method_name
stringlengths
1
78
method_body
stringlengths
3
9.66k
full_code
stringlengths
31
10.7k
docstring
stringlengths
4
4.74k
__init__
super().__init__(**kwargs) self.example_id = UUID(example_id) if isinstance(example_id, str ) else example_id self.client = client or langchain_tracer.get_client() self.evaluators = evaluators if max_concurrency is None: self.executor: Optional[ThreadPoolExecutor] = _get_executor() elif max_concurrency > 0: self.executor = ThreadPoolExecutor(max_workers=max_concurrency) weakref.finalize(self, lambda : cast(ThreadPoolExecutor, self.executor) .shutdown(wait=True)) else: self.executor = None self.futures: weakref.WeakSet[Future] = weakref.WeakSet() self.skip_unfinished = skip_unfinished self.project_name = project_name self.logged_eval_results: Dict[Tuple[str, str], List[EvaluationResult]] = {} self.lock = threading.Lock() global _TRACERS _TRACERS.add(self)
def __init__(self, evaluators: Sequence[langsmith.RunEvaluator], client: Optional[langsmith.Client]=None, example_id: Optional[Union[UUID, str]] =None, skip_unfinished: bool=True, project_name: Optional[str]= 'evaluators', max_concurrency: Optional[int]=None, **kwargs: Any) ->None: super().__init__(**kwargs) self.example_id = UUID(example_id) if isinstance(example_id, str ) else example_id self.client = client or langchain_tracer.get_client() self.evaluators = evaluators if max_concurrency is None: self.executor: Optional[ThreadPoolExecutor] = _get_executor() elif max_concurrency > 0: self.executor = ThreadPoolExecutor(max_workers=max_concurrency) weakref.finalize(self, lambda : cast(ThreadPoolExecutor, self. executor).shutdown(wait=True)) else: self.executor = None self.futures: weakref.WeakSet[Future] = weakref.WeakSet() self.skip_unfinished = skip_unfinished self.project_name = project_name self.logged_eval_results: Dict[Tuple[str, str], List[EvaluationResult]] = { } self.lock = threading.Lock() global _TRACERS _TRACERS.add(self)
null
check_queries_required
if values.get('sequential_response') and not queries: raise ValueError( 'queries is required when sequential_response is set to True') return queries
@validator('queries', always=True) def check_queries_required(cls, queries: Optional[Mapping], values: Mapping [str, Any]) ->Optional[Mapping]: if values.get('sequential_response') and not queries: raise ValueError( 'queries is required when sequential_response is set to True') return queries
null
embeddings
return self._embedding
@property def embeddings(self) ->Optional[Embeddings]: return self._embedding
null
__init__
"""Initialize with API token and the IDs for table and base""" self.api_token = api_token """Airtable API token.""" self.table_id = table_id """Airtable table ID.""" self.base_id = base_id """Airtable base ID."""
def __init__(self, api_token: str, table_id: str, base_id: str): """Initialize with API token and the IDs for table and base""" self.api_token = api_token """Airtable API token.""" self.table_id = table_id """Airtable table ID.""" self.base_id = base_id """Airtable base ID."""
Initialize with API token and the IDs for table and base
test_failed_request
"""Test that a failed request raises an error.""" path = 'chains/path/chain.json' loader = Mock() mocked_responses.get(urljoin(URL_BASE.format(ref=DEFAULT_REF), path), status=500) with pytest.raises(ValueError, match=re.compile('Could not find file at .*')): try_load_from_hub(f'lc://{path}', loader, 'chains', {'json'}) loader.assert_not_called()
def test_failed_request(mocked_responses: responses.RequestsMock) ->None: """Test that a failed request raises an error.""" path = 'chains/path/chain.json' loader = Mock() mocked_responses.get(urljoin(URL_BASE.format(ref=DEFAULT_REF), path), status=500) with pytest.raises(ValueError, match=re.compile( 'Could not find file at .*')): try_load_from_hub(f'lc://{path}', loader, 'chains', {'json'}) loader.assert_not_called()
Test that a failed request raises an error.
test_structured_tool_from_function_with_run_manager
"""Test args and schema of structured tool when using callbacks.""" def foo(bar: int, baz: str, callbacks: Optional[CallbackManagerForToolRun]=None ) ->str: """Docstring Args: bar: int baz: str """ assert callbacks is not None return str(bar) + baz handler = FakeCallbackHandler() structured_tool = StructuredTool.from_function(foo) assert structured_tool.args == {'bar': {'title': 'Bar', 'type': 'integer'}, 'baz': {'title': 'Baz', 'type': 'string'}} assert structured_tool.args_schema.schema() == {'properties': {'bar': { 'title': 'Bar', 'type': 'integer'}, 'baz': {'title': 'Baz', 'type': 'string'}}, 'title': 'fooSchemaSchema', 'type': 'object', 'required': [ 'bar', 'baz']} assert structured_tool.run(tool_input={'bar': '10', 'baz': 'baz'}, run_manger=[handler]) == '10baz'
def test_structured_tool_from_function_with_run_manager() ->None: """Test args and schema of structured tool when using callbacks.""" def foo(bar: int, baz: str, callbacks: Optional[ CallbackManagerForToolRun]=None) ->str: """Docstring Args: bar: int baz: str """ assert callbacks is not None return str(bar) + baz handler = FakeCallbackHandler() structured_tool = StructuredTool.from_function(foo) assert structured_tool.args == {'bar': {'title': 'Bar', 'type': 'integer'}, 'baz': {'title': 'Baz', 'type': 'string'}} assert structured_tool.args_schema.schema() == {'properties': {'bar': { 'title': 'Bar', 'type': 'integer'}, 'baz': {'title': 'Baz', 'type': 'string'}}, 'title': 'fooSchemaSchema', 'type': 'object', 'required': ['bar', 'baz']} assert structured_tool.run(tool_input={'bar': '10', 'baz': 'baz'}, run_manger=[handler]) == '10baz'
Test args and schema of structured tool when using callbacks.
messages
"""Return the messages that correspond to this observation.""" return _convert_agent_observation_to_messages(self.action, self.observation)
@property def messages(self) ->Sequence[BaseMessage]: """Return the messages that correspond to this observation.""" return _convert_agent_observation_to_messages(self.action, self.observation )
Return the messages that correspond to this observation.
test_model
"""Test model kwarg works.""" chat = ChatTongyi(model='qwen-plus') response = chat(messages=[HumanMessage(content='Hello')]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str)
def test_model() ->None: """Test model kwarg works.""" chat = ChatTongyi(model='qwen-plus') response = chat(messages=[HumanMessage(content='Hello')]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str)
Test model kwarg works.
get_usable_table_names
"""Get names of tables available.""" if self._include_tables: return self._include_tables return sorted(self._all_tables - self._ignore_tables)
def get_usable_table_names(self) ->Iterable[str]: """Get names of tables available.""" if self._include_tables: return self._include_tables return sorted(self._all_tables - self._ignore_tables)
Get names of tables available.
messages
"""Retrieve the messages from the local file""" items = json.loads(self.file_path.read_text()) messages = messages_from_dict(items) return messages
@property def messages(self) ->List[BaseMessage]: """Retrieve the messages from the local file""" items = json.loads(self.file_path.read_text()) messages = messages_from_dict(items) return messages
Retrieve the messages from the local file
test_embed_documents_normalized
output = _get_embeddings().embed_documents(['foo walked to the market']) assert np.isclose(np.linalg.norm(output[0]), 1.0)
@pytest.mark.scheduled def test_embed_documents_normalized() ->None: output = _get_embeddings().embed_documents(['foo walked to the market']) assert np.isclose(np.linalg.norm(output[0]), 1.0)
null
_generate_rest_batches
from qdrant_client import models as rest texts_iterator = iter(texts) metadatas_iterator = iter(metadatas or []) ids_iterator = iter(ids or [uuid.uuid4().hex for _ in iter(texts)]) while (batch_texts := list(islice(texts_iterator, batch_size))): batch_metadatas = list(islice(metadatas_iterator, batch_size)) or None batch_ids = list(islice(ids_iterator, batch_size)) batch_embeddings: List[Tuple[List[int], List[float]]] = [self. sparse_encoder(text) for text in batch_texts] points = [rest.PointStruct(id=point_id, vector={self.sparse_vector_name: rest.SparseVector(indices=sparse_vector[0], values=sparse_vector[1] )}, payload=payload) for point_id, sparse_vector, payload in zip( batch_ids, batch_embeddings, Qdrant._build_payloads(batch_texts, batch_metadatas, self.content_payload_key, self.metadata_payload_key))] yield batch_ids, points
def _generate_rest_batches(self, texts: Iterable[str], metadatas: Optional[ List[dict]]=None, ids: Optional[Sequence[str]]=None, batch_size: int=64 ) ->Generator[Tuple[List[str], List[Any]], None, None]: from qdrant_client import models as rest texts_iterator = iter(texts) metadatas_iterator = iter(metadatas or []) ids_iterator = iter(ids or [uuid.uuid4().hex for _ in iter(texts)]) while (batch_texts := list(islice(texts_iterator, batch_size))): batch_metadatas = list(islice(metadatas_iterator, batch_size)) or None batch_ids = list(islice(ids_iterator, batch_size)) batch_embeddings: List[Tuple[List[int], List[float]]] = [self. sparse_encoder(text) for text in batch_texts] points = [rest.PointStruct(id=point_id, vector={self. sparse_vector_name: rest.SparseVector(indices=sparse_vector[0], values=sparse_vector[1])}, payload=payload) for point_id, sparse_vector, payload in zip(batch_ids, batch_embeddings, Qdrant._build_payloads(batch_texts, batch_metadatas, self. content_payload_key, self.metadata_payload_key))] yield batch_ids, points
null
_filter_cluster_embeddings
"""Filter documents based on proximity of their embeddings to clusters.""" try: from sklearn.cluster import KMeans except ImportError: raise ImportError( 'sklearn package not found, please install it with `pip install scikit-learn`' ) kmeans = KMeans(n_clusters=num_clusters, random_state=random_state).fit( embedded_documents) closest_indices = [] for i in range(num_clusters): distances = np.linalg.norm(embedded_documents - kmeans.cluster_centers_ [i], axis=1) if remove_duplicates: closest_indices_sorted = [x for x in np.argsort(distances)[: num_closest] if x not in closest_indices] else: closest_indices_sorted = [x for x in np.argsort(distances) if x not in closest_indices][:num_closest] closest_indices.extend(closest_indices_sorted) return closest_indices
def _filter_cluster_embeddings(embedded_documents: List[List[float]], num_clusters: int, num_closest: int, random_state: int, remove_duplicates: bool) ->List[int]: """Filter documents based on proximity of their embeddings to clusters.""" try: from sklearn.cluster import KMeans except ImportError: raise ImportError( 'sklearn package not found, please install it with `pip install scikit-learn`' ) kmeans = KMeans(n_clusters=num_clusters, random_state=random_state).fit( embedded_documents) closest_indices = [] for i in range(num_clusters): distances = np.linalg.norm(embedded_documents - kmeans. cluster_centers_[i], axis=1) if remove_duplicates: closest_indices_sorted = [x for x in np.argsort(distances)[: num_closest] if x not in closest_indices] else: closest_indices_sorted = [x for x in np.argsort(distances) if x not in closest_indices][:num_closest] closest_indices.extend(closest_indices_sorted) return closest_indices
Filter documents based on proximity of their embeddings to clusters.
test_chat_hunyuan
chat = ChatHunyuan() message = HumanMessage(content='Hello') response = chat([message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str)
def test_chat_hunyuan() ->None: chat = ChatHunyuan() message = HumanMessage(content='Hello') response = chat([message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str)
null
embed_query
""" Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """ return self._embedding_func([text])[0]
def embed_query(self, text: str) ->List[float]: """ Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """ return self._embedding_func([text])[0]
Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text.
test_appx_search_with_faiss_efficient_filter
"""Test Approximate Search with Faiss Efficient Filter.""" efficient_filter_val = {'bool': {'must': [{'term': {'text': 'bar'}}]}} docsearch = OpenSearchVectorSearch.from_texts(texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, engine='faiss') output = docsearch.similarity_search('foo', k=3, efficient_filter= efficient_filter_val) assert output == [Document(page_content='bar')]
def test_appx_search_with_faiss_efficient_filter() ->None: """Test Approximate Search with Faiss Efficient Filter.""" efficient_filter_val = {'bool': {'must': [{'term': {'text': 'bar'}}]}} docsearch = OpenSearchVectorSearch.from_texts(texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, engine='faiss') output = docsearch.similarity_search('foo', k=3, efficient_filter= efficient_filter_val) assert output == [Document(page_content='bar')]
Test Approximate Search with Faiss Efficient Filter.
add_message
"""Write a message to the table""" self.blob_history.store(self.session_id, json.dumps(message_to_dict(message )), self.ttl_seconds)
def add_message(self, message: BaseMessage) ->None: """Write a message to the table""" self.blob_history.store(self.session_id, json.dumps(message_to_dict( message)), self.ttl_seconds)
Write a message to the table
create_alibabacloud_opensearch
metadatas = [{'string_field': 'value1', 'int_field': 1, 'float_field': 1.0, 'double_field': 2.0}, {'string_field': 'value2', 'int_field': 2, 'float_field': 3.0, 'double_field': 4.0}, {'string_field': 'value3', 'int_field': 3, 'float_field': 5.0, 'double_field': 6.0}] return AlibabaCloudOpenSearch.from_texts(texts=texts, embedding= FakeEmbeddingsWithOsDimension(), metadatas=metadatas, config=settings)
def create_alibabacloud_opensearch() ->AlibabaCloudOpenSearch: metadatas = [{'string_field': 'value1', 'int_field': 1, 'float_field': 1.0, 'double_field': 2.0}, {'string_field': 'value2', 'int_field': 2, 'float_field': 3.0, 'double_field': 4.0}, {'string_field': 'value3', 'int_field': 3, 'float_field': 5.0, 'double_field': 6.0}] return AlibabaCloudOpenSearch.from_texts(texts=texts, embedding= FakeEmbeddingsWithOsDimension(), metadatas=metadatas, config=settings)
null
_import_eleven_labs_text2speech
from langchain_community.tools.eleven_labs.text2speech import ElevenLabsText2SpeechTool return ElevenLabsText2SpeechTool
def _import_eleven_labs_text2speech() ->Any: from langchain_community.tools.eleven_labs.text2speech import ElevenLabsText2SpeechTool return ElevenLabsText2SpeechTool
null
test_all_subclasses_accept_run_manager
"""Test that tools defined in this repo accept a run manager argument.""" if cls._run is not BaseTool._arun: run_func = cls._run params = inspect.signature(run_func).parameters assert 'run_manager' in params pattern = re.compile('(?!Async)CallbackManagerForToolRun') assert bool(re.search(pattern, str(params['run_manager'].annotation))) assert params['run_manager'].default is None if cls._arun is not BaseTool._arun: run_func = cls._arun params = inspect.signature(run_func).parameters assert 'run_manager' in params assert 'AsyncCallbackManagerForToolRun' in str(params['run_manager']. annotation) assert params['run_manager'].default is None
@pytest.mark.parametrize('cls', get_non_abstract_subclasses(BaseTool)) def test_all_subclasses_accept_run_manager(cls: Type[BaseTool]) ->None: """Test that tools defined in this repo accept a run manager argument.""" if cls._run is not BaseTool._arun: run_func = cls._run params = inspect.signature(run_func).parameters assert 'run_manager' in params pattern = re.compile('(?!Async)CallbackManagerForToolRun') assert bool(re.search(pattern, str(params['run_manager'].annotation))) assert params['run_manager'].default is None if cls._arun is not BaseTool._arun: run_func = cls._arun params = inspect.signature(run_func).parameters assert 'run_manager' in params assert 'AsyncCallbackManagerForToolRun' in str(params['run_manager' ].annotation) assert params['run_manager'].default is None
Test that tools defined in this repo accept a run manager argument.
_get_tools_requests_get
return RequestsGetTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_get() ->BaseTool: return RequestsGetTool(requests_wrapper=TextRequestsWrapper())
null
_convert_input
if isinstance(input, PromptValue): return input elif isinstance(input, str): return StringPromptValue(text=input) elif isinstance(input, Sequence): return ChatPromptValue(messages=input) else: raise ValueError( f'Invalid input type {type(input)}. Must be a PromptValue, str, or list of BaseMessages.' )
def _convert_input(self, input: LanguageModelInput) ->PromptValue: if isinstance(input, PromptValue): return input elif isinstance(input, str): return StringPromptValue(text=input) elif isinstance(input, Sequence): return ChatPromptValue(messages=input) else: raise ValueError( f'Invalid input type {type(input)}. Must be a PromptValue, str, or list of BaseMessages.' )
null
_test_convo_output
result = ConvoOutputParser().parse_folder(input.strip()) assert isinstance(result, AgentAction) assert result.tool == expected_tool assert result.tool_input == expected_tool_input
def _test_convo_output(input: str, expected_tool: str, expected_tool_input: str ) ->None: result = ConvoOutputParser().parse_folder(input.strip()) assert isinstance(result, AgentAction) assert result.tool == expected_tool assert result.tool_input == expected_tool_input
null
_get_searchapi_results_json
return SearchAPIResults(api_wrapper=SearchApiAPIWrapper(**kwargs))
def _get_searchapi_results_json(**kwargs: Any) ->BaseTool: return SearchAPIResults(api_wrapper=SearchApiAPIWrapper(**kwargs))
null
_identifying_params
"""Get the identifying parameters.""" return {**{'model_id': self.model_id}, **{'model_kwargs': self.model_kwargs}}
@property def _identifying_params(self) ->Mapping[str, Any]: """Get the identifying parameters.""" return {**{'model_id': self.model_id}, **{'model_kwargs': self. model_kwargs}}
Get the identifying parameters.
test_warn_deprecated
"""Test warn deprecated.""" with warnings.catch_warnings(record=True) as warning_list: warnings.simplefilter('always') warn_deprecated(**kwargs) assert len(warning_list) == 1 warning = warning_list[0].message assert str(warning) == expected_message
@pytest.mark.parametrize('kwargs, expected_message', [({'since': '1.0.0', 'name': 'OldClass', 'alternative': 'NewClass', 'pending': True, 'obj_type': 'class'}, 'The class `OldClass` will be deprecated in a future version. Use NewClass instead.' ), ({'since': '2.0.0', 'message': 'This is a custom message', 'name': 'FunctionA', 'alternative': '', 'pending': True, 'obj_type': '', 'addendum': '', 'removal': ''}, 'This is a custom message'), ({'since': '1.5.0', 'message': '', 'name': 'SomeFunction', 'alternative': '', 'pending': False, 'obj_type': '', 'addendum': 'Please migrate your code.', 'removal': '2.5.0'}, '`SomeFunction` was deprecated in LangChain 1.5.0 and will be removed in 2.5.0 Please migrate your code.' )]) def test_warn_deprecated(kwargs: Dict[str, Any], expected_message: str) ->None: """Test warn deprecated.""" with warnings.catch_warnings(record=True) as warning_list: warnings.simplefilter('always') warn_deprecated(**kwargs) assert len(warning_list) == 1 warning = warning_list[0].message assert str(warning) == expected_message
Test warn deprecated.
_import_predibase
from langchain_community.llms.predibase import Predibase return Predibase
def _import_predibase() ->Any: from langchain_community.llms.predibase import Predibase return Predibase
null
_llm_type
"""Return type of llm.""" return 'IBM watsonx.ai'
@property def _llm_type(self) ->str: """Return type of llm.""" return 'IBM watsonx.ai'
Return type of llm.
input_keys
"""Expect input key. :meta private: """ return [self.question_key]
@property def input_keys(self) ->List[str]: """Expect input key. :meta private: """ return [self.question_key]
Expect input key. :meta private:
_llm_type
return 'huggingface_pipeline'
@property def _llm_type(self) ->str: return 'huggingface_pipeline'
null
html
"""To log the input html string as html file artifact.""" with self.mlflow.start_run(run_id=self.run.info.run_id, experiment_id=self. mlf_expid): self.mlflow.log_text(html, f'{filename}.html')
def html(self, html: str, filename: str) ->None: """To log the input html string as html file artifact.""" with self.mlflow.start_run(run_id=self.run.info.run_id, experiment_id= self.mlf_expid): self.mlflow.log_text(html, f'{filename}.html')
To log the input html string as html file artifact.
test_create_documents
"""Test create documents method.""" texts = ['foo bar', 'baz'] splitter = CharacterTextSplitter(separator=' ', chunk_size=3, chunk_overlap=0) docs = splitter.create_documents(texts) expected_docs = [Document(page_content='foo'), Document(page_content='bar'), Document(page_content='baz')] assert docs == expected_docs
def test_create_documents() ->None: """Test create documents method.""" texts = ['foo bar', 'baz'] splitter = CharacterTextSplitter(separator=' ', chunk_size=3, chunk_overlap=0) docs = splitter.create_documents(texts) expected_docs = [Document(page_content='foo'), Document(page_content= 'bar'), Document(page_content='baz')] assert docs == expected_docs
Test create documents method.
validate_model
"""Validate and update model arguments, including API key and formatting""" values['nvidia_api_key'] = get_from_dict_or_env(values, 'nvidia_api_key', 'NVIDIA_API_KEY') if 'nvapi-' not in values.get('nvidia_api_key', ''): raise ValueError('Invalid NVAPI key detected. Should start with `nvapi-`') is_staging = 'nvapi-stg-' in values['nvidia_api_key'] values['is_staging'] = is_staging if 'headers_tmpl' not in values: values['headers_tmpl'] = {'call': {'Authorization': 'Bearer {nvidia_api_key}', 'Accept': 'application/json'}, 'stream': {'Authorization': 'Bearer {nvidia_api_key}', 'Accept': 'text/event-stream', 'content-type': 'application/json'}} values['fetch_url_format'] = cls._stagify(is_staging, values.get( 'fetch_url_format', 'https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/')) values['call_invoke_base'] = cls._stagify(is_staging, values.get( 'call_invoke_base', 'https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions')) return values
@root_validator(pre=True) def validate_model(cls, values: Dict[str, Any]) ->Dict[str, Any]: """Validate and update model arguments, including API key and formatting""" values['nvidia_api_key'] = get_from_dict_or_env(values, 'nvidia_api_key', 'NVIDIA_API_KEY') if 'nvapi-' not in values.get('nvidia_api_key', ''): raise ValueError( 'Invalid NVAPI key detected. Should start with `nvapi-`') is_staging = 'nvapi-stg-' in values['nvidia_api_key'] values['is_staging'] = is_staging if 'headers_tmpl' not in values: values['headers_tmpl'] = {'call': {'Authorization': 'Bearer {nvidia_api_key}', 'Accept': 'application/json'}, 'stream': {'Authorization': 'Bearer {nvidia_api_key}', 'Accept': 'text/event-stream', 'content-type': 'application/json'}} values['fetch_url_format'] = cls._stagify(is_staging, values.get( 'fetch_url_format', 'https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/')) values['call_invoke_base'] = cls._stagify(is_staging, values.get( 'call_invoke_base', 'https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions')) return values
Validate and update model arguments, including API key and formatting
api_client
return MerriamWebsterAPIWrapper()
@pytest.fixture def api_client() ->MerriamWebsterAPIWrapper: return MerriamWebsterAPIWrapper()
null
_run
"""Use the GitHub API to run an operation.""" if not instructions or instructions == '{}': instructions = '' return self.api_wrapper.run(self.mode, instructions)
def _run(self, instructions: Optional[str]='', run_manager: Optional[ CallbackManagerForToolRun]=None) ->str: """Use the GitHub API to run an operation.""" if not instructions or instructions == '{}': instructions = '' return self.api_wrapper.run(self.mode, instructions)
Use the GitHub API to run an operation.
test_batch
llm = FakeListLLM(responses=['foo'] * 3) output = llm.batch(['foo', 'bar', 'foo']) assert output == ['foo'] * 3 output = llm.batch(['foo', 'bar', 'foo'], config={'max_concurrency': 2}) assert output == ['foo'] * 3
def test_batch() ->None: llm = FakeListLLM(responses=['foo'] * 3) output = llm.batch(['foo', 'bar', 'foo']) assert output == ['foo'] * 3 output = llm.batch(['foo', 'bar', 'foo'], config={'max_concurrency': 2}) assert output == ['foo'] * 3
null
nanoseconds_from_2001_to_datetime
timestamp_in_seconds = nanoseconds / 1000000000.0 reference_date_seconds = datetime(2001, 1, 1).timestamp() actual_timestamp = reference_date_seconds + timestamp_in_seconds return datetime.fromtimestamp(actual_timestamp)
def nanoseconds_from_2001_to_datetime(nanoseconds: int) ->datetime: timestamp_in_seconds = nanoseconds / 1000000000.0 reference_date_seconds = datetime(2001, 1, 1).timestamp() actual_timestamp = reference_date_seconds + timestamp_in_seconds return datetime.fromtimestamp(actual_timestamp)
null
add_texts
""" Embed texts and add them to the database. Args: texts (Iterable[str]): The texts to embed. metadatas (Optional[List[dict]]): Metadata dicts attached to each of the texts. Defaults to None. collection_name (Optional[str]): Which collection to use. Defaults to "langchain_collection". If provided, default collection name will be set as well. drop_old (Optional[bool]): Whether to drop the previous collection and create a new one. Defaults to False. Returns: List of ids of the added texts. """ if not collection_name: collection_name = self._collection_name else: self._collection_name = collection_name if drop_old: self._client.drop_db(db_name=collection_name) texts = list(texts) try: embeddings = self._embeddings.embed_documents(texts) except NotImplementedError: embeddings = [self._embeddings.embed_query(x) for x in texts] if len(embeddings) == 0: logger.debug('Nothing to insert, skipping.') return [] self._create_collection(table_name=collection_name, embeddings=embeddings, metadatas=metadatas) ids = [hash(uuid.uuid4()) for _ in texts] records = [] for index, id in enumerate(ids): record = {'id': id, 'text': texts[index], 'embeddings': embeddings[index]} if metadatas is not None: metadata = metadatas[index].items() for key, value in metadata: record[key] = value records.append(record) status_code, response = self._client.insert(table_name=collection_name, records=records) if status_code != 200: logger.error( f"Failed to add records to {collection_name}: {response['message']}") raise Exception('Error: {}.'.format(response['message'])) return [str(id) for id in ids]
def add_texts(self, texts: Iterable[str], metadatas: Optional[List[dict]]= None, collection_name: Optional[str]='', drop_old: Optional[bool]=False, **kwargs: Any) ->List[str]: """ Embed texts and add them to the database. Args: texts (Iterable[str]): The texts to embed. metadatas (Optional[List[dict]]): Metadata dicts attached to each of the texts. Defaults to None. collection_name (Optional[str]): Which collection to use. Defaults to "langchain_collection". If provided, default collection name will be set as well. drop_old (Optional[bool]): Whether to drop the previous collection and create a new one. Defaults to False. Returns: List of ids of the added texts. """ if not collection_name: collection_name = self._collection_name else: self._collection_name = collection_name if drop_old: self._client.drop_db(db_name=collection_name) texts = list(texts) try: embeddings = self._embeddings.embed_documents(texts) except NotImplementedError: embeddings = [self._embeddings.embed_query(x) for x in texts] if len(embeddings) == 0: logger.debug('Nothing to insert, skipping.') return [] self._create_collection(table_name=collection_name, embeddings= embeddings, metadatas=metadatas) ids = [hash(uuid.uuid4()) for _ in texts] records = [] for index, id in enumerate(ids): record = {'id': id, 'text': texts[index], 'embeddings': embeddings[ index]} if metadatas is not None: metadata = metadatas[index].items() for key, value in metadata: record[key] = value records.append(record) status_code, response = self._client.insert(table_name=collection_name, records=records) if status_code != 200: logger.error( f"Failed to add records to {collection_name}: {response['message']}" ) raise Exception('Error: {}.'.format(response['message'])) return [str(id) for id in ids]
Embed texts and add them to the database. Args: texts (Iterable[str]): The texts to embed. metadatas (Optional[List[dict]]): Metadata dicts attached to each of the texts. Defaults to None. collection_name (Optional[str]): Which collection to use. Defaults to "langchain_collection". If provided, default collection name will be set as well. drop_old (Optional[bool]): Whether to drop the previous collection and create a new one. Defaults to False. Returns: List of ids of the added texts.
test_chain_on_kv_singleio_dataset
llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string(llm, 'The answer to the {question} is: ') eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType. CRITERIA]) run_on_dataset(dataset_name=kv_singleio_dataset_name, llm_or_chain_factory= lambda : chain, client=client, evaluation=eval_config, project_name= eval_project_name, tags=['shouldpass']) _check_all_feedback_passed(eval_project_name, client)
def test_chain_on_kv_singleio_dataset(kv_singleio_dataset_name: str, eval_project_name: str, client: Client) ->None: llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string(llm, 'The answer to the {question} is: ') eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType .CRITERIA]) run_on_dataset(dataset_name=kv_singleio_dataset_name, llm_or_chain_factory=lambda : chain, client=client, evaluation= eval_config, project_name=eval_project_name, tags=['shouldpass']) _check_all_feedback_passed(eval_project_name, client)
null
lazy_load
"""Load documents.""" try: from qcloud_cos import CosS3Client except ImportError: raise ImportError( 'Could not import cos-python-sdk-v5 python package. Please install it with `pip install cos-python-sdk-v5`.' ) client = CosS3Client(self.conf) contents = [] marker = '' while True: response = client.list_objects(Bucket=self.bucket, Prefix=self.prefix, Marker=marker, MaxKeys=1000) if 'Contents' in response: contents.extend(response['Contents']) if response['IsTruncated'] == 'false': break marker = response['NextMarker'] for content in contents: if content['Key'].endswith('/'): continue loader = TencentCOSFileLoader(self.conf, self.bucket, content['Key']) yield loader.load()[0]
def lazy_load(self) ->Iterator[Document]: """Load documents.""" try: from qcloud_cos import CosS3Client except ImportError: raise ImportError( 'Could not import cos-python-sdk-v5 python package. Please install it with `pip install cos-python-sdk-v5`.' ) client = CosS3Client(self.conf) contents = [] marker = '' while True: response = client.list_objects(Bucket=self.bucket, Prefix=self. prefix, Marker=marker, MaxKeys=1000) if 'Contents' in response: contents.extend(response['Contents']) if response['IsTruncated'] == 'false': break marker = response['NextMarker'] for content in contents: if content['Key'].endswith('/'): continue loader = TencentCOSFileLoader(self.conf, self.bucket, content['Key']) yield loader.load()[0]
Load documents.
table
"""To log the input pandas dataframe as a html table""" self.html(dataframe.to_html(), f'table_{name}')
def table(self, name: str, dataframe) ->None: """To log the input pandas dataframe as a html table""" self.html(dataframe.to_html(), f'table_{name}')
To log the input pandas dataframe as a html table
__init__
self.value = value
def __init__(self, value: Any): self.value = value
null
create
models = importlib.import_module('langchain.chat_models') model_cls = getattr(models, provider) model_config = model_cls(**kwargs) converted_messages = convert_openai_messages(messages) if not stream: result = model_config.invoke(converted_messages) return {'choices': [{'message': convert_message_to_dict(result)}]} else: return (_convert_message_chunk_to_delta(c, i) for i, c in enumerate( model_config.stream(converted_messages)))
@staticmethod def create(messages: Sequence[Dict[str, Any]], *, provider: str= 'ChatOpenAI', stream: bool=False, **kwargs: Any) ->Union[dict, Iterable]: models = importlib.import_module('langchain.chat_models') model_cls = getattr(models, provider) model_config = model_cls(**kwargs) converted_messages = convert_openai_messages(messages) if not stream: result = model_config.invoke(converted_messages) return {'choices': [{'message': convert_message_to_dict(result)}]} else: return (_convert_message_chunk_to_delta(c, i) for i, c in enumerate (model_config.stream(converted_messages)))
null
test_extract_more_nested_tags
bs_transformer = BeautifulSoupTransformer() nested_html = ( "<html><div class='some_style'><p><span>First</span> paragraph.</p><p>Second paragraph.</p><p>Third paragraph with a list:<ul><li>First list item.</li><li>Second list item.</li></ul></p><p>Fourth paragraph.</p></div></html>" ) documents = [Document(page_content=nested_html)] docs_transformed = bs_transformer.transform_documents(documents) assert docs_transformed[0 ].page_content == 'First paragraph. Second paragraph. Third paragraph with a list: First list item. Second list item. Fourth paragraph.'
@pytest.mark.requires('bs4') def test_extract_more_nested_tags() ->None: bs_transformer = BeautifulSoupTransformer() nested_html = ( "<html><div class='some_style'><p><span>First</span> paragraph.</p><p>Second paragraph.</p><p>Third paragraph with a list:<ul><li>First list item.</li><li>Second list item.</li></ul></p><p>Fourth paragraph.</p></div></html>" ) documents = [Document(page_content=nested_html)] docs_transformed = bs_transformer.transform_documents(documents) assert docs_transformed[0 ].page_content == 'First paragraph. Second paragraph. Third paragraph with a list: First list item. Second list item. Fourth paragraph.'
null
_import_requests_tool_RequestsPostTool
from langchain_community.tools.requests.tool import RequestsPostTool return RequestsPostTool
def _import_requests_tool_RequestsPostTool() ->Any: from langchain_community.tools.requests.tool import RequestsPostTool return RequestsPostTool
null
_search_points
"""Search points.""" if self.distance_strategy == DistanceStrategy.COSINE: vec = np.array(embedding) vec = vec / np.linalg.norm(vec) embedding = vec.tolist() payload = {'vector': embedding, 'limit': k} response = requests.post(SemaDB.BASE_URL + f'/collections/{self.collection_name}/points/search', json=payload, headers=self.headers) if response.status_code != 200: raise ValueError(f'Error searching: {response.text}') return response.json()['points']
def _search_points(self, embedding: List[float], k: int=4) ->List[dict]: """Search points.""" if self.distance_strategy == DistanceStrategy.COSINE: vec = np.array(embedding) vec = vec / np.linalg.norm(vec) embedding = vec.tolist() payload = {'vector': embedding, 'limit': k} response = requests.post(SemaDB.BASE_URL + f'/collections/{self.collection_name}/points/search', json=payload, headers=self.headers) if response.status_code != 200: raise ValueError(f'Error searching: {response.text}') return response.json()['points']
Search points.
validate_prompt
prompt = values['llm_chain'].prompt if prompt.output_parser is None: raise ValueError( "LLMRouterChain requires base llm_chain prompt to have an output parser that converts LLM text output to a dictionary with keys 'destination' and 'next_inputs'. Received a prompt with no output parser." ) return values
@root_validator() def validate_prompt(cls, values: dict) ->dict: prompt = values['llm_chain'].prompt if prompt.output_parser is None: raise ValueError( "LLMRouterChain requires base llm_chain prompt to have an output parser that converts LLM text output to a dictionary with keys 'destination' and 'next_inputs'. Received a prompt with no output parser." ) return values
null
format_dialog
"""Format messages and convert to a single string.""" chat_history = format_messages(input) formatted_dialog = get_buffer_string(chat_history) + f""" human: {input['text']}""" return {'dialog': formatted_dialog}
def format_dialog(input: dict) ->dict: """Format messages and convert to a single string.""" chat_history = format_messages(input) formatted_dialog = get_buffer_string(chat_history ) + f"\nhuman: {input['text']}" return {'dialog': formatted_dialog}
Format messages and convert to a single string.
__init__
self.ops = list(ops)
def __init__(self, *ops: Dict[str, Any]) ->None: self.ops = list(ops)
null
load_page
"""Read a page. Args: page_summary: Page summary from Notion API. """ page_id = page_summary['id'] metadata: Dict[str, Any] = {} for prop_name, prop_data in page_summary['properties'].items(): prop_type = prop_data['type'] if prop_type == 'rich_text': value = prop_data['rich_text'][0]['plain_text'] if prop_data[ 'rich_text'] else None elif prop_type == 'title': value = prop_data['title'][0]['plain_text'] if prop_data['title' ] else None elif prop_type == 'multi_select': value = [item['name'] for item in prop_data['multi_select'] ] if prop_data['multi_select'] else [] elif prop_type == 'url': value = prop_data['url'] elif prop_type == 'unique_id': value = ( f"{prop_data['unique_id']['prefix']}-{prop_data['unique_id']['number']}" if prop_data['unique_id'] else None) elif prop_type == 'status': value = prop_data['status']['name'] if prop_data['status'] else None elif prop_type == 'people': value = [item['name'] for item in prop_data['people']] if prop_data[ 'people'] else [] elif prop_type == 'date': value = prop_data['date'] if prop_data['date'] else None elif prop_type == 'last_edited_time': value = prop_data['last_edited_time'] if prop_data['last_edited_time' ] else None elif prop_type == 'created_time': value = prop_data['created_time'] if prop_data['created_time' ] else None elif prop_type == 'checkbox': value = prop_data['checkbox'] elif prop_type == 'email': value = prop_data['email'] elif prop_type == 'number': value = prop_data['number'] elif prop_type == 'select': value = prop_data['select']['name'] if prop_data['select'] else None else: value = None metadata[prop_name.lower()] = value metadata['id'] = page_id return Document(page_content=self._load_blocks(page_id), metadata=metadata)
def load_page(self, page_summary: Dict[str, Any]) ->Document: """Read a page. Args: page_summary: Page summary from Notion API. """ page_id = page_summary['id'] metadata: Dict[str, Any] = {} for prop_name, prop_data in page_summary['properties'].items(): prop_type = prop_data['type'] if prop_type == 'rich_text': value = prop_data['rich_text'][0]['plain_text'] if prop_data[ 'rich_text'] else None elif prop_type == 'title': value = prop_data['title'][0]['plain_text'] if prop_data['title' ] else None elif prop_type == 'multi_select': value = [item['name'] for item in prop_data['multi_select'] ] if prop_data['multi_select'] else [] elif prop_type == 'url': value = prop_data['url'] elif prop_type == 'unique_id': value = ( f"{prop_data['unique_id']['prefix']}-{prop_data['unique_id']['number']}" if prop_data['unique_id'] else None) elif prop_type == 'status': value = prop_data['status']['name'] if prop_data['status' ] else None elif prop_type == 'people': value = [item['name'] for item in prop_data['people'] ] if prop_data['people'] else [] elif prop_type == 'date': value = prop_data['date'] if prop_data['date'] else None elif prop_type == 'last_edited_time': value = prop_data['last_edited_time'] if prop_data[ 'last_edited_time'] else None elif prop_type == 'created_time': value = prop_data['created_time'] if prop_data['created_time' ] else None elif prop_type == 'checkbox': value = prop_data['checkbox'] elif prop_type == 'email': value = prop_data['email'] elif prop_type == 'number': value = prop_data['number'] elif prop_type == 'select': value = prop_data['select']['name'] if prop_data['select' ] else None else: value = None metadata[prop_name.lower()] = value metadata['id'] = page_id return Document(page_content=self._load_blocks(page_id), metadata=metadata)
Read a page. Args: page_summary: Page summary from Notion API.
test_deeplake
"""Test end to end construction and search.""" texts = ['foo', 'bar', 'baz'] docsearch = DeepLake.from_texts(dataset_path='mem://test_path', texts=texts, embedding=FakeEmbeddings()) output = docsearch.similarity_search('foo', k=1) assert output == [Document(page_content='foo')]
def test_deeplake() ->None: """Test end to end construction and search.""" texts = ['foo', 'bar', 'baz'] docsearch = DeepLake.from_texts(dataset_path='mem://test_path', texts= texts, embedding=FakeEmbeddings()) output = docsearch.similarity_search('foo', k=1) assert output == [Document(page_content='foo')]
Test end to end construction and search.
similarity_search_with_score_by_vector
try: from vald.v1.payload import payload_pb2 from vald.v1.vald import search_pb2_grpc except ImportError: raise ValueError( 'Could not import vald-client-python python package. Please install it with `pip install vald-client-python`.' ) channel = self._get_channel() stub = search_pb2_grpc.SearchStub(channel) cfg = payload_pb2.Search.Config(num=k, radius=radius, epsilon=epsilon, timeout=timeout) res = stub.Search(payload_pb2.Search.Request(vector=embedding, config=cfg), metadata=grpc_metadata) docs_and_scores = [] for result in res.results: docs_and_scores.append((Document(page_content=result.id), result.distance)) channel.close() return docs_and_scores
def similarity_search_with_score_by_vector(self, embedding: List[float], k: int=4, radius: float=-1.0, epsilon: float=0.01, timeout: int=3000000000, grpc_metadata: Optional[Any]=None, **kwargs: Any) ->List[Tuple[Document, float]]: try: from vald.v1.payload import payload_pb2 from vald.v1.vald import search_pb2_grpc except ImportError: raise ValueError( 'Could not import vald-client-python python package. Please install it with `pip install vald-client-python`.' ) channel = self._get_channel() stub = search_pb2_grpc.SearchStub(channel) cfg = payload_pb2.Search.Config(num=k, radius=radius, epsilon=epsilon, timeout=timeout) res = stub.Search(payload_pb2.Search.Request(vector=embedding, config= cfg), metadata=grpc_metadata) docs_and_scores = [] for result in res.results: docs_and_scores.append((Document(page_content=result.id), result. distance)) channel.close() return docs_and_scores
null
_consume_next_step
if isinstance(values[-1], AgentFinish): assert len(values) == 1 return values[-1] else: return [(a.action, a.observation) for a in values if isinstance(a, AgentStep)]
def _consume_next_step(self, values: NextStepOutput) ->Union[AgentFinish, List[Tuple[AgentAction, str]]]: if isinstance(values[-1], AgentFinish): assert len(values) == 1 return values[-1] else: return [(a.action, a.observation) for a in values if isinstance(a, AgentStep)]
null
test_proto_file_splitter
splitter = RecursiveCharacterTextSplitter.from_language(Language.PROTO, chunk_size=CHUNK_SIZE, chunk_overlap=0) code = """ syntax = "proto3"; package example; message Person { string name = 1; int32 age = 2; repeated string hobbies = 3; } """ chunks = splitter.split_text(code) assert chunks == ['syntax =', '"proto3";', 'package', 'example;', 'message Person', '{', 'string name', '= 1;', 'int32 age =', '2;', 'repeated', 'string hobbies', '= 3;', '}']
def test_proto_file_splitter() ->None: splitter = RecursiveCharacterTextSplitter.from_language(Language.PROTO, chunk_size=CHUNK_SIZE, chunk_overlap=0) code = """ syntax = "proto3"; package example; message Person { string name = 1; int32 age = 2; repeated string hobbies = 3; } """ chunks = splitter.split_text(code) assert chunks == ['syntax =', '"proto3";', 'package', 'example;', 'message Person', '{', 'string name', '= 1;', 'int32 age =', '2;', 'repeated', 'string hobbies', '= 3;', '}']
null
_import_dingo
from langchain_community.vectorstores.dingo import Dingo return Dingo
def _import_dingo() ->Any: from langchain_community.vectorstores.dingo import Dingo return Dingo
null
template_is_valid
"""Check that template and input variables are consistent.""" if values['validate_template']: all_inputs = values['input_variables'] + list(values['partial_variables']) check_valid_template(values['template'], values['template_format'], all_inputs) elif values.get('template_format'): values['input_variables'] = [var for var in get_template_variables( values['template'], values['template_format']) if var not in values ['partial_variables']] return values
@root_validator() def template_is_valid(cls, values: Dict) ->Dict: """Check that template and input variables are consistent.""" if values['validate_template']: all_inputs = values['input_variables'] + list(values[ 'partial_variables']) check_valid_template(values['template'], values['template_format'], all_inputs) elif values.get('template_format'): values['input_variables'] = [var for var in get_template_variables( values['template'], values['template_format']) if var not in values['partial_variables']] return values
Check that template and input variables are consistent.
test_loading_from_YAML
"""Test loading from yaml file.""" prompt = load_prompt(EXAMPLE_DIR / 'simple_prompt.yaml') expected_prompt = PromptTemplate(input_variables=['adjective'], partial_variables={'content': 'dogs'}, template= 'Tell me a {adjective} joke about {content}.') assert prompt == expected_prompt
def test_loading_from_YAML() ->None: """Test loading from yaml file.""" prompt = load_prompt(EXAMPLE_DIR / 'simple_prompt.yaml') expected_prompt = PromptTemplate(input_variables=['adjective'], partial_variables={'content': 'dogs'}, template= 'Tell me a {adjective} joke about {content}.') assert prompt == expected_prompt
Test loading from yaml file.
mdelete
"""Delete the given keys.""" _keys = [self._get_prefixed_key(key) for key in keys] self.client.delete(*_keys)
def mdelete(self, keys: Sequence[str]) ->None: """Delete the given keys.""" _keys = [self._get_prefixed_key(key) for key in keys] self.client.delete(*_keys)
Delete the given keys.
mset
"""Set the given key-value pairs.""" self.underlying_store.mset([((k, v.decode('utf-8')) if v is not None else None) for k, v in key_value_pairs])
def mset(self, key_value_pairs: Sequence[Tuple[str, bytes]]) ->None: """Set the given key-value pairs.""" self.underlying_store.mset([((k, v.decode('utf-8')) if v is not None else None) for k, v in key_value_pairs])
Set the given key-value pairs.
setUp
self.fake_llm = self.make_fake_llm()
def setUp(self) ->None: self.fake_llm = self.make_fake_llm()
null
__init__
"""Implement the BaseStore interface for the local file system. Args: root_path (Union[str, Path]): The root path of the file store. All keys are interpreted as paths relative to this root. """ self.root_path = Path(root_path).absolute()
def __init__(self, root_path: Union[str, Path]) ->None: """Implement the BaseStore interface for the local file system. Args: root_path (Union[str, Path]): The root path of the file store. All keys are interpreted as paths relative to this root. """ self.root_path = Path(root_path).absolute()
Implement the BaseStore interface for the local file system. Args: root_path (Union[str, Path]): The root path of the file store. All keys are interpreted as paths relative to this root.
_identifying_params
return {**super()._identifying_params, 'pl_tags': self.pl_tags, 'return_pl_id': self.return_pl_id}
@property def _identifying_params(self) ->Dict[str, Any]: return {**super()._identifying_params, 'pl_tags': self.pl_tags, 'return_pl_id': self.return_pl_id}
null
_validate_input_vars
expected_input_vars = {'query', 'context', 'result'} if expected_input_vars != set(prompt.input_variables): raise ValueError( f'Input variables should be {expected_input_vars}, but got {prompt.input_variables}' )
@classmethod def _validate_input_vars(cls, prompt: PromptTemplate) ->None: expected_input_vars = {'query', 'context', 'result'} if expected_input_vars != set(prompt.input_variables): raise ValueError( f'Input variables should be {expected_input_vars}, but got {prompt.input_variables}' )
null
_get_examples
"""Get the examples to use for formatting the prompt. Args: **kwargs: Keyword arguments to be passed to the example selector. Returns: List of examples. """ if self.examples is not None: return self.examples elif self.example_selector is not None: return self.example_selector.select_examples(kwargs) else: raise ValueError( "One of 'examples' and 'example_selector' should be provided")
def _get_examples(self, **kwargs: Any) ->List[dict]: """Get the examples to use for formatting the prompt. Args: **kwargs: Keyword arguments to be passed to the example selector. Returns: List of examples. """ if self.examples is not None: return self.examples elif self.example_selector is not None: return self.example_selector.select_examples(kwargs) else: raise ValueError( "One of 'examples' and 'example_selector' should be provided")
Get the examples to use for formatting the prompt. Args: **kwargs: Keyword arguments to be passed to the example selector. Returns: List of examples.
__init__
"""Initialize with the documents to return.""" self.documents = documents
def __init__(self, documents: Sequence[Document]) ->None: """Initialize with the documents to return.""" self.documents = documents
Initialize with the documents to return.
_build_metadata
from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.by import By """Build metadata based on the contents of the webpage""" metadata = {'source': url, 'title': 'No title found.', 'description': 'No description found.', 'language': 'No language found.'} if (title := driver.title): metadata['title'] = title try: if (description := driver.find_element(By.XPATH, '//meta[@name="description"]')): metadata['description'] = description.get_attribute('content' ) or 'No description found.' except NoSuchElementException: pass try: if (html_tag := driver.find_element(By.TAG_NAME, 'html')): metadata['language'] = html_tag.get_attribute('lang' ) or 'No language found.' except NoSuchElementException: pass return metadata
def _build_metadata(self, url: str, driver: Union['Chrome', 'Firefox']) ->dict: from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.by import By """Build metadata based on the contents of the webpage""" metadata = {'source': url, 'title': 'No title found.', 'description': 'No description found.', 'language': 'No language found.'} if (title := driver.title): metadata['title'] = title try: if (description := driver.find_element(By.XPATH, '//meta[@name="description"]')): metadata['description'] = description.get_attribute('content' ) or 'No description found.' except NoSuchElementException: pass try: if (html_tag := driver.find_element(By.TAG_NAME, 'html')): metadata['language'] = html_tag.get_attribute('lang' ) or 'No language found.' except NoSuchElementException: pass return metadata
null
validate_environment
"""Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env(values, 'azure_cogs_key', 'AZURE_COGS_KEY') azure_cogs_endpoint = get_from_dict_or_env(values, 'azure_cogs_endpoint', 'AZURE_COGS_ENDPOINT') try: from azure.ai.formrecognizer import DocumentAnalysisClient from azure.core.credentials import AzureKeyCredential values['doc_analysis_client'] = DocumentAnalysisClient(endpoint= azure_cogs_endpoint, credential=AzureKeyCredential(azure_cogs_key)) except ImportError: raise ImportError( 'azure-ai-formrecognizer is not installed. Run `pip install azure-ai-formrecognizer` to install.' ) return values
@root_validator(pre=True) def validate_environment(cls, values: Dict) ->Dict: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env(values, 'azure_cogs_key', 'AZURE_COGS_KEY') azure_cogs_endpoint = get_from_dict_or_env(values, 'azure_cogs_endpoint', 'AZURE_COGS_ENDPOINT') try: from azure.ai.formrecognizer import DocumentAnalysisClient from azure.core.credentials import AzureKeyCredential values['doc_analysis_client'] = DocumentAnalysisClient(endpoint= azure_cogs_endpoint, credential=AzureKeyCredential(azure_cogs_key)) except ImportError: raise ImportError( 'azure-ai-formrecognizer is not installed. Run `pip install azure-ai-formrecognizer` to install.' ) return values
Validate that api key and endpoint exists in environment.
test__convert_dict_to_message_other_role
message_dict = {'role': 'system', 'content': 'foo'} result = _convert_dict_to_message(message_dict) expected_output = ChatMessage(role='system', content='foo') assert result == expected_output
def test__convert_dict_to_message_other_role() ->None: message_dict = {'role': 'system', 'content': 'foo'} result = _convert_dict_to_message(message_dict) expected_output = ChatMessage(role='system', content='foo') assert result == expected_output
null
from_uri
"""Creating a remote Spark Session via Spark connect. For example: SparkSQL.from_uri("sc://localhost:15002") """ try: from pyspark.sql import SparkSession except ImportError: raise ValueError( 'pyspark is not installed. Please install it with `pip install pyspark`' ) spark = SparkSession.builder.remote(database_uri).getOrCreate() return cls(spark, **kwargs)
@classmethod def from_uri(cls, database_uri: str, engine_args: Optional[dict]=None, ** kwargs: Any) ->SparkSQL: """Creating a remote Spark Session via Spark connect. For example: SparkSQL.from_uri("sc://localhost:15002") """ try: from pyspark.sql import SparkSession except ImportError: raise ValueError( 'pyspark is not installed. Please install it with `pip install pyspark`' ) spark = SparkSession.builder.remote(database_uri).getOrCreate() return cls(spark, **kwargs)
Creating a remote Spark Session via Spark connect. For example: SparkSQL.from_uri("sc://localhost:15002")
delete
"""Delete the documents which have the specified ids. Args: ids: The ids of the embedding vectors. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful. False otherwise, None if not implemented. """ ret: Optional[bool] = None tmp_res = [] if ids is None or ids.__len__() == 0: return ret for _id in ids: if self.flag: ret = self.vearch.delete(self.using_db_name, self.using_table_name, _id ) else: ret = self.vearch.del_doc(_id) tmp_res.append(ret) ret = all(i == 0 for i in tmp_res) return ret
def delete(self, ids: Optional[List[str]]=None, **kwargs: Any) ->Optional[bool ]: """Delete the documents which have the specified ids. Args: ids: The ids of the embedding vectors. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful. False otherwise, None if not implemented. """ ret: Optional[bool] = None tmp_res = [] if ids is None or ids.__len__() == 0: return ret for _id in ids: if self.flag: ret = self.vearch.delete(self.using_db_name, self. using_table_name, _id) else: ret = self.vearch.del_doc(_id) tmp_res.append(ret) ret = all(i == 0 for i in tmp_res) return ret
Delete the documents which have the specified ids. Args: ids: The ids of the embedding vectors. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful. False otherwise, None if not implemented.
list_tables
"""List all the tables created by the client.""" if self.awadb_client is None: return [] return self.awadb_client.ListAllTables()
def list_tables(self, **kwargs: Any) ->List[str]: """List all the tables created by the client.""" if self.awadb_client is None: return [] return self.awadb_client.ListAllTables()
List all the tables created by the client.
test_write_file
"""Test the WriteFile tool.""" with TemporaryDirectory() as temp_dir: file_path = str(Path(temp_dir) / 'file.txt') tool = WriteFileTool() tool.run({'file_path': file_path, 'text': 'Hello, world!'}) assert (Path(temp_dir) / 'file.txt').exists() assert (Path(temp_dir) / 'file.txt').read_text() == 'Hello, world!'
def test_write_file() ->None: """Test the WriteFile tool.""" with TemporaryDirectory() as temp_dir: file_path = str(Path(temp_dir) / 'file.txt') tool = WriteFileTool() tool.run({'file_path': file_path, 'text': 'Hello, world!'}) assert (Path(temp_dir) / 'file.txt').exists() assert (Path(temp_dir) / 'file.txt').read_text() == 'Hello, world!'
Test the WriteFile tool.
scrape_text
try: response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') page_text = soup.get_text(separator=' ', strip=True) return page_text else: return ( f'Failed to retrieve the webpage: Status code {response.status_code}' ) except Exception as e: print(e) return f'Failed to retrieve the webpage: {e}'
def scrape_text(url: str): try: response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') page_text = soup.get_text(separator=' ', strip=True) return page_text else: return ( f'Failed to retrieve the webpage: Status code {response.status_code}' ) except Exception as e: print(e) return f'Failed to retrieve the webpage: {e}'
null
_import_gpt4all
from langchain_community.llms.gpt4all import GPT4All return GPT4All
def _import_gpt4all() ->Any: from langchain_community.llms.gpt4all import GPT4All return GPT4All
null
test_create_confluence_page
"""Test for getting projects on JIRA""" jira = JiraAPIWrapper() create_page_dict = ( '{"space": "ROC", "title":"This is the title","body":"This is the body. You can use <strong>HTML tags</strong>!"}' ) output = jira.run('create_page', create_page_dict) assert 'type' in output assert 'page' in output
def test_create_confluence_page() ->None: """Test for getting projects on JIRA""" jira = JiraAPIWrapper() create_page_dict = ( '{"space": "ROC", "title":"This is the title","body":"This is the body. You can use <strong>HTML tags</strong>!"}' ) output = jira.run('create_page', create_page_dict) assert 'type' in output assert 'page' in output
Test for getting projects on JIRA
test_self_hosted_huggingface_embedding_documents
"""Test self-hosted huggingface embeddings.""" documents = ['foo bar'] gpu = get_remote_instance() embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu) output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 768
def test_self_hosted_huggingface_embedding_documents() ->None: """Test self-hosted huggingface embeddings.""" documents = ['foo bar'] gpu = get_remote_instance() embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu) output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 768
Test self-hosted huggingface embeddings.
_convert_delta_to_message_chunk
role = _dict.get('role') content = _dict.get('content') or '' if role == 'user' or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == 'assistant' or default_class == AIMessageChunk: return AIMessageChunk(content=content) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content)
def _convert_delta_to_message_chunk(_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]) ->BaseMessageChunk: role = _dict.get('role') content = _dict.get('content') or '' if role == 'user' or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == 'assistant' or default_class == AIMessageChunk: return AIMessageChunk(content=content) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content)
null
test_ani_message_chunks
assert AIMessageChunk(example=True, content='I am') + AIMessageChunk(example =True, content=' indeed.') == AIMessageChunk(example=True, content= 'I am indeed.' ), 'AIMessageChunk + AIMessageChunk should be a AIMessageChunk' with pytest.raises(ValueError): AIMessageChunk(example=True, content='I am') + AIMessageChunk(example= False, content=' indeed.')
def test_ani_message_chunks() ->None: assert AIMessageChunk(example=True, content='I am') + AIMessageChunk( example=True, content=' indeed.') == AIMessageChunk(example=True, content='I am indeed.' ), 'AIMessageChunk + AIMessageChunk should be a AIMessageChunk' with pytest.raises(ValueError): AIMessageChunk(example=True, content='I am') + AIMessageChunk(example =False, content=' indeed.')
null
similarity_search
"""Return docs most similar to query. Args: query: Text query. k: The maximum number of documents to return. text_in_page_content: Filter by the text in page_content of Document. meta_filter (Optional[dict]): Filter by metadata. Defaults to None. E.g. `{"color" : "red", "price": 4.20}`. Optional. E.g. `{"max_price" : 15.66, "min_price": 4.20}` `price` is the metadata field, means range filter(4.20<'price'<15.66). E.g. `{"maxe_price" : 15.66, "mine_price": 4.20}` `price` is the metadata field, means range filter(4.20<='price'<=15.66). kwargs: Any possible extend parameters in the future. Returns: Returns the k most similar documents to the specified text query. """ if self.awadb_client is None: raise ValueError('AwaDB client is None!!!') embedding = None if self.using_table_name in self.table2embeddings: embedding = self.table2embeddings[self.using_table_name].embed_query(query) else: from awadb import AwaEmbedding embedding = AwaEmbedding().Embedding(query) not_include_fields: Set[str] = {'text_embedding', '_id', 'score'} return self.similarity_search_by_vector(embedding, k, text_in_page_content= text_in_page_content, meta_filter=meta_filter, not_include_fields_in_metadata=not_include_fields)
def similarity_search(self, query: str, k: int=DEFAULT_TOPN, text_in_page_content: Optional[str]=None, meta_filter: Optional[dict]= None, **kwargs: Any) ->List[Document]: """Return docs most similar to query. Args: query: Text query. k: The maximum number of documents to return. text_in_page_content: Filter by the text in page_content of Document. meta_filter (Optional[dict]): Filter by metadata. Defaults to None. E.g. `{"color" : "red", "price": 4.20}`. Optional. E.g. `{"max_price" : 15.66, "min_price": 4.20}` `price` is the metadata field, means range filter(4.20<'price'<15.66). E.g. `{"maxe_price" : 15.66, "mine_price": 4.20}` `price` is the metadata field, means range filter(4.20<='price'<=15.66). kwargs: Any possible extend parameters in the future. Returns: Returns the k most similar documents to the specified text query. """ if self.awadb_client is None: raise ValueError('AwaDB client is None!!!') embedding = None if self.using_table_name in self.table2embeddings: embedding = self.table2embeddings[self.using_table_name].embed_query( query) else: from awadb import AwaEmbedding embedding = AwaEmbedding().Embedding(query) not_include_fields: Set[str] = {'text_embedding', '_id', 'score'} return self.similarity_search_by_vector(embedding, k, text_in_page_content=text_in_page_content, meta_filter=meta_filter, not_include_fields_in_metadata=not_include_fields)
Return docs most similar to query. Args: query: Text query. k: The maximum number of documents to return. text_in_page_content: Filter by the text in page_content of Document. meta_filter (Optional[dict]): Filter by metadata. Defaults to None. E.g. `{"color" : "red", "price": 4.20}`. Optional. E.g. `{"max_price" : 15.66, "min_price": 4.20}` `price` is the metadata field, means range filter(4.20<'price'<15.66). E.g. `{"maxe_price" : 15.66, "mine_price": 4.20}` `price` is the metadata field, means range filter(4.20<='price'<=15.66). kwargs: Any possible extend parameters in the future. Returns: Returns the k most similar documents to the specified text query.
test_retrieve_article_returns_book_abstract
"""Test that returns the excerpt of a book.""" output_nolabel = api_client.retrieve_article('25905357', '') output_withlabel = api_client.retrieve_article('29262144', '') test_string_nolabel = ( 'Osteoporosis is a multifactorial disorder associated with low bone mass and enhanced skeletal fragility. Although' ) assert test_string_nolabel in output_nolabel['Summary'] assert 'Wallenberg syndrome was first described in 1808 by Gaspard Vieusseux. However,' in output_withlabel[ 'Summary']
def test_retrieve_article_returns_book_abstract(api_client: PubMedAPIWrapper ) ->None: """Test that returns the excerpt of a book.""" output_nolabel = api_client.retrieve_article('25905357', '') output_withlabel = api_client.retrieve_article('29262144', '') test_string_nolabel = ( 'Osteoporosis is a multifactorial disorder associated with low bone mass and enhanced skeletal fragility. Although' ) assert test_string_nolabel in output_nolabel['Summary'] assert 'Wallenberg syndrome was first described in 1808 by Gaspard Vieusseux. However,' in output_withlabel[ 'Summary']
Test that returns the excerpt of a book.
observation_prefix
"""Prefix to append the observation with."""
@property @abstractmethod def observation_prefix(self) ->str: """Prefix to append the observation with."""
Prefix to append the observation with.
_type
return 'vector_sql_parser'
@property def _type(self) ->str: return 'vector_sql_parser'
null
test_public_api
"""Test for regressions or changes in the public API.""" assert set(public_api) == set(_EXPECTED)
def test_public_api() ->None: """Test for regressions or changes in the public API.""" assert set(public_api) == set(_EXPECTED)
Test for regressions or changes in the public API.
similarity_search_by_text
"""Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ content: Dict[str, Any] = {'concepts': [query]} if kwargs.get('search_distance'): content['certainty'] = kwargs.get('search_distance') query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get('where_filter'): query_obj = query_obj.with_where(kwargs.get('where_filter')) if kwargs.get('tenant'): query_obj = query_obj.with_tenant(kwargs.get('tenant')) if kwargs.get('additional'): query_obj = query_obj.with_additional(kwargs.get('additional')) result = query_obj.with_near_text(content).with_limit(k).do() if 'errors' in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result['data']['Get'][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs
def similarity_search_by_text(self, query: str, k: int=4, **kwargs: Any ) ->List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ content: Dict[str, Any] = {'concepts': [query]} if kwargs.get('search_distance'): content['certainty'] = kwargs.get('search_distance') query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get('where_filter'): query_obj = query_obj.with_where(kwargs.get('where_filter')) if kwargs.get('tenant'): query_obj = query_obj.with_tenant(kwargs.get('tenant')) if kwargs.get('additional'): query_obj = query_obj.with_additional(kwargs.get('additional')) result = query_obj.with_near_text(content).with_limit(k).do() if 'errors' in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result['data']['Get'][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs
Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query.
acompletion_with_retry
"""Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) ->Any: return await llm.async_client.generate(**kwargs) return _completion_with_retry(**kwargs)
def acompletion_with_retry(llm: Cohere, **kwargs: Any) ->Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) ->Any: return await llm.async_client.generate(**kwargs) return _completion_with_retry(**kwargs)
Use tenacity to retry the completion call.
load
"""Load documents.""" loader = UnstructuredPDFLoader(str(self.file_path)) return loader.load()
def load(self) ->List[Document]: """Load documents.""" loader = UnstructuredPDFLoader(str(self.file_path)) return loader.load()
Load documents.
_generate
"""Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. Code chat does not support context. stop: The list of stop words (optional). run_manager: The CallbackManager for LLM run, it's not used at the moment. stream: Whether to use the streaming endpoint. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human. """ should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream(messages, stop=stop, run_manager=run_manager, **kwargs) return generate_from_stream(stream_iter) question = _get_question(messages) params = self._prepare_params(stop=stop, stream=False, **kwargs) msg_params = {} if 'candidate_count' in params: msg_params['candidate_count'] = params.pop('candidate_count') if self._is_gemini_model: history_gemini = _parse_chat_history_gemini(messages, project=self.project) message = history_gemini.pop() chat = self.client.start_chat(history=history_gemini) response = chat.send_message(message, generation_config=params) else: history = _parse_chat_history(messages[:-1]) examples = kwargs.get('examples') or self.examples if examples: params['examples'] = _parse_examples(examples) chat = self._start_chat(history, **params) response = chat.send_message(question.content, **msg_params) generations = [ChatGeneration(message=AIMessage(content=r.text)) for r in response.candidates] return ChatResult(generations=generations)
def _generate(self, messages: List[BaseMessage], stop: Optional[List[str]]= None, run_manager: Optional[CallbackManagerForLLMRun]=None, stream: Optional[bool]=None, **kwargs: Any) ->ChatResult: """Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. Code chat does not support context. stop: The list of stop words (optional). run_manager: The CallbackManager for LLM run, it's not used at the moment. stream: Whether to use the streaming endpoint. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human. """ should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream(messages, stop=stop, run_manager= run_manager, **kwargs) return generate_from_stream(stream_iter) question = _get_question(messages) params = self._prepare_params(stop=stop, stream=False, **kwargs) msg_params = {} if 'candidate_count' in params: msg_params['candidate_count'] = params.pop('candidate_count') if self._is_gemini_model: history_gemini = _parse_chat_history_gemini(messages, project=self. project) message = history_gemini.pop() chat = self.client.start_chat(history=history_gemini) response = chat.send_message(message, generation_config=params) else: history = _parse_chat_history(messages[:-1]) examples = kwargs.get('examples') or self.examples if examples: params['examples'] = _parse_examples(examples) chat = self._start_chat(history, **params) response = chat.send_message(question.content, **msg_params) generations = [ChatGeneration(message=AIMessage(content=r.text)) for r in response.candidates] return ChatResult(generations=generations)
Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. Code chat does not support context. stop: The list of stop words (optional). run_manager: The CallbackManager for LLM run, it's not used at the moment. stream: Whether to use the streaming endpoint. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human.
test_singlestoredb_filter_metadata_4
"""Test no matches""" table_name = 'test_singlestoredb_filter_metadata_4' drop(table_name) docs = [Document(page_content=t, metadata={'index': i, 'category': 'budget' }) for i, t in enumerate(texts)] docsearch = SingleStoreDB.from_documents(docs, FakeEmbeddings(), distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, table_name= table_name, host=TEST_SINGLESTOREDB_URL) output = docsearch.similarity_search('foo', k=1, filter={'category': 'vacation'}) assert output == [] drop(table_name)
@pytest.mark.skipif(not singlestoredb_installed, reason= 'singlestoredb not installed') def test_singlestoredb_filter_metadata_4(texts: List[str]) ->None: """Test no matches""" table_name = 'test_singlestoredb_filter_metadata_4' drop(table_name) docs = [Document(page_content=t, metadata={'index': i, 'category': 'budget'}) for i, t in enumerate(texts)] docsearch = SingleStoreDB.from_documents(docs, FakeEmbeddings(), distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, table_name= table_name, host=TEST_SINGLESTOREDB_URL) output = docsearch.similarity_search('foo', k=1, filter={'category': 'vacation'}) assert output == [] drop(table_name)
Test no matches
input_keys
"""Expect input key. :meta private: """ return [self.input_key]
@property def input_keys(self) ->List[str]: """Expect input key. :meta private: """ return [self.input_key]
Expect input key. :meta private:
__init__
"""Initialize with necessary components.""" self.embedding = embedding self.index = index self.docstore = docstore self.index_to_docstore_id = index_to_docstore_id self.distance_strategy = distance_strategy self.override_relevance_score_fn = relevance_score_fn self._normalize_L2 = normalize_L2 self._scann_config = scann_config
def __init__(self, embedding: Embeddings, index: Any, docstore: Docstore, index_to_docstore_id: Dict[int, str], relevance_score_fn: Optional[ Callable[[float], float]]=None, normalize_L2: bool=False, distance_strategy: DistanceStrategy=DistanceStrategy.EUCLIDEAN_DISTANCE, scann_config: Optional[str]=None): """Initialize with necessary components.""" self.embedding = embedding self.index = index self.docstore = docstore self.index_to_docstore_id = index_to_docstore_id self.distance_strategy = distance_strategy self.override_relevance_score_fn = relevance_score_fn self._normalize_L2 = normalize_L2 self._scann_config = scann_config
Initialize with necessary components.
__init__
"""Initialize the HuggingFaceDatasetLoader. Args: path: Path or name of the dataset. page_content_column: Page content column name. Default is "text". name: Name of the dataset configuration. data_dir: Data directory of the dataset configuration. data_files: Path(s) to source data file(s). cache_dir: Directory to read/write data. keep_in_memory: Whether to copy the dataset in-memory. save_infos: Save the dataset information (checksums/size/splits/...). Default is False. use_auth_token: Bearer token for remote files on the Dataset Hub. num_proc: Number of processes. """ self.path = path self.page_content_column = page_content_column self.name = name self.data_dir = data_dir self.data_files = data_files self.cache_dir = cache_dir self.keep_in_memory = keep_in_memory self.save_infos = save_infos self.use_auth_token = use_auth_token self.num_proc = num_proc
def __init__(self, path: str, page_content_column: str='text', name: Optional[str]=None, data_dir: Optional[str]=None, data_files: Optional[ Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]]= None, cache_dir: Optional[str]=None, keep_in_memory: Optional[bool]= None, save_infos: bool=False, use_auth_token: Optional[Union[bool, str] ]=None, num_proc: Optional[int]=None): """Initialize the HuggingFaceDatasetLoader. Args: path: Path or name of the dataset. page_content_column: Page content column name. Default is "text". name: Name of the dataset configuration. data_dir: Data directory of the dataset configuration. data_files: Path(s) to source data file(s). cache_dir: Directory to read/write data. keep_in_memory: Whether to copy the dataset in-memory. save_infos: Save the dataset information (checksums/size/splits/...). Default is False. use_auth_token: Bearer token for remote files on the Dataset Hub. num_proc: Number of processes. """ self.path = path self.page_content_column = page_content_column self.name = name self.data_dir = data_dir self.data_files = data_files self.cache_dir = cache_dir self.keep_in_memory = keep_in_memory self.save_infos = save_infos self.use_auth_token = use_auth_token self.num_proc = num_proc
Initialize the HuggingFaceDatasetLoader. Args: path: Path or name of the dataset. page_content_column: Page content column name. Default is "text". name: Name of the dataset configuration. data_dir: Data directory of the dataset configuration. data_files: Path(s) to source data file(s). cache_dir: Directory to read/write data. keep_in_memory: Whether to copy the dataset in-memory. save_infos: Save the dataset information (checksums/size/splits/...). Default is False. use_auth_token: Bearer token for remote files on the Dataset Hub. num_proc: Number of processes.
add_texts
"""Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ batch_size = kwargs.get('batch_size', DEFAULT_INSERT_BATCH_SIZE) _metadatas: Union[List, Generator] = metadatas or ({} for _ in texts) texts_batch = [] metadatas_batch = [] result_ids = [] for i, (text, metadata) in enumerate(zip(texts, _metadatas)): texts_batch.append(text) metadatas_batch.append(metadata) if (i + 1) % batch_size == 0: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) texts_batch = [] metadatas_batch = [] if texts_batch: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) return result_ids
def add_texts(self, texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]]=None, **kwargs: Any) ->List: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ batch_size = kwargs.get('batch_size', DEFAULT_INSERT_BATCH_SIZE) _metadatas: Union[List, Generator] = metadatas or ({} for _ in texts) texts_batch = [] metadatas_batch = [] result_ids = [] for i, (text, metadata) in enumerate(zip(texts, _metadatas)): texts_batch.append(text) metadatas_batch.append(metadata) if (i + 1) % batch_size == 0: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) texts_batch = [] metadatas_batch = [] if texts_batch: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) return result_ids
Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore.
_import_stackexchange_tool
from langchain_community.tools.stackexchange.tool import StackExchangeTool return StackExchangeTool
def _import_stackexchange_tool() ->Any: from langchain_community.tools.stackexchange.tool import StackExchangeTool return StackExchangeTool
null
_load_from_object_ids
"""Lazily load files specified by their object_ids from a drive. Load files into the system as binary large objects (Blobs) and return Iterable. Args: drive: The Drive instance from which the files are to be loaded. This Drive instance should represent a cloud storage service or similar storage system where the files are stored. object_ids: A list of object_id strings. Each object_id represents a unique identifier for a file in the drive. Yields: An iterator that yields Blob instances, which are binary representations of the files loaded from the drive using the specified object_ids. """ file_mime_types = self._fetch_mime_types with tempfile.TemporaryDirectory() as temp_dir: for object_id in object_ids: file = drive.get_item(object_id) if not file: logging.warning( f"There isn't a file withobject_id {object_id} in drive {drive}." ) continue if file.is_file: if file.mime_type in list(file_mime_types.values()): file.download(to_path=temp_dir, chunk_size=self.chunk_size) loader = FileSystemBlobLoader(path=temp_dir) yield from loader.yield_blobs()
def _load_from_object_ids(self, drive: Drive, object_ids: List[str] ) ->Iterable[Blob]: """Lazily load files specified by their object_ids from a drive. Load files into the system as binary large objects (Blobs) and return Iterable. Args: drive: The Drive instance from which the files are to be loaded. This Drive instance should represent a cloud storage service or similar storage system where the files are stored. object_ids: A list of object_id strings. Each object_id represents a unique identifier for a file in the drive. Yields: An iterator that yields Blob instances, which are binary representations of the files loaded from the drive using the specified object_ids. """ file_mime_types = self._fetch_mime_types with tempfile.TemporaryDirectory() as temp_dir: for object_id in object_ids: file = drive.get_item(object_id) if not file: logging.warning( f"There isn't a file withobject_id {object_id} in drive {drive}." ) continue if file.is_file: if file.mime_type in list(file_mime_types.values()): file.download(to_path=temp_dir, chunk_size=self.chunk_size) loader = FileSystemBlobLoader(path=temp_dir) yield from loader.yield_blobs()
Lazily load files specified by their object_ids from a drive. Load files into the system as binary large objects (Blobs) and return Iterable. Args: drive: The Drive instance from which the files are to be loaded. This Drive instance should represent a cloud storage service or similar storage system where the files are stored. object_ids: A list of object_id strings. Each object_id represents a unique identifier for a file in the drive. Yields: An iterator that yields Blob instances, which are binary representations of the files loaded from the drive using the specified object_ids.
_load_map_rerank_chain
llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose) return MapRerankDocumentsChain(llm_chain=llm_chain, rank_key=rank_key, answer_key=answer_key, document_variable_name=document_variable_name, **kwargs)
def _load_map_rerank_chain(llm: BaseLanguageModel, prompt: BasePromptTemplate=MAP_RERANK_PROMPT, verbose: bool=False, document_variable_name: str='context', rank_key: str='score', answer_key: str='answer', **kwargs: Any) ->MapRerankDocumentsChain: llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose) return MapRerankDocumentsChain(llm_chain=llm_chain, rank_key=rank_key, answer_key=answer_key, document_variable_name= document_variable_name, **kwargs)
null
get_fallacies
if names is None: return list(FALLACIES.values()) else: return [FALLACIES[name] for name in names]
@classmethod def get_fallacies(cls, names: Optional[List[str]]=None) ->List[LogicalFallacy]: if names is None: return list(FALLACIES.values()) else: return [FALLACIES[name] for name in names]
null
format_expression
_left, _right = str(left), str(right) if _left == _right == '*': return _left if _left == '*' != _right: return _right if _right == '*' != _left: return _left return f'({_left}{operator_str}{_right})'
@staticmethod def format_expression(left: 'RedisFilterExpression', right: 'RedisFilterExpression', operator_str: str) ->str: _left, _right = str(left), str(right) if _left == _right == '*': return _left if _left == '*' != _right: return _right if _right == '*' != _left: return _left return f'({_left}{operator_str}{_right})'
null
_validate_client
if 'client' not in values: values['client'] = nvai_common.NVEModel() return values
@root_validator(pre=True) def _validate_client(cls, values: Any) ->Any: if 'client' not in values: values['client'] = nvai_common.NVEModel() return values
null
_openai_v1_installed
try: return is_openai_v1() except Exception as _: return False
def _openai_v1_installed() ->bool: try: return is_openai_v1() except Exception as _: return False
null
test_openai_embedding_query
"""Test openai embeddings.""" document = 'foo bar' embedding = OpenAIEmbeddings() output = embedding.embed_query(document) assert len(output) == 1536
@pytest.mark.scheduled def test_openai_embedding_query() ->None: """Test openai embeddings.""" document = 'foo bar' embedding = OpenAIEmbeddings() output = embedding.embed_query(document) assert len(output) == 1536
Test openai embeddings.