which the hemangioma spreads across a large area of the lower back. Other health problems that affect the urinary system, genitals, rectum, anus, brain, spinal cord, and nerve function may also occur. Having more than one hemangioma or an airway hemangioma increases the risk of having other health problems. - Multiple hemangiomas: Having more than five hemangiomas on the skin is a sign that there may be hemangiomas in an organ, most commonly the liver. Heart, muscle, and thyroid gland problems can also occur. - Airway hemangiomas: Hemangiomas in the airway usually occur along with a large, beard-shaped area of hemangioma on the face (from the ears, around the mouth, lower chin, and front of neck). It is important for airway hemangiomas to be treated before the child has trouble breathing. Signs and Symptoms Infantile hemangiomas may cause any of the following signs and symptoms. Check with your childs doctor if your child has any of the following: - Skin lesions: An area of spidery veins or lightened or discolored skin may appear before the hemangioma does. Hemangiomas occur as firm, warm, bright red-blue lesions on the skin. Lesions that form ulcers are also painful. Later, as the hemangiomas go away, they begin fading in the center before flattening and losing color. - Lesions below the skin: Lesions that grow under the skin in the fat may appear blue or purple. If the lesions are deep enough under the skin surface, they may not be seen. - Lesions in an organ: There may be no signs that hemangiomas have formed on an organ. Although most infantile hemangiomas are nothing to worry about, if your child develops any lumps or red or blue marks on the skin check with your child's doctor. He or she can recommend a specialist if needed. Diagnostic Tests A physical exam and history are usually all that are needed to diagnose infantile hemangiomas. If there is something about the tumor that looks unusual, a biopsy may be done. If the hemangioma is deeper inside the body with no change to the skin, or the lesions are spread across a large area of the body, an ultrasound or MRI may be done. See the General Information section for a description of these tests and procedures. If the hemangiomas are part of a syndrome, more tests may be done such as an echocardiogram, magnetic resonance angiogram, and eye exam. Treatment Most hemangiomas fade and shrink without treatment. If the hemangioma is large or causing other health problems, treatment may include the following: - Propranolol or other beta-blocker therapy. - Steroid therapy, before beta-blocker therapy is begun or when beta-blockers cannot be used. - Pulsed dye laser surgery, for hemangiomas that have ulcers or have not gone away. - Surgery (excision) for hemangiomas that have ulcers, cause vision problems, or have not gone away. - Topical beta-blocker therapy for hemangiomas that are in one area of the skin. - Combined therapy, such as propranolol and steroid therapy or propranolol and topical beta-blocker therapy. Congenital Hemangioma Congenital hemangioma is a benign vascular tumor that begins forming before birth and is fully formed when the baby is born. They're usually on the skin but can be in another organ. There are three types of congenital hemangiomas: - Rapidly Involuting Congenital Hemangioma: These tumors go away on their own 12 to 15 months after birth. They can form ulcers, bleed, and cause temporary heart and blood clotting problems. The skin may look a little different even after the hemangiomas go away. - Partial Involuting Congenital Hemangioma: These tumors do not go away completely. - Non-Involuting Congenital Hemangioma: These tumors never go away on their own. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose congenital hemangioma. Treatment Treatment of rapidly involuting congenital hemangioma and partial involuting congenital hemangioma may include the following: - Observation only. Treatment of non-involuting congenital hemangioma may include the following: - Surgery to remove the tumor depending on where it is and whether it is causing symptoms. Benign Vascular Tumors of the Liver Benign vascular tumors of the liver may be focal (a single lesion in one area of the liver), multifocal (multiple lesions in one area of the liver), or diffuse (multiple lesions in more than one area of the liver). The liver has many functions, including filtering blood and making proteins needed for blood clotting. Sometimes, blood that normally flows through the liver is blocked or slowed by the tumor. This sends blood directly to the heart without going through the liver and is called a liver shunt. This can cause heart failure and problems with blood clotting. Focal Tumors Focal tumors are usually rapidly involuting congenital hemangiomas or non-involuting congenital hemangiomas. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose focal benign vascular tumors. Treatment Treatment of focal tumors of the liver depends on whether symptoms occur and may include the following: - Observation. - Drugs to manage symptoms, including heart failure and blood clotting problems. - Embolization of the liver to manage symptoms, including heart failure. Multifocal and Diffuse Tumors Multifocal and diffuse tumors of the liver are usually infantile hemangiomas. Diffuse tumors of the liver can cause serious effects, including problems with the thyroid gland and heart. The liver can enlarge, press on other organs, and cause more symptoms. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose multifocal or diffuse benign vascular tumors. Treatment Treatment of multifocal and diffuse liver tumors may include the following: - Observation for multifocal tumors of the liver that do not cause symptoms. - Beta-blocker therapy (propranolol). - Chemotherapy. - Steroid therapy. - Total hepatectomy and liver transplant, when the tumors do not respond to drug therapy. This is only done when the tumors have spread widely in the liver and more than one organ has failed. If a vascular tumor of the liver does not respond to standard treatments, a biopsy may be done to see if the tumor has become malignant. Spindle Cell Hemangioma Spindle cell hemangiomas contain cells called spindle cells. Under a microscope, spindle cells look long and slender. Risk Factors Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get the disease; not having risk factors doesnt mean that you will not get the disease. Talk with your child's doctor if you think your child may be at risk. Spindle cell hemangiomas are likely to occur in children with the following syndromes: - Maffucci syndrome, which affects cartilage and skin. - Klippel-Trenaunay syndrome, which affects blood vessels, soft tissues, and bones. Signs Spindle cell hemangiomas appear on or under the skin. They are painful red-brown or bluish lesions that usually appear on the arms or legs. They can begin as one lesion and develop into more lesions over years. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose spindle cell hemangioma. Treatment There is no standard treatment for spindle cell hemangiomas. Treatment may include the following: - Surgery to remove the tumor. Spindle cell hemangiomas may come back after surgery. Epithelioid Hemangioma Epithelioid hemangiomas usually form on or in the skin, especially the head, but can occur in other areas, such as bone. Signs and Symptoms Epithelioid hemangiomas are sometimes caused by injury. On the skin, they may appear as firm pink to red bumps and may be itchy. Epithelioid hemangioma of the bone may cause swelling, pain, and weakened bone in the affected area. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose epithelioid hemangioma. Treatment There is no standard treatment for epithelioid hemangiomas. Treatment may include the following: - Surgery (curettage or resection). - Sclerotherapy. - Radiation therapy in rare cases. Epithelioid hemangiomas often come back after treatment. Pyogenic Granuloma Pyogenic granuloma is also called lobular capillary hemangioma. It is most common in older children and young adults but may occur at any age. The lesions are sometimes caused by injury or from the use of certain medicines, including birth control pills and retinoids. They may also form for no known reason inside capillaries (the smallest blood vessels) or other places on the body. Usually there is only one lesion, but sometimes multiple lesions occur in the same area or the lesions may spread to other areas of the body. Signs Pyogenic granulomas are raised, bright red lesions that may be small or large and smooth or bumpy. They grow quickly over weeks to months and may bleed a lot. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose pyogenic granuloma. Treatment Some pyogenic granulomas go away without treatment. Other pyogenic granulomas need treatment that may include the following: - Surgery (excision or curettage) to remove the lesion. - Laser photocoagulation. Pyogenic granulomas often come back after treatment. Angiofibroma Angiofibromas are rare. They are benign skin lesions that usually occur with a condition called tuberous sclerosis (an inherited disorder that causes skin lesions, seizures, and mental disabilities). Signs Angiofibromas appear as red bumps on the face. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose angiofibroma. Treatment Treatment of angiofibromas may include the following: - Surgery (excision) to remove the tumor. - Laser therapy. - Targeted therapy (sirolimus). Juvenile Nasopharyngeal Angiofibroma Juvenile nasopharyngeal angiofibromas are benign tumors but they can invade nearby tissue. They begin in the nasal cavity and may spread to the nasopharynx, the paranasal sinuses, the bone around the eyes, and sometimes to the brain. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose juvenile nasopharyngeal angiofibroma. Treatment Treatment of juvenile nasopharyngeal angiofibromas may include the following: - Surgery (excision) to remove the tumor. - Radiation therapy. - Chemotherapy. - Immunotherapy (interferon). - Targeted therapy (sirolimus). Intermediate Tumors that Spread Locally Kaposiform Hemangioendothelioma and Tufted Angioma Kaposiform hemangioendotheliomas and tufted angiomas are blood vessel tumors that occur in infants or during early childhood. These tumors can cause Kasabach-Merritt phenomenon, a condition in which the blood is not able to clot and serious bleeding may occur. In Kasabach-Merritt phenomenon the tumor traps and destroys platelets (blood-clotting cells). Then there aren't enough platelets in the blood when needed to stop bleeding. This type of vascular tumor is not related to Kaposi sarcoma. Signs and Symptoms Kaposiform hemangioendotheliomas and tufted angiomas usually occur on the skin of the arms and legs, but may also form in deeper tissues, such as muscle or bone. Signs and symptoms may include the following: - Firm, painful areas of skin that look bruised. - Purple or brownish-red areas of skin. - Easy bruising. - Bleeding more than the usual amount from mucous membranes, wounds, and other tissues. - Anemia (weakness, feeling tired, or looking pale). Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose kaposiform hemangioendothelioma. If a physical exam and MRI clearly show the tumor is a kaposiform hemangioendothelioma or a tufted angioma, a biopsy may not be needed. A biopsy is not always done because serious bleeding can occur. Treatment Treatment of kaposiform hemangioendotheliomas and tufted angiomas depends on the child's symptoms. Infection, delay in treatment, and surgery can cause bleeding that is life-threatening. Kaposiform hemangioendotheliomas and tufted angiomas are best treated by a vascular anomaly specialist. Treatment and supportive care to manage bleeding may include the following: - Steroid therapy which may be followed by chemotherapy. - Non-steroidal anti-inflammatory drugs (NSAID), such as aspirin. - Immunotherapy (interferon). - Antifibrinolytic therapy to improve blood clotting. - Chemotherapy with one or more anticancer drugs. - Beta-blocker therapy (propranolol). - Surgery (excision) to remove the tumor, with or without embolization. - Targeted therapy (sirolimus). - A clinical trial of targeted therapy (sirolimus) and steroid therapy. Even with treatment, these tumors do not fully go away and can come back. Long-term effects include chronic pain, heart failure, bone problems, and lymphedema (the build up of lymph fluid in tissues). Intermediate Tumors that Rarely Spread Retiform Hemangioendothelioma Retiform hemangioendotheliomas are slow growing, flat tumors that occur in young adults and sometimes children. These tumors usually occur on or under the skin of the arms, legs, and trunk. These tumors often come back after treatment, but they usually do not spread to other parts of the body. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose retiform hemangioendothelioma. Treatment Treatment of retiform hemangioendotheliomas may include the following: - Surgery (excision) to remove the tumor. Follow up will include monitoring to see if the tumor comes back. - Radiation therapy and chemotherapy when surgery cannot be done or when the tumor has come back. Papillary Intralymphatic Angioendothelioma Papillary intralymphatic angioendotheliomas are also called Dabska tumors. These tumors form in or under the skin anywhere on the body. The tumors contain channels that look like lymph vessels. Lymph nodes are sometimes affected. Signs Papillary intralymphatic angioendotheliomas may appear as firm, raised, purplish bumps, which may be small or large. These tumors grow slowly over time. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose papillary intralymphatic angioendothelioma. Treatment Treatment of papillary intralymphatic angioendotheliomas may include the following: - Surgery (excision) to remove the tumor. Composite Hemangioendothelioma Composite hemangioendotheliomas have features of both benign and malignant vascular tumors. These tumors usually occur on or under the skin on the arms or legs. They may also occur on the head, neck, or chest. Composite hemangioendotheliomas are not likely to metastasize (spread) but they may come back in the same place. When the tumors metastasize, they usually spread to nearby lymph nodes. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose composite hemangioendothelioma and find out whether the tumor has spread. Treatment Treatment of composite hemangioendotheliomas may include the following: - Surgery to remove the tumor. - Radiation therapy and chemotherapy for tumors that have spread. Kaposi Sarcoma Kaposi sarcoma is a cancer that causes lesions to grow in the skin; the mucous membranes lining the mouth, nose, and throat; lymph nodes; or other organs. It is caused by the Kaposi sarcoma herpes virus (KSHV). In the United States, it usually occurs in people who have a weak immune system caused by AIDS or by drugs used in organ transplants. It is very rare in children and can be caused by HIV infection and rare immune system disorders. Signs Signs in children may include the following: - Lesions in the skin, mouth, or throat. Skin lesions are red, purple, or brown and change from flat, to raised, to scaly areas called plaques, to nodules. - Swollen lymph nodes. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose Kaposi sarcoma. Treatment Treatment of Kaposi sarcoma may include the following: - Chemotherapy. See the PDQ summary on Kaposi Sarcoma Treatment for information about Kaposi sarcoma in adults. Malignant Tumors Epithelioid Hemangioendothelioma Epithelioid hemangioendotheliomas can occur in children, but are most common in adults between 30 and 50 years of age. They usually occur in the liver, lung, or in bone. They may be either fast growing or slow growing. In about a third of cases, the tumor spreads to other parts of the body very quickly. Signs and Symptoms Signs and symptoms depend on where the tumor is: - On the skin, the tumors can be raised and rounded or flat, red-brown patches that feel warm. - In the lung, there may be no early symptoms. Signs and symptoms that occur may include: - Chest pain. - Spitting up blood. - Anemia (weakness, feeling tired, or looking pale). - Trouble breathing (from scarred lung tissue). - In bone, the tumors can cause breaks. Diagnostic Tests Epithelioid hemangioendotheliomas in the liver are found with CT scans and MRI scans. See the General Information section for a description of these tests and procedures used to diagnose epithelioid hemangioendothelioma and find out whether the tumor has spread. X-rays may also be done. Treatment Treatment of slow-growing epithelioid hemangioendotheliomas includes the following: - Observation. Treatment of fast-growing epithelioid hemangioendotheliomas may include the following: - Surgery to remove the tumor when possible. - Immunotherapy (interferon) and targeted therapy (thalidomide, sorafenib, pazopanib, sirolimus) for tumors that are likely to spread. - Chemotherapy. - Total hepatectomy and liver transplant when the tumor is in the liver. Angiosarcoma of the Soft Tissue Angiosarcomas are fast-growing tumors that form in blood vessels or lymph vessels in any part of the body, usually in soft tissue. Most angiosarcomas are in or near the skin. Those in deeper soft tissue can form in the liver, spleen, and lung. These tumors are very rare in children. Children sometimes have more than one tumor in the skin and/or liver. Risk Factors Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get the disease; not having risk factors doesnt mean that you will not get the disease. Talk with your child's doctor if you think your child may be at risk. Risk factors for angiosarcomas include the following: - Being exposed to radiation. - Chronic (long-term) lymphedema, a condition in which extra lymph fluid builds up in tissues and causes swelling. - Having a benign vascular tumor. A benign tumor, such as a hemangioma, may become an angiosarcoma but this rare. Signs Signs of angiosarcoma depend on where the tumor is and may include the following: - Red patches on the skin that bleed easily. - Purple tumors. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose angiosarcoma and find out whether the tumor has spread. Treatment Treatment of angiosarcoma may include the following: - Surgery to completely remove the tumor. - A combination of surgery, chemotherapy, and radiation therapy for angiosarcomas that have spread. - Targeted therapy (bevacizumab) and chemotherapy for angiosarcomas that began as infantile hemangiomas. - A clinical trial of targeted therapy, radiation therapy, and surgery with or without chemotherapy.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Childhood Vascular Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Childhood vascular tumors form from cells that make blood vessels or lymph vessels. - Tests are used to detect (find) and diagnose childhood vascular tumors. - Childhood vascular tumors may be classified into four groups. - Benign tumors - Intermediate (locally aggressive) tumors - Intermediate (rarely metastasizing) tumors - Malignant tumors Childhood vascular tumors form from cells that make blood vessels or lymph vessels. Vascular tumors can form from abnormal blood vessel or lymph vessel cells anywhere in the body. They may be benign (not cancer) or malignant (cancer). There are many types of vascular tumors. The most common type of childhood vascular tumor is hemangioma, which is a benign tumor that usually goes away on its own. Because malignant vascular tumors are rare in children, there is not a lot of information about what treatment works best. Childhood vascular tumors may be classified into four groups. Benign tumors Benign tumors are not cancer. This summary has information about the following benign vascular tumors: - Infantile hemangioma. - Congenital hemangioma. - Benign vascular tumors of the liver. - Spindle cell hemangioma. - Epithelioid hemangioma. - Pyogenic granuloma (lobular capillary hemangioma). - Angiofibroma. - Juvenile nasopharyngeal angiofibroma. Intermediate (locally aggressive) tumors Intermediate tumors that are locally aggressive often spread to the area around the tumor. This summary has information about the following locally aggressive vascular tumors: - Kaposiform hemangioendothelioma and tufted angioma. Intermediate (rarely metastasizing) tumors Intermediate (rarely metastasizing) tumors sometimes spread to other parts of the body. This summary has information about the following vascular tumors that rarely metastasize: - Retiform hemangioendothelioma. - Papillary intralymphatic angioendothelioma. - Composite hemangioendothelioma. - Kaposi sarcoma. Malignant tumors Malignant tumors are cancer. This summary has information about the following malignant vascular tumors: - Epithelioid hemangioendothelioma. - Angiosarcoma of soft tissue. Benign Tumors Infantile Hemangioma Infantile hemangiomas are the most common type of benign vascular tumor in children. An infantile hemangioma may also be called a "strawberry mark." Immature cells that are meant to form blood vessels form a tumor instead. These tumors are not usually seen at birth but appear when the infant is 3 to 6 weeks old. Most hemangiomas get bigger for about 5 months, then stop growing and slowly fade away completely during the next several years. It is rare for them to come back. Hemangiomas may be on the skin, in the tissue below the skin, and/or in an organ. They are usually on the head and neck but can be anywhere on or in the body. Hemangiomas may appear as a single lesion, one or more lesions spread over a larger area of the body, or multiple lesions in more than one part of the body. Lesions that are spread over a larger area of the body or multiple lesions are more likely to cause problems. Risk Factors Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get the disease; not having risk factors doesnt mean that you will not get the disease. Talk with your child's doctor if you think your child may be at risk. Infantile hemangiomas are more common in the following: - Girls. - Whites. - Premature babies. - Twins, triplets, or other multiple births. - Babies of mothers who are older at time of the pregnancy or who have problems with the placenta during pregnancy. Other risk factors for infantile hemangiomas include the following: - Having certain syndromes. - PHACE syndrome: A syndrome in which the hemangioma spreads across a large area of the body (usually the head or face). Other health problems involving the large blood vessels, heart, eyes, and/or brain may also occur. - LUMBAR/PELVIS/SACRAL syndrome: A syndrome in which the hemangioma spreads across a large area of the lower back. Other health problems that affect the urinary system, genitals, rectum, anus, brain, spinal cord, and nerve function may also occur. Having more than one hemangioma or an airway hemangioma increases the risk of having other health problems. - Multiple hemangiomas: Having more than five hemangiomas on the skin is a sign that there may be hemangiomas in an organ, most commonly the liver. Heart, muscle, and thyroid gland problems can also occur. - Airway hemangiomas: Hemangiomas in the airway usually occur along with a large, beard-shaped area of hemangioma on the face (from the ears, around the mouth, lower chin, and front of neck). It is important for airway hemangiomas to be treated before the child has trouble breathing. Signs and Symptoms Infantile hemangiomas may cause any of the following signs and symptoms. Check with your childs doctor if your child has any of the following: - Skin lesions: An area of spidery veins or lightened or discolored skin may appear before the hemangioma does. Hemangiomas occur as firm, warm, bright red-blue lesions on the skin. Lesions that form ulcers are also painful. Later, as the hemangiomas go away, they begin fading in the center before flattening and losing color. - Lesions below the skin: Lesions that grow under the skin in the fat may appear blue or purple. If the lesions are deep enough under the skin surface, they may not be seen. - Lesions in an organ: There may be no signs that hemangiomas have formed on an organ. Although most infantile hemangiomas are nothing to worry about, if your child develops any lumps or red or blue marks on the skin check with your child's doctor. He or she can recommend a specialist if needed. Diagnostic Tests A physical exam and history are usually all that are needed to diagnose infantile hemangiomas. If there is something about the tumor that looks unusual, a biopsy may be done. If the hemangioma is deeper inside the body with no change to the skin, or the lesions are spread across a large area of the body, an ultrasound or MRI may be done. See the General Information section for a description of these tests and procedures. If the hemangiomas are part of a syndrome, more tests may be done such as an echocardiogram, magnetic resonance angiogram, and eye exam. Treatment Most hemangiomas fade and shrink without treatment. If the hemangioma is large or causing other health problems, treatment may include the following: - Propranolol or other beta-blocker therapy. - Steroid therapy, before beta-blocker therapy is begun or when beta-blockers cannot be used. - Pulsed dye laser surgery, for hemangiomas that have ulcers or have not gone away. - Surgery (excision) for hemangiomas that have ulcers, cause vision problems, or have not gone away. - Topical beta-blocker therapy for hemangiomas that are in one area of the skin. - Combined therapy, such as propranolol and steroid therapy or propranolol and topical beta-blocker therapy. Congenital Hemangioma Congenital hemangioma is a benign vascular tumor that begins forming before birth and is fully formed when the baby is born. They're usually on the skin but can be in another organ. There are three types of congenital hemangiomas: - Rapidly Involuting Congenital Hemangioma: These tumors go away on their own 12 to 15 months after birth. They can form ulcers, bleed, and cause temporary heart and blood clotting problems. The skin may look a little different even after the hemangiomas go away. - Partial Involuting Congenital Hemangioma: These tumors do not go away completely. - Non-Involuting Congenital Hemangioma: These tumors never go away on their own. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose congenital hemangioma. Treatment Treatment of rapidly involuting congenital hemangioma and partial involuting congenital hemangioma may include the following: - Observation only. Treatment of non-involuting congenital hemangioma may include the following: - Surgery to remove the tumor depending on where it is and whether it is causing symptoms. Benign Vascular Tumors of the Liver Benign vascular tumors of the liver may be focal (a single lesion in one area of the liver), multifocal (multiple lesions in one area of the liver), or diffuse (multiple lesions in more than one area of the liver). The liver has many functions, including filtering blood and making proteins needed for blood clotting. Sometimes, blood that normally flows through the liver is blocked or slowed by the tumor. This sends blood directly to the heart without going through the liver and is called a liver shunt. This can cause heart failure and problems with blood clotting. Focal Tumors Focal tumors are usually rapidly involuting congenital hemangiomas or non-involuting congenital hemangiomas. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose focal benign vascular tumors. Treatment Treatment of focal tumors of the liver depends on whether symptoms occur and may include the following: - Observation. - Drugs to manage symptoms, including heart failure and blood clotting problems. - Embolization of the liver to manage symptoms, including heart failure. Multifocal and Diffuse Tumors Multifocal and diffuse tumors of the liver are usually infantile hemangiomas. Diffuse tumors of the liver can cause serious effects, including problems with the thyroid gland and heart. The liver can enlarge, press on other organs, and cause more symptoms. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose multifocal or diffuse benign vascular tumors. Treatment Treatment of multifocal and diffuse liver tumors may include the following: - Observation for multifocal tumors of the liver that do not cause symptoms. - Beta-blocker therapy (propranolol). - Chemotherapy. - Steroid therapy. - Total hepatectomy and liver transplant, when the tumors do not respond to drug therapy. This is only done when the tumors have spread widely in the liver and more than one organ has failed. If a vascular tumor of the liver does not respond to standard treatments, a biopsy may be done to see if the tumor has become malignant. Spindle Cell Hemangioma Spindle cell hemangiomas contain cells called spindle cells. Under a microscope, spindle cells look long and slender. Risk Factors Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get the disease; not having risk factors doesnt mean that you will not get the disease. Talk with your child's doctor if you think your child may be at risk. Spindle cell hemangiomas are likely to occur in children with the following syndromes: - Maffucci syndrome, which affects cartilage and skin. - Klippel-Trenaunay syndrome, which affects blood vessels, soft tissues, and bones. Signs Spindle cell hemangiomas appear on or under the skin. They are painful red-brown or bluish lesions that usually appear on the arms or legs. They can begin as one lesion and develop into more lesions over years. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose spindle cell hemangioma. Treatment There is no standard treatment for spindle cell hemangiomas. Treatment may include the following: - Surgery to remove the tumor. Spindle cell hemangiomas may come back after surgery. Epithelioid Hemangioma Epithelioid hemangiomas usually form on or in the skin, especially the head, but can occur in other areas, such as bone. Signs and Symptoms Epithelioid hemangiomas are sometimes caused by injury. On the skin, they may appear as firm pink to red bumps and may be itchy. Epithelioid hemangioma of the bone may cause swelling, pain, and weakened bone in the affected area. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose epithelioid hemangioma. Treatment There is no standard treatment for epithelioid hemangiomas. Treatment may include the following: - Surgery (curettage or resection). - Sclerotherapy. - Radiation therapy in rare cases. Epithelioid hemangiomas often come back after treatment. Pyogenic Granuloma Pyogenic granuloma is also called lobular capillary hemangioma. It is most common in older children and young adults but may occur at any age. The lesions are sometimes caused by injury or from the use of certain medicines, including birth control pills and retinoids. They may also form for no known reason inside capillaries (the smallest blood vessels) or other places on the body. Usually there is only one lesion, but sometimes multiple lesions occur in the same area or the lesions may spread to other areas of the body. Signs Pyogenic granulomas are raised, bright red lesions that may be small or large and smooth or bumpy. They grow quickly over weeks to months and may bleed a lot. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose pyogenic granuloma. Treatment Some pyogenic granulomas go away without treatment. Other pyogenic granulomas need treatment that may include the following: - Surgery (excision or curettage) to remove the lesion. - Laser photocoagulation. Pyogenic granulomas often come back after treatment. Angiofibroma Angiofibromas are rare. They are benign skin lesions that usually occur with a condition called tuberous sclerosis (an inherited disorder that causes skin lesions, seizures, and mental disabilities). Signs Angiofibromas appear as red bumps on the face. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose angiofibroma. Treatment Treatment of angiofibromas may include the following: - Surgery (excision) to remove the tumor. - Laser therapy. - Targeted therapy (sirolimus). Juvenile Nasopharyngeal Angiofibroma Juvenile nasopharyngeal angiofibromas are benign tumors but they can invade nearby tissue. They begin in the nasal cavity and may spread to the nasopharynx, the paranasal sinuses, the bone around the eyes, and sometimes to the brain. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose juvenile nasopharyngeal angiofibroma. Treatment Treatment of juvenile nasopharyngeal angiofibromas may include the following: - Surgery (excision) to remove the tumor. - Radiation therapy. - Chemotherapy. - Immunotherapy (interferon). - Targeted therapy (sirolimus). Intermediate Tumors that Spread Locally Kaposiform Hemangioendothelioma and Tufted Angioma Kaposiform hemangioendotheliomas and tufted angiomas are blood vessel tumors that occur in infants or during early childhood. These tumors can cause Kasabach-Merritt phenomenon, a condition in which the blood is not able to clot and serious bleeding may occur. In Kasabach-Merritt phenomenon the tumor traps and destroys platelets (blood-clotting cells). Then there aren't enough platelets in the blood when needed to stop bleeding. This type of vascular tumor is not related to Kaposi sarcoma. Signs and Symptoms Kaposiform hemangioendotheliomas and tufted angiomas usually occur on the skin of the arms and legs, but may also form in deeper tissues, such as muscle or bone. Signs and symptoms may include the following: - Firm, painful areas of skin that look bruised. - Purple or brownish-red areas of skin. - Easy bruising. - Bleeding more than the usual amount from mucous membranes, wounds, and other tissues. - Anemia (weakness, feeling tired, or looking pale). Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose kaposiform hemangioendothelioma. If a physical exam and MRI clearly show the tumor is a kaposiform hemangioendothelioma or a tufted angioma, a biopsy may not be needed. A biopsy is not always done because serious bleeding can occur. Treatment Treatment of kaposiform hemangioendotheliomas and tufted angiomas depends on the child's symptoms. Infection, delay in treatment, and surgery can cause bleeding that is life-threatening. Kaposiform hemangioendotheliomas and tufted angiomas are best treated by a vascular anomaly specialist. Treatment and supportive care to manage bleeding may include the following: - Steroid therapy which may be followed by chemotherapy. - Non-steroidal anti-inflammatory drugs (NSAID), such as aspirin. - Immunotherapy (interferon). - Antifibrinolytic therapy to improve blood clotting. - Chemotherapy with one or more anticancer drugs. - Beta-blocker therapy (propranolol). - Surgery (excision) to remove the tumor, with or without embolization. - Targeted therapy (sirolimus). - A clinical trial of targeted therapy (sirolimus) and steroid therapy. Even with treatment, these tumors do not fully go away and can come back. Long-term effects include chronic pain, heart failure, bone problems, and lymphedema (the build up of lymph fluid in tissues). Intermediate Tumors that Rarely Spread Retiform Hemangioendothelioma Retiform hemangioendotheliomas are slow growing, flat tumors that occur in young adults and sometimes children. These tumors usually occur on or under the skin of the arms, legs, and trunk. These tumors often come back after treatment, but they usually do not spread to other parts of the body. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose retiform hemangioendothelioma. Treatment Treatment of retiform hemangioendotheliomas may include the following: - Surgery (excision) to remove the tumor. Follow up will include monitoring to see if the tumor comes back. - Radiation therapy and chemotherapy when surgery cannot be done or when the tumor has come back. Papillary Intralymphatic Angioendothelioma Papillary intralymphatic angioendotheliomas are also called Dabska tumors. These tumors form in or under the skin anywhere on the body. The tumors contain channels that look like lymph vessels. Lymph nodes are sometimes affected. Signs Papillary intralymphatic angioendotheliomas may appear as firm, raised, purplish bumps, which may be small or large. These tumors grow slowly over time. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose papillary intralymphatic angioendothelioma. Treatment Treatment of papillary intralymphatic angioendotheliomas may include the following: - Surgery (excision) to remove the tumor. Composite Hemangioendothelioma Composite hemangioendotheliomas have features of both benign and malignant vascular tumors. These tumors usually occur on or under the skin on the arms or legs. They may also occur on the head, neck, or chest. Composite hemangioendotheliomas are not likely to metastasize (spread) but they may come back in the same place. When the tumors metastasize, they usually spread to nearby lymph nodes. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose composite hemangioendothelioma and find out whether the tumor has spread. Treatment Treatment of composite hemangioendotheliomas may include the following: - Surgery to remove the tumor. - Radiation therapy and chemotherapy for tumors that have spread. Kaposi Sarcoma Kaposi sarcoma is a cancer that causes lesions to grow in the skin; the mucous membranes lining the mouth, nose, and throat; lymph nodes; or other organs. It is caused by the Kaposi sarcoma herpes virus (KSHV). In the United States, it usually occurs in people who have a weak immune system caused by AIDS or by drugs used in organ transplants. It is very rare in children and can be caused by HIV infection and rare immune system disorders. Signs Signs in children may include the following: - Lesions in the skin, mouth, or throat. Skin lesions are red, purple, or brown and change from flat, to raised, to scaly areas called plaques, to nodules. - Swollen lymph nodes. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose Kaposi sarcoma. Treatment Treatment of Kaposi sarcoma may include the following: - Chemotherapy. See the PDQ summary on Kaposi Sarcoma Treatment for information about Kaposi sarcoma in adults. Malignant Tumors Epithelioid Hemangioendothelioma Epithelioid hemangioendotheliomas can occur in children, but are most common in adults between 30 and 50 years of age. They usually occur in the liver, lung, or in bone. They may be either fast growing or slow growing. In about a third of cases, the tumor spreads to other parts of the body very quickly. Signs and Symptoms Signs and symptoms depend on where the tumor is: - On the skin, the tumors can be raised and rounded or flat, red-brown patches that feel warm. - In the lung, there may be no early symptoms. Signs and symptoms that occur may include: - Chest pain. - Spitting up blood. - Anemia (weakness, feeling tired, or looking pale). - Trouble breathing (from scarred lung tissue). - In bone, the tumors can cause breaks. Diagnostic Tests Epithelioid hemangioendotheliomas in the liver are found with CT scans and MRI scans. See the General Information section for a description of these tests and procedures used to diagnose epithelioid hemangioendothelioma and find out whether the tumor has spread. X-rays may also be done. Treatment Treatment of slow-growing epithelioid hemangioendotheliomas includes the following: - Observation. Treatment of fast-growing epithelioid hemangioendotheliomas may include the following: - Surgery to remove the tumor when possible. - Immunotherapy (interferon) and targeted therapy (thalidomide, sorafenib, pazopanib, sirolimus) for tumors that are likely to spread. - Chemotherapy. - Total hepatectomy and liver transplant when the tumor is in the liver. Angiosarcoma of the Soft Tissue Angiosarcomas are fast-growing tumors that form in blood vessels or lymph vessels in any part of the body, usually in soft tissue. Most angiosarcomas are in or near the skin. Those in deeper soft tissue can form in the liver, spleen, and lung. These tumors are very rare in children. Children sometimes have more than one tumor in the skin and/or liver. Risk Factors Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get the disease; not having risk factors doesnt mean that you will not get the disease. Talk with your child's doctor if you think your child may be at risk. Risk factors for angiosarcomas include the following: - Being exposed to radiation. - Chronic (long-term) lymphedema, a condition in which extra lymph fluid builds up in tissues and causes swelling. - Having a benign vascular tumor. A benign tumor, such as a hemangioma, may become an angiosarcoma but this rare. Signs Signs of angiosarcoma depend on where the tumor is and may include the following: - Red patches on the skin that bleed easily. - Purple tumors. Diagnostic Tests See the General Information section for a description of tests and procedures used to diagnose angiosarcoma and find out whether the tumor has spread. Treatment Treatment of angiosarcoma may include the following: - Surgery to completely remove the tumor. - A combination of surgery, chemotherapy, and radiation therapy for angiosarcomas that have spread. - Targeted therapy (bevacizumab) and chemotherapy for angiosarcomas that began as infantile hemangiomas. - A clinical trial of targeted therapy, radiation therapy, and surgery with or without chemotherapy.<|eot_id|>
How to diagnose Childhood Vascular Tumors ?
Tests are used to detect (find) and diagnose childhood vascular tumors. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps, lesions, or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. A biopsy is not always needed to diagnose a vascular tumor.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Childhood Vascular Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests are used to detect (find) and diagnose childhood vascular tumors. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps, lesions, or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. A biopsy is not always needed to diagnose a vascular tumor.<|eot_id|>
What are the treatments for Childhood Vascular Tumors ?
Key Points - There are different types of treatment for childhood vascular tumors. - Children with childhood vascular tumors should have their treatment planned by a team of health care providers who are experts in treating cancer in children. - Some treatments cause side effects months or years after treatment has ended. - Eleven types of standard treatment are used: - Beta-blocker therapy - Surgery - Photocoagulation - Embolization - Chemotherapy - Sclerotherapy - Radiation therapy - Targeted therapy - Immunotherapy - Other drug therapy - Observation - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for childhood vascular tumors. Different types of treatment are available for children with vascular tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because vascular tumors in children are rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children with childhood vascular tumors should have their treatment planned by a team of health care providers who are experts in treating cancer in children. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with cancer and who specialize in certain areas of medicine. These may include the following specialists: - Pediatric vascular anomaly specialist (expert in treating children with vascular tumors). - Pediatric surgeon. - Orthopedic surgeon. - Radiation oncologist. - Pediatric nurse specialist. - Rehabilitation specialist. - Psychologist. - Social worker. Some treatments cause side effects months or years after treatment has ended. Some treatments, such as chemotherapy and radiation therapy, cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of treatment may include: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important to talk with your child's doctors about the possible late effects caused by some treatments. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). Eleven types of standard treatment are used: Beta-blocker therapy Beta-blockers are drugs that decrease blood pressure and heart rate. When used in patients with vascular tumors, beta-blockers may help shrink the tumors. Beta-blocker therapy may be given by vein (IV), by mouth, or placed on the skin (topical). The way the beta-blocker therapy is given depends on the type of vascular tumor and where the tumor first formed. The beta-blocker propranolol is usually the first treatment for hemangiomas. Infants treated with IV propranolol may need to have their treatment started in a hospital. Propranolol is also used to treat benign vascular tumor of liver and kaposiform hemangioendothelioma. Other beta-blockers used to treat vascular tumors include atenolol, nadolol, and timolol. Infantile hemangioma may also be treated with propranolol and steroid therapy or propranolol and topical beta-blocker therapy. See the drug information summary on Propranolol Hydrochloride for more information. Surgery The following types of surgery may be used to remove many types of vascular tumors: - Excision: Surgery to remove the entire tumor and some of the healthy tissue around it. - Laser surgery: A surgical procedure that uses a laser beam (a narrow beam of intense light) as a knife to make bloodless cuts in tissue or to remove a skin lesion such as a tumor. Surgery with a pulsed dye laser may be used for some hemangiomas. This type of laser uses a beam of light that targets blood vessels in the skin. The light is changed into heat and the blood vessels are destroyed without damaging nearby skin. - Total hepatectomy and liver transplant: A surgical procedure to remove the entire liver followed by a transplant of a healthy liver from a donor. - Curettage: A procedure in which abnormal tissue is removed using a small, spoon-shaped instrument called a curette. The type of surgery used depends on the type of vascular tumor and where the tumor formed in the body. For malignant tumors, even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the tumor will come back, is called adjuvant therapy. Photocoagulation Photocoagulation is the use of an intense beam of light, such as a laser, to seal off blood vessels or destroy tissue. It is used to treat pyogenic granuloma. Embolization Embolization is a procedure that uses particles, such as tiny gelatin sponges or beads, to block blood vessels in the liver. It may be used to treat some benign vascular tumors of the liver and kaposiform hemangioendothelioma. Chemotherapy Chemotherapy is a treatment that uses drugs to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect tumor cells in those areas (regional chemotherapy). Chemotherapy for hemangiomas may also be given topically (applied to the skin in a cream or lotion). The way the chemotherapy is given depends on the type of the vascular tumor being treated. Sclerotherapy Sclerotherapy is a treatment used to destroy the blood vessel with the tumor. A liquid is injected into the blood vessel, causing it to scar and break down. Over time, the destroyed blood vessel is absorbed into normal tissue. The blood flows through nearby healthy veins instead. Sclerotherapy is used in the treatment of epithelioid hemangioma. Radiation therapy Radiation therapy is a treatment that uses high-energy x-rays or other types of radiation to kill tumor cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the tumor. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the tumor. The way the radiation therapy is given depends on the type of the vascular tumor being treated. External radiation is used to treat some vascular tumors. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack specific tumor cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Angiogenesis inhibitors are a type of targeted therapy. - Angiogenesis inhibitors are drugs that stop cells from dividing and prevent the growth of new blood vessels that tumors need to grow. The targeted therapy drugs thalidomide, sorafenib, pazopanib, sirolimus, and bevacizumab are angiogenesis inhibitors used to treat childhood vascular tumors. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight disease. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against disease. Interferon is a type of immunotherapy used to treat childhood vascular tumors. It interferes with the division of tumor cells and can slow tumor growth. It is used in the treatment of juvenile nasopharyngeal angiofibroma, kaposiform hemangioendothelioma, and epithelioid hemangioendothelioma. Other drug therapy Other drugs used to treat childhood vascular tumors or manage their effects include the following: - Steroid therapy: Steroids are hormones made naturally in the body. They can also be made in a laboratory and used as drugs. Steroid drugs help shrink some vascular tumors. - Non-steroidal anti-inflammatory drugs (NSAIDs): NSAIDs are commonly used to decrease fever, swelling, pain, and redness. Examples of NSAIDs are aspirin, ibuprofen, and naproxen. In the treatment of vascular tumors, NSAIDs can increase the flow of blood through the tumors and decrease the chance that an unwanted blood clot will form. - Antifibrinolytic therapy: These drugs help the blood clot in patients who have Kasabach-Merritt syndrome. Fibrin is the main protein in a blood clot that helps stop bleeding and heal wounds. Some vascular tumors cause fibrin to break down and the patient's blood does not clot normally, causing uncontrolled bleeding. Antifibrinolytics help prevent the breakdown of fibrin. Observation Observation is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the research process. Clinical trials are done to find out if new treatments are safe and effective or better than the standard treatment. Many of today's standard treatments are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way disease will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose tumors have not gotten better. There are also clinical trials that test new ways to stop tumors from recurring (coming back) or reduce the side effects of treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the vascular tumor may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the tumor has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Childhood Vascular Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for childhood vascular tumors. - Children with childhood vascular tumors should have their treatment planned by a team of health care providers who are experts in treating cancer in children. - Some treatments cause side effects months or years after treatment has ended. - Eleven types of standard treatment are used: - Beta-blocker therapy - Surgery - Photocoagulation - Embolization - Chemotherapy - Sclerotherapy - Radiation therapy - Targeted therapy - Immunotherapy - Other drug therapy - Observation - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for childhood vascular tumors. Different types of treatment are available for children with vascular tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because vascular tumors in children are rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children with childhood vascular tumors should have their treatment planned by a team of health care providers who are experts in treating cancer in children. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with cancer and who specialize in certain areas of medicine. These may include the following specialists: - Pediatric vascular anomaly specialist (expert in treating children with vascular tumors). - Pediatric surgeon. - Orthopedic surgeon. - Radiation oncologist. - Pediatric nurse specialist. - Rehabilitation specialist. - Psychologist. - Social worker. Some treatments cause side effects months or years after treatment has ended. Some treatments, such as chemotherapy and radiation therapy, cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of treatment may include: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important to talk with your child's doctors about the possible late effects caused by some treatments. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). Eleven types of standard treatment are used: Beta-blocker therapy Beta-blockers are drugs that decrease blood pressure and heart rate. When used in patients with vascular tumors, beta-blockers may help shrink the tumors. Beta-blocker therapy may be given by vein (IV), by mouth, or placed on the skin (topical). The way the beta-blocker therapy is given depends on the type of vascular tumor and where the tumor first formed. The beta-blocker propranolol is usually the first treatment for hemangiomas. Infants treated with IV propranolol may need to have their treatment started in a hospital. Propranolol is also used to treat benign vascular tumor of liver and kaposiform hemangioendothelioma. Other beta-blockers used to treat vascular tumors include atenolol, nadolol, and timolol. Infantile hemangioma may also be treated with propranolol and steroid therapy or propranolol and topical beta-blocker therapy. See the drug information summary on Propranolol Hydrochloride for more information. Surgery The following types of surgery may be used to remove many types of vascular tumors: - Excision: Surgery to remove the entire tumor and some of the healthy tissue around it. - Laser surgery: A surgical procedure that uses a laser beam (a narrow beam of intense light) as a knife to make bloodless cuts in tissue or to remove a skin lesion such as a tumor. Surgery with a pulsed dye laser may be used for some hemangiomas. This type of laser uses a beam of light that targets blood vessels in the skin. The light is changed into heat and the blood vessels are destroyed without damaging nearby skin. - Total hepatectomy and liver transplant: A surgical procedure to remove the entire liver followed by a transplant of a healthy liver from a donor. - Curettage: A procedure in which abnormal tissue is removed using a small, spoon-shaped instrument called a curette. The type of surgery used depends on the type of vascular tumor and where the tumor formed in the body. For malignant tumors, even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the tumor will come back, is called adjuvant therapy. Photocoagulation Photocoagulation is the use of an intense beam of light, such as a laser, to seal off blood vessels or destroy tissue. It is used to treat pyogenic granuloma. Embolization Embolization is a procedure that uses particles, such as tiny gelatin sponges or beads, to block blood vessels in the liver. It may be used to treat some benign vascular tumors of the liver and kaposiform hemangioendothelioma. Chemotherapy Chemotherapy is a treatment that uses drugs to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect tumor cells in those areas (regional chemotherapy). Chemotherapy for hemangiomas may also be given topically (applied to the skin in a cream or lotion). The way the chemotherapy is given depends on the type of the vascular tumor being treated. Sclerotherapy Sclerotherapy is a treatment used to destroy the blood vessel with the tumor. A liquid is injected into the blood vessel, causing it to scar and break down. Over time, the destroyed blood vessel is absorbed into normal tissue. The blood flows through nearby healthy veins instead. Sclerotherapy is used in the treatment of epithelioid hemangioma. Radiation therapy Radiation therapy is a treatment that uses high-energy x-rays or other types of radiation to kill tumor cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the tumor. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the tumor. The way the radiation therapy is given depends on the type of the vascular tumor being treated. External radiation is used to treat some vascular tumors. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack specific tumor cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Angiogenesis inhibitors are a type of targeted therapy. - Angiogenesis inhibitors are drugs that stop cells from dividing and prevent the growth of new blood vessels that tumors need to grow. The targeted therapy drugs thalidomide, sorafenib, pazopanib, sirolimus, and bevacizumab are angiogenesis inhibitors used to treat childhood vascular tumors. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight disease. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against disease. Interferon is a type of immunotherapy used to treat childhood vascular tumors. It interferes with the division of tumor cells and can slow tumor growth. It is used in the treatment of juvenile nasopharyngeal angiofibroma, kaposiform hemangioendothelioma, and epithelioid hemangioendothelioma. Other drug therapy Other drugs used to treat childhood vascular tumors or manage their effects include the following: - Steroid therapy: Steroids are hormones made naturally in the body. They can also be made in a laboratory and used as drugs. Steroid drugs help shrink some vascular tumors. - Non-steroidal anti-inflammatory drugs (NSAIDs): NSAIDs are commonly used to decrease fever, swelling, pain, and redness. Examples of NSAIDs are aspirin, ibuprofen, and naproxen. In the treatment of vascular tumors, NSAIDs can increase the flow of blood through the tumors and decrease the chance that an unwanted blood clot will form. - Antifibrinolytic therapy: These drugs help the blood clot in patients who have Kasabach-Merritt syndrome. Fibrin is the main protein in a blood clot that helps stop bleeding and heal wounds. Some vascular tumors cause fibrin to break down and the patient's blood does not clot normally, causing uncontrolled bleeding. Antifibrinolytics help prevent the breakdown of fibrin. Observation Observation is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the research process. Clinical trials are done to find out if new treatments are safe and effective or better than the standard treatment. Many of today's standard treatments are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way disease will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose tumors have not gotten better. There are also clinical trials that test new ways to stop tumors from recurring (coming back) or reduce the side effects of treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the vascular tumor may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the tumor has recurred (come back). These tests are sometimes called follow-up tests or check-ups.<|eot_id|>
what research (or clinical trials) is being done for Childhood Vascular Tumors ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the research process. Clinical trials are done to find out if new treatments are safe and effective or better than the standard treatment. Many of today's standard treatments are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way disease will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose tumors have not gotten better. There are also clinical trials that test new ways to stop tumors from recurring (coming back) or reduce the side effects of treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Childhood Vascular Tumors ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the research process. Clinical trials are done to find out if new treatments are safe and effective or better than the standard treatment. Many of today's standard treatments are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way disease will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose tumors have not gotten better. There are also clinical trials that test new ways to stop tumors from recurring (coming back) or reduce the side effects of treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Childhood Brain Stem Glioma ?
Key Points - Childhood brain stem glioma is a disease in which benign (noncancer) or malignant (cancer) cells form in the tissues of the brain stem. - Brain tumors may be benign (not cancer) or malignant (cancer). - There are two types of brain stem gliomas in children. - The cause of most childhood brain tumors is unknown. - The signs and symptoms of brain stem glioma are not the same in every child. - Tests that examine the brain are used to detect (find) childhood brain stem glioma. - A biopsy may be done to diagnose certain types of brain stem glioma. - Certain factors affect prognosis (chance of recovery) and treatment options. Childhood brain stem glioma is a disease in which benign (noncancer) or malignant (cancer) cells form in the tissues of the brain stem. Gliomas are tumors formed from glial cells. Glial cells in the brain hold nerve cells in place, bring food and oxygen to them, and help protect them from disease, such as infection. The brain stem is the part of the brain connected to the spinal cord. It is in the lowest part of the brain, just above the back of the neck. The brain stem is the part of the brain that controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. Most childhood brain stem gliomas are pontine gliomas, which form in a part of the brain stem called the pons. Brain tumors are the third most common type of cancer in children. This summary refers to the treatment of primary brain tumors (tumors that begin in the brain). Treatment for metastatic brain tumors, which are tumors formed by cancer cells that begin in other parts of the body and spread to the brain, is not discussed in this summary. Brain tumors can occur in both children and adults; however, treatment for children may be different than treatment for adults. See the following PDQ treatment summaries for more information: - Childhood Brain and Spinal Cord Tumors Treatment Overview - Adult Central Nervous System Tumors Treatment Brain tumors may be benign (not cancer) or malignant (cancer). Benign brain tumors grow and press on nearby areas of the brain. They rarely spread into other tissues. Malignant brain tumors are likely to grow quickly and spread into other brain tissue. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Both benign and malignant brain tumors can cause signs and symptoms and need treatment. There are two types of brain stem gliomas in children. Childhood brain stem glioma is either a diffuse intrinsic pontine glioma (DIPG) or a focal glioma. - DIPG is a high-grade tumor that is fast-growing and spreads all through the brain stem. It is hard to treat and has a poor prognosis (chance of recovery). Children younger than 3 years diagnosed with DIPG may have a better prognosis than children who are 3 years and older. - A focal glioma is slow-growing and is in one area of the brain stem. It is easier to treat than DIPG and has a better prognosis.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Childhood Brain Stem Glioma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Childhood brain stem glioma is a disease in which benign (noncancer) or malignant (cancer) cells form in the tissues of the brain stem. - Brain tumors may be benign (not cancer) or malignant (cancer). - There are two types of brain stem gliomas in children. - The cause of most childhood brain tumors is unknown. - The signs and symptoms of brain stem glioma are not the same in every child. - Tests that examine the brain are used to detect (find) childhood brain stem glioma. - A biopsy may be done to diagnose certain types of brain stem glioma. - Certain factors affect prognosis (chance of recovery) and treatment options. Childhood brain stem glioma is a disease in which benign (noncancer) or malignant (cancer) cells form in the tissues of the brain stem. Gliomas are tumors formed from glial cells. Glial cells in the brain hold nerve cells in place, bring food and oxygen to them, and help protect them from disease, such as infection. The brain stem is the part of the brain connected to the spinal cord. It is in the lowest part of the brain, just above the back of the neck. The brain stem is the part of the brain that controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. Most childhood brain stem gliomas are pontine gliomas, which form in a part of the brain stem called the pons. Brain tumors are the third most common type of cancer in children. This summary refers to the treatment of primary brain tumors (tumors that begin in the brain). Treatment for metastatic brain tumors, which are tumors formed by cancer cells that begin in other parts of the body and spread to the brain, is not discussed in this summary. Brain tumors can occur in both children and adults; however, treatment for children may be different than treatment for adults. See the following PDQ treatment summaries for more information: - Childhood Brain and Spinal Cord Tumors Treatment Overview - Adult Central Nervous System Tumors Treatment Brain tumors may be benign (not cancer) or malignant (cancer). Benign brain tumors grow and press on nearby areas of the brain. They rarely spread into other tissues. Malignant brain tumors are likely to grow quickly and spread into other brain tissue. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Both benign and malignant brain tumors can cause signs and symptoms and need treatment. There are two types of brain stem gliomas in children. Childhood brain stem glioma is either a diffuse intrinsic pontine glioma (DIPG) or a focal glioma. - DIPG is a high-grade tumor that is fast-growing and spreads all through the brain stem. It is hard to treat and has a poor prognosis (chance of recovery). Children younger than 3 years diagnosed with DIPG may have a better prognosis than children who are 3 years and older. - A focal glioma is slow-growing and is in one area of the brain stem. It is easier to treat than DIPG and has a better prognosis.<|eot_id|>
What causes Childhood Brain Stem Glioma ?
The cause of most childhood brain tumors is unknown.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What causes Childhood Brain Stem Glioma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> The cause of most childhood brain tumors is unknown.<|eot_id|>
Who is at risk for Childhood Brain Stem Glioma? ?
Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your child's doctor if you think your child may be at risk. Possible risk factors for brain stem glioma include: - Having certain genetic disorders, such as neurofibromatosis type 1 (NF1).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Childhood Brain Stem Glioma? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your child's doctor if you think your child may be at risk. Possible risk factors for brain stem glioma include: - Having certain genetic disorders, such as neurofibromatosis type 1 (NF1).<|eot_id|>
What are the symptoms of Childhood Brain Stem Glioma ?
The signs and symptoms of brain stem glioma are not the same in every child. Signs and symptoms depend on the following: - Where the tumor forms in the brain. - The size of the tumor and whether it has spread all through the brain stem. - How fast the tumor grows. - The child's age and development. Some tumors do not cause signs or symptoms. Signs and symptoms may be caused by childhood brain stem gliomas or by other conditions. Check with your child's doctor if your child has any of the following: - Loss of ability to move one side of the face and/or body. - Loss of balance and trouble walking. - Vision and hearing problems. - Morning headache or headache that goes away after vomiting. - Nausea and vomiting. - Unusual sleepiness. - More or less energy than usual. - Changes in behavior. - Trouble learning in school.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Childhood Brain Stem Glioma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> The signs and symptoms of brain stem glioma are not the same in every child. Signs and symptoms depend on the following: - Where the tumor forms in the brain. - The size of the tumor and whether it has spread all through the brain stem. - How fast the tumor grows. - The child's age and development. Some tumors do not cause signs or symptoms. Signs and symptoms may be caused by childhood brain stem gliomas or by other conditions. Check with your child's doctor if your child has any of the following: - Loss of ability to move one side of the face and/or body. - Loss of balance and trouble walking. - Vision and hearing problems. - Morning headache or headache that goes away after vomiting. - Nausea and vomiting. - Unusual sleepiness. - More or less energy than usual. - Changes in behavior. - Trouble learning in school.<|eot_id|>
How to diagnose Childhood Brain Stem Glioma ?
Tests that examine the brain are used to detect (find) childhood brain stem glioma. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the brain. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - A biopsy may be done to diagnose certain types of brain stem glioma. If the MRI scan looks like the tumor is a DIPG, a biopsy is usually not done and the tumor is not removed. If the MRI scan looks like a focal brain stem glioma, a biopsy may be done. A part of the skull is removed and a needle is used to remove a sample of the brain tissue. Sometimes, the needle is guided by a computer. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor will remove as much tumor as safely possible during the same surgery. The following test may be done on the tissue that was removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between brain stem glioma and other brain tumors.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Childhood Brain Stem Glioma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the brain are used to detect (find) childhood brain stem glioma. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the brain. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - A biopsy may be done to diagnose certain types of brain stem glioma. If the MRI scan looks like the tumor is a DIPG, a biopsy is usually not done and the tumor is not removed. If the MRI scan looks like a focal brain stem glioma, a biopsy may be done. A part of the skull is removed and a needle is used to remove a sample of the brain tissue. Sometimes, the needle is guided by a computer. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor will remove as much tumor as safely possible during the same surgery. The following test may be done on the tissue that was removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between brain stem glioma and other brain tumors.<|eot_id|>
What is the outlook for Childhood Brain Stem Glioma ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis and treatment options depend on: - The type of brain stem glioma. - Where the tumor is found in the brain and if it has spread within the brain stem. - The age of the child when diagnosed. - Whether or not the child has a condition called neurofibromatosis type 1. - Whether the tumor has just been diagnosed or has recurred (come back).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Childhood Brain Stem Glioma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis and treatment options depend on: - The type of brain stem glioma. - Where the tumor is found in the brain and if it has spread within the brain stem. - The age of the child when diagnosed. - Whether or not the child has a condition called neurofibromatosis type 1. - Whether the tumor has just been diagnosed or has recurred (come back).<|eot_id|>
What are the stages of Childhood Brain Stem Glioma ?
Key Points - The plan for cancer treatment depends on whether the tumor is in one area of the brain or has spread all through the brain. The plan for cancer treatment depends on whether the tumor is in one area of the brain or has spread all through the brain. Staging is the process used to find out how much cancer there is and if cancer has spread. It is important to know the stage in order to plan treatment. There is no standard staging system for childhood brain stem glioma. Treatment is based on the following: - Whether the tumor is newly diagnosed or recurrent (has come back after treatment). - The type of tumor (either a diffuse intrinsic pontine glioma or a focal glioma).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Childhood Brain Stem Glioma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - The plan for cancer treatment depends on whether the tumor is in one area of the brain or has spread all through the brain. The plan for cancer treatment depends on whether the tumor is in one area of the brain or has spread all through the brain. Staging is the process used to find out how much cancer there is and if cancer has spread. It is important to know the stage in order to plan treatment. There is no standard staging system for childhood brain stem glioma. Treatment is based on the following: - Whether the tumor is newly diagnosed or recurrent (has come back after treatment). - The type of tumor (either a diffuse intrinsic pontine glioma or a focal glioma).<|eot_id|>
what research (or clinical trials) is being done for Childhood Brain Stem Glioma ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Childhood Brain Stem Glioma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What are the treatments for Childhood Brain Stem Glioma ?
Key Points - There are different types of treatment for children with brain stem glioma. - Children with brain stem glioma should have their treatment planned by a team of health care providers who are experts in treating childhood brain tumors. - Childhood brain stem gliomas may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. - Some cancer treatments cause side effects months or years after treatment has ended. - Six types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Cerebrospinal fluid diversion - Observation - Targeted therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for children with brain stem glioma. Different types of treatment are available for children with brain stem glioma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children with brain stem glioma should have their treatment planned by a team of health care providers who are experts in treating childhood brain tumors. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with brain tumors and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Neurosurgeon. - Neuropathologist. - Radiation oncologist. - Neuro-oncologist. - Neurologist. - Rehabilitation specialist. - Neuroradiologist. - Endocrinologist. - Psychologist. Childhood brain stem gliomas may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. Childhood brain stem gliomas may cause signs or symptoms that continue for months or years. Signs or symptoms caused by the tumor may begin before diagnosis. Signs or symptoms caused by treatment may begin during or right after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are called late effects. Late effects may include the following: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). Six types of standard treatment are used: Surgery Surgery may be used to diagnose and treat childhood brain stem glioma as discussed in the General Information section of this summary. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of the cancer being treated. External radiation therapy is used to treat DIPG. External and/or internal radiation therapy may be used to treat focal brain stem gliomas. Several months after radiation therapy to the brain, imaging tests may show changes to the brain tissue. These changes may be caused by the radiation therapy or may mean the tumor is growing. It is important to be sure the tumor is growing before any more treatment is given. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type of the cancer being treated. Because radiation therapy to the brain can affect growth and brain development in young children, clinical trials are studying ways of using chemotherapy to delay or reduce the need for radiation therapy. Cerebrospinal fluid diversion Cerebrospinal fluid diversion is a method used to drain fluid that has built up in the brain. A shunt (long, thin tube) is placed in a ventricle (fluid-filled space) of the brain and threaded under the skin to another part of the body, usually the abdomen. The shunt carries extra fluid away from the brain so it may be absorbed elsewhere in the body. Observation Observation is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Some focal brain stem gliomas that cannot be removed by surgery may be treated with BRAF kinase inhibitor therapy. BRAF kinase inhibitors block the BRAF protein. BRAF proteins help control cell growth and may be mutated (changed) in some types of brain stem glioma. Blocking mutated BRAF kinase proteins may help keep cancer cells from growing. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. If the results of imaging tests done after treatment show a mass in the brain, a biopsy may be done to find out if it is made up of dead tumor cells or if new cancer cells are growing. In children who are expected to live a long time, regular MRIs may be done to see if the cancer has come back. Treatment Options for Childhood Brain Stem Glioma Newly Diagnosed Childhood Brain Stem Glioma Newly diagnosed childhood brain stem glioma is a tumor for which no treatment has been given. The child may have received drugs or treatment to relieve signs or symptoms caused by the tumor. Standard treatment of diffuse intrinsic pontine glioma (DIPG) may include the following: - Radiation therapy. - Chemotherapy (in infants). Standard treatment of focal glioma may include the following: - Surgery that may be followed by chemotherapy and/or radiation therapy. - Observation for small tumors that grow slowly. Cerebrospinal fluid diversion may be done when there is extra fluid in the brain. - Internal radiation therapy with radioactive seeds, with or without chemotherapy, when the tumor cannot be removed by surgery. - Targeted therapy with a BRAF kinase inhibitor, for certain tumors that cannot be removed by surgery. Treatment of brain stem glioma in children with neurofibromatosis type 1 may be observation. The tumors are slow-growing in these children and may not need specific treatment for years. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood brain stem glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Progressive or Recurrent Childhood Brain Stem Glioma When cancer does not get better with treatment or comes back, palliative care is an important part of the child's treatment plan. It includes physical, psychological, social, and spiritual support for the child and family. The goal of palliative care is to help control symptoms and give the child the best quality of life possible. Parents may not be sure about whether to continue treatment or what kind of treatment is best for their child. The healthcare team can give parents information to help them make these decisions. There is no standard treatment for progressive or recurrent diffuse intrinsic pontine glioma. The child may be treated in a clinical trial of a new treatment. Treatment of recurrent focal childhood brain stem glioma may include the following: - A second surgery to remove the tumor. - External radiation therapy. - Chemotherapy. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood brain stem glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Childhood Brain Stem Glioma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for children with brain stem glioma. - Children with brain stem glioma should have their treatment planned by a team of health care providers who are experts in treating childhood brain tumors. - Childhood brain stem gliomas may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. - Some cancer treatments cause side effects months or years after treatment has ended. - Six types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Cerebrospinal fluid diversion - Observation - Targeted therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for children with brain stem glioma. Different types of treatment are available for children with brain stem glioma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children with brain stem glioma should have their treatment planned by a team of health care providers who are experts in treating childhood brain tumors. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with brain tumors and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Neurosurgeon. - Neuropathologist. - Radiation oncologist. - Neuro-oncologist. - Neurologist. - Rehabilitation specialist. - Neuroradiologist. - Endocrinologist. - Psychologist. Childhood brain stem gliomas may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. Childhood brain stem gliomas may cause signs or symptoms that continue for months or years. Signs or symptoms caused by the tumor may begin before diagnosis. Signs or symptoms caused by treatment may begin during or right after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are called late effects. Late effects may include the following: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). Six types of standard treatment are used: Surgery Surgery may be used to diagnose and treat childhood brain stem glioma as discussed in the General Information section of this summary. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of the cancer being treated. External radiation therapy is used to treat DIPG. External and/or internal radiation therapy may be used to treat focal brain stem gliomas. Several months after radiation therapy to the brain, imaging tests may show changes to the brain tissue. These changes may be caused by the radiation therapy or may mean the tumor is growing. It is important to be sure the tumor is growing before any more treatment is given. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type of the cancer being treated. Because radiation therapy to the brain can affect growth and brain development in young children, clinical trials are studying ways of using chemotherapy to delay or reduce the need for radiation therapy. Cerebrospinal fluid diversion Cerebrospinal fluid diversion is a method used to drain fluid that has built up in the brain. A shunt (long, thin tube) is placed in a ventricle (fluid-filled space) of the brain and threaded under the skin to another part of the body, usually the abdomen. The shunt carries extra fluid away from the brain so it may be absorbed elsewhere in the body. Observation Observation is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Some focal brain stem gliomas that cannot be removed by surgery may be treated with BRAF kinase inhibitor therapy. BRAF kinase inhibitors block the BRAF protein. BRAF proteins help control cell growth and may be mutated (changed) in some types of brain stem glioma. Blocking mutated BRAF kinase proteins may help keep cancer cells from growing. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. If the results of imaging tests done after treatment show a mass in the brain, a biopsy may be done to find out if it is made up of dead tumor cells or if new cancer cells are growing. In children who are expected to live a long time, regular MRIs may be done to see if the cancer has come back. Treatment Options for Childhood Brain Stem Glioma Newly Diagnosed Childhood Brain Stem Glioma Newly diagnosed childhood brain stem glioma is a tumor for which no treatment has been given. The child may have received drugs or treatment to relieve signs or symptoms caused by the tumor. Standard treatment of diffuse intrinsic pontine glioma (DIPG) may include the following: - Radiation therapy. - Chemotherapy (in infants). Standard treatment of focal glioma may include the following: - Surgery that may be followed by chemotherapy and/or radiation therapy. - Observation for small tumors that grow slowly. Cerebrospinal fluid diversion may be done when there is extra fluid in the brain. - Internal radiation therapy with radioactive seeds, with or without chemotherapy, when the tumor cannot be removed by surgery. - Targeted therapy with a BRAF kinase inhibitor, for certain tumors that cannot be removed by surgery. Treatment of brain stem glioma in children with neurofibromatosis type 1 may be observation. The tumors are slow-growing in these children and may not need specific treatment for years. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood brain stem glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Progressive or Recurrent Childhood Brain Stem Glioma When cancer does not get better with treatment or comes back, palliative care is an important part of the child's treatment plan. It includes physical, psychological, social, and spiritual support for the child and family. The goal of palliative care is to help control symptoms and give the child the best quality of life possible. Parents may not be sure about whether to continue treatment or what kind of treatment is best for their child. The healthcare team can give parents information to help them make these decisions. There is no standard treatment for progressive or recurrent diffuse intrinsic pontine glioma. The child may be treated in a clinical trial of a new treatment. Treatment of recurrent focal childhood brain stem glioma may include the following: - A second surgery to remove the tumor. - External radiation therapy. - Chemotherapy. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood brain stem glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Colorectal Cancer ?
Key Points - Colorectal cancer is a disease in which malignant (cancer) cells form in the tissues of the colon or the rectum. - Colorectal cancer is the second leading cause of death from cancer in the United States. - Different factors increase or decrease the risk of getting colorectal cancer. Colorectal cancer is a disease in which malignant (cancer) cells form in the tissues of the colon or the rectum. The colon and rectum are parts of the body's digestive system. The digestive system removes and processes nutrients (vitamins, minerals, carbohydrates, fats, proteins, and water) from foods and helps pass waste material out of the body. The digestive system is made up of the mouth, throat, esophagus, stomach, and the small and large intestines. The colon (large bowel) is the first part of the large intestine and is about 5 feet long. Together, the rectum and anal canal make up the last part of the large intestine and are 6-8 inches long. The anal canal ends at the anus (the opening of the large intestine to the outside of the body). Cancer that begins in the colon is called colon cancer, and cancer that begins in the rectum is called rectal cancer. Cancer that begins in either of these organs may also be called colorectal cancer. See the following PDQ summaries for more information about colorectal cancer: - Colorectal Cancer Prevention - Colon Cancer Treatment - Rectal Cancer Treatment - Genetics of Colorectal Cancer Colorectal cancer is the second leading cause of death from cancer in the United States. The number of new colorectal cancer cases and the number of deaths from colorectal cancer are decreasing a little bit each year. But in adults younger than 50 years, there has been a small increase in the number of new cases each year since 1998. Colorectal cancer is found more often in men than in women.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Colorectal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Colorectal cancer is a disease in which malignant (cancer) cells form in the tissues of the colon or the rectum. - Colorectal cancer is the second leading cause of death from cancer in the United States. - Different factors increase or decrease the risk of getting colorectal cancer. Colorectal cancer is a disease in which malignant (cancer) cells form in the tissues of the colon or the rectum. The colon and rectum are parts of the body's digestive system. The digestive system removes and processes nutrients (vitamins, minerals, carbohydrates, fats, proteins, and water) from foods and helps pass waste material out of the body. The digestive system is made up of the mouth, throat, esophagus, stomach, and the small and large intestines. The colon (large bowel) is the first part of the large intestine and is about 5 feet long. Together, the rectum and anal canal make up the last part of the large intestine and are 6-8 inches long. The anal canal ends at the anus (the opening of the large intestine to the outside of the body). Cancer that begins in the colon is called colon cancer, and cancer that begins in the rectum is called rectal cancer. Cancer that begins in either of these organs may also be called colorectal cancer. See the following PDQ summaries for more information about colorectal cancer: - Colorectal Cancer Prevention - Colon Cancer Treatment - Rectal Cancer Treatment - Genetics of Colorectal Cancer Colorectal cancer is the second leading cause of death from cancer in the United States. The number of new colorectal cancer cases and the number of deaths from colorectal cancer are decreasing a little bit each year. But in adults younger than 50 years, there has been a small increase in the number of new cases each year since 1998. Colorectal cancer is found more often in men than in women.<|eot_id|>
Who is at risk for Colorectal Cancer? ?
Different factors increase or decrease the risk of getting colorectal cancer. Anything that increases your chance of getting a disease is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for colorectal cancer, see the PDQ summary on Colorectal Cancer Prevention.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Colorectal Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Different factors increase or decrease the risk of getting colorectal cancer. Anything that increases your chance of getting a disease is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for colorectal cancer, see the PDQ summary on Colorectal Cancer Prevention.<|eot_id|>
What is (are) Transitional Cell Cancer of the Renal Pelvis and Ureter ?
Key Points - Transitional cell cancer of the renal pelvis and ureter is a disease in which malignant (cancer) cells form in the renal pelvis and ureter. - Misuse of certain pain medicines can affect the risk of transitional cell cancer of the renal pelvis and ureter. - Signs and symptoms of transitional cell cancer of the renal pelvis and ureter include blood in the urine and back pain. - Tests that examine the abdomen and kidneys are used to detect (find) and diagnose transitional cell cancer of the renal pelvis and ureter. - Certain factors affect prognosis (chance of recovery) and treatment options. Transitional cell cancer of the renal pelvis and ureter is a disease in which malignant (cancer) cells form in the renal pelvis and ureter. The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis or the ureter or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Transitional Cell Cancer of the Renal Pelvis and Ureter ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Transitional cell cancer of the renal pelvis and ureter is a disease in which malignant (cancer) cells form in the renal pelvis and ureter. - Misuse of certain pain medicines can affect the risk of transitional cell cancer of the renal pelvis and ureter. - Signs and symptoms of transitional cell cancer of the renal pelvis and ureter include blood in the urine and back pain. - Tests that examine the abdomen and kidneys are used to detect (find) and diagnose transitional cell cancer of the renal pelvis and ureter. - Certain factors affect prognosis (chance of recovery) and treatment options. Transitional cell cancer of the renal pelvis and ureter is a disease in which malignant (cancer) cells form in the renal pelvis and ureter. The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis or the ureter or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information.<|eot_id|>
What are the symptoms of Transitional Cell Cancer of the Renal Pelvis and Ureter ?
Signs and symptoms of transitional cell cancer of the renal pelvis and ureter include blood in the urine and back pain. These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: - Blood in the urine. - A pain in the back that doesn't go away. - Extreme tiredness. - Weight loss with no known reason. - Painful or frequent urination.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Transitional Cell Cancer of the Renal Pelvis and Ureter ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of transitional cell cancer of the renal pelvis and ureter include blood in the urine and back pain. These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: - Blood in the urine. - A pain in the back that doesn't go away. - Extreme tiredness. - Weight loss with no known reason. - Painful or frequent urination.<|eot_id|>
How to diagnose Transitional Cell Cancer of the Renal Pelvis and Ureter ?
Tests that examine the abdomen and kidneys are used to detect (find) and diagnose transitional cell cancer of the renal pelvis and ureter. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Urinalysis : A test to check the color of urine and its contents, such as sugar, protein, blood, and bacteria. - Ureteroscopy : A procedure to look inside the ureter and renal pelvis to check for abnormal areas. A ureteroscope is a thin, tube-like instrument with a light and a lens for viewing. The ureteroscope is inserted through the urethra into the bladder, ureter, and renal pelvis. A tool may be inserted through the ureteroscope to take tissue samples to be checked under a microscope for signs of disease. - Urine cytology : A laboratory test in which a sample of urine is checked under a microscope for abnormal cells. Cancer in the kidney, bladder, or ureter may shed cancer cells into the urine. - Intravenous pyelogram (IVP): A series of x-rays of the kidneys, ureters, and bladder to check for cancer. A contrast dye is injected into a vein. As the contrast dye moves through the kidneys, ureters, and bladder, x-rays are taken to see if there are any blockages. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Ultrasound : A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. An ultrasound of the abdomen may be done to help diagnose cancer of the renal pelvis and ureter. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the pelvis. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. This may be done during a ureteroscopy or surgery.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Transitional Cell Cancer of the Renal Pelvis and Ureter ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the abdomen and kidneys are used to detect (find) and diagnose transitional cell cancer of the renal pelvis and ureter. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Urinalysis : A test to check the color of urine and its contents, such as sugar, protein, blood, and bacteria. - Ureteroscopy : A procedure to look inside the ureter and renal pelvis to check for abnormal areas. A ureteroscope is a thin, tube-like instrument with a light and a lens for viewing. The ureteroscope is inserted through the urethra into the bladder, ureter, and renal pelvis. A tool may be inserted through the ureteroscope to take tissue samples to be checked under a microscope for signs of disease. - Urine cytology : A laboratory test in which a sample of urine is checked under a microscope for abnormal cells. Cancer in the kidney, bladder, or ureter may shed cancer cells into the urine. - Intravenous pyelogram (IVP): A series of x-rays of the kidneys, ureters, and bladder to check for cancer. A contrast dye is injected into a vein. As the contrast dye moves through the kidneys, ureters, and bladder, x-rays are taken to see if there are any blockages. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Ultrasound : A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. An ultrasound of the abdomen may be done to help diagnose cancer of the renal pelvis and ureter. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the pelvis. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. This may be done during a ureteroscopy or surgery.<|eot_id|>
What is the outlook for Transitional Cell Cancer of the Renal Pelvis and Ureter ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) depends on the stage and grade of the tumor. The treatment options depend on the following: - The stage and grade of the tumor. - Where the tumor is. - Whether the patient's other kidney is healthy. - Whether the cancer has recurred. Most transitional cell cancer of the renal pelvis and ureter can be cured if found early.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Transitional Cell Cancer of the Renal Pelvis and Ureter ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) depends on the stage and grade of the tumor. The treatment options depend on the following: - The stage and grade of the tumor. - Where the tumor is. - Whether the patient's other kidney is healthy. - Whether the cancer has recurred. Most transitional cell cancer of the renal pelvis and ureter can be cured if found early.<|eot_id|>
What are the stages of Transitional Cell Cancer of the Renal Pelvis and Ureter ?
Key Points - After transitional cell cancer of the renal pelvis and ureter has been diagnosed, tests are done to find out if cancer cells have spread within the renal pelvis and ureter or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for transitional cell cancer of the renal pelvis and/or ureter: - Stage 0 (Papillary Carcinoma and Carcinoma in Situ) - Stage I - Stage II - Stage III - Stage IV - Transitional cell cancer of the renal pelvis and ureter is also described as localized, regional, or metastatic: - Localized - Regional - Metastatic After transitional cell cancer of the renal pelvis and ureter has been diagnosed, tests are done to find out if cancer cells have spread within the renal pelvis and ureter or to other parts of the body. The process used to find out if cancer has spread within the renal pelvis and ureter or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Ureteroscopy : A procedure to look inside the ureter and renal pelvis to check for abnormal areas. A ureteroscope is a thin, tube-like instrument with a light and a lens for viewing. The ureteroscope is inserted through the urethra into the bladder, ureter, and renal pelvis. A tool may be inserted through the ureteroscope to take tissue samples to be checked under a microscope for signs of disease. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer. The following stages are used for transitional cell cancer of the renal pelvis and/or ureter: Stage 0 (Papillary Carcinoma and Carcinoma in Situ) In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stage 0a and stage 0is, depending on the type of tumor: - Stage 0a may look like tiny mushrooms growing from the tissue lining the inside of the renal pelvis or ureter. Stage 0a is also called noninvasive papillary carcinoma. - Stage 0is is a flat tumor on the tissue lining the inside of the renal pelvis or ureter. Stage 0is is also called carcinoma in situ. Stage I In stage I, cancer has formed and spread through the lining of the renal pelvis and/or ureter, into the layer of connective tissue. Stage II In stage II, cancer has spread through the layer of connective tissue to the muscle layer of the renal pelvis and/or ureter. Stage III In stage III, cancer has spread: - From the renal pelvis to tissue or fat in the kidney; or - From the ureter to fat that surrounds the ureter. Stage IV In stage IV, cancer has spread to at least one of the following: - A nearby organ. - The layer of fat surrounding the kidney. - One or more lymph nodes. - Distant parts of the body, such as the lung, liver, or bone. Transitional cell cancer of the renal pelvis and ureter is also described as localized, regional, or metastatic: Localized The cancer is found only in the kidney. Regional The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. Metastatic The cancer has spread to other parts of the body.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Transitional Cell Cancer of the Renal Pelvis and Ureter ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After transitional cell cancer of the renal pelvis and ureter has been diagnosed, tests are done to find out if cancer cells have spread within the renal pelvis and ureter or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for transitional cell cancer of the renal pelvis and/or ureter: - Stage 0 (Papillary Carcinoma and Carcinoma in Situ) - Stage I - Stage II - Stage III - Stage IV - Transitional cell cancer of the renal pelvis and ureter is also described as localized, regional, or metastatic: - Localized - Regional - Metastatic After transitional cell cancer of the renal pelvis and ureter has been diagnosed, tests are done to find out if cancer cells have spread within the renal pelvis and ureter or to other parts of the body. The process used to find out if cancer has spread within the renal pelvis and ureter or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Ureteroscopy : A procedure to look inside the ureter and renal pelvis to check for abnormal areas. A ureteroscope is a thin, tube-like instrument with a light and a lens for viewing. The ureteroscope is inserted through the urethra into the bladder, ureter, and renal pelvis. A tool may be inserted through the ureteroscope to take tissue samples to be checked under a microscope for signs of disease. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer. The following stages are used for transitional cell cancer of the renal pelvis and/or ureter: Stage 0 (Papillary Carcinoma and Carcinoma in Situ) In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stage 0a and stage 0is, depending on the type of tumor: - Stage 0a may look like tiny mushrooms growing from the tissue lining the inside of the renal pelvis or ureter. Stage 0a is also called noninvasive papillary carcinoma. - Stage 0is is a flat tumor on the tissue lining the inside of the renal pelvis or ureter. Stage 0is is also called carcinoma in situ. Stage I In stage I, cancer has formed and spread through the lining of the renal pelvis and/or ureter, into the layer of connective tissue. Stage II In stage II, cancer has spread through the layer of connective tissue to the muscle layer of the renal pelvis and/or ureter. Stage III In stage III, cancer has spread: - From the renal pelvis to tissue or fat in the kidney; or - From the ureter to fat that surrounds the ureter. Stage IV In stage IV, cancer has spread to at least one of the following: - A nearby organ. - The layer of fat surrounding the kidney. - One or more lymph nodes. - Distant parts of the body, such as the lung, liver, or bone. Transitional cell cancer of the renal pelvis and ureter is also described as localized, regional, or metastatic: Localized The cancer is found only in the kidney. Regional The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. Metastatic The cancer has spread to other parts of the body.<|eot_id|>
What are the treatments for Transitional Cell Cancer of the Renal Pelvis and Ureter ?
Key Points - There are different types of treatment for patients with transitional cell cancer of the renal pelvis and ureter. - One type of standard treatment is used: - Surgery - New types of treatment are being tested in clinical trials. - Fulguration - Segmental resection of the renal pelvis - Laser surgery - Regional chemotherapy and regional biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with transitional cell cancer of the renal pelvis and ureter. Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. One type of standard treatment is used: Surgery One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: - Nephroureterectomy: Surgery to remove the entire kidney, the ureter, and the bladder cuff (tissue that connects the ureter to the bladder). - Segmental resection of the ureter: A surgical procedure to remove the part of the ureter that contains cancer and some of the healthy tissue around it. The ends of the ureter are then reattached. This treatment is used when the cancer is superficial and in the lower third of the ureter only, near the bladder. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. Segmental resection of the renal pelvis This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed. Laser surgery A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Regional chemotherapy and regional biologic therapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Transitional Cell Cancer of the Renal Pelvis and Ureter Localized Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: - Surgery (nephroureterectomy or segmental resection of ureter). - A clinical trial of fulguration. - A clinical trial of laser surgery. - A clinical trial of segmental resection of the renal pelvis. - A clinical trial of regional chemotherapy. - A clinical trial of regional biologic therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with localized transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Regional Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Check the list of NCI-supported cancer clinical trials that are now accepting patients with regional transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment of metastatic transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with metastatic transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment of recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Transitional Cell Cancer of the Renal Pelvis and Ureter ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with transitional cell cancer of the renal pelvis and ureter. - One type of standard treatment is used: - Surgery - New types of treatment are being tested in clinical trials. - Fulguration - Segmental resection of the renal pelvis - Laser surgery - Regional chemotherapy and regional biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with transitional cell cancer of the renal pelvis and ureter. Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. One type of standard treatment is used: Surgery One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: - Nephroureterectomy: Surgery to remove the entire kidney, the ureter, and the bladder cuff (tissue that connects the ureter to the bladder). - Segmental resection of the ureter: A surgical procedure to remove the part of the ureter that contains cancer and some of the healthy tissue around it. The ends of the ureter are then reattached. This treatment is used when the cancer is superficial and in the lower third of the ureter only, near the bladder. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. Segmental resection of the renal pelvis This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed. Laser surgery A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Regional chemotherapy and regional biologic therapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Transitional Cell Cancer of the Renal Pelvis and Ureter Localized Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: - Surgery (nephroureterectomy or segmental resection of ureter). - A clinical trial of fulguration. - A clinical trial of laser surgery. - A clinical trial of segmental resection of the renal pelvis. - A clinical trial of regional chemotherapy. - A clinical trial of regional biologic therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with localized transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Regional Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Check the list of NCI-supported cancer clinical trials that are now accepting patients with regional transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment of metastatic transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with metastatic transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment of recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
what research (or clinical trials) is being done for Transitional Cell Cancer of the Renal Pelvis and Ureter ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. Segmental resection of the renal pelvis This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed. Laser surgery A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Regional chemotherapy and regional biologic therapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Transitional Cell Cancer of the Renal Pelvis and Ureter ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. Segmental resection of the renal pelvis This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed. Laser surgery A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Regional chemotherapy and regional biologic therapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Gestational Trophoblastic Disease ?
Key Points - Gestational trophoblastic disease (GTD) is a group of rare diseases in which abnormal trophoblast cells grow inside the uterus after conception. - Hydatidiform mole (HM) is the most common type of GTD. - Gestational trophoblastic neoplasia (GTN) is a type of gestational trophoblastic disease (GTD) that is almost always malignant. - Invasive moles - Choriocarcinomas - Placental-site trophoblastic tumors - Epithelioid trophoblastic tumors - Age and a previous molar pregnancy affect the risk of GTD. - Signs of GTD include abnormal vaginal bleeding and a uterus that is larger than normal. - Tests that examine the uterus are used to detect (find) and diagnose gestational trophoblastic disease. - Certain factors affect prognosis (chance of recovery) and treatment options. Gestational trophoblastic disease (GTD) is a group of rare diseases in which abnormal trophoblast cells grow inside the uterus after conception. In gestational trophoblastic disease (GTD), a tumor develops inside the uterus from tissue that forms after conception (the joining of sperm and egg). This tissue is made of trophoblast cells and normally surrounds the fertilized egg in the uterus. Trophoblast cells help connect the fertilized egg to the wall of the uterus and form part of the placenta (the organ that passes nutrients from the mother to the fetus). Sometimes there is a problem with the fertilized egg and trophoblast cells. Instead of a healthy fetus developing, a tumor forms. Until there are signs or symptoms of the tumor, the pregnancy will seem like a normal pregnancy. Most GTD is benign (not cancer) and does not spread, but some types become malignant (cancer) and spread to nearby tissues or distant parts of the body. Gestational trophoblastic disease (GTD) is a general term that includes different types of disease: - Hydatidiform Moles (HM) - Complete HM. - Partial HM. - Gestational Trophoblastic Neoplasia (GTN) - Invasive moles. - Choriocarcinomas. - Placental-site trophoblastic tumors (PSTT; very rare). - Epithelioid trophoblastic tumors (ETT; even more rare). Hydatidiform mole (HM) is the most common type of GTD. HMs are slow-growing tumors that look like sacs of fluid. An HM is also called a molar pregnancy. The cause of hydatidiform moles is not known. HMs may be complete or partial: - A complete HM forms when sperm fertilizes an egg that does not contain the mothers DNA. The egg has DNA from the father and the cells that were meant to become the placenta are abnormal. - A partial HM forms when sperm fertilizes a normal egg and there are two sets of DNA from the father in the fertilized egg. Only part of the fetus forms and the cells that were meant to become the placenta are abnormal. Most hydatidiform moles are benign, but they sometimes become cancer. Having one or more of the following risk factors increases the risk that a hydatidiform mole will become cancer: - A pregnancy before 20 or after 35 years of age. - A very high level of beta human chorionic gonadotropin (-hCG), a hormone made by the body during pregnancy. - A large tumor in the uterus. - An ovarian cyst larger than 6 centimeters. - High blood pressure during pregnancy. - An overactive thyroid gland (extra thyroid hormone is made). - Severe nausea and vomiting during pregnancy. - Trophoblastic cells in the blood, which may block small blood vessels. - Serious blood clotting problems caused by the HM. Gestational trophoblastic neoplasia (GTN) is a type of gestational trophoblastic disease (GTD) that is almost always malignant. Gestational trophoblastic neoplasia (GTN) includes the following: Invasive moles Invasive moles are made up of trophoblast cells that grow into the muscle layer of the uterus. Invasive moles are more likely to grow and spread than a hydatidiform mole. Rarely, a complete or partial HM may become an invasive mole. Sometimes an invasive mole will disappear without treatment. Choriocarcinomas A choriocarcinoma is a malignant tumor that forms from trophoblast cells and spreads to the muscle layer of the uterus and nearby blood vessels. It may also spread to other parts of the body, such as the brain, lungs, liver, kidney, spleen, intestines, pelvis, or vagina. A choriocarcinoma is more likely to form in women who have had any of the following: - Molar pregnancy, especially with a complete hydatidiform mole. - Normal pregnancy. - Tubal pregnancy (the fertilized egg implants in the fallopian tube rather than the uterus). - Miscarriage. Placental-site trophoblastic tumors A placental-site trophoblastic tumor (PSTT) is a rare type of gestational trophoblastic neoplasia that forms where the placenta attaches to the uterus. The tumor forms from trophoblast cells and spreads into the muscle of the uterus and into blood vessels. It may also spread to the lungs, pelvis, or lymph nodes. A PSTT grows very slowly and signs or symptoms may appear months or years after a normal pregnancy. Epithelioid trophoblastic tumors An epithelioid trophoblastic tumor (ETT) is a very rare type of gestational trophoblastic neoplasia that may be benign or malignant. When the tumor is malignant, it may spread to the lungs.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Gestational Trophoblastic Disease ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Gestational trophoblastic disease (GTD) is a group of rare diseases in which abnormal trophoblast cells grow inside the uterus after conception. - Hydatidiform mole (HM) is the most common type of GTD. - Gestational trophoblastic neoplasia (GTN) is a type of gestational trophoblastic disease (GTD) that is almost always malignant. - Invasive moles - Choriocarcinomas - Placental-site trophoblastic tumors - Epithelioid trophoblastic tumors - Age and a previous molar pregnancy affect the risk of GTD. - Signs of GTD include abnormal vaginal bleeding and a uterus that is larger than normal. - Tests that examine the uterus are used to detect (find) and diagnose gestational trophoblastic disease. - Certain factors affect prognosis (chance of recovery) and treatment options. Gestational trophoblastic disease (GTD) is a group of rare diseases in which abnormal trophoblast cells grow inside the uterus after conception. In gestational trophoblastic disease (GTD), a tumor develops inside the uterus from tissue that forms after conception (the joining of sperm and egg). This tissue is made of trophoblast cells and normally surrounds the fertilized egg in the uterus. Trophoblast cells help connect the fertilized egg to the wall of the uterus and form part of the placenta (the organ that passes nutrients from the mother to the fetus). Sometimes there is a problem with the fertilized egg and trophoblast cells. Instead of a healthy fetus developing, a tumor forms. Until there are signs or symptoms of the tumor, the pregnancy will seem like a normal pregnancy. Most GTD is benign (not cancer) and does not spread, but some types become malignant (cancer) and spread to nearby tissues or distant parts of the body. Gestational trophoblastic disease (GTD) is a general term that includes different types of disease: - Hydatidiform Moles (HM) - Complete HM. - Partial HM. - Gestational Trophoblastic Neoplasia (GTN) - Invasive moles. - Choriocarcinomas. - Placental-site trophoblastic tumors (PSTT; very rare). - Epithelioid trophoblastic tumors (ETT; even more rare). Hydatidiform mole (HM) is the most common type of GTD. HMs are slow-growing tumors that look like sacs of fluid. An HM is also called a molar pregnancy. The cause of hydatidiform moles is not known. HMs may be complete or partial: - A complete HM forms when sperm fertilizes an egg that does not contain the mothers DNA. The egg has DNA from the father and the cells that were meant to become the placenta are abnormal. - A partial HM forms when sperm fertilizes a normal egg and there are two sets of DNA from the father in the fertilized egg. Only part of the fetus forms and the cells that were meant to become the placenta are abnormal. Most hydatidiform moles are benign, but they sometimes become cancer. Having one or more of the following risk factors increases the risk that a hydatidiform mole will become cancer: - A pregnancy before 20 or after 35 years of age. - A very high level of beta human chorionic gonadotropin (-hCG), a hormone made by the body during pregnancy. - A large tumor in the uterus. - An ovarian cyst larger than 6 centimeters. - High blood pressure during pregnancy. - An overactive thyroid gland (extra thyroid hormone is made). - Severe nausea and vomiting during pregnancy. - Trophoblastic cells in the blood, which may block small blood vessels. - Serious blood clotting problems caused by the HM. Gestational trophoblastic neoplasia (GTN) is a type of gestational trophoblastic disease (GTD) that is almost always malignant. Gestational trophoblastic neoplasia (GTN) includes the following: Invasive moles Invasive moles are made up of trophoblast cells that grow into the muscle layer of the uterus. Invasive moles are more likely to grow and spread than a hydatidiform mole. Rarely, a complete or partial HM may become an invasive mole. Sometimes an invasive mole will disappear without treatment. Choriocarcinomas A choriocarcinoma is a malignant tumor that forms from trophoblast cells and spreads to the muscle layer of the uterus and nearby blood vessels. It may also spread to other parts of the body, such as the brain, lungs, liver, kidney, spleen, intestines, pelvis, or vagina. A choriocarcinoma is more likely to form in women who have had any of the following: - Molar pregnancy, especially with a complete hydatidiform mole. - Normal pregnancy. - Tubal pregnancy (the fertilized egg implants in the fallopian tube rather than the uterus). - Miscarriage. Placental-site trophoblastic tumors A placental-site trophoblastic tumor (PSTT) is a rare type of gestational trophoblastic neoplasia that forms where the placenta attaches to the uterus. The tumor forms from trophoblast cells and spreads into the muscle of the uterus and into blood vessels. It may also spread to the lungs, pelvis, or lymph nodes. A PSTT grows very slowly and signs or symptoms may appear months or years after a normal pregnancy. Epithelioid trophoblastic tumors An epithelioid trophoblastic tumor (ETT) is a very rare type of gestational trophoblastic neoplasia that may be benign or malignant. When the tumor is malignant, it may spread to the lungs.<|eot_id|>
Who is at risk for Gestational Trophoblastic Disease? ?
Age and a previous molar pregnancy affect the risk of GTD. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk. Risk factors for GTD include the following: - Being pregnant when you are younger than 20 or older than 35 years of age. - Having a personal history of hydatidiform mole.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Gestational Trophoblastic Disease? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Age and a previous molar pregnancy affect the risk of GTD. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk. Risk factors for GTD include the following: - Being pregnant when you are younger than 20 or older than 35 years of age. - Having a personal history of hydatidiform mole.<|eot_id|>
What are the symptoms of Gestational Trophoblastic Disease ?
Signs of GTD include abnormal vaginal bleeding and a uterus that is larger than normal. These and other signs and symptoms may be caused by gestational trophoblastic disease or by other conditions. Check with your doctor if you have any of the following: - Vaginal bleeding not related to menstruation. - A uterus that is larger than expected during pregnancy. - Pain or pressure in the pelvis. - Severe nausea and vomiting during pregnancy. - High blood pressure with headache and swelling of feet and hands early in the pregnancy. - Vaginal bleeding that continues for longer than normal after delivery. - Fatigue, shortness of breath, dizziness, and a fast or irregular heartbeat caused by anemia. GTD sometimes causes an overactive thyroid. Signs and symptoms of an overactive thyroid include the following: - Fast or irregular heartbeat. - Shakiness. - Sweating. - Frequent bowel movements. - Trouble sleeping. - Feeling anxious or irritable. - Weight loss.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Gestational Trophoblastic Disease ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs of GTD include abnormal vaginal bleeding and a uterus that is larger than normal. These and other signs and symptoms may be caused by gestational trophoblastic disease or by other conditions. Check with your doctor if you have any of the following: - Vaginal bleeding not related to menstruation. - A uterus that is larger than expected during pregnancy. - Pain or pressure in the pelvis. - Severe nausea and vomiting during pregnancy. - High blood pressure with headache and swelling of feet and hands early in the pregnancy. - Vaginal bleeding that continues for longer than normal after delivery. - Fatigue, shortness of breath, dizziness, and a fast or irregular heartbeat caused by anemia. GTD sometimes causes an overactive thyroid. Signs and symptoms of an overactive thyroid include the following: - Fast or irregular heartbeat. - Shakiness. - Sweating. - Frequent bowel movements. - Trouble sleeping. - Feeling anxious or irritable. - Weight loss.<|eot_id|>
How to diagnose Gestational Trophoblastic Disease ?
Tests that examine the uterus are used to detect (find) and diagnose gestational trophoblastic disease. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Pelvic exam : An exam of the vagina, cervix, uterus, fallopian tubes, ovaries, and rectum. A speculum is inserted into the vagina and the doctor or nurse looks at the vagina and cervix for signs of disease. A Pap test of the cervix is usually done. The doctor or nurse also inserts one or two lubricated, gloved fingers of one hand into the vagina and places the other hand over the lower abdomen to feel the size, shape, and position of the uterus and ovaries. The doctor or nurse also inserts a lubricated, gloved finger into the rectum to feel for lumps or abnormal areas. - Ultrasound exam of the pelvis: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs in the pelvis and make echoes. The echoes form a picture of body tissues called a sonogram. Sometimes a transvaginal ultrasound (TVUS) will be done. For TVUS, an ultrasound transducer (probe) is inserted into the vagina to make the sonogram. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. Blood is also tested to check the liver, kidney, and bone marrow. - Serum tumor marker test : A procedure in which a sample of blood is checked to measure the amounts of certain substances made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. For GTD, the blood is checked for the level of beta human chorionic gonadotropin (-hCG), a hormone that is made by the body during pregnancy. -hCG in the blood of a woman who is not pregnant may be a sign of GTD. - Urinalysis : A test to check the color of urine and its contents, such as sugar, protein, blood, bacteria, and the level of -hCG.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Gestational Trophoblastic Disease ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the uterus are used to detect (find) and diagnose gestational trophoblastic disease. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Pelvic exam : An exam of the vagina, cervix, uterus, fallopian tubes, ovaries, and rectum. A speculum is inserted into the vagina and the doctor or nurse looks at the vagina and cervix for signs of disease. A Pap test of the cervix is usually done. The doctor or nurse also inserts one or two lubricated, gloved fingers of one hand into the vagina and places the other hand over the lower abdomen to feel the size, shape, and position of the uterus and ovaries. The doctor or nurse also inserts a lubricated, gloved finger into the rectum to feel for lumps or abnormal areas. - Ultrasound exam of the pelvis: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs in the pelvis and make echoes. The echoes form a picture of body tissues called a sonogram. Sometimes a transvaginal ultrasound (TVUS) will be done. For TVUS, an ultrasound transducer (probe) is inserted into the vagina to make the sonogram. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. Blood is also tested to check the liver, kidney, and bone marrow. - Serum tumor marker test : A procedure in which a sample of blood is checked to measure the amounts of certain substances made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. For GTD, the blood is checked for the level of beta human chorionic gonadotropin (-hCG), a hormone that is made by the body during pregnancy. -hCG in the blood of a woman who is not pregnant may be a sign of GTD. - Urinalysis : A test to check the color of urine and its contents, such as sugar, protein, blood, bacteria, and the level of -hCG.<|eot_id|>
What is the outlook for Gestational Trophoblastic Disease ?
Certain factors affect prognosis (chance of recovery) and treatment options. Gestational trophoblastic disease usually can be cured. Treatment and prognosis depend on the following: - The type of GTD. - Whether the tumor has spread to the uterus, lymph nodes, or distant parts of the body. - The number of tumors and where they are in the body. - The size of the largest tumor. - The level of -hCG in the blood. - How soon the tumor was diagnosed after the pregnancy began. - Whether GTD occurred after a molar pregnancy, miscarriage, or normal pregnancy. - Previous treatment for gestational trophoblastic neoplasia. Treatment options also depend on whether the woman wishes to become pregnant in the future.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Gestational Trophoblastic Disease ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. Gestational trophoblastic disease usually can be cured. Treatment and prognosis depend on the following: - The type of GTD. - Whether the tumor has spread to the uterus, lymph nodes, or distant parts of the body. - The number of tumors and where they are in the body. - The size of the largest tumor. - The level of -hCG in the blood. - How soon the tumor was diagnosed after the pregnancy began. - Whether GTD occurred after a molar pregnancy, miscarriage, or normal pregnancy. - Previous treatment for gestational trophoblastic neoplasia. Treatment options also depend on whether the woman wishes to become pregnant in the future.<|eot_id|>
What are the stages of Gestational Trophoblastic Disease ?
Key Points - After gestational trophoblastic neoplasia has been diagnosed, tests are done to find out if cancer has spread from where it started to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - There is no staging system for hydatidiform moles. - The following stages are used for GTN: - Stage I - Stage II - Stage III - Stage IV - The treatment of gestational trophoblastic neoplasia is based on the type of disease, stage, or risk group. After gestational trophoblastic neoplasia has been diagnosed, tests are done to find out if cancer has spread from where it started to other parts of the body. The process used to find out the extent or spread of cancer is called staging, The information gathered from the staging process helps determine the stage of disease. For GTN, stage is one of the factors used to plan treatment. The following tests and procedures may be done to help find out the stage of the disease: - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body onto film, making pictures of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs that the cancer has spread to the brain and spinal cord. This procedure is also called an LP or spinal tap. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if choriocarcinoma spreads to the lung, the cancer cells in the lung are actually choriocarcinoma cells. The disease is metastatic choriocarcinoma, not lung cancer. There is no staging system for hydatidiform moles. Hydatidiform moles (HM) are found in the uterus only and do not spread to other parts of the body. The following stages are used for GTN: Stage I In stage I, the tumor is in the uterus only. Stage II In stage II, cancer has spread outside of the uterus to the ovary, fallopian tube, vagina, and/or the ligaments that support the uterus. Stage III In stage III, cancer has spread to the lung. Stage IV In stage IV, cancer has spread to distant parts of the body other than the lungs. The treatment of gestational trophoblastic neoplasia is based on the type of disease, stage, or risk group. Invasive moles and choriocarcinomas are treated based on risk groups. The stage of the invasive mole or choriocarcinoma is one factor used to determine risk group. Other factors include the following: - The age of the patient when the diagnosis is made. - Whether the GTN occurred after a molar pregnancy, miscarriage, or normal pregnancy. - How soon the tumor was diagnosed after the pregnancy began. - The level of beta human chorionic gonadotropin (-hCG) in the blood. - The size of the largest tumor. - Where the tumor has spread to and the number of tumors in the body. - How many chemotherapy drugs the tumor has been treated with (for recurrent or resistant tumors). There are two risk groups for invasive moles and choriocarcinomas: low risk and high risk. Patients with low-risk disease usually receive less aggressive treatment than patients with high-risk disease. Placental-site trophoblastic tumor (PSTT) and epithelioid trophoblastic tumor (ETT) treatments depend on the stage of disease.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Gestational Trophoblastic Disease ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After gestational trophoblastic neoplasia has been diagnosed, tests are done to find out if cancer has spread from where it started to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - There is no staging system for hydatidiform moles. - The following stages are used for GTN: - Stage I - Stage II - Stage III - Stage IV - The treatment of gestational trophoblastic neoplasia is based on the type of disease, stage, or risk group. After gestational trophoblastic neoplasia has been diagnosed, tests are done to find out if cancer has spread from where it started to other parts of the body. The process used to find out the extent or spread of cancer is called staging, The information gathered from the staging process helps determine the stage of disease. For GTN, stage is one of the factors used to plan treatment. The following tests and procedures may be done to help find out the stage of the disease: - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body onto film, making pictures of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs that the cancer has spread to the brain and spinal cord. This procedure is also called an LP or spinal tap. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if choriocarcinoma spreads to the lung, the cancer cells in the lung are actually choriocarcinoma cells. The disease is metastatic choriocarcinoma, not lung cancer. There is no staging system for hydatidiform moles. Hydatidiform moles (HM) are found in the uterus only and do not spread to other parts of the body. The following stages are used for GTN: Stage I In stage I, the tumor is in the uterus only. Stage II In stage II, cancer has spread outside of the uterus to the ovary, fallopian tube, vagina, and/or the ligaments that support the uterus. Stage III In stage III, cancer has spread to the lung. Stage IV In stage IV, cancer has spread to distant parts of the body other than the lungs. The treatment of gestational trophoblastic neoplasia is based on the type of disease, stage, or risk group. Invasive moles and choriocarcinomas are treated based on risk groups. The stage of the invasive mole or choriocarcinoma is one factor used to determine risk group. Other factors include the following: - The age of the patient when the diagnosis is made. - Whether the GTN occurred after a molar pregnancy, miscarriage, or normal pregnancy. - How soon the tumor was diagnosed after the pregnancy began. - The level of beta human chorionic gonadotropin (-hCG) in the blood. - The size of the largest tumor. - Where the tumor has spread to and the number of tumors in the body. - How many chemotherapy drugs the tumor has been treated with (for recurrent or resistant tumors). There are two risk groups for invasive moles and choriocarcinomas: low risk and high risk. Patients with low-risk disease usually receive less aggressive treatment than patients with high-risk disease. Placental-site trophoblastic tumor (PSTT) and epithelioid trophoblastic tumor (ETT) treatments depend on the stage of disease.<|eot_id|>
What are the treatments for Gestational Trophoblastic Disease ?
Key Points - There are different types of treatment for patients with gestational trophoblastic disease. - Three types of standard treatment are used: - Surgery - Chemotherapy - Radiation therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with gestational trophoblastic disease. Different types of treatment are available for patients with gestational trophoblastic disease. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. Before starting treatment, patients may want to think about taking part in a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Three types of standard treatment are used: Surgery The doctor may remove the cancer using one of the following operations: - Dilatation and curettage (D&C) with suction evacuation: A surgical procedure to remove abnormal tissue and parts of the inner lining of the uterus. The cervix is dilated and the material inside the uterus is removed with a small vacuum-like device. The walls of the uterus are then gently scraped with a curette (spoon-shaped instrument) to remove any material that may remain in the uterus. This procedure may be used for molar pregnancies. - Hysterectomy: Surgery to remove the uterus, and sometimes the cervix. If the uterus and cervix are taken out through the vagina, the operation is called a vaginal hysterectomy. If the uterus and cervix are taken out through a large incision (cut) in the abdomen, the operation is called a total abdominal hysterectomy. If the uterus and cervix are taken out through a small incision (cut) in the abdomen using a laparoscope, the operation is called a total laparoscopic hysterectomy. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated, or whether the tumor is low-risk or high-risk. Combination chemotherapy is treatment using more than one anticancer drug. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy after surgery to kill any tumor cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. See Drugs Approved for Gestational Trophoblastic Disease for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of gestational trophoblastic disease being treated. External radiation therapy is used to treat gestational trophoblastic disease. New types of treatment are being tested in clinical trials. Information about ongoing clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Blood levels of beta human chorionic gonadotropin (-hCG) will be checked for up to 6 months after treatment has ended. This is because a -hCG level that is higher than normal may mean that the tumor has not responded to treatment or it has become cancer. Treatment Options for Gestational Trophoblastic Disease Hydatidiform Moles Treatment of a hydatidiform mole may include the following: - Surgery (Dilatation and curettage with suction evacuation) to remove the tumor. After surgery, beta human chorionic gonadotropin (-hCG) blood tests are done every week until the -hCG level returns to normal. Patients also have follow-up doctor visits monthly for up to 6 months. If the level of -hCG does not return to normal or increases, it may mean the hydatidiform mole was not completely removed and it has become cancer. Pregnancy causes -hCG levels to increase, so your doctor will ask you not to become pregnant until follow-up is finished. For disease that remains after surgery, treatment is usually chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with hydatidiform mole. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Gestational Trophoblastic Neoplasia Low-risk Gestational Trophoblastic Neoplasia Treatment of low-risk gestational trophoblastic neoplasia (GTN) (invasive mole or choriocarcinoma) may include the following: - Chemotherapy with one or more anticancer drugs. Treatment is given until the beta human chorionic gonadotropin (-hCG) level is normal for at least 3 weeks after treatment ends. If the level of -hCG in the blood does not return to normal or the tumor spreads to distant parts of the body, chemotherapy regimens used for high-risk metastatic GTN are given. Check the list of NCI-supported cancer clinical trials that are now accepting patients with low risk metastatic gestational trophoblastic tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. High-risk Metastatic Gestational Trophoblastic Neoplasia Treatment of high-risk metastatic gestational trophoblastic neoplasia (invasive mole or choriocarcinoma) may include the following: - Combination chemotherapy. - Intrathecal chemotherapy and radiation therapy to the brain (for cancer that has spread to the lung, to keep it from spreading to the brain). - High-dose chemotherapy or intrathecal chemotherapy and/or radiation therapy to the brain (for cancer that has spread to the brain). Check the list of NCI-supported cancer clinical trials that are now accepting patients with high risk metastatic gestational trophoblastic tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Placental-Site Gestational Trophoblastic Tumors and Epithelioid Trophoblastic Tumors Treatment of stage I placental-site gestational trophoblastic tumors and epithelioid trophoblastic tumors may include the following: - Surgery to remove the uterus. Treatment of stage II placental-site gestational trophoblastic tumors and epithelioid trophoblastic tumors may include the following: - Surgery to remove the tumor, which may be followed by combination chemotherapy. Treatment of stage III and IV placental-site gestational trophoblastic tumors and epithelioid trophoblastic tumors may include following: - Combination chemotherapy. - Surgery to remove cancer that has spread to other places, such as the lung or abdomen. Check the list of NCI-supported cancer clinical trials that are now accepting patients with placental-site gestational trophoblastic tumor and epithelioid trophoblastic tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent or Resistant Gestational Trophoblastic Neoplasia Treatment of recurrent or resistant gestational trophoblastic tumor may include the following: - Chemotherapy with one or more anticancer drugs for tumors previously treated with surgery. - Combination chemotherapy for tumors previously treated with chemotherapy. - Surgery for tumors that do not respond to chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent gestational trophoblastic tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Gestational Trophoblastic Disease ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with gestational trophoblastic disease. - Three types of standard treatment are used: - Surgery - Chemotherapy - Radiation therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with gestational trophoblastic disease. Different types of treatment are available for patients with gestational trophoblastic disease. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. Before starting treatment, patients may want to think about taking part in a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Three types of standard treatment are used: Surgery The doctor may remove the cancer using one of the following operations: - Dilatation and curettage (D&C) with suction evacuation: A surgical procedure to remove abnormal tissue and parts of the inner lining of the uterus. The cervix is dilated and the material inside the uterus is removed with a small vacuum-like device. The walls of the uterus are then gently scraped with a curette (spoon-shaped instrument) to remove any material that may remain in the uterus. This procedure may be used for molar pregnancies. - Hysterectomy: Surgery to remove the uterus, and sometimes the cervix. If the uterus and cervix are taken out through the vagina, the operation is called a vaginal hysterectomy. If the uterus and cervix are taken out through a large incision (cut) in the abdomen, the operation is called a total abdominal hysterectomy. If the uterus and cervix are taken out through a small incision (cut) in the abdomen using a laparoscope, the operation is called a total laparoscopic hysterectomy. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated, or whether the tumor is low-risk or high-risk. Combination chemotherapy is treatment using more than one anticancer drug. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy after surgery to kill any tumor cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. See Drugs Approved for Gestational Trophoblastic Disease for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of gestational trophoblastic disease being treated. External radiation therapy is used to treat gestational trophoblastic disease. New types of treatment are being tested in clinical trials. Information about ongoing clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Blood levels of beta human chorionic gonadotropin (-hCG) will be checked for up to 6 months after treatment has ended. This is because a -hCG level that is higher than normal may mean that the tumor has not responded to treatment or it has become cancer. Treatment Options for Gestational Trophoblastic Disease Hydatidiform Moles Treatment of a hydatidiform mole may include the following: - Surgery (Dilatation and curettage with suction evacuation) to remove the tumor. After surgery, beta human chorionic gonadotropin (-hCG) blood tests are done every week until the -hCG level returns to normal. Patients also have follow-up doctor visits monthly for up to 6 months. If the level of -hCG does not return to normal or increases, it may mean the hydatidiform mole was not completely removed and it has become cancer. Pregnancy causes -hCG levels to increase, so your doctor will ask you not to become pregnant until follow-up is finished. For disease that remains after surgery, treatment is usually chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with hydatidiform mole. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Gestational Trophoblastic Neoplasia Low-risk Gestational Trophoblastic Neoplasia Treatment of low-risk gestational trophoblastic neoplasia (GTN) (invasive mole or choriocarcinoma) may include the following: - Chemotherapy with one or more anticancer drugs. Treatment is given until the beta human chorionic gonadotropin (-hCG) level is normal for at least 3 weeks after treatment ends. If the level of -hCG in the blood does not return to normal or the tumor spreads to distant parts of the body, chemotherapy regimens used for high-risk metastatic GTN are given. Check the list of NCI-supported cancer clinical trials that are now accepting patients with low risk metastatic gestational trophoblastic tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. High-risk Metastatic Gestational Trophoblastic Neoplasia Treatment of high-risk metastatic gestational trophoblastic neoplasia (invasive mole or choriocarcinoma) may include the following: - Combination chemotherapy. - Intrathecal chemotherapy and radiation therapy to the brain (for cancer that has spread to the lung, to keep it from spreading to the brain). - High-dose chemotherapy or intrathecal chemotherapy and/or radiation therapy to the brain (for cancer that has spread to the brain). Check the list of NCI-supported cancer clinical trials that are now accepting patients with high risk metastatic gestational trophoblastic tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Placental-Site Gestational Trophoblastic Tumors and Epithelioid Trophoblastic Tumors Treatment of stage I placental-site gestational trophoblastic tumors and epithelioid trophoblastic tumors may include the following: - Surgery to remove the uterus. Treatment of stage II placental-site gestational trophoblastic tumors and epithelioid trophoblastic tumors may include the following: - Surgery to remove the tumor, which may be followed by combination chemotherapy. Treatment of stage III and IV placental-site gestational trophoblastic tumors and epithelioid trophoblastic tumors may include following: - Combination chemotherapy. - Surgery to remove cancer that has spread to other places, such as the lung or abdomen. Check the list of NCI-supported cancer clinical trials that are now accepting patients with placental-site gestational trophoblastic tumor and epithelioid trophoblastic tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent or Resistant Gestational Trophoblastic Neoplasia Treatment of recurrent or resistant gestational trophoblastic tumor may include the following: - Chemotherapy with one or more anticancer drugs for tumors previously treated with surgery. - Combination chemotherapy for tumors previously treated with chemotherapy. - Surgery for tumors that do not respond to chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent gestational trophoblastic tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
what research (or clinical trials) is being done for Gestational Trophoblastic Disease ?
New types of treatment are being tested in clinical trials. Information about ongoing clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Gestational Trophoblastic Disease ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about ongoing clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Chronic Myelogenous Leukemia ?
Chronic myelogenous leukemia is a disease in which too many white blood cells are made in the bone marrow. See the PDQ summary on Chronic Myelogenous Leukemia Treatment for information on diagnosis, staging, and treatment.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Chronic Myelogenous Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Chronic myelogenous leukemia is a disease in which too many white blood cells are made in the bone marrow. See the PDQ summary on Chronic Myelogenous Leukemia Treatment for information on diagnosis, staging, and treatment.<|eot_id|>
What are the treatments for Chronic Myelogenous Leukemia ?
See the PDQ summary about Chronic Myelogenous Leukemia Treatment for information.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Chronic Myelogenous Leukemia ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> See the PDQ summary about Chronic Myelogenous Leukemia Treatment for information.<|eot_id|>
What is (are) Lung Cancer ?
Key Points - Lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. - Lung cancer is the leading cause of cancer death in the United States. - Different factors increase or decrease the risk of lung cancer. Lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The lungs are a pair of cone-shaped breathing organs inside the chest. The lungs bring oxygen into the body when breathing in and send carbon dioxide out of the body when breathing out. Each lung has sections called lobes. The left lung has two lobes. The right lung, which is slightly larger, has three. A thin membrane called the pleura surrounds the lungs. Two tubes called bronchi lead from the trachea (windpipe) to the right and left lungs. The bronchi are sometimes involved in lung cancer. Small tubes called bronchioles and tiny air sacs called alveoli make up the inside of the lungs. There are two types of lung cancer: small cell lung cancer and non-small cell lung cancer. See the following PDQ summaries for more information about lung cancer: - Lung Cancer Prevention - Non-Small Cell Lung Cancer Treatment - Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is the third most common type of non-skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Lung Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. - Lung cancer is the leading cause of cancer death in the United States. - Different factors increase or decrease the risk of lung cancer. Lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The lungs are a pair of cone-shaped breathing organs inside the chest. The lungs bring oxygen into the body when breathing in and send carbon dioxide out of the body when breathing out. Each lung has sections called lobes. The left lung has two lobes. The right lung, which is slightly larger, has three. A thin membrane called the pleura surrounds the lungs. Two tubes called bronchi lead from the trachea (windpipe) to the right and left lungs. The bronchi are sometimes involved in lung cancer. Small tubes called bronchioles and tiny air sacs called alveoli make up the inside of the lungs. There are two types of lung cancer: small cell lung cancer and non-small cell lung cancer. See the following PDQ summaries for more information about lung cancer: - Lung Cancer Prevention - Non-Small Cell Lung Cancer Treatment - Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is the third most common type of non-skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women.<|eot_id|>
Who is at risk for Lung Cancer? ?
Different factors increase or decrease the risk of lung cancer. Anything that increases your chance of getting a disease is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for lung cancer, see the PDQ summary on Lung Cancer Prevention. Key Points - Screening tests have risks. - The risks of lung cancer screening tests include the following: - Finding lung cancer may not improve health or help you live longer. - False-negative test results can occur. - False-positive test results can occur. - Chest x-rays and low-dose spiral CT scans expose the chest to radiation. - Talk to your doctor about your risk for lung cancer and your need for screening tests. Screening tests have risks. Decisions about screening tests can be difficult. Not all screening tests are helpful and most have risks. Before having any screening test, you may want to discuss the test with your doctor. It is important to know the risks of the test and whether it has been proven to reduce the risk of dying from cancer. The risks of lung cancer screening tests include the following: Finding lung cancer may not improve health or help you live longer. Screening may not improve your health or help you live longer if you have lung cancer that has already spread to other places in your body. When a screening test result leads to the diagnosis and treatment of a disease that may never have caused symptoms or become life-threatening, it is called overdiagnosis. It is not known if treatment of these cancers would help you live longer than if no treatment were given, and treatments for cancer may have serious side effects. Harms of treatment may happen more often in people who have medical problems caused by heavy or long-term smoking. False-negative test results can occur. Screening test results may appear to be normal even though lung cancer is present. A person who receives a false-negative test result (one that shows there is no cancer when there really is) may delay seeking medical care even if there are symptoms. False-positive test results can occur. Screening test results may appear to be abnormal even though no cancer is present. A false-positive test result (one that shows there is cancer when there really isn't) can cause anxiety and is usually followed by more tests (such as biopsy), which also have risks. A biopsy to diagnose lung cancer can cause part of the lung to collapse. Sometimes surgery is needed to reinflate the lung. Harms of diagnostic tests may happen more often in patients who have medical problems caused by heavy or long-term smoking. Chest x-rays and low-dose spiral CT scans expose the chest to radiation. Radiation exposure from chest x-rays and low-dose spiral CT scans may increase the risk of cancer. Younger people and people at low risk for lung cancer are more likely to develop lung cancer caused by radiation exposure. . Talk to your doctor about your risk for lung cancer and your need for screening tests. Talk to your doctor or other health care provider about your risk for lung cancer, whether a screening test is right for you, and about the benefits and harms of the screening test. You should take part in the decision about whether a screening test is right for you. (See the PDQ summary on Cancer Screening Overview for more information.)
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Lung Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Different factors increase or decrease the risk of lung cancer. Anything that increases your chance of getting a disease is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for lung cancer, see the PDQ summary on Lung Cancer Prevention. Key Points - Screening tests have risks. - The risks of lung cancer screening tests include the following: - Finding lung cancer may not improve health or help you live longer. - False-negative test results can occur. - False-positive test results can occur. - Chest x-rays and low-dose spiral CT scans expose the chest to radiation. - Talk to your doctor about your risk for lung cancer and your need for screening tests. Screening tests have risks. Decisions about screening tests can be difficult. Not all screening tests are helpful and most have risks. Before having any screening test, you may want to discuss the test with your doctor. It is important to know the risks of the test and whether it has been proven to reduce the risk of dying from cancer. The risks of lung cancer screening tests include the following: Finding lung cancer may not improve health or help you live longer. Screening may not improve your health or help you live longer if you have lung cancer that has already spread to other places in your body. When a screening test result leads to the diagnosis and treatment of a disease that may never have caused symptoms or become life-threatening, it is called overdiagnosis. It is not known if treatment of these cancers would help you live longer than if no treatment were given, and treatments for cancer may have serious side effects. Harms of treatment may happen more often in people who have medical problems caused by heavy or long-term smoking. False-negative test results can occur. Screening test results may appear to be normal even though lung cancer is present. A person who receives a false-negative test result (one that shows there is no cancer when there really is) may delay seeking medical care even if there are symptoms. False-positive test results can occur. Screening test results may appear to be abnormal even though no cancer is present. A false-positive test result (one that shows there is cancer when there really isn't) can cause anxiety and is usually followed by more tests (such as biopsy), which also have risks. A biopsy to diagnose lung cancer can cause part of the lung to collapse. Sometimes surgery is needed to reinflate the lung. Harms of diagnostic tests may happen more often in patients who have medical problems caused by heavy or long-term smoking. Chest x-rays and low-dose spiral CT scans expose the chest to radiation. Radiation exposure from chest x-rays and low-dose spiral CT scans may increase the risk of cancer. Younger people and people at low risk for lung cancer are more likely to develop lung cancer caused by radiation exposure. . Talk to your doctor about your risk for lung cancer and your need for screening tests. Talk to your doctor or other health care provider about your risk for lung cancer, whether a screening test is right for you, and about the benefits and harms of the screening test. You should take part in the decision about whether a screening test is right for you. (See the PDQ summary on Cancer Screening Overview for more information.)<|eot_id|>
What is (are) Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?
Key Points - Ovarian epithelial cancer, fallopian tube cancer, and primary peritoneal cancer are diseases in which malignant (cancer) cells form in the tissue covering the ovary or lining the fallopian tube or peritoneum. - Ovarian epithelial cancer, fallopian tube cancer, and primary peritoneal cancer form in the same type of tissue and are treated the same way. - Women who have a family history of ovarian cancer are at an increased risk of ovarian cancer. - Some ovarian, fallopian tube, and primary peritoneal cancers are caused by inherited gene mutations (changes). - Women with an increased risk of ovarian cancer may consider surgery to lessen the risk. - Signs and symptoms of ovarian, fallopian tube, or peritoneal cancer include pain or swelling in the abdomen. - Tests that examine the ovaries and pelvic area are used to detect (find) and diagnose ovarian, fallopian tube, and peritoneal cancer. - Certain factors affect treatment options and prognosis (chance of recovery). Ovarian epithelial cancer, fallopian tube cancer, and primary peritoneal cancer are diseases in which malignant (cancer) cells form in the tissue covering the ovary or lining the fallopian tube or peritoneum. The ovaries are a pair of organs in the female reproductive system. They are in the pelvis, one on each side of the uterus (the hollow, pear-shaped organ where a fetus grows). Each ovary is about the size and shape of an almond. The ovaries make eggs and female hormones (chemicals that control the way certain cells or organs work). The fallopian tubes are a pair of long, slender tubes, one on each side of the uterus. Eggs pass from the ovaries, through the fallopian tubes, to the uterus. Cancer sometimes begins at the end of the fallopian tube near the ovary and spreads to the ovary. The peritoneum is the tissue that lines the abdominal wall and covers organs in the abdomen. Primary peritoneal cancer is cancer that forms in the peritoneum and has not spread there from another part of the body. Cancer sometimes begins in the peritoneum and spreads to the ovary. Ovarian epithelial cancer is one type of cancer that affects the ovary. See the following PDQ treatment summaries for information about other types of ovarian tumors: - Ovarian Germ Cell Tumors - Ovarian Low Malignant Potential Tumors - Unusual Cancers of Childhood Treatment (ovarian cancer in children) Ovarian epithelial cancer, fallopian tube cancer, and primary peritoneal cancer form in the same type of tissue and are treated the same way.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Ovarian epithelial cancer, fallopian tube cancer, and primary peritoneal cancer are diseases in which malignant (cancer) cells form in the tissue covering the ovary or lining the fallopian tube or peritoneum. - Ovarian epithelial cancer, fallopian tube cancer, and primary peritoneal cancer form in the same type of tissue and are treated the same way. - Women who have a family history of ovarian cancer are at an increased risk of ovarian cancer. - Some ovarian, fallopian tube, and primary peritoneal cancers are caused by inherited gene mutations (changes). - Women with an increased risk of ovarian cancer may consider surgery to lessen the risk. - Signs and symptoms of ovarian, fallopian tube, or peritoneal cancer include pain or swelling in the abdomen. - Tests that examine the ovaries and pelvic area are used to detect (find) and diagnose ovarian, fallopian tube, and peritoneal cancer. - Certain factors affect treatment options and prognosis (chance of recovery). Ovarian epithelial cancer, fallopian tube cancer, and primary peritoneal cancer are diseases in which malignant (cancer) cells form in the tissue covering the ovary or lining the fallopian tube or peritoneum. The ovaries are a pair of organs in the female reproductive system. They are in the pelvis, one on each side of the uterus (the hollow, pear-shaped organ where a fetus grows). Each ovary is about the size and shape of an almond. The ovaries make eggs and female hormones (chemicals that control the way certain cells or organs work). The fallopian tubes are a pair of long, slender tubes, one on each side of the uterus. Eggs pass from the ovaries, through the fallopian tubes, to the uterus. Cancer sometimes begins at the end of the fallopian tube near the ovary and spreads to the ovary. The peritoneum is the tissue that lines the abdominal wall and covers organs in the abdomen. Primary peritoneal cancer is cancer that forms in the peritoneum and has not spread there from another part of the body. Cancer sometimes begins in the peritoneum and spreads to the ovary. Ovarian epithelial cancer is one type of cancer that affects the ovary. See the following PDQ treatment summaries for information about other types of ovarian tumors: - Ovarian Germ Cell Tumors - Ovarian Low Malignant Potential Tumors - Unusual Cancers of Childhood Treatment (ovarian cancer in children) Ovarian epithelial cancer, fallopian tube cancer, and primary peritoneal cancer form in the same type of tissue and are treated the same way.<|eot_id|>
Who is at risk for Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer? ?
Women who have a family history of ovarian cancer are at an increased risk of ovarian cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Women who have one first-degree relative (mother, daughter, or sister) with a history of ovarian cancer have an increased risk of ovarian cancer. This risk is higher in women who have one first-degree relative and one second-degree relative (grandmother or aunt) with a history of ovarian cancer. This risk is even higher in women who have two or more first-degree relatives with a history of ovarian cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Women who have a family history of ovarian cancer are at an increased risk of ovarian cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Women who have one first-degree relative (mother, daughter, or sister) with a history of ovarian cancer have an increased risk of ovarian cancer. This risk is higher in women who have one first-degree relative and one second-degree relative (grandmother or aunt) with a history of ovarian cancer. This risk is even higher in women who have two or more first-degree relatives with a history of ovarian cancer.<|eot_id|>
Is Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer inherited ?
Some ovarian, fallopian tube, and primary peritoneal cancers are caused by inherited gene mutations (changes). The genes in cells carry the hereditary information that is received from a persons parents. Hereditary ovarian cancer makes up about 20% of all cases of ovarian cancer. There are three hereditary patterns: ovarian cancer alone, ovarian and breast cancers, and ovarian and colon cancers. Fallopian tube cancer and peritoneal cancer may also be caused by certain inherited gene mutations. There are tests that can detect gene mutations. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: - Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention - Genetics of Breast and Gynecologic Cancers (for health professionals)
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Is Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer inherited ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Some ovarian, fallopian tube, and primary peritoneal cancers are caused by inherited gene mutations (changes). The genes in cells carry the hereditary information that is received from a persons parents. Hereditary ovarian cancer makes up about 20% of all cases of ovarian cancer. There are three hereditary patterns: ovarian cancer alone, ovarian and breast cancers, and ovarian and colon cancers. Fallopian tube cancer and peritoneal cancer may also be caused by certain inherited gene mutations. There are tests that can detect gene mutations. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: - Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention - Genetics of Breast and Gynecologic Cancers (for health professionals)<|eot_id|>
How to prevent Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?
Women with an increased risk of ovarian cancer may consider surgery to lessen the risk. Some women who have an increased risk of ovarian cancer may choose to have a risk-reducing oophorectomy (the removal of healthy ovaries so that cancer cannot grow in them). In high-risk women, this procedure has been shown to greatly decrease the risk of ovarian cancer. (See the PDQ summary on Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention for more information.)
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to prevent Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Women with an increased risk of ovarian cancer may consider surgery to lessen the risk. Some women who have an increased risk of ovarian cancer may choose to have a risk-reducing oophorectomy (the removal of healthy ovaries so that cancer cannot grow in them). In high-risk women, this procedure has been shown to greatly decrease the risk of ovarian cancer. (See the PDQ summary on Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention for more information.)<|eot_id|>
What are the symptoms of Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?
Signs and symptoms of ovarian, fallopian tube, or peritoneal cancer include pain or swelling in the abdomen. Ovarian, fallopian tube, or peritoneal cancer may not cause early signs or symptoms. When signs or symptoms do appear, the cancer is often advanced. Signs and symptoms may include the following: - Pain, swelling, or a feeling of pressure in the abdomen or pelvis. - Vaginal bleeding that is heavy or irregular, especially after menopause. - Vaginal discharge that is clear, white, or colored with blood. - A lump in the pelvic area. - Gastrointestinal problems, such as gas, bloating, or constipation. These signs and symptoms also may be caused by other conditions and not by ovarian, fallopian tube, or peritoneal cancer. If the signs or symptoms get worse or do not go away on their own, check with your doctor so that any problem can be diagnosed and treated as early as possible.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of ovarian, fallopian tube, or peritoneal cancer include pain or swelling in the abdomen. Ovarian, fallopian tube, or peritoneal cancer may not cause early signs or symptoms. When signs or symptoms do appear, the cancer is often advanced. Signs and symptoms may include the following: - Pain, swelling, or a feeling of pressure in the abdomen or pelvis. - Vaginal bleeding that is heavy or irregular, especially after menopause. - Vaginal discharge that is clear, white, or colored with blood. - A lump in the pelvic area. - Gastrointestinal problems, such as gas, bloating, or constipation. These signs and symptoms also may be caused by other conditions and not by ovarian, fallopian tube, or peritoneal cancer. If the signs or symptoms get worse or do not go away on their own, check with your doctor so that any problem can be diagnosed and treated as early as possible.<|eot_id|>
How to diagnose Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?
Tests that examine the ovaries and pelvic area are used to detect (find) and diagnose ovarian, fallopian tube, and peritoneal cancer. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Pelvic exam : An exam of the vagina, cervix, uterus, fallopian tubes, ovaries, and rectum. A speculum is inserted into the vagina and the doctor or nurse looks at the vagina and cervix for signs of disease. A Pap test of the cervix is usually done. The doctor or nurse also inserts one or two lubricated, gloved fingers of one hand into the vagina and places the other hand over the lower abdomen to feel the size, shape, and position of the uterus and ovaries. The doctor or nurse also inserts a lubricated, gloved finger into the rectum to feel for lumps or abnormal areas. - CA 125 assay : A test that measures the level of CA 125 in the blood. CA 125 is a substance released by cells into the bloodstream. An increased CA 125 level can be a sign of cancer or another condition such as endometriosis. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs in the abdomen, and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. Some patients may have a transvaginal ultrasound. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A very small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The tissue is usually removed during surgery to remove the tumor.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the ovaries and pelvic area are used to detect (find) and diagnose ovarian, fallopian tube, and peritoneal cancer. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Pelvic exam : An exam of the vagina, cervix, uterus, fallopian tubes, ovaries, and rectum. A speculum is inserted into the vagina and the doctor or nurse looks at the vagina and cervix for signs of disease. A Pap test of the cervix is usually done. The doctor or nurse also inserts one or two lubricated, gloved fingers of one hand into the vagina and places the other hand over the lower abdomen to feel the size, shape, and position of the uterus and ovaries. The doctor or nurse also inserts a lubricated, gloved finger into the rectum to feel for lumps or abnormal areas. - CA 125 assay : A test that measures the level of CA 125 in the blood. CA 125 is a substance released by cells into the bloodstream. An increased CA 125 level can be a sign of cancer or another condition such as endometriosis. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs in the abdomen, and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. Some patients may have a transvaginal ultrasound. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A very small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The tissue is usually removed during surgery to remove the tumor.<|eot_id|>
What is the outlook for Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?
Certain factors affect treatment options and prognosis (chance of recovery). The prognosis (chance of recovery) and treatment options depend on the following: - The type of ovarian cancer and how much cancer there is. - The stage and grade of the cancer. - Whether the patient has extra fluid in the abdomen that causes swelling. - Whether all of the tumor can be removed by surgery. - Whether there are changes in the BRCA1 or BRCA2 genes. - The patients age and general health. - Whether the cancer has just been diagnosed or has recurred (come back).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect treatment options and prognosis (chance of recovery). The prognosis (chance of recovery) and treatment options depend on the following: - The type of ovarian cancer and how much cancer there is. - The stage and grade of the cancer. - Whether the patient has extra fluid in the abdomen that causes swelling. - Whether all of the tumor can be removed by surgery. - Whether there are changes in the BRCA1 or BRCA2 genes. - The patients age and general health. - Whether the cancer has just been diagnosed or has recurred (come back).<|eot_id|>
What are the stages of Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?
Key Points - After ovarian, fallopian tube, or peritoneal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the ovaries or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for ovarian epithelial, fallopian tube, and primary peritoneal cancer: - Stage I - Stage II - Stage III - Stage IV - Ovarian epithelial, fallopian tube, and primary peritoneal cancers are grouped for treatment as early or advanced cancer. After ovarian, fallopian tube, or peritoneal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the ovaries or to other parts of the body. The process used to find out whether cancer has spread within the organ or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The results of the tests used to diagnose cancer are often also used to stage the disease. (See the General Information section.) There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if ovarian epithelial cancer spreads to the lung, the cancer cells in the lung are actually ovarian epithelial cancer cells. The disease is metastatic ovarian epithelial cancer, not lung cancer. The following stages are used for ovarian epithelial, fallopian tube, and primary peritoneal cancer: Stage I In stage I, cancer is found in one or both ovaries or fallopian tubes. Stage I is divided into stage IA, stage IB, and stage IC. - Stage IA: Cancer is found inside a single ovary or fallopian tube. - Stage IB: Cancer is found inside both ovaries or fallopian tubes. - Stage IC: Cancer is found inside one or both ovaries or fallopian tubes and one of the following is true: - cancer is also found on the outside surface of one or both ovaries or fallopian tubes; or - the capsule (outer covering) of the ovary ruptured (broke open) before or during surgery; or - cancer cells are found in the fluid of the peritoneal cavity (the body cavity that contains most of the organs in the abdomen) or in washings of the peritoneum (tissue lining the peritoneal cavity). Stage II In stage II, cancer is found in one or both ovaries or fallopian tubes and has spread into other areas of the pelvis, or primary peritoneal cancer is found within the pelvis. Stage II ovarian epithelial and fallopian tube cancers are divided into stage IIA and stage IIB. - Stage IIA: Cancer has spread from where it first formed to the uterus and/or the fallopian tubes and/or the ovaries. - Stage IIB: Cancer has spread from the ovary or fallopian tube to organs in the peritoneal cavity (the space that contains the abdominal organs). Stage III In stage III, cancer is found in one or both ovaries or fallopian tubes, or is primary peritoneal cancer, and has spread outside the pelvis to other parts of the abdomen and/or to nearby lymph nodes. Stage III is divided into stage IIIA, stage IIIB, and stage IIIC. - In stage IIIA, one of the following is true: - Cancer has spread to lymph nodes in the area outside or behind the peritoneum only; or - Cancer cells that can be seen only with a microscope have spread to the surface of the peritoneum outside the pelvis. Cancer may have spread to nearby lymph nodes. - Stage IIIB: Cancer has spread to the peritoneum outside the pelvis and the cancer in the peritoneum is 2 centimeters or smaller. Cancer may have spread to lymph nodes behind the peritoneum. - Stage IIIC: Cancer has spread to the peritoneum outside the pelvis and the cancer in the peritoneum is larger than 2 centimeters. Cancer may have spread to lymph nodes behind the peritoneum or to the surface of the liver or spleen. Stage IV In stage IV, cancer has spread beyond the abdomen to other parts of the body. Stage IV is divided into stage IVA and stage IVB. - Stage IVA: Cancer cells are found in extra fluid that builds up around the lungs. - Stage IVB: Cancer has spread to organs and tissues outside the abdomen, including lymph nodes in the groin. Ovarian epithelial, fallopian tube, and primary peritoneal cancers are grouped for treatment as early or advanced cancer. Stage I ovarian epithelial and fallopian tube cancers are treated as early cancers. Stages II, III, and IV ovarian epithelial, fallopian tube, and primary peritoneal cancers are treated as advanced cancers.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After ovarian, fallopian tube, or peritoneal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the ovaries or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for ovarian epithelial, fallopian tube, and primary peritoneal cancer: - Stage I - Stage II - Stage III - Stage IV - Ovarian epithelial, fallopian tube, and primary peritoneal cancers are grouped for treatment as early or advanced cancer. After ovarian, fallopian tube, or peritoneal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the ovaries or to other parts of the body. The process used to find out whether cancer has spread within the organ or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The results of the tests used to diagnose cancer are often also used to stage the disease. (See the General Information section.) There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if ovarian epithelial cancer spreads to the lung, the cancer cells in the lung are actually ovarian epithelial cancer cells. The disease is metastatic ovarian epithelial cancer, not lung cancer. The following stages are used for ovarian epithelial, fallopian tube, and primary peritoneal cancer: Stage I In stage I, cancer is found in one or both ovaries or fallopian tubes. Stage I is divided into stage IA, stage IB, and stage IC. - Stage IA: Cancer is found inside a single ovary or fallopian tube. - Stage IB: Cancer is found inside both ovaries or fallopian tubes. - Stage IC: Cancer is found inside one or both ovaries or fallopian tubes and one of the following is true: - cancer is also found on the outside surface of one or both ovaries or fallopian tubes; or - the capsule (outer covering) of the ovary ruptured (broke open) before or during surgery; or - cancer cells are found in the fluid of the peritoneal cavity (the body cavity that contains most of the organs in the abdomen) or in washings of the peritoneum (tissue lining the peritoneal cavity). Stage II In stage II, cancer is found in one or both ovaries or fallopian tubes and has spread into other areas of the pelvis, or primary peritoneal cancer is found within the pelvis. Stage II ovarian epithelial and fallopian tube cancers are divided into stage IIA and stage IIB. - Stage IIA: Cancer has spread from where it first formed to the uterus and/or the fallopian tubes and/or the ovaries. - Stage IIB: Cancer has spread from the ovary or fallopian tube to organs in the peritoneal cavity (the space that contains the abdominal organs). Stage III In stage III, cancer is found in one or both ovaries or fallopian tubes, or is primary peritoneal cancer, and has spread outside the pelvis to other parts of the abdomen and/or to nearby lymph nodes. Stage III is divided into stage IIIA, stage IIIB, and stage IIIC. - In stage IIIA, one of the following is true: - Cancer has spread to lymph nodes in the area outside or behind the peritoneum only; or - Cancer cells that can be seen only with a microscope have spread to the surface of the peritoneum outside the pelvis. Cancer may have spread to nearby lymph nodes. - Stage IIIB: Cancer has spread to the peritoneum outside the pelvis and the cancer in the peritoneum is 2 centimeters or smaller. Cancer may have spread to lymph nodes behind the peritoneum. - Stage IIIC: Cancer has spread to the peritoneum outside the pelvis and the cancer in the peritoneum is larger than 2 centimeters. Cancer may have spread to lymph nodes behind the peritoneum or to the surface of the liver or spleen. Stage IV In stage IV, cancer has spread beyond the abdomen to other parts of the body. Stage IV is divided into stage IVA and stage IVB. - Stage IVA: Cancer cells are found in extra fluid that builds up around the lungs. - Stage IVB: Cancer has spread to organs and tissues outside the abdomen, including lymph nodes in the groin. Ovarian epithelial, fallopian tube, and primary peritoneal cancers are grouped for treatment as early or advanced cancer. Stage I ovarian epithelial and fallopian tube cancers are treated as early cancers. Stages II, III, and IV ovarian epithelial, fallopian tube, and primary peritoneal cancers are treated as advanced cancers.<|eot_id|>
What are the treatments for Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?
Key Points - There are different types of treatment for patients with ovarian epithelial cancer. - Three kinds of standard treatment are used. - Surgery - Chemotherapy - Targeted therapy - New types of treatment are being tested in clinical trials. - Radiation therapy - Immunotherapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with ovarian epithelial cancer. Different types of treatment are available for patients with ovarian epithelial cancer. Some treatments are standard, and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the treatment currently used as standard treatment, the new treatment may become the standard treatment. Patients with any stage of ovarian cancer may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Three kinds of standard treatment are used. Surgery Most patients have surgery to remove as much of the tumor as possible. Different types of surgery may include: - Hysterectomy: Surgery to remove the uterus and, sometimes, the cervix. When only the uterus is removed, it is called a partial hysterectomy. When both the uterus and the cervix are removed, it is called a total hysterectomy. If the uterus and cervix are taken out through the vagina, the operation is called a vaginal hysterectomy. If the uterus and cervix are taken out through a large incision (cut) in the abdomen, the operation is called a total abdominal hysterectomy. If the uterus and cervix are taken out through a small incision (cut) in the abdomen using a laparoscope, the operation is called a total laparoscopic hysterectomy. - Unilateral salpingo-oophorectomy: A surgical procedure to remove one ovary and one fallopian tube. - Bilateral salpingo-oophorectomy: A surgical procedure to remove both ovaries and both fallopian tubes. - Omentectomy: A surgical procedure to remove the omentum (tissue in the peritoneum that contains blood vessels, nerves, lymph vessels, and lymph nodes). - Lymph node biopsy: The removal of all or part of a lymph node. A pathologist views the tissue under a microscope to look for cancer cells. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). A type of regional chemotherapy used to treat ovarian cancer is intraperitoneal (IP) chemotherapy. In IP chemotherapy, the anticancer drugs are carried directly into the peritoneal cavity (the space that contains the abdominal organs) through a thin tube. Treatment with more than one anticancer drug is called combination chemotherapy. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Ovarian, Fallopian Tube, or Primary Peritoneal Cancer for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy is a type of targeted therapy that uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Bevacizumab is a monoclonal antibody that may be used with chemotherapy to treat ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer that has recurred (come back). Poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are targeted therapy drugs that block DNA repair and may cause cancer cells to die. Olaparib and niraparib are PARP inhibitors that may be used to treat advanced ovarian cancer. See Drugs Approved for Ovarian, Fallopian Tube, or Primary Peritoneal Cancer for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. Some women receive a treatment called intraperitoneal radiation therapy, in which radioactive liquid is put directly in the abdomen through a catheter. Intraperitoneal radiation therapy is being studied to treat advanced ovarian cancer. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Vaccine therapy uses a substance to stimulate the immune system to destroy a tumor. Vaccine therapy is being studied to treat advanced ovarian cancer. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Early Ovarian Epithelial and Fallopian Tube Cancer Treatment of early ovarian epithelial cancer or fallopian tube cancer may include the following: - Hysterectomy, bilateral salpingo-oophorectomy, and omentectomy. Lymph nodes and other tissues in the pelvis and abdomen are removed and checked under a microscope for cancer cells. Chemotherapy may be given after surgery. - Unilateral salpingo-oophorectomy may be done in certain women who wish to have children. Chemotherapy may be given after surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I ovarian epithelial cancer and fallopian tube cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Advanced Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment of advanced ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer may include the following: - Hysterectomy, bilateral salpingo-oophorectomy, and omentectomy. Lymph nodes and other tissues in the pelvis and abdomen are removed and checked under a microscope to look for cancer cells. Surgery is followed by one of the following: - Intravenous chemotherapy. - Intraperitoneal chemotherapy. - Chemotherapy and targeted therapy (bevacizumab, olaparib, or niraparib). - Chemotherapy followed by hysterectomy, bilateral salpingo-oophorectomy, and omentectomy. - Chemotherapy alone for patients who cannot have surgery. - A clinical trial of intraperitoneal radiation therapy, immunotherapy (vaccine therapy), or targeted therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II ovarian epithelial cancer, stage III ovarian epithelial cancer, stage IV ovarian epithelial cancer, fallopian tube cancer and primary peritoneal cavity cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with ovarian epithelial cancer. - Three kinds of standard treatment are used. - Surgery - Chemotherapy - Targeted therapy - New types of treatment are being tested in clinical trials. - Radiation therapy - Immunotherapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with ovarian epithelial cancer. Different types of treatment are available for patients with ovarian epithelial cancer. Some treatments are standard, and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the treatment currently used as standard treatment, the new treatment may become the standard treatment. Patients with any stage of ovarian cancer may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Three kinds of standard treatment are used. Surgery Most patients have surgery to remove as much of the tumor as possible. Different types of surgery may include: - Hysterectomy: Surgery to remove the uterus and, sometimes, the cervix. When only the uterus is removed, it is called a partial hysterectomy. When both the uterus and the cervix are removed, it is called a total hysterectomy. If the uterus and cervix are taken out through the vagina, the operation is called a vaginal hysterectomy. If the uterus and cervix are taken out through a large incision (cut) in the abdomen, the operation is called a total abdominal hysterectomy. If the uterus and cervix are taken out through a small incision (cut) in the abdomen using a laparoscope, the operation is called a total laparoscopic hysterectomy. - Unilateral salpingo-oophorectomy: A surgical procedure to remove one ovary and one fallopian tube. - Bilateral salpingo-oophorectomy: A surgical procedure to remove both ovaries and both fallopian tubes. - Omentectomy: A surgical procedure to remove the omentum (tissue in the peritoneum that contains blood vessels, nerves, lymph vessels, and lymph nodes). - Lymph node biopsy: The removal of all or part of a lymph node. A pathologist views the tissue under a microscope to look for cancer cells. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). A type of regional chemotherapy used to treat ovarian cancer is intraperitoneal (IP) chemotherapy. In IP chemotherapy, the anticancer drugs are carried directly into the peritoneal cavity (the space that contains the abdominal organs) through a thin tube. Treatment with more than one anticancer drug is called combination chemotherapy. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Ovarian, Fallopian Tube, or Primary Peritoneal Cancer for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy is a type of targeted therapy that uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Bevacizumab is a monoclonal antibody that may be used with chemotherapy to treat ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer that has recurred (come back). Poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are targeted therapy drugs that block DNA repair and may cause cancer cells to die. Olaparib and niraparib are PARP inhibitors that may be used to treat advanced ovarian cancer. See Drugs Approved for Ovarian, Fallopian Tube, or Primary Peritoneal Cancer for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. Some women receive a treatment called intraperitoneal radiation therapy, in which radioactive liquid is put directly in the abdomen through a catheter. Intraperitoneal radiation therapy is being studied to treat advanced ovarian cancer. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Vaccine therapy uses a substance to stimulate the immune system to destroy a tumor. Vaccine therapy is being studied to treat advanced ovarian cancer. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Early Ovarian Epithelial and Fallopian Tube Cancer Treatment of early ovarian epithelial cancer or fallopian tube cancer may include the following: - Hysterectomy, bilateral salpingo-oophorectomy, and omentectomy. Lymph nodes and other tissues in the pelvis and abdomen are removed and checked under a microscope for cancer cells. Chemotherapy may be given after surgery. - Unilateral salpingo-oophorectomy may be done in certain women who wish to have children. Chemotherapy may be given after surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I ovarian epithelial cancer and fallopian tube cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Advanced Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment of advanced ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer may include the following: - Hysterectomy, bilateral salpingo-oophorectomy, and omentectomy. Lymph nodes and other tissues in the pelvis and abdomen are removed and checked under a microscope to look for cancer cells. Surgery is followed by one of the following: - Intravenous chemotherapy. - Intraperitoneal chemotherapy. - Chemotherapy and targeted therapy (bevacizumab, olaparib, or niraparib). - Chemotherapy followed by hysterectomy, bilateral salpingo-oophorectomy, and omentectomy. - Chemotherapy alone for patients who cannot have surgery. - A clinical trial of intraperitoneal radiation therapy, immunotherapy (vaccine therapy), or targeted therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II ovarian epithelial cancer, stage III ovarian epithelial cancer, stage IV ovarian epithelial cancer, fallopian tube cancer and primary peritoneal cavity cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
what research (or clinical trials) is being done for Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. Some women receive a treatment called intraperitoneal radiation therapy, in which radioactive liquid is put directly in the abdomen through a catheter. Intraperitoneal radiation therapy is being studied to treat advanced ovarian cancer. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Vaccine therapy uses a substance to stimulate the immune system to destroy a tumor. Vaccine therapy is being studied to treat advanced ovarian cancer. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. Some women receive a treatment called intraperitoneal radiation therapy, in which radioactive liquid is put directly in the abdomen through a catheter. Intraperitoneal radiation therapy is being studied to treat advanced ovarian cancer. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Vaccine therapy uses a substance to stimulate the immune system to destroy a tumor. Vaccine therapy is being studied to treat advanced ovarian cancer. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
How to prevent Oral Cavity and Oropharyngeal Cancer ?
Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following are risk factors for oral cavity cancer and oropharyngeal cancer: - Tobacco use - Alcohol use - Tobacco and alcohol use - Betel quid or gutka chewing - Personal history of head and neck cancer - The following is a risk factor for oropharyngeal cancer: - HPV infection - The following is a protective factor for oral cavity cancer and oropharyngeal cancer: - Quitting smoking - It is not clear whether avoiding certain risk factors will decrease the risk of oral cavity cancer or oropharyngeal cancer. - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent oral cavity cancer and oropharyngeal cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. Oral cavity cancer and oropharyngeal cancer are two different diseases, but they have some risk factors in common. The following are risk factors for oral cavity cancer and oropharyngeal cancer: Tobacco use Using tobacco is the most common cause of oral cavity cancer and oropharyngeal cancer. The risk of these cancers is about 5 to 10 times higher for current smokers than for people who have never smoked. The use of all types of tobacco, including cigarettes, pipes, cigars, and smokeless tobacco (snuff and chewing tobacco) can cause cancer of the oral cavity and oropharynx. For cigarette smokers, the risk of oral cavity cancer and oropharyngeal cancer increases with the number of cigarettes smoked per day. Alcohol use Using alcohol is also an important risk factor for oral cavity cancer and oropharyngeal cancer. The risk of oral cavity cancer and oropharyngeal cancer increases with the number of alcoholic drinks consumed per day. The risk of oral cavity cancer and oropharyngeal cancer is about twice as high in people who have 3 to 4 alcoholic drinks per day and 5 times higher in people who have 5 or more alcoholic drinks per day compared with those who don't drink alcohol. Tobacco and alcohol use The risk of oral cavity cancer and oropharyngeal cancer is 2 to 3 times higher in people who use both tobacco and alcohol than it is in people who use only tobacco or only alcohol. The risk of oral cavity cancer and oropharyngeal cancer is about 35 times higher in people who smoke 2 or more packs of cigarettes per day and have more than 4 alcoholic drinks per day than it is in people who have never smoked cigarettes or consumed alcohol. Betel quid or gutka chewing Chewing betel quid or gutka (betel quid mixed with tobacco) has been shown to increase the risk of oral cavity cancer and oropharyngeal cancer. Betel quid contains areca nut, which is a cancer-causing substance. The risk of oral cavity cancer and oropharyngeal cancer increases with how long and how often betel quid or gutka are chewed. The risk for oral cavity cancer and oropharyngeal cancer is higher when chewing gutka than when chewing betel quid alone. Betel quid and gutka chewing is common in many countries in South Asia and Southeast Asia, including China and India. Personal history of head and neck cancer A personal history of head and neck cancer increases the risk of oral cavity cancer and oropharyngeal cancer. The following is a risk factor for oropharyngeal cancer: HPV infection Being infected with certain types of HPV, especially HPV type 16, increases the risk of oropharyngeal cancer. HPV infection is spread mainly through sexual contact. The risk of oropharyngeal cancer is about 15 times higher in people who have oral HPV 16 infection compared with people who do not have oral HPV 16 infection. The following is a protective factor for oral cavity cancer and oropharyngeal cancer: Quitting smoking Studies have shown that when people stop smoking cigarettes, their risk of oral cavity cancer and oropharyngeal cancer decreases by one half (50%) within 5 years. Within 20 years of quitting, their risk of oral cavity cancer and oropharyngeal cancer is the same as for a person who never smoked cigarettes. It is not clear whether avoiding certain risk factors will decrease the risk of oral cavity cancer or oropharyngeal cancer. It has not been proven that stopping alcohol use will decrease the risk of oral cavity cancer or oropharyngeal cancer. Getting an HPV vaccination greatly lessens the risk of oral HPV infection. It is not yet known whether getting an HPV vaccination at any age will decrease the risk of oropharyngeal cancer from HPV infection. Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of certain types of cancer. Some cancer prevention trials are done with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are done with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent oral cavity cancer and oropharyngeal cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for oral cavity cancer prevention trials and oropharyngeal cancer prevention trials that are now accepting patients.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to prevent Oral Cavity and Oropharyngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following are risk factors for oral cavity cancer and oropharyngeal cancer: - Tobacco use - Alcohol use - Tobacco and alcohol use - Betel quid or gutka chewing - Personal history of head and neck cancer - The following is a risk factor for oropharyngeal cancer: - HPV infection - The following is a protective factor for oral cavity cancer and oropharyngeal cancer: - Quitting smoking - It is not clear whether avoiding certain risk factors will decrease the risk of oral cavity cancer or oropharyngeal cancer. - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent oral cavity cancer and oropharyngeal cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. Oral cavity cancer and oropharyngeal cancer are two different diseases, but they have some risk factors in common. The following are risk factors for oral cavity cancer and oropharyngeal cancer: Tobacco use Using tobacco is the most common cause of oral cavity cancer and oropharyngeal cancer. The risk of these cancers is about 5 to 10 times higher for current smokers than for people who have never smoked. The use of all types of tobacco, including cigarettes, pipes, cigars, and smokeless tobacco (snuff and chewing tobacco) can cause cancer of the oral cavity and oropharynx. For cigarette smokers, the risk of oral cavity cancer and oropharyngeal cancer increases with the number of cigarettes smoked per day. Alcohol use Using alcohol is also an important risk factor for oral cavity cancer and oropharyngeal cancer. The risk of oral cavity cancer and oropharyngeal cancer increases with the number of alcoholic drinks consumed per day. The risk of oral cavity cancer and oropharyngeal cancer is about twice as high in people who have 3 to 4 alcoholic drinks per day and 5 times higher in people who have 5 or more alcoholic drinks per day compared with those who don't drink alcohol. Tobacco and alcohol use The risk of oral cavity cancer and oropharyngeal cancer is 2 to 3 times higher in people who use both tobacco and alcohol than it is in people who use only tobacco or only alcohol. The risk of oral cavity cancer and oropharyngeal cancer is about 35 times higher in people who smoke 2 or more packs of cigarettes per day and have more than 4 alcoholic drinks per day than it is in people who have never smoked cigarettes or consumed alcohol. Betel quid or gutka chewing Chewing betel quid or gutka (betel quid mixed with tobacco) has been shown to increase the risk of oral cavity cancer and oropharyngeal cancer. Betel quid contains areca nut, which is a cancer-causing substance. The risk of oral cavity cancer and oropharyngeal cancer increases with how long and how often betel quid or gutka are chewed. The risk for oral cavity cancer and oropharyngeal cancer is higher when chewing gutka than when chewing betel quid alone. Betel quid and gutka chewing is common in many countries in South Asia and Southeast Asia, including China and India. Personal history of head and neck cancer A personal history of head and neck cancer increases the risk of oral cavity cancer and oropharyngeal cancer. The following is a risk factor for oropharyngeal cancer: HPV infection Being infected with certain types of HPV, especially HPV type 16, increases the risk of oropharyngeal cancer. HPV infection is spread mainly through sexual contact. The risk of oropharyngeal cancer is about 15 times higher in people who have oral HPV 16 infection compared with people who do not have oral HPV 16 infection. The following is a protective factor for oral cavity cancer and oropharyngeal cancer: Quitting smoking Studies have shown that when people stop smoking cigarettes, their risk of oral cavity cancer and oropharyngeal cancer decreases by one half (50%) within 5 years. Within 20 years of quitting, their risk of oral cavity cancer and oropharyngeal cancer is the same as for a person who never smoked cigarettes. It is not clear whether avoiding certain risk factors will decrease the risk of oral cavity cancer or oropharyngeal cancer. It has not been proven that stopping alcohol use will decrease the risk of oral cavity cancer or oropharyngeal cancer. Getting an HPV vaccination greatly lessens the risk of oral HPV infection. It is not yet known whether getting an HPV vaccination at any age will decrease the risk of oropharyngeal cancer from HPV infection. Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of certain types of cancer. Some cancer prevention trials are done with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are done with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent oral cavity cancer and oropharyngeal cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for oral cavity cancer prevention trials and oropharyngeal cancer prevention trials that are now accepting patients.<|eot_id|>
Who is at risk for Oral Cavity and Oropharyngeal Cancer? ?
Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following are risk factors for oral cavity cancer and oropharyngeal cancer: - Tobacco use - Alcohol use - Tobacco and alcohol use - Betel quid or gutka chewing - Personal history of head and neck cancer - The following is a risk factor for oropharyngeal cancer: - HPV infection - The following is a protective factor for oral cavity cancer and oropharyngeal cancer: - Quitting smoking - It is not clear whether avoiding certain risk factors will decrease the risk of oral cavity cancer or oropharyngeal cancer. - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent oral cavity cancer and oropharyngeal cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. Oral cavity cancer and oropharyngeal cancer are two different diseases, but they have some risk factors in common. The following are risk factors for oral cavity cancer and oropharyngeal cancer: Tobacco use Using tobacco is the most common cause of oral cavity cancer and oropharyngeal cancer. The risk of these cancers is about 5 to 10 times higher for current smokers than for people who have never smoked. The use of all types of tobacco, including cigarettes, pipes, cigars, and smokeless tobacco (snuff and chewing tobacco) can cause cancer of the oral cavity and oropharynx. For cigarette smokers, the risk of oral cavity cancer and oropharyngeal cancer increases with the number of cigarettes smoked per day. Alcohol use Using alcohol is also an important risk factor for oral cavity cancer and oropharyngeal cancer. The risk of oral cavity cancer and oropharyngeal cancer increases with the number of alcoholic drinks consumed per day. The risk of oral cavity cancer and oropharyngeal cancer is about twice as high in people who have 3 to 4 alcoholic drinks per day and 5 times higher in people who have 5 or more alcoholic drinks per day compared with those who don't drink alcohol. Tobacco and alcohol use The risk of oral cavity cancer and oropharyngeal cancer is 2 to 3 times higher in people who use both tobacco and alcohol than it is in people who use only tobacco or only alcohol. The risk of oral cavity cancer and oropharyngeal cancer is about 35 times higher in people who smoke 2 or more packs of cigarettes per day and have more than 4 alcoholic drinks per day than it is in people who have never smoked cigarettes or consumed alcohol. Betel quid or gutka chewing Chewing betel quid or gutka (betel quid mixed with tobacco) has been shown to increase the risk of oral cavity cancer and oropharyngeal cancer. Betel quid contains areca nut, which is a cancer-causing substance. The risk of oral cavity cancer and oropharyngeal cancer increases with how long and how often betel quid or gutka are chewed. The risk for oral cavity cancer and oropharyngeal cancer is higher when chewing gutka than when chewing betel quid alone. Betel quid and gutka chewing is common in many countries in South Asia and Southeast Asia, including China and India. Personal history of head and neck cancer A personal history of head and neck cancer increases the risk of oral cavity cancer and oropharyngeal cancer. The following is a risk factor for oropharyngeal cancer: HPV infection Being infected with certain types of HPV, especially HPV type 16, increases the risk of oropharyngeal cancer. HPV infection is spread mainly through sexual contact. The risk of oropharyngeal cancer is about 15 times higher in people who have oral HPV 16 infection compared with people who do not have oral HPV 16 infection. It is not clear whether avoiding certain risk factors will decrease the risk of oral cavity cancer or oropharyngeal cancer. It has not been proven that stopping alcohol use will decrease the risk of oral cavity cancer or oropharyngeal cancer. Getting an HPV vaccination greatly lessens the risk of oral HPV infection. It is not yet known whether getting an HPV vaccination at any age will decrease the risk of oropharyngeal cancer from HPV infection.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Oral Cavity and Oropharyngeal Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following are risk factors for oral cavity cancer and oropharyngeal cancer: - Tobacco use - Alcohol use - Tobacco and alcohol use - Betel quid or gutka chewing - Personal history of head and neck cancer - The following is a risk factor for oropharyngeal cancer: - HPV infection - The following is a protective factor for oral cavity cancer and oropharyngeal cancer: - Quitting smoking - It is not clear whether avoiding certain risk factors will decrease the risk of oral cavity cancer or oropharyngeal cancer. - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent oral cavity cancer and oropharyngeal cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. Oral cavity cancer and oropharyngeal cancer are two different diseases, but they have some risk factors in common. The following are risk factors for oral cavity cancer and oropharyngeal cancer: Tobacco use Using tobacco is the most common cause of oral cavity cancer and oropharyngeal cancer. The risk of these cancers is about 5 to 10 times higher for current smokers than for people who have never smoked. The use of all types of tobacco, including cigarettes, pipes, cigars, and smokeless tobacco (snuff and chewing tobacco) can cause cancer of the oral cavity and oropharynx. For cigarette smokers, the risk of oral cavity cancer and oropharyngeal cancer increases with the number of cigarettes smoked per day. Alcohol use Using alcohol is also an important risk factor for oral cavity cancer and oropharyngeal cancer. The risk of oral cavity cancer and oropharyngeal cancer increases with the number of alcoholic drinks consumed per day. The risk of oral cavity cancer and oropharyngeal cancer is about twice as high in people who have 3 to 4 alcoholic drinks per day and 5 times higher in people who have 5 or more alcoholic drinks per day compared with those who don't drink alcohol. Tobacco and alcohol use The risk of oral cavity cancer and oropharyngeal cancer is 2 to 3 times higher in people who use both tobacco and alcohol than it is in people who use only tobacco or only alcohol. The risk of oral cavity cancer and oropharyngeal cancer is about 35 times higher in people who smoke 2 or more packs of cigarettes per day and have more than 4 alcoholic drinks per day than it is in people who have never smoked cigarettes or consumed alcohol. Betel quid or gutka chewing Chewing betel quid or gutka (betel quid mixed with tobacco) has been shown to increase the risk of oral cavity cancer and oropharyngeal cancer. Betel quid contains areca nut, which is a cancer-causing substance. The risk of oral cavity cancer and oropharyngeal cancer increases with how long and how often betel quid or gutka are chewed. The risk for oral cavity cancer and oropharyngeal cancer is higher when chewing gutka than when chewing betel quid alone. Betel quid and gutka chewing is common in many countries in South Asia and Southeast Asia, including China and India. Personal history of head and neck cancer A personal history of head and neck cancer increases the risk of oral cavity cancer and oropharyngeal cancer. The following is a risk factor for oropharyngeal cancer: HPV infection Being infected with certain types of HPV, especially HPV type 16, increases the risk of oropharyngeal cancer. HPV infection is spread mainly through sexual contact. The risk of oropharyngeal cancer is about 15 times higher in people who have oral HPV 16 infection compared with people who do not have oral HPV 16 infection. It is not clear whether avoiding certain risk factors will decrease the risk of oral cavity cancer or oropharyngeal cancer. It has not been proven that stopping alcohol use will decrease the risk of oral cavity cancer or oropharyngeal cancer. Getting an HPV vaccination greatly lessens the risk of oral HPV infection. It is not yet known whether getting an HPV vaccination at any age will decrease the risk of oropharyngeal cancer from HPV infection.<|eot_id|>
what research (or clinical trials) is being done for Oral Cavity and Oropharyngeal Cancer ?
Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of certain types of cancer. Some cancer prevention trials are done with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are done with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent oral cavity cancer and oropharyngeal cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for oral cavity cancer prevention trials and oropharyngeal cancer prevention trials that are now accepting patients.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Oral Cavity and Oropharyngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of certain types of cancer. Some cancer prevention trials are done with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are done with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent oral cavity cancer and oropharyngeal cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for oral cavity cancer prevention trials and oropharyngeal cancer prevention trials that are now accepting patients.<|eot_id|>
What is (are) Endometrial Cancer ?
Key Points - Endometrial cancer is a disease in which malignant (cancer) cells form in the tissues of the endometrium. - Endometrial cancer is the most common invasive cancer of the female reproductive system. Endometrial cancer is a disease in which malignant (cancer) cells form in the tissues of the endometrium. The endometrium is the lining of the uterus. The uterus is part of the female reproductive system. It is a hollow, pear-shaped, muscular organ in the pelvis, where a fetus grows. Cancer of the endometrium is different from cancer of the muscle of the uterus, which is called sarcoma of the uterus. See the PDQ summary on Uterine Sarcoma Treatment for more information. See the following PDQ summaries for more information about endometrial cancer: - Endometrial Cancer Screening - Endometrial Cancer Treatment Endometrial cancer is the most common invasive cancer of the female reproductive system. Endometrial cancer is diagnosed most often in postmenopausal women at an average age of 60 years . From 2004 to 2013, the number of new cases of endometrial cancer increased slightly in white and African American women. From 2005 to 2014, the number of deaths from endometrial cancer also increased slightly in white and African American women. Compared with white women, rates of endometrial cancer are lower in Japanese Americans and in Latinas. The rates of endometrial cancer in white women are about the same as in African Americans or in native Hawaiians. The number of deaths from endometrial cancer is higher in African American women compared with women of other races.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Endometrial Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Endometrial cancer is a disease in which malignant (cancer) cells form in the tissues of the endometrium. - Endometrial cancer is the most common invasive cancer of the female reproductive system. Endometrial cancer is a disease in which malignant (cancer) cells form in the tissues of the endometrium. The endometrium is the lining of the uterus. The uterus is part of the female reproductive system. It is a hollow, pear-shaped, muscular organ in the pelvis, where a fetus grows. Cancer of the endometrium is different from cancer of the muscle of the uterus, which is called sarcoma of the uterus. See the PDQ summary on Uterine Sarcoma Treatment for more information. See the following PDQ summaries for more information about endometrial cancer: - Endometrial Cancer Screening - Endometrial Cancer Treatment Endometrial cancer is the most common invasive cancer of the female reproductive system. Endometrial cancer is diagnosed most often in postmenopausal women at an average age of 60 years . From 2004 to 2013, the number of new cases of endometrial cancer increased slightly in white and African American women. From 2005 to 2014, the number of deaths from endometrial cancer also increased slightly in white and African American women. Compared with white women, rates of endometrial cancer are lower in Japanese Americans and in Latinas. The rates of endometrial cancer in white women are about the same as in African Americans or in native Hawaiians. The number of deaths from endometrial cancer is higher in African American women compared with women of other races.<|eot_id|>
How to prevent Endometrial Cancer ?
Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following risk factors increase the risk of endometrial cancer: - Endometrial hyperplasia - Estrogen - Tamoxifen - Obesity, weight gain, metabolic syndrome, and diabetes - Genetic factors - The following protective factors decrease the risk of endometrial cancer: - Pregnancy and breast-feeding - Combination oral contraceptives - Physical activity - Cigarette smoking - It is not known if the following factors affect the risk of endometrial cancer: - Weight loss - Fruits, vegetables, and vitamins - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent endometrial cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. The following risk factors increase the risk of endometrial cancer: Endometrial hyperplasia Endometrial hyperplasia is an abnormal thickening of the endometrium (lining of the uterus). It is not cancer, but in some cases, it may lead to endometrial cancer. Estrogen Estrogen is a hormone made by the body. It helps the body develop and maintain female sex characteristics. Estrogen can affect the growth of some cancers, including endometrial cancer. A woman's risk of developing endometrial cancer is increased by being exposed to estrogen in the following ways: - Estrogen-only hormone replacement therapy: Estrogen may be given to replace the estrogen no longer produced by the ovaries in postmenopausal women or women whose ovaries have been removed. This is called hormone replacement therapy (HRT), or hormone therapy (HT). The use of HRT that contains only estrogen increases the risk of endometrial cancer and endometrial hyperplasia. For this reason, estrogen therapy alone is usually prescribed only for women who do not have a uterus. HRT that contains only estrogen also increases the risk of stroke and blood clots. When estrogen is combined with progestin (another hormone), it is called combination estrogen-progestin replacement therapy. For postmenopausal women, taking estrogen in combination with progestin does not increase the risk of endometrial cancer, but it does increase the risk of breast cancer. (See the Breast Cancer Prevention summary for more information.) - Early menstruation: Beginning to have menstrual periods at an early age increases the number of years the body is exposed to estrogen and increases a woman's risk of endometrial cancer. - Late menopause: Women who reach menopause at an older age are exposed to estrogen for a longer time and have an increased risk of endometrial cancer. - Never being pregnant: Because estrogen levels are lower during pregnancy, women who have never been pregnant are exposed to estrogen for a longer time than women who have been pregnant. This increases the risk of endometrial cancer. Tamoxifen Tamoxifen is one of a group of drugs called selective estrogen receptor modulators, or SERMs. Tamoxifen acts like estrogen on some tissues in the body, such as the uterus, but blocks the effects of estrogen on other tissues, such as the breast. Tamoxifen is used to prevent breast cancer in women who are at high risk for the disease. However, using tamoxifen for more than 2 years increases the risk of endometrial cancer. This risk is greater in postmenopausal women. Raloxifene is a SERM that is used to prevent bone weakness in postmenopausal women. However, it does not have estrogen-like effects on the uterus and has not been shown to increase the risk of endometrial cancer. Obesity, weight gain, metabolic syndrome, and diabetes Obesity, gaining weight as an adult, or having metabolic syndrome increases the risk of endometrial cancer. Obesity is related to other risk factors such as high estrogen levels, having extra fat around the waist, polycystic ovary syndrome, and lack of physical activity. Having metabolic syndrome increases the risk of endometrial cancer. Metabolic syndrome is a condition that includes extra fat around the waist, high blood sugar, high blood pressure, and high levels of triglycerides (a type of fat) in the blood. Genetic factors Hereditary nonpolyposis colon cancer (HNPCC) syndrome (also known as Lynch Syndrome) is an inherited disorder caused by changes in certain genes. Women who have HNPCC syndrome have a much higher risk of developing endometrial cancer than women who do not have HNPCC syndrome. Polycystic ovary syndrome (a disorder of the hormones made by the ovaries), and Cowden syndrome are inherited conditions that are linked to an increased risk of endometrial cancer. Women with a family history of endometrial cancer in a first-degree relative (mother, sister, or daughter) are also at increased risk of endometrial cancer. The following protective factors decrease the risk of endometrial cancer: Pregnancy and breast-feeding Estrogen levels are lower during pregnancy and when breast-feeding. The risk of endometrial cancer is lower in women who have had children. Breastfeeding for more than 18 months also decreases the risk of endometrial cancer. Combination oral contraceptives Taking contraceptives that combine estrogen and progestin (combination oral contraceptives) decreases the risk of endometrial cancer. The protective effect of combination oral contraceptives increases with the length of time they are used, and can last for many years after oral contraceptive use has been stopped. While taking oral contraceptives, women have a higher risk of blood clots, stroke, and heart attack, especially women who smoke and are older than 35 years. Physical activity Physical activity at home (exercise) or on the job may lower the risk of endometrial cancer. Cigarette smoking Smoking at least 20 cigarettes a day may lower the risk of endometrial cancer. The risk of endometrial cancer is even lower in postmenopausal women who smoke. However, there are many proven harms of smoking. Cigarette smokers live about 10 years less than nonsmokers. Cigarette smokers also have an increased risk of the following: - Heart disease. - Head and neck cancers. - Lung cancer. - Bladder cancer. - Pancreatic cancer. It is not known if the following factors affect the risk of endometrial cancer: Weight loss It is not known if losing weight decreases the risk of endometrial cancer. Fruits, vegetables, and vitamins A diet that includes, fruits, vegetables, phytoestrogen, soy, and vitamin D has not been found to affect the risk of endometrial cancer. Taking multivitamins has little or no effect on the risk of common cancers, including endometrial cancer. Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent endometrial cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for endometrial cancer prevention trials that are now accepting patients.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to prevent Endometrial Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following risk factors increase the risk of endometrial cancer: - Endometrial hyperplasia - Estrogen - Tamoxifen - Obesity, weight gain, metabolic syndrome, and diabetes - Genetic factors - The following protective factors decrease the risk of endometrial cancer: - Pregnancy and breast-feeding - Combination oral contraceptives - Physical activity - Cigarette smoking - It is not known if the following factors affect the risk of endometrial cancer: - Weight loss - Fruits, vegetables, and vitamins - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent endometrial cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. The following risk factors increase the risk of endometrial cancer: Endometrial hyperplasia Endometrial hyperplasia is an abnormal thickening of the endometrium (lining of the uterus). It is not cancer, but in some cases, it may lead to endometrial cancer. Estrogen Estrogen is a hormone made by the body. It helps the body develop and maintain female sex characteristics. Estrogen can affect the growth of some cancers, including endometrial cancer. A woman's risk of developing endometrial cancer is increased by being exposed to estrogen in the following ways: - Estrogen-only hormone replacement therapy: Estrogen may be given to replace the estrogen no longer produced by the ovaries in postmenopausal women or women whose ovaries have been removed. This is called hormone replacement therapy (HRT), or hormone therapy (HT). The use of HRT that contains only estrogen increases the risk of endometrial cancer and endometrial hyperplasia. For this reason, estrogen therapy alone is usually prescribed only for women who do not have a uterus. HRT that contains only estrogen also increases the risk of stroke and blood clots. When estrogen is combined with progestin (another hormone), it is called combination estrogen-progestin replacement therapy. For postmenopausal women, taking estrogen in combination with progestin does not increase the risk of endometrial cancer, but it does increase the risk of breast cancer. (See the Breast Cancer Prevention summary for more information.) - Early menstruation: Beginning to have menstrual periods at an early age increases the number of years the body is exposed to estrogen and increases a woman's risk of endometrial cancer. - Late menopause: Women who reach menopause at an older age are exposed to estrogen for a longer time and have an increased risk of endometrial cancer. - Never being pregnant: Because estrogen levels are lower during pregnancy, women who have never been pregnant are exposed to estrogen for a longer time than women who have been pregnant. This increases the risk of endometrial cancer. Tamoxifen Tamoxifen is one of a group of drugs called selective estrogen receptor modulators, or SERMs. Tamoxifen acts like estrogen on some tissues in the body, such as the uterus, but blocks the effects of estrogen on other tissues, such as the breast. Tamoxifen is used to prevent breast cancer in women who are at high risk for the disease. However, using tamoxifen for more than 2 years increases the risk of endometrial cancer. This risk is greater in postmenopausal women. Raloxifene is a SERM that is used to prevent bone weakness in postmenopausal women. However, it does not have estrogen-like effects on the uterus and has not been shown to increase the risk of endometrial cancer. Obesity, weight gain, metabolic syndrome, and diabetes Obesity, gaining weight as an adult, or having metabolic syndrome increases the risk of endometrial cancer. Obesity is related to other risk factors such as high estrogen levels, having extra fat around the waist, polycystic ovary syndrome, and lack of physical activity. Having metabolic syndrome increases the risk of endometrial cancer. Metabolic syndrome is a condition that includes extra fat around the waist, high blood sugar, high blood pressure, and high levels of triglycerides (a type of fat) in the blood. Genetic factors Hereditary nonpolyposis colon cancer (HNPCC) syndrome (also known as Lynch Syndrome) is an inherited disorder caused by changes in certain genes. Women who have HNPCC syndrome have a much higher risk of developing endometrial cancer than women who do not have HNPCC syndrome. Polycystic ovary syndrome (a disorder of the hormones made by the ovaries), and Cowden syndrome are inherited conditions that are linked to an increased risk of endometrial cancer. Women with a family history of endometrial cancer in a first-degree relative (mother, sister, or daughter) are also at increased risk of endometrial cancer. The following protective factors decrease the risk of endometrial cancer: Pregnancy and breast-feeding Estrogen levels are lower during pregnancy and when breast-feeding. The risk of endometrial cancer is lower in women who have had children. Breastfeeding for more than 18 months also decreases the risk of endometrial cancer. Combination oral contraceptives Taking contraceptives that combine estrogen and progestin (combination oral contraceptives) decreases the risk of endometrial cancer. The protective effect of combination oral contraceptives increases with the length of time they are used, and can last for many years after oral contraceptive use has been stopped. While taking oral contraceptives, women have a higher risk of blood clots, stroke, and heart attack, especially women who smoke and are older than 35 years. Physical activity Physical activity at home (exercise) or on the job may lower the risk of endometrial cancer. Cigarette smoking Smoking at least 20 cigarettes a day may lower the risk of endometrial cancer. The risk of endometrial cancer is even lower in postmenopausal women who smoke. However, there are many proven harms of smoking. Cigarette smokers live about 10 years less than nonsmokers. Cigarette smokers also have an increased risk of the following: - Heart disease. - Head and neck cancers. - Lung cancer. - Bladder cancer. - Pancreatic cancer. It is not known if the following factors affect the risk of endometrial cancer: Weight loss It is not known if losing weight decreases the risk of endometrial cancer. Fruits, vegetables, and vitamins A diet that includes, fruits, vegetables, phytoestrogen, soy, and vitamin D has not been found to affect the risk of endometrial cancer. Taking multivitamins has little or no effect on the risk of common cancers, including endometrial cancer. Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent endometrial cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for endometrial cancer prevention trials that are now accepting patients.<|eot_id|>
Who is at risk for Endometrial Cancer? ?
Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following risk factors increase the risk of endometrial cancer: - Endometrial hyperplasia - Estrogen - Tamoxifen - Obesity, weight gain, metabolic syndrome, and diabetes - Genetic factors - The following protective factors decrease the risk of endometrial cancer: - Pregnancy and breast-feeding - Combination oral contraceptives - Physical activity - Cigarette smoking - It is not known if the following factors affect the risk of endometrial cancer: - Weight loss - Fruits, vegetables, and vitamins - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent endometrial cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. The following risk factors increase the risk of endometrial cancer: Endometrial hyperplasia Endometrial hyperplasia is an abnormal thickening of the endometrium (lining of the uterus). It is not cancer, but in some cases, it may lead to endometrial cancer. Estrogen Estrogen is a hormone made by the body. It helps the body develop and maintain female sex characteristics. Estrogen can affect the growth of some cancers, including endometrial cancer. A woman's risk of developing endometrial cancer is increased by being exposed to estrogen in the following ways: - Estrogen-only hormone replacement therapy: Estrogen may be given to replace the estrogen no longer produced by the ovaries in postmenopausal women or women whose ovaries have been removed. This is called hormone replacement therapy (HRT), or hormone therapy (HT). The use of HRT that contains only estrogen increases the risk of endometrial cancer and endometrial hyperplasia. For this reason, estrogen therapy alone is usually prescribed only for women who do not have a uterus. HRT that contains only estrogen also increases the risk of stroke and blood clots. When estrogen is combined with progestin (another hormone), it is called combination estrogen-progestin replacement therapy. For postmenopausal women, taking estrogen in combination with progestin does not increase the risk of endometrial cancer, but it does increase the risk of breast cancer. (See the Breast Cancer Prevention summary for more information.) - Early menstruation: Beginning to have menstrual periods at an early age increases the number of years the body is exposed to estrogen and increases a woman's risk of endometrial cancer. - Late menopause: Women who reach menopause at an older age are exposed to estrogen for a longer time and have an increased risk of endometrial cancer. - Never being pregnant: Because estrogen levels are lower during pregnancy, women who have never been pregnant are exposed to estrogen for a longer time than women who have been pregnant. This increases the risk of endometrial cancer. Tamoxifen Tamoxifen is one of a group of drugs called selective estrogen receptor modulators, or SERMs. Tamoxifen acts like estrogen on some tissues in the body, such as the uterus, but blocks the effects of estrogen on other tissues, such as the breast. Tamoxifen is used to prevent breast cancer in women who are at high risk for the disease. However, using tamoxifen for more than 2 years increases the risk of endometrial cancer. This risk is greater in postmenopausal women. Raloxifene is a SERM that is used to prevent bone weakness in postmenopausal women. However, it does not have estrogen-like effects on the uterus and has not been shown to increase the risk of endometrial cancer. Obesity, weight gain, metabolic syndrome, and diabetes Obesity, gaining weight as an adult, or having metabolic syndrome increases the risk of endometrial cancer. Obesity is related to other risk factors such as high estrogen levels, having extra fat around the waist, polycystic ovary syndrome, and lack of physical activity. Having metabolic syndrome increases the risk of endometrial cancer. Metabolic syndrome is a condition that includes extra fat around the waist, high blood sugar, high blood pressure, and high levels of triglycerides (a type of fat) in the blood. Genetic factors Hereditary nonpolyposis colon cancer (HNPCC) syndrome (also known as Lynch Syndrome) is an inherited disorder caused by changes in certain genes. Women who have HNPCC syndrome have a much higher risk of developing endometrial cancer than women who do not have HNPCC syndrome. Polycystic ovary syndrome (a disorder of the hormones made by the ovaries), and Cowden syndrome are inherited conditions that are linked to an increased risk of endometrial cancer. Women with a family history of endometrial cancer in a first-degree relative (mother, sister, or daughter) are also at increased risk of endometrial cancer. It is not known if the following factors affect the risk of endometrial cancer: Weight loss It is not known if losing weight decreases the risk of endometrial cancer. Fruits, vegetables, and vitamins A diet that includes, fruits, vegetables, phytoestrogen, soy, and vitamin D has not been found to affect the risk of endometrial cancer. Taking multivitamins has little or no effect on the risk of common cancers, including endometrial cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Endometrial Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following risk factors increase the risk of endometrial cancer: - Endometrial hyperplasia - Estrogen - Tamoxifen - Obesity, weight gain, metabolic syndrome, and diabetes - Genetic factors - The following protective factors decrease the risk of endometrial cancer: - Pregnancy and breast-feeding - Combination oral contraceptives - Physical activity - Cigarette smoking - It is not known if the following factors affect the risk of endometrial cancer: - Weight loss - Fruits, vegetables, and vitamins - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent endometrial cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. The following risk factors increase the risk of endometrial cancer: Endometrial hyperplasia Endometrial hyperplasia is an abnormal thickening of the endometrium (lining of the uterus). It is not cancer, but in some cases, it may lead to endometrial cancer. Estrogen Estrogen is a hormone made by the body. It helps the body develop and maintain female sex characteristics. Estrogen can affect the growth of some cancers, including endometrial cancer. A woman's risk of developing endometrial cancer is increased by being exposed to estrogen in the following ways: - Estrogen-only hormone replacement therapy: Estrogen may be given to replace the estrogen no longer produced by the ovaries in postmenopausal women or women whose ovaries have been removed. This is called hormone replacement therapy (HRT), or hormone therapy (HT). The use of HRT that contains only estrogen increases the risk of endometrial cancer and endometrial hyperplasia. For this reason, estrogen therapy alone is usually prescribed only for women who do not have a uterus. HRT that contains only estrogen also increases the risk of stroke and blood clots. When estrogen is combined with progestin (another hormone), it is called combination estrogen-progestin replacement therapy. For postmenopausal women, taking estrogen in combination with progestin does not increase the risk of endometrial cancer, but it does increase the risk of breast cancer. (See the Breast Cancer Prevention summary for more information.) - Early menstruation: Beginning to have menstrual periods at an early age increases the number of years the body is exposed to estrogen and increases a woman's risk of endometrial cancer. - Late menopause: Women who reach menopause at an older age are exposed to estrogen for a longer time and have an increased risk of endometrial cancer. - Never being pregnant: Because estrogen levels are lower during pregnancy, women who have never been pregnant are exposed to estrogen for a longer time than women who have been pregnant. This increases the risk of endometrial cancer. Tamoxifen Tamoxifen is one of a group of drugs called selective estrogen receptor modulators, or SERMs. Tamoxifen acts like estrogen on some tissues in the body, such as the uterus, but blocks the effects of estrogen on other tissues, such as the breast. Tamoxifen is used to prevent breast cancer in women who are at high risk for the disease. However, using tamoxifen for more than 2 years increases the risk of endometrial cancer. This risk is greater in postmenopausal women. Raloxifene is a SERM that is used to prevent bone weakness in postmenopausal women. However, it does not have estrogen-like effects on the uterus and has not been shown to increase the risk of endometrial cancer. Obesity, weight gain, metabolic syndrome, and diabetes Obesity, gaining weight as an adult, or having metabolic syndrome increases the risk of endometrial cancer. Obesity is related to other risk factors such as high estrogen levels, having extra fat around the waist, polycystic ovary syndrome, and lack of physical activity. Having metabolic syndrome increases the risk of endometrial cancer. Metabolic syndrome is a condition that includes extra fat around the waist, high blood sugar, high blood pressure, and high levels of triglycerides (a type of fat) in the blood. Genetic factors Hereditary nonpolyposis colon cancer (HNPCC) syndrome (also known as Lynch Syndrome) is an inherited disorder caused by changes in certain genes. Women who have HNPCC syndrome have a much higher risk of developing endometrial cancer than women who do not have HNPCC syndrome. Polycystic ovary syndrome (a disorder of the hormones made by the ovaries), and Cowden syndrome are inherited conditions that are linked to an increased risk of endometrial cancer. Women with a family history of endometrial cancer in a first-degree relative (mother, sister, or daughter) are also at increased risk of endometrial cancer. It is not known if the following factors affect the risk of endometrial cancer: Weight loss It is not known if losing weight decreases the risk of endometrial cancer. Fruits, vegetables, and vitamins A diet that includes, fruits, vegetables, phytoestrogen, soy, and vitamin D has not been found to affect the risk of endometrial cancer. Taking multivitamins has little or no effect on the risk of common cancers, including endometrial cancer.<|eot_id|>
what research (or clinical trials) is being done for Endometrial Cancer ?
Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent endometrial cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for endometrial cancer prevention trials that are now accepting patients.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Endometrial Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent endometrial cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for endometrial cancer prevention trials that are now accepting patients.<|eot_id|>
What is (are) AIDS-Related Lymphoma ?
Key Points - AIDS-related lymphoma is a disease in which malignant (cancer) cells form in the lymph system of patients who have acquired immunodeficiency syndrome (AIDS). - There are many different types of lymphoma. - Signs of AIDS-related lymphoma include weight loss, fever, and night sweats. - Tests that examine the lymph system and other parts of the body are used to help detect (find) and diagnose AIDS-related lymphoma. - Certain factors affect prognosis (chance of recovery) and treatment options. AIDS-related lymphoma is a disease in which malignant (cancer) cells form in the lymph system of patients who have acquired immunodeficiency syndrome (AIDS). AIDS is caused by the human immunodeficiency virus (HIV), which attacks and weakens the body's immune system. The immune system is then unable to fight infection and disease. People with HIV disease have an increased risk of infection and lymphoma or other types of cancer. A person with HIV disease who develops certain types of infections or cancer is then diagnosed with AIDS. Sometimes, people are diagnosed with AIDS and AIDS-related lymphoma at the same time. For information about AIDS and its treatment, please see the AIDSinfo website. AIDS-related lymphoma is a type of cancer that affects the lymph system, which is part of the body's immune system. The immune system protects the body from foreign substances, infection, and diseases. The lymph system is made up of the following: - Lymph: Colorless, watery fluid that carries white blood cells called lymphocytes through the lymph system. Lymphocytes protect the body against infections and the growth of tumors. - Lymph vessels: A network of thin tubes that collect lymph from different parts of the body and return it to the bloodstream. - Lymph nodes: Small, bean-shaped structures that filter lymph and store white blood cells that help fight infection and disease. Lymph nodes are located along the network of lymph vessels found throughout the body. Clusters of lymph nodes are found in the neck, underarm, abdomen, pelvis, and groin. - Spleen: An organ that makes lymphocytes, filters the blood, stores blood cells, and destroys old blood cells. The spleen is on the left side of the abdomen near the stomach. - Thymus: An organ in which lymphocytes grow and multiply. The thymus is in the chest behind the breastbone. - Tonsils: Two small masses of lymph tissue at the back of the throat. The tonsils make lymphocytes. - Bone marrow: The soft, spongy tissue in the center of large bones. Bone marrow makes white blood cells, red blood cells, and platelets. Lymph tissue is also found in other parts of the body such as the brain, stomach, thyroid gland, and skin. Sometimes AIDS-related lymphoma occurs outside the lymph nodes in the bone marrow, liver, meninges (thin membranes that cover the brain) and gastrointestinal tract. Less often, it may occur in the anus, heart, bile duct, gingiva, and muscles. There are many different types of lymphoma. Lymphomas are divided into two general types: - Hodgkin lymphoma. - Non-Hodgkin lymphoma. Both Hodgkin lymphoma and non-Hodgkin lymphoma may occur in patients with AIDS, but non-Hodgkin lymphoma is more common. When a person with AIDS has non-Hodgkin lymphoma, it is called AIDS-related lymphoma. When AIDS-related lymphoma occurs in the central nervous system (CNS), it is called AIDS-related primary CNS lymphoma. Non-Hodgkin lymphomas are grouped by the way their cells look under a microscope. They may be indolent (slow-growing) or aggressive (fast-growing). AIDS-related lymphomas are aggressive. There are two main types of AIDS-related non-Hodgkin lymphoma: - Diffuse large B-cell lymphoma (including B-cell immunoblastic lymphoma). - Burkitt or Burkitt-like lymphoma. For more information about lymphoma or AIDS-related cancers, see the following PDQ summaries: - Adult Non-Hodgkin Lymphoma Treatment - Childhood Non-Hodgkin Lymphoma Treatment - Primary CNS Lymphoma Treatment - Kaposi Sarcoma Treatment
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) AIDS-Related Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - AIDS-related lymphoma is a disease in which malignant (cancer) cells form in the lymph system of patients who have acquired immunodeficiency syndrome (AIDS). - There are many different types of lymphoma. - Signs of AIDS-related lymphoma include weight loss, fever, and night sweats. - Tests that examine the lymph system and other parts of the body are used to help detect (find) and diagnose AIDS-related lymphoma. - Certain factors affect prognosis (chance of recovery) and treatment options. AIDS-related lymphoma is a disease in which malignant (cancer) cells form in the lymph system of patients who have acquired immunodeficiency syndrome (AIDS). AIDS is caused by the human immunodeficiency virus (HIV), which attacks and weakens the body's immune system. The immune system is then unable to fight infection and disease. People with HIV disease have an increased risk of infection and lymphoma or other types of cancer. A person with HIV disease who develops certain types of infections or cancer is then diagnosed with AIDS. Sometimes, people are diagnosed with AIDS and AIDS-related lymphoma at the same time. For information about AIDS and its treatment, please see the AIDSinfo website. AIDS-related lymphoma is a type of cancer that affects the lymph system, which is part of the body's immune system. The immune system protects the body from foreign substances, infection, and diseases. The lymph system is made up of the following: - Lymph: Colorless, watery fluid that carries white blood cells called lymphocytes through the lymph system. Lymphocytes protect the body against infections and the growth of tumors. - Lymph vessels: A network of thin tubes that collect lymph from different parts of the body and return it to the bloodstream. - Lymph nodes: Small, bean-shaped structures that filter lymph and store white blood cells that help fight infection and disease. Lymph nodes are located along the network of lymph vessels found throughout the body. Clusters of lymph nodes are found in the neck, underarm, abdomen, pelvis, and groin. - Spleen: An organ that makes lymphocytes, filters the blood, stores blood cells, and destroys old blood cells. The spleen is on the left side of the abdomen near the stomach. - Thymus: An organ in which lymphocytes grow and multiply. The thymus is in the chest behind the breastbone. - Tonsils: Two small masses of lymph tissue at the back of the throat. The tonsils make lymphocytes. - Bone marrow: The soft, spongy tissue in the center of large bones. Bone marrow makes white blood cells, red blood cells, and platelets. Lymph tissue is also found in other parts of the body such as the brain, stomach, thyroid gland, and skin. Sometimes AIDS-related lymphoma occurs outside the lymph nodes in the bone marrow, liver, meninges (thin membranes that cover the brain) and gastrointestinal tract. Less often, it may occur in the anus, heart, bile duct, gingiva, and muscles. There are many different types of lymphoma. Lymphomas are divided into two general types: - Hodgkin lymphoma. - Non-Hodgkin lymphoma. Both Hodgkin lymphoma and non-Hodgkin lymphoma may occur in patients with AIDS, but non-Hodgkin lymphoma is more common. When a person with AIDS has non-Hodgkin lymphoma, it is called AIDS-related lymphoma. When AIDS-related lymphoma occurs in the central nervous system (CNS), it is called AIDS-related primary CNS lymphoma. Non-Hodgkin lymphomas are grouped by the way their cells look under a microscope. They may be indolent (slow-growing) or aggressive (fast-growing). AIDS-related lymphomas are aggressive. There are two main types of AIDS-related non-Hodgkin lymphoma: - Diffuse large B-cell lymphoma (including B-cell immunoblastic lymphoma). - Burkitt or Burkitt-like lymphoma. For more information about lymphoma or AIDS-related cancers, see the following PDQ summaries: - Adult Non-Hodgkin Lymphoma Treatment - Childhood Non-Hodgkin Lymphoma Treatment - Primary CNS Lymphoma Treatment - Kaposi Sarcoma Treatment<|eot_id|>
What are the symptoms of AIDS-Related Lymphoma ?
Signs of AIDS-related lymphoma include weight loss, fever, and night sweats. These and other signs and symptoms may be caused by AIDS-related lymphoma or by other conditions. Check with your doctor if you have any of the following: - Weight loss or fever for no known reason. - Night sweats. - Painless, swollen lymph nodes in the neck, chest, underarm, or groin. - A feeling of fullness below the ribs.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of AIDS-Related Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs of AIDS-related lymphoma include weight loss, fever, and night sweats. These and other signs and symptoms may be caused by AIDS-related lymphoma or by other conditions. Check with your doctor if you have any of the following: - Weight loss or fever for no known reason. - Night sweats. - Painless, swollen lymph nodes in the neck, chest, underarm, or groin. - A feeling of fullness below the ribs.<|eot_id|>
How to diagnose AIDS-Related Lymphoma ?
Tests that examine the lymph system and other parts of the body are used to help detect (find) and diagnose AIDS-related lymphoma. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells, white blood cells, and platelets. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the sample made up of red blood cells. - HIV test : A test to measure the level of HIV antibodies in a sample of blood. Antibodies are made by the body when it is invaded by a foreign substance. A high level of HIV antibodies may mean the body has been infected with HIV. - Lymph node biopsy : The removal of all or part of a lymph node. A pathologist views the tissue under a microscope to look for cancer cells. One of the following types of biopsies may be done: - Excisional biopsy : The removal of an entire lymph node. - Incisional biopsy : The removal of part of a lymph node. - Core biopsy : The removal of tissue from a lymph node using a wide needle. - Fine-needle aspiration (FNA) biopsy : The removal of tissue from a lymph node using a thin needle. - Bone marrow aspiration and biopsy : The removal of bone marrow and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow and bone under a microscope to look for signs of cancer. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose AIDS-Related Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the lymph system and other parts of the body are used to help detect (find) and diagnose AIDS-related lymphoma. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells, white blood cells, and platelets. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the sample made up of red blood cells. - HIV test : A test to measure the level of HIV antibodies in a sample of blood. Antibodies are made by the body when it is invaded by a foreign substance. A high level of HIV antibodies may mean the body has been infected with HIV. - Lymph node biopsy : The removal of all or part of a lymph node. A pathologist views the tissue under a microscope to look for cancer cells. One of the following types of biopsies may be done: - Excisional biopsy : The removal of an entire lymph node. - Incisional biopsy : The removal of part of a lymph node. - Core biopsy : The removal of tissue from a lymph node using a wide needle. - Fine-needle aspiration (FNA) biopsy : The removal of tissue from a lymph node using a thin needle. - Bone marrow aspiration and biopsy : The removal of bone marrow and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow and bone under a microscope to look for signs of cancer. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body.<|eot_id|>
What is the outlook for AIDS-Related Lymphoma ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer. - The age of the patient. - The number of CD4 lymphocytes (a type of white blood cell) in the blood. - The number of places in the body lymphoma is found outside the lymph system. - Whether the patient has a history of intravenous (IV) drug use. - The patient's ability to carry out regular daily activities.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for AIDS-Related Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer. - The age of the patient. - The number of CD4 lymphocytes (a type of white blood cell) in the blood. - The number of places in the body lymphoma is found outside the lymph system. - Whether the patient has a history of intravenous (IV) drug use. - The patient's ability to carry out regular daily activities.<|eot_id|>
What are the stages of AIDS-Related Lymphoma ?
Key Points - After AIDS-related lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. - There are three ways that cancer spreads in the body. - Stages of AIDS-related lymphoma may include E and S. - The following stages are used for AIDS-related lymphoma: - Stage I - Stage II - Stage III - Stage IV - For treatment, AIDS-related lymphomas are grouped based on where they started in the body, as follows: - Peripheral/systemic lymphoma - Primary CNS lymphoma After AIDS-related lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. The process used to find out if cancer cells have spread within the lymph system or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment, but AIDS-related lymphoma is usually advanced when it is diagnosed. The following tests and procedures may be used in the staging process: - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. The blood sample will be checked for the level of LDH (lactate dehydrogenase). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the lung, lymph nodes, and liver, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. A substance called gadolinium is injected into the patient through a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs that the cancer has spread to the brain and spinal cord. The sample may also be checked for Epstein-Barr virus. This procedure is also called an LP or spinal tap. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Stages of AIDS-related lymphoma may include E and S. AIDS-related lymphoma may be described as follows: - E: "E" stands for extranodal and means the cancer is found in an area or organ other than the lymph nodes or has spread to tissues beyond, but near, the major lymphatic areas. - S: "S" stands for spleen and means the cancer is found in the spleen. The following stages are used for AIDS-related lymphoma: Stage I Stage I AIDS-related lymphoma is divided into stage I and stage IE. - Stage I: Cancer is found in one lymphatic area (lymph node group, tonsils and nearby tissue, thymus, or spleen). - Stage IE: Cancer is found in one organ or area outside the lymph nodes. Stage II Stage II AIDS-related lymphoma is divided into stage II and stage IIE. - Stage II: Cancer is found in two or more lymph node groups either above or below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIE: Cancer is found in one or more lymph node groups either above or below the diaphragm. Cancer is also found outside the lymph nodes in one organ or area on the same side of the diaphragm as the affected lymph nodes. Stage III Stage III AIDS-related lymphoma is divided into stage III, stage IIIE, stage IIIS, and stage IIIE+S. - Stage III: Cancer is found in lymph node groups above and below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIIE: Cancer is found in lymph node groups above and below the diaphragm and outside the lymph nodes in a nearby organ or area. - Stage IIIS: Cancer is found in lymph node groups above and below the diaphragm, and in the spleen. - Stage IIIE+S: Cancer is found in lymph node groups above and below the diaphragm, outside the lymph nodes in a nearby organ or area, and in the spleen. Stage IV In stage IV AIDS-related lymphoma, the cancer: - is found throughout one or more organs that are not part of a lymphatic area (lymph node group, tonsils and nearby tissue, thymus, or spleen) and may be in lymph nodes near those organs; or - is found in one organ that is not part of a lymphatic area and has spread to organs or lymph nodes far away from that organ; or - is found in the liver, bone marrow, cerebrospinal fluid (CSF), or lungs (other than cancer that has spread to the lungs from nearby areas). Patients who are infected with the Epstein-Barr virus or whose AIDS-related lymphoma affects the bone marrow have an increased risk of the cancer spreading to the central nervous system (CNS). For treatment, AIDS-related lymphomas are grouped based on where they started in the body, as follows: Peripheral/systemic lymphoma Lymphoma that starts in the lymph system or elsewhere in the body, other than the brain, is called peripheral/systemic lymphoma. It may spread throughout the body, including to the brain or bone marrow. It is often diagnosed in an advanced stage. Primary CNS lymphoma Primary CNS lymphoma starts in the central nervous system (brain and spinal cord). It is linked to the Epstein-Barr virus. Lymphoma that starts somewhere else in the body and spreads to the central nervous system is not primary CNS lymphoma.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of AIDS-Related Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - After AIDS-related lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. - There are three ways that cancer spreads in the body. - Stages of AIDS-related lymphoma may include E and S. - The following stages are used for AIDS-related lymphoma: - Stage I - Stage II - Stage III - Stage IV - For treatment, AIDS-related lymphomas are grouped based on where they started in the body, as follows: - Peripheral/systemic lymphoma - Primary CNS lymphoma After AIDS-related lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. The process used to find out if cancer cells have spread within the lymph system or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment, but AIDS-related lymphoma is usually advanced when it is diagnosed. The following tests and procedures may be used in the staging process: - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. The blood sample will be checked for the level of LDH (lactate dehydrogenase). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the lung, lymph nodes, and liver, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. A substance called gadolinium is injected into the patient through a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs that the cancer has spread to the brain and spinal cord. The sample may also be checked for Epstein-Barr virus. This procedure is also called an LP or spinal tap. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Stages of AIDS-related lymphoma may include E and S. AIDS-related lymphoma may be described as follows: - E: "E" stands for extranodal and means the cancer is found in an area or organ other than the lymph nodes or has spread to tissues beyond, but near, the major lymphatic areas. - S: "S" stands for spleen and means the cancer is found in the spleen. The following stages are used for AIDS-related lymphoma: Stage I Stage I AIDS-related lymphoma is divided into stage I and stage IE. - Stage I: Cancer is found in one lymphatic area (lymph node group, tonsils and nearby tissue, thymus, or spleen). - Stage IE: Cancer is found in one organ or area outside the lymph nodes. Stage II Stage II AIDS-related lymphoma is divided into stage II and stage IIE. - Stage II: Cancer is found in two or more lymph node groups either above or below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIE: Cancer is found in one or more lymph node groups either above or below the diaphragm. Cancer is also found outside the lymph nodes in one organ or area on the same side of the diaphragm as the affected lymph nodes. Stage III Stage III AIDS-related lymphoma is divided into stage III, stage IIIE, stage IIIS, and stage IIIE+S. - Stage III: Cancer is found in lymph node groups above and below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIIE: Cancer is found in lymph node groups above and below the diaphragm and outside the lymph nodes in a nearby organ or area. - Stage IIIS: Cancer is found in lymph node groups above and below the diaphragm, and in the spleen. - Stage IIIE+S: Cancer is found in lymph node groups above and below the diaphragm, outside the lymph nodes in a nearby organ or area, and in the spleen. Stage IV In stage IV AIDS-related lymphoma, the cancer: - is found throughout one or more organs that are not part of a lymphatic area (lymph node group, tonsils and nearby tissue, thymus, or spleen) and may be in lymph nodes near those organs; or - is found in one organ that is not part of a lymphatic area and has spread to organs or lymph nodes far away from that organ; or - is found in the liver, bone marrow, cerebrospinal fluid (CSF), or lungs (other than cancer that has spread to the lungs from nearby areas). Patients who are infected with the Epstein-Barr virus or whose AIDS-related lymphoma affects the bone marrow have an increased risk of the cancer spreading to the central nervous system (CNS). For treatment, AIDS-related lymphomas are grouped based on where they started in the body, as follows: Peripheral/systemic lymphoma Lymphoma that starts in the lymph system or elsewhere in the body, other than the brain, is called peripheral/systemic lymphoma. It may spread throughout the body, including to the brain or bone marrow. It is often diagnosed in an advanced stage. Primary CNS lymphoma Primary CNS lymphoma starts in the central nervous system (brain and spinal cord). It is linked to the Epstein-Barr virus. Lymphoma that starts somewhere else in the body and spreads to the central nervous system is not primary CNS lymphoma.<|eot_id|>
What are the treatments for AIDS-Related Lymphoma ?
Key Points - There are different types of treatment for patients with AIDS-related lymphoma. - Treatment of AIDS-related lymphoma combines treatment of the lymphoma with treatment for AIDS. - Four types of standard treatment are used: - Chemotherapy - Radiation therapy - High-dose chemotherapy with stem cell transplant - Targeted therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with AIDS-related lymphoma. Different types of treatment are available for patients with AIDS-related lymphoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Treatment of AIDS-related lymphoma combines treatment of the lymphoma with treatment for AIDS. Patients with AIDS have weakened immune systems and treatment can cause the immune system to become even weaker. For this reason, treating patients who have AIDS-related lymphoma is difficult and some patients may be treated with lower doses of drugs than lymphoma patients who do not have AIDS. Combined antiretroviral therapy (cART) is used to lessen the damage to the immune system caused by HIV. Treatment with combined antiretroviral therapy may allow some patients with AIDS-related lymphoma to safely receive anticancer drugs in standard or higher doses. In these patients, treatment may work as well as it does in lymphoma patients who do not have AIDS. Medicine to prevent and treat infections, which can be serious, is also used. For more information about AIDS and its treatment, please see the AIDSinfo website. Four types of standard treatment are used: Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid (intrathecal chemotherapy), an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on where the cancer has formed. Intrathecal chemotherapy may be used in patients who are more likely to have lymphoma in the central nervous system (CNS). Chemotherapy is used in the treatment of AIDS-related peripheral/systemic lymphoma. It is not yet known whether it is best to give combined antiretroviral therapy at the same time as chemotherapy or after chemotherapy ends. Colony-stimulating factors are sometimes given together with chemotherapy. This helps lessen the side effects chemotherapy may have on the bone marrow. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on where the cancer has formed. External radiation therapy is used to treat AIDS-related primary CNS lymphoma. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy is a type of targeted therapy. Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. These may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Rituximab is used in the treatment of AIDS-related peripheral/systemic lymphoma. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for AIDS-Related Lymphoma AIDS-Related Peripheral/Systemic Lymphoma Treatment of AIDS-related peripheral/systemic lymphoma may include the following: - Combination chemotherapy with or without targeted therapy. - High-dose chemotherapy and stem cell transplant, for lymphoma that has not responded to treatment or has come back. - Intrathecal chemotherapy for lymphoma that is likely to spread to the central nervous system (CNS). Check the list of NCI-supported cancer clinical trials that are now accepting patients with AIDS-related peripheral/systemic lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. AIDS-Related Primary Central Nervous System Lymphoma Treatment of AIDS-related primary central nervous system lymphoma may include the following: - External radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with AIDS-related primary CNS lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for AIDS-Related Lymphoma ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with AIDS-related lymphoma. - Treatment of AIDS-related lymphoma combines treatment of the lymphoma with treatment for AIDS. - Four types of standard treatment are used: - Chemotherapy - Radiation therapy - High-dose chemotherapy with stem cell transplant - Targeted therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with AIDS-related lymphoma. Different types of treatment are available for patients with AIDS-related lymphoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Treatment of AIDS-related lymphoma combines treatment of the lymphoma with treatment for AIDS. Patients with AIDS have weakened immune systems and treatment can cause the immune system to become even weaker. For this reason, treating patients who have AIDS-related lymphoma is difficult and some patients may be treated with lower doses of drugs than lymphoma patients who do not have AIDS. Combined antiretroviral therapy (cART) is used to lessen the damage to the immune system caused by HIV. Treatment with combined antiretroviral therapy may allow some patients with AIDS-related lymphoma to safely receive anticancer drugs in standard or higher doses. In these patients, treatment may work as well as it does in lymphoma patients who do not have AIDS. Medicine to prevent and treat infections, which can be serious, is also used. For more information about AIDS and its treatment, please see the AIDSinfo website. Four types of standard treatment are used: Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid (intrathecal chemotherapy), an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on where the cancer has formed. Intrathecal chemotherapy may be used in patients who are more likely to have lymphoma in the central nervous system (CNS). Chemotherapy is used in the treatment of AIDS-related peripheral/systemic lymphoma. It is not yet known whether it is best to give combined antiretroviral therapy at the same time as chemotherapy or after chemotherapy ends. Colony-stimulating factors are sometimes given together with chemotherapy. This helps lessen the side effects chemotherapy may have on the bone marrow. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on where the cancer has formed. External radiation therapy is used to treat AIDS-related primary CNS lymphoma. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy is a type of targeted therapy. Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. These may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Rituximab is used in the treatment of AIDS-related peripheral/systemic lymphoma. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for AIDS-Related Lymphoma AIDS-Related Peripheral/Systemic Lymphoma Treatment of AIDS-related peripheral/systemic lymphoma may include the following: - Combination chemotherapy with or without targeted therapy. - High-dose chemotherapy and stem cell transplant, for lymphoma that has not responded to treatment or has come back. - Intrathecal chemotherapy for lymphoma that is likely to spread to the central nervous system (CNS). Check the list of NCI-supported cancer clinical trials that are now accepting patients with AIDS-related peripheral/systemic lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. AIDS-Related Primary Central Nervous System Lymphoma Treatment of AIDS-related primary central nervous system lymphoma may include the following: - External radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with AIDS-related primary CNS lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Pancreatic Cancer ?
Key Points - Pancreatic cancer is a disease in which malignant (cancer) cells form in the tissues of the pancreas. - Smoking and health history can affect the risk of pancreatic cancer. - Signs and symptoms of pancreatic cancer include jaundice, pain, and weight loss. - Pancreatic cancer is difficult to detect (find) and diagnose early. - Tests that examine the pancreas are used to detect (find), diagnose, and stage pancreatic cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Pancreatic cancer is a disease in which malignant (cancer) cells form in the tissues of the pancreas. The pancreas is a gland about 6 inches long that is shaped like a thin pear lying on its side. The wider end of the pancreas is called the head, the middle section is called the body, and the narrow end is called the tail. The pancreas lies between the stomach and the spine. The pancreas has two main jobs in the body: - To make juices that help digest (break down) food. - To make hormones, such as insulin and glucagon, that help control blood sugar levels. Both of these hormones help the body use and store the energy it gets from food. The digestive juices are made by exocrine pancreas cells and the hormones are made by endocrine pancreas cells. About 95% of pancreatic cancers begin in exocrine cells. This summary is about exocrine pancreatic cancer. For information on endocrine pancreatic cancer, see the PDQ summary on Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment. For information on pancreatic cancer in children, see the PDQ summary on Unusual Cancers of Childhood Treatment.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Pancreatic Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Pancreatic cancer is a disease in which malignant (cancer) cells form in the tissues of the pancreas. - Smoking and health history can affect the risk of pancreatic cancer. - Signs and symptoms of pancreatic cancer include jaundice, pain, and weight loss. - Pancreatic cancer is difficult to detect (find) and diagnose early. - Tests that examine the pancreas are used to detect (find), diagnose, and stage pancreatic cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Pancreatic cancer is a disease in which malignant (cancer) cells form in the tissues of the pancreas. The pancreas is a gland about 6 inches long that is shaped like a thin pear lying on its side. The wider end of the pancreas is called the head, the middle section is called the body, and the narrow end is called the tail. The pancreas lies between the stomach and the spine. The pancreas has two main jobs in the body: - To make juices that help digest (break down) food. - To make hormones, such as insulin and glucagon, that help control blood sugar levels. Both of these hormones help the body use and store the energy it gets from food. The digestive juices are made by exocrine pancreas cells and the hormones are made by endocrine pancreas cells. About 95% of pancreatic cancers begin in exocrine cells. This summary is about exocrine pancreatic cancer. For information on endocrine pancreatic cancer, see the PDQ summary on Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment. For information on pancreatic cancer in children, see the PDQ summary on Unusual Cancers of Childhood Treatment.<|eot_id|>
Who is at risk for Pancreatic Cancer? ?
Smoking and health history can affect the risk of pancreatic cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for pancreatic cancer include the following: - Smoking. - Being very overweight. - Having a personal history of diabetes or chronic pancreatitis. - Having a family history of pancreatic cancer or pancreatitis. - Having certain hereditary conditions, such as: - Multiple endocrine neoplasia type 1 (MEN1) syndrome. - Hereditary nonpolyposis colon cancer (HNPCC; Lynch syndrome). - von Hippel-Lindau syndrome. - Peutz-Jeghers syndrome. - Hereditary breast and ovarian cancer syndrome. - Familial atypical multiple mole melanoma (FAMMM) syndrome.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Pancreatic Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Smoking and health history can affect the risk of pancreatic cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for pancreatic cancer include the following: - Smoking. - Being very overweight. - Having a personal history of diabetes or chronic pancreatitis. - Having a family history of pancreatic cancer or pancreatitis. - Having certain hereditary conditions, such as: - Multiple endocrine neoplasia type 1 (MEN1) syndrome. - Hereditary nonpolyposis colon cancer (HNPCC; Lynch syndrome). - von Hippel-Lindau syndrome. - Peutz-Jeghers syndrome. - Hereditary breast and ovarian cancer syndrome. - Familial atypical multiple mole melanoma (FAMMM) syndrome.<|eot_id|>
What are the symptoms of Pancreatic Cancer ?
Signs and symptoms of pancreatic cancer include jaundice, pain, and weight loss. Pancreatic cancer may not cause early signs or symptoms. Signs and symptoms may be caused by pancreatic cancer or by other conditions. Check with your doctor if you have any of the following: - Jaundice (yellowing of the skin and whites of the eyes). - Light-colored stools. - Dark urine. - Pain in the upper or middle abdomen and back. - Weight loss for no known reason. - Loss of appetite. - Feeling very tired. Pancreatic cancer is difficult to detect (find) and diagnose early. Pancreatic cancer is difficult to detect and diagnose for the following reasons: - There arent any noticeable signs or symptoms in the early stages of pancreatic cancer. - The signs and symptoms of pancreatic cancer, when present, are like the signs and symptoms of many other illnesses. - The pancreas is hidden behind other organs such as the stomach, small intestine, liver, gallbladder, spleen, and bile ducts.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Pancreatic Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of pancreatic cancer include jaundice, pain, and weight loss. Pancreatic cancer may not cause early signs or symptoms. Signs and symptoms may be caused by pancreatic cancer or by other conditions. Check with your doctor if you have any of the following: - Jaundice (yellowing of the skin and whites of the eyes). - Light-colored stools. - Dark urine. - Pain in the upper or middle abdomen and back. - Weight loss for no known reason. - Loss of appetite. - Feeling very tired. Pancreatic cancer is difficult to detect (find) and diagnose early. Pancreatic cancer is difficult to detect and diagnose for the following reasons: - There arent any noticeable signs or symptoms in the early stages of pancreatic cancer. - The signs and symptoms of pancreatic cancer, when present, are like the signs and symptoms of many other illnesses. - The pancreas is hidden behind other organs such as the stomach, small intestine, liver, gallbladder, spleen, and bile ducts.<|eot_id|>
How to diagnose Pancreatic Cancer ?
Tests that examine the pancreas are used to detect (find), diagnose, and stage pancreatic cancer. Pancreatic cancer is usually diagnosed with tests and procedures that make pictures of the pancreas and the area around it. The process used to find out if cancer cells have spread within and around the pancreas is called staging. Tests and procedures to detect, diagnose, and stage pancreatic cancer are usually done at the same time. In order to plan treatment, it is important to know the stage of the disease and whether or not the pancreatic cancer can be removed by surgery. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances, such as bilirubin, released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Tumor marker test : A procedure in which a sample of blood, urine, or tissue is checked to measure the amounts of certain substances, such as CA 19-9, and carcinoembryonic antigen (CEA), made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. A spiral or helical CT scan makes a series of very detailed pictures of areas inside the body using an x-ray machine that scans the body in a spiral path. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. A PET scan and CT scan may be done at the same time. This is called a PET-CT. - Abdominal ultrasound : An ultrasound exam used to make pictures of the inside of the abdomen. The ultrasound transducer is pressed against the skin of the abdomen and directs high-energy sound waves (ultrasound) into the abdomen. The sound waves bounce off the internal tissues and organs and make echoes. The transducer receives the echoes and sends them to a computer, which uses the echoes to make pictures called sonograms. The picture can be printed to be looked at later. - Endoscopic ultrasound (EUS): A procedure in which an endoscope is inserted into the body, usually through the mouth or rectum. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A probe at the end of the endoscope is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. This procedure is also called endosonography. - Endoscopic retrograde cholangiopancreatography (ERCP): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes pancreatic cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope (a thin, lighted tube) is passed through the mouth, esophagus, and stomach into the first part of the small intestine. A catheter (a smaller tube) is then inserted through the endoscope into the pancreatic ducts. A dye is injected through the catheter into the ducts and an x-ray is taken. If the ducts are blocked by a tumor, a fine tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. Tissue samples may also be taken. - Percutaneous transhepatic cholangiography (PTC): A procedure used to x-ray the liver and bile ducts. A thin needle is inserted through the skin below the ribs and into the liver. Dye is injected into the liver or bile ducts and an x-ray is taken. If a blockage is found, a thin, flexible tube called a stent is sometimes left in the liver to drain bile into the small intestine or a collection bag outside the body. This test is done only if ERCP cannot be done. - Laparoscopy : A surgical procedure to look at the organs inside the abdomen to check for signs of disease. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope (a thin, lighted tube) is inserted into one of the incisions. The laparoscope may have an ultrasound probe at the end in order to bounce high-energy sound waves off internal organs, such as the pancreas. This is called laparoscopic ultrasound. Other instruments may be inserted through the same or other incisions to perform procedures such as taking tissue samples from the pancreas or a sample of fluid from the abdomen to check for cancer. - Biopsy: The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. There are several ways to do a biopsy for pancreatic cancer. A fine needle or a core needle may be inserted into the pancreas during an x-ray or ultrasound to remove cells. Tissue may also be removed during a laparoscopy.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Pancreatic Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the pancreas are used to detect (find), diagnose, and stage pancreatic cancer. Pancreatic cancer is usually diagnosed with tests and procedures that make pictures of the pancreas and the area around it. The process used to find out if cancer cells have spread within and around the pancreas is called staging. Tests and procedures to detect, diagnose, and stage pancreatic cancer are usually done at the same time. In order to plan treatment, it is important to know the stage of the disease and whether or not the pancreatic cancer can be removed by surgery. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances, such as bilirubin, released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Tumor marker test : A procedure in which a sample of blood, urine, or tissue is checked to measure the amounts of certain substances, such as CA 19-9, and carcinoembryonic antigen (CEA), made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. A spiral or helical CT scan makes a series of very detailed pictures of areas inside the body using an x-ray machine that scans the body in a spiral path. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. A PET scan and CT scan may be done at the same time. This is called a PET-CT. - Abdominal ultrasound : An ultrasound exam used to make pictures of the inside of the abdomen. The ultrasound transducer is pressed against the skin of the abdomen and directs high-energy sound waves (ultrasound) into the abdomen. The sound waves bounce off the internal tissues and organs and make echoes. The transducer receives the echoes and sends them to a computer, which uses the echoes to make pictures called sonograms. The picture can be printed to be looked at later. - Endoscopic ultrasound (EUS): A procedure in which an endoscope is inserted into the body, usually through the mouth or rectum. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A probe at the end of the endoscope is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. This procedure is also called endosonography. - Endoscopic retrograde cholangiopancreatography (ERCP): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes pancreatic cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope (a thin, lighted tube) is passed through the mouth, esophagus, and stomach into the first part of the small intestine. A catheter (a smaller tube) is then inserted through the endoscope into the pancreatic ducts. A dye is injected through the catheter into the ducts and an x-ray is taken. If the ducts are blocked by a tumor, a fine tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. Tissue samples may also be taken. - Percutaneous transhepatic cholangiography (PTC): A procedure used to x-ray the liver and bile ducts. A thin needle is inserted through the skin below the ribs and into the liver. Dye is injected into the liver or bile ducts and an x-ray is taken. If a blockage is found, a thin, flexible tube called a stent is sometimes left in the liver to drain bile into the small intestine or a collection bag outside the body. This test is done only if ERCP cannot be done. - Laparoscopy : A surgical procedure to look at the organs inside the abdomen to check for signs of disease. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope (a thin, lighted tube) is inserted into one of the incisions. The laparoscope may have an ultrasound probe at the end in order to bounce high-energy sound waves off internal organs, such as the pancreas. This is called laparoscopic ultrasound. Other instruments may be inserted through the same or other incisions to perform procedures such as taking tissue samples from the pancreas or a sample of fluid from the abdomen to check for cancer. - Biopsy: The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. There are several ways to do a biopsy for pancreatic cancer. A fine needle or a core needle may be inserted into the pancreas during an x-ray or ultrasound to remove cells. Tissue may also be removed during a laparoscopy.<|eot_id|>
What is the outlook for Pancreatic Cancer ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - Whether or not the tumor can be removed by surgery. - The stage of the cancer (the size of the tumor and whether the cancer has spread outside the pancreas to nearby tissues or lymph nodes or to other places in the body). - The patients general health. - Whether the cancer has just been diagnosed or has recurred (come back). Pancreatic cancer can be controlled only if it is found before it has spread, when it can be completely removed by surgery. If the cancer has spread, palliative treatment can improve the patient's quality of life by controlling the symptoms and complications of this disease.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Pancreatic Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - Whether or not the tumor can be removed by surgery. - The stage of the cancer (the size of the tumor and whether the cancer has spread outside the pancreas to nearby tissues or lymph nodes or to other places in the body). - The patients general health. - Whether the cancer has just been diagnosed or has recurred (come back). Pancreatic cancer can be controlled only if it is found before it has spread, when it can be completely removed by surgery. If the cancer has spread, palliative treatment can improve the patient's quality of life by controlling the symptoms and complications of this disease.<|eot_id|>
What are the stages of Pancreatic Cancer ?
Key Points - Tests and procedures to stage pancreatic cancer are usually done at the same time as diagnosis. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for pancreatic cancer: - Stage 0 (Carcinoma in Situ) - Stage I - Stage II - Stage III - Stage IV Tests and procedures to stage pancreatic cancer are usually done at the same time as diagnosis. The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage of the disease in order to plan treatment. The results of some of the tests used to diagnose pancreatic cancer are often also used to stage the disease. See the General Information section for more information. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if pancreatic cancer spreads to the liver, the cancer cells in the liver are actually pancreatic cancer cells. The disease is metastatic pancreatic cancer, not liver cancer. The following stages are used for pancreatic cancer: Stage 0 (Carcinoma in Situ) In stage 0, abnormal cells are found in the lining of the pancreas. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I In stage I, cancer has formed and is found in the pancreas only. Stage I is divided into stage IA and stage IB, based on the size of the tumor. - Stage IA: The tumor is 2 centimeters or smaller. - Stage IB: The tumor is larger than 2 centimeters. Stage II In stage II, cancer may have spread to nearby tissue and organs, and may have spread to lymph nodes near the pancreas. Stage II is divided into stage IIA and stage IIB, based on where the cancer has spread. - Stage IIA: Cancer has spread to nearby tissue and organs but has not spread to nearby lymph nodes. - Stage IIB: Cancer has spread to nearby lymph nodes and may have spread to nearby tissue and organs. Stage III In stage III, cancer has spread to the major blood vessels near the pancreas and may have spread to nearby lymph nodes. Stage IV In stage IV, cancer may be of any size and has spread to distant organs, such as the liver, lung, and peritoneal cavity. It may have also spread to organs and tissues near the pancreas or to lymph nodes.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Pancreatic Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Tests and procedures to stage pancreatic cancer are usually done at the same time as diagnosis. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for pancreatic cancer: - Stage 0 (Carcinoma in Situ) - Stage I - Stage II - Stage III - Stage IV Tests and procedures to stage pancreatic cancer are usually done at the same time as diagnosis. The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage of the disease in order to plan treatment. The results of some of the tests used to diagnose pancreatic cancer are often also used to stage the disease. See the General Information section for more information. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if pancreatic cancer spreads to the liver, the cancer cells in the liver are actually pancreatic cancer cells. The disease is metastatic pancreatic cancer, not liver cancer. The following stages are used for pancreatic cancer: Stage 0 (Carcinoma in Situ) In stage 0, abnormal cells are found in the lining of the pancreas. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I In stage I, cancer has formed and is found in the pancreas only. Stage I is divided into stage IA and stage IB, based on the size of the tumor. - Stage IA: The tumor is 2 centimeters or smaller. - Stage IB: The tumor is larger than 2 centimeters. Stage II In stage II, cancer may have spread to nearby tissue and organs, and may have spread to lymph nodes near the pancreas. Stage II is divided into stage IIA and stage IIB, based on where the cancer has spread. - Stage IIA: Cancer has spread to nearby tissue and organs but has not spread to nearby lymph nodes. - Stage IIB: Cancer has spread to nearby lymph nodes and may have spread to nearby tissue and organs. Stage III In stage III, cancer has spread to the major blood vessels near the pancreas and may have spread to nearby lymph nodes. Stage IV In stage IV, cancer may be of any size and has spread to distant organs, such as the liver, lung, and peritoneal cavity. It may have also spread to organs and tissues near the pancreas or to lymph nodes.<|eot_id|>
What are the treatments for Pancreatic Cancer ?
Key Points - There are different types of treatment for patients with pancreatic cancer. - Five types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Chemoradiation therapy - Targeted therapy - There are treatments for pain caused by pancreatic cancer. - Patients with pancreatic cancer have special nutritional needs. - New types of treatment are being tested in clinical trials. - Biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed There are different types of treatment for patients with pancreatic cancer. Different types of treatment are available for patients with pancreatic cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Five types of standard treatment are used: Surgery One of the following types of surgery may be used to take out the tumor: - Whipple procedure: A surgical procedure in which the head of the pancreas, the gallbladder, part of the stomach, part of the small intestine, and the bile duct are removed. Enough of the pancreas is left to produce digestive juices and insulin. - Total pancreatectomy: This operation removes the whole pancreas, part of the stomach, part of the small intestine, the common bile duct, the gallbladder, the spleen, and nearby lymph nodes. - Distal pancreatectomy: The body and the tail of the pancreas and usually the spleen are removed. If the cancer has spread and cannot be removed, the following types of palliative surgery may be done to relieve symptoms and improve quality of life: - Surgical biliary bypass: If cancer is blocking the small intestine and bile is building up in the gallbladder, a biliary bypass may be done. During this operation, the doctor will cut the gallbladder or bile duct and sew it to the small intestine to create a new pathway around the blocked area. - Endoscopic stent placement: If the tumor is blocking the bile duct, surgery may be done to put in a stent (a thin tube) to drain bile that has built up in the area. The doctor may place the stent through a catheter that drains to the outside of the body or the stent may go around the blocked area and drain the bile into the small intestine. - Gastric bypass: If the tumor is blocking the flow of food from the stomach, the stomach may be sewn directly to the small intestine so the patient can continue to eat normally. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat pancreatic cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Pancreatic Cancer for more information. Chemoradiation therapy Chemoradiation therapy combines chemotherapy and radiation therapy to increase the effects of both. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Tyrosine kinase inhibitors (TKIs) are targeted therapy drugs that block signals needed for tumors to grow. Erlotinib is a type of TKI used to treat pancreatic cancer. See Drugs Approved for Pancreatic Cancer for more information. There are treatments for pain caused by pancreatic cancer. Pain can occur when the tumor presses on nerves or other organs near the pancreas. When pain medicine is not enough, there are treatments that act on nerves in the abdomen to relieve the pain. The doctor may inject medicine into the area around affected nerves or may cut the nerves to block the feeling of pain. Radiation therapy with or without chemotherapy can also help relieve pain by shrinking the tumor. See the PDQ summary on Cancer Pain for more information. Patients with pancreatic cancer have special nutritional needs. Surgery to remove the pancreas may affect its ability to make pancreatic enzymes that help to digest food. As a result, patients may have problems digesting food and absorbing nutrients into the body. To prevent malnutrition, the doctor may prescribe medicines that replace these enzymes. See the PDQ summary on Nutrition in Cancer Care for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Stages I and II Pancreatic Cancer Treatment of stage I and stage II pancreatic cancer may include the following: - Surgery. - Surgery followed by chemotherapy. - Surgery followed by chemoradiation. - A clinical trial of combination chemotherapy. - A clinical trial of chemotherapy and targeted therapy, with or without chemoradiation. - A clinical trial of chemotherapy and/or radiation therapy before surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I pancreatic cancer and stage II pancreatic cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage III Pancreatic Cancer Treatment of stage III pancreatic cancer may include the following: - Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine. - Chemotherapy followed by chemoradiation. - Chemoradiation followed by chemotherapy. - Chemotherapy with or without targeted therapy. - A clinical trial of new anticancer therapies together with chemotherapy or chemoradiation. - A clinical trial of radiation therapy given during surgery or internal radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III pancreatic cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IV Pancreatic Cancer Treatment of stage IV pancreatic cancer may include the following: - Palliative treatments to relieve pain, such as nerve blocks, and other supportive care. - Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine. - Chemotherapy with or without targeted therapy. - Clinical trials of new anticancer agents with or without chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV pancreatic cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Pancreatic Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with pancreatic cancer. - Five types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Chemoradiation therapy - Targeted therapy - There are treatments for pain caused by pancreatic cancer. - Patients with pancreatic cancer have special nutritional needs. - New types of treatment are being tested in clinical trials. - Biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed There are different types of treatment for patients with pancreatic cancer. Different types of treatment are available for patients with pancreatic cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Five types of standard treatment are used: Surgery One of the following types of surgery may be used to take out the tumor: - Whipple procedure: A surgical procedure in which the head of the pancreas, the gallbladder, part of the stomach, part of the small intestine, and the bile duct are removed. Enough of the pancreas is left to produce digestive juices and insulin. - Total pancreatectomy: This operation removes the whole pancreas, part of the stomach, part of the small intestine, the common bile duct, the gallbladder, the spleen, and nearby lymph nodes. - Distal pancreatectomy: The body and the tail of the pancreas and usually the spleen are removed. If the cancer has spread and cannot be removed, the following types of palliative surgery may be done to relieve symptoms and improve quality of life: - Surgical biliary bypass: If cancer is blocking the small intestine and bile is building up in the gallbladder, a biliary bypass may be done. During this operation, the doctor will cut the gallbladder or bile duct and sew it to the small intestine to create a new pathway around the blocked area. - Endoscopic stent placement: If the tumor is blocking the bile duct, surgery may be done to put in a stent (a thin tube) to drain bile that has built up in the area. The doctor may place the stent through a catheter that drains to the outside of the body or the stent may go around the blocked area and drain the bile into the small intestine. - Gastric bypass: If the tumor is blocking the flow of food from the stomach, the stomach may be sewn directly to the small intestine so the patient can continue to eat normally. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat pancreatic cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Pancreatic Cancer for more information. Chemoradiation therapy Chemoradiation therapy combines chemotherapy and radiation therapy to increase the effects of both. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Tyrosine kinase inhibitors (TKIs) are targeted therapy drugs that block signals needed for tumors to grow. Erlotinib is a type of TKI used to treat pancreatic cancer. See Drugs Approved for Pancreatic Cancer for more information. There are treatments for pain caused by pancreatic cancer. Pain can occur when the tumor presses on nerves or other organs near the pancreas. When pain medicine is not enough, there are treatments that act on nerves in the abdomen to relieve the pain. The doctor may inject medicine into the area around affected nerves or may cut the nerves to block the feeling of pain. Radiation therapy with or without chemotherapy can also help relieve pain by shrinking the tumor. See the PDQ summary on Cancer Pain for more information. Patients with pancreatic cancer have special nutritional needs. Surgery to remove the pancreas may affect its ability to make pancreatic enzymes that help to digest food. As a result, patients may have problems digesting food and absorbing nutrients into the body. To prevent malnutrition, the doctor may prescribe medicines that replace these enzymes. See the PDQ summary on Nutrition in Cancer Care for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Stages I and II Pancreatic Cancer Treatment of stage I and stage II pancreatic cancer may include the following: - Surgery. - Surgery followed by chemotherapy. - Surgery followed by chemoradiation. - A clinical trial of combination chemotherapy. - A clinical trial of chemotherapy and targeted therapy, with or without chemoradiation. - A clinical trial of chemotherapy and/or radiation therapy before surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I pancreatic cancer and stage II pancreatic cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage III Pancreatic Cancer Treatment of stage III pancreatic cancer may include the following: - Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine. - Chemotherapy followed by chemoradiation. - Chemoradiation followed by chemotherapy. - Chemotherapy with or without targeted therapy. - A clinical trial of new anticancer therapies together with chemotherapy or chemoradiation. - A clinical trial of radiation therapy given during surgery or internal radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III pancreatic cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IV Pancreatic Cancer Treatment of stage IV pancreatic cancer may include the following: - Palliative treatments to relieve pain, such as nerve blocks, and other supportive care. - Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine. - Chemotherapy with or without targeted therapy. - Clinical trials of new anticancer agents with or without chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV pancreatic cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
what research (or clinical trials) is being done for Pancreatic Cancer ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Pancreatic Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Bile Duct Cancer (Cholangiocarcinoma) ?
Key Points - Bile duct cancer is a rare disease in which malignant (cancer) cells form in the bile ducts. - Having colitis or certain liver diseases can increase the risk of bile duct cancer. - Signs of bile duct cancer include jaundice and pain in the abdomen. - Tests that examine the bile ducts and nearby organs are used to detect (find), diagnose, and stage bile duct cancer. - Different procedures may be used to obtain a sample of tissue and diagnose bile duct cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Bile duct cancer is a rare disease in which malignant (cancer) cells form in the bile ducts. A network of tubes, called ducts, connects the liver, gallbladder, and small intestine. This network begins in the liver where many small ducts collect bile (a fluid made by the liver to break down fats during digestion). The small ducts come together to form the right and left hepatic ducts, which lead out of the liver. The two ducts join outside the liver and form the common hepatic duct. The cystic duct connects the gallbladder to the common hepatic duct. Bile from the liver passes through the hepatic ducts, common hepatic duct, and cystic duct and is stored in the gallbladder. When food is being digested, bile stored in the gallbladder is released and passes through the cystic duct to the common bile duct and into the small intestine. Bile duct cancer is also called cholangiocarcinoma. There are two types of bile duct cancer: - Intrahepatic bile duct cancer : This type of cancer forms in the bile ducts inside the liver. Only a small number of bile duct cancers are intrahepatic. Intrahepatic bile duct cancers are also called intrahepatic cholangiocarcinomas. - Extrahepatic bile duct cancer : The extrahepatic bile duct is made up of the hilum region and the distal region. Cancer can form in either region: - Perihilar bile duct cancer: This type of cancer is found in the hilum region, the area where the right and left bile ducts exit the liver and join to form the common hepatic duct. Perihilar bile duct cancer is also called a Klatskin tumor or perihilar cholangiocarcinoma. - Distal extrahepatic bile duct cancer: This type of cancer is found in the distal region. The distal region is made up of the common bile duct which passes through the pancreas and ends in the small intestine. Distal extrahepatic bile duct cancer is also called extrahepatic cholangiocarcinoma.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Bile Duct Cancer (Cholangiocarcinoma) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Bile duct cancer is a rare disease in which malignant (cancer) cells form in the bile ducts. - Having colitis or certain liver diseases can increase the risk of bile duct cancer. - Signs of bile duct cancer include jaundice and pain in the abdomen. - Tests that examine the bile ducts and nearby organs are used to detect (find), diagnose, and stage bile duct cancer. - Different procedures may be used to obtain a sample of tissue and diagnose bile duct cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Bile duct cancer is a rare disease in which malignant (cancer) cells form in the bile ducts. A network of tubes, called ducts, connects the liver, gallbladder, and small intestine. This network begins in the liver where many small ducts collect bile (a fluid made by the liver to break down fats during digestion). The small ducts come together to form the right and left hepatic ducts, which lead out of the liver. The two ducts join outside the liver and form the common hepatic duct. The cystic duct connects the gallbladder to the common hepatic duct. Bile from the liver passes through the hepatic ducts, common hepatic duct, and cystic duct and is stored in the gallbladder. When food is being digested, bile stored in the gallbladder is released and passes through the cystic duct to the common bile duct and into the small intestine. Bile duct cancer is also called cholangiocarcinoma. There are two types of bile duct cancer: - Intrahepatic bile duct cancer : This type of cancer forms in the bile ducts inside the liver. Only a small number of bile duct cancers are intrahepatic. Intrahepatic bile duct cancers are also called intrahepatic cholangiocarcinomas. - Extrahepatic bile duct cancer : The extrahepatic bile duct is made up of the hilum region and the distal region. Cancer can form in either region: - Perihilar bile duct cancer: This type of cancer is found in the hilum region, the area where the right and left bile ducts exit the liver and join to form the common hepatic duct. Perihilar bile duct cancer is also called a Klatskin tumor or perihilar cholangiocarcinoma. - Distal extrahepatic bile duct cancer: This type of cancer is found in the distal region. The distal region is made up of the common bile duct which passes through the pancreas and ends in the small intestine. Distal extrahepatic bile duct cancer is also called extrahepatic cholangiocarcinoma.<|eot_id|>
Who is at risk for Bile Duct Cancer (Cholangiocarcinoma)? ?
Having colitis or certain liver diseases can increase the risk of bile duct cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. People who think they may be at risk should discuss this with their doctor. Risk factors for bile duct cancer include the following conditions: - Primary sclerosing cholangitis (a progressive disease in which the bile ducts become blocked by inflammation and scarring). - Chronic ulcerative colitis. - Cysts in the bile ducts (cysts block the flow of bile and can cause swollen bile ducts, inflammation, and infection). - Infection with a Chinese liver fluke parasite.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Bile Duct Cancer (Cholangiocarcinoma)? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Having colitis or certain liver diseases can increase the risk of bile duct cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. People who think they may be at risk should discuss this with their doctor. Risk factors for bile duct cancer include the following conditions: - Primary sclerosing cholangitis (a progressive disease in which the bile ducts become blocked by inflammation and scarring). - Chronic ulcerative colitis. - Cysts in the bile ducts (cysts block the flow of bile and can cause swollen bile ducts, inflammation, and infection). - Infection with a Chinese liver fluke parasite.<|eot_id|>
What are the symptoms of Bile Duct Cancer (Cholangiocarcinoma) ?
Signs of bile duct cancer include jaundice and pain in the abdomen. These and other signs and symptoms may be caused by bile duct cancer or by other conditions. Check with your doctor if you have any of the following: - Jaundice (yellowing of the skin or whites of the eyes). - Dark urine. - Clay colored stool. - Pain in the abdomen. - Fever. - Itchy skin. - Nausea and vomiting. - Weight loss for an unknown reason.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Bile Duct Cancer (Cholangiocarcinoma) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs of bile duct cancer include jaundice and pain in the abdomen. These and other signs and symptoms may be caused by bile duct cancer or by other conditions. Check with your doctor if you have any of the following: - Jaundice (yellowing of the skin or whites of the eyes). - Dark urine. - Clay colored stool. - Pain in the abdomen. - Fever. - Itchy skin. - Nausea and vomiting. - Weight loss for an unknown reason.<|eot_id|>
How to diagnose Bile Duct Cancer (Cholangiocarcinoma) ?
Tests that examine the bile ducts and nearby organs are used to detect (find), diagnose, and stage bile duct cancer. Procedures that make pictures of the bile ducts and the nearby area help diagnose bile duct cancer and show how far the cancer has spread. The process used to find out if cancer cells have spread within and around the bile ducts or to distant parts of the body is called staging. In order to plan treatment, it is important to know if the bile duct cancer can be removed by surgery. Tests and procedures to detect, diagnose, and stage bile duct cancer are usually done at the same time. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Liver function tests : A procedure in which a blood sample is checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. A higher than normal amount of these substances can be a sign of liver disease that may be caused by bile duct cancer. - Laboratory tests : Medical procedures that test samples of tissue, blood, urine, or other substances in the body. These tests help to diagnose disease, plan and check treatment, or monitor the disease over time. - Carcinoembryonic antigen (CEA) and CA 19-9 tumor marker test : A procedure in which a sample of blood, urine, or tissue is checked to measure the amounts of certain substances made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. Higher than normal levels of carcinoembryonic antigen (CEA) and CA 19-9 may mean there is bile duct cancer. - Ultrasound exam : A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs, such as the abdomen, and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - MRCP (magnetic resonance cholangiopancreatography): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body such as the liver, bile ducts, gallbladder, pancreas, and pancreatic duct. Different procedures may be used to obtain a sample of tissue and diagnose bile duct cancer. Cells and tissues are removed during a biopsy so they can be viewed under a microscope by a pathologist to check for signs of cancer. Different procedures may be used to obtain the sample of cells and tissue. The type of procedure used depends on whether the patient is well enough to have surgery. Types of biopsy procedures include the following: - Laparoscopy : A surgical procedure to look at the organs inside the abdomen, such as the bile ducts and liver, to check for signs of cancer. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope (a thin, lighted tube) is inserted into one of the incisions. Other instruments may be inserted through the same or other incisions to perform procedures such as taking tissue samples to be checked for signs of cancer. - Percutaneous transhepatic cholangiography (PTC): A procedure used to x-ray the liver and bile ducts. A thin needle is inserted through the skin below the ribs and into the liver. Dye is injected into the liver or bile ducts and an x-ray is taken. A sample of tissue is removed and checked for signs of cancer. If the bile duct is blocked, a thin, flexible tube called a stent may be left in the liver to drain bile into the small intestine or a collection bag outside the body. This procedure may be used when a patient cannot have surgery. - Endoscopic retrograde cholangiopancreatography (ERCP): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes bile duct cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope is passed through the mouth and stomach and into the small intestine. Dye is injected through the endoscope (thin, tube-like instrument with a light and a lens for viewing) into the bile ducts and an x-ray is taken. A sample of tissue is removed and checked for signs of cancer. If the bile duct is blocked, a thin tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. This procedure may be used when a patient cannot have surgery.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Bile Duct Cancer (Cholangiocarcinoma) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Tests that examine the bile ducts and nearby organs are used to detect (find), diagnose, and stage bile duct cancer. Procedures that make pictures of the bile ducts and the nearby area help diagnose bile duct cancer and show how far the cancer has spread. The process used to find out if cancer cells have spread within and around the bile ducts or to distant parts of the body is called staging. In order to plan treatment, it is important to know if the bile duct cancer can be removed by surgery. Tests and procedures to detect, diagnose, and stage bile duct cancer are usually done at the same time. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Liver function tests : A procedure in which a blood sample is checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. A higher than normal amount of these substances can be a sign of liver disease that may be caused by bile duct cancer. - Laboratory tests : Medical procedures that test samples of tissue, blood, urine, or other substances in the body. These tests help to diagnose disease, plan and check treatment, or monitor the disease over time. - Carcinoembryonic antigen (CEA) and CA 19-9 tumor marker test : A procedure in which a sample of blood, urine, or tissue is checked to measure the amounts of certain substances made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. Higher than normal levels of carcinoembryonic antigen (CEA) and CA 19-9 may mean there is bile duct cancer. - Ultrasound exam : A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs, such as the abdomen, and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - MRCP (magnetic resonance cholangiopancreatography): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body such as the liver, bile ducts, gallbladder, pancreas, and pancreatic duct. Different procedures may be used to obtain a sample of tissue and diagnose bile duct cancer. Cells and tissues are removed during a biopsy so they can be viewed under a microscope by a pathologist to check for signs of cancer. Different procedures may be used to obtain the sample of cells and tissue. The type of procedure used depends on whether the patient is well enough to have surgery. Types of biopsy procedures include the following: - Laparoscopy : A surgical procedure to look at the organs inside the abdomen, such as the bile ducts and liver, to check for signs of cancer. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope (a thin, lighted tube) is inserted into one of the incisions. Other instruments may be inserted through the same or other incisions to perform procedures such as taking tissue samples to be checked for signs of cancer. - Percutaneous transhepatic cholangiography (PTC): A procedure used to x-ray the liver and bile ducts. A thin needle is inserted through the skin below the ribs and into the liver. Dye is injected into the liver or bile ducts and an x-ray is taken. A sample of tissue is removed and checked for signs of cancer. If the bile duct is blocked, a thin, flexible tube called a stent may be left in the liver to drain bile into the small intestine or a collection bag outside the body. This procedure may be used when a patient cannot have surgery. - Endoscopic retrograde cholangiopancreatography (ERCP): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes bile duct cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope is passed through the mouth and stomach and into the small intestine. Dye is injected through the endoscope (thin, tube-like instrument with a light and a lens for viewing) into the bile ducts and an x-ray is taken. A sample of tissue is removed and checked for signs of cancer. If the bile duct is blocked, a thin tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. This procedure may be used when a patient cannot have surgery.<|eot_id|>
What is the outlook for Bile Duct Cancer (Cholangiocarcinoma) ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - Whether the cancer is in the upper or lower part of the bile duct system. - The stage of the cancer (whether it affects only the bile ducts or has spread to the liver, lymph nodes, or other places in the body). - Whether the cancer has spread to nearby nerves or veins. - Whether the cancer can be completely removed by surgery. - Whether the patient has other conditions, such as primary sclerosing cholangitis. - Whether the level of CA 19-9 is higher than normal. - Whether the cancer has just been diagnosed or has recurred (come back). Treatment options may also depend on the symptoms caused by the cancer. Bile duct cancer is usually found after it has spread and can rarely be completely removed by surgery. Palliative therapy may relieve symptoms and improve the patient's quality of life.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Bile Duct Cancer (Cholangiocarcinoma) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - Whether the cancer is in the upper or lower part of the bile duct system. - The stage of the cancer (whether it affects only the bile ducts or has spread to the liver, lymph nodes, or other places in the body). - Whether the cancer has spread to nearby nerves or veins. - Whether the cancer can be completely removed by surgery. - Whether the patient has other conditions, such as primary sclerosing cholangitis. - Whether the level of CA 19-9 is higher than normal. - Whether the cancer has just been diagnosed or has recurred (come back). Treatment options may also depend on the symptoms caused by the cancer. Bile duct cancer is usually found after it has spread and can rarely be completely removed by surgery. Palliative therapy may relieve symptoms and improve the patient's quality of life.<|eot_id|>
what research (or clinical trials) is being done for Bile Duct Cancer (Cholangiocarcinoma) ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Liver transplant In a liver transplant, the entire liver is removed and replaced with a healthy donated liver. A liver transplant may be done in patients with perihilar bile duct cancer. If the patient has to wait for a donated liver, other treatment is given as needed. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Bile Duct Cancer (Cholangiocarcinoma) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Liver transplant In a liver transplant, the entire liver is removed and replaced with a healthy donated liver. A liver transplant may be done in patients with perihilar bile duct cancer. If the patient has to wait for a donated liver, other treatment is given as needed. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What are the stages of Bile Duct Cancer (Cholangiocarcinoma) ?
Key Points - The results of diagnostic and staging tests are used to find out if cancer cells have spread. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - Stages are used to describe the different types of bile duct cancer. - Intrahepatic bile duct cancer - Perihilar bile duct cancer - Distal extrahepatic bile duct cancer - The following groups are used to plan treatment: - Resectable (localized) bile duct cancer - Unresectable, metastatic, or recurrent bile duct cancer The results of diagnostic and staging tests are used to find out if cancer cells have spread. The process used to find out if cancer has spread to other parts of the body is called staging. For bile duct cancer, the information gathered from tests and procedures is used to plan treatment, including whether the tumor can be removed by surgery. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if bile duct cancer spreads to the liver, the cancer cells in the liver are actually bile duct cancer cells. The disease is metastatic bile duct cancer, not liver cancer. Stages are used to describe the different types of bile duct cancer. Intrahepatic bile duct cancer - Stage 0: Abnormal cells are found in the innermost layer of tissue lining the intrahepatic bile duct. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. - Stage I: There is one tumor that has spread into the intrahepatic bile duct and it has not spread into any blood vessels. - Stage II: There is one tumor that has spread through the wall of the bile duct and into a blood vessel, or there are multiple tumors that may have spread into a blood vessel. - Stage III: The tumor has spread through the tissue that lines the abdominal wall or has spread to organs or tissues near the liver such as the duodenum, colon, and stomach. - Stage IV: Stage IV is divided into stage IVA and stage IVB. - Stage IVA: The cancer has spread along the outside of the intrahepatic bile ducts or the cancer has spread to nearby lymph nodes. - Stage IVB: The cancer has spread to organs in other parts of the body. Perihilar bile duct cancer - Stage 0: Abnormal cells are found in the innermost layer of tissue lining the perihilar bile duct. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. - Stage I: Cancer has formed in the innermost layer of the wall of the perihilar bile duct and has spread into the muscle layer or fibrous tissue layer of the wall. - Stage II: Cancer has spread through the wall of the perihilar bile duct to nearby fatty tissue or to the liver. - Stage III: Stage III is divided into stage IIIA and stage IIIB. - Stage IIIA: Cancer has spread to branches on one side of the hepatic artery or of the portal vein. - Stage IIIB: Cancer has spread to nearby lymph nodes. Cancer may have spread into the wall of the perihilar bile duct or through the wall to nearby fatty tissue, the liver, or to branches on one side of the hepatic artery or of the portal vein. - Stage IV: Stage IV is divided into stage IVA and stage IVB. - Stage IVA: Cancer has spread to one or more of the following: - the main part of the portal vein and/or common hepatic artery; - the branches of the portal vein and/or common hepatic artery on both sides; - the right hepatic duct and the left branch of the hepatic artery or of the portal vein; - the left hepatic duct and the right branch of the hepatic artery or of the portal vein. Cancer may have spread to nearby lymph nodes. - Stage IVB: Cancer has spread to lymph nodes in more distant parts of the abdomen, or to organs in other parts of the body. Distal extrahepatic bile duct cancer - Stage 0: Abnormal cells are found in the innermost layer of tissue lining the distal extrahepatic bile duct. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. - Stage I: Stage I is divided into stage IA and stage IB. - Stage IA: Cancer has formed and is found in the distal extrahepatic bile duct wall only. - Stage IB: Cancer has formed and has spread through the wall of the distal extrahepatic bile duct but has not spread to nearby organs. - Stage II: Stage II is divided into stage IIA and stage IIB. - Stage IIA: Cancer has spread from the distal extrahepatic bile duct to the gallbladder, pancreas, duodenum, or other nearby organs. - Stage IIB: Cancer has spread from the distal extrahepatic bile duct to nearby lymph nodes. Cancer may have spread through the wall of the duct or to nearby organs. - Stage III: Cancer has spread to the large vessels that carry blood to the organs in the abdomen. Cancer may have spread to nearby lymph nodes. - Stage IV: Cancer has spread to organs in distant parts of the body. The following groups are used to plan treatment: Resectable (localized) bile duct cancer The cancer is in an area, such as the lower part of the common bile duct or perihilar area, where it can be removed completely by surgery. Unresectable, metastatic, or recurrent bile duct cancer Unresectable cancer cannot be removed completely by surgery. Most patients with bile duct cancer cannot have their cancer completely removed by surgery. Metastasis is the spread of cancer from the primary site (place where it started) to other places in the body. Metastatic bile duct cancer may have spread to the liver, other parts of the abdominal cavity, or to distant parts of the body. Recurrent bile duct cancer is cancer that has recurred (come back) after it has been treated. The cancer may come back in the bile ducts, liver, or gallbladder. Less often, it may come back in distant parts of the body.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Bile Duct Cancer (Cholangiocarcinoma) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - The results of diagnostic and staging tests are used to find out if cancer cells have spread. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - Stages are used to describe the different types of bile duct cancer. - Intrahepatic bile duct cancer - Perihilar bile duct cancer - Distal extrahepatic bile duct cancer - The following groups are used to plan treatment: - Resectable (localized) bile duct cancer - Unresectable, metastatic, or recurrent bile duct cancer The results of diagnostic and staging tests are used to find out if cancer cells have spread. The process used to find out if cancer has spread to other parts of the body is called staging. For bile duct cancer, the information gathered from tests and procedures is used to plan treatment, including whether the tumor can be removed by surgery. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if bile duct cancer spreads to the liver, the cancer cells in the liver are actually bile duct cancer cells. The disease is metastatic bile duct cancer, not liver cancer. Stages are used to describe the different types of bile duct cancer. Intrahepatic bile duct cancer - Stage 0: Abnormal cells are found in the innermost layer of tissue lining the intrahepatic bile duct. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. - Stage I: There is one tumor that has spread into the intrahepatic bile duct and it has not spread into any blood vessels. - Stage II: There is one tumor that has spread through the wall of the bile duct and into a blood vessel, or there are multiple tumors that may have spread into a blood vessel. - Stage III: The tumor has spread through the tissue that lines the abdominal wall or has spread to organs or tissues near the liver such as the duodenum, colon, and stomach. - Stage IV: Stage IV is divided into stage IVA and stage IVB. - Stage IVA: The cancer has spread along the outside of the intrahepatic bile ducts or the cancer has spread to nearby lymph nodes. - Stage IVB: The cancer has spread to organs in other parts of the body. Perihilar bile duct cancer - Stage 0: Abnormal cells are found in the innermost layer of tissue lining the perihilar bile duct. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. - Stage I: Cancer has formed in the innermost layer of the wall of the perihilar bile duct and has spread into the muscle layer or fibrous tissue layer of the wall. - Stage II: Cancer has spread through the wall of the perihilar bile duct to nearby fatty tissue or to the liver. - Stage III: Stage III is divided into stage IIIA and stage IIIB. - Stage IIIA: Cancer has spread to branches on one side of the hepatic artery or of the portal vein. - Stage IIIB: Cancer has spread to nearby lymph nodes. Cancer may have spread into the wall of the perihilar bile duct or through the wall to nearby fatty tissue, the liver, or to branches on one side of the hepatic artery or of the portal vein. - Stage IV: Stage IV is divided into stage IVA and stage IVB. - Stage IVA: Cancer has spread to one or more of the following: - the main part of the portal vein and/or common hepatic artery; - the branches of the portal vein and/or common hepatic artery on both sides; - the right hepatic duct and the left branch of the hepatic artery or of the portal vein; - the left hepatic duct and the right branch of the hepatic artery or of the portal vein. Cancer may have spread to nearby lymph nodes. - Stage IVB: Cancer has spread to lymph nodes in more distant parts of the abdomen, or to organs in other parts of the body. Distal extrahepatic bile duct cancer - Stage 0: Abnormal cells are found in the innermost layer of tissue lining the distal extrahepatic bile duct. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. - Stage I: Stage I is divided into stage IA and stage IB. - Stage IA: Cancer has formed and is found in the distal extrahepatic bile duct wall only. - Stage IB: Cancer has formed and has spread through the wall of the distal extrahepatic bile duct but has not spread to nearby organs. - Stage II: Stage II is divided into stage IIA and stage IIB. - Stage IIA: Cancer has spread from the distal extrahepatic bile duct to the gallbladder, pancreas, duodenum, or other nearby organs. - Stage IIB: Cancer has spread from the distal extrahepatic bile duct to nearby lymph nodes. Cancer may have spread through the wall of the duct or to nearby organs. - Stage III: Cancer has spread to the large vessels that carry blood to the organs in the abdomen. Cancer may have spread to nearby lymph nodes. - Stage IV: Cancer has spread to organs in distant parts of the body. The following groups are used to plan treatment: Resectable (localized) bile duct cancer The cancer is in an area, such as the lower part of the common bile duct or perihilar area, where it can be removed completely by surgery. Unresectable, metastatic, or recurrent bile duct cancer Unresectable cancer cannot be removed completely by surgery. Most patients with bile duct cancer cannot have their cancer completely removed by surgery. Metastasis is the spread of cancer from the primary site (place where it started) to other places in the body. Metastatic bile duct cancer may have spread to the liver, other parts of the abdominal cavity, or to distant parts of the body. Recurrent bile duct cancer is cancer that has recurred (come back) after it has been treated. The cancer may come back in the bile ducts, liver, or gallbladder. Less often, it may come back in distant parts of the body.<|eot_id|>
What are the treatments for Bile Duct Cancer (Cholangiocarcinoma) ?
Key Points - There are different types of treatment for patients with bile duct cancer. - Three types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - New types of treatment are being tested in clinical trials. - Liver transplant - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with bile duct cancer. Different types of treatments are available for patients with bile duct cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Three types of standard treatment are used: Surgery The following types of surgery are used to treat bile duct cancer: - Removal of the bile duct: A surgical procedure to remove part of the bile duct if the tumor is small and in the bile duct only. Lymph nodes are removed and tissue from the lymph nodes is viewed under a microscope to see if there is cancer. - Partial hepatectomy: A surgical procedure in which the part of the liver where cancer is found is removed. The part removed may be a wedge of tissue, an entire lobe, or a larger part of the liver, along with some normal tissue around it. - Whipple procedure: A surgical procedure in which the head of the pancreas, the gallbladder, part of the stomach, part of the small intestine, and the bile duct are removed. Enough of the pancreas is left to make digestive juices and insulin. Even if the doctor removes all the cancer that can be seen at the time of the operation, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. It is not yet known whether chemotherapy or radiation therapy given after surgery helps keep the cancer from coming back. The following types of palliative surgery may be done to relieve symptoms caused by a blocked bile duct and improve quality of life: - Biliary bypass: A surgical procedure in which the part of the bile duct before the blockage is connected with part of the bile duct that is past the blockage or to the small intestine. This allows bile to flow to the gallbladder or small intestine. - Stent placement: A surgical procedure in which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to open it and allow bile to flow into the small intestine or through a catheter that goes to a collection bag outside of the body. - Percutaneous transhepatic biliary drainage: A procedure used to x-ray the liver and bile ducts. A thin needle is inserted through the skin below the ribs and into the liver. Dye is injected into the liver or bile ducts and an x-ray is taken. If the bile duct is blocked, a thin, flexible tube called a stent may be left in the liver to drain bile into the small intestine or a collection bag outside the body. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. External and internal radiation therapy are used to treat bile duct cancer. It is not yet known whether external radiation therapy helps in the treatment of resectable bile duct cancer. In unresectable, metastatic, or recurrent bile duct cancer, new ways to improve the effect of external radiation therapy on cancer cells are being studied: - Hyperthermia therapy: A treatment in which body tissue is exposed to high temperatures to make cancer cells more sensitive to the effects of radiation therapy and certain anticancer drugs. - Radiosensitizers: Drugs that make cancer cells more sensitive to radiation therapy. Combining radiation therapy with radiosensitizers may kill more cancer cells. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Systemic chemotherapy is used to treat unresectable, metastatic, or recurrent bile duct cancer. It is not yet known whether systemic chemotherapy helps in the treatment of resectable bile duct cancer. In unresectable, metastatic, or recurrent bile duct cancer, intra-arterial embolization is being studied. It is a procedure in which the blood supply to a tumor is blocked after anticancer drugs are given in blood vessels near the tumor. Sometimes, the anticancer drugs are attached to small beads that are injected into an artery that feeds the tumor. The beads block blood flow to the tumor as they release the drug. This allows a higher amount of drug to reach the tumor for a longer period of time, which may kill more cancer cells. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Liver transplant In a liver transplant, the entire liver is removed and replaced with a healthy donated liver. A liver transplant may be done in patients with perihilar bile duct cancer. If the patient has to wait for a donated liver, other treatment is given as needed. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Bile Duct Cancer Intrahepatic Bile Duct Cancer Resectable Intrahepatic Bile Duct Cancer Treatment of resectable intrahepatic bile duct cancer may include: - Surgery to remove the cancer, which may include partial hepatectomy. Embolization may be done before surgery. - Surgery followed by chemotherapy and/or radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I intrahepatic bile duct cancer and stage II intrahepatic bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Unresectable, Recurrent, or Metastatic Intrahepatic Bile Duct Cancer Treatment of unresectable, recurrent, or metastatic intrahepatic bile duct cancer may include the following: - Stent placement as palliative treatment to relieve symptoms and improve quality of life. - External or internal radiation therapy as palliative treatment to relieve symptoms and improve the quality of life. - Chemotherapy. - A clinical trial of external radiation therapy combined with hyperthermia therapy, radiosensitizer drugs, or chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III intrahepatic bile duct cancer, stage IV intrahepatic bile duct cancer and recurrent intrahepatic bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Perihilar Bile Duct Cancer Resectable Perihilar Bile Duct Cancer Treatment of resectable perihilar bile duct cancer may include the following: - Surgery to remove the cancer, which may include partial hepatectomy. - Stent placement or percutaneous transhepatic biliary drainage as palliative therapy, to relieve jaundice and other symptoms and improve the quality of life. - Surgery followed by radiation therapy and/or chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I perihilar bile duct cancer and stage II perihilar bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Unresectable, Recurrent, or Metastatic Perihilar Bile Duct Cancer Treatment of unresectable, recurrent, or metastatic perihilar bile duct cancer may include the following: - Stent placement or biliary bypass as palliative treatment to relieve symptoms and improve the quality of life. - External or internal radiation therapy as palliative treatment to relieve symptoms and improve the quality of life. - Chemotherapy. - A clinical trial of external radiation therapy combined with hyperthermia therapy, radiosensitizer drugs, or chemotherapy. - A clinical trial of chemotherapy and radiation therapy followed by a liver transplant. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III perihilar bile duct cancer, stage IV perihilar bile duct cancer and recurrent perihilar bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Distal Extrahepatic Bile Duct Cancer Resectable Distal Extrahepatic Bile Duct Cancer Treatment of resectable distal extrahepatic bile duct cancer may include the following: - Surgery to remove the cancer, which may include a Whipple procedure. - Stent placement or percutaneous transhepatic biliary drainage as palliative therapy, to relieve jaundice and other symptoms and improve the quality of life. - Surgery followed by radiation therapy and/or chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with localized extrahepatic bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Unresectable, Recurrent, or Metastatic Distal Extrahepatic Bile Duct Cancer Treatment of unresectable, recurrent, or metastatic distal extrahepatic bile duct cancer may include the following: - Stent placement or biliary bypass as palliative treatment to relieve symptoms and improve the quality of life. - External or internal radiation therapy as palliative treatment to relieve symptoms and improve the quality of life. - Chemotherapy. - A clinical trial of external radiation therapy combined with hyperthermia therapy, radiosensitizer drugs, or chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with unresectable extrahepatic bile duct cancer, recurrent extrahepatic bile duct cancer and metastatic extrahepatic bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Bile Duct Cancer (Cholangiocarcinoma) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with bile duct cancer. - Three types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - New types of treatment are being tested in clinical trials. - Liver transplant - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with bile duct cancer. Different types of treatments are available for patients with bile duct cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Three types of standard treatment are used: Surgery The following types of surgery are used to treat bile duct cancer: - Removal of the bile duct: A surgical procedure to remove part of the bile duct if the tumor is small and in the bile duct only. Lymph nodes are removed and tissue from the lymph nodes is viewed under a microscope to see if there is cancer. - Partial hepatectomy: A surgical procedure in which the part of the liver where cancer is found is removed. The part removed may be a wedge of tissue, an entire lobe, or a larger part of the liver, along with some normal tissue around it. - Whipple procedure: A surgical procedure in which the head of the pancreas, the gallbladder, part of the stomach, part of the small intestine, and the bile duct are removed. Enough of the pancreas is left to make digestive juices and insulin. Even if the doctor removes all the cancer that can be seen at the time of the operation, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. It is not yet known whether chemotherapy or radiation therapy given after surgery helps keep the cancer from coming back. The following types of palliative surgery may be done to relieve symptoms caused by a blocked bile duct and improve quality of life: - Biliary bypass: A surgical procedure in which the part of the bile duct before the blockage is connected with part of the bile duct that is past the blockage or to the small intestine. This allows bile to flow to the gallbladder or small intestine. - Stent placement: A surgical procedure in which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to open it and allow bile to flow into the small intestine or through a catheter that goes to a collection bag outside of the body. - Percutaneous transhepatic biliary drainage: A procedure used to x-ray the liver and bile ducts. A thin needle is inserted through the skin below the ribs and into the liver. Dye is injected into the liver or bile ducts and an x-ray is taken. If the bile duct is blocked, a thin, flexible tube called a stent may be left in the liver to drain bile into the small intestine or a collection bag outside the body. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. External and internal radiation therapy are used to treat bile duct cancer. It is not yet known whether external radiation therapy helps in the treatment of resectable bile duct cancer. In unresectable, metastatic, or recurrent bile duct cancer, new ways to improve the effect of external radiation therapy on cancer cells are being studied: - Hyperthermia therapy: A treatment in which body tissue is exposed to high temperatures to make cancer cells more sensitive to the effects of radiation therapy and certain anticancer drugs. - Radiosensitizers: Drugs that make cancer cells more sensitive to radiation therapy. Combining radiation therapy with radiosensitizers may kill more cancer cells. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Systemic chemotherapy is used to treat unresectable, metastatic, or recurrent bile duct cancer. It is not yet known whether systemic chemotherapy helps in the treatment of resectable bile duct cancer. In unresectable, metastatic, or recurrent bile duct cancer, intra-arterial embolization is being studied. It is a procedure in which the blood supply to a tumor is blocked after anticancer drugs are given in blood vessels near the tumor. Sometimes, the anticancer drugs are attached to small beads that are injected into an artery that feeds the tumor. The beads block blood flow to the tumor as they release the drug. This allows a higher amount of drug to reach the tumor for a longer period of time, which may kill more cancer cells. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Liver transplant In a liver transplant, the entire liver is removed and replaced with a healthy donated liver. A liver transplant may be done in patients with perihilar bile duct cancer. If the patient has to wait for a donated liver, other treatment is given as needed. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Bile Duct Cancer Intrahepatic Bile Duct Cancer Resectable Intrahepatic Bile Duct Cancer Treatment of resectable intrahepatic bile duct cancer may include: - Surgery to remove the cancer, which may include partial hepatectomy. Embolization may be done before surgery. - Surgery followed by chemotherapy and/or radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I intrahepatic bile duct cancer and stage II intrahepatic bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Unresectable, Recurrent, or Metastatic Intrahepatic Bile Duct Cancer Treatment of unresectable, recurrent, or metastatic intrahepatic bile duct cancer may include the following: - Stent placement as palliative treatment to relieve symptoms and improve quality of life. - External or internal radiation therapy as palliative treatment to relieve symptoms and improve the quality of life. - Chemotherapy. - A clinical trial of external radiation therapy combined with hyperthermia therapy, radiosensitizer drugs, or chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III intrahepatic bile duct cancer, stage IV intrahepatic bile duct cancer and recurrent intrahepatic bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Perihilar Bile Duct Cancer Resectable Perihilar Bile Duct Cancer Treatment of resectable perihilar bile duct cancer may include the following: - Surgery to remove the cancer, which may include partial hepatectomy. - Stent placement or percutaneous transhepatic biliary drainage as palliative therapy, to relieve jaundice and other symptoms and improve the quality of life. - Surgery followed by radiation therapy and/or chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I perihilar bile duct cancer and stage II perihilar bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Unresectable, Recurrent, or Metastatic Perihilar Bile Duct Cancer Treatment of unresectable, recurrent, or metastatic perihilar bile duct cancer may include the following: - Stent placement or biliary bypass as palliative treatment to relieve symptoms and improve the quality of life. - External or internal radiation therapy as palliative treatment to relieve symptoms and improve the quality of life. - Chemotherapy. - A clinical trial of external radiation therapy combined with hyperthermia therapy, radiosensitizer drugs, or chemotherapy. - A clinical trial of chemotherapy and radiation therapy followed by a liver transplant. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III perihilar bile duct cancer, stage IV perihilar bile duct cancer and recurrent perihilar bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Distal Extrahepatic Bile Duct Cancer Resectable Distal Extrahepatic Bile Duct Cancer Treatment of resectable distal extrahepatic bile duct cancer may include the following: - Surgery to remove the cancer, which may include a Whipple procedure. - Stent placement or percutaneous transhepatic biliary drainage as palliative therapy, to relieve jaundice and other symptoms and improve the quality of life. - Surgery followed by radiation therapy and/or chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with localized extrahepatic bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Unresectable, Recurrent, or Metastatic Distal Extrahepatic Bile Duct Cancer Treatment of unresectable, recurrent, or metastatic distal extrahepatic bile duct cancer may include the following: - Stent placement or biliary bypass as palliative treatment to relieve symptoms and improve the quality of life. - External or internal radiation therapy as palliative treatment to relieve symptoms and improve the quality of life. - Chemotherapy. - A clinical trial of external radiation therapy combined with hyperthermia therapy, radiosensitizer drugs, or chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with unresectable extrahepatic bile duct cancer, recurrent extrahepatic bile duct cancer and metastatic extrahepatic bile duct cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
What is (are) Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?
Key Points - Pancreatic neuroendocrine tumors form in hormone-making cells (islet cells) of the pancreas. - Pancreatic NETs may or may not cause signs or symptoms. - There are different kinds of functional pancreatic NETs. - Having certain syndromes can increase the risk of pancreatic NETs. - Different types of pancreatic NETs have different signs and symptoms. - Lab tests and imaging tests are used to detect (find) and diagnose pancreatic NETs. - Other kinds of lab tests are used to check for the specific type of pancreatic NETs. - Certain factors affect prognosis (chance of recovery) and treatment options. Pancreatic neuroendocrine tumors form in hormone-making cells (islet cells) of the pancreas. The pancreas is a gland about 6 inches long that is shaped like a thin pear lying on its side. The wider end of the pancreas is called the head, the middle section is called the body, and the narrow end is called the tail. The pancreas lies behind the stomach and in front of the spine. There are two kinds of cells in the pancreas: - Endocrine pancreas cells make several kinds of hormones (chemicals that control the actions of certain cells or organs in the body), such as insulin to control blood sugar. They cluster together in many small groups (islets) throughout the pancreas. Endocrine pancreas cells are also called islet cells or islets of Langerhans. Tumors that form in islet cells are called islet cell tumors, pancreatic endocrine tumors, or pancreatic neuroendocrine tumors (pancreatic NETs). - Exocrine pancreas cells make enzymes that are released into the small intestine to help the body digest food. Most of the pancreas is made of ducts with small sacs at the end of the ducts, which are lined with exocrine cells. This summary discusses islet cell tumors of the endocrine pancreas. See the PDQ summary on Pancreatic Cancer Treatment for information on exocrine pancreatic cancer. Pancreatic neuroendocrine tumors (NETs) may be benign (not cancer) or malignant (cancer). When pancreatic NETs are malignant, they are called pancreatic endocrine cancer or islet cell carcinoma. Pancreatic NETs are much less common than pancreatic exocrine tumors and have a better prognosis. There are different kinds of functional pancreatic NETs. Pancreatic NETs make different kinds of hormones such as gastrin, insulin, and glucagon. Functional pancreatic NETs include the following: - Gastrinoma: A tumor that forms in cells that make gastrin. Gastrin is a hormone that causes the stomach to release an acid that helps digest food. Both gastrin and stomach acid are increased by gastrinomas. When increased stomach acid, stomach ulcers, and diarrhea are caused by a tumor that makes gastrin, it is called Zollinger-Ellison syndrome. A gastrinoma usually forms in the head of the pancreas and sometimes forms in the small intestine. Most gastrinomas are malignant (cancer). - Insulinoma: A tumor that forms in cells that make insulin. Insulin is a hormone that controls the amount of glucose (sugar) in the blood. It moves glucose into the cells, where it can be used by the body for energy. Insulinomas are usually slow-growing tumors that rarely spread. An insulinoma forms in the head, body, or tail of the pancreas. Insulinomas are usually benign (not cancer). - Glucagonoma: A tumor that forms in cells that make glucagon. Glucagon is a hormone that increases the amount of glucose in the blood. It causes the liver to break down glycogen. Too much glucagon causes hyperglycemia (high blood sugar). A glucagonoma usually forms in the tail of the pancreas. Most glucagonomas are malignant (cancer). - Other types of tumors: There are other rare types of functional pancreatic NETs that make hormones, including hormones that control the balance of sugar, salt, and water in the body. These tumors include: - VIPomas, which make vasoactive intestinal peptide. VIPoma may also be called Verner-Morrison syndrome. - Somatostatinomas, which make somatostatin. These other types of tumors are grouped together because they are treated in much the same way.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Pancreatic neuroendocrine tumors form in hormone-making cells (islet cells) of the pancreas. - Pancreatic NETs may or may not cause signs or symptoms. - There are different kinds of functional pancreatic NETs. - Having certain syndromes can increase the risk of pancreatic NETs. - Different types of pancreatic NETs have different signs and symptoms. - Lab tests and imaging tests are used to detect (find) and diagnose pancreatic NETs. - Other kinds of lab tests are used to check for the specific type of pancreatic NETs. - Certain factors affect prognosis (chance of recovery) and treatment options. Pancreatic neuroendocrine tumors form in hormone-making cells (islet cells) of the pancreas. The pancreas is a gland about 6 inches long that is shaped like a thin pear lying on its side. The wider end of the pancreas is called the head, the middle section is called the body, and the narrow end is called the tail. The pancreas lies behind the stomach and in front of the spine. There are two kinds of cells in the pancreas: - Endocrine pancreas cells make several kinds of hormones (chemicals that control the actions of certain cells or organs in the body), such as insulin to control blood sugar. They cluster together in many small groups (islets) throughout the pancreas. Endocrine pancreas cells are also called islet cells or islets of Langerhans. Tumors that form in islet cells are called islet cell tumors, pancreatic endocrine tumors, or pancreatic neuroendocrine tumors (pancreatic NETs). - Exocrine pancreas cells make enzymes that are released into the small intestine to help the body digest food. Most of the pancreas is made of ducts with small sacs at the end of the ducts, which are lined with exocrine cells. This summary discusses islet cell tumors of the endocrine pancreas. See the PDQ summary on Pancreatic Cancer Treatment for information on exocrine pancreatic cancer. Pancreatic neuroendocrine tumors (NETs) may be benign (not cancer) or malignant (cancer). When pancreatic NETs are malignant, they are called pancreatic endocrine cancer or islet cell carcinoma. Pancreatic NETs are much less common than pancreatic exocrine tumors and have a better prognosis. There are different kinds of functional pancreatic NETs. Pancreatic NETs make different kinds of hormones such as gastrin, insulin, and glucagon. Functional pancreatic NETs include the following: - Gastrinoma: A tumor that forms in cells that make gastrin. Gastrin is a hormone that causes the stomach to release an acid that helps digest food. Both gastrin and stomach acid are increased by gastrinomas. When increased stomach acid, stomach ulcers, and diarrhea are caused by a tumor that makes gastrin, it is called Zollinger-Ellison syndrome. A gastrinoma usually forms in the head of the pancreas and sometimes forms in the small intestine. Most gastrinomas are malignant (cancer). - Insulinoma: A tumor that forms in cells that make insulin. Insulin is a hormone that controls the amount of glucose (sugar) in the blood. It moves glucose into the cells, where it can be used by the body for energy. Insulinomas are usually slow-growing tumors that rarely spread. An insulinoma forms in the head, body, or tail of the pancreas. Insulinomas are usually benign (not cancer). - Glucagonoma: A tumor that forms in cells that make glucagon. Glucagon is a hormone that increases the amount of glucose in the blood. It causes the liver to break down glycogen. Too much glucagon causes hyperglycemia (high blood sugar). A glucagonoma usually forms in the tail of the pancreas. Most glucagonomas are malignant (cancer). - Other types of tumors: There are other rare types of functional pancreatic NETs that make hormones, including hormones that control the balance of sugar, salt, and water in the body. These tumors include: - VIPomas, which make vasoactive intestinal peptide. VIPoma may also be called Verner-Morrison syndrome. - Somatostatinomas, which make somatostatin. These other types of tumors are grouped together because they are treated in much the same way.<|eot_id|>
Who is at risk for Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)? ?
Having certain syndromes can increase the risk of pancreatic NETs. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Multiple endocrine neoplasia type 1 (MEN1) syndrome is a risk factor for pancreatic NETs.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Having certain syndromes can increase the risk of pancreatic NETs. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Multiple endocrine neoplasia type 1 (MEN1) syndrome is a risk factor for pancreatic NETs.<|eot_id|>
How to diagnose Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?
Lab tests and imaging tests are used to detect (find) and diagnose pancreatic NETs. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances, such as glucose (sugar), released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Chromogranin A test: A test in which a blood sample is checked to measure the amount of chromogranin A in the blood. A higher than normal amount of chromogranin A and normal amounts of hormones such as gastrin, insulin, and glucagon can be a sign of a non-functional pancreatic NET. - Abdominal CT scan (CAT scan): A procedure that makes a series of detailed pictures of the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Somatostatin receptor scintigraphy : A type of radionuclide scan that may be used to find small pancreatic NETs. A small amount of radioactive octreotide (a hormone that attaches to tumors) is injected into a vein and travels through the blood. The radioactive octreotide attaches to the tumor and a special camera that detects radioactivity is used to show where the tumors are in the body. This procedure is also called octreotide scan and SRS. - Endoscopic ultrasound (EUS): A procedure in which an endoscope is inserted into the body, usually through the mouth or rectum. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A probe at the end of the endoscope is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. This procedure is also called endosonography. - Endoscopic retrograde cholangiopancreatography (ERCP): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes pancreatic cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope is passed through the mouth, esophagus, and stomach into the first part of the small intestine. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A catheter (a smaller tube) is then inserted through the endoscope into the pancreatic ducts. A dye is injected through the catheter into the ducts and an x-ray is taken. If the ducts are blocked by a tumor, a fine tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. Tissue samples may also be taken and checked under a microscope for signs of cancer. - Angiogram : A procedure to look at blood vessels and the flow of blood. A contrast dye is injected into the blood vessel. As the contrast dye moves through the blood vessel, x-rays are taken to see if there are any blockages. - Laparotomy : A surgical procedure in which an incision (cut) is made in the wall of the abdomen to check the inside of the abdomen for signs of disease. The size of the incision depends on the reason the laparotomy is being done. Sometimes organs are removed or tissue samples are taken and checked under a microscope for signs of disease. - Intraoperative ultrasound : A procedure that uses high-energy sound waves (ultrasound) to create images of internal organs or tissues during surgery. A transducer placed directly on the organ or tissue is used to make the sound waves, which create echoes. The transducer receives the echoes and sends them to a computer, which uses the echoes to make pictures called sonograms. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. There are several ways to do a biopsy for pancreatic NETs. Cells may be removed using a fine or wide needle inserted into the pancreas during an x-ray or ultrasound. Tissue may also be removed during a laparoscopy (a surgical incision made in the wall of the abdomen). - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the blood. The radioactive material collects in bones where cancer cells have spread and is detected by a scanner. Other kinds of lab tests are used to check for the specific type of pancreatic NETs. The following tests and procedures may be used: Gastrinoma - Fasting serum gastrin test: A test in which a blood sample is checked to measure the amount of gastrin in the blood. This test is done after the patient has had nothing to eat or drink for at least 8 hours. Conditions other than gastrinoma can cause an increase in the amount of gastrin in the blood. - Basal acid output test: A test to measure the amount of acid made by the stomach. The test is done after the patient has had nothing to eat or drink for at least 8 hours. A tube is inserted through the nose or throat, into the stomach. The stomach contents are removed and four samples of gastric acid are removed through the tube. These samples are used to find out the amount of gastric acid made during the test and the pH level of the gastric secretions. - Secretin stimulation test : If the basal acid output test result is not normal, a secretin stimulation test may be done. The tube is moved into the small intestine and samples are taken from the small intestine after a drug called secretin is injected. Secretin causes the small intestine to make acid. When there is a gastrinoma, the secretin causes an increase in how much gastric acid is made and the level of gastrin in the blood. - Somatostatin receptor scintigraphy: A type of radionuclide scan that may be used to find small pancreatic NETs. A small amount of radioactive octreotide (a hormone that attaches to tumors) is injected into a vein and travels through the blood. The radioactive octreotide attaches to the tumor and a special camera that detects radioactivity is used to show where the tumors are in the body. This procedure is also called octreotide scan and SRS. Insulinoma - Fasting serum glucose and insulin test: A test in which a blood sample is checked to measure the amounts of glucose (sugar) and insulin in the blood. The test is done after the patient has had nothing to eat or drink for at least 24 hours. Glucagonoma - Fasting serum glucagon test: A test in which a blood sample is checked to measure the amount of glucagon in the blood. The test is done after the patient has had nothing to eat or drink for at least 8 hours. Other tumor types - VIPoma - Serum VIP (vasoactive intestinal peptide) test: A test in which a blood sample is checked to measure the amount of VIP. - Blood chemistry studies: A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. In VIPoma, there is a lower than normal amount of potassium. - Stool analysis : A stool sample is checked for a higher than normal sodium (salt) and potassium levels. - Somatostatinoma - Fasting serum somatostatin test: A test in which a blood sample is checked to measure the amount of somatostatin in the blood. The test is done after the patient has had nothing to eat or drink for at least 8 hours. - Somatostatin receptor scintigraphy: A type of radionuclide scan that may be used to find small pancreatic NETs. A small amount of radioactive octreotide (a hormone that attaches to tumors) is injected into a vein and travels through the blood. The radioactive octreotide attaches to the tumor and a special camera that detects radioactivity is used to show where the tumors are in the body. This procedure is also called octreotide scan and SRS.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to diagnose Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Lab tests and imaging tests are used to detect (find) and diagnose pancreatic NETs. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances, such as glucose (sugar), released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Chromogranin A test: A test in which a blood sample is checked to measure the amount of chromogranin A in the blood. A higher than normal amount of chromogranin A and normal amounts of hormones such as gastrin, insulin, and glucagon can be a sign of a non-functional pancreatic NET. - Abdominal CT scan (CAT scan): A procedure that makes a series of detailed pictures of the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Somatostatin receptor scintigraphy : A type of radionuclide scan that may be used to find small pancreatic NETs. A small amount of radioactive octreotide (a hormone that attaches to tumors) is injected into a vein and travels through the blood. The radioactive octreotide attaches to the tumor and a special camera that detects radioactivity is used to show where the tumors are in the body. This procedure is also called octreotide scan and SRS. - Endoscopic ultrasound (EUS): A procedure in which an endoscope is inserted into the body, usually through the mouth or rectum. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A probe at the end of the endoscope is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. This procedure is also called endosonography. - Endoscopic retrograde cholangiopancreatography (ERCP): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes pancreatic cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope is passed through the mouth, esophagus, and stomach into the first part of the small intestine. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A catheter (a smaller tube) is then inserted through the endoscope into the pancreatic ducts. A dye is injected through the catheter into the ducts and an x-ray is taken. If the ducts are blocked by a tumor, a fine tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. Tissue samples may also be taken and checked under a microscope for signs of cancer. - Angiogram : A procedure to look at blood vessels and the flow of blood. A contrast dye is injected into the blood vessel. As the contrast dye moves through the blood vessel, x-rays are taken to see if there are any blockages. - Laparotomy : A surgical procedure in which an incision (cut) is made in the wall of the abdomen to check the inside of the abdomen for signs of disease. The size of the incision depends on the reason the laparotomy is being done. Sometimes organs are removed or tissue samples are taken and checked under a microscope for signs of disease. - Intraoperative ultrasound : A procedure that uses high-energy sound waves (ultrasound) to create images of internal organs or tissues during surgery. A transducer placed directly on the organ or tissue is used to make the sound waves, which create echoes. The transducer receives the echoes and sends them to a computer, which uses the echoes to make pictures called sonograms. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. There are several ways to do a biopsy for pancreatic NETs. Cells may be removed using a fine or wide needle inserted into the pancreas during an x-ray or ultrasound. Tissue may also be removed during a laparoscopy (a surgical incision made in the wall of the abdomen). - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the blood. The radioactive material collects in bones where cancer cells have spread and is detected by a scanner. Other kinds of lab tests are used to check for the specific type of pancreatic NETs. The following tests and procedures may be used: Gastrinoma - Fasting serum gastrin test: A test in which a blood sample is checked to measure the amount of gastrin in the blood. This test is done after the patient has had nothing to eat or drink for at least 8 hours. Conditions other than gastrinoma can cause an increase in the amount of gastrin in the blood. - Basal acid output test: A test to measure the amount of acid made by the stomach. The test is done after the patient has had nothing to eat or drink for at least 8 hours. A tube is inserted through the nose or throat, into the stomach. The stomach contents are removed and four samples of gastric acid are removed through the tube. These samples are used to find out the amount of gastric acid made during the test and the pH level of the gastric secretions. - Secretin stimulation test : If the basal acid output test result is not normal, a secretin stimulation test may be done. The tube is moved into the small intestine and samples are taken from the small intestine after a drug called secretin is injected. Secretin causes the small intestine to make acid. When there is a gastrinoma, the secretin causes an increase in how much gastric acid is made and the level of gastrin in the blood. - Somatostatin receptor scintigraphy: A type of radionuclide scan that may be used to find small pancreatic NETs. A small amount of radioactive octreotide (a hormone that attaches to tumors) is injected into a vein and travels through the blood. The radioactive octreotide attaches to the tumor and a special camera that detects radioactivity is used to show where the tumors are in the body. This procedure is also called octreotide scan and SRS. Insulinoma - Fasting serum glucose and insulin test: A test in which a blood sample is checked to measure the amounts of glucose (sugar) and insulin in the blood. The test is done after the patient has had nothing to eat or drink for at least 24 hours. Glucagonoma - Fasting serum glucagon test: A test in which a blood sample is checked to measure the amount of glucagon in the blood. The test is done after the patient has had nothing to eat or drink for at least 8 hours. Other tumor types - VIPoma - Serum VIP (vasoactive intestinal peptide) test: A test in which a blood sample is checked to measure the amount of VIP. - Blood chemistry studies: A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. In VIPoma, there is a lower than normal amount of potassium. - Stool analysis : A stool sample is checked for a higher than normal sodium (salt) and potassium levels. - Somatostatinoma - Fasting serum somatostatin test: A test in which a blood sample is checked to measure the amount of somatostatin in the blood. The test is done after the patient has had nothing to eat or drink for at least 8 hours. - Somatostatin receptor scintigraphy: A type of radionuclide scan that may be used to find small pancreatic NETs. A small amount of radioactive octreotide (a hormone that attaches to tumors) is injected into a vein and travels through the blood. The radioactive octreotide attaches to the tumor and a special camera that detects radioactivity is used to show where the tumors are in the body. This procedure is also called octreotide scan and SRS.<|eot_id|>
What is the outlook for Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?
Certain factors affect prognosis (chance of recovery) and treatment options. Pancreatic NETs can often be cured. The prognosis (chance of recovery) and treatment options depend on the following: - The type of cancer cell. - Where the tumor is found in the pancreas. - Whether the tumor has spread to more than one place in the pancreas or to other parts of the body. - Whether the patient has MEN1 syndrome. - The patient's age and general health. - Whether the cancer has just been diagnosed or has recurred (come back).
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is the outlook for Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Certain factors affect prognosis (chance of recovery) and treatment options. Pancreatic NETs can often be cured. The prognosis (chance of recovery) and treatment options depend on the following: - The type of cancer cell. - Where the tumor is found in the pancreas. - Whether the tumor has spread to more than one place in the pancreas or to other parts of the body. - Whether the patient has MEN1 syndrome. - The patient's age and general health. - Whether the cancer has just been diagnosed or has recurred (come back).<|eot_id|>
What are the stages of Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?
Key Points - The plan for cancer treatment depends on where the NET is found in the pancreas and whether it has spread. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. The plan for cancer treatment depends on where the NET is found in the pancreas and whether it has spread. The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The results of the tests and procedures used to diagnose pancreatic neuroendocrine tumors (NETs) are also used to find out whether the cancer has spread. See the General Information section for a description of these tests and procedures. Although there is a standard staging system for pancreatic NETs, it is not used to plan treatment. Treatment of pancreatic NETs is based on the following: - Whether the cancer is found in one place in the pancreas. - Whether the cancer is found in several places in the pancreas. - Whether the cancer has spread to lymph nodes near the pancreas or to other parts of the body such as the liver, lung, peritoneum, or bone. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of tumor as the primary tumor. For example, if a pancreatic neuroendocrine tumor spreads to the liver, the tumor cells in the liver are actually neuroendocrine tumor cells. The disease is metastatic pancreatic neuroendocrine tumor, not liver cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the stages of Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - The plan for cancer treatment depends on where the NET is found in the pancreas and whether it has spread. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. The plan for cancer treatment depends on where the NET is found in the pancreas and whether it has spread. The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The results of the tests and procedures used to diagnose pancreatic neuroendocrine tumors (NETs) are also used to find out whether the cancer has spread. See the General Information section for a description of these tests and procedures. Although there is a standard staging system for pancreatic NETs, it is not used to plan treatment. Treatment of pancreatic NETs is based on the following: - Whether the cancer is found in one place in the pancreas. - Whether the cancer is found in several places in the pancreas. - Whether the cancer has spread to lymph nodes near the pancreas or to other parts of the body such as the liver, lung, peritoneum, or bone. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of tumor as the primary tumor. For example, if a pancreatic neuroendocrine tumor spreads to the liver, the tumor cells in the liver are actually neuroendocrine tumor cells. The disease is metastatic pancreatic neuroendocrine tumor, not liver cancer.<|eot_id|>
What are the treatments for Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?
Key Points - There are different types of treatment for patients with pancreatic NETs. - Six types of standard treatment are used: - Surgery - Chemotherapy - Hormone therapy - Hepatic arterial occlusion or chemoembolization - Targeted therapy - Supportive care - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with pancreatic NETs. Different types of treatments are available for patients with pancreatic neuroendocrine tumors (NETs). Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Six types of standard treatment are used: Surgery An operation may be done to remove the tumor. One of the following types of surgery may be used: - Enucleation: Surgery to remove the tumor only. This may be done when cancer occurs in one place in the pancreas. - Pancreatoduodenectomy: A surgical procedure in which the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct are removed. Enough of the pancreas is left to make digestive juices and insulin. The organs removed during this procedure depend on the patient's condition. This is also called the Whipple procedure. - Distal pancreatectomy: Surgery to remove the body and tail of the pancreas. The spleen may also be removed. - Total gastrectomy: Surgery to remove the whole stomach. - Parietal cell vagotomy: Surgery to cut the nerve that causes stomach cells to make acid. - Liver resection: Surgery to remove part or all of the liver. - Radiofrequency ablation: The use of a special probe with tiny electrodes that kill cancer cells. Sometimes the probe is inserted directly through the skin and only local anesthesia is needed. In other cases, the probe is inserted through an incision in the abdomen. This is done in the hospital with general anesthesia. - Cryosurgical ablation: A procedure in which tissue is frozen to destroy abnormal cells. This is usually done with a special instrument that contains liquid nitrogen or liquid carbon dioxide. The instrument may be used during surgery or laparoscopy or inserted through the skin. This procedure is also called cryoablation. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is the use of more than one anticancer drug. The way the chemotherapy is given depends on the type of the cancer being treated. Hormone therapy Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hepatic arterial occlusion or chemoembolization Hepatic arterial occlusion uses drugs, small particles, or other agents to block or reduce the flow of blood to the liver through the hepatic artery (the major blood vessel that carries blood to the liver). This is done to kill cancer cells growing in the liver. The tumor is prevented from getting the oxygen and nutrients it needs to grow. The liver continues to receive blood from the hepatic portal vein, which carries blood from the stomach and intestine. Chemotherapy delivered during hepatic arterial occlusion is called chemoembolization. The anticancer drug is injected into the hepatic artery through a catheter (thin tube). The drug is mixed with the substance that blocks the artery and cuts off blood flow to the tumor. Most of the anticancer drug is trapped near the tumor and only a small amount of the drug reaches other parts of the body. The blockage may be temporary or permanent, depending on the substance used to block the artery. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Certain types of targeted therapies are being studied in the treatment of pancreatic NETs. Supportive care Supportive care is given to lessen the problems caused by the disease or its treatment. Supportive care for pancreatic NETs may include treatment for the following: - Stomach ulcers may be treated with drug therapy such as: - Proton pump inhibitor drugs such as omeprazole, lansoprazole, or pantoprazole. - Histamine blocking drugs such as cimetidine, ranitidine, or famotidine. - Somatostatin-type drugs such as octreotide. - Diarrhea may be treated with: - Intravenous (IV) fluids with electrolytes such as potassium or chloride. - Somatostatin-type drugs such as octreotide. - Low blood sugar may be treated by having small, frequent meals or with drug therapy to maintain a normal blood sugar level. - High blood sugar may be treated with drugs taken by mouth or insulin by injection. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Pancreatic Neuroendocrine Tumors Gastrinoma Treatment of gastrinoma may include supportive care and the following: - For symptoms caused by too much stomach acid, treatment may be a drug that decreases the amount of acid made by the stomach. - For a single tumor in the head of the pancreas: - Surgery to remove the tumor. - Surgery to cut the nerve that causes stomach cells to make acid and treatment with a drug that decreases stomach acid. - Surgery to remove the whole stomach (rare). - For a single tumor in the body or tail of the pancreas, treatment is usually surgery to remove the body or tail of the pancreas. - For several tumors in the pancreas, treatment is usually surgery to remove the body or tail of the pancreas. If tumor remains after surgery, treatment may include either: - Surgery to cut the nerve that causes stomach cells to make acid and treatment with a drug that decreases stomach acid; or - Surgery to remove the whole stomach (rare). - For one or more tumors in the duodenum (the part of the small intestine that connects to the stomach), treatment is usually pancreatoduodenectomy (surgery to remove the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct). - If no tumor is found, treatment may include the following: - Surgery to cut the nerve that causes stomach cells to make acid and treatment with a drug that decreases stomach acid. - Surgery to remove the whole stomach (rare). - If the cancer has spread to the liver, treatment may include: - Surgery to remove part or all of the liver. - Radiofrequency ablation or cryosurgical ablation. - Chemoembolization. - If cancer has spread to other parts of the body or does not get better with surgery or drugs to decrease stomach acid, treatment may include: - Chemotherapy. - Hormone therapy. - If the cancer mostly affects the liver and the patient has severe symptoms from hormones or from the size of tumor, treatment may include: - Hepatic arterial occlusion, with or without systemic chemotherapy. - Chemoembolization, with or without systemic chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with gastrinoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Insulinoma Treatment of insulinoma may include the following: - For one small tumor in the head or tail of the pancreas, treatment is usually surgery to remove the tumor. - For one large tumor in the head of the pancreas that cannot be removed by surgery, treatment is usually pancreatoduodenectomy (surgery to remove the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct). - For one large tumor in the body or tail of the pancreas, treatment is usually a distal pancreatectomy (surgery to remove the body and tail of the pancreas). - For more than one tumor in the pancreas, treatment is usually surgery to remove any tumors in the head of the pancreas and the body and tail of the pancreas. - For tumors that cannot be removed by surgery, treatment may include the following: - Combination chemotherapy. - Palliative drug therapy to decrease the amount of insulin made by the pancreas. - Hormone therapy. - Radiofrequency ablation or cryosurgical ablation. - For cancer that has spread to lymph nodes or other parts of the body, treatment may include the following: - Surgery to remove the cancer. - Radiofrequency ablation or cryosurgical ablation, if the cancer cannot be removed by surgery. - If the cancer mostly affects the liver and the patient has severe symptoms from hormones or from the size of tumor, treatment may include: - Hepatic arterial occlusion, with or without systemic chemotherapy. - Chemoembolization, with or without systemic chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with insulinoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Glucagonoma Treatment may include the following: - For one small tumor in the head or tail of the pancreas, treatment is usually surgery to remove the tumor. - For one large tumor in the head of the pancreas that cannot be removed by surgery, treatment is usually pancreatoduodenectomy (surgery to remove the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct). - For more than one tumor in the pancreas, treatment is usually surgery to remove the tumor or surgery to remove the body and tail of the pancreas. - For tumors that cannot be removed by surgery, treatment may include the following: - Combination chemotherapy. - Hormone therapy. - Radiofrequency ablation or cryosurgical ablation. - For cancer that has spread to lymph nodes or other parts of the body, treatment may include the following: - Surgery to remove the cancer. - Radiofrequency ablation or cryosurgical ablation, if the cancer cannot be removed by surgery. - If the cancer mostly affects the liver and the patient has severe symptoms from hormones or from the size of tumor, treatment may include: - Hepatic arterial occlusion, with or without systemic chemotherapy. - Chemoembolization, with or without systemic chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with glucagonoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Other Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) For VIPoma, treatment may include the following: - Fluids and hormone therapy to replace fluids and electrolytes that have been lost from the body. - Surgery to remove the tumor and nearby lymph nodes. - Surgery to remove as much of the tumor as possible when the tumor cannot be completely removed or has spread to distant parts of the body. This is palliative therapy to relieve symptoms and improve the quality of life. - For tumors that have spread to lymph nodes or other parts of the body, treatment may include the following: - Surgery to remove the tumor. - Radiofrequency ablation or cryosurgical ablation, if the tumor cannot be removed by surgery. - For tumors that continue to grow during treatment or have spread to other parts of the body, treatment may include the following: - Chemotherapy. - Targeted therapy. For somatostatinoma, treatment may include the following: - Surgery to remove the tumor. - For cancer that has spread to distant parts of the body, surgery to remove as much of the cancer as possible to relieve symptoms and improve quality of life. - For tumors that continue to grow during treatment or have spread to other parts of the body, treatment may include the following: - Chemotherapy. - Targeted therapy. Treatment of other types of pancreatic neuroendocrine tumors (NETs) may include the following: - Surgery to remove the tumor. - For cancer that has spread to distant parts of the body, surgery to remove as much of the cancer as possible or hormone therapy to relieve symptoms and improve quality of life. - For tumors that continue to grow during treatment or have spread to other parts of the body, treatment may include the following: - Chemotherapy. - Targeted therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with islet cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent or Progressive Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment of pancreatic neuroendocrine tumors (NETs) that continue to grow during treatment or recur (come back) may include the following: - Surgery to remove the tumor. - Chemotherapy. - Hormone therapy. - Targeted therapy. - For liver metastases: - Regional chemotherapy. - Hepatic arterial occlusion or chemoembolization, with or without systemic chemotherapy. - A clinical trial of a new therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent islet cell carcinoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the treatments for Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - There are different types of treatment for patients with pancreatic NETs. - Six types of standard treatment are used: - Surgery - Chemotherapy - Hormone therapy - Hepatic arterial occlusion or chemoembolization - Targeted therapy - Supportive care - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with pancreatic NETs. Different types of treatments are available for patients with pancreatic neuroendocrine tumors (NETs). Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Six types of standard treatment are used: Surgery An operation may be done to remove the tumor. One of the following types of surgery may be used: - Enucleation: Surgery to remove the tumor only. This may be done when cancer occurs in one place in the pancreas. - Pancreatoduodenectomy: A surgical procedure in which the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct are removed. Enough of the pancreas is left to make digestive juices and insulin. The organs removed during this procedure depend on the patient's condition. This is also called the Whipple procedure. - Distal pancreatectomy: Surgery to remove the body and tail of the pancreas. The spleen may also be removed. - Total gastrectomy: Surgery to remove the whole stomach. - Parietal cell vagotomy: Surgery to cut the nerve that causes stomach cells to make acid. - Liver resection: Surgery to remove part or all of the liver. - Radiofrequency ablation: The use of a special probe with tiny electrodes that kill cancer cells. Sometimes the probe is inserted directly through the skin and only local anesthesia is needed. In other cases, the probe is inserted through an incision in the abdomen. This is done in the hospital with general anesthesia. - Cryosurgical ablation: A procedure in which tissue is frozen to destroy abnormal cells. This is usually done with a special instrument that contains liquid nitrogen or liquid carbon dioxide. The instrument may be used during surgery or laparoscopy or inserted through the skin. This procedure is also called cryoablation. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is the use of more than one anticancer drug. The way the chemotherapy is given depends on the type of the cancer being treated. Hormone therapy Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hepatic arterial occlusion or chemoembolization Hepatic arterial occlusion uses drugs, small particles, or other agents to block or reduce the flow of blood to the liver through the hepatic artery (the major blood vessel that carries blood to the liver). This is done to kill cancer cells growing in the liver. The tumor is prevented from getting the oxygen and nutrients it needs to grow. The liver continues to receive blood from the hepatic portal vein, which carries blood from the stomach and intestine. Chemotherapy delivered during hepatic arterial occlusion is called chemoembolization. The anticancer drug is injected into the hepatic artery through a catheter (thin tube). The drug is mixed with the substance that blocks the artery and cuts off blood flow to the tumor. Most of the anticancer drug is trapped near the tumor and only a small amount of the drug reaches other parts of the body. The blockage may be temporary or permanent, depending on the substance used to block the artery. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Certain types of targeted therapies are being studied in the treatment of pancreatic NETs. Supportive care Supportive care is given to lessen the problems caused by the disease or its treatment. Supportive care for pancreatic NETs may include treatment for the following: - Stomach ulcers may be treated with drug therapy such as: - Proton pump inhibitor drugs such as omeprazole, lansoprazole, or pantoprazole. - Histamine blocking drugs such as cimetidine, ranitidine, or famotidine. - Somatostatin-type drugs such as octreotide. - Diarrhea may be treated with: - Intravenous (IV) fluids with electrolytes such as potassium or chloride. - Somatostatin-type drugs such as octreotide. - Low blood sugar may be treated by having small, frequent meals or with drug therapy to maintain a normal blood sugar level. - High blood sugar may be treated with drugs taken by mouth or insulin by injection. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Pancreatic Neuroendocrine Tumors Gastrinoma Treatment of gastrinoma may include supportive care and the following: - For symptoms caused by too much stomach acid, treatment may be a drug that decreases the amount of acid made by the stomach. - For a single tumor in the head of the pancreas: - Surgery to remove the tumor. - Surgery to cut the nerve that causes stomach cells to make acid and treatment with a drug that decreases stomach acid. - Surgery to remove the whole stomach (rare). - For a single tumor in the body or tail of the pancreas, treatment is usually surgery to remove the body or tail of the pancreas. - For several tumors in the pancreas, treatment is usually surgery to remove the body or tail of the pancreas. If tumor remains after surgery, treatment may include either: - Surgery to cut the nerve that causes stomach cells to make acid and treatment with a drug that decreases stomach acid; or - Surgery to remove the whole stomach (rare). - For one or more tumors in the duodenum (the part of the small intestine that connects to the stomach), treatment is usually pancreatoduodenectomy (surgery to remove the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct). - If no tumor is found, treatment may include the following: - Surgery to cut the nerve that causes stomach cells to make acid and treatment with a drug that decreases stomach acid. - Surgery to remove the whole stomach (rare). - If the cancer has spread to the liver, treatment may include: - Surgery to remove part or all of the liver. - Radiofrequency ablation or cryosurgical ablation. - Chemoembolization. - If cancer has spread to other parts of the body or does not get better with surgery or drugs to decrease stomach acid, treatment may include: - Chemotherapy. - Hormone therapy. - If the cancer mostly affects the liver and the patient has severe symptoms from hormones or from the size of tumor, treatment may include: - Hepatic arterial occlusion, with or without systemic chemotherapy. - Chemoembolization, with or without systemic chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with gastrinoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Insulinoma Treatment of insulinoma may include the following: - For one small tumor in the head or tail of the pancreas, treatment is usually surgery to remove the tumor. - For one large tumor in the head of the pancreas that cannot be removed by surgery, treatment is usually pancreatoduodenectomy (surgery to remove the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct). - For one large tumor in the body or tail of the pancreas, treatment is usually a distal pancreatectomy (surgery to remove the body and tail of the pancreas). - For more than one tumor in the pancreas, treatment is usually surgery to remove any tumors in the head of the pancreas and the body and tail of the pancreas. - For tumors that cannot be removed by surgery, treatment may include the following: - Combination chemotherapy. - Palliative drug therapy to decrease the amount of insulin made by the pancreas. - Hormone therapy. - Radiofrequency ablation or cryosurgical ablation. - For cancer that has spread to lymph nodes or other parts of the body, treatment may include the following: - Surgery to remove the cancer. - Radiofrequency ablation or cryosurgical ablation, if the cancer cannot be removed by surgery. - If the cancer mostly affects the liver and the patient has severe symptoms from hormones or from the size of tumor, treatment may include: - Hepatic arterial occlusion, with or without systemic chemotherapy. - Chemoembolization, with or without systemic chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with insulinoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Glucagonoma Treatment may include the following: - For one small tumor in the head or tail of the pancreas, treatment is usually surgery to remove the tumor. - For one large tumor in the head of the pancreas that cannot be removed by surgery, treatment is usually pancreatoduodenectomy (surgery to remove the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct). - For more than one tumor in the pancreas, treatment is usually surgery to remove the tumor or surgery to remove the body and tail of the pancreas. - For tumors that cannot be removed by surgery, treatment may include the following: - Combination chemotherapy. - Hormone therapy. - Radiofrequency ablation or cryosurgical ablation. - For cancer that has spread to lymph nodes or other parts of the body, treatment may include the following: - Surgery to remove the cancer. - Radiofrequency ablation or cryosurgical ablation, if the cancer cannot be removed by surgery. - If the cancer mostly affects the liver and the patient has severe symptoms from hormones or from the size of tumor, treatment may include: - Hepatic arterial occlusion, with or without systemic chemotherapy. - Chemoembolization, with or without systemic chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with glucagonoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Other Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) For VIPoma, treatment may include the following: - Fluids and hormone therapy to replace fluids and electrolytes that have been lost from the body. - Surgery to remove the tumor and nearby lymph nodes. - Surgery to remove as much of the tumor as possible when the tumor cannot be completely removed or has spread to distant parts of the body. This is palliative therapy to relieve symptoms and improve the quality of life. - For tumors that have spread to lymph nodes or other parts of the body, treatment may include the following: - Surgery to remove the tumor. - Radiofrequency ablation or cryosurgical ablation, if the tumor cannot be removed by surgery. - For tumors that continue to grow during treatment or have spread to other parts of the body, treatment may include the following: - Chemotherapy. - Targeted therapy. For somatostatinoma, treatment may include the following: - Surgery to remove the tumor. - For cancer that has spread to distant parts of the body, surgery to remove as much of the cancer as possible to relieve symptoms and improve quality of life. - For tumors that continue to grow during treatment or have spread to other parts of the body, treatment may include the following: - Chemotherapy. - Targeted therapy. Treatment of other types of pancreatic neuroendocrine tumors (NETs) may include the following: - Surgery to remove the tumor. - For cancer that has spread to distant parts of the body, surgery to remove as much of the cancer as possible or hormone therapy to relieve symptoms and improve quality of life. - For tumors that continue to grow during treatment or have spread to other parts of the body, treatment may include the following: - Chemotherapy. - Targeted therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with islet cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Recurrent or Progressive Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment of pancreatic neuroendocrine tumors (NETs) that continue to grow during treatment or recur (come back) may include the following: - Surgery to remove the tumor. - Chemotherapy. - Hormone therapy. - Targeted therapy. - For liver metastases: - Regional chemotherapy. - Hepatic arterial occlusion or chemoembolization, with or without systemic chemotherapy. - A clinical trial of a new therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent islet cell carcinoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.<|eot_id|>
what research (or clinical trials) is being done for Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.<|eot_id|>
What is (are) Ovarian, Fallopian Tube, and Primary Peritoneal Cancer ?
Key Points - Ovarian, fallopian tube, and primary peritoneal cancers are diseases in which malignant (cancer) cells form in the ovaries, fallopian tubes, or peritoneum. - Ovarian cancer is the leading cause of death from cancer of the female reproductive system. Ovarian, fallopian tube, and primary peritoneal cancers are diseases in which malignant (cancer) cells form in the ovaries, fallopian tubes, or peritoneum. The ovaries are a pair of organs in the female reproductive system. They are in the pelvis, one on each side of the uterus (the hollow, pear-shaped organ where a fetus grows). Each ovary is about the size and shape of an almond. The ovaries make eggs and female hormones (chemicals that control the way certain cells or organs work in the body). The fallopian tubes are a pair of long, slender tubes, one on each side of the uterus. Eggs pass from the ovaries, through the fallopian tubes, to the uterus. Cancer sometimes begins at the end of the fallopian tube near the ovary and spreads to the ovary. The peritoneum is the tissue that lines the abdominal wall and covers organs in the abdomen. Primary peritoneal cancer is cancer that forms in the peritoneum and has not spread there from another part of the body. Cancer sometimes begins in the peritoneum and spreads to the ovary. Ovarian cancer is the leading cause of death from cancer of the female reproductive system. In recent years, there has been a small decrease in the number of new cases of ovarian cancer and the number of deaths from ovarian cancer. New cases of ovarian cancer and deaths from ovarian cancer are higher among white women than black women, but have decreased in both groups. Women who have a family history of ovarian cancer and/or certain inherited gene changes, such as BRCA1 or BRCA2 gene changes, have a higher risk than women who do not have a family history or who have not inherited these gene changes. For women with inherited risk, genetic counseling and genetic testing can be used to find out more about how likely they are to develop ovarian cancer. It is hard to find ovarian cancer early. Early ovarian cancer may not cause any symptoms. When symptoms do appear, ovarian cancer is often advanced. See the following PDQ summaries for more information about ovarian, fallopian tube, and primary peritoneal cancers: - Genetics of Breast and Gynecologic Cancers (written for health professionals) - Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Screening - Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Ovarian, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Ovarian, fallopian tube, and primary peritoneal cancers are diseases in which malignant (cancer) cells form in the ovaries, fallopian tubes, or peritoneum. - Ovarian cancer is the leading cause of death from cancer of the female reproductive system. Ovarian, fallopian tube, and primary peritoneal cancers are diseases in which malignant (cancer) cells form in the ovaries, fallopian tubes, or peritoneum. The ovaries are a pair of organs in the female reproductive system. They are in the pelvis, one on each side of the uterus (the hollow, pear-shaped organ where a fetus grows). Each ovary is about the size and shape of an almond. The ovaries make eggs and female hormones (chemicals that control the way certain cells or organs work in the body). The fallopian tubes are a pair of long, slender tubes, one on each side of the uterus. Eggs pass from the ovaries, through the fallopian tubes, to the uterus. Cancer sometimes begins at the end of the fallopian tube near the ovary and spreads to the ovary. The peritoneum is the tissue that lines the abdominal wall and covers organs in the abdomen. Primary peritoneal cancer is cancer that forms in the peritoneum and has not spread there from another part of the body. Cancer sometimes begins in the peritoneum and spreads to the ovary. Ovarian cancer is the leading cause of death from cancer of the female reproductive system. In recent years, there has been a small decrease in the number of new cases of ovarian cancer and the number of deaths from ovarian cancer. New cases of ovarian cancer and deaths from ovarian cancer are higher among white women than black women, but have decreased in both groups. Women who have a family history of ovarian cancer and/or certain inherited gene changes, such as BRCA1 or BRCA2 gene changes, have a higher risk than women who do not have a family history or who have not inherited these gene changes. For women with inherited risk, genetic counseling and genetic testing can be used to find out more about how likely they are to develop ovarian cancer. It is hard to find ovarian cancer early. Early ovarian cancer may not cause any symptoms. When symptoms do appear, ovarian cancer is often advanced. See the following PDQ summaries for more information about ovarian, fallopian tube, and primary peritoneal cancers: - Genetics of Breast and Gynecologic Cancers (written for health professionals) - Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Screening - Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment<|eot_id|>
How to prevent Ovarian, Fallopian Tube, and Primary Peritoneal Cancer ?
Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following are risk factors for ovarian, fallopian tube, and primary peritoneal cancer: - Family history of ovarian, fallopian tube, and primary peritoneal cancer - Inherited risk - Hormone replacement therapy - Weight and height - The following are protective factors for ovarian, fallopian tube, and primary peritoneal cancer: - Oral contraceptives - Tubal ligation - Breastfeeding - Risk-reducing salpingo-oophorectomy - It is not clear whether the following affect the risk of ovarian, fallopian tube, and primary peritoneal cancer: - Diet - Alcohol - Aspirin and non-steroidal anti-inflammatory drugs - Smoking - Talc - Infertility treatment - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent ovarian, fallopian tube, and primary peritoneal cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. The following are risk factors for ovarian, fallopian tube, and primary peritoneal cancer: Family history of ovarian, fallopian tube, and primary peritoneal cancer A woman whose mother or sister had ovarian cancer has an increased risk of ovarian cancer. A woman with two or more relatives with ovarian cancer also has an increased risk of ovarian cancer. Inherited risk The risk of ovarian cancer is increased in women who have inherited certain changes in the BRCA1, BRCA2, or other genes. The risk of ovarian cancer is also increased in women who have certain inherited syndromes that include: - Familial site-specific ovarian cancer syndrome. - Familial breast/ovarian cancer syndrome. - Hereditary nonpolyposis colorectal cancer (HNPCC; Lynch syndrome). Hormone replacement therapy The use of estrogen -only hormone replacement therapy (HRT) after menopause is linked to a slightly increased risk of ovarian cancer in women who are taking HRT or have taken HRT within the past 3 years. The risk of ovarian cancer increases the longer a woman uses estrogen-only HRT. When hormone therapy is stopped, the risk of ovarian cancer decreases over time. It is not clear whether there is an increased risk of ovarian cancer with the use of HRT that has both estrogen and progestin. Weight and height Being overweight or obese during the teenage years is linked to an increased risk of ovarian cancer. Being obese is linked to an increased risk of death from ovarian cancer. Being tall (5'8" or taller) may also be linked to a slight increase in the risk of ovarian cancer. The following are protective factors for ovarian, fallopian tube, and primary peritoneal cancer: Oral contraceptives Taking oral contraceptives (the pill) lowers the risk of ovarian cancer. The longer oral contraceptives are used, the lower the risk may be. The decrease in risk may last up to 30 years after a woman has stopped taking oral contraceptives. Taking oral contraceptives increases the risk of blood clots. This risk is higher in women who also smoke. Tubal ligation The risk of ovarian cancer is decreased in women who have a tubal ligation (surgery to close both fallopian tubes). Breastfeeding Breastfeeding is linked to a decreased risk of ovarian cancer. The longer a woman breastfeeds, the lower her risk of ovarian cancer. Risk-reducing salpingo-oophorectomy Some women who have a high risk of ovarian cancer may choose to have a risk-reducing salpingo-oophorectomy (surgery to remove the fallopian tubes and ovaries when there are no signs of cancer). This includes women who have inherited certain changes in the BRCA1 and BRCA2 genes or have an inherited syndrome. (See the Risk-reducing salpingo-oophorectomy section in the PDQ health professional summary on Genetics of Breast and Gynecologic Cancers for more information.) It is very important to have a cancer risk assessment and counseling before making this decision. These and other factors may be discussed: - Infertility. - Early menopause: The drop in estrogen levels caused by removing the ovaries can cause early menopause. Symptoms of menopause include the following: - Hot flashes. - Night sweats. - Trouble sleeping. - Mood changes. - Decreased sex drive. - Heart disease. - Vaginal dryness. - Frequent urination. - Osteoporosis (decreased bone density). These symptoms may not be the same in all women. Hormone replacement therapy (HRT) may be used to lessen these symptoms. - Risk of ovarian cancer in the peritoneum: Women who have had a risk-reducing salpingo-oophorectomy continue to have a small risk of ovarian cancer in the peritoneum (thin layer of tissue that lines the inside of the abdomen). This may occur if ovarian cancer cells had already spread to the peritoneum before the surgery or if some ovarian tissue remains after surgery. It is not clear whether the following affect the risk of ovarian, fallopian tube, and primary peritoneal cancer: Diet Studies of dietary factors including various foods, teas, and nutrients have not found a strong link to ovarian cancer. Alcohol Studies have not shown a link between drinking alcohol and the risk of ovarian cancer. Aspirin and non-steroidal anti-inflammatory drugs Some studies of aspirin and non-steroidal anti-inflammatory drugs (NSAIDs) have found a decreased risk of ovarian cancer and others have not. Smoking Some studies found a very small increased risk of one rare type of ovarian cancer in women who were current smokers compared with women who never smoked. Talc Studies of women who used talcum powder (talc) dusted on the perineum (the area between the vagina and the anus) have not found clear evidence of an increased risk of ovarian cancer. Infertility treatment Overall, studies in women using fertility drugs have not found clear evidence of an increased risk of ovarian cancer. Risk of ovarian borderline malignant tumors may be higher in women who take fertility drugs. The risk of invasive ovarian cancer may be higher in women who do not get pregnant after taking fertility drugs. Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent ovarian, fallopian tube, and primary peritoneal cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for ovarian cancer prevention trials that are now accepting patients.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: How to prevent Ovarian, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following are risk factors for ovarian, fallopian tube, and primary peritoneal cancer: - Family history of ovarian, fallopian tube, and primary peritoneal cancer - Inherited risk - Hormone replacement therapy - Weight and height - The following are protective factors for ovarian, fallopian tube, and primary peritoneal cancer: - Oral contraceptives - Tubal ligation - Breastfeeding - Risk-reducing salpingo-oophorectomy - It is not clear whether the following affect the risk of ovarian, fallopian tube, and primary peritoneal cancer: - Diet - Alcohol - Aspirin and non-steroidal anti-inflammatory drugs - Smoking - Talc - Infertility treatment - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent ovarian, fallopian tube, and primary peritoneal cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. The following are risk factors for ovarian, fallopian tube, and primary peritoneal cancer: Family history of ovarian, fallopian tube, and primary peritoneal cancer A woman whose mother or sister had ovarian cancer has an increased risk of ovarian cancer. A woman with two or more relatives with ovarian cancer also has an increased risk of ovarian cancer. Inherited risk The risk of ovarian cancer is increased in women who have inherited certain changes in the BRCA1, BRCA2, or other genes. The risk of ovarian cancer is also increased in women who have certain inherited syndromes that include: - Familial site-specific ovarian cancer syndrome. - Familial breast/ovarian cancer syndrome. - Hereditary nonpolyposis colorectal cancer (HNPCC; Lynch syndrome). Hormone replacement therapy The use of estrogen -only hormone replacement therapy (HRT) after menopause is linked to a slightly increased risk of ovarian cancer in women who are taking HRT or have taken HRT within the past 3 years. The risk of ovarian cancer increases the longer a woman uses estrogen-only HRT. When hormone therapy is stopped, the risk of ovarian cancer decreases over time. It is not clear whether there is an increased risk of ovarian cancer with the use of HRT that has both estrogen and progestin. Weight and height Being overweight or obese during the teenage years is linked to an increased risk of ovarian cancer. Being obese is linked to an increased risk of death from ovarian cancer. Being tall (5'8" or taller) may also be linked to a slight increase in the risk of ovarian cancer. The following are protective factors for ovarian, fallopian tube, and primary peritoneal cancer: Oral contraceptives Taking oral contraceptives (the pill) lowers the risk of ovarian cancer. The longer oral contraceptives are used, the lower the risk may be. The decrease in risk may last up to 30 years after a woman has stopped taking oral contraceptives. Taking oral contraceptives increases the risk of blood clots. This risk is higher in women who also smoke. Tubal ligation The risk of ovarian cancer is decreased in women who have a tubal ligation (surgery to close both fallopian tubes). Breastfeeding Breastfeeding is linked to a decreased risk of ovarian cancer. The longer a woman breastfeeds, the lower her risk of ovarian cancer. Risk-reducing salpingo-oophorectomy Some women who have a high risk of ovarian cancer may choose to have a risk-reducing salpingo-oophorectomy (surgery to remove the fallopian tubes and ovaries when there are no signs of cancer). This includes women who have inherited certain changes in the BRCA1 and BRCA2 genes or have an inherited syndrome. (See the Risk-reducing salpingo-oophorectomy section in the PDQ health professional summary on Genetics of Breast and Gynecologic Cancers for more information.) It is very important to have a cancer risk assessment and counseling before making this decision. These and other factors may be discussed: - Infertility. - Early menopause: The drop in estrogen levels caused by removing the ovaries can cause early menopause. Symptoms of menopause include the following: - Hot flashes. - Night sweats. - Trouble sleeping. - Mood changes. - Decreased sex drive. - Heart disease. - Vaginal dryness. - Frequent urination. - Osteoporosis (decreased bone density). These symptoms may not be the same in all women. Hormone replacement therapy (HRT) may be used to lessen these symptoms. - Risk of ovarian cancer in the peritoneum: Women who have had a risk-reducing salpingo-oophorectomy continue to have a small risk of ovarian cancer in the peritoneum (thin layer of tissue that lines the inside of the abdomen). This may occur if ovarian cancer cells had already spread to the peritoneum before the surgery or if some ovarian tissue remains after surgery. It is not clear whether the following affect the risk of ovarian, fallopian tube, and primary peritoneal cancer: Diet Studies of dietary factors including various foods, teas, and nutrients have not found a strong link to ovarian cancer. Alcohol Studies have not shown a link between drinking alcohol and the risk of ovarian cancer. Aspirin and non-steroidal anti-inflammatory drugs Some studies of aspirin and non-steroidal anti-inflammatory drugs (NSAIDs) have found a decreased risk of ovarian cancer and others have not. Smoking Some studies found a very small increased risk of one rare type of ovarian cancer in women who were current smokers compared with women who never smoked. Talc Studies of women who used talcum powder (talc) dusted on the perineum (the area between the vagina and the anus) have not found clear evidence of an increased risk of ovarian cancer. Infertility treatment Overall, studies in women using fertility drugs have not found clear evidence of an increased risk of ovarian cancer. Risk of ovarian borderline malignant tumors may be higher in women who take fertility drugs. The risk of invasive ovarian cancer may be higher in women who do not get pregnant after taking fertility drugs. Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent ovarian, fallopian tube, and primary peritoneal cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for ovarian cancer prevention trials that are now accepting patients.<|eot_id|>
Who is at risk for Ovarian, Fallopian Tube, and Primary Peritoneal Cancer? ?
Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following are risk factors for ovarian, fallopian tube, and primary peritoneal cancer: - Family history of ovarian, fallopian tube, and primary peritoneal cancer - Inherited risk - Hormone replacement therapy - Weight and height - The following are protective factors for ovarian, fallopian tube, and primary peritoneal cancer: - Oral contraceptives - Tubal ligation - Breastfeeding - Risk-reducing salpingo-oophorectomy - It is not clear whether the following affect the risk of ovarian, fallopian tube, and primary peritoneal cancer: - Diet - Alcohol - Aspirin and non-steroidal anti-inflammatory drugs - Smoking - Talc - Infertility treatment - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent ovarian, fallopian tube, and primary peritoneal cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. The following are risk factors for ovarian, fallopian tube, and primary peritoneal cancer: Family history of ovarian, fallopian tube, and primary peritoneal cancer A woman whose mother or sister had ovarian cancer has an increased risk of ovarian cancer. A woman with two or more relatives with ovarian cancer also has an increased risk of ovarian cancer. Inherited risk The risk of ovarian cancer is increased in women who have inherited certain changes in the BRCA1, BRCA2, or other genes. The risk of ovarian cancer is also increased in women who have certain inherited syndromes that include: - Familial site-specific ovarian cancer syndrome. - Familial breast/ovarian cancer syndrome. - Hereditary nonpolyposis colorectal cancer (HNPCC; Lynch syndrome). Hormone replacement therapy The use of estrogen -only hormone replacement therapy (HRT) after menopause is linked to a slightly increased risk of ovarian cancer in women who are taking HRT or have taken HRT within the past 3 years. The risk of ovarian cancer increases the longer a woman uses estrogen-only HRT. When hormone therapy is stopped, the risk of ovarian cancer decreases over time. It is not clear whether there is an increased risk of ovarian cancer with the use of HRT that has both estrogen and progestin. Weight and height Being overweight or obese during the teenage years is linked to an increased risk of ovarian cancer. Being obese is linked to an increased risk of death from ovarian cancer. Being tall (5'8" or taller) may also be linked to a slight increase in the risk of ovarian cancer. It is not clear whether the following affect the risk of ovarian, fallopian tube, and primary peritoneal cancer: Diet Studies of dietary factors including various foods, teas, and nutrients have not found a strong link to ovarian cancer. Alcohol Studies have not shown a link between drinking alcohol and the risk of ovarian cancer. Aspirin and non-steroidal anti-inflammatory drugs Some studies of aspirin and non-steroidal anti-inflammatory drugs (NSAIDs) have found a decreased risk of ovarian cancer and others have not. Smoking Some studies found a very small increased risk of one rare type of ovarian cancer in women who were current smokers compared with women who never smoked. Talc Studies of women who used talcum powder (talc) dusted on the perineum (the area between the vagina and the anus) have not found clear evidence of an increased risk of ovarian cancer. Infertility treatment Overall, studies in women using fertility drugs have not found clear evidence of an increased risk of ovarian cancer. Risk of ovarian borderline malignant tumors may be higher in women who take fertility drugs. The risk of invasive ovarian cancer may be higher in women who do not get pregnant after taking fertility drugs.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Ovarian, Fallopian Tube, and Primary Peritoneal Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Avoiding risk factors and increasing protective factors may help prevent cancer. - The following are risk factors for ovarian, fallopian tube, and primary peritoneal cancer: - Family history of ovarian, fallopian tube, and primary peritoneal cancer - Inherited risk - Hormone replacement therapy - Weight and height - The following are protective factors for ovarian, fallopian tube, and primary peritoneal cancer: - Oral contraceptives - Tubal ligation - Breastfeeding - Risk-reducing salpingo-oophorectomy - It is not clear whether the following affect the risk of ovarian, fallopian tube, and primary peritoneal cancer: - Diet - Alcohol - Aspirin and non-steroidal anti-inflammatory drugs - Smoking - Talc - Infertility treatment - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent ovarian, fallopian tube, and primary peritoneal cancer are being studied in clinical trials. Avoiding risk factors and increasing protective factors may help prevent cancer. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. The following are risk factors for ovarian, fallopian tube, and primary peritoneal cancer: Family history of ovarian, fallopian tube, and primary peritoneal cancer A woman whose mother or sister had ovarian cancer has an increased risk of ovarian cancer. A woman with two or more relatives with ovarian cancer also has an increased risk of ovarian cancer. Inherited risk The risk of ovarian cancer is increased in women who have inherited certain changes in the BRCA1, BRCA2, or other genes. The risk of ovarian cancer is also increased in women who have certain inherited syndromes that include: - Familial site-specific ovarian cancer syndrome. - Familial breast/ovarian cancer syndrome. - Hereditary nonpolyposis colorectal cancer (HNPCC; Lynch syndrome). Hormone replacement therapy The use of estrogen -only hormone replacement therapy (HRT) after menopause is linked to a slightly increased risk of ovarian cancer in women who are taking HRT or have taken HRT within the past 3 years. The risk of ovarian cancer increases the longer a woman uses estrogen-only HRT. When hormone therapy is stopped, the risk of ovarian cancer decreases over time. It is not clear whether there is an increased risk of ovarian cancer with the use of HRT that has both estrogen and progestin. Weight and height Being overweight or obese during the teenage years is linked to an increased risk of ovarian cancer. Being obese is linked to an increased risk of death from ovarian cancer. Being tall (5'8" or taller) may also be linked to a slight increase in the risk of ovarian cancer. It is not clear whether the following affect the risk of ovarian, fallopian tube, and primary peritoneal cancer: Diet Studies of dietary factors including various foods, teas, and nutrients have not found a strong link to ovarian cancer. Alcohol Studies have not shown a link between drinking alcohol and the risk of ovarian cancer. Aspirin and non-steroidal anti-inflammatory drugs Some studies of aspirin and non-steroidal anti-inflammatory drugs (NSAIDs) have found a decreased risk of ovarian cancer and others have not. Smoking Some studies found a very small increased risk of one rare type of ovarian cancer in women who were current smokers compared with women who never smoked. Talc Studies of women who used talcum powder (talc) dusted on the perineum (the area between the vagina and the anus) have not found clear evidence of an increased risk of ovarian cancer. Infertility treatment Overall, studies in women using fertility drugs have not found clear evidence of an increased risk of ovarian cancer. Risk of ovarian borderline malignant tumors may be higher in women who take fertility drugs. The risk of invasive ovarian cancer may be higher in women who do not get pregnant after taking fertility drugs.<|eot_id|>
what research (or clinical trials) is being done for Ovarian, Fallopian Tube, and Primary Peritoneal Cancer ?
Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent ovarian, fallopian tube, and primary peritoneal cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for ovarian cancer prevention trials that are now accepting patients.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: what research (or clinical trials) is being done for Ovarian, Fallopian Tube, and Primary Peritoneal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Cancer prevention clinical trials are used to study ways to prevent cancer. Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements. New ways to prevent ovarian, fallopian tube, and primary peritoneal cancer are being studied in clinical trials. Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI website. Check NCI's list of cancer clinical trials for ovarian cancer prevention trials that are now accepting patients.<|eot_id|>
What is (are) Laryngeal Cancer ?
Key Points - Laryngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the larynx. - Use of tobacco products and drinking too much alcohol can affect the risk of laryngeal cancer. - Signs and symptoms of laryngeal cancer include a sore throat and ear pain. - Tests that examine the throat and neck are used to help detect (find), diagnose, and stage laryngeal cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Laryngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the larynx. The larynx is a part of the throat, between the base of the tongue and the trachea. The larynx contains the vocal cords, which vibrate and make sound when air is directed against them. The sound echoes through the pharynx, mouth, and nose to make a person's voice. There are three main parts of the larynx: - Supraglottis: The upper part of the larynx above the vocal cords, including the epiglottis. - Glottis: The middle part of the larynx where the vocal cords are located. - Subglottis: The lower part of the larynx between the vocal cords and the trachea (windpipe). Most laryngeal cancers form in squamous cells, the thin, flat cells lining the inside of the larynx. Laryngeal cancer is a type of head and neck cancer.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What is (are) Laryngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Key Points - Laryngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the larynx. - Use of tobacco products and drinking too much alcohol can affect the risk of laryngeal cancer. - Signs and symptoms of laryngeal cancer include a sore throat and ear pain. - Tests that examine the throat and neck are used to help detect (find), diagnose, and stage laryngeal cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Laryngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the larynx. The larynx is a part of the throat, between the base of the tongue and the trachea. The larynx contains the vocal cords, which vibrate and make sound when air is directed against them. The sound echoes through the pharynx, mouth, and nose to make a person's voice. There are three main parts of the larynx: - Supraglottis: The upper part of the larynx above the vocal cords, including the epiglottis. - Glottis: The middle part of the larynx where the vocal cords are located. - Subglottis: The lower part of the larynx between the vocal cords and the trachea (windpipe). Most laryngeal cancers form in squamous cells, the thin, flat cells lining the inside of the larynx. Laryngeal cancer is a type of head and neck cancer.<|eot_id|>
Who is at risk for Laryngeal Cancer? ?
Use of tobacco products and drinking too much alcohol can affect the risk of laryngeal cancer.Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: Who is at risk for Laryngeal Cancer? ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Use of tobacco products and drinking too much alcohol can affect the risk of laryngeal cancer.Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk.<|eot_id|>
What are the symptoms of Laryngeal Cancer ?
Signs and symptoms of laryngeal cancer include a sore throat and ear pain. These and other signs and symptoms may be caused by laryngeal cancer or by other conditions. Check with your doctor if you have any of the following: - A sore throat or cough that does not go away. - Trouble or pain when swallowing. - Ear pain. - A lump in the neck or throat. - A change or hoarseness in the voice.
Answer the question truthfully, you are a medical professional.
<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: What are the symptoms of Laryngeal Cancer ?<|eot_id|><|start_header_id|>assistant<|end_header_id|> Signs and symptoms of laryngeal cancer include a sore throat and ear pain. These and other signs and symptoms may be caused by laryngeal cancer or by other conditions. Check with your doctor if you have any of the following: - A sore throat or cough that does not go away. - Trouble or pain when swallowing. - Ear pain. - A lump in the neck or throat. - A change or hoarseness in the voice.<|eot_id|>