method_name
stringlengths 1
78
| method_body
stringlengths 3
9.66k
| full_code
stringlengths 31
10.7k
| docstring
stringlengths 4
4.74k
⌀ |
---|---|---|---|
_unbatch
|
if len(batch_of_texts) == 1 and len(batch_of_texts[0]) == 1:
return batch_of_texts[0]
texts = []
for sublist in batch_of_texts:
texts.extend(sublist)
return texts
|
@staticmethod
def _unbatch(batch_of_texts: List[List[Any]]) ->List[Any]:
if len(batch_of_texts) == 1 and len(batch_of_texts[0]) == 1:
return batch_of_texts[0]
texts = []
for sublist in batch_of_texts:
texts.extend(sublist)
return texts
| null |
_convert_dict_to_message
|
role = _dict['role']
content = _dict['content']
if role == 'user':
return HumanMessage(content=content)
elif role == 'assistant':
return AIMessage(content=content)
elif role == 'system':
return SystemMessage(content=content)
else:
return ChatMessage(content=content, role=role)
|
@staticmethod
def _convert_dict_to_message(_dict: Mapping[str, Any]) ->BaseMessage:
role = _dict['role']
content = _dict['content']
if role == 'user':
return HumanMessage(content=content)
elif role == 'assistant':
return AIMessage(content=content)
elif role == 'system':
return SystemMessage(content=content)
else:
return ChatMessage(content=content, role=role)
| null |
process_response
|
"""
Transform the Diffbot NLP response into a GraphDocument.
Args:
payload (Dict[str, Any]): The JSON response from Diffbot's NLP API.
document (Document): The original document.
Returns:
GraphDocument: The transformed document as a graph.
"""
if 'facts' not in payload or not payload['facts']:
return GraphDocument(nodes=[], relationships=[], source=document)
nodes_list = NodesList()
relationships = list()
for record in payload['facts']:
if record['confidence'] < self.fact_threshold_confidence:
continue
if not record['value']['allTypes']:
continue
source_id = record['entity']['allUris'][0] if record['entity']['allUris'
] else record['entity']['name']
source_label = record['entity']['allTypes'][0]['name'].capitalize()
source_name = record['entity']['name']
source_node = Node(id=source_id, type=source_label)
nodes_list.add_node_property((source_id, source_label), {'name':
source_name})
target_id = record['value']['allUris'][0] if record['value']['allUris'
] else record['value']['name']
target_label = record['value']['allTypes'][0]['name'].capitalize()
target_name = record['value']['name']
if target_label in FACT_TO_PROPERTY_TYPE:
nodes_list.add_node_property((source_id, source_label), {
format_property_key(record['property']['name']): target_name})
else:
target_node = Node(id=target_id, type=target_label)
nodes_list.add_node_property((target_id, target_label), {'name':
target_name})
rel_type = record['property']['name'].replace(' ', '_').upper()
if self.simplified_schema:
rel_type = self.simplified_schema.get_type(rel_type)
rel_properties = dict()
relationship_evidence = [el['passage'] for el in record['evidence']][0]
if self.include_evidence:
rel_properties.update({'evidence': relationship_evidence})
if self.include_qualifiers and record.get('qualifiers'):
for property in record['qualifiers']:
prop_key = format_property_key(property['property']['name'])
rel_properties[prop_key] = property['value']['name']
relationship = Relationship(source=source_node, target=target_node,
type=rel_type, properties=rel_properties)
relationships.append(relationship)
return GraphDocument(nodes=nodes_list.return_node_list(), relationships=
relationships, source=document)
|
def process_response(self, payload: Dict[str, Any], document: Document
) ->GraphDocument:
"""
Transform the Diffbot NLP response into a GraphDocument.
Args:
payload (Dict[str, Any]): The JSON response from Diffbot's NLP API.
document (Document): The original document.
Returns:
GraphDocument: The transformed document as a graph.
"""
if 'facts' not in payload or not payload['facts']:
return GraphDocument(nodes=[], relationships=[], source=document)
nodes_list = NodesList()
relationships = list()
for record in payload['facts']:
if record['confidence'] < self.fact_threshold_confidence:
continue
if not record['value']['allTypes']:
continue
source_id = record['entity']['allUris'][0] if record['entity'][
'allUris'] else record['entity']['name']
source_label = record['entity']['allTypes'][0]['name'].capitalize()
source_name = record['entity']['name']
source_node = Node(id=source_id, type=source_label)
nodes_list.add_node_property((source_id, source_label), {'name':
source_name})
target_id = record['value']['allUris'][0] if record['value']['allUris'
] else record['value']['name']
target_label = record['value']['allTypes'][0]['name'].capitalize()
target_name = record['value']['name']
if target_label in FACT_TO_PROPERTY_TYPE:
nodes_list.add_node_property((source_id, source_label), {
format_property_key(record['property']['name']): target_name})
else:
target_node = Node(id=target_id, type=target_label)
nodes_list.add_node_property((target_id, target_label), {'name':
target_name})
rel_type = record['property']['name'].replace(' ', '_').upper()
if self.simplified_schema:
rel_type = self.simplified_schema.get_type(rel_type)
rel_properties = dict()
relationship_evidence = [el['passage'] for el in record['evidence']
][0]
if self.include_evidence:
rel_properties.update({'evidence': relationship_evidence})
if self.include_qualifiers and record.get('qualifiers'):
for property in record['qualifiers']:
prop_key = format_property_key(property['property']['name']
)
rel_properties[prop_key] = property['value']['name']
relationship = Relationship(source=source_node, target=
target_node, type=rel_type, properties=rel_properties)
relationships.append(relationship)
return GraphDocument(nodes=nodes_list.return_node_list(), relationships
=relationships, source=document)
|
Transform the Diffbot NLP response into a GraphDocument.
Args:
payload (Dict[str, Any]): The JSON response from Diffbot's NLP API.
document (Document): The original document.
Returns:
GraphDocument: The transformed document as a graph.
|
_llm_type
|
"""Return type of llm."""
return 'manifest'
|
@property
def _llm_type(self) ->str:
"""Return type of llm."""
return 'manifest'
|
Return type of llm.
|
test_runnable_sequence_transform
|
llm = FakeStreamingListLLM(responses=['foo-lish'])
chain: Runnable = llm | StrOutputParser()
stream = chain.transform(llm.stream('Hi there!'))
chunks = []
for chunk in stream:
chunks.append(chunk)
assert len(chunks) == len('foo-lish')
assert ''.join(chunks) == 'foo-lish'
|
def test_runnable_sequence_transform() ->None:
llm = FakeStreamingListLLM(responses=['foo-lish'])
chain: Runnable = llm | StrOutputParser()
stream = chain.transform(llm.stream('Hi there!'))
chunks = []
for chunk in stream:
chunks.append(chunk)
assert len(chunks) == len('foo-lish')
assert ''.join(chunks) == 'foo-lish'
| null |
_load_json_block
|
try:
response_content = json.loads(serialized_block, strict=False)
return response_content.get('response', 'ERROR parsing response.')
except json.JSONDecodeError:
return 'ERROR parsing response.'
except:
raise
|
def _load_json_block(self, serialized_block: str) ->str:
try:
response_content = json.loads(serialized_block, strict=False)
return response_content.get('response', 'ERROR parsing response.')
except json.JSONDecodeError:
return 'ERROR parsing response.'
except:
raise
| null |
_get_elements
|
from unstructured.partition.auto import partition
local_prefix = 'local://'
if self.presign:
with tempfile.TemporaryDirectory() as temp_dir:
file_path = f"{temp_dir}/{self.path.split('/')[-1]}"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
response = requests.get(self.url)
response.raise_for_status()
with open(file_path, mode='wb') as file:
file.write(response.content)
return partition(filename=file_path)
elif not self.url.startswith(local_prefix):
raise ValueError(
"Non pre-signed URLs are supported only with 'local' blockstore")
else:
local_path = self.url[len(local_prefix):]
return partition(filename=local_path)
|
def _get_elements(self) ->List:
from unstructured.partition.auto import partition
local_prefix = 'local://'
if self.presign:
with tempfile.TemporaryDirectory() as temp_dir:
file_path = f"{temp_dir}/{self.path.split('/')[-1]}"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
response = requests.get(self.url)
response.raise_for_status()
with open(file_path, mode='wb') as file:
file.write(response.content)
return partition(filename=file_path)
elif not self.url.startswith(local_prefix):
raise ValueError(
"Non pre-signed URLs are supported only with 'local' blockstore")
else:
local_path = self.url[len(local_prefix):]
return partition(filename=local_path)
| null |
test_user_defined_scorer
|
llm, PROMPT = setup()
class CustomSelectionScorer(rl_chain.SelectionScorer):
def score_response(self, inputs: Dict[str, Any], llm_response: str,
event: pick_best_chain.PickBestEvent) ->float:
score = 200
return score
chain = pick_best_chain.PickBest.from_llm(llm=llm, prompt=PROMPT,
selection_scorer=CustomSelectionScorer(), feature_embedder=
pick_best_chain.PickBestFeatureEmbedder(auto_embed=False, model=
MockEncoder()))
actions = ['0', '1', '2']
response = chain.run(User=rl_chain.BasedOn('Context'), action=rl_chain.
ToSelectFrom(actions))
assert response['response'] == 'hey'
selection_metadata = response['selection_metadata']
assert selection_metadata.selected.score == 200.0
|
@pytest.mark.requires('vowpal_wabbit_next', 'sentence_transformers')
def test_user_defined_scorer() ->None:
llm, PROMPT = setup()
class CustomSelectionScorer(rl_chain.SelectionScorer):
def score_response(self, inputs: Dict[str, Any], llm_response: str,
event: pick_best_chain.PickBestEvent) ->float:
score = 200
return score
chain = pick_best_chain.PickBest.from_llm(llm=llm, prompt=PROMPT,
selection_scorer=CustomSelectionScorer(), feature_embedder=
pick_best_chain.PickBestFeatureEmbedder(auto_embed=False, model=
MockEncoder()))
actions = ['0', '1', '2']
response = chain.run(User=rl_chain.BasedOn('Context'), action=rl_chain.
ToSelectFrom(actions))
assert response['response'] == 'hey'
selection_metadata = response['selection_metadata']
assert selection_metadata.selected.score == 200.0
| null |
convert_message_to_dict
|
"""Convert a message to a dictionary that can be passed to the API."""
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {'role': message.role, 'content': message.content}
elif isinstance(message, HumanMessage):
message_dict = {'role': 'user', 'content': message.content}
elif isinstance(message, AIMessage):
message_dict = {'role': 'assistant', 'content': message.content}
if 'function_call' in message.additional_kwargs:
message_dict['function_call'] = message.additional_kwargs[
'function_call']
if message_dict['content'] == '':
message_dict['content'] = None
elif isinstance(message, FunctionMessage):
message_dict = {'role': 'function', 'content': message.content, 'name':
message.name}
else:
raise TypeError(f'Got unknown type {message}')
return message_dict
|
def convert_message_to_dict(message: BaseMessage) ->dict:
"""Convert a message to a dictionary that can be passed to the API."""
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {'role': message.role, 'content': message.content}
elif isinstance(message, HumanMessage):
message_dict = {'role': 'user', 'content': message.content}
elif isinstance(message, AIMessage):
message_dict = {'role': 'assistant', 'content': message.content}
if 'function_call' in message.additional_kwargs:
message_dict['function_call'] = message.additional_kwargs[
'function_call']
if message_dict['content'] == '':
message_dict['content'] = None
elif isinstance(message, FunctionMessage):
message_dict = {'role': 'function', 'content': message.content,
'name': message.name}
else:
raise TypeError(f'Got unknown type {message}')
return message_dict
|
Convert a message to a dictionary that can be passed to the API.
|
_chain_type
|
return 'vector_db_qa_with_sources_chain'
|
@property
def _chain_type(self) ->str:
return 'vector_db_qa_with_sources_chain'
| null |
test_all_imports
|
assert set(__all__) == set(EXPECTED_ALL)
|
def test_all_imports() ->None:
assert set(__all__) == set(EXPECTED_ALL)
| null |
compress_documents
|
"""Compress retrieved documents given the query context."""
|
@abstractmethod
def compress_documents(self, documents: Sequence[Document], query: str,
callbacks: Optional[Callbacks]=None) ->Sequence[Document]:
"""Compress retrieved documents given the query context."""
|
Compress retrieved documents given the query context.
|
test_neo4jvector_with_metadatas_with_scores
|
"""Test end to end construction and search."""
metadatas = [{'page': str(i)} for i in range(len(texts))]
docsearch = Neo4jVector.from_texts(texts=texts, embedding=
FakeEmbeddingsWithOsDimension(), metadatas=metadatas, url=url, username
=username, password=password, pre_delete_collection=True)
output = docsearch.similarity_search_with_score('foo', k=1)
assert output == [(Document(page_content='foo', metadata={'page': '0'}), 1.0)]
drop_vector_indexes(docsearch)
|
def test_neo4jvector_with_metadatas_with_scores() ->None:
"""Test end to end construction and search."""
metadatas = [{'page': str(i)} for i in range(len(texts))]
docsearch = Neo4jVector.from_texts(texts=texts, embedding=
FakeEmbeddingsWithOsDimension(), metadatas=metadatas, url=url,
username=username, password=password, pre_delete_collection=True)
output = docsearch.similarity_search_with_score('foo', k=1)
assert output == [(Document(page_content='foo', metadata={'page': '0'}),
1.0)]
drop_vector_indexes(docsearch)
|
Test end to end construction and search.
|
_print_keys
|
if isinstance(keys, str):
return f"'{keys}'"
else:
return ', '.join(f"'{k}'" for k in keys)
|
def _print_keys(keys: Union[str, Sequence[str]]) ->str:
if isinstance(keys, str):
return f"'{keys}'"
else:
return ', '.join(f"'{k}'" for k in keys)
| null |
test_chat_bedrock_streaming_generation_info
|
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(self, *args: Any, **kwargs: Any) ->Any:
self.saved_things['generation'] = args[0]
callback = _FakeCallback()
callback_manager = CallbackManager([callback])
chat = BedrockChat(model_id='anthropic.claude-v2', callback_manager=
callback_manager)
list(chat.stream('hi'))
generation = callback.saved_things['generation']
assert generation.generations[0][0].text == ' Hello!'
|
@pytest.mark.scheduled
def test_chat_bedrock_streaming_generation_info() ->None:
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(self, *args: Any, **kwargs: Any) ->Any:
self.saved_things['generation'] = args[0]
callback = _FakeCallback()
callback_manager = CallbackManager([callback])
chat = BedrockChat(model_id='anthropic.claude-v2', callback_manager=
callback_manager)
list(chat.stream('hi'))
generation = callback.saved_things['generation']
assert generation.generations[0][0].text == ' Hello!'
|
Test that generation info is preserved when streaming.
|
memory_variables
|
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
|
@property
def memory_variables(self) ->List[str]:
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
|
Will always return list of memory variables.
:meta private:
|
load_agent_executor
|
"""
Load an agent executor.
Args:
llm: BaseLanguageModel
tools: List[BaseTool]
verbose: bool. Defaults to False.
include_task_in_prompt: bool. Defaults to False.
Returns:
ChainExecutor
"""
input_variables = ['previous_steps', 'current_step', 'agent_scratchpad']
template = HUMAN_MESSAGE_TEMPLATE
if include_task_in_prompt:
input_variables.append('objective')
template = TASK_PREFIX + template
agent = StructuredChatAgent.from_llm_and_tools(llm, tools,
human_message_template=template, input_variables=input_variables)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=
tools, verbose=verbose)
return ChainExecutor(chain=agent_executor)
|
def load_agent_executor(llm: BaseLanguageModel, tools: List[BaseTool],
verbose: bool=False, include_task_in_prompt: bool=False) ->ChainExecutor:
"""
Load an agent executor.
Args:
llm: BaseLanguageModel
tools: List[BaseTool]
verbose: bool. Defaults to False.
include_task_in_prompt: bool. Defaults to False.
Returns:
ChainExecutor
"""
input_variables = ['previous_steps', 'current_step', 'agent_scratchpad']
template = HUMAN_MESSAGE_TEMPLATE
if include_task_in_prompt:
input_variables.append('objective')
template = TASK_PREFIX + template
agent = StructuredChatAgent.from_llm_and_tools(llm, tools,
human_message_template=template, input_variables=input_variables)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=
tools, verbose=verbose)
return ChainExecutor(chain=agent_executor)
|
Load an agent executor.
Args:
llm: BaseLanguageModel
tools: List[BaseTool]
verbose: bool. Defaults to False.
include_task_in_prompt: bool. Defaults to False.
Returns:
ChainExecutor
|
test_json_distance_evaluator_evaluate_strings_complex_diff
|
prediction = '{"a":1, "b": {"c": 2, "d": 3}}'
reference = '{"a": 1, "b": {"c": 2, "d": 4}}'
result = json_distance_evaluator._evaluate_strings(prediction=prediction,
reference=reference)
pytest.approx(1 / len(reference.replace(' ', '')), result['score'])
|
@pytest.mark.requires('rapidfuzz')
def test_json_distance_evaluator_evaluate_strings_complex_diff(
json_distance_evaluator: JsonEditDistanceEvaluator) ->None:
prediction = '{"a":1, "b": {"c": 2, "d": 3}}'
reference = '{"a": 1, "b": {"c": 2, "d": 4}}'
result = json_distance_evaluator._evaluate_strings(prediction=
prediction, reference=reference)
pytest.approx(1 / len(reference.replace(' ', '')), result['score'])
| null |
test_amazontextract_loader
|
if create_client:
import boto3
textract_client = boto3.client('textract', region_name='us-east-2')
loader = AmazonTextractPDFLoader(file_path, textract_features=features,
client=textract_client)
else:
loader = AmazonTextractPDFLoader(file_path, textract_features=features)
docs = loader.load()
print(docs)
assert len(docs) == docs_length
|
@pytest.mark.parametrize('file_path, features, docs_length, create_client',
[(
'https://amazon-textract-public-content.s3.us-east-2.amazonaws.com/langchain/alejandro_rosalez_sample_1.jpg'
, ['FORMS', 'TABLES', 'LAYOUT'], 1, False), (
'https://amazon-textract-public-content.s3.us-east-2.amazonaws.com/langchain/alejandro_rosalez_sample_1.jpg'
, [], 1, False), (
'https://amazon-textract-public-content.s3.us-east-2.amazonaws.com/langchain/alejandro_rosalez_sample_1.jpg'
, ['TABLES'], 1, False), (
'https://amazon-textract-public-content.s3.us-east-2.amazonaws.com/langchain/alejandro_rosalez_sample_1.jpg'
, ['FORMS'], 1, False), (
'https://amazon-textract-public-content.s3.us-east-2.amazonaws.com/langchain/alejandro_rosalez_sample_1.jpg'
, ['LAYOUT'], 1, False), (str(Path(__file__).parent.parent /
'examples/hello.pdf'), ['FORMS'], 1, False), (str(Path(__file__).parent
.parent / 'examples/hello.pdf'), [], 1, False), (
's3://amazon-textract-public-content/langchain/layout-parser-paper.pdf',
['FORMS', 'TABLES', 'LAYOUT'], 16, True)])
@pytest.mark.skip(reason='Requires AWS credentials to run')
def test_amazontextract_loader(file_path: str, features: Union[Sequence[str
], None], docs_length: int, create_client: bool) ->None:
if create_client:
import boto3
textract_client = boto3.client('textract', region_name='us-east-2')
loader = AmazonTextractPDFLoader(file_path, textract_features=
features, client=textract_client)
else:
loader = AmazonTextractPDFLoader(file_path, textract_features=features)
docs = loader.load()
print(docs)
assert len(docs) == docs_length
| null |
_get_client
|
try:
from langchainhub import Client
except ImportError as e:
raise ImportError(
'Could not import langchainhub, please install with `pip install langchainhub`.'
) from e
return Client(api_url, api_key=api_key)
|
def _get_client(api_url: Optional[str]=None, api_key: Optional[str]=None
) ->Client:
try:
from langchainhub import Client
except ImportError as e:
raise ImportError(
'Could not import langchainhub, please install with `pip install langchainhub`.'
) from e
return Client(api_url, api_key=api_key)
| null |
_persist_run
|
"""Persist a run."""
self.runs.append(run)
|
def _persist_run(self, run: Run) ->None:
"""Persist a run."""
self.runs.append(run)
|
Persist a run.
|
messages
|
return [SystemMessage(content='You are a test user.'), HumanMessage(content
='Hello, I am a test user.')]
|
@pytest.fixture
def messages() ->list:
return [SystemMessage(content='You are a test user.'), HumanMessage(
content='Hello, I am a test user.')]
| null |
test_default_chat_anthropic
|
base_model = AnthropicFunctions(model='claude-2')
self.assertIsInstance(base_model.model, ChatAnthropic)
model = base_model.bind(functions=[{'name': 'get_current_weather',
'description': 'Get the current weather in a given location',
'parameters': {'type': 'object', 'properties': {'location': {'type':
'string', 'description': 'The city and state, e.g. San Francisco, CA'},
'unit': {'type': 'string', 'enum': ['celsius', 'fahrenheit']}},
'required': ['location']}}], function_call={'name': 'get_current_weather'})
res = model.invoke("What's the weather in San Francisco?")
function_call = res.additional_kwargs.get('function_call')
assert function_call
self.assertEqual(function_call.get('name'), 'get_current_weather')
self.assertEqual(function_call.get('arguments'),
'{"location": "San Francisco, CA", "unit": "fahrenheit"}')
|
def test_default_chat_anthropic(self) ->None:
base_model = AnthropicFunctions(model='claude-2')
self.assertIsInstance(base_model.model, ChatAnthropic)
model = base_model.bind(functions=[{'name': 'get_current_weather',
'description': 'Get the current weather in a given location',
'parameters': {'type': 'object', 'properties': {'location': {'type':
'string', 'description':
'The city and state, e.g. San Francisco, CA'}, 'unit': {'type':
'string', 'enum': ['celsius', 'fahrenheit']}}, 'required': [
'location']}}], function_call={'name': 'get_current_weather'})
res = model.invoke("What's the weather in San Francisco?")
function_call = res.additional_kwargs.get('function_call')
assert function_call
self.assertEqual(function_call.get('name'), 'get_current_weather')
self.assertEqual(function_call.get('arguments'),
'{"location": "San Francisco, CA", "unit": "fahrenheit"}')
| null |
update
|
"""
Update the graph.
"""
from rdflib.exceptions import ParserError
try:
self.graph.update(query)
except ParserError as e:
raise ValueError(f'Generated SPARQL statement is invalid\n{e}')
if self.local_copy:
self.graph.serialize(destination=self.local_copy, format=self.
local_copy.split('.')[-1])
else:
raise ValueError('No target file specified for saving the updated file.')
|
def update(self, query: str) ->None:
"""
Update the graph.
"""
from rdflib.exceptions import ParserError
try:
self.graph.update(query)
except ParserError as e:
raise ValueError(f'Generated SPARQL statement is invalid\n{e}')
if self.local_copy:
self.graph.serialize(destination=self.local_copy, format=self.
local_copy.split('.')[-1])
else:
raise ValueError(
'No target file specified for saving the updated file.')
|
Update the graph.
|
get_available_models
|
"""Get available models from Anyscale API."""
try:
anyscale_api_key = anyscale_api_key or os.environ['ANYSCALE_API_KEY']
except KeyError as e:
raise ValueError(
'Anyscale API key must be passed as keyword argument or set in environment variable ANYSCALE_API_KEY.'
) from e
models_url = f'{anyscale_api_base}/models'
models_response = requests.get(models_url, headers={'Authorization':
f'Bearer {anyscale_api_key}'})
if models_response.status_code != 200:
raise ValueError(
f'Error getting models from {models_url}: {models_response.status_code}'
)
return {model['id'] for model in models_response.json()['data']}
|
@staticmethod
def get_available_models(anyscale_api_key: Optional[str]=None,
anyscale_api_base: str=DEFAULT_API_BASE) ->Set[str]:
"""Get available models from Anyscale API."""
try:
anyscale_api_key = anyscale_api_key or os.environ['ANYSCALE_API_KEY']
except KeyError as e:
raise ValueError(
'Anyscale API key must be passed as keyword argument or set in environment variable ANYSCALE_API_KEY.'
) from e
models_url = f'{anyscale_api_base}/models'
models_response = requests.get(models_url, headers={'Authorization':
f'Bearer {anyscale_api_key}'})
if models_response.status_code != 200:
raise ValueError(
f'Error getting models from {models_url}: {models_response.status_code}'
)
return {model['id'] for model in models_response.json()['data']}
|
Get available models from Anyscale API.
|
query
|
return {'query': {'bool': {'must': [{'text_expansion': {
f'{vector_query_field}.tokens': {'model_id': self.model_id,
'model_text': query}}}], 'filter': filter}}}
|
def query(self, query_vector: Union[List[float], None], query: Union[str,
None], k: int, fetch_k: int, vector_query_field: str, text_field: str,
filter: List[dict], similarity: Union[DistanceStrategy, None]) ->Dict:
return {'query': {'bool': {'must': [{'text_expansion': {
f'{vector_query_field}.tokens': {'model_id': self.model_id,
'model_text': query}}}], 'filter': filter}}}
| null |
test_remove_style
|
html2text_transformer = Html2TextTransformer()
with_style_html = (
'<html><style>my_funky_style</style><p>First paragraph.</p></html>')
documents = [Document(page_content=with_style_html)]
docs_transformed = html2text_transformer.transform_documents(documents)
assert docs_transformed[0].page_content == 'First paragraph.\n\n'
|
@pytest.mark.requires('html2text')
def test_remove_style() ->None:
html2text_transformer = Html2TextTransformer()
with_style_html = (
'<html><style>my_funky_style</style><p>First paragraph.</p></html>')
documents = [Document(page_content=with_style_html)]
docs_transformed = html2text_transformer.transform_documents(documents)
assert docs_transformed[0].page_content == 'First paragraph.\n\n'
| null |
from_texts
|
"""
Class method that returns a ZepVectorStore instance initialized from texts.
If the collection does not exist, it will be created.
Args:
texts (List[str]): The list of texts to add to the vectorstore.
embedding (Optional[Embeddings]): Optional embedding function to use to
embed the texts.
metadatas (Optional[List[Dict[str, Any]]]): Optional list of metadata
associated with the texts.
collection_name (str): The name of the collection in the Zep store.
api_url (str): The URL of the Zep API.
api_key (Optional[str]): The API key for the Zep API.
config (Optional[CollectionConfig]): The configuration for the collection.
**kwargs: Additional parameters specific to the vectorstore.
Returns:
ZepVectorStore: An instance of ZepVectorStore.
"""
vecstore = cls(collection_name, api_url, api_key=api_key, config=config,
embedding=embedding)
vecstore.add_texts(texts, metadatas)
return vecstore
|
@classmethod
def from_texts(cls, texts: List[str], embedding: Optional[Embeddings]=None,
metadatas: Optional[List[dict]]=None, collection_name: str='', api_url:
str='', api_key: Optional[str]=None, config: Optional[CollectionConfig]
=None, **kwargs: Any) ->ZepVectorStore:
"""
Class method that returns a ZepVectorStore instance initialized from texts.
If the collection does not exist, it will be created.
Args:
texts (List[str]): The list of texts to add to the vectorstore.
embedding (Optional[Embeddings]): Optional embedding function to use to
embed the texts.
metadatas (Optional[List[Dict[str, Any]]]): Optional list of metadata
associated with the texts.
collection_name (str): The name of the collection in the Zep store.
api_url (str): The URL of the Zep API.
api_key (Optional[str]): The API key for the Zep API.
config (Optional[CollectionConfig]): The configuration for the collection.
**kwargs: Additional parameters specific to the vectorstore.
Returns:
ZepVectorStore: An instance of ZepVectorStore.
"""
vecstore = cls(collection_name, api_url, api_key=api_key, config=config,
embedding=embedding)
vecstore.add_texts(texts, metadatas)
return vecstore
|
Class method that returns a ZepVectorStore instance initialized from texts.
If the collection does not exist, it will be created.
Args:
texts (List[str]): The list of texts to add to the vectorstore.
embedding (Optional[Embeddings]): Optional embedding function to use to
embed the texts.
metadatas (Optional[List[Dict[str, Any]]]): Optional list of metadata
associated with the texts.
collection_name (str): The name of the collection in the Zep store.
api_url (str): The URL of the Zep API.
api_key (Optional[str]): The API key for the Zep API.
config (Optional[CollectionConfig]): The configuration for the collection.
**kwargs: Additional parameters specific to the vectorstore.
Returns:
ZepVectorStore: An instance of ZepVectorStore.
|
_get_ddg_search
|
return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs))
|
def _get_ddg_search(**kwargs: Any) ->BaseTool:
return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs)
)
| null |
load
|
"""Load sitemap."""
if self.is_local:
try:
import bs4
except ImportError:
raise ImportError(
'beautifulsoup4 package not found, please install it with `pip install beautifulsoup4`'
)
fp = open(self.web_path)
soup = bs4.BeautifulSoup(fp, 'xml')
else:
soup = self._scrape(self.web_path, parser='xml')
els = self.parse_sitemap(soup)
if self.blocksize is not None:
elblocks = list(_batch_block(els, self.blocksize))
blockcount = len(elblocks)
if blockcount - 1 < self.blocknum:
raise ValueError(
'Selected sitemap does not contain enough blocks for given blocknum'
)
else:
els = elblocks[self.blocknum]
results = self.scrape_all([el['loc'].strip() for el in els if 'loc' in el])
return [Document(page_content=self.parsing_function(results[i]), metadata=
self.meta_function(els[i], results[i])) for i in range(len(results))]
|
def load(self) ->List[Document]:
"""Load sitemap."""
if self.is_local:
try:
import bs4
except ImportError:
raise ImportError(
'beautifulsoup4 package not found, please install it with `pip install beautifulsoup4`'
)
fp = open(self.web_path)
soup = bs4.BeautifulSoup(fp, 'xml')
else:
soup = self._scrape(self.web_path, parser='xml')
els = self.parse_sitemap(soup)
if self.blocksize is not None:
elblocks = list(_batch_block(els, self.blocksize))
blockcount = len(elblocks)
if blockcount - 1 < self.blocknum:
raise ValueError(
'Selected sitemap does not contain enough blocks for given blocknum'
)
else:
els = elblocks[self.blocknum]
results = self.scrape_all([el['loc'].strip() for el in els if 'loc' in el])
return [Document(page_content=self.parsing_function(results[i]),
metadata=self.meta_function(els[i], results[i])) for i in range(len
(results))]
|
Load sitemap.
|
__init__
|
self.message = message
super().__init__(self.message)
|
def __init__(self, message: str=
'The prompt contains PII entities and cannot be processed'):
self.message = message
super().__init__(self.message)
| null |
combine_docs
|
"""Combine documents in a map reduce manner.
Combine by mapping first chain over all documents, then reducing the results.
This reducing can be done recursively if needed (if there are many documents).
"""
map_results = self.llm_chain.apply([{self.document_variable_name: d.
page_content, **kwargs} for d in docs], callbacks=callbacks)
question_result_key = self.llm_chain.output_key
result_docs = [Document(page_content=r[question_result_key], metadata=docs[
i].metadata) for i, r in enumerate(map_results)]
result, extra_return_dict = self.reduce_documents_chain.combine_docs(
result_docs, token_max=token_max, callbacks=callbacks, **kwargs)
if self.return_intermediate_steps:
intermediate_steps = [r[question_result_key] for r in map_results]
extra_return_dict['intermediate_steps'] = intermediate_steps
return result, extra_return_dict
|
def combine_docs(self, docs: List[Document], token_max: Optional[int]=None,
callbacks: Callbacks=None, **kwargs: Any) ->Tuple[str, dict]:
"""Combine documents in a map reduce manner.
Combine by mapping first chain over all documents, then reducing the results.
This reducing can be done recursively if needed (if there are many documents).
"""
map_results = self.llm_chain.apply([{self.document_variable_name: d.
page_content, **kwargs} for d in docs], callbacks=callbacks)
question_result_key = self.llm_chain.output_key
result_docs = [Document(page_content=r[question_result_key], metadata=
docs[i].metadata) for i, r in enumerate(map_results)]
result, extra_return_dict = self.reduce_documents_chain.combine_docs(
result_docs, token_max=token_max, callbacks=callbacks, **kwargs)
if self.return_intermediate_steps:
intermediate_steps = [r[question_result_key] for r in map_results]
extra_return_dict['intermediate_steps'] = intermediate_steps
return result, extra_return_dict
|
Combine documents in a map reduce manner.
Combine by mapping first chain over all documents, then reducing the results.
This reducing can be done recursively if needed (if there are many documents).
|
_import_sleep_tool
|
from langchain_community.tools.sleep.tool import SleepTool
return SleepTool
|
def _import_sleep_tool() ->Any:
from langchain_community.tools.sleep.tool import SleepTool
return SleepTool
| null |
_copy
|
"""Copy a run."""
try:
return run.copy(deep=True)
except TypeError:
return run.copy()
|
def _copy(run: Run) ->Run:
"""Copy a run."""
try:
return run.copy(deep=True)
except TypeError:
return run.copy()
|
Copy a run.
|
add_texts
|
"""
Add texts through the embeddings and add to the vectorstore.
Args:
texts: list of text strings to add to the jaguar vector store.
metadatas: Optional list of metadatas associated with the texts.
[{"m1": "v11", "m2": "v12", "m3": "v13", "filecol": "path_file1.jpg" },
{"m1": "v21", "m2": "v22", "m3": "v23", "filecol": "path_file2.jpg" },
{"m1": "v31", "m2": "v32", "m3": "v33", "filecol": "path_file3.jpg" },
{"m1": "v41", "m2": "v42", "m3": "v43", "filecol": "path_file4.jpg" }]
kwargs: vector_index=name_of_vector_index
file_column=name_of_file_column
Returns:
List of ids from adding the texts into the vectorstore
"""
vcol = self._vector_index
filecol = kwargs.get('file_column', '')
podstorevcol = self._pod + '.' + self._store + '.' + vcol
q = 'textcol ' + podstorevcol
js = self.run(q)
if js == '':
return []
textcol = js['data']
embeddings = self._embedding.embed_documents(list(texts))
ids = []
if metadatas is None:
i = 0
for vec in embeddings:
str_vec = [str(x) for x in vec]
values_comma = ','.join(str_vec)
podstore = self._pod + '.' + self._store
q = 'insert into ' + podstore + ' ('
q += vcol + ',' + textcol + ") values ('" + values_comma
txt = texts[i].replace("'", "\\'")
q += "','" + txt + "')"
js = self.run(q, False)
ids.append(js['zid'])
i += 1
else:
i = 0
for vec in embeddings:
str_vec = [str(x) for x in vec]
nvec, vvec, filepath = self._parseMeta(metadatas[i], filecol)
if filecol != '':
rc = self._jag.postFile(self._token, filepath, 1)
if not rc:
return []
names_comma = ','.join(nvec)
names_comma += ',' + vcol
values_comma = "'" + "','".join(vvec) + "'"
values_comma += ",'" + ','.join(str_vec) + "'"
podstore = self._pod + '.' + self._store
q = 'insert into ' + podstore + ' ('
q += names_comma + ',' + textcol + ') values (' + values_comma
txt = texts[i].replace("'", "\\'")
q += ",'" + txt + "')"
if filecol != '':
js = self.run(q, True)
else:
js = self.run(q, False)
ids.append(js['zid'])
i += 1
return ids
|
def add_texts(self, texts: List[str], metadatas: Optional[List[dict]]=None,
**kwargs: Any) ->List[str]:
"""
Add texts through the embeddings and add to the vectorstore.
Args:
texts: list of text strings to add to the jaguar vector store.
metadatas: Optional list of metadatas associated with the texts.
[{"m1": "v11", "m2": "v12", "m3": "v13", "filecol": "path_file1.jpg" },
{"m1": "v21", "m2": "v22", "m3": "v23", "filecol": "path_file2.jpg" },
{"m1": "v31", "m2": "v32", "m3": "v33", "filecol": "path_file3.jpg" },
{"m1": "v41", "m2": "v42", "m3": "v43", "filecol": "path_file4.jpg" }]
kwargs: vector_index=name_of_vector_index
file_column=name_of_file_column
Returns:
List of ids from adding the texts into the vectorstore
"""
vcol = self._vector_index
filecol = kwargs.get('file_column', '')
podstorevcol = self._pod + '.' + self._store + '.' + vcol
q = 'textcol ' + podstorevcol
js = self.run(q)
if js == '':
return []
textcol = js['data']
embeddings = self._embedding.embed_documents(list(texts))
ids = []
if metadatas is None:
i = 0
for vec in embeddings:
str_vec = [str(x) for x in vec]
values_comma = ','.join(str_vec)
podstore = self._pod + '.' + self._store
q = 'insert into ' + podstore + ' ('
q += vcol + ',' + textcol + ") values ('" + values_comma
txt = texts[i].replace("'", "\\'")
q += "','" + txt + "')"
js = self.run(q, False)
ids.append(js['zid'])
i += 1
else:
i = 0
for vec in embeddings:
str_vec = [str(x) for x in vec]
nvec, vvec, filepath = self._parseMeta(metadatas[i], filecol)
if filecol != '':
rc = self._jag.postFile(self._token, filepath, 1)
if not rc:
return []
names_comma = ','.join(nvec)
names_comma += ',' + vcol
values_comma = "'" + "','".join(vvec) + "'"
values_comma += ",'" + ','.join(str_vec) + "'"
podstore = self._pod + '.' + self._store
q = 'insert into ' + podstore + ' ('
q += names_comma + ',' + textcol + ') values (' + values_comma
txt = texts[i].replace("'", "\\'")
q += ",'" + txt + "')"
if filecol != '':
js = self.run(q, True)
else:
js = self.run(q, False)
ids.append(js['zid'])
i += 1
return ids
|
Add texts through the embeddings and add to the vectorstore.
Args:
texts: list of text strings to add to the jaguar vector store.
metadatas: Optional list of metadatas associated with the texts.
[{"m1": "v11", "m2": "v12", "m3": "v13", "filecol": "path_file1.jpg" },
{"m1": "v21", "m2": "v22", "m3": "v23", "filecol": "path_file2.jpg" },
{"m1": "v31", "m2": "v32", "m3": "v33", "filecol": "path_file3.jpg" },
{"m1": "v41", "m2": "v42", "m3": "v43", "filecol": "path_file4.jpg" }]
kwargs: vector_index=name_of_vector_index
file_column=name_of_file_column
Returns:
List of ids from adding the texts into the vectorstore
|
__init__
|
try:
import sqlite3
except ImportError:
raise ImportError(
'Could not import sqlite3 python package. Please install it with `pip install sqlite3`.'
)
super().__init__(*args, **kwargs)
self.conn = sqlite3.connect(db_file)
self.session_id = session_id
self.table_name = table_name
self._create_table_if_not_exists()
|
def __init__(self, session_id: str='default', db_file: str='entities.db',
table_name: str='memory_store', *args: Any, **kwargs: Any):
try:
import sqlite3
except ImportError:
raise ImportError(
'Could not import sqlite3 python package. Please install it with `pip install sqlite3`.'
)
super().__init__(*args, **kwargs)
self.conn = sqlite3.connect(db_file)
self.session_id = session_id
self.table_name = table_name
self._create_table_if_not_exists()
| null |
on_chain_start
|
"""Run when chain starts running."""
self.step += 1
self.chain_starts += 1
self.starts += 1
resp = self._init_resp()
resp.update({'action': 'on_chain_start'})
resp.update(flatten_dict(serialized))
resp.update(self.get_custom_callback_meta())
for chain_input_key, chain_input_val in inputs.items():
if isinstance(chain_input_val, str):
input_resp = deepcopy(resp)
if self.stream_logs:
self._log_stream(chain_input_val, resp, self.step)
input_resp.update({chain_input_key: chain_input_val})
self.action_records.append(input_resp)
else:
self.comet_ml.LOGGER.warning(
f'Unexpected data format provided! Input Value for {chain_input_key} will not be logged'
)
|
def on_chain_start(self, serialized: Dict[str, Any], inputs: Dict[str, Any],
**kwargs: Any) ->None:
"""Run when chain starts running."""
self.step += 1
self.chain_starts += 1
self.starts += 1
resp = self._init_resp()
resp.update({'action': 'on_chain_start'})
resp.update(flatten_dict(serialized))
resp.update(self.get_custom_callback_meta())
for chain_input_key, chain_input_val in inputs.items():
if isinstance(chain_input_val, str):
input_resp = deepcopy(resp)
if self.stream_logs:
self._log_stream(chain_input_val, resp, self.step)
input_resp.update({chain_input_key: chain_input_val})
self.action_records.append(input_resp)
else:
self.comet_ml.LOGGER.warning(
f'Unexpected data format provided! Input Value for {chain_input_key} will not be logged'
)
|
Run when chain starts running.
|
test_octoai_embedding_query
|
"""Test octoai embeddings."""
document = 'foo bar'
embedding = OctoAIEmbeddings(endpoint_url='<endpoint_url>',
octoai_api_token='<octoai_api_token>', embed_instruction=
'Represent this input: ', query_instruction='Represent this input: ',
model_kwargs=None)
output = embedding.embed_query(document)
assert len(output) == 768
|
def test_octoai_embedding_query() ->None:
"""Test octoai embeddings."""
document = 'foo bar'
embedding = OctoAIEmbeddings(endpoint_url='<endpoint_url>',
octoai_api_token='<octoai_api_token>', embed_instruction=
'Represent this input: ', query_instruction=
'Represent this input: ', model_kwargs=None)
output = embedding.embed_query(document)
assert len(output) == 768
|
Test octoai embeddings.
|
test_meilisearch
|
"""Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
vectorstore = Meilisearch.from_texts(texts=texts, embedding=FakeEmbeddings(
), url=TEST_MEILI_HTTP_ADDR, api_key=TEST_MEILI_MASTER_KEY, index_name=
INDEX_NAME)
self._wait_last_task()
output = vectorstore.similarity_search('foo', k=1)
assert output == [Document(page_content='foo')]
|
def test_meilisearch(self) ->None:
"""Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
vectorstore = Meilisearch.from_texts(texts=texts, embedding=
FakeEmbeddings(), url=TEST_MEILI_HTTP_ADDR, api_key=
TEST_MEILI_MASTER_KEY, index_name=INDEX_NAME)
self._wait_last_task()
output = vectorstore.similarity_search('foo', k=1)
assert output == [Document(page_content='foo')]
|
Test end to end construction and search.
|
_url_to_pil
|
if PIL is None:
raise ImportError(
'PIL is required to load images. Please install it with `pip install pillow`'
)
try:
if isinstance(image_source, IMAGE_TYPES):
return image_source
elif _is_url(image_source):
if image_source.startswith('gs://'):
return _load_image_from_gcs(image_source)
response = requests.get(image_source)
response.raise_for_status()
return PIL.Image.open(BytesIO(response.content))
elif _is_b64(image_source):
_, encoded = image_source.split(',', 1)
data = base64.b64decode(encoded)
return PIL.Image.open(BytesIO(data))
elif os.path.exists(image_source):
return PIL.Image.open(image_source)
else:
raise ValueError(
'The provided string is not a valid URL, base64, or file path.')
except Exception as e:
raise ValueError(f'Unable to process the provided image source: {e}')
|
def _url_to_pil(image_source: str) ->Image:
if PIL is None:
raise ImportError(
'PIL is required to load images. Please install it with `pip install pillow`'
)
try:
if isinstance(image_source, IMAGE_TYPES):
return image_source
elif _is_url(image_source):
if image_source.startswith('gs://'):
return _load_image_from_gcs(image_source)
response = requests.get(image_source)
response.raise_for_status()
return PIL.Image.open(BytesIO(response.content))
elif _is_b64(image_source):
_, encoded = image_source.split(',', 1)
data = base64.b64decode(encoded)
return PIL.Image.open(BytesIO(data))
elif os.path.exists(image_source):
return PIL.Image.open(image_source)
else:
raise ValueError(
'The provided string is not a valid URL, base64, or file path.'
)
except Exception as e:
raise ValueError(f'Unable to process the provided image source: {e}')
| null |
_parse_list
|
"""Parse a newline-separated string into a list of strings."""
lines = re.split('\\n', text.strip())
lines = [line for line in lines if line.strip()]
return [re.sub('^\\s*\\d+\\.\\s*', '', line).strip() for line in lines]
|
@staticmethod
def _parse_list(text: str) ->List[str]:
"""Parse a newline-separated string into a list of strings."""
lines = re.split('\\n', text.strip())
lines = [line for line in lines if line.strip()]
return [re.sub('^\\s*\\d+\\.\\s*', '', line).strip() for line in lines]
|
Parse a newline-separated string into a list of strings.
|
_select_relevance_score_fn
|
"""
The 'correct' relevance function
may differ depending on a few things, including:
- the distance / similarity metric used by the VectorStore
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
- embedding dimensionality
- etc.
"""
if self.override_relevance_score_fn is not None:
return self.override_relevance_score_fn
if self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
return self._max_inner_product_relevance_score_fn
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
return self._euclidean_relevance_score_fn
else:
raise ValueError(
'Unknown distance strategy, must be cosine, max_inner_product, or euclidean'
)
|
def _select_relevance_score_fn(self) ->Callable[[float], float]:
"""
The 'correct' relevance function
may differ depending on a few things, including:
- the distance / similarity metric used by the VectorStore
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
- embedding dimensionality
- etc.
"""
if self.override_relevance_score_fn is not None:
return self.override_relevance_score_fn
if self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
return self._max_inner_product_relevance_score_fn
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
return self._euclidean_relevance_score_fn
else:
raise ValueError(
'Unknown distance strategy, must be cosine, max_inner_product, or euclidean'
)
|
The 'correct' relevance function
may differ depending on a few things, including:
- the distance / similarity metric used by the VectorStore
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
- embedding dimensionality
- etc.
|
test_summary_buffer_memory_summary
|
"""Test ConversationSummaryBufferMemory when only buffer."""
memory = ConversationSummaryBufferMemory(llm=FakeLLM(), memory_key='baz',
max_token_limit=13)
memory.save_context({'input': 'bar'}, {'output': 'foo'})
memory.save_context({'input': 'bar1'}, {'output': 'foo1'})
assert memory.buffer == ["""Human: bar1
AI: foo1"""]
output = memory.load_memory_variables({})
assert output == {'baz': """foo
Human: bar1
AI: foo1"""}
|
def test_summary_buffer_memory_summary() ->None:
"""Test ConversationSummaryBufferMemory when only buffer."""
memory = ConversationSummaryBufferMemory(llm=FakeLLM(), memory_key=
'baz', max_token_limit=13)
memory.save_context({'input': 'bar'}, {'output': 'foo'})
memory.save_context({'input': 'bar1'}, {'output': 'foo1'})
assert memory.buffer == ['Human: bar1\nAI: foo1']
output = memory.load_memory_variables({})
assert output == {'baz': 'foo\nHuman: bar1\nAI: foo1'}
|
Test ConversationSummaryBufferMemory when only buffer.
|
run_async
|
"""Run an async coroutine.
Args:
coro: The coroutine to run. Coroutine[Any, Any, T]
Returns:
T: The result of the coroutine.
"""
event_loop = asyncio.get_event_loop()
return event_loop.run_until_complete(coro)
|
def run_async(coro: Coroutine[Any, Any, T]) ->T:
"""Run an async coroutine.
Args:
coro: The coroutine to run. Coroutine[Any, Any, T]
Returns:
T: The result of the coroutine.
"""
event_loop = asyncio.get_event_loop()
return event_loop.run_until_complete(coro)
|
Run an async coroutine.
Args:
coro: The coroutine to run. Coroutine[Any, Any, T]
Returns:
T: The result of the coroutine.
|
_construct_path
|
"""Construct the path from the deserialized input."""
path = self.api_operation.base_url + self.api_operation.path
for param in self.param_mapping.path_params:
path = path.replace(f'{{{param}}}', str(args.pop(param, '')))
return path
|
def _construct_path(self, args: Dict[str, str]) ->str:
"""Construct the path from the deserialized input."""
path = self.api_operation.base_url + self.api_operation.path
for param in self.param_mapping.path_params:
path = path.replace(f'{{{param}}}', str(args.pop(param, '')))
return path
|
Construct the path from the deserialized input.
|
_load_generations_from_json
|
"""Load generations from json.
Args:
generations_json (str): A string of json representing a list of generations.
Raises:
ValueError: Could not decode json string to list of generations.
Returns:
RETURN_VAL_TYPE: A list of generations.
Warning: would not work well with arbitrary subclasses of `Generation`
"""
try:
results = json.loads(generations_json)
return [Generation(**generation_dict) for generation_dict in results]
except json.JSONDecodeError:
raise ValueError(
f'Could not decode json to list of generations: {generations_json}')
|
def _load_generations_from_json(generations_json: str) ->RETURN_VAL_TYPE:
"""Load generations from json.
Args:
generations_json (str): A string of json representing a list of generations.
Raises:
ValueError: Could not decode json string to list of generations.
Returns:
RETURN_VAL_TYPE: A list of generations.
Warning: would not work well with arbitrary subclasses of `Generation`
"""
try:
results = json.loads(generations_json)
return [Generation(**generation_dict) for generation_dict in results]
except json.JSONDecodeError:
raise ValueError(
f'Could not decode json to list of generations: {generations_json}'
)
|
Load generations from json.
Args:
generations_json (str): A string of json representing a list of generations.
Raises:
ValueError: Could not decode json string to list of generations.
Returns:
RETURN_VAL_TYPE: A list of generations.
Warning: would not work well with arbitrary subclasses of `Generation`
|
message_history
|
from momento import CacheClient, Configurations, CredentialProvider
cache_name = f'langchain-test-cache-{random_string()}'
client = CacheClient(Configurations.Laptop.v1(), CredentialProvider.
from_environment_variable('MOMENTO_API_KEY'), default_ttl=timedelta(
seconds=30))
try:
chat_message_history = MomentoChatMessageHistory(session_id=
'my-test-session', cache_client=client, cache_name=cache_name)
yield chat_message_history
finally:
client.delete_cache(cache_name)
|
@pytest.fixture(scope='function')
def message_history() ->Iterator[MomentoChatMessageHistory]:
from momento import CacheClient, Configurations, CredentialProvider
cache_name = f'langchain-test-cache-{random_string()}'
client = CacheClient(Configurations.Laptop.v1(), CredentialProvider.
from_environment_variable('MOMENTO_API_KEY'), default_ttl=timedelta
(seconds=30))
try:
chat_message_history = MomentoChatMessageHistory(session_id=
'my-test-session', cache_client=client, cache_name=cache_name)
yield chat_message_history
finally:
client.delete_cache(cache_name)
| null |
get_result_from_sqldb
|
result = db._execute(cmd, fetch='all')
return result
|
def get_result_from_sqldb(db: SQLDatabase, cmd: str) ->Sequence[Dict[str, Any]
]:
result = db._execute(cmd, fetch='all')
return result
| null |
test_message_chunks
|
assert AIMessageChunk(content='I am') + AIMessageChunk(content=' indeed.'
) == AIMessageChunk(content='I am indeed.'
), 'MessageChunk + MessageChunk should be a MessageChunk'
assert AIMessageChunk(content='I am') + HumanMessageChunk(content=' indeed.'
) == AIMessageChunk(content='I am indeed.'
), 'MessageChunk + MessageChunk should be a MessageChunk of same class as the left side'
assert AIMessageChunk(content='', additional_kwargs={'foo': 'bar'}
) + AIMessageChunk(content='', additional_kwargs={'baz': 'foo'}
) == AIMessageChunk(content='', additional_kwargs={'foo': 'bar', 'baz':
'foo'}
), 'MessageChunk + MessageChunk should be a MessageChunk with merged additional_kwargs'
assert AIMessageChunk(content='', additional_kwargs={'function_call': {
'name': 'web_search'}}) + AIMessageChunk(content='', additional_kwargs=
{'function_call': {'arguments': None}}) + AIMessageChunk(content='',
additional_kwargs={'function_call': {'arguments': '{\n'}}
) + AIMessageChunk(content='', additional_kwargs={'function_call': {
'arguments': """ "query": "turtles"
}"""}}) == AIMessageChunk(content=
'', additional_kwargs={'function_call': {'name': 'web_search',
'arguments': """{
"query": "turtles"
}"""}}
), 'MessageChunk + MessageChunk should be a MessageChunk with merged additional_kwargs'
|
def test_message_chunks() ->None:
assert AIMessageChunk(content='I am') + AIMessageChunk(content=' indeed.'
) == AIMessageChunk(content='I am indeed.'
), 'MessageChunk + MessageChunk should be a MessageChunk'
assert AIMessageChunk(content='I am') + HumanMessageChunk(content=
' indeed.') == AIMessageChunk(content='I am indeed.'
), 'MessageChunk + MessageChunk should be a MessageChunk of same class as the left side'
assert AIMessageChunk(content='', additional_kwargs={'foo': 'bar'}
) + AIMessageChunk(content='', additional_kwargs={'baz': 'foo'}
) == AIMessageChunk(content='', additional_kwargs={'foo': 'bar',
'baz': 'foo'}
), 'MessageChunk + MessageChunk should be a MessageChunk with merged additional_kwargs'
assert AIMessageChunk(content='', additional_kwargs={'function_call': {
'name': 'web_search'}}) + AIMessageChunk(content='',
additional_kwargs={'function_call': {'arguments': None}}
) + AIMessageChunk(content='', additional_kwargs={'function_call':
{'arguments': '{\n'}}) + AIMessageChunk(content='',
additional_kwargs={'function_call': {'arguments':
""" "query": "turtles"
}"""}}) == AIMessageChunk(content='',
additional_kwargs={'function_call': {'name': 'web_search',
'arguments': """{
"query": "turtles"
}"""}}
), 'MessageChunk + MessageChunk should be a MessageChunk with merged additional_kwargs'
| null |
_load
|
"""Load the collection if available."""
from pymilvus import Collection
if isinstance(self.col, Collection) and self._get_index() is not None:
self.col.load()
|
def _load(self) ->None:
"""Load the collection if available."""
from pymilvus import Collection
if isinstance(self.col, Collection) and self._get_index() is not None:
self.col.load()
|
Load the collection if available.
|
__init__
|
merged = {**__steps} if __steps is not None else {}
merged.update(kwargs)
super().__init__(steps={key: coerce_to_runnable(r) for key, r in merged.
items()})
|
def __init__(self, __steps: Optional[Mapping[str, Union[Runnable[Input, Any
], Callable[[Input], Any], Mapping[str, Union[Runnable[Input, Any],
Callable[[Input], Any]]]]]]=None, **kwargs: Union[Runnable[Input, Any],
Callable[[Input], Any], Mapping[str, Union[Runnable[Input, Any],
Callable[[Input], Any]]]]) ->None:
merged = {**__steps} if __steps is not None else {}
merged.update(kwargs)
super().__init__(steps={key: coerce_to_runnable(r) for key, r in merged
.items()})
| null |
test_chat_openai_extra_kwargs
|
"""Test extra kwargs to chat openai."""
llm = ChatOpenAI(foo=3, max_tokens=10)
assert llm.max_tokens == 10
assert llm.model_kwargs == {'foo': 3}
llm = ChatOpenAI(foo=3, model_kwargs={'bar': 2})
assert llm.model_kwargs == {'foo': 3, 'bar': 2}
with pytest.raises(ValueError):
ChatOpenAI(foo=3, model_kwargs={'foo': 2})
with pytest.raises(ValueError):
ChatOpenAI(model_kwargs={'temperature': 0.2})
with pytest.raises(ValueError):
ChatOpenAI(model_kwargs={'model': 'gpt-3.5-turbo-instruct'})
|
def test_chat_openai_extra_kwargs() ->None:
"""Test extra kwargs to chat openai."""
llm = ChatOpenAI(foo=3, max_tokens=10)
assert llm.max_tokens == 10
assert llm.model_kwargs == {'foo': 3}
llm = ChatOpenAI(foo=3, model_kwargs={'bar': 2})
assert llm.model_kwargs == {'foo': 3, 'bar': 2}
with pytest.raises(ValueError):
ChatOpenAI(foo=3, model_kwargs={'foo': 2})
with pytest.raises(ValueError):
ChatOpenAI(model_kwargs={'temperature': 0.2})
with pytest.raises(ValueError):
ChatOpenAI(model_kwargs={'model': 'gpt-3.5-turbo-instruct'})
|
Test extra kwargs to chat openai.
|
test__get_hours_passed
|
time1 = datetime(2023, 4, 14, 14, 30)
time2 = datetime(2023, 4, 14, 12, 0)
expected_hours_passed = 2.5
hours_passed = _get_hours_passed(time1, time2)
assert hours_passed == expected_hours_passed
|
def test__get_hours_passed() ->None:
time1 = datetime(2023, 4, 14, 14, 30)
time2 = datetime(2023, 4, 14, 12, 0)
expected_hours_passed = 2.5
hours_passed = _get_hours_passed(time1, time2)
assert hours_passed == expected_hours_passed
| null |
_llm_type
|
"""Return type of llm."""
return 'anthropic-llm'
|
@property
def _llm_type(self) ->str:
"""Return type of llm."""
return 'anthropic-llm'
|
Return type of llm.
|
test_qdrant_add_texts_stores_duplicated_texts
|
"""Test end to end Qdrant.add_texts stores duplicated texts separately."""
from qdrant_client import QdrantClient
from qdrant_client.http import models as rest
client = QdrantClient(':memory:')
collection_name = uuid.uuid4().hex
vectors_config = rest.VectorParams(size=10, distance=rest.Distance.COSINE)
if vector_name is not None:
vectors_config = {vector_name: vectors_config}
client.recreate_collection(collection_name, vectors_config=vectors_config)
vec_store = Qdrant(client, collection_name, embeddings=
ConsistentFakeEmbeddings(), vector_name=vector_name)
ids = vec_store.add_texts(['abc', 'abc'], [{'a': 1}, {'a': 2}])
assert 2 == len(set(ids))
assert 2 == client.count(collection_name).count
|
@pytest.mark.parametrize('vector_name', [None, 'my-vector'])
def test_qdrant_add_texts_stores_duplicated_texts(vector_name: Optional[str]
) ->None:
"""Test end to end Qdrant.add_texts stores duplicated texts separately."""
from qdrant_client import QdrantClient
from qdrant_client.http import models as rest
client = QdrantClient(':memory:')
collection_name = uuid.uuid4().hex
vectors_config = rest.VectorParams(size=10, distance=rest.Distance.COSINE)
if vector_name is not None:
vectors_config = {vector_name: vectors_config}
client.recreate_collection(collection_name, vectors_config=vectors_config)
vec_store = Qdrant(client, collection_name, embeddings=
ConsistentFakeEmbeddings(), vector_name=vector_name)
ids = vec_store.add_texts(['abc', 'abc'], [{'a': 1}, {'a': 2}])
assert 2 == len(set(ids))
assert 2 == client.count(collection_name).count
|
Test end to end Qdrant.add_texts stores duplicated texts separately.
|
test_find_all_links_drop_fragment
|
html = 'href="foobar.com/woah#section_one"'
actual = find_all_links(html)
assert actual == ['foobar.com/woah']
|
def test_find_all_links_drop_fragment() ->None:
html = 'href="foobar.com/woah#section_one"'
actual = find_all_links(html)
assert actual == ['foobar.com/woah']
| null |
messages
|
"""Messages in this chat history."""
return messages_from_dict(self._query(
f"""
SELECT *
FROM UNNEST ((
SELECT "{self.messages_key}"
FROM {self.location}
WHERE _id = :session_id
))
"""
, session_id=self.session_id))
|
@property
def messages(self) ->List[BaseMessage]:
"""Messages in this chat history."""
return messages_from_dict(self._query(
f"""
SELECT *
FROM UNNEST ((
SELECT "{self.messages_key}"
FROM {self.location}
WHERE _id = :session_id
))
"""
, session_id=self.session_id))
|
Messages in this chat history.
|
_import_gmail_GmailGetMessage
|
from langchain_community.tools.gmail import GmailGetMessage
return GmailGetMessage
|
def _import_gmail_GmailGetMessage() ->Any:
from langchain_community.tools.gmail import GmailGetMessage
return GmailGetMessage
| null |
test_unstructured_loader_with_post_processor
|
def add_the_end(text: str) ->str:
return text + 'THE END!'
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, 'layout-parser-paper.pdf')
loader = UnstructuredFileLoader(file_path=file_path, post_processors=[
add_the_end], strategy='fast', mode='elements')
docs = loader.load()
assert len(docs) > 1
assert docs[0].page_content.endswith('THE END!')
|
def test_unstructured_loader_with_post_processor() ->None:
def add_the_end(text: str) ->str:
return text + 'THE END!'
file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, 'layout-parser-paper.pdf')
loader = UnstructuredFileLoader(file_path=file_path, post_processors=[
add_the_end], strategy='fast', mode='elements')
docs = loader.load()
assert len(docs) > 1
assert docs[0].page_content.endswith('THE END!')
| null |
fake_llm_sudoku
|
"""This is a fake LLM that responds to the sudoku problem."""
queries = {i: next_step.strip() for i, next_step in enumerate(solutions)}
return FakeLLM(queries=queries, sequential_responses=True)
|
@pytest.fixture
def fake_llm_sudoku() ->FakeLLM:
"""This is a fake LLM that responds to the sudoku problem."""
queries = {i: next_step.strip() for i, next_step in enumerate(solutions)}
return FakeLLM(queries=queries, sequential_responses=True)
|
This is a fake LLM that responds to the sudoku problem.
|
_llm_type
|
"""Return type of llm."""
return 'stochasticai'
|
@property
def _llm_type(self) ->str:
"""Return type of llm."""
return 'stochasticai'
|
Return type of llm.
|
get_history
|
input.pop('question')
window = 3
data = graph.query(
"""
MATCH (u:User {id:$user_id})-[:HAS_SESSION]->(s:Session {id:$session_id}),
(s)-[:LAST_MESSAGE]->(last_message)
MATCH p=(last_message)<-[:NEXT*0.."""
+ str(window) +
"""]-()
WITH p, length(p) AS length
ORDER BY length DESC LIMIT 1
UNWIND reverse(nodes(p)) AS node
MATCH (node)-[:HAS_ANSWER]->(answer)
RETURN {question:node.text, answer:answer.text} AS result
"""
, params=input)
history = convert_messages(data)
return history.messages
|
def get_history(input: Dict[str, Any]) ->ChatMessageHistory:
input.pop('question')
window = 3
data = graph.query(
"""
MATCH (u:User {id:$user_id})-[:HAS_SESSION]->(s:Session {id:$session_id}),
(s)-[:LAST_MESSAGE]->(last_message)
MATCH p=(last_message)<-[:NEXT*0.."""
+ str(window) +
"""]-()
WITH p, length(p) AS length
ORDER BY length DESC LIMIT 1
UNWIND reverse(nodes(p)) AS node
MATCH (node)-[:HAS_ANSWER]->(answer)
RETURN {question:node.text, answer:answer.text} AS result
"""
, params=input)
history = convert_messages(data)
return history.messages
| null |
run
|
"""Run query through GoogleSearch and parse result."""
results = self._google_serper_api_results(query, gl=self.gl, hl=self.hl,
num=self.k, tbs=self.tbs, search_type=self.type, **kwargs)
return self._parse_results(results)
|
def run(self, query: str, **kwargs: Any) ->str:
"""Run query through GoogleSearch and parse result."""
results = self._google_serper_api_results(query, gl=self.gl, hl=self.hl,
num=self.k, tbs=self.tbs, search_type=self.type, **kwargs)
return self._parse_results(results)
|
Run query through GoogleSearch and parse result.
|
fn
|
return attrdict({'resources': {'123': attrdict({'fields': {'456': attrdict(
{'paragraphs': {'123/t/text/0-14': attrdict({'text': 'This is a test',
'order': 0})}})}, 'data': {'texts': {'text': {'body': 'This is a test'}
}}, 'extra': attrdict({'metadata': {'some': 'metadata'}})})}})
|
def fn(self: Any, **kwargs: Any) ->Any:
return attrdict({'resources': {'123': attrdict({'fields': {'456':
attrdict({'paragraphs': {'123/t/text/0-14': attrdict({'text':
'This is a test', 'order': 0})}})}, 'data': {'texts': {'text': {
'body': 'This is a test'}}}, 'extra': attrdict({'metadata': {'some':
'metadata'}})})}})
| null |
add_texts
|
"""Add more texts to the vectorstore.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
Defaults to None.
embeddings (Optional[List[List[float]]], optional): Optional pre-generated
embeddings. Defaults to None.
Returns:
List[str]: empty list
"""
conn = self.connection_pool.connect()
try:
cur = conn.cursor()
try:
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
embedding = embeddings[i
] if embeddings else self.embedding.embed_documents([text])[0]
cur.execute('INSERT INTO {} VALUES (%s, JSON_ARRAY_PACK(%s), %s)'
.format(self.table_name), (text, '[{}]'.format(','.join(map
(str, embedding))), json.dumps(metadata)))
finally:
cur.close()
finally:
conn.close()
return []
|
def add_texts(self, texts: Iterable[str], metadatas: Optional[List[dict]]=
None, embeddings: Optional[List[List[float]]]=None, **kwargs: Any) ->List[
str]:
"""Add more texts to the vectorstore.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
Defaults to None.
embeddings (Optional[List[List[float]]], optional): Optional pre-generated
embeddings. Defaults to None.
Returns:
List[str]: empty list
"""
conn = self.connection_pool.connect()
try:
cur = conn.cursor()
try:
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
embedding = embeddings[i
] if embeddings else self.embedding.embed_documents([text]
)[0]
cur.execute(
'INSERT INTO {} VALUES (%s, JSON_ARRAY_PACK(%s), %s)'.
format(self.table_name), (text, '[{}]'.format(','.join(
map(str, embedding))), json.dumps(metadata)))
finally:
cur.close()
finally:
conn.close()
return []
|
Add more texts to the vectorstore.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
Defaults to None.
embeddings (Optional[List[List[float]]], optional): Optional pre-generated
embeddings. Defaults to None.
Returns:
List[str]: empty list
|
load_memory_variables
|
"""Return history buffer."""
if self.return_messages:
buffer: Any = [self.summary_message_cls(content=self.buffer)]
else:
buffer = self.buffer
return {self.memory_key: buffer}
|
def load_memory_variables(self, inputs: Dict[str, Any]) ->Dict[str, Any]:
"""Return history buffer."""
if self.return_messages:
buffer: Any = [self.summary_message_cls(content=self.buffer)]
else:
buffer = self.buffer
return {self.memory_key: buffer}
|
Return history buffer.
|
test_zilliz_with_score
|
"""Test end to end construction and search with scores and IDs."""
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': i} for i in range(len(texts))]
docsearch = _zilliz_from_texts(metadatas=metadatas)
output = docsearch.similarity_search_with_score('foo', k=3)
docs = [o[0] for o in output]
scores = [o[1] for o in output]
assert docs == [Document(page_content='foo', metadata={'page': 0}),
Document(page_content='bar', metadata={'page': 1}), Document(
page_content='baz', metadata={'page': 2})]
assert scores[0] < scores[1] < scores[2]
|
def test_zilliz_with_score() ->None:
"""Test end to end construction and search with scores and IDs."""
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': i} for i in range(len(texts))]
docsearch = _zilliz_from_texts(metadatas=metadatas)
output = docsearch.similarity_search_with_score('foo', k=3)
docs = [o[0] for o in output]
scores = [o[1] for o in output]
assert docs == [Document(page_content='foo', metadata={'page': 0}),
Document(page_content='bar', metadata={'page': 1}), Document(
page_content='baz', metadata={'page': 2})]
assert scores[0] < scores[1] < scores[2]
|
Test end to end construction and search with scores and IDs.
|
InputType
|
return self.first.InputType
|
@property
def InputType(self) ->Type[Input]:
return self.first.InputType
| null |
test_modelscope_embedding_query
|
"""Test modelscope embeddings for query."""
document = 'foo bar'
embedding = ModelScopeEmbeddings()
output = embedding.embed_query(document)
assert len(output) == 512
|
def test_modelscope_embedding_query() ->None:
"""Test modelscope embeddings for query."""
document = 'foo bar'
embedding = ModelScopeEmbeddings()
output = embedding.embed_query(document)
assert len(output) == 512
|
Test modelscope embeddings for query.
|
on_chain_error
|
"""Handle an error for a chain run."""
chain_run = self._get_run(run_id)
chain_run.error = self._get_stacktrace(error)
chain_run.end_time = datetime.now(timezone.utc)
chain_run.events.append({'name': 'error', 'time': chain_run.end_time})
if inputs is not None:
chain_run.inputs = inputs if isinstance(inputs, dict) else {'input': inputs
}
self._end_trace(chain_run)
self._on_chain_error(chain_run)
return chain_run
|
def on_chain_error(self, error: BaseException, *, inputs: Optional[Dict[str,
Any]]=None, run_id: UUID, **kwargs: Any) ->Run:
"""Handle an error for a chain run."""
chain_run = self._get_run(run_id)
chain_run.error = self._get_stacktrace(error)
chain_run.end_time = datetime.now(timezone.utc)
chain_run.events.append({'name': 'error', 'time': chain_run.end_time})
if inputs is not None:
chain_run.inputs = inputs if isinstance(inputs, dict) else {'input':
inputs}
self._end_trace(chain_run)
self._on_chain_error(chain_run)
return chain_run
|
Handle an error for a chain run.
|
embed_documents
|
"""
Generates embeddings for a list of documents.
Args:
texts (List[str]): The documents to generate embeddings for.
Returns:
A list of embeddings, one for each document.
"""
return [self.nlp(text).vector.tolist() for text in texts]
|
def embed_documents(self, texts: List[str]) ->List[List[float]]:
"""
Generates embeddings for a list of documents.
Args:
texts (List[str]): The documents to generate embeddings for.
Returns:
A list of embeddings, one for each document.
"""
return [self.nlp(text).vector.tolist() for text in texts]
|
Generates embeddings for a list of documents.
Args:
texts (List[str]): The documents to generate embeddings for.
Returns:
A list of embeddings, one for each document.
|
test_qdrant_similarity_search_by_vector
|
"""Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
docsearch = Qdrant.from_texts(texts, ConsistentFakeEmbeddings(), location=
':memory:', content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key, batch_size=batch_size,
vector_name=vector_name)
embeddings = ConsistentFakeEmbeddings().embed_query('foo')
output = docsearch.similarity_search_by_vector(embeddings, k=1)
assert output == [Document(page_content='foo')]
|
@pytest.mark.parametrize('batch_size', [1, 64])
@pytest.mark.parametrize('content_payload_key', [Qdrant.CONTENT_KEY, 'foo'])
@pytest.mark.parametrize('metadata_payload_key', [Qdrant.METADATA_KEY, 'bar'])
@pytest.mark.parametrize('vector_name', [None, 'my-vector'])
def test_qdrant_similarity_search_by_vector(batch_size: int,
content_payload_key: str, metadata_payload_key: str, vector_name:
Optional[str]) ->None:
"""Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
docsearch = Qdrant.from_texts(texts, ConsistentFakeEmbeddings(),
location=':memory:', content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key, batch_size=batch_size,
vector_name=vector_name)
embeddings = ConsistentFakeEmbeddings().embed_query('foo')
output = docsearch.similarity_search_by_vector(embeddings, k=1)
assert output == [Document(page_content='foo')]
|
Test end to end construction and search.
|
similarity_search_with_score
|
"""Return docs most similar to query. Uses cosine similarity.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: A dictionary of metadata fields and values to filter by.
Defaults to None.
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embedding.embed_query(query)
conn = self.connection_pool.connect()
result = []
where_clause: str = ''
where_clause_values: List[Any] = []
if filter:
where_clause = 'WHERE '
arguments = []
def build_where_clause(where_clause_values: List[Any], sub_filter: dict,
prefix_args: Optional[List[str]]=None) ->None:
prefix_args = prefix_args or []
for key in sub_filter.keys():
if isinstance(sub_filter[key], dict):
build_where_clause(where_clause_values, sub_filter[key],
prefix_args + [key])
else:
arguments.append('JSON_EXTRACT_JSON({}, {}) = %s'.format(
self.metadata_field, ', '.join(['%s'] * (len(
prefix_args) + 1))))
where_clause_values += prefix_args + [key]
where_clause_values.append(json.dumps(sub_filter[key]))
build_where_clause(where_clause_values, filter)
where_clause += ' AND '.join(arguments)
try:
cur = conn.cursor()
try:
cur.execute(
"""SELECT {}, {}, {}({}, JSON_ARRAY_PACK(%s)) as __score
FROM {} {} ORDER BY __score {} LIMIT %s"""
.format(self.content_field, self.metadata_field, self.
distance_strategy.name if isinstance(self.distance_strategy,
DistanceStrategy) else self.distance_strategy, self.
vector_field, self.table_name, where_clause, ORDERING_DIRECTIVE
[self.distance_strategy]), ('[{}]'.format(','.join(map(str,
embedding))),) + tuple(where_clause_values) + (k,))
for row in cur.fetchall():
doc = Document(page_content=row[0], metadata=row[1])
result.append((doc, float(row[2])))
finally:
cur.close()
finally:
conn.close()
return result
|
def similarity_search_with_score(self, query: str, k: int=4, filter:
Optional[dict]=None) ->List[Tuple[Document, float]]:
"""Return docs most similar to query. Uses cosine similarity.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: A dictionary of metadata fields and values to filter by.
Defaults to None.
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embedding.embed_query(query)
conn = self.connection_pool.connect()
result = []
where_clause: str = ''
where_clause_values: List[Any] = []
if filter:
where_clause = 'WHERE '
arguments = []
def build_where_clause(where_clause_values: List[Any], sub_filter:
dict, prefix_args: Optional[List[str]]=None) ->None:
prefix_args = prefix_args or []
for key in sub_filter.keys():
if isinstance(sub_filter[key], dict):
build_where_clause(where_clause_values, sub_filter[key],
prefix_args + [key])
else:
arguments.append('JSON_EXTRACT_JSON({}, {}) = %s'.
format(self.metadata_field, ', '.join(['%s'] * (len
(prefix_args) + 1))))
where_clause_values += prefix_args + [key]
where_clause_values.append(json.dumps(sub_filter[key]))
build_where_clause(where_clause_values, filter)
where_clause += ' AND '.join(arguments)
try:
cur = conn.cursor()
try:
cur.execute(
"""SELECT {}, {}, {}({}, JSON_ARRAY_PACK(%s)) as __score
FROM {} {} ORDER BY __score {} LIMIT %s"""
.format(self.content_field, self.metadata_field, self.
distance_strategy.name if isinstance(self.distance_strategy,
DistanceStrategy) else self.distance_strategy, self.
vector_field, self.table_name, where_clause,
ORDERING_DIRECTIVE[self.distance_strategy]), ('[{}]'.format
(','.join(map(str, embedding))),) + tuple(
where_clause_values) + (k,))
for row in cur.fetchall():
doc = Document(page_content=row[0], metadata=row[1])
result.append((doc, float(row[2])))
finally:
cur.close()
finally:
conn.close()
return result
|
Return docs most similar to query. Uses cosine similarity.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: A dictionary of metadata fields and values to filter by.
Defaults to None.
Returns:
List of Documents most similar to the query and score for each
|
__init__
|
"""
Initialize with a ready session and a keyspace name.
Args:
session (cassandra.cluster.Session): an open Cassandra session
keyspace (str): the keyspace to use for storing the cache
table_name (str): name of the Cassandra table to use as cache
ttl_seconds (optional int): time-to-live for cache entries
(default: None, i.e. forever)
"""
try:
from cassio.table import ElasticCassandraTable
except (ImportError, ModuleNotFoundError):
raise ValueError(
'Could not import cassio python package. Please install it with `pip install cassio`.'
)
self.session = session
self.keyspace = keyspace
self.table_name = table_name
self.ttl_seconds = ttl_seconds
self.kv_cache = ElasticCassandraTable(session=self.session, keyspace=self.
keyspace, table=self.table_name, keys=['llm_string', 'prompt'],
primary_key_type=['TEXT', 'TEXT'], ttl_seconds=self.ttl_seconds,
skip_provisioning=skip_provisioning)
|
def __init__(self, session: Optional[CassandraSession]=None, keyspace:
Optional[str]=None, table_name: str=CASSANDRA_CACHE_DEFAULT_TABLE_NAME,
ttl_seconds: Optional[int]=CASSANDRA_CACHE_DEFAULT_TTL_SECONDS,
skip_provisioning: bool=False):
"""
Initialize with a ready session and a keyspace name.
Args:
session (cassandra.cluster.Session): an open Cassandra session
keyspace (str): the keyspace to use for storing the cache
table_name (str): name of the Cassandra table to use as cache
ttl_seconds (optional int): time-to-live for cache entries
(default: None, i.e. forever)
"""
try:
from cassio.table import ElasticCassandraTable
except (ImportError, ModuleNotFoundError):
raise ValueError(
'Could not import cassio python package. Please install it with `pip install cassio`.'
)
self.session = session
self.keyspace = keyspace
self.table_name = table_name
self.ttl_seconds = ttl_seconds
self.kv_cache = ElasticCassandraTable(session=self.session, keyspace=
self.keyspace, table=self.table_name, keys=['llm_string', 'prompt'],
primary_key_type=['TEXT', 'TEXT'], ttl_seconds=self.ttl_seconds,
skip_provisioning=skip_provisioning)
|
Initialize with a ready session and a keyspace name.
Args:
session (cassandra.cluster.Session): an open Cassandra session
keyspace (str): the keyspace to use for storing the cache
table_name (str): name of the Cassandra table to use as cache
ttl_seconds (optional int): time-to-live for cache entries
(default: None, i.e. forever)
|
to_document
|
"""Convert the DocumentWithState to a Document."""
return Document(page_content=self.page_content, metadata=self.metadata)
|
def to_document(self) ->Document:
"""Convert the DocumentWithState to a Document."""
return Document(page_content=self.page_content, metadata=self.metadata)
|
Convert the DocumentWithState to a Document.
|
mock_feature_layer
|
feature_layer = MagicMock()
feature_layer.query.return_value = [MagicMock(as_dict={'attributes': {
'field': 'value'}})]
feature_layer.url = 'https://example.com/layer_url'
feature_layer.properties = {'description':
'<html><body>Some HTML content</body></html>', 'name': 'test',
'serviceItemId': 'testItemId'}
return feature_layer
|
@pytest.fixture
def mock_feature_layer():
feature_layer = MagicMock()
feature_layer.query.return_value = [MagicMock(as_dict={'attributes': {
'field': 'value'}})]
feature_layer.url = 'https://example.com/layer_url'
feature_layer.properties = {'description':
'<html><body>Some HTML content</body></html>', 'name': 'test',
'serviceItemId': 'testItemId'}
return feature_layer
| null |
_headers
|
return {'Authorization': f'Bearer {self.api_key}'}
|
@property
def _headers(self) ->dict:
return {'Authorization': f'Bearer {self.api_key}'}
| null |
create_react_agent
|
"""Create an agent that uses ReAct prompting.
Examples:
.. code-block:: python
from langchain import hub
from langchain_community.llms import OpenAI
from langchain.agents import AgentExecutor, create_react_agent
prompt = hub.pull("hwchase17/react")
model = OpenAI()
tools = ...
agent = create_react_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools)
agent_executor.invoke({"input": "hi"})
# Use with chat history
from langchain_core.messages import AIMessage, HumanMessage
agent_executor.invoke(
{
"input": "what's my name?",
# Notice that chat_history is a string
# since this prompt is aimed at LLMs, not chat models
"chat_history": "Human: My name is Bob
AI: Hello Bob!",
}
)
Args:
llm: LLM to use as the agent.
tools: Tools this agent has access to.
prompt: The prompt to use, must have input keys of
`tools`, `tool_names`, and `agent_scratchpad`.
Returns:
A runnable sequence representing an agent. It takes as input all the same input
variables as the prompt passed in does. It returns as output either an
AgentAction or AgentFinish.
"""
missing_vars = {'tools', 'tool_names', 'agent_scratchpad'}.difference(prompt
.input_variables)
if missing_vars:
raise ValueError(f'Prompt missing required variables: {missing_vars}')
prompt = prompt.partial(tools=render_text_description(list(tools)),
tool_names=', '.join([t.name for t in tools]))
llm_with_stop = llm.bind(stop=['\nObservation'])
agent = RunnablePassthrough.assign(agent_scratchpad=lambda x:
format_log_to_str(x['intermediate_steps'])
) | prompt | llm_with_stop | ReActSingleInputOutputParser()
return agent
|
def create_react_agent(llm: BaseLanguageModel, tools: Sequence[BaseTool],
prompt: BasePromptTemplate) ->Runnable:
"""Create an agent that uses ReAct prompting.
Examples:
.. code-block:: python
from langchain import hub
from langchain_community.llms import OpenAI
from langchain.agents import AgentExecutor, create_react_agent
prompt = hub.pull("hwchase17/react")
model = OpenAI()
tools = ...
agent = create_react_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools)
agent_executor.invoke({"input": "hi"})
# Use with chat history
from langchain_core.messages import AIMessage, HumanMessage
agent_executor.invoke(
{
"input": "what's my name?",
# Notice that chat_history is a string
# since this prompt is aimed at LLMs, not chat models
"chat_history": "Human: My name is Bob
AI: Hello Bob!",
}
)
Args:
llm: LLM to use as the agent.
tools: Tools this agent has access to.
prompt: The prompt to use, must have input keys of
`tools`, `tool_names`, and `agent_scratchpad`.
Returns:
A runnable sequence representing an agent. It takes as input all the same input
variables as the prompt passed in does. It returns as output either an
AgentAction or AgentFinish.
"""
missing_vars = {'tools', 'tool_names', 'agent_scratchpad'}.difference(
prompt.input_variables)
if missing_vars:
raise ValueError(f'Prompt missing required variables: {missing_vars}')
prompt = prompt.partial(tools=render_text_description(list(tools)),
tool_names=', '.join([t.name for t in tools]))
llm_with_stop = llm.bind(stop=['\nObservation'])
agent = RunnablePassthrough.assign(agent_scratchpad=lambda x:
format_log_to_str(x['intermediate_steps'])
) | prompt | llm_with_stop | ReActSingleInputOutputParser()
return agent
|
Create an agent that uses ReAct prompting.
Examples:
.. code-block:: python
from langchain import hub
from langchain_community.llms import OpenAI
from langchain.agents import AgentExecutor, create_react_agent
prompt = hub.pull("hwchase17/react")
model = OpenAI()
tools = ...
agent = create_react_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools)
agent_executor.invoke({"input": "hi"})
# Use with chat history
from langchain_core.messages import AIMessage, HumanMessage
agent_executor.invoke(
{
"input": "what's my name?",
# Notice that chat_history is a string
# since this prompt is aimed at LLMs, not chat models
"chat_history": "Human: My name is Bob
AI: Hello Bob!",
}
)
Args:
llm: LLM to use as the agent.
tools: Tools this agent has access to.
prompt: The prompt to use, must have input keys of
`tools`, `tool_names`, and `agent_scratchpad`.
Returns:
A runnable sequence representing an agent. It takes as input all the same input
variables as the prompt passed in does. It returns as output either an
AgentAction or AgentFinish.
|
test_nlpcloud_api_key
|
"""Test that nlpcloud api key is a secret key."""
assert isinstance(NLPCloud(nlpcloud_api_key='1').nlpcloud_api_key, SecretStr)
monkeypatch.setenv('NLPCLOUD_API_KEY', 'secret-api-key')
llm = NLPCloud()
assert isinstance(llm.nlpcloud_api_key, SecretStr)
assert cast(SecretStr, llm.nlpcloud_api_key).get_secret_value(
) == 'secret-api-key'
print(llm.nlpcloud_api_key, end='')
captured = capsys.readouterr()
assert captured.out == '**********'
|
def test_nlpcloud_api_key(monkeypatch: MonkeyPatch, capsys: CaptureFixture
) ->None:
"""Test that nlpcloud api key is a secret key."""
assert isinstance(NLPCloud(nlpcloud_api_key='1').nlpcloud_api_key,
SecretStr)
monkeypatch.setenv('NLPCLOUD_API_KEY', 'secret-api-key')
llm = NLPCloud()
assert isinstance(llm.nlpcloud_api_key, SecretStr)
assert cast(SecretStr, llm.nlpcloud_api_key).get_secret_value(
) == 'secret-api-key'
print(llm.nlpcloud_api_key, end='')
captured = capsys.readouterr()
assert captured.out == '**********'
|
Test that nlpcloud api key is a secret key.
|
on_chat_model_start
|
assert all(isinstance(m, BaseMessage) for m in chain(*messages))
self.on_chat_model_start_common()
|
def on_chat_model_start(self, serialized: Dict[str, Any], messages: List[
List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID]=None,
**kwargs: Any) ->Any:
assert all(isinstance(m, BaseMessage) for m in chain(*messages))
self.on_chat_model_start_common()
| null |
embedding_openai
|
if not os.environ.get('OPENAI_API_KEY'):
raise ValueError('OPENAI_API_KEY is not set')
return OpenAIEmbeddings()
|
@pytest.fixture(scope='module')
def embedding_openai() ->OpenAIEmbeddings:
if not os.environ.get('OPENAI_API_KEY'):
raise ValueError('OPENAI_API_KEY is not set')
return OpenAIEmbeddings()
| null |
test__convert_dict_to_message_ai
|
message_dict = {'role': 'assistant', 'content': 'foo'}
result = _convert_dict_to_message(message_dict)
expected_output = AIMessage(content='foo')
assert result == expected_output
|
def test__convert_dict_to_message_ai() ->None:
message_dict = {'role': 'assistant', 'content': 'foo'}
result = _convert_dict_to_message(message_dict)
expected_output = AIMessage(content='foo')
assert result == expected_output
| null |
add_documents
|
"""Add documents to vectorstore."""
current_time = kwargs.get('current_time')
if current_time is None:
current_time = datetime.datetime.now()
dup_docs = [deepcopy(d) for d in documents]
for i, doc in enumerate(dup_docs):
if 'last_accessed_at' not in doc.metadata:
doc.metadata['last_accessed_at'] = current_time
if 'created_at' not in doc.metadata:
doc.metadata['created_at'] = current_time
doc.metadata['buffer_idx'] = len(self.memory_stream) + i
self.memory_stream.extend(dup_docs)
return self.vectorstore.add_documents(dup_docs, **kwargs)
|
def add_documents(self, documents: List[Document], **kwargs: Any) ->List[str]:
"""Add documents to vectorstore."""
current_time = kwargs.get('current_time')
if current_time is None:
current_time = datetime.datetime.now()
dup_docs = [deepcopy(d) for d in documents]
for i, doc in enumerate(dup_docs):
if 'last_accessed_at' not in doc.metadata:
doc.metadata['last_accessed_at'] = current_time
if 'created_at' not in doc.metadata:
doc.metadata['created_at'] = current_time
doc.metadata['buffer_idx'] = len(self.memory_stream) + i
self.memory_stream.extend(dup_docs)
return self.vectorstore.add_documents(dup_docs, **kwargs)
|
Add documents to vectorstore.
|
lc_attributes
|
attributes: Dict[str, Any] = {}
if self.region_name:
attributes['region_name'] = self.region_name
return attributes
|
@property
def lc_attributes(self) ->Dict[str, Any]:
attributes: Dict[str, Any] = {}
if self.region_name:
attributes['region_name'] = self.region_name
return attributes
| null |
_import_analyzer_engine
|
try:
from presidio_analyzer import AnalyzerEngine
except ImportError as e:
raise ImportError(
'Could not import presidio_analyzer, please install with `pip install presidio-analyzer`. You will also need to download a spaCy model to use the analyzer, e.g. `python -m spacy download en_core_web_lg`.'
) from e
return AnalyzerEngine
|
def _import_analyzer_engine() ->'AnalyzerEngine':
try:
from presidio_analyzer import AnalyzerEngine
except ImportError as e:
raise ImportError(
'Could not import presidio_analyzer, please install with `pip install presidio-analyzer`. You will also need to download a spaCy model to use the analyzer, e.g. `python -m spacy download en_core_web_lg`.'
) from e
return AnalyzerEngine
| null |
on_retry_common
|
self.retries += 1
|
def on_retry_common(self) ->None:
self.retries += 1
| null |
test_pairwise_embedding_distance_eval_chain_embedding_distance
|
"""Test the embedding distance."""
result = pairwise_embedding_distance_eval_chain.evaluate_string_pairs(
prediction='A single cat', prediction_b='A single cat')
assert np.isclose(result['score'], 0.0)
|
@pytest.mark.requires('openai', 'tiktoken')
def test_pairwise_embedding_distance_eval_chain_embedding_distance(
pairwise_embedding_distance_eval_chain: PairwiseEmbeddingDistanceEvalChain
) ->None:
"""Test the embedding distance."""
result = pairwise_embedding_distance_eval_chain.evaluate_string_pairs(
prediction='A single cat', prediction_b='A single cat')
assert np.isclose(result['score'], 0.0)
|
Test the embedding distance.
|
test_whole_class_deprecation
|
"""Test whole class deprecation."""
@deprecated(since='2.0.0', removal='3.0.0')
class DeprecatedClass:
def __init__(self) ->None:
"""original doc"""
pass
@deprecated(since='2.0.0', removal='3.0.0')
def deprecated_method(self) ->str:
"""original doc"""
return 'This is a deprecated method.'
with warnings.catch_warnings(record=True) as warning_list:
warnings.simplefilter('always')
obj = DeprecatedClass()
assert obj.deprecated_method() == 'This is a deprecated method.'
assert len(warning_list) == 2
warning = warning_list[0].message
assert str(warning
) == 'The class `DeprecatedClass` was deprecated in LangChain 2.0.0 and will be removed in 3.0.0'
warning = warning_list[1].message
assert str(warning
) == 'The function `deprecated_method` was deprecated in LangChain 2.0.0 and will be removed in 3.0.0'
|
def test_whole_class_deprecation() ->None:
"""Test whole class deprecation."""
@deprecated(since='2.0.0', removal='3.0.0')
class DeprecatedClass:
def __init__(self) ->None:
"""original doc"""
pass
@deprecated(since='2.0.0', removal='3.0.0')
def deprecated_method(self) ->str:
"""original doc"""
return 'This is a deprecated method.'
with warnings.catch_warnings(record=True) as warning_list:
warnings.simplefilter('always')
obj = DeprecatedClass()
assert obj.deprecated_method() == 'This is a deprecated method.'
assert len(warning_list) == 2
warning = warning_list[0].message
assert str(warning
) == 'The class `DeprecatedClass` was deprecated in LangChain 2.0.0 and will be removed in 3.0.0'
warning = warning_list[1].message
assert str(warning
) == 'The function `deprecated_method` was deprecated in LangChain 2.0.0 and will be removed in 3.0.0'
|
Test whole class deprecation.
|
test_md_header_text_splitter_preserve_headers_2
|
"""Test markdown splitter by header: Preserve Headers."""
markdown_document = """# Foo
## Bar
Hi this is Jim
Hi this is Joe
### Boo
Hi this is Lance
## Baz
Hi this is Molly
## Buz
# Bop"""
headers_to_split_on = [('#', 'Header 1'), ('##', 'Header 2'), ('###',
'Header 3')]
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=
headers_to_split_on, strip_headers=False)
output = markdown_splitter.split_text(markdown_document)
expected_output = [Document(page_content=
"""# Foo
## Bar
Hi this is Jim
Hi this is Joe""", metadata={
'Header 1': 'Foo', 'Header 2': 'Bar'}), Document(page_content=
"""### Boo
Hi this is Lance""", metadata={'Header 1': 'Foo',
'Header 2': 'Bar', 'Header 3': 'Boo'}), Document(page_content=
"""## Baz
Hi this is Molly""", metadata={'Header 1': 'Foo',
'Header 2': 'Baz'}), Document(page_content='## Buz', metadata={
'Header 1': 'Foo', 'Header 2': 'Buz'}), Document(page_content='# Bop',
metadata={'Header 1': 'Bop'})]
assert output == expected_output
|
def test_md_header_text_splitter_preserve_headers_2() ->None:
"""Test markdown splitter by header: Preserve Headers."""
markdown_document = """# Foo
## Bar
Hi this is Jim
Hi this is Joe
### Boo
Hi this is Lance
## Baz
Hi this is Molly
## Buz
# Bop"""
headers_to_split_on = [('#', 'Header 1'), ('##', 'Header 2'), ('###',
'Header 3')]
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=
headers_to_split_on, strip_headers=False)
output = markdown_splitter.split_text(markdown_document)
expected_output = [Document(page_content=
'# Foo \n## Bar \nHi this is Jim \nHi this is Joe', metadata={
'Header 1': 'Foo', 'Header 2': 'Bar'}), Document(page_content=
"""### Boo
Hi this is Lance""", metadata={'Header 1': 'Foo',
'Header 2': 'Bar', 'Header 3': 'Boo'}), Document(page_content=
"""## Baz
Hi this is Molly""", metadata={'Header 1': 'Foo',
'Header 2': 'Baz'}), Document(page_content='## Buz', metadata={
'Header 1': 'Foo', 'Header 2': 'Buz'}), Document(page_content=
'# Bop', metadata={'Header 1': 'Bop'})]
assert output == expected_output
|
Test markdown splitter by header: Preserve Headers.
|
run
|
"""Get the current weather information for a specified location."""
mgr = self.owm.weather_manager()
observation = mgr.weather_at_place(location)
w = observation.weather
return self._format_weather_info(location, w)
|
def run(self, location: str) ->str:
"""Get the current weather information for a specified location."""
mgr = self.owm.weather_manager()
observation = mgr.weather_at_place(location)
w = observation.weather
return self._format_weather_info(location, w)
|
Get the current weather information for a specified location.
|
get_resized_images
|
"""
Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings.
"""
b64_images = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
b64_images.append(doc)
return {'images': b64_images}
|
def get_resized_images(docs):
"""
Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings.
"""
b64_images = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
b64_images.append(doc)
return {'images': b64_images}
|
Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings.
|
visit_operation
|
"""Translate an Operation."""
|
@abstractmethod
def visit_operation(self, operation: Operation) ->Any:
"""Translate an Operation."""
|
Translate an Operation.
|
__init__
|
"""Initialize with necessary components."""
try:
import qdrant_client
except ImportError:
raise ImportError(
'Could not import qdrant-client python package. Please install it with `pip install qdrant-client`.'
)
if not isinstance(client, qdrant_client.QdrantClient):
raise ValueError(
f'client should be an instance of qdrant_client.QdrantClient, got {type(client)}'
)
if async_client is not None and not isinstance(async_client, qdrant_client.
AsyncQdrantClient):
raise ValueError(
f'async_client should be an instance of qdrant_client.AsyncQdrantClientgot {type(async_client)}'
)
if embeddings is None and embedding_function is None:
raise ValueError(
"`embeddings` value can't be None. Pass `Embeddings` instance.")
if embeddings is not None and embedding_function is not None:
raise ValueError(
'Both `embeddings` and `embedding_function` are passed. Use `embeddings` only.'
)
self._embeddings = embeddings
self._embeddings_function = embedding_function
self.client: qdrant_client.QdrantClient = client
self.async_client: Optional[qdrant_client.AsyncQdrantClient] = async_client
self.collection_name = collection_name
self.content_payload_key = content_payload_key or self.CONTENT_KEY
self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY
self.vector_name = vector_name or self.VECTOR_NAME
if embedding_function is not None:
warnings.warn(
'Using `embedding_function` is deprecated. Pass `Embeddings` instance to `embeddings` instead.'
)
if not isinstance(embeddings, Embeddings):
warnings.warn(
'`embeddings` should be an instance of `Embeddings`.Using `embeddings` as `embedding_function` which is deprecated'
)
self._embeddings_function = embeddings
self._embeddings = None
self.distance_strategy = distance_strategy.upper()
|
def __init__(self, client: Any, collection_name: str, embeddings: Optional[
Embeddings]=None, content_payload_key: str=CONTENT_KEY,
metadata_payload_key: str=METADATA_KEY, distance_strategy: str='COSINE',
vector_name: Optional[str]=VECTOR_NAME, async_client: Optional[Any]=
None, embedding_function: Optional[Callable]=None):
"""Initialize with necessary components."""
try:
import qdrant_client
except ImportError:
raise ImportError(
'Could not import qdrant-client python package. Please install it with `pip install qdrant-client`.'
)
if not isinstance(client, qdrant_client.QdrantClient):
raise ValueError(
f'client should be an instance of qdrant_client.QdrantClient, got {type(client)}'
)
if async_client is not None and not isinstance(async_client,
qdrant_client.AsyncQdrantClient):
raise ValueError(
f'async_client should be an instance of qdrant_client.AsyncQdrantClientgot {type(async_client)}'
)
if embeddings is None and embedding_function is None:
raise ValueError(
"`embeddings` value can't be None. Pass `Embeddings` instance.")
if embeddings is not None and embedding_function is not None:
raise ValueError(
'Both `embeddings` and `embedding_function` are passed. Use `embeddings` only.'
)
self._embeddings = embeddings
self._embeddings_function = embedding_function
self.client: qdrant_client.QdrantClient = client
self.async_client: Optional[qdrant_client.AsyncQdrantClient] = async_client
self.collection_name = collection_name
self.content_payload_key = content_payload_key or self.CONTENT_KEY
self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY
self.vector_name = vector_name or self.VECTOR_NAME
if embedding_function is not None:
warnings.warn(
'Using `embedding_function` is deprecated. Pass `Embeddings` instance to `embeddings` instead.'
)
if not isinstance(embeddings, Embeddings):
warnings.warn(
'`embeddings` should be an instance of `Embeddings`.Using `embeddings` as `embedding_function` which is deprecated'
)
self._embeddings_function = embeddings
self._embeddings = None
self.distance_strategy = distance_strategy.upper()
|
Initialize with necessary components.
|
get_boolean_env_var
|
"""Retrieve the boolean value of an environment variable.
Args:
var_name (str): The name of the environment variable to retrieve.
default_value (bool): The default value to return if the variable
is not found.
Returns:
bool: The value of the environment variable, interpreted as a boolean.
"""
true_values = {'true', '1', 't', 'y', 'yes'}
false_values = {'false', '0', 'f', 'n', 'no'}
value = os.getenv(var_name, '').lower()
if value in true_values:
return True
elif value in false_values:
return False
else:
return default_value
|
def get_boolean_env_var(var_name, default_value=False):
"""Retrieve the boolean value of an environment variable.
Args:
var_name (str): The name of the environment variable to retrieve.
default_value (bool): The default value to return if the variable
is not found.
Returns:
bool: The value of the environment variable, interpreted as a boolean.
"""
true_values = {'true', '1', 't', 'y', 'yes'}
false_values = {'false', '0', 'f', 'n', 'no'}
value = os.getenv(var_name, '').lower()
if value in true_values:
return True
elif value in false_values:
return False
else:
return default_value
|
Retrieve the boolean value of an environment variable.
Args:
var_name (str): The name of the environment variable to retrieve.
default_value (bool): The default value to return if the variable
is not found.
Returns:
bool: The value of the environment variable, interpreted as a boolean.
|
_to_args_and_kwargs
|
"""Convert tool input to pydantic model."""
args, kwargs = super()._to_args_and_kwargs(tool_input)
all_args = list(args) + list(kwargs.values())
if len(all_args) != 1:
raise ToolException(
f'Too many arguments to single-input tool {self.name}. Args: {all_args}'
)
return tuple(all_args), {}
|
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) ->Tuple[Tuple, Dict
]:
"""Convert tool input to pydantic model."""
args, kwargs = super()._to_args_and_kwargs(tool_input)
all_args = list(args) + list(kwargs.values())
if len(all_args) != 1:
raise ToolException(
f'Too many arguments to single-input tool {self.name}. Args: {all_args}'
)
return tuple(all_args), {}
|
Convert tool input to pydantic model.
|
_extract_code
|
start = node.lineno - 1
end = node.end_lineno
return '\n'.join(self.source_lines[start:end])
|
def _extract_code(self, node: Any) ->str:
start = node.lineno - 1
end = node.end_lineno
return '\n'.join(self.source_lines[start:end])
| null |
delete
|
"""Deleting IDs from in memory dictionary."""
overlapping = set(ids).intersection(self._dict)
if not overlapping:
raise ValueError(f'Tried to delete ids that does not exist: {ids}')
for _id in ids:
self._dict.pop(_id)
|
def delete(self, ids: List) ->None:
"""Deleting IDs from in memory dictionary."""
overlapping = set(ids).intersection(self._dict)
if not overlapping:
raise ValueError(f'Tried to delete ids that does not exist: {ids}')
for _id in ids:
self._dict.pop(_id)
|
Deleting IDs from in memory dictionary.
|
__init__
|
zone = os.environ.get('NUCLIA_ZONE', 'europe-1')
self._config['BACKEND'] = f'https://{zone}.nuclia.cloud/api/v1'
key = os.environ.get('NUCLIA_NUA_KEY')
if not key:
raise ValueError('NUCLIA_NUA_KEY environment variable not set')
else:
self._config['NUA_KEY'] = key
self._config['enable_ml'] = enable_ml
super().__init__()
|
def __init__(self, enable_ml: bool=False) ->None:
zone = os.environ.get('NUCLIA_ZONE', 'europe-1')
self._config['BACKEND'] = f'https://{zone}.nuclia.cloud/api/v1'
key = os.environ.get('NUCLIA_NUA_KEY')
if not key:
raise ValueError('NUCLIA_NUA_KEY environment variable not set')
else:
self._config['NUA_KEY'] = key
self._config['enable_ml'] = enable_ml
super().__init__()
| null |
test_load_returns_limited_docs
|
"""Test that returns several docs"""
expected_docs = 2
api_client = ArxivAPIWrapper(load_max_docs=expected_docs)
docs = api_client.load('ChatGPT')
assert len(docs) == expected_docs
assert_docs(docs)
|
def test_load_returns_limited_docs() ->None:
"""Test that returns several docs"""
expected_docs = 2
api_client = ArxivAPIWrapper(load_max_docs=expected_docs)
docs = api_client.load('ChatGPT')
assert len(docs) == expected_docs
assert_docs(docs)
|
Test that returns several docs
|
test_nvai_play_embedding_documents_multiple
|
"""Test NVIDIA embeddings for multiple documents."""
documents = ['foo bar', 'bar foo', 'foo']
embedding = NVIDIAEmbeddings(model='nvolveqa_40k')
output = embedding.embed_documents(documents)
assert len(output) == 3
assert all(len(doc) == 1024 for doc in output)
|
def test_nvai_play_embedding_documents_multiple() ->None:
"""Test NVIDIA embeddings for multiple documents."""
documents = ['foo bar', 'bar foo', 'foo']
embedding = NVIDIAEmbeddings(model='nvolveqa_40k')
output = embedding.embed_documents(documents)
assert len(output) == 3
assert all(len(doc) == 1024 for doc in output)
|
Test NVIDIA embeddings for multiple documents.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.