protein_name
stringlengths
7
11
species
stringclasses
238 values
sequence
stringlengths
2
34.4k
annotation
stringlengths
6
11.5k
CLGN_HUMAN
Homo sapiens
MHFQAFWLCLGLLFISINAEFMDDDVETEDFEENSEEIDVNESELSSEIKYKTPQPIGEVYFAETFDSGRLAGWVLSKAKKDDMDEEISIYDGRWEIEELKENQVPGDRGLVLKSRAKHHAISAVLAKPFIFADKPLIVQYEVNFQDGIDCGGAYIKLLADTDDLILENFYDKTSYIIMFGPDKCGEDYKLHFIFRHKHPKTGVFEEKHAKPPDVDLKKFFTDRKTHLYTLVMNPDDTFEVLVDQTVVNKGSLLEDVVPPIKPPKEIEDPNDKKPEEWDERAKIPDPSAVKPEDWDESEPAQIEDSSVVKPAGWLDDEPKFIPDPNAEKPDDWNEDTDGEWEAPQILNPACRIGCGEWKPPMIDNPKYKGVWRPPLVDNPNYQGIWSPRKIPNPDYFEDDHPFLLTSFSALGLELWSMTSDIYFDNFIICSEKEVADHWAADGWRWKIMIANANKPGVLKQLMAAAEGHPWLWLIYLVTAGVPIALITSFCWPRKVKKKHKDTEYKKTDICIPQTKGVLEQEEKEEKAALEKPMDLEEEKKQNDGEMLEKEEESEPEEKSEEEIEIIEGQEESNQSNKSGSEDEMKEADESTGSGDGPIKSVRKRRVRKD
Functions during spermatogenesis as a chaperone for a range of client proteins that are important for sperm adhesion onto the egg zona pellucida and for subsequent penetration of the zona pellucida. Required for normal sperm migration from the uterus into the oviduct. Required for normal male fertility. Binds calcium ions (By similarity). Subcellular locations: Endoplasmic reticulum membrane Detected in testis (at protein level). Detected in testis.
CM042_HUMAN
Homo sapiens
MFRKIHSIFNSSPQRKTAAESPFYEGASPAVKLIRSSSMYVVGDHGEKFSESLKKYKSTSSMDTSLYYLRQEEDRAWMYSRTQDCLQYLQELLALRKKYLSSFSDLKPHRTQGISSTSSKSSKGGKKTPVRSTPKEIKKATPKKYSQFSADVAEAIAFFDSIIAELDTERRPRAAEASLPNEDVDFDVATSSREHSLHSNWILRAPRRHSEDIAAHTVHTVDGQFRRSTEHRTVGTQRRLERHPIYLPKAVEGAFNTWKFKPKACKKDLGSSRQILFNFSGEDMEWDAELFALEPQLSPGEDYYETENPKGQWLLRERLWERTVP
null
CM046_HUMAN
Homo sapiens
MEKDTGTTHRRHRPGLRALPSGVALGHLKAASEASELQRSRSLGGLQPEGDPPSRPRKPHKELESEDQGKDPSSNAEDASCQKNLAQDKKESFSTLGKLGHESGKQDPEREKSDLEASMQEVQEGEHADGGLQEAKEQEAESIKLNDLQEEEKASVFVEIDLGDHAEEVVTDAKKEEKPSQMDVEDLSEDEMQTSWVCCIPYSTRKRAKEST
null
CMKMT_HUMAN
Homo sapiens
MESRVADAGTGETARAAGGSPAVGCTTRGPVVSAPLGAARWKLLRQVLKQKHLDDCLRHVSVRRFESFNLFSVTEGKERETEEEVGAWVQYTSIFCPEYSISLRHNSGSLNVEDVLTSFDNTGNVCIWPSEEVLAYYCLKHNNIFRALAVCELGGGMTCLAGLMVAISADVKEVLLTDGNEKAIRNVQDIITRNQKAGVFKTQKISSCVLRWDNETDVSQLEGHFDIVMCADCLFLDQYRASLVDAIKRLLQPRGKAMVFAPRRGNTLNQFCNLAEKAGFCIQRHENYDEHISNFHSKLKKENPDIYEENLHYPLLLILTKHG
Catalyzes the trimethylation of 'Lys-116' in calmodulin. Subcellular locations: Cytoplasm, Nucleus Subcellular locations: Golgi apparatus Isoform 1 is expressed in brain, liver, muscle colon and lung. Isoform 2 is expressed in colon, testis, kidney and brain. Isoform 1 and isoform 2 are expressed in normal lymphoblastoid cells but not in lymphoblastoid cells from patients with hypotonia-cystinuria syndrome.
CMTR2_HUMAN
Homo sapiens
MSKCRKTPVQQLASPASFSPDILADIFELFAKNFSYGKPLNNEWQLPDPSEIFTCDHTELNAFLDLKNSLNEVKNLLSDKKLDEWHEHTAFTNKAGKIISHVRKSVNAELCTQAWCKFHEILCSFPLIPQEAFQNGKLNSLHLCEAPGAFIASLNHYLKSHRFPCHWSWVANTLNPYHEANDDLMMIMDDRLIANTLHWWYFGPDNTGDIMTLKFLTGLQNFISSMATVHLVTADGSFDCQGNPGEQEALVSSLHYCEVVTALTTLGNGGSFVLKMFTMFEHCSINLMYLLNCCFDQVHVFKPATSKAGNSEVYVVCLHYKGREAIHPLLSKMTLNFGTEMKRKALFPHHVIPDSFLKRHEECCVFFHKYQLETISENIRLFECMGKAEQEKLNNLRDCAIQYFMQKFQLKHLSRNNWLVKKSSIGCSTNTKWFGQRNKYFKTYNERKMLEALSWKDKVAKGYFNSWAEEHGVYHPGQSSILEGTASNLECHLWHILEGKKLPKVKCSPFCNGEILKTLNEAIEKSLGGAFNLDSKFRPKQQYSCSCHVFSEELIFSELCSLTECLQDEQVVVPSNQIKCLLVGFSTLRNIKMHIPLEVRLLESAELTTFSCSLLHDGDPTYQRLFLDCLLHSLRELHTGDVMILPVLSCFTRFMAGLIFVLHSCFRFITFVCPTSSDPLRTCAVLLCVGYQDLPNPVFRYLQSVNELLSTLLNSDSPQQVLQFVPMEVLLKGALLDFLWDLNAAIAKRHLHFIIQREREEIINSLQLQN
S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap2 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the second nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) (cap0) to produce m(7)GpppRmpNm (cap2). Recognizes a guanosine cap on RNA independently of its N(7) methylation status. Display cap2 methylation on both cap0 and cap1. Displays a preference for cap1 RNAs. Subcellular locations: Nucleus, Cytoplasm
CMTR2_PONAB
Pongo abelii
MSKCRKTPVQQLASPTSFSPDILADIFELFAKNFSYSKPLNNEWQLPDPSEIFTCDHTEFNAFLDLKNSLNEVKNLLSDKKLDEWHEHTAFTNKAGKIISHVRKSVNAELCTQAWCKFHEILCSFPLIPQEAFQNGKLNSLHLCEAPGAFIASLNHYLKSHRFPCHWSWVANTLNPYHEANDDLMMIMDDRLIANTLHWWYFGPDNTGDIMTLKFLTGLQNFISSMATVHLVTADGSFDCQGNPGEQEALVSSLHYCEVVTALTTLGNGGSFVLKMFTMFEHCSINLMYLLNCCLDQVHVFKPATSKAGNSEVYVVCLYYKGREAIHPLLSKMTLNFGTEMKRKALFPHHVIPDSFLKRHEECCVFFHKYQLETISENIRLFECMGKAEQEKLNNLRDCAVQYFMQKFQLKHLSRNNWLVKKSSIGCSTNTKWFGQRNKYFRTYNERKMLEALSWKDKVAKGYFNSWAEEHGVYHPGQSSILEGTASNLECHLWHILEGKKLPKVKCSPFCNGEILKTLNEAIEKSLGGAFNLDSKFRPKQQYSCSCHVFSEELIFSELCSLTECLQDEQVVEPSNRIKCLLVGFSTLHNIKMHIPLEVRLLESAELTTFSCSLLHDGDPTYQRLFLDCLLHSLRELHTGDVMILPVLSCFTRFMAGLIFVLHSCFRFITFFCPTSSDPLRTCAVLLCVGYQDLPNPVFQYLQSVNELLSTLLNSDSPQQVLQFVPMEVLLKGALLDFLWDLNAAIAKRHLHFIIQREREEINSLQLQN
S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap2 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the second nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) (cap0) to produce m(7)GpppRmpNm (cap2). Recognizes a guanosine cap on RNA independently of its N(7) methylation status. Display cap2 methylation on both cap0 and cap1. Displays a preference for cap1 RNAs. Subcellular locations: Nucleus, Cytoplasm
CMYA5_HUMAN
Homo sapiens
MASRDSNHAGESFLGSDGDEEATRELETEEESEGEEDETAAESEEEPDSRLSDQDEEGKIKQEYIISDPSFSMVTVQREDSGITWETNSSRSSTPWASEESQTSGVCSREGSTVNSPPGNVSFIVDEVKKVRKRTHKSKHGSPSLRRKGNRKRNSFESQDVPTNKKGSPLTSASQVLTTEKEKSYTGIYDKARKKKTTSNTPPITGAIYKEHKPLVLRPVYIGTVQYKIKMFNSVKEELIPLQFYGTLPKGYVIKEIHYRKGKDASISLEPDLDNSGSNTVSKTRKLVAQSIEDKVKEVFPPWRGALSKGSESLTLMFSHEDQKKIYADSPLNATSALEHTVPSYSSSGRAEQGIQLRHSQSVPQQPEDEAKPHEVEPPSVTPDTPATMFLRTTKEECELASPGTAASENDSSVSPSFANEVKKEDVYSAHHSISLEAASPGLAASTQDGLDPDQEQPDLTSIERAEPVSAKLTPTHPSVKGEKEENMLEPSISLSEPLMLEEPEKEEIETSLPIAITPEPEDSNLVEEEIVELDYPESPLVSEKPFPPHMSPEVEHKEEELILPLLAASSPEHVALSEEEREEIASVSTGSAFVSEYSVPQDLNHELQEQEGEPVPPSNVEAIAEHAVLSEEENEEFEAYSPAAAPTSESSLSPSTTEKTSENQSPLFSTVTPEYMVLSGDEASESGCYTPDSTSASEYSVPSLATKESLKKTIDRKSPLILKGVSEYMIPSEEKEDTGSFTPAVAPASEPSLSPSTTEKTSECQSPLPSTATSEHVVPSEGEDLGSERFTPDSKLISKYAAPLNATQESQKKIINEASQFKPKGISEHTVLSVDGKEVIGPSSPDLVVASEHSFPPHTTEMTSECQAPPLSATPSEYVVLSDEEAVELERYTPSSTSASEFSVPPYATPEAQEEEIVHRSLNLKGASSPMNLSEEDQEDIGPFSPDSAFVSEFSFPPYATQEAEKREFECDSPICLTSPSEHTILSDEDTEEAELFSPDSASQVSIPPFRISETEKNELEPDSLLTAVSASGYSCFSEADEEDIGSTAATPVSEQFSSSQKQKAETFPLMSPLEDLSLPPSTDKSEKAEIKPEIPTTSTSVSEYLILAQKQKTQAYLEPESEDLIPSHLTSEVEKGEREASSSVAAIPAALPAQSSIVKEETKPASPHSVLPDSVPAIKKEQEPTAALTLKAADEQMALSKVRKEEIVPDSQEATAHVSQDQKMEPQPPNVPESEMKYSVLPDMVDEPKKGVKPKLVLNVTSELEQRKLSKNEPEVIKPYSPLKETSLSGPEALSAVKMEMKHDSKITTTPIVLHSASSGVEKQVEHGPPALAFSALSEEIKKEIEPSSSTTTASVTKLDSNLTRAVKEEIPTDSSLITPVDRPVLTKVGKGELGSGLPPLVTSADEHSVLAEEDKVAIKGASPIETSSKHLAWSEAEKEIKFDSLPSVSSIAEHSVLSEVEAKEVKAGLPVIKTSSSQHSDKSEEARVEDKQDLLFSTVCDSERLVSSQKKSLMSTSEVLEPEHELPLSLWGEIKKKETELPSSQNVSPASKHIIPKGKDEETASSSPELENLASGLAPTLLLLSDDKNKPAVEVSSTAQGDFPSEKQDVALAELSLEPEKKDKPHQPLELPNAGSEFSSDLGRQSGSIGTKQAKSPITETEDSVLEKGPAELRSREGKEENRELCASSTMPAISELSSLLREESQNEEIKPFSPKIISLESKEPPASVAEGGNPEEFQPFTFSLKGLSEEVSHPADFKKGGNQEIGPLPPTGNLKAQVMGDILDKLSEETGHPNSSQVLQSITEPSKIAPSDLLVEQKKTEKALHSDQTVKLPDVSTSSEDKQDLGIKQFSLMRENLPLEQSKSFMTTKPADVKETKMEEFFISPKDENWMLGKPENVASQHEQRIAGSVQLDSSSSNELRPGQLKAAVSSKDHTCEVRKQVLPHSAEESHLSSQEAVSALDTSSGNTETLSSKSYSSEEVKLAEEPKSLVLAGNVERNIAEGKEIHSLMESESLLLEKANTELSWPSKEDSQEKIKLPPERFFQKPVSGLSVEQVKSETISSSVKTAHFPAEGVEPALGNEKEAHRSTPPFPEEKPLEESKMVQSKVIDDADEGKKPSPEVKIPTQRKPISSIHAREPQSPESPEVTQNPPTQPKVAKPDLPEEKGKKGISSFKSWMSSLFFGSSTPDNKVAEQEDLETQPSPSVEKAVTVIDPEGTIPTNFNVAEKPADHSLSEVKLKTADEPRGTLVKSGDGQNVKEKSMILSNVEDLQQPKFISEVSREDYGKKEISGDSEEMNINSVVTSADGENLEIQSYSLIGEKLVMEEAKTIVPPHVTDSKRVQKPAIAPPSKWNISIFKEEPRSDQKQKSLLSFDVVDKVPQQPKSASSNFASKNITKESEKPESIILPVEESKGSLIDFSEDRLKKEMQNPTSLKISEEETKLRSVSPTEKKDNLENRSYTLAEKKVLAEKQNSVAPLELRDSNEIGKTQITLGSRSTELKESKADAMPQHFYQNEDYNERPKIIVGSEKEKGEEKENQVYVLSEGKKQQEHQPYSVNVAESMSRESDISLGHSLGETQSFSLVKATSVTEKSEAMLAEAHPEIREAKAVGTQPHPLEESKVLVEKTKTFLPVALSCRDEIENHSLSQEGNLVLEKSSRDMPDHSEEKEQFRESELSKGGSVDITKETVKQGFQEKAVGTQPRPLEESKVLVEKTKTFLPVVLSCHDEIENHSLSQEGNLVLEKSSRDMPDHSEEKEQFKESELWKGGSVDITKESMKEGFPSKESERTLARPFDETKSSETPPYLLSPVKPQTLASGASPEINAVKKKEMPRSELTPERHTVHTIQTSKDDTSDVPKQSVLVSKHHLEAAEDTRVKEPLSSAKSNYAQFISNTSASNADKMVSNKEMPKEPEDTYAKGEDFTVTSKPAGLSEDQKTAFSIISEGCEILNIHAPAFISSIDQEESEQMQDKLEYLEEKASFKTIPLPDDSETVACHKTLKSRLEDEKVTPLKENKQKETHKTKEEISTDSETDLSFIQPTIPSEEDYFEKYTLIDYNISPDPEKQKAPQKLNVEEKLSKEVTEETISFPVSSVESALEHEYDLVKLDESFYGPEKGHNILSHPETQSQNSADRNVSKDTKRDVDSKSPGMPLFEAEEGVLSRTQIFPTTIKVIDPEFLEEPPALAFLYKDLYEEAVGEKKKEEETASEGDSVNSEASFPSRNSDTDDGTGIYFEKYILKDDILHDTSLTQKDQGQGLEEKRVGKDDSYQPIAAEGEIWGKFGTICREKSLEEQKGVYGEGESVDHVETVGNVAMQKKAPITEDVRVATQKISYAVPFEDTHHVLERADEAGSHGNEVGNASPEVNLNVPVQVSFPEEEFASGATHVQETSLEEPKILVPPEPSEERLRNSPVQDEYEFTESLHNEVVPQDILSEELSSESTPEDVLSQGKESFEHISENEFASEAEQSTPAEQKELGSERKEEDQLSSEVVTEKAQKELKKSQIDTYCYTCKCPISATDKVFGTHKDHEVSTLDTAISAVKVQLAEFLENLQEKSLRIEAFVSEIESFFNTIEENCSKNEKRLEEQNEEMMKKVLAQYDEKAQSFEEVKKKKMEFLHEQMVHFLQSMDTAKDTLETIVREAEELDEAVFLTSFEEINERLLSAMESTASLEKMPAAFSLFEHYDDSSARSDQMLKQVAVPQPPRLEPQEPNSATSTTIAVYWSMNKEDVIDSFQVYCMEEPQDDQEVNELVEEYRLTVKESYCIFEDLEPDRCYQVWVMAVNFTGCSLPSERAIFRTAPSTPVIRAEDCTVCWNTATIRWRPTTPEATETYTLEYCRQHSPEGEGLRSFSGIKGLQLKVNLQPNDNYFFYVRAINAFGTSEQSEAALISTRGTRFLLLRETAHPALHISSSGTVISFGERRRLTEIPSVLGEELPSCGQHYWETTVTDCPAYRLGICSSSAVQAGALGQGETSWYMHCSEPQRYTFFYSGIVSDVHVTERPARVGILLDYNNQRLIFINAESEQLLFIIRHRFNEGVHPAFALEKPGKCTLHLGIEPPDSVRHK
May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). Subcellular locations: Nucleus, Sarcoplasmic reticulum, Cytoplasm, Cytoplasm, Perinuclear region, Cytoplasm, Myofibril, Sarcomere, M line Found predominantly at the periphery of the nucleus but also throughout the cell. Localized in lysosomes (By similarity). In skeletal muscles, localizes along myofiber periphery, at costameres (By similarity). Predominantly flanks Z-disks (By similarity). Occasionally present at the M-band level. Colocalized with RYR2 in the sarcoplasmic reticulum (By similarity). Expressed in skeletal muscle; at a strong level and in heart.
CN023_HUMAN
Homo sapiens
MELSSMKICAAIPTSRALPEVVRRMPRKRISGLEWLLQQDPGFSLVNTVKAGMIISFPSNNIYSSVCCCQSEIFKYEFSNSKKSSWIQEERHLGKNNVLYSAHDVSPEKVTSALKKTNKQTTTINNFPLQYLPGSKLLDRFLSLSRSLLCLNSWSSSLPLAPQVKKK
null
CN028_HUMAN
Homo sapiens
MKTLFEEIKASIKNNYNQDRSFCRPVLPWGGVFTIKAGRKAVSCTPLYVEIRLKNTCTIDGFLMLLYVILNENENFPRELSLHFGREFVDCFLYLMDTYSFTTVKLLWIWDKMEKQQYKSEVHKASLIIDLFGNEHDNFTKNLENLMSTIQESYCSNWRCPTRVQEDQQRTININPPQEIPHGNLIRLAVNELFCSKIELCEEHGCGGLREFSQRIFCHGAPPFVVLNMQHWKSEDLAYVPYYLDLSDHKYLLEGATLFNKEEHHYSAAFQIGGHWMHYDGLRNVNLILLNKPPEFLLLSSLVYIRATEK
null
CN070_HUMAN
Homo sapiens
MGIGTGHTSMNKGGKDVTLLELSVEKRRWRINMETSKIILEKMQSDDVLDGNRERSNEREGRDSLSEKLKSKQNLKDEEKLRYIKTGKSIQVEGTVRAKALRWVQ
null
CNG1O_HUMAN
Homo sapiens
MDSYSAKIRANLVCRRSTDPSIRVTFSSRSLGSLPAFAMFRSSRPSFIKICFPFSSSIVLASGYSVRASMRSSFERQNRSE
Expressed in brain, notably in regions involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus and cerebellar Purkinje layer.
CNGA1_HUMAN
Homo sapiens
MKNNIINTQQSFVTMPNVIVPDIEKEIRRMENGACSSFSEDDDSASTSEESENENPHARGSFSYKSLRKGGPSQREQYLPGAIALFNVNNSSNKDQEPEEKKKKKKEKKSKSDDKNENKNDPEKKKKKKDKEKKKKEEKSKDKKEEEKKEVVVIDPSGNTYYNWLFCITLPVMYNWTMVIARACFDELQSDYLEYWLILDYVSDIVYLIDMFVRTRTGYLEQGLLVKEELKLINKYKSNLQFKLDVLSLIPTDLLYFKLGWNYPEIRLNRLLRFSRMFEFFQRTETRTNYPNIFRISNLVMYIVIIIHWNACVFYSISKAIGFGNDTWVYPDINDPEFGRLARKYVYSLYWSTLTLTTIGETPPPVRDSEYVFVVVDFLIGVLIFATIVGNIGSMISNMNAARAEFQARIDAIKQYMHFRNVSKDMEKRVIKWFDYLWTNKKTVDEKEVLKYLPDKLRAEIAINVHLDTLKKVRIFADCEAGLLVELVLKLQPQVYSPGDYICKKGDIGREMYIIKEGKLAVVADDGVTQFVVLSDGSYFGEISILNIKGSKAGNRRTANIKSIGYSDLFCLSKDDLMEALTEYPDAKTMLEEKGKQILMKDGLLDLNIANAGSDPKDLEEKVTRMEGSVDLLQTRFARILAEYESMQQKLKQRLTKVEKFLKPLIDTEFSSIEGPGAESGPIDST
Subunit of the rod cyclic GMP-gated cation channel, which is involved in the final stage of the phototransduction pathway. When light hits rod photoreceptors, cGMP concentrations decrease causing rapid closure of CNGA1/CNGB1 channels and, therefore, hyperpolarization of the membrane potential. Subcellular locations: Cell membrane Rod cells in the retina.
CNGA2_HUMAN
Homo sapiens
MTEKTNGVKSSPANNHNHHAPPAIKANGKDDHRTSSRPHSAADDDTSSELQRLADVDAPQQGRSGFRRIVRLVGIIREWANKNFREEEPRPDSFLERFRGPELQTVTTQEGDGKGDKDGEDKGTKKKFELFVLDPAGDWYYCWLFVIAMPVLYNWCLLVARACFSDLQKGYYLVWLVLDYVSDVVYIADLFIRLRTGFLEQGLLVKDTKKLRDNYIHTLQFKLDVASIIPTDLIYFAVDIHSPEVRFNRLLHFARMFEFFDRTETRTNYPNIFRISNLVLYILVIIHWNACIYYAISKSIGFGVDTWVYPNITDPEYGYLAREYIYCLYWSTLTLTTIGETPPPVKDEEYLFVIFDFLIGVLIFATIVGNVGSMISNMNATRAEFQAKIDAVKHYMQFRKVSKGMEAKVIRWFDYLWTNKKTVDEREILKNLPAKLRAEIAINVHLSTLKKVRIFHDCEAGLLVELVLKLRPQVFSPGDYICRKGDIGKEMYIIKEGKLAVVADDGVTQYALLSAGSCFGEISILNIKGSKMGNRRTANIRSLGYSDLFCLSKDDLMEAVTEYPDAKKVLEERGREILMKEGLLDENEVATSMEVDVQEKLGQLETNMETLYTRFGRLLAEYTGAQQKLKQRITVLETKMKQNNEDDYLSDGMNSPELAAADEP
Odorant signal transduction is probably mediated by a G-protein coupled cascade using cAMP as second messenger. The olfactory channel can be shown to be activated by cyclic nucleotides which leads to a depolarization of olfactory sensory neurons. Subcellular locations: Membrane
CNGA3_HUMAN
Homo sapiens
MAKINTQYSHPSRTHLKVKTSDRDLNRAENGLSRAHSSSEETSSVLQPGIAMETRGLADSGQGSFTGQGIARLSRLIFLLRRWAARHVHHQDQGPDSFPDRFRGAELKEVSSQESNAQANVGSQEPADRGRSAWPLAKCNTNTSNNTEEEKKTKKKDAIVVDPSSNLYYRWLTAIALPVFYNWYLLICRACFDELQSEYLMLWLVLDYSADVLYVLDVLVRARTGFLEQGLMVSDTNRLWQHYKTTTQFKLDVLSLVPTDLAYLKVGTNYPEVRFNRLLKFSRLFEFFDRTETRTNYPNMFRIGNLVLYILIIIHWNACIYFAISKFIGFGTDSWVYPNISIPEHGRLSRKYIYSLYWSTLTLTTIGETPPPVKDEEYLFVVVDFLVGVLIFATIVGNVGSMISNMNASRAEFQAKIDSIKQYMQFRKVTKDLETRVIRWFDYLWANKKTVDEKEVLKSLPDKLKAEIAINVHLDTLKKVRIFQDCEAGLLVELVLKLRPTVFSPGDYICKKGDIGKEMYIINEGKLAVVADDGVTQFVVLSDGSYFGEISILNIKGSKSGNRRTANIRSIGYSDLFCLSKDDLMEALTEYPEAKKALEEKGRQILMKDNLIDEELARAGADPKDLEEKVEQLGSSLDTLQTRFARLLAEYNATQMKMKQRLSQLESQVKGGGDKPLADGEVPGDATKTEDKQQ
Visual signal transduction is mediated by a G-protein coupled cascade using cGMP as second messenger. This protein can be activated by cyclic GMP which leads to an opening of the cation channel and thereby causing a depolarization of cone photoreceptors. Induced a flickering channel gating, weakened the outward rectification in the presence of extracellular calcium, increased sensitivity for L-cis diltiazem and enhanced the cAMP efficacy of the channel when coexpressed with CNGB3 (By similarity). Essential for the generation of light-evoked electrical responses in the red-, green- and blue sensitive cones. Subcellular locations: Membrane Prominently expressed in retina.
CNR2_HUMAN
Homo sapiens
MEECWVTEIANGSKDGLDSNPMKDYMILSGPQKTAVAVLCTLLGLLSALENVAVLYLILSSHQLRRKPSYLFIGSLAGADFLASVVFACSFVNFHVFHGVDSKAVFLLKIGSVTMTFTASVGSLLLTAIDRYLCLRYPPSYKALLTRGRALVTLGIMWVLSALVSYLPLMGWTCCPRPCSELFPLIPNDYLLSWLLFIAFLFSGIIYTYGHVLWKAHQHVASLSGHQDRQVPGMARMRLDVRLAKTLGLVLAVLLICWFPVLALMAHSLATTLSDQVKKAFAFCSMLCLINSMVNPVIYALRSGEIRSSAHHCLAHWKKCVRGLGSEAKEEAPRSSVTETEADGKITPWPDSRDLDLSDC
Heterotrimeric G protein-coupled receptor for endocannabinoid 2-arachidonoylglycerol mediating inhibition of adenylate cyclase. May function in inflammatory response, nociceptive transmission and bone homeostasis. Subcellular locations: Cell membrane, Cell projection, Dendrite, Perikaryon Localizes to apical dendrite of pyramidal neurons. Preferentially expressed in cells of the immune system with higher expression in B-cells and NK cells (at protein level). Expressed in skin in suprabasal layers and hair follicles (at protein level). Highly expressed in tonsil and to a lower extent in spleen, peripheral blood mononuclear cells, and thymus. could not detect expression in normal brain. Expressed in brain by perivascular microglial cells and dorsal root ganglion sensory neurons (at protein level). Two isoforms are produced by alternative promoter usage and differ only in the 5' UTR: isoform CB2A is observed predominantly in testis with some expression in brain, while isoform CB2B is predominant in spleen and leukocytes.
CO053_HUMAN
Homo sapiens
MELQGAQEDLGISLSSPRRNHETRPGSKAKGRSSICLQASVWMAGGKLRLRASEHLTQGHQQELRDWNLGEDASLLFSKSPFGAGKLIQAPAHVFRQCWVQGNAWISCITKFDSKRSPEVASSPSYLTVPRRSPLPVFLRPSDRCVCGGCYLGKSTRRRACQSLLSDPLGVTFPTQTRP
null
CO054_HUMAN
Homo sapiens
MEVKFITGKHGGRRPQRAEPQRICRALWLTPWPSLILKLLSWIILSNLFLHLRATHHMTELPLRFLYIALSEMTFREQTSHQIIQQMSLSNKLEQNQLYGEVINKETDNPVISSGLTLLFAQKPQSPGWKNMSSTKRVCTILADSCRAQAHAADRGERGHFGVQILHHFIEVFNVMAVRSNPF
null
CO056_HUMAN
Homo sapiens
MPRAGRAPAEGGPAPGTRSSRCLRPRPLAWRRLVPNFGAWAPRKGAARVGRPVLSPRTSGAAGEPTCGAGSPGTLEEGVASGRTRRRTQSAGEVAKCRWGLGQEPLCPRGAVLLNSFSPPAWPQFPPALRLRALAWPQPRGPACGSTAQWPPRGDPTWRIS
null
CO061_HUMAN
Homo sapiens
MEALRRAHEVALRLLLCRPWASRAAARPKPSASEVLTRHLLQRRLPHWTSFCVPYSAVRNDQFGLSHFNWPVQGANYHVLRTGCFPFIKYHCSKAPWQDLARQNRFFTALKVVNLGIPTLLYGLGSWLFARVTETVHTSYGPITVYFLNKEDEGAMY
Subcellular locations: Secreted
CO062_HUMAN
Homo sapiens
METWRKGSFRNASFFKQLSLGRPRRLRRQSSVLSQASTAGGDHEEYSNREVIRELQGRPDGRRLPLWGDEQPRATLLAPPKPPRLYRESSSCPNILEPPPAYTAAYSATLPSALSLSSALHQHSEKGLVDTPCFQRTPTPDLSDPFLSFKVDLGISLLEEVLQMLREQFPSEPSF
Subcellular locations: Mitochondrion
CO4A6_HUMAN
Homo sapiens
MLINKLWLLLVTLCLTEELAAAGEKSYGKPCGGQDCSGSCQCFPEKGARGRPGPIGIQGPTGPQGFTGSTGLSGLKGERGFPGLLGPYGPKGDKGPMGVPGFLGINGIPGHPGQPGPRGPPGLDGCNGTQGAVGFPGPDGYPGLLGPPGLPGQKGSKGDPVLAPGSFKGMKGDPGLPGLDGITGPQGAPGFPGAVGPAGPPGLQGPPGPPGPLGPDGNMGLGFQGEKGVKGDVGLPGPAGPPPSTGELEFMGFPKGKKGSKGEPGPKGFPGISGPPGFPGLGTTGEKGEKGEKGIPGLPGPRGPMGSEGVQGPPGQQGKKGTLGFPGLNGFQGIEGQKGDIGLPGPDVFIDIDGAVISGNPGDPGVPGLPGLKGDEGIQGLRGPSGVPGLPALSGVPGALGPQGFPGLKGDQGNPGRTTIGAAGLPGRDGLPGPPGPPGPPSPEFETETLHNKESGFPGLRGEQGPKGNLGLKGIKGDSGFCACDGGVPNTGPPGEPGPPGPWGLIGLPGLKGARGDRGSGGAQGPAGAPGLVGPLGPSGPKGKKGEPILSTIQGMPGDRGDSGSQGFRGVIGEPGKDGVPGLPGLPGLPGDGGQGFPGEKGLPGLPGEKGHPGPPGLPGNGLPGLPGPRGLPGDKGKDGLPGQQGLPGSKGITLPCIIPGSYGPSGFPGTPGFPGPKGSRGLPGTPGQPGSSGSKGEPGSPGLVHLPELPGFPGPRGEKGLPGFPGLPGKDGLPGMIGSPGLPGSKGATGDIFGAENGAPGEQGLQGLTGHKGFLGDSGLPGLKGVHGKPGLLGPKGERGSPGTPGQVGQPGTPGSSGPYGIKGKSGLPGAPGFPGISGHPGKKGTRGKKGPPGSIVKKGLPGLKGLPGNPGLVGLKGSPGSPGVAGLPALSGPKGEKGSVGFVGFPGIPGLPGIPGTRGLKGIPGSTGKMGPSGRAGTPGEKGDRGNPGPVGIPSPRRPMSNLWLKGDKGSQGSAGSNGFPGPRGDKGEAGRPGPPGLPGAPGLPGIIKGVSGKPGPPGFMGIRGLPGLKGSSGITGFPGMPGESGSQGIRGSPGLPGASGLPGLKGDNGQTVEISGSPGPKGQPGESGFKGTKGRDGLIGNIGFPGNKGEDGKVGVSGDVGLPGAPGFPGVAGMRGEPGLPGSSGHQGAIGPLGSPGLIGPKGFPGFPGLHGLNGLPGTKGTHGTPGPSITGVPGPAGLPGPKGEKGYPGIGIGAPGKPGLRGQKGDRGFPGLQGPAGLPGAPGISLPSLIAGQPGDPGRPGLDGERGRPGPAGPPGPPGPSSNQGDTGDPGFPGIPGPKGPKGDQGIPGFSGLPGELGLKGMRGEPGFMGTPGKVGPPGDPGFPGMKGKAGPRGSSGLQGDPGQTPTAEAVQVPPGPLGLPGIDGIPGLTGDPGAQGPVGLQGSKGLPGIPGKDGPSGLPGPPGALGDPGLPGLQGPPGFEGAPGQQGPFGMPGMPGQSMRVGYTLVKHSQSEQVPPCPIGMSQLWVGYSLLFVEGQEKAHNQDLGFAGSCLPRFSTMPFIYCNINEVCHYARRNDKSYWLSTTAPIPMMPVSQTQIPQYISRCSVCEAPSQAIAVHSQDITIPQCPLGWRSLWIGYSFLMHTAAGAEGGGQSLVSPGSCLEDFRATPFIECSGARGTCHYFANKYSFWLTTVEERQQFGELPVSETLKAGQLHTRVSRCQVCMKSL
Type IV collagen is the major structural component of glomerular basement membranes (GBM), forming a 'chicken-wire' meshwork together with laminins, proteoglycans and entactin/nidogen. Subcellular locations: Secreted, Extracellular space, Extracellular matrix, Basement membrane
CO4A_HUMAN
Homo sapiens
MRLLWGLIWASSFFTLSLQKPRLLLFSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVFLRNPSRNNVPCSPKVDFTLSSERDFALLSLQVPLKDAKSCGLHQLLRGPEVQLVAHSPWLKDSLSRTTNIQGINLLFSSRRGHLFLQTDQPIYNPGQRVRYRVFALDQKMRPSTDTITVMVENSHGLRVRKKEVYMPSSIFQDDFVIPDISEPGTWKISARFSDGLESNSSTQFEVKKYVLPNFEVKITPGKPYILTVPGHLDEMQLDIQARYIYGKPVQGVAYVRFGLLDEDGKKTFFRGLESQTKLVNGQSHISLSKAEFQDALEKLNMGITDLQGLRLYVAAAIIESPGGEMEEAELTSWYFVSSPFSLDLSKTKRHLVPGAPFLLQALVREMSGSPASGIPVKVSATVSSPGSVPEVQDIQQNTDGSGQVSIPIIIPQTISELQLSVSAGSPHPAIARLTVAAPPSGGPGFLSIERPDSRPPRVGDTLNLNLRAVGSGATFSHYYYMILSRGQIVFMNREPKRTLTSVSVFVDHHLAPSFYFVAFYYHGDHPVANSLRVDVQAGACEGKLELSVDGAKQYRNGESVKLHLETDSLALVALGALDTALYAAGSKSHKPLNMGKVFEAMNSYDLGCGPGGGDSALQVFQAAGLAFSDGDQWTLSRKRLSCPKEKTTRKKRNVNFQKAINEKLGQYASPTAKRCCQDGVTRLPMMRSCEQRAARVQQPDCREPFLSCCQFAESLRKKSRDKGQAGLQRALEILQEEDLIDEDDIPVRSFFPENWLWRVETVDRFQILTLWLPDSLTTWEIHGLSLSKTKGLCVATPVQLRVFREFHLHLRLPMSVRRFEQLELRPVLYNYLDKNLTVSVHVSPVEGLCLAGGGGLAQQVLVPAGSARPVAFSVVPTAAAAVSLKVVARGSFEFPVGDAVSKVLQIEKEGAIHREELVYELNPLDHRGRTLEIPGNSDPNMIPDGDFNSYVRVTASDPLDTLGSEGALSPGGVASLLRLPRGCGEQTMIYLAPTLAASRYLDKTEQWSTLPPETKDHAVDLIQKGYMRIQQFRKADGSYAAWLSRDSSTWLTAFVLKVLSLAQEQVGGSPEKLQETSNWLLSQQQADGSFQDPCPVLDRSMQGGLVGNDETVALTAFVTIALHHGLAVFQDEGAEPLKQRVEASISKANSFLGEKASAGLLGAHAAAITAYALTLTKAPVDLLGVAHNNLMAMAQETGDNLYWGSVTGSQSNAVSPTPAPRNPSDPMPQAPALWIETTAYALLHLLLHEGKAEMADQASAWLTRQGSFQGGFRSTQDTVIALDALSAYWIASHTTEERGLNVTLSSTGRNGFKSHALQLNNRQIRGLEEELQFSLGSKINVKVGGNSKGTLKVLRTYNVLDMKNTTCQDLQIEVTVKGHVEYTMEANEDYEDYEYDELPAKDDPDAPLQPVTPLQLFEGRRNRRRREAPKVVEEQESRVHYTVCIWRNGKVGLSGMAIADVTLLSGFHALRADLEKLTSLSDRYVSHFETEGPHVLLYFDSVPTSRECVGFEAVQEVPVGLVQPASATLYDYYNPERRCSVFYGAPSKSRLLATLCSAEVCQCAEGKCPRQRRALERGLQDEDGYRMKFACYYPRVEYGFQVKVLREDSRAAFRLFETKITQVLHFTKDVKAAANQMRNFLVRASCRLRLEPGKEYLIMGLDGATYDLEGHPQYLLDSNSWIEEMPSERLCRSTRQRAACAQLNDFLQEYGTQGCQV
Non-enzymatic component of C3 and C5 convertases and thus essential for the propagation of the classical complement pathway. Covalently binds to immunoglobulins and immune complexes and enhances the solubilization of immune aggregates and the clearance of IC through CR1 on erythrocytes. C4A isotype is responsible for effective binding to form amide bonds with immune aggregates or protein antigens, while C4B isotype catalyzes the transacylation of the thioester carbonyl group to form ester bonds with carbohydrate antigens. Derived from proteolytic degradation of complement C4, C4a anaphylatoxin is a mediator of local inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes. Subcellular locations: Secreted, Synapse, Cell projection, Axon, Cell projection, Dendrite Complement component C4 is expressed at highest levels in the liver, at moderate levels in the adrenal cortex, adrenal medulla, thyroid gland, and the kidney, and at lowest levels in the heart, ovary, small intestine, thymus, pancreas and spleen. The extra-hepatic sites of expression may be important for the local protection and inflammatory response.
CO4B_HUMAN
Homo sapiens
MRLLWGLIWASSFFTLSLQKPRLLLFSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVFLRNPSRNNVPCSPKVDFTLSSERDFALLSLQVPLKDAKSCGLHQLLRGPEVQLVAHSPWLKDSLSRTTNIQGINLLFSSRRGHLFLQTDQPIYNPGQRVRYRVFALDQKMRPSTDTITVMVENSHGLRVRKKEVYMPSSIFQDDFVIPDISEPGTWKISARFSDGLESNSSTQFEVKKYVLPNFEVKITPGKPYILTVPGHLDEMQLDIQARYIYGKPVQGVAYVRFGLLDEDGKKTFFRGLESQTKLVNGQSHISLSKAEFQDALEKLNMGITDLQGLRLYVAAAIIESPGGEMEEAELTSWYFVSSPFSLDLSKTKRHLVPGAPFLLQALVREMSGSPASGIPVKVSATVSSPGSVPEVQDIQQNTDGSGQVSIPIIIPQTISELQLSVSAGSPHPAIARLTVAAPPSGGPGFLSIERPDSRPPRVGDTLNLNLRAVGSGATFSHYYYMILSRGQIVFMNREPKRTLTSVSVFVDHHLAPSFYFVAFYYHGDHPVANSLRVDVQAGACEGKLELSVDGAKQYRNGESVKLHLETDSLALVALGALDTALYAAGSKSHKPLNMGKVFEAMNSYDLGCGPGGGDSALQVFQAAGLAFSDGDQWTLSRKRLSCPKEKTTRKKRNVNFQKAINEKLGQYASPTAKRCCQDGVTRLPMMRSCEQRAARVQQPDCREPFLSCCQFAESLRKKSRDKGQAGLQRALEILQEEDLIDEDDIPVRSFFPENWLWRVETVDRFQILTLWLPDSLTTWEIHGLSLSKTKGLCVATPVQLRVFREFHLHLRLPMSVRRFEQLELRPVLYNYLDKNLTVSVHVSPVEGLCLAGGGGLAQQVLVPAGSARPVAFSVVPTAATAVSLKVVARGSFEFPVGDAVSKVLQIEKEGAIHREELVYELNPLDHRGRTLEIPGNSDPNMIPDGDFNSYVRVTASDPLDTLGSEGALSPGGVASLLRLPRGCGEQTMIYLAPTLAASRYLDKTEQWSTLPPETKDHAVDLIQKGYMRIQQFRKADGSYAAWLSRGSSTWLTAFVLKVLSLAQEQVGGSPEKLQETSNWLLSQQQADGSFQDLSPVIHRSMQGGLVGNDETVALTAFVTIALHHGLAVFQDEGAEPLKQRVEASISKASSFLGEKASAGLLGAHAAAITAYALTLTKAPADLRGVAHNNLMAMAQETGDNLYWGSVTGSQSNAVSPTPAPRNPSDPMPQAPALWIETTAYALLHLLLHEGKAEMADQAAAWLTRQGSFQGGFRSTQDTVIALDALSAYWIASHTTEERGLNVTLSSTGRNGFKSHALQLNNRQIRGLEEELQFSLGSKINVKVGGNSKGTLKVLRTYNVLDMKNTTCQDLQIEVTVKGHVEYTMEANEDYEDYEYDELPAKDDPDAPLQPVTPLQLFEGRRNRRRREAPKVVEEQESRVHYTVCIWRNGKVGLSGMAIADVTLLSGFHALRADLEKLTSLSDRYVSHFETEGPHVLLYFDSVPTSRECVGFEAVQEVPVGLVQPASATLYDYYNPERRCSVFYGAPSKSRLLATLCSAEVCQCAEGKCPRQRRALERGLQDEDGYRMKFACYYPRVEYGFQVKVLREDSRAAFRLFETKITQVLHFTKDVKAAANQMRNFLVRASCRLRLEPGKEYLIMGLDGATYDLEGHPQYLLDSNSWIEEMPSERLCRSTRQRAACAQLNDFLQEYGTQGCQV
Non-enzymatic component of the C3 and C5 convertases and thus essential for the propagation of the classical complement pathway. Covalently binds to immunoglobulins and immune complexes and enhances the solubilization of immune aggregates and the clearance of IC through CR1 on erythrocytes. C4A isotype is responsible for effective binding to form amide bonds with immune aggregates or protein antigens, while C4B isotype catalyzes the transacylation of the thioester carbonyl group to form ester bonds with carbohydrate antigens. Derived from proteolytic degradation of complement C4, C4a anaphylatoxin is a mediator of local inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes. Subcellular locations: Secreted, Synapse, Cell projection, Axon, Cell projection, Dendrite Complement component C4 is expressed at highest levels in the liver, at moderate levels in the adrenal cortex, adrenal medulla, thyroid gland, and the kidney, and at lowest levels in the heart, ovary, small intestine, thymus, pancreas and spleen. The extra-hepatic sites of expression may be important for the local protection and inflammatory response.
CO5A1_HUMAN
Homo sapiens
MDVHTRWKARSALRPGAPLLPPLLLLLLWAPPPSRAAQPADLLKVLDFHNLPDGITKTTGFCATRRSSKGPDVAYRVTKDAQLSAPTKQLYPASAFPEDFSILTTVKAKKGSQAFLVSIYNEQGIQQIGLELGRSPVFLYEDHTGKPGPEDYPLFRGINLSDGKWHRIALSVHKKNVTLILDCKKKTTKFLDRSDHPMIDINGIIVFGTRILDEEVFEGDIQQLLFVSDHRAAYDYCEHYSPDCDTAVPDTPQSQDPNPDEYYTEGDGEGETYYYEYPYYEDPEDLGKEPTPSKKPVEAAKETTEVPEELTPTPTEAAPMPETSEGAGKEEDVGIGDYDYVPSEDYYTPSPYDDLTYGEGEENPDQPTDPGAGAEIPTSTADTSNSSNPAPPPGEGADDLEGEFTEETIRNLDENYYDPYYDPTSSPSEIGPGMPANQDTIYEGIGGPRGEKGQKGEPAIIEPGMLIEGPPGPEGPAGLPGPPGTMGPTGQVGDPGERGPPGRPGLPGADGLPGPPGTMLMLPFRFGGGGDAGSKGPMVSAQESQAQAILQQARLALRGPAGPMGLTGRPGPVGPPGSGGLKGEPGDVGPQGPRGVQGPPGPAGKPGRRGRAGSDGARGMPGQTGPKGDRGFDGLAGLPGEKGHRGDPGPSGPPGPPGDDGERGDDGEVGPRGLPGEPGPRGLLGPKGPPGPPGPPGVTGMDGQPGPKGNVGPQGEPGPPGQQGNPGAQGLPGPQGAIGPPGEKGPLGKPGLPGMPGADGPPGHPGKEGPPGEKGGQGPPGPQGPIGYPGPRGVKGADGIRGLKGTKGEKGEDGFPGFKGDMGIKGDRGEIGPPGPRGEDGPEGPKGRGGPNGDPGPLGPPGEKGKLGVPGLPGYPGRQGPKGSIGFPGFPGANGEKGGRGTPGKPGPRGQRGPTGPRGERGPRGITGKPGPKGNSGGDGPAGPPGERGPNGPQGPTGFPGPKGPPGPPGKDGLPGHPGQRGETGFQGKTGPPGPPGVVGPQGPTGETGPMGERGHPGPPGPPGEQGLPGLAGKEGTKGDPGPAGLPGKDGPPGLRGFPGDRGLPGPVGALGLKGNEGPPGPPGPAGSPGERGPAGAAGPIGIPGRPGPQGPPGPAGEKGAPGEKGPQGPAGRDGLQGPVGLPGPAGPVGPPGEDGDKGEIGEPGQKGSKGDKGEQGPPGPTGPQGPIGQPGPSGADGEPGPRGQQGLFGQKGDEGPRGFPGPPGPVGLQGLPGPPGEKGETGDVGQMGPPGPPGPRGPSGAPGADGPQGPPGGIGNPGAVGEKGEPGEAGEPGLPGEGGPPGPKGERGEKGESGPSGAAGPPGPKGPPGDDGPKGSPGPVGFPGDPGPPGEPGPAGQDGPPGDKGDDGEPGQTGSPGPTGEPGPSGPPGKRGPPGPAGPEGRQGEKGAKGEAGLEGPPGKTGPIGPQGAPGKPGPDGLRGIPGPVGEQGLPGSPGPDGPPGPMGPPGLPGLKGDSGPKGEKGHPGLIGLIGPPGEQGEKGDRGLPGPQGSSGPKGEQGITGPSGPIGPPGPPGLPGPPGPKGAKGSSGPTGPKGEAGHPGPPGPPGPPGEVIQPLPIQASRTRRNIDASQLLDDGNGENYVDYADGMEEIFGSLNSLKLEIEQMKRPLGTQQNPARTCKDLQLCHPDFPDGEYWVDPNQGCSRDSFKVYCNFTAGGSTCVFPDKKSEGARITSWPKENPGSWFSEFKRGKLLSYVDAEGNPVGVVQMTFLRLLSASAHQNVTYHCYQSVAWQDAATGSYDKALRFLGSNDEEMSYDNNPYIRALVDGCATKKGYQKTVLEIDTPKVEQVPIVDIMFNDFGEASQKFGFEVGPACFMG
Type V collagen is a member of group I collagen (fibrillar forming collagen). It is a minor connective tissue component of nearly ubiquitous distribution. Type V collagen binds to DNA, heparan sulfate, thrombospondin, heparin, and insulin. Subcellular locations: Secreted, Extracellular space, Extracellular matrix
CO5A2_HUMAN
Homo sapiens
MMANWAEARPLLILIVLLGQFVSIKAQEEDEDEGYGEEIACTQNGQMYLNRDIWKPAPCQICVCDNGAILCDKIECQDVLDCADPVTPPGECCPVCSQTPGGGNTNFGRGRKGQKGEPGLVPVVTGIRGRPGPAGPPGSQGPRGERGPKGRPGPRGPQGIDGEPGVPGQPGAPGPPGHPSHPGPDGLSRPFSAQMAGLDEKSGLGSQVGLMPGSVGPVGPRGPQGLQGQQGGAGPTGPPGEPGDPGPMGPIGSRGPEGPPGKPGEDGEPGRNGNPGEVGFAGSPGARGFPGAPGLPGLKGHRGHKGLEGPKGEVGAPGSKGEAGPTGPMGAMGPLGPRGMPGERGRLGPQGAPGQRGAHGMPGKPGPMGPLGIPGSSGFPGNPGMKGEAGPTGARGPEGPQGQRGETGPPGPVGSPGLPGAIGTDGTPGAKGPTGSPGTSGPPGSAGPPGSPGPQGSTGPQGIRGQPGDPGVPGFKGEAGPKGEPGPHGIQGPIGPPGEEGKRGPRGDPGTVGPPGPVGERGAPGNRGFPGSDGLPGPKGAQGERGPVGSSGPKGSQGDPGRPGEPGLPGARGLTGNPGVQGPEGKLGPLGAPGEDGRPGPPGSIGIRGQPGSMGLPGPKGSSGDPGKPGEAGNAGVPGQRGAPGKDGEVGPSGPVGPPGLAGERGEQGPPGPTGFQGLPGPPGPPGEGGKPGDQGVPGDPGAVGPLGPRGERGNPGERGEPGITGLPGEKGMAGGHGPDGPKGSPGPSGTPGDTGPPGLQGMPGERGIAGTPGPKGDRGGIGEKGAEGTAGNDGARGLPGPLGPPGPAGPTGEKGEPGPRGLVGPPGSRGNPGSRGENGPTGAVGFAGPQGPDGQPGVKGEPGEPGQKGDAGSPGPQGLAGSPGPHGPNGVPGLKGGRGTQGPPGATGFPGSAGRVGPPGPAGAPGPAGPLGEPGKEGPPGLRGDPGSHGRVGDRGPAGPPGGPGDKGDPGEDGQPGPDGPPGPAGTTGQRGIVGMPGQRGERGMPGLPGPAGTPGKVGPTGATGDKGPPGPVGPPGSNGPVGEPGPEGPAGNDGTPGRDGAVGERGDRGDPGPAGLPGSQGAPGTPGPVGAPGDAGQRGDPGSRGPIGPPGRAGKRGLPGPQGPRGDKGDHGDRGDRGQKGHRGFTGLQGLPGPPGPNGEQGSAGIPGPFGPRGPPGPVGPSGKEGNPGPLGPIGPPGVRGSVGEAGPEGPPGEPGPPGPPGPPGHLTAALGDIMGHYDESMPDPLPEFTEDQAAPDDKNKTDPGVHATLKSLSSQIETMRSPDGSKKHPARTCDDLKLCHSAKQSGEYWIDPNQGSVEDAIKVYCNMETGETCISANPSSVPRKTWWASKSPDNKPVWYGLDMNRGSQFAYGDHQSPNTAITQMTFLRLLSKEASQNITYICKNSVGYMDDQAKNLKKAVVLKGANDLDIKAEGNIRFRYIVLQDTCSKRNGNVGKTVFEYRTQNVARLPIIDLAPVDVGGTDQEFGVEIGPVCFV
Type V collagen is a member of group I collagen (fibrillar forming collagen). It is a minor connective tissue component of nearly ubiquitous distribution. Type V collagen binds to DNA, heparan sulfate, thrombospondin, heparin, and insulin. Type V collagen is a key determinant in the assembly of tissue-specific matrices (By similarity). Subcellular locations: Secreted, Extracellular space, Extracellular matrix
CO5A3_HUMAN
Homo sapiens
MGNRRDLGQPRAGLCLLLAALQLLPGTQADPVDVLKALGVQGGQAGVPEGPGFCPQRTPEGDRAFRIGQASTLGIPTWELFPEGHFPENFSLLITLRGQPANQSVLLSIYDERGARQLGLALGPALGLLGDPFRPLPQQVNLTDGRWHRVAVSIDGEMVTLVADCEAQPPVLGHGPRFISIAGLTVLGTQDLGEKTFEGDIQELLISPDPQAAFQACERYLPDCDNLAPAATVAPQGEPETPRPRRKGKGKGRKKGRGRKGKGRKKNKEIWTSSPPPDSAENQTSTDIPKTETPAPNLPPTPTPLVVTSTVTTGLNATILERSLDPDSGTELGTLETKAAREDEEGDDSTMGPDFRAAEYPSRTQFQIFPGAGEKGAKGEPAVIEKGQQFEGPPGAPGPQGVVGPSGPPGPPGFPGDPGPPGPAGLPGIPGIDGIRGPPGTVIMMPFQFAGGSFKGPPVSFQQAQAQAVLQQTQLSMKGPPGPVGLTGRPGPVGLPGHPGLKGEEGAEGPQGPRGLQGPHGPPGRVGKMGRPGADGARGLPGDTGPKGDRGFDGLPGLPGEKGQRGDFGHVGQPGPPGEDGERGAEGPPGPTGQAGEPGPRGLLGPRGSPGPTGRPGVTGIDGAPGAKGNVGPPGEPGPPGQQGNHGSQGLPGPQGLIGTPGEKGPPGNPGIPGLPGSDGPLGHPGHEGPTGEKGAQGPPGSAGPPGYPGPRGVKGTSGNRGLQGEKGEKGEDGFPGFKGDVGLKGDQGKPGAPGPRGEDGPEGPKGQAGQAGEEGPPGSAGEKGKLGVPGLPGYPGRPGPKGSIGFPGPLGPIGEKGKSGKTGQPGLEGERGPPGSRGERGQPGATGQPGPKGDVGQDGAPGIPGEKGLPGLQGPPGFPGPKGPPGHQGKDGRPGHPGQRGELGFQGQTGPPGPAGVLGPQGKTGEVGPLGERGPPGPPGPPGEQGLPGLEGREGAKGELGPPGPLGKEGPAGLRGFPGPKGGPGDPGPTGLKGDKGPPGPVGANGSPGERGPLGPAGGIGLPGQSGSEGPVGPAGKKGSRGERGPPGPTGKDGIPGPLGPLGPPGAAGPSGEEGDKGDVGAPGHKGSKGDKGDAGPPGQPGIRGPAGHPGPPGADGAQGRRGPPGLFGQKGDDGVRGFVGVIGPPGLQGLPGPPGEKGEVGDVGSMGPHGAPGPRGPQGPTGSEGTPGLPGGVGQPGAVGEKGERGDAGDPGPPGAPGIPGPKGDIGEKGDSGPSGAAGPPGKKGPPGEDGAKGSVGPTGLPGDLGPPGDPGVSGIDGSPGEKGDPGDVGGPGPPGASGEPGAPGPPGKRGPSGHMGREGREGEKGAKGEPGPDGPPGRTGPMGARGPPGRVGPEGLRGIPGPVGEPGLLGAPGQMGPPGPLGPSGLPGLKGDTGPKGEKGHIGLIGLIGPPGEAGEKGDQGLPGVQGPPGPKGDPGPPGPIGSLGHPGPPGVAGPLGQKGSKGSPGSMGPRGDTGPAGPPGPPGAPAELHGLRRRRRFVPVPLPVVEGGLEEVLASLTSLSLELEQLRRPPGTAERPGLVCHELHRNHPHLPDGEYWIDPNQGCARDSFRVFCNFTAGGETCLYPDKKFEIVKLASWSKEKPGGWYSTFRRGKKFSYVDADGSPVNVVQLNFLKLLSATARQNFTYSCQNAAAWLDEATGDYSHSARFLGTNGEELSFNQTTAATVSVPQDGCRLRKGQTKTLFEFSSSRAGFLPLWDVAATDFGQTNQKFGFELGPVCFSS
Type V collagen is a member of group I collagen (fibrillar forming collagen). It is a minor connective tissue component of nearly ubiquitous distribution. Type V collagen binds to DNA, heparan sulfate, thrombospondin, heparin, and insulin. Subcellular locations: Secreted, Extracellular space, Extracellular matrix, Secreted Detected in fibroblasts (at protein level) . Detected in urine (at protein level) .
CO5_HUMAN
Homo sapiens
MGLLGILCFLIFLGKTWGQEQTYVISAPKIFRVGASENIVIQVYGYTEAFDATISIKSYPDKKFSYSSGHVHLSSENKFQNSAILTIQPKQLPGGQNPVSYVYLEVVSKHFSKSKRMPITYDNGFLFIHTDKPVYTPDQSVKVRVYSLNDDLKPAKRETVLTFIDPEGSEVDMVEEIDHIGIISFPDFKIPSNPRYGMWTIKAKYKEDFSTTGTAYFEVKEYVLPHFSVSIEPEYNFIGYKNFKNFEITIKARYFYNKVVTEADVYITFGIREDLKDDQKEMMQTAMQNTMLINGIAQVTFDSETAVKELSYYSLEDLNNKYLYIAVTVIESTGGFSEEAEIPGIKYVLSPYKLNLVATPLFLKPGIPYPIKVQVKDSLDQLVGGVPVTLNAQTIDVNQETSDLDPSKSVTRVDDGVASFVLNLPSGVTVLEFNVKTDAPDLPEENQAREGYRAIAYSSLSQSYLYIDWTDNHKALLVGEHLNIIVTPKSPYIDKITHYNYLILSKGKIIHFGTREKFSDASYQSINIPVTQNMVPSSRLLVYYIVTGEQTAELVSDSVWLNIEEKCGNQLQVHLSPDADAYSPGQTVSLNMATGMDSWVALAAVDSAVYGVQRGAKKPLERVFQFLEKSDLGCGAGGGLNNANVFHLAGLTFLTNANADDSQENDEPCKEILRPRRTLQKKIEEIAAKYKHSVVKKCCYDGACVNNDETCEQRAARISLGPRCIKAFTECCVVASQLRANISHKDMQLGRLHMKTLLPVSKPEIRSYFPESWLWEVHLVPRRKQLQFALPDSLTTWEIQGVGISNTGICVADTVKAKVFKDVFLEMNIPYSVVRGEQIQLKGTVYNYRTSGMQFCVKMSAVEGICTSESPVIDHQGTKSSKCVRQKVEGSSSHLVTFTVLPLEIGLHNINFSLETWFGKEILVKTLRVVPEGVKRESYSGVTLDPRGIYGTISRRKEFPYRIPLDLVPKTEIKRILSVKGLLVGEILSAVLSQEGINILTHLPKGSAEAELMSVVPVFYVFHYLETGNHWNIFHSDPLIEKQKLKKKLKEGMLSIMSYRNADYSYSVWKGGSASTWLTAFALRVLGQVNKYVEQNQNSICNSLLWLVENYQLDNGSFKENSQYQPIKLQGTLPVEARENSLYLTAFTVIGIRKAFDICPLVKIDTALIKADNFLLENTLPAQSTFTLAISAYALSLGDKTHPQFRSIVSALKREALVKGNPPIYRFWKDNLQHKDSSVPNTGTARMVETTAYALLTSLNLKDINYVNPVIKWLSEEQRYGGGFYSTQDTINAIEGLTEYSLLVKQLRLSMDIDVSYKHKGALHNYKMTDKNFLGRPVEVLLNDDLIVSTGFGSGLATVHVTTVVHKTSTSEEVCSFYLKIDTQDIEASHYRGYGNSDYKRIVACASYKPSREESSSGSSHAVMDISLPTGISANEEDLKALVEGVDQLFTDYQIKDGHVILQLNSIPSSDFLCVRFRIFELFEVGFLSPATFTVYEYHRPDKQCTMFYSTSNIKIQKVCEGAACKCVEADCGQMQEELDLTISAETRKQTACKPEIAYAYKVSITSITVENVFVKYKATLLDIYKTGEAVAEKDSEITFIKKVTCTNAELVKGRQYLIMGKEALQIKYNFSFRYIYPLDSLTWIEYWPRDTTCSSCQAFLANLDEFAEDIFLNGC
Activation of C5 by a C5 convertase initiates the spontaneous assembly of the late complement components, C5-C9, into the membrane attack complex. C5b has a transient binding site for C6. The C5b-C6 complex is the foundation upon which the lytic complex is assembled. Derived from proteolytic degradation of complement C5, C5a anaphylatoxin is a mediator of local inflammatory process. Binding to the receptor C5AR1 induces a variety of responses including intracellular calcium release, contraction of smooth muscle, increased vascular permeability, and histamine release from mast cells and basophilic leukocytes . C5a is also a potent chemokine which stimulates the locomotion of polymorphonuclear leukocytes and directs their migration toward sites of inflammation. Subcellular locations: Secreted
COE3_HUMAN
Homo sapiens
MFGIQENIPRGGTTMKEEPLGSGMNPVRSWMHTAGVVDANTAAQSGVGLARAHFEKQPPSNLRKSNFFHFVLALYDRQGQPVEIERTAFVDFVEKEKEPNNEKTNNGIHYKLQLLYSNGVRTEQDLYVRLIDSMTKQAIVYEGQDKNPEMCRVLLTHEIMCSRCCDKKSCGNRNETPSDPVIIDRFFLKFFLKCNQNCLKNAGNPRDMRRFQVVVSTTVNVDGHVLAVSDNMFVHNNSKHGRRARRLDPSEGTAPSYLENATPCIKAISPSEGWTTGGATVIIIGDNFFDGLQVVFGTMLVWSELITPHAIRVQTPPRHIPGVVEVTLSYKSKQFCKGAPGRFVYTALNEPTIDYGFQRLQKVIPRHPGDPERLPKEVLLKRAADLVEALYGMPHNNQEIILKRAADIAEALYSVPRNHNQIPTLGNNPAHTGMMGVNSFSSQLAVNVSETSQANDQVGYSRNTSSVSPRGYVPSSTPQQSNYNTVSTSMNGYGSGAMASLGVPGSPGFLNGSSANSPYGIVPSSPTMAASSVTLPSNCSSTHGIFSFSPANVISAVKQKSAFAPVVRPQASPPPSCTSANGNGLQAMSGLVVPPM
Transcriptional activator ( ). Recognizes variations of the palindromic sequence 5'-ATTCCCNNGGGAATT-3' (By similarity). Subcellular locations: Nucleus Expressed in brain.
COE4_HUMAN
Homo sapiens
MFPAQDALPRSGLNLKEEPLLPAGLGSVRSWMQGAGILDASTAAQSGVGLARAHFEKQPPSNLRKSNFFHFVLAMYDRQGQPVEVERTAFIDFVEKDREPGAEKTNNGIHYRLRLVYNNGLRTEQDLYVRLIDSMSKQAIIYEGQDKNPEMCRVLLTHEIMCSRCCDRKSCGNRNETPSDPVIIDRFFLKFFLKCNQNCLKNAGNPRDMRRFQVVVSTTVSVDGHVLAVSDNMFVHNNSKHGRRARRLDPSEAATPCIKAISPGEGWTTGGATVIVIGDNFFDGLQVVFGNVLVWSELITPHAIRVQTPPRHIPGVVEVTLSYKSKQFCKGCPGRFVYTALNEPTIDYGFQRLQKVIPRHPGDPERLPKEVLLKRAADLAEALYGVPGSNQELLLKRAADVAEALYSTPRAPGPLAPLAPSHPHPAVVGINAFSSPLAIAVGDATPGPEPGYARSCSSASPRGFAPSPGSQQSGYGGGLGAGLGGYGAPGVAGLGVPGSPSFLNGSTATSPFAIMPSSPPLAAASSMSLPAAAPTTSVFSFSPVNMISAVKQRSAFAPVLRPPSSPPQACPRAHGEGLPDQSFEDSDKFHSPARGLQGLAYS
Transcription factor . Binds to specific sequence motif 5'-CCCNNG[GA]G-3' in regulatory elements of putative target immunoregulatory genes such as NKG7, GZMA, and TBX21 . Positively modulates transcription of NKG7 . May play a role in regulating FAS/CD95-mediated apoptosis in cytotoxic NK cells and T-cells, probably downstream of interleukin IL2 signaling . Subcellular locations: Nucleus Most highly expressed in cytotoxic NK cells, especially CD16(+) NK cells, followed by CD8(+) T-cells.
COEA1_HUMAN
Homo sapiens
MKIFQRKMRYWLLPPFLAIVYFCTIVQGQVAPPTRLRYNVISHDSIQISWKAPRGKFGGYKLLVTPTSGGKTNQLNLQNTATKAIIQGLMPDQNYTVQIIAYNKDKESKPAQGQFRIKDLEKRKDPKPRVKVVDRGNGSRPSSPEEVKFVCQTPAIADIVILVDGSWSIGRFNFRLVRHFLENLVTAFDVGSEKTRIGLAQYSGDPRIEWHLNAFSTKDEVIEAVRNLPYKGGNTLTGLALNYIFENSFKPEAGSRTGVSKIGILITDGKSQDDIIPPSRNLRESGVELFAIGVKNADVNELQEIASEPDSTHVYNVAEFDLMHTVVESLTRTLCSRVEEQDREIKASAHAITGPPTELITSEVTARSFMVNWTHAPGNVEKYRVVYYPTRGGKPDEVVVDGTVSSTVLKNLMSLTEYQIAVFAIYAHTASEGLRGTETTLALPMASDLLLYDVTENSMRVKWDAVPGASGYLILYAPLTEGLAGDEKEMKIGETHTDIELSGLLPNTEYTVTVYAMFGEEASDPVTGQETTLALSPPRNLRISNVGSNSARLTWDPTSRQINGYRIVYNNADGTEINEVEVDPITTFPLKGLTPLTEYTIAIFSIYDEGQSEPLTGVFTTEEVPAQQYLEIDEVTTDSFRVTWHPLSADEGLHKLMWIPVYGGKTEEVVLKEEQDSHVIEGLEPGTEYEVSLLAVLDDGSESEVVTAVGTTLDSFWTEPATTIVPTTSVTSVFQTGIRNLVVGDETTSSLRVKWDISDSDVQQFRVTYMTAQGDPEEEVIGTVMVPGSQNNLLLKPLLPDTEYKVTVTPIYTDGEGVSVSAPGKTLPSSGPQNLRVSEEWYNRLRITWDPPSSPVKGYRIVYKPVSVPGPTLETFVGADINTILITNLLSGMDYNVKIFASQASGFSDALTGMVKTLFLGVTNLQAKHVEMTSLCAHWQVHRHATAYRVVIESLQDRQKQESTVGGGTTRHCFYGLQPDSEYKISVYTKLQEIEGPSVSIMEKTQSLPTRPPTFPPTIPPAKEVCKAAKADLVFMVDGSWSIGDENFNKIISFLYSTVGALNKIGTDGTQVAMVQFTDDPRTEFKLNAYKTKETLLDAIKHISYKGGNTKTGKAIKYVRDTLFTAESGTRRGIPKVIVVITDGRSQDDVNKISREMQLDGYSIFAIGVADADYSELVSIGSKPSARHVFFVDDFDAFKKIEDELITFVCETASATCPVVHKDGIDLAGFKMMEMFGLVEKDFSSVEGVSMEPGTFNVFPCYQLHKDALVSQPTRYLHPEGLPSDYTISFLFRILPDTPQEPFALWEILNKNSDPLVGVILDNGGKTLTYFNYDQSGDFQTVTFEGPEIRKIFYGSFHKLHIVVSETLVKVVIDCKQVGEKAMNASANITSDGVEVLGKMVRSRGPGGNSAPFQLQMFDIVCSTSWANTDKCCELPGLRDDESCPDLPHSCSCSETNEVALGPAGPPGGPGLRGPKGQQGEPGPKGPDGPRGEIGLPGPQGPPGPQGPSGLSIQGMPGMPGEKGEKGDTGLPGPQGIPGGVGSPGRDGSPGQRGLPGKDGSSGPPGPPGPIGIPGTPGVPGITGSMGPQGALGPPGVPGAKGERGERGDLQSQAMVRSVARQVCEQLIQSHMARYTAILNQIPSHSSSIRTVQGPPGEPGRPGSPGAPGEQGPPGTPGFPGNAGVPGTPGERGLTGIKGEKGNPGVGTQGPRGPPGPAGPSGESRPGSPGPPGSPGPRGPPGHLGVPGPQGPSGQPGYCDPSSCSAYGVRAPHPDQPEFTPVQDELEAMELWGPGV
Plays an adhesive role by integrating collagen bundles. It is probably associated with the surface of interstitial collagen fibrils via COL1. The COL2 domain may then serve as a rigid arm which sticks out from the fibril and protrudes the large N-terminal globular domain into the extracellular space, where it might interact with other matrix molecules or cell surface receptors (By similarity). Subcellular locations: Secreted, Extracellular space, Extracellular matrix
COF1_HUMAN
Homo sapiens
MASGVAVSDGVIKVFNDMKVRKSSTPEEVKKRKKAVLFCLSEDKKNIILEEGKEILVGDVGQTVDDPYATFVKMLPDKDCRYALYDATYETKESKKEDLVFIFWAPESAPLKSKMIYASSKDAIKKKLTGIKHELQANCYEEVKDRCTLAEKLGGSAVISLEGKPL
Binds to F-actin and exhibits pH-sensitive F-actin depolymerizing activity . In conjunction with the subcortical maternal complex (SCMC), plays an essential role for zygotes to progress beyond the first embryonic cell divisions via regulation of actin dynamics . Required for the centralization of the mitotic spindle and symmetric division of zygotes (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization in epithelial cells . Required for the up-regulation of atypical chemokine receptor ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation . Required for neural tube morphogenesis and neural crest cell migration (By similarity). Subcellular locations: Nucleus matrix, Cytoplasm, Cytoskeleton, Cell projection, Ruffle membrane, Cell projection, Lamellipodium membrane, Cell projection, Lamellipodium, Cell projection, Growth cone, Cell projection, Axon Colocalizes with the actin cytoskeleton in membrane ruffles and lamellipodia. Detected at the cleavage furrow and contractile ring during cytokinesis. Almost completely in nucleus in cells exposed to heat shock or 10% dimethyl sulfoxide. Widely distributed in various tissues.
COF1_MACFA
Macaca fascicularis
MASGVAVSDGVIKVFNDMKVRKSSTPEEVKKRKKAVLFCLSEDKKNIILEEGKEILVGDVGQTVDDPYATFVKMLPDKDCRYALYDATYETKESKKEDLVFIFWAPECAPLKSKMIYASSKDAIKKKLTGIKHELQANCYEEVKDRCTLAEKLGGSAVISLEGKPL
Binds to F-actin and exhibits pH-sensitive F-actin depolymerizing activity (By similarity). Important for normal progress through mitosis and normal cytokinesis (By similarity). In conjunction with the subcortical maternal complex (SCMC), plays an essential role for zygotes to progress beyond the first embryonic cell divisions via regulation of actin dynamics (By similarity). Required for the centralization of the mitotic spindle and symmetric division of zygotes (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization in epithelial cells (By similarity). Required for the up-regulation of atypical chemokine receptor ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (By similarity). Required for neural tube morphogenesis and neural crest cell migration (By similarity). Subcellular locations: Nucleus matrix, Cytoplasm, Cytoskeleton, Cell projection, Ruffle membrane, Cell projection, Lamellipodium membrane, Cell projection, Lamellipodium, Cell projection, Growth cone, Cell projection, Axon Colocalizes with the actin cytoskeleton in membrane ruffles and lamellipodia. Detected at the cleavage furrow and contractile ring during cytokinesis. Almost completely in nucleus in cells exposed to heat shock or 10% dimethyl sulfoxide.
COL_HUMAN
Homo sapiens
MEKILILLLVALSVAYAAPGPRGIIINLENGELCMNSAQCKSNCCQHSSALGLARCTSMASENSECSVKTLYGIYYKCPCERGLTCEGDKTIVGSITNTNFGICHDAGRSKQ
Colipase is a cofactor of pancreatic lipase. It allows the lipase to anchor itself to the lipid-water interface. Without colipase the enzyme is washed off by bile salts, which have an inhibitory effect on the lipase. Enterostatin has a biological activity as a satiety signal. Subcellular locations: Secreted Expressed by the pancreas.
COMA1_HUMAN
Homo sapiens
MAGLRGNAVAGLLWMLLLWSGGGGCQAQRAGCKSVHYDLVFLLDTSSSVGKEDFEKVRQWVANLVDTFEVGPDRTRVGVVRYSDRPTTAFELGLFGSQEEVKAAARRLAYHGGNTNTGDALRYITARSFSPHAGGRPRDRAYKQVAILLTDGRSQDLVLDAAAAAHRAGIRIFAVGVGEALKEELEEIASEPKSAHVFHVSDFNAIDKIRGKLRRRLCENVLCPSVRVEGDRFKHTNGGTKEITGFDLMDLFSVKEILGKRENGAQSSYVRMGSFPVVQSTEDVFPQGLPDEYAFVTTFRFRKTSRKEDWYIWQVIDQYSIPQVSIRLDGENKAVEYNAVGAMKDAVRVVFRGSRVNDLFDRDWHKMALSIQAQNVSLHIDCALVQTLPIEERENIDIQGKTVIGKRLYDSVPIDFDLQRIVIYCDSRHAELETCCDIPSGPCQVTVVTEPPPPPPPQRPPTPGSEQIGFLKTINCSCPAGEKGEMGVAGPMGLPGPKGDIGAIGPVGAPGPKGEKGDVGIGPFGQGEKGEKGSLGLPGPPGRDGSKGMRGEPGELGEPGLPGEVGMRGPQGPPGLPGPPGRVGAPGLQGERGEKGTRGEKGERGLDGFPGKPGDTGQQGRPGPSGVAGPQGEKGDVGPAGPPGVPGSVVQQEGLKGEQGAPGPRGHQGAPGPPGARGPIGPEGRDGPPGLQGLRGKKGDMGPPGIPGLLGLQGPPGPPGVPGPPGPGGSPGLPGEIGFPGKPGPPGPTGPPGKDGPNGPPGPPGTKGEPGERGEDGLPGKPGLRGEIGEQGLAGRPGEKGEAGLPGAPGFPGVRGEKGDQGEKGELGLPGLKGDRGEKGEAGPAGPPGLPGTTSLFTPHPRMPGEQGPKGEKGDPGLPGEPGLQGRPGELGPQGPTGPPGAKGQEGAHGAPGAAGNPGAPGHVGAPGPSGPPGSVGAPGLRGTPGKDGERGEKGAAGEEGSPGPVGPRGDPGAPGLPGPPGKGKDGEPGLRGSPGLPGPLGTKAACGKVRGSENCALGGQCVKGDRGAPGIPGSPGSRGDPGIGVAGPPGPSGPPGDKGSPGSRGLPGFPGPQGPAGRDGAPGNPGERGPPGKPGLSSLLSPGDINLLAKDVCNDCPPGPPGLPGLPGFKGDKGVPGKPGREGTEGKKGEAGPPGLPGPPGIAGPQGSQGERGADGEVGQKGDQGHPGVPGFMGPPGNPGPPGADGIAGAAGPPGIQGSPGKEGPPGPQGPSGLPGIPGEEGKEGRDGKPGPPGEPGKAGEPGLPGPEGARGPPGFKGHTGDSGAPGPRGESGAMGLPGQEGLPGKDGDTGPTGPQGPQGPRGPPGKNGSPGSPGEPGPSGTPGQKGSKGENGSPGLPGFLGPRGPPGEPGEKGVPGKEGVPGKPGEPGFKGERGDPGIKGDKGPPGGKGQPGDPGIPGHKGHTGLMGPQGLPGENGPVGPPGPPGQPGFPGLRGESPSMETLRRLIQEELGKQLETRLAYLLAQMPPAYMKSSQGRPGPPGPPGKDGLPGRAGPMGEPGRPGQGGLEGPSGPIGPKGERGAKGDPGAPGVGLRGEMGPPGIPGQPGEPGYAKDGLPGIPGPQGETGPAGHPGLPGPPGPPGQCDPSQCAYFASLAARPGNVKGP
Acts as a cell adhesion ligand for skin epithelial cells and fibroblasts. Subcellular locations: Secreted, Extracellular space, Extracellular matrix, Cytoplasm Restrictive expression is observed at tissue junctions such as the myotendinous junction in skeletal and heart muscle, the articular cartilage-synovial fluid junction, or the border between the anagen hair follicle and the dermis in the skin. It is deposited in the basement membrane zone of the myotendinous junction and the hair follicle and associated with the extrafibrillar matrix in cartilage.
COMT_HUMAN
Homo sapiens
MPEAPPLLLAAVLLGLVLLVVLLLLLRHWGWGLCLIGWNEFILQPIHNLLMGDTKEQRILNHVLQHAEPGNAQSVLEAIDTYCEQKEWAMNVGDKKGKIVDAVIQEHQPSVLLELGAYCGYSAVRMARLLSPGARLITIEINPDCAAITQRMVDFAGVKDKVTLVVGASQDIIPQLKKKYDVDTLDMVFLDHWKDRYLPDTLLLEECGLLRKGTVLLADNVICPGAPDFLAHVRGSSCFECTHYQSFLEYREVVDGLEKAIYKGPGSEAGP
Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol. Subcellular locations: Cytoplasm Subcellular locations: Cell membrane Brain, liver, placenta, lymphocytes and erythrocytes.
COQ2_HUMAN
Homo sapiens
MLGSRAAGFARGLRAVALAWLPGWRGRSFALARAAGAPHGGDLQPPACPEPRGRQLSLSAAAVVDSAPRPLQPYLRLMRLDKPIGTWLLYLPCTWSIGLAAEPGCFPDWYMLSLFGTGAILMRGAGCTINDMWDQDYDKKVTRTANRPIAAGDISTFQSFVFLGGQLTLALGVLLCLNYYSIALGAGSLLLVITYPLMKRISYWPQLALGLTFNWGALLGWSAIKGSCDPSVCLPLYFSGVMWTLIYDTIYAHQDKRDDVLIGLKSTALRFGENTKPWLSGFSVAMLGALSLVGVNSGQTAPYYAALGAVGAHLTHQIYTLDIHRPEDCWNKFISNRTLGLIVFLGIVLGNLWKEKKTDKTKKGIENKIEN
Mediates the second step in the final reaction sequence of coenzyme Q (CoQ) biosynthesis ( , ). Catalyzes the prenylation of para-hydroxybenzoate (PHB) with an all-trans polyprenyl donor (such as all-trans-decaprenyl diphosphate) ( , ). The length of the polyprenyl side chain varies depending on the species, in humans, the side chain is comprised of 10 isoprenyls (decaprenyl) producing CoQ10 (also known as ubiquinone), whereas rodents predominantly generate CoQ9 (, ). However, this specificity is not complete, human tissues have low amounts of CoQ9 and rodent organs contain some CoQ10 . Plays a central role in the biosynthesis of CoQ10 ( ). CoQ10 is a vital molecule that transports electrons from mitochondrial respiratory chain complexes ( ). CoQs also function as cofactors for uncoupling protein and play a role as regulators of the extracellularly-induced ceramide-dependent apoptotic pathway (, ). Regulates mitochondrial permeability transition pore (mPTP) opening and ROS production (pivotal events in cell death) in a tissue specific manner (By similarity). Subcellular locations: Mitochondrion inner membrane Widely expressed. Present in all of the tissues tested. Expressed at higher level in skeletal muscle, adrenal glands and the heart.
COQ3_HUMAN
Homo sapiens
MWSGRKLGSSGGWFLRVLGPGGCNTKAARPLISSAVYVKNQLSGTLQIKPGVFNEYRTIWFKSYRTIFSCLNRIKSFRYPWARLYSTSQTTVDSGEVKTFLALAHKWWDEQGVYAPLHSMNDLRVPFIRDNLLKTIPNHQPGKPLLGMKILDVGCGGGLLTEPLGRLGASVIGIDPVDENIKTAQCHKSFDPVLDKRIEYRVCSLEEIVEETAETFDAVVASEVVEHVIDLETFLQCCCQVLKPGGSLFITTINKTQLSYALGIVFSEQIASIVPKGTHTWEKFVSPETLESILESNGLSVQTVVGMLYNPFSGYWHWSENTSLNYAAYAVKSRVQEHPASAEFVLKGETEELQANACTNPAVHEKLKK
O-methyltransferase that catalyzes the 2 O-methylation steps in the ubiquinone biosynthetic pathway. Subcellular locations: Mitochondrion inner membrane
COR1A_HUMAN
Homo sapiens
MSRQVVRSSKFRHVFGQPAKADQCYEDVRVSQTTWDSGFCAVNPKFVALICEASGGGAFLVLPLGKTGRVDKNAPTVCGHTAPVLDIAWCPHNDNVIASGSEDCTVMVWEIPDGGLMLPLREPVVTLEGHTKRVGIVAWHTTAQNVLLSAGCDNVIMVWDVGTGAAMLTLGPEVHPDTIYSVDWSRDGGLICTSCRDKRVRIIEPRKGTVVAEKDRPHEGTRPVRAVFVSEGKILTTGFSRMSERQVALWDTKHLEEPLSLQELDTSSGVLLPFFDPDTNIVYLCGKGDSSIRYFEITSEAPFLHYLSMFSSKESQRGMGYMPKRGLEVNKCEIARFYKLHERRCEPIAMTVPRKSDLFQEDLYPPTAGPDPALTAEEWLGGRDAGPLLISLKDGYVPPKSRELRVNRGLDTGRRRAAPEASGTPSSDAVSRLEEEMRKLQATVQELQKRLDRLEETVQAK
May be a crucial component of the cytoskeleton of highly motile cells, functioning both in the invagination of large pieces of plasma membrane, as well as in forming protrusions of the plasma membrane involved in cell locomotion. In mycobacteria-infected cells, its retention on the phagosomal membrane prevents fusion between phagosomes and lysosomes. Subcellular locations: Cytoplasm, Cytoskeleton, Cytoplasm, Cell cortex, Cytoplasmic vesicle, Phagosome membrane In non-infected macrophages, associated with the cortical microtubule network. In mycobacteria-infected macrophages, becomes progressively relocalized and retained around the mycobacterial phagosomes. Retention on the phagosomal membrane is strictly dependent on mycobacterial viability and not due to impaired acidification (By similarity). Expressed in brain, thymus, spleen, bone marrow and lymph node. Low in lung and gut.
COR1A_MACFA
Macaca fascicularis
MSRQVVRSSKFRHVFGQPAKADQCYEDVRVSQTTWDSGFCAVNPKFVALICEASGGGAFLVLPLGKTGRVDKNAPTVCGHTAPVLDIAWCPHNDNVIASGSEDCTVMVWEIPDGGLVLPLREPVVTLEGHTKRVGIVAWHPTAQNVLLSAGCDNVIMVWDVGTGAAVLTLGPEVHPDTIYSVDWSRDGGLICTSCRDKRVRIIEPRKCTVVAEKDRPHEGTRPVRAVFVSEGKILTTGFSRMSERQVALWGTKHLEEPLSLQELDTSSGVLLPFFDPDTNIVYLCGKGDSSIRYFEITSEAPFLHYLSMFSSKESQRGMGYMPKRGLEVNKCEIARFYKLHERRCEPIAMTVPRKSDLFQEDLYPPTAGPDPALTAEEWLGGRDAGPLLISLKDGYVPPKSRELRVNRGLDTGRRRAAPEASGTPSSDAVSRLEEEMRKLQATVQELQKRLDRLEETVQAK
May be a crucial component of the cytoskeleton of highly motile cells, functioning both in the invagination of large pieces of plasma membrane, as well as in forming protrusions of the plasma membrane involved in cell locomotion. Subcellular locations: Cytoplasm, Cytoskeleton, Cytoplasm, Cell cortex, Cytoplasmic vesicle, Phagosome membrane
COR1B_HUMAN
Homo sapiens
MSFRKVVRQSKFRHVFGQPVKNDQCYEDIRVSRVTWDSTFCAVNPKFLAVIVEASGGGAFLVLPLSKTGRIDKAYPTVCGHTGPVLDIDWCPHNDEVIASGSEDCTVMVWQIPENGLTSPLTEPVVVLEGHTKRVGIIAWHPTARNVLLSAGCDNVVLIWNVGTAEELYRLDSLHPDLIYNVSWNHNGSLFCSACKDKSVRIIDPRRGTLVAEREKAHEGARPMRAIFLADGKVFTTGFSRMSERQLALWDPENLEEPMALQELDSSNGALLPFYDPDTSVVYVCGKGDSSIRYFEITEEPPYIHFLNTFTSKEPQRGMGSMPKRGLEVSKCEIARFYKLHERKCEPIVMTVPRKSDLFQDDLYPDTAGPEAALEAEEWVSGRDADPILISLREAYVPSKQRDLKISRRNVLSDSRPAMAPGSSHLGAPASTTTAADATPSGSLARAGEAGKLEEVMQELRALRALVKEQGDRICRLEEQLGRMENGDA
Regulates leading edge dynamics and cell motility in fibroblasts. May be involved in cytokinesis and signal transduction (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton, Cytoplasm, Cytoskeleton, Stress fiber Localized to the leading edge in fibroblasts, as well as weakly along actin stress fibers.
COR1B_PONAB
Pongo abelii
MSFRKVVRQSKFRHVFGQPVKNDQCYEDIRVSRVTWDSTFCAVNPKFLAVIVEASGGGAFLVLPLSKTGRIDKAYPTVCGHTGPVLDIDWCPHNDEVIASGSEDCTVMVWQIPENGLTSPLTEPVVVLEGHTKRVGIIAWHPTARNVLLSAGCDNVVLIWNVGTAEELYRLDSLHPDLIYNVSWNRNGSLFCSACKDKSVRIIDPRQGTLVAEREKAHEGARPMRAIFLADGKVFTTGFSRMSERQLALWDPENLEEPMALQELDSSNGALLPFYDPDTSVVYVCGKGDSSIRYFEITEEPPYIHFLNTFTSKEPQRGMGSMPKRGLEVSKCEIARFYKLHERKCEPIVMTVPRKSDLFQDDLYPDTAGPEAALEAEEWVSGRDADPILISLREAYVPSKQRDLKISRRNVLSDSRPAMAPGSSRLGAPASTTAAADATPSGSLARAGEAGKLEEVMQELRALRALVKEQGERICRLEEQLGRMENGDA
Regulates leading edge dynamics and cell motility in fibroblasts. May be involved in cytokinesis and signal transduction (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton, Cytoplasm, Cytoskeleton, Stress fiber Localized to the leading edge in fibroblasts, as well as weakly along actin stress fibers.
COR1C_HUMAN
Homo sapiens
MRRVVRQSKFRHVFGQAVKNDQCYDDIRVSRVTWDSSFCAVNPRFVAIIIEASGGGAFLVLPLHKTGRIDKSYPTVCGHTGPVLDIDWCPHNDQVIASGSEDCTVMVWQIPENGLTLSLTEPVVILEGHSKRVGIVAWHPTARNVLLSAGCDNAIIIWNVGTGEALINLDDMHSDMIYNVSWNRNGSLICTASKDKKVRVIDPRKQEIVAEKEKAHEGARPMRAIFLADGNVFTTGFSRMSERQLALWNPKNMQEPIALHEMDTSNGVLLPFYDPDTSIIYLCGKGDSSIRYFEITDESPYVHYLNTFSSKEPQRGMGYMPKRGLDVNKCEIARFFKLHERKCEPIIMTVPRKSDLFQDDLYPDTAGPEAALEAEEWFEGKNADPILISLKHGYIPGKNRDLKVVKKNILDSKPTANKKCDLISIPKKTTDTASVQNEAKLDEILKEIKSIKDTICNQDERISKLEQQMAKIAA
Plays a role in directed cell migration by regulating the activation and subcellular location of RAC1 (, ). Increases the presence of activated RAC1 at the leading edge of migrating cells (, ). Required for normal organization of the cytoskeleton, including the actin cytoskeleton, microtubules and the vimentin intermediate filaments (By similarity). Plays a role in endoplasmic reticulum-associated endosome fission: localizes to endosome membrane tubules and promotes recruitment of TMCC1, leading to recruitment of the endoplasmic reticulum to endosome tubules for fission . Endosome membrane fission of early and late endosomes is essential to separate regions destined for lysosomal degradation from carriers to be recycled to the plasma membrane . Required for normal cell proliferation, cell migration, and normal formation of lamellipodia (By similarity). Required for normal distribution of mitochondria within cells (By similarity). Involved in myogenic differentiation. Subcellular locations: Cell membrane, Cell projection, Lamellipodium, Cell projection, Ruffle membrane, Cytoplasm, Cytoskeleton, Cytoplasm, Cell cortex, Endosome membrane All isoforms colocalize with the actin cytoskeleton in the cytosol, and especially in the cell cortex ( ). Colocalizes with F-actin at the leading edge of lamellipodia. Partially colocalizes with microtubules and vimentin intermediate filaments ( ). Localizes to endosome membrane tubules/buds . Subcellular locations: Cell membrane, Sarcolemma, Cytoplasm, Myofibril, Sarcomere, Synapse, Cell membrane, Cytoplasm, Cytoskeleton, Cytoplasm, Cell cortex Colocalizes with the thin filaments of the sarcomere and with the postsynaptic area and the junctional sarcoplasm of motor end plates. Colocalizes with the actin cytoskeleton in the cytosol, and especially in the cell cortex. Ubiquitous.
COR2A_HUMAN
Homo sapiens
MSWHPQYRSSKFRHVFGKPASKENCYDSVPITRSVHDNHFCAVNPHFIAVVTECAGGGAFLVIPLHQTGKLDPHYPKVCGHRGNVLDVKWNPFDDFEIASCSEDATIKIWSIPKQLLTRNLTAYRKELVGHARRVGLVEWHPTAANILFSAGYDYKVMIWNLDTKESVITSPMSTISCHQDVILSMSFNTNGSLLATTCKDRKIRVIDPRAGTVLQEASYKGHRASKVLFLGNLKKLMSTGTSRWNNRQVALWDQDNLSVPLMEEDLDGSSGVLFPFYDADTSMLYVVGKGDGNIRYYEVSADKPHLSYLTEYRSYNPQKGIGVMPKRGLDVSSCEIFRFYKLITTKSLIEPISMIVPRRSESYQEDIYPPTAGAQPSLTAQEWLSGMNRDPILVSLRPGSELLRPHPLPAERPIFNSMAPASPRLLNQTEKLAAEDGWRSSSLLEEKMPRWAAEHRLEEKKTWLTNGFDVFECPPPKTENELLQMFYRQQEEIRRLRELLTQREVQAKQLELEIKNLRMGSEQL
null
COR2B_HUMAN
Homo sapiens
MTVTKMSWRPQYRSSKFRNVYGKVANREHCFDGIPITKNVHDNHFCAVNTRFLAIVTESAGGGSFLVIPLEQTGRIEPNYPKVCGHQGNVLDIKWNPFIDNIIASCSEDTSVRIWEIPEGGLKRNMTEALLELHGHSRRVGLVEWHPTTNNILFSAGYDYKVLIWNLDVGEPVKMIDCHTDVILCMSFNTDGSLLTTTCKDKKLRVIEPRSGRVLQEANCKNHRVNRVVFLGNMKRLLTTGVSRWNTRQIALWDQEDLSMPLIEEEIDGLSGLLFPFYDADTHMLYLAGKGDGNIRYYEISTEKPYLSYLMEFRSPAPQKGLGVMPKHGLDVSACEVFRFYKLVTLKGLIEPISMIVPRRSDSYQEDIYPMTPGTEPALTPDEWLGGINRDPVLMSLKEGYKKSSKMVFKAPIKEKKSVVVNGIDLLENVPPRTENELLRMFFRQQDEIRRLKEELAQKDIRIRQLQLELKNLRNSPKNC
May play a role in the reorganization of neuronal actin structure. Subcellular locations: Cytoplasm, Cytoskeleton Expressed predominantly in brain.
COX16_HUMAN
Homo sapiens
MFAPAVMRAFRKNKTLGYGVPMLLLIVGGSFGLREFSQIRYDAVKSKMDPELEKKLKENKISLESEYEKIKDSKFDDWKNIRGPRPWEDPDLLQGRNPESLKTKTT
Required for the assembly of the mitochondrial respiratory chain complex IV (CIV), also known as cytochrome c oxidase ( ). Promotes the insertion of copper into the active site of cytochrome c oxidase subunit II (MT-CO2/COX2) (, ). Interacts specifically with newly synthesized MT-CO2/COX and its copper center-forming metallochaperones SCO1, SCO2 and COA6 . Probably facilitates MT-CO2/COX2 association with the MITRAC assembly intermediate containing MT-CO1/COX1, thereby participating in merging the MT-CO1/COX1 and MT-CO2/COX2 assembly lines . Subcellular locations: Mitochondrion inner membrane Widely expressed. Expressed at higher level in skeletal muscle, heart and liver.
COX16_PONAB
Pongo abelii
MFAPAVMRAFRKNKTLGYGVPMLLLIVGGSFGLREFSQIRYDAVKSKMDPELEKKLKENKISLESEYEKIKDSKFDDWKNIRGPRPWEDPDLLQGRNPESLKTKTT
Required for the assembly of the mitochondrial respiratory chain complex IV (CIV), also known as cytochrome c oxidase. May participate in merging the COX1 and COX2 assembly lines. Subcellular locations: Mitochondrion inner membrane
COX17_HUMAN
Homo sapiens
MPGLVDSNPAPPESQEKKPLKPCCACPETKKARDACIIEKGEEHCGHLIEAHKECMRALGFKI
Copper metallochaperone essential for the assembly of the mitochondrial respiratory chain complex IV (CIV), also known as cytochrome c oxidase. Binds two copper ions and delivers them to the metallochaperone SCO1 which transports the copper ions to the Cu(A) site on the cytochrome c oxidase subunit II (MT-CO2/COX2). Subcellular locations: Mitochondrion intermembrane space, Cytoplasm Ubiquitous.
COX1_PANPA
Pan paniscus
MFTDRWLFSTNHKDIGTLYLLFGTWAGVLGTALSLLIRAELGQPGNLLGNDHIYNVIVTAHAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNMSFWLLPPSLLLLLASAMVEAGAGTGWTVYPPLAGNYSHPGASVDLTIFSLHLAGVSSILGAINFITTIINMKPPAMTQYQTPLFVWSVLITAVLLLLSLPVLAAGITMLLTDRNLNTTFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIVTYYSGKKEPFGYMGMVWAMMSIGFLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAIPTGVKVFSWLATLHGSNMKWSAAVLWALGFIFLFTVGGLTGIVLANSSLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFIHWFPLFSGYTLDQTYAKIQFAIMFIGVNLTFFPQHFLGLSGMPRRYSDYPDAYTTWNVLSSVGSFISLTAVMLMIFMIWEAFASKRKVLMVEEPSANLEWLYGCPPPYHTFEEPVYMKS
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX1_PANTR
Pan troglodytes
MFTDRWLFSTNHKDIGTLYLLFGAWAGVLGTALSLLIRAELGQPGNLLGNDHIYNVIVTAHAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNMSFWLLPPSLLLLLASAMVEAGAGTGWTVYPPLAGNYSHPGASVDLTIFSLHLAGISSILGAINFITTIINMKPPAMTQYQTPLFVWSVLITAVLLLLSLPVLAAGITMLLTDRNLNTTFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIVTYYSGKKEPFGYMGMVWAMMSIGFLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAIPTGVKVFSWLATLHGSNMKWSAAVLWALGFIFLFTVGGLTGIVLANSSLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFIHWFPLFSGYTLDQTYAKIQFAIMFIGVNLTFFPQHFLGLSGMPRRYSDYPDAYTTWNVLSSVGSFISLTAVMLMIFMIWEAFASKRKVLMVEEPSANLEWLYGCPPPYHTFEEPVYMKS
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX1_PAPHA
Papio hamadryas
MLINRWLFSTNHKDIGTLYLLFGAWAGVTGMALSLLIRAELGQPGNLLGNDHIYNVIVTAHAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRLNNMSFWLLPPSFLLLMASTAVEAGAGTGWTVYPPLSGNFSHPGASVDLVIFSLHLAGISSILGAINFITTIINMKPPAMSQYQTPLFVWSILITAVLLLLSLPVLAAGITMLLTDRNLNTTFFDPVGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIVTHYSGKKEPFGYMGMVWAMMSIGFLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAIPTGVKVFSWLATLHGGNIKWSPAMLWALGFIFLFTMGGLTGIILANSSLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFIHWFPLFSGYTLDQTCAKAHFIITFMGVNLTFFPQHFLGLSGMPRRYSDYPDAYTTWNILSSMGSFISLTATILMIYMIWEAFASKRKVLLTEHPSTSLEWLNGCPPPHHTFEEPAYIKL
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX2_CALGO
Callimico goeldii
LGLQNATSPIMEELIAFHDHALMIIFLISSLVLYIISLMLTTKLTHTSTMNAQEIEMIWTILPAVILIMIALPSLRILYMTDEFNKPYLTLKAIGHQWYWSYEYSDYEDLAFDSYITPTYFLEPGEFRLLEVDNRTTLPMEADIRVLISSQDVLHSWAVPALGVKTDAIPGRLNQAMLTSTRPGLYYGQCSEICGSNHSFMPIVLEFIYFQDFEVW
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX2_CARSF
Carlito syrichta
MTHPLQLGFQDATSPIMEELLHFHDHTLMIVFLISSLVLYIITLMLTTKLTHTSTMDAQEVETVWTILPAIILILIALPSLRILYMMDEINNPLLTVKTMGHQWYWSYEYTDYEDLNFDSYMVPTTDLKPGELRLLEVDNRVVLPMEVPIRMLISSEDVLHSWAVPSLGLKTDAIPGRLNQTTLTSTRPGLYYGQCSEICGSNHSFMPIVLELVPLKYFEDWSVSMT
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX2_CEPBA
Cephalopachus bancanus
MAHSFQLGFQDATSPIMEELLHFHDHTLMIVFLISSLVLYIITLMLTTKLTHTSTMDAQEVETVWTILPAIILILIALPSLRILYLMDEINTPSLTVKTMGHQWYWSYEYTDYEDLNFDSYMIPTADLKPGELRLLEVDNRVVLPMELPIRMLISSEDVLHSWAVPSLGLKTDAIPGRLNQATLMSTRPGLYYGQCSEICGSNHSFMPIVLELVPLKHFENWSTSMI
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX2_CERGA
Cercocebus galeritus
MAHPVQLGLQDATSPVMEELITFHDHALMAMSLISLLVLYALFSTLTTKLTNTNITDAQEMEIIWTILPAIILVLIALPSLRILYLTDEVNNPSFTIKSIGHQWYWTYEYTDYGGLIFNSYMLPPLFLNPGDLRLLEVDNRVVLPIEAPVRMMITSQDVLHSWTIPTLGLKTDAVPGRLNQTVFTATRPGVYYGQCSEICGANHSFMPIVAELIPLKIFEMGPVFTL
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX3_PANPA
Pan paniscus
MAHQSHAYHMVKPSPWPLTGALSALLMTSGLAMWFHFYSTTLLTLGLLTNTLTMYQWWRDVMRESTYQGHHTPPVQKGLRYGMILFITSEVFFFAGFFWAFYHSSLAPTPQLGGHWPPTGITPLNPLEVPLLNTSVLLASGVSITWAHHSLMENNRNQMIQALLITILLGLYFTLLQASEYFESPFTISDGIYGSTFFVATGFHGLHVIIGSTFLTICLIRQLMFHFTSKHHFGFEAAAWYWHFVDVVWLFLYVSIYWWGS
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX3_PANTR
Pan troglodytes
MTHQSHAYHMVKPSPWPLTGALSALLMTSGLAMWFHFYSTTLLTLGLLTNTLTMYQWWRDVMREGTYQGHHTPPVQKGLRYGMILFITSEVFFFAGFFWAFYHSSLAPTPQLGGHWPPTGITPLNPLEVPLLNTSVLLASGVSITWAHHSLMENNRNQMIQALLITILLGLYFTLLQASEYFESPFTISDGIYGSTFFVATGFHGLHVIIGSTFLTICLIRQLMFHFTSKHHFGFQAAAWYWHFVDVVWLFLYVSIYWWGS
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX3_PAPHA
Papio hamadryas
MTHQLHAYHMVKPSPWPLTGALSAFLLTSGLIMWFHFYSTALLTLGLLTNVLTMYQWWRDIIRESTYQGHHTTPVQKSLRYGMTLFIISEVFFFAGFFWAFYHSSLAPTPRLGCHWPPTGITPLNPLEVPLLNTSVLLASGVTITWAHHSLMNGNRKQTIQALLITILLGTYFTLVQISEYFEAPFTISDGIYGSTFFVATGFHGLHVIIGSTFLLICLIRQLFYHFTPSHHFGFEAAAWYWHFVDVIWLFLYISIYWWGS
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_CARSF
Carlito syrichta
MWGQGVRRFTTSVVRRSHYEEGPGKNLPFSVENKWRLLAMMTLYLGSGFAAPFFIVRHQLLKK
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_GORGO
Gorilla gorilla gorilla
MLGQSIRRFTTSVVRRSHYEEGPGKNLPFSVENKWSLLAKMCLYFGSAFATPFLVVRHQLLKT
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_HUMAN
Homo sapiens
MLGQSIRRFTTSVVRRSHYEEGPGKNLPFSVENKWSLLAKMCLYFGSAFATPFLVVRHQLLKT
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_MACFA
Macaca fascicularis
MLGHSIRRFTTSVVRRSHYEEGPGKNLPFSVENKWTLLVKMCLFFGSAFSVPFLIVRHQLLKQ
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_MACSL
Macaca silenus
MLGHSIRRFTTSVVRRSHYEEGPGKNLPFSVENKWTLLVKMCLFFGSAFSVPFLIVRHQLLKQ
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_PANPA
Pan paniscus
MLGQSIRRFTTSVVRRSHYEEGPGKNLPFSVENKWSLLAKMCLYFGSAFATPFLVVRHQLLKT
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_PANTR
Pan troglodytes
MLGQSIRRFTTSVVRRSHYEEGPGKNLPFSVENKWSLLAKMCLYFGSAFATPFLVVRHQLLKT
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_PAPHA
Papio hamadryas
MLGHSIRRFTTSVVRRSHYEEGPGKNLPFSVKNKWALLVKMSLYFGSAFATPFLIVRHQLLKQ
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_PONPY
Pongo pygmaeus
MLGQSIRRFTTSVVRRSHYEEGPGKNLPFSVENKWSLLAKMCLYFGSAFATPFLIVRHQLLKT
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7C_SAISC
Saimiri sciureus
MLGQSIRRFTTSAVRRSHYEEGPGKNLPFSVENKWRLLAMMCLYFGSAFATPFLILRHQLLKK
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. Subcellular locations: Mitochondrion inner membrane
COX7R_HUMAN
Homo sapiens
MYYKFSGFTQKLAGAWASEAYSPQGLKPVVSTEAPPIIFATPTKLTSDSTVYDYAGKNKVPELQKFFQKADGVPVYLKRGLPDQMLYRTTMALTVGGTIYCLIALYMASQPKNK
Involved in the regulation of oxidative phosphorylation and energy metabolism (By similarity). Necessary for the assembly of mitochondrial respiratory supercomplex (By similarity). Subcellular locations: Mitochondrion inner membrane
CP17A_HUMAN
Homo sapiens
MWELVALLLLTLAYLFWPKRRCPGAKYPKSLLSLPLVGSLPFLPRHGHMHNNFFKLQKKYGPIYSVRMGTKTTVIVGHHQLAKEVLIKKGKDFSGRPQMATLDIASNNRKGIAFADSGAHWQLHRRLAMATFALFKDGDQKLEKIICQEISTLCDMLATHNGQSIDISFPVFVAVTNVISLICFNTSYKNGDPELNVIQNYNEGIIDNLSKDSLVDLVPWLKIFPNKTLEKLKSHVKIRNDLLNKILENYKEKFRSDSITNMLDTLMQAKMNSDNGNAGPDQDSELLSDNHILTTIGDIFGAGVETTTSVVKWTLAFLLHNPQVKKKLYEEIDQNVGFSRTPTISDRNRLLLLEATIREVLRLRPVAPMLIPHKANVDSSIGEFAVDKGTEVIINLWALHHNEKEWHQPDQFMPERFLNPAGTQLISPSVSYLPFGAGPRSCIGEILARQELFLIMAWLLQRFDLEVPDDGQLPSLEGIPKVVFLIDSFKVKIKVRQAWREAQAEGST
A cytochrome P450 monooxygenase involved in corticoid and androgen biosynthesis ( , ). Catalyzes 17-alpha hydroxylation of C21 steroids, which is common for both pathways. A second oxidative step, required only for androgen synthesis, involves an acyl-carbon cleavage. The 17-alpha hydroxy intermediates, as part of adrenal glucocorticoids biosynthesis pathway, are precursors of cortisol (, ) (Probable). Hydroxylates steroid hormones, pregnenolone and progesterone to form 17-alpha hydroxy metabolites, followed by the cleavage of the C17-C20 bond to form C19 steroids, dehydroepiandrosterone (DHEA) and androstenedione ( ). Has 16-alpha hydroxylase activity. Catalyzes 16-alpha hydroxylation of 17-alpha hydroxy pregnenolone, followed by the cleavage of the C17-C20 bond to form 16-alpha-hydroxy DHEA . Also 16-alpha hydroxylates androgens, relevant for estriol synthesis (, ). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase) ( , ). Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane
CP17A_MACFA
Macaca fascicularis
MWELVALLLLTLAYLFWPKRRCPGAKYPKSLLSLPLVGSLPFLPRHGHMHNNFFKLQKKYGPIYSVRMGTKTTVIVGHHQLAKEVLIKKGKDFSGRPQVTTLDILSNNRKGIAFADYGAHWQLHRRLAMATFALFKDGDQKLEKIICQEISTLCDMLATHNGQTIDISFPVFVAITNVISLICFNISYKNGDPELKIVHNYNEGIIDSLGKESLVDLFPWLKVFPNKTLEKLKRHVKTRNDLLTKIFENYKEKFHSDSITNMLDVLMQAKMNSDNGNAGPDQDSELLSDNHILTTIGDIFGAGVETTTSVVKWIVAFLLHNPQVKKKLYEEIDQNVGFSRTPTISDRNRLLLLEATIREVLRIRPVAPMLIPHKANVDSSIGEFAVDKGTHVIINLWALHHNEKEWHQPDQFMPERFLNPAGTQLISPSLSYLPFGAGPRSCIGEILARQELFLIMAWLLQRFDLEVPDDGQLPSLEGNPKVVFLIDSFKVKIKVRQAWREAQAEGST
A cytochrome P450 monooxygenase involved in corticoid and androgen biosynthesis. Catalyzes 17-alpha hydroxylation of C21 steroids, which is common for both pathways. A second oxidative step, required only for androgen synthesis, involves an acyl-carbon cleavage. The 17-alpha hydroxy intermediates, as part of adrenal glucocorticoids biosynthesis pathway, are precursors of cortisol. Hydroxylates steroid hormones, pregnenolone and progesterone to form 17-alpha hydroxy metabolites, followed by the cleavage of the C17-C20 bond to form C19 steroids, dehydroepiandrosterone (DHEA) and androstenedione. Has 16-alpha hydroxylase activity. Catalyzes 16-alpha hydroxylation of 17-alpha hydroxy pregnenolone, followed by the cleavage of the C17-C20 bond to form 16-alpha-hydroxy DHEA. Also 16-alpha hydroxylates androgens, relevant for estriol synthesis. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase). Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane
CP17A_MACMU
Macaca mulatta
MWELVALLLLTLAYLFWPKRRCPGAKYPKSLLSLPLVGSLPFLPRHGHMHNNFFKLQKKYGPIYSVRMGTKTTVIVGHHQLAKEVLIKKGKDFSGRPQVTTLDILSNNRKGIAFADYGAHWQLHRRLAMATFALFKDGDQKLEKIICQEISTLCDMLATHNGQTIDISFPVFVAITNVISLICFNISYKNGDPELKIVHNYNEGIIDSLGKESLVDLFPWLKVFPNKTLEKLKRHVKTRNDLLTKIFENYKEKFHSDSITNMLDVLMQAKMNSDNGNAGPDQDSELLSDNHILTTIGDIFGAGVETTTSVVKWIVAFLLHNPQVKKKLYEEIDQNVGFSRTPTISDRNRLLLLEATIREVLRIRPVAPMLIPHKANVDSSIGEFAVDKGTHVIINLWALHHNEKEWHQPDQFMPERFLNPAGTQLISPSLSYLPFGAGPRSCIGEILARQELFLIMAWLLQRFDLEVPDDGQLPSLEGNPKVVFLIDSFKVKIKVRQAWREAQAEGST
A cytochrome P450 monooxygenase involved in corticoid and androgen biosynthesis. Catalyzes 17-alpha hydroxylation of C21 steroids, which is common for both pathways. A second oxidative step, required only for androgen synthesis, involves an acyl-carbon cleavage. The 17-alpha hydroxy intermediates, as part of adrenal glucocorticoids biosynthesis pathway, are precursors of cortisol. Hydroxylates steroid hormones, pregnenolone and progesterone to form 17-alpha hydroxy metabolites, followed by the cleavage of the C17-C20 bond to form C19 steroids, dehydroepiandrosterone (DHEA) and androstenedione. Has 16-alpha hydroxylase activity. Catalyzes 16-alpha hydroxylation of 17-alpha hydroxy pregnenolone, followed by the cleavage of the C17-C20 bond to form 16-alpha-hydroxy DHEA. Also 16-alpha hydroxylates androgens, relevant for estriol synthesis. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase). Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane
CP2C8_HUMAN
Homo sapiens
MEPFVVLVLCLSFMLLFSLWRQSCRRRKLPPGPTPLPIIGNMLQIDVKDICKSFTNFSKVYGPVFTVYFGMNPIVVFHGYEAVKEALIDNGEEFSGRGNSPISQRITKGLGIISSNGKRWKEIRRFSLTTLRNFGMGKRSIEDRVQEEAHCLVEELRKTKASPCDPTFILGCAPCNVICSVVFQKRFDYKDQNFLTLMKRFNENFRILNSPWIQVCNNFPLLIDCFPGTHNKVLKNVALTRSYIREKVKEHQASLDVNNPRDFIDCFLIKMEQEKDNQKSEFNIENLVGTVADLFVAGTETTSTTLRYGLLLLLKHPEVTAKVQEEIDHVIGRHRSPCMQDRSHMPYTDAVVHEIQRYSDLVPTGVPHAVTTDTKFRNYLIPKGTTIMALLTSVLHDDKEFPNPNIFDPGHFLDKNGNFKKSDYFMPFSAGKRICAGEGLARMELFLFLTTILQNFNLKSVDDLKNLNTTAVTKGIVSLPPSYQICFIPV
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins ( ). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) ( ). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond ( ). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form . Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) . Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) . Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane
CP2C9_HUMAN
Homo sapiens
MDSLVVLVLCLSCLLLLSLWRQSSGRGKLPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAERANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKDQQFLNLMEKLNENIKILSSPWIQICNNFSPIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHNQPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLPTSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFLTSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPV
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids ( ). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) ( ). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) ( , ). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis . Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 . Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (, ). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol . Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan . Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane
CP8B1_HUMAN
Homo sapiens
MVLWGPVLGALLVVIAGYLCLPGMLRQRRPWEPPLDKGTVPWLGHAMAFRKNMFEFLKRMRTKHGDVFTVQLGGQYFTFVMDPLSFGSILKDTQRKLDFGQYAKKLVLKVFGYRSVQGDHEMIHSASTKHLRGDGLKDLNETMLDSLSFVMLTSKGWSLDASCWHEDSLFRFCYYILFTAGYLSLFGYTKDKEQDLLQAGELFMEFRKFDLLFPRFVYSLLWPREWLEVGRLQRLFHKMLSVSHSQEKEGISNWLGNMLQFLREQGVPSAMQDKFNFMMLWASQGNTGPTSFWALLYLLKHPEAIRAVREEATQVLGEARLETKQSFAFKLGALQHTPVLDSVVEETLRLRAAPTLLRLVHEDYTLKMSSGQEYLFRHGDILALFPYLSVHMDPDIHPEPTVFKYDRFLNPNGSRKVDFFKTGKKIHHYTMPWGSGVSICPGRFFALSEVKLFILLMVTHFDLELVDPDTPLPHVDPQRWGFGTMQPSHDVRFRYRLHPTE
A cytochrome P450 monooxygenase involved in primary bile acid biosynthesis. Catalyzes the 12alpha-hydroxylation of 7alpha-hydroxy-4-cholesten-3-one, an intermediate metabolite in cholic acid biosynthesis . Controls biliary balance of cholic acid and chenodeoxycholic acid, ultimately regulating the intestinal absorption of dietary lipids (By similarity). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH--hemoprotein reductase) (By similarity). Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane Liver.
CPLX3_HUMAN
Homo sapiens
MAFMVKTMVGGQLKNLTGSLGGGEDKGDGDKSAAEAQGMSREEYEEYQKQLVEEKMERDAQFTQRKAERATLRSHFRDKYRLPKNETDESQIQMAGGDVELPRELAKMIEEDTEEEEEKASVLGQLASLPGLNLGSLKDKAQATLGDLKQSAEKCHVM
Complexin that regulates SNARE protein complex-mediated synaptic vesicle fusion (By similarity). Required for the maintenance of synaptic ultrastructure in the adult retina (By similarity). Positively regulates synaptic transmission through synaptic vesicle availability and exocytosis of neurotransmitters at photoreceptor ribbon synapses in the retina (By similarity). Suppresses tonic photoreceptor activity and baseline 'noise' by suppression of Ca(2+) vesicle tonic release and the facilitation of evoked synchronous and asynchronous Ca(2+) vesicle release (By similarity). Subcellular locations: Synapse, Cell membrane Enriched at the synaptic terminal (By similarity). Localized at glycinergic synaptic contacts of AII amacrine cells with OFF cone bipolar cells in the OFF sublamina of the retina inner nuclear layer (By similarity).
CPLX4_HUMAN
Homo sapiens
MAFLMKSMISNQVKNLGFGGGSEENKEEGGASDPAAAQGMTREEYEEYQKQMIEEKMERDAAFTQKKAERACLRVHLREKYRLPKSEMDENQIQMAGDDVDLPEDLRKMVDEDQEEEEDKDSILGQIQNLQNMDLDTIKEKAQATFTEIKQTAEQKCSVM
Complexin that regulates SNARE protein complex-mediated synaptic vesicle fusion (By similarity). Required for the maintenance of synaptic ultrastructure in the adult retina (By similarity). Positively regulates synaptic transmission through synaptic vesicle availability and exocytosis of neurotransmitters at photoreceptor ribbon synapses in the retina (By similarity). Suppresses tonic photoreceptor activity and baseline 'noise' by suppression of Ca(2+) vesicle tonic release and the facilitation of evoked synchronous and asynchronous Ca(2+) vesicle release (By similarity). Subcellular locations: Synapse, Cell membrane Enriched at the synaptic terminal.
CPMD8_HUMAN
Homo sapiens
MSGALLWPLLPLLLLLLSARDGVRAAQPQAPGYLIAAPSVFRAGVEEVISVTIFNSPREVTVQAQLVAQGEPVVQSQGAILDKGTIKLKVPTGLRGQALLKVWGRGWQAEEGPLFHNQTSVTVDGRGASVFIQTDKPVYRPQHRVLISIFTVSPNLRPVNEKLEAYILDPRGSRMIEWRHLKPFCCGITNMSFPLSDQPVLGEWFIFVEMQGHAYNKSFEVQKYVLPKFELLIDPPRYIQDLDACETGTVRARYTFGKPVAGALMINMTVNGVGYYSHEVGRPVLRTTKILGSRDFDICVRDMIPADVPEHFRGRVSIWAMVTSVDGSQQVAFDDSTPVQRQLVDIRYSKDTRKQFKPGLAYVGKVELSYPDGSPAEGVTVQIKAELTPKDNIYTSEVVSQRGLVGFEIPSIPTSAQHVWLETKVMALNGKPVGAQYLPSYLSLGSWYSPSQCYLQLQPPSHPLQVGEEAYFSVKSTCPCNFTLYYEVAARGNIVLSGQQPAHTTQQRSKRAAPALEKPIRLTHLSETEPPPAPEAEVDVCVTSLHLAVTPSMVPLGRLLVFYVRENGEGVADSLQFAVETFFENQVSVTYSANETQPGEVVDLRIRAARGSCVCVAAVDKSVYLLRSGFRLTPAQVFQELEDYDVSDSFGVSREDGPFWWAGLTAQRRRRSSVFPWPWGITKDSGFAFTETGLVVMTDRVSLNHRQDGGLYTDEAVPAFQPHTGSLVAVAPSRHPPRTEKRKRTFFPETWIWHCLNISDPSGEGTLSVKVPDSITSWVGEAVALSTSQGLGIAEPSLLKTFKPFFVDFMLPALIIRGEQVKIPLSVYNYMGTCAEVYMKLSVPKGIQFVGHPGKRHVTKKMCVAPGEAEPIWVVLSFSDLGLNNITAKALAYGDTNCCRDGRSSKHPEENHADRRVPIGVDHVRRSVMVEAEGVPRAYTYSAFFCPSERVHISTPNKYEFQYVQRPLRLTRFDVAVRAHNDARVALSSGPQDTAGMIEIVLGGHQNTRSWISTSKMGEPVASAHTAKILSWDEFRTFWISWRGGLIQVGHGPEPSNESVIVAWTLPRPPEVQFIGFSTGWGSMGEFRIWRKMEVDESYSEAFTLGVPHGAIPGSERATASIIGDVMGPTLNHLNNLLRLPFGCGEQNMIHFAPNVFVLKYLQKTQQLSPEVERETTDYLVQGYQRQLTYKRQDGSYSAFGERDASGSMWLTAFVLKSFAQARSFIFVDPRELAAAKSWIIQQQQADGSFLAVGRVLNKDIQGGIHGTVPLTAYVVVALLETGTASEEERGSTDKARHFLESAAPLAMDPYSCALTTYALTLLRSPAAPEALRKLRSLAIMRDGVTHWSLSNSWDVDKGTFLSFSDRVSQSVVSAEVEMTAYALLTYTLLGDVAAALPVVKWLSQQRNALGGFSSTQDTCVALQALAEYAILSYAGGINLTVSLASTNLDYQETFELHRTNQKVLQTAAIPSLPTGLFVSAKGDGCCLMQIDVTYNVPDPVAKPAFQLLVSLQEPEAQGRPPPMPASAAEGSRGDWPPADDDDPAADQHHQEYKVMLEVCTRWLHAGSSNMAVLEVPLLSGFRADIESLEQLLLDKHMGMKRYEVAGRRVLFYFDEIPSRCLTCVRFRALRECVVGRTSALPVSVYDYYEPAFEATRFYNVSTHSPLARELCAGPACNEVERAPARGPGWFPGESGPAVAPEEGAAIARCGCDHDCGAQGNPVCGSDGVVYASACRLREAACRQAAPLEPAPPSCCALEQRLPASSSSTYGDDLASVAPGPLQQDVKLNGAGLEVEDSDPEPEGEAEDRVTAGPRPPVSSGNLESSTQSASPFHRWGQTPAPQRHSGRVVGAHRPGLLSPVFVYSPAFQSGGEEGLWMSNTCTLR
Subcellular locations: Secreted, Cell membrane Highly expressed in the kidney, brain and testis and to a lower extent in heart, liver and small intestine . Expressed in the lens, cornea and retina. Strongly expressed in the distal tips of the retinal neuroepithelium that form the iris and ciliary body .
CPN2_HUMAN
Homo sapiens
MLPGAWLLWTSLLLLARPAQPCPMGCDCFVQEVFCSDEELATVPLDIPPYTKNIIFVETSFTTLETRAFGSNPNLTKVVFLNTQLCQFRPDAFGGLPRLEDLEVTGSSFLNLSTNIFSNLTSLGKLTLNFNMLEALPEGLFQHLAALESLHLQGNQLQALPRRLFQPLTHLKTLNLAQNLLAQLPEELFHPLTSLQTLKLSNNALSGLPQGVFGKLGSLQELFLDSNNISELPPQVFSQLFCLERLWLQRNAITHLPLSIFASLGNLTFLSLQWNMLRVLPAGLFAHTPCLVGLSLTHNQLETVAEGTFAHLSNLRSLMLSYNAITHLPAGIFRDLEELVKLYLGSNNLTALHPALFQNLSKLELLSLSKNQLTTLPEGIFDTNYNLFNLALHGNPWQCDCHLAYLFNWLQQYTDRLLNIQTYCAGPAYLKGQVVPALNEKQLVCPVTRDHLGFQVTWPDESKAGGSWDLAVQERAARSQCTYSNPEGTVVLACDQAQCRWLNVQLSPQQGSLGLQYNASQEWDLRSSCGSLRLTVSIEARAAGP
The 83 kDa subunit binds and stabilizes the catalytic subunit at 37 degrees Celsius and keeps it in circulation. Under some circumstances it may be an allosteric modifier of the catalytic subunit. Subcellular locations: Secreted
CPSM_HUMAN
Homo sapiens
MTRILTAFKVVRTLKTGFGFTNVTAHQKWKFSRPGIRLLSVKAQTAHIVLEDGTKMKGYSFGHPSSVAGEVVFNTGLGGYPEAITDPAYKGQILTMANPIIGNGGAPDTTALDELGLSKYLESNGIKVSGLLVLDYSKDYNHWLATKSLGQWLQEEKVPAIYGVDTRMLTKIIRDKGTMLGKIEFEGQPVDFVDPNKQNLIAEVSTKDVKVYGKGNPTKVVAVDCGIKNNVIRLLVKRGAEVHLVPWNHDFTKMEYDGILIAGGPGNPALAEPLIQNVRKILESDRKEPLFGISTGNLITGLAAGAKTYKMSMANRGQNQPVLNITNKQAFITAQNHGYALDNTLPAGWKPLFVNVNDQTNEGIMHESKPFFAVQFHPEVTPGPIDTEYLFDSFFSLIKKGKATTITSVLPKPALVASRVEVSKVLILGSGGLSIGQAGEFDYSGSQAVKAMKEENVKTVLMNPNIASVQTNEVGLKQADTVYFLPITPQFVTEVIKAEQPDGLILGMGGQTALNCGVELFKRGVLKEYGVKVLGTSVESIMATEDRQLFSDKLNEINEKIAPSFAVESIEDALKAADTIGYPVMIRSAYALGGLGSGICPNRETLMDLSTKAFAMTNQILVEKSVTGWKEIEYEVVRDADDNCVTVCNMENVDAMGVHTGDSVVVAPAQTLSNAEFQMLRRTSINVVRHLGIVGECNIQFALHPTSMEYCIIEVNARLSRSSALASKATGYPLAFIAAKIALGIPLPEIKNVVSGKTSACFEPSLDYMVTKIPRWDLDRFHGTSSRIGSSMKSVGEVMAIGRTFEESFQKALRMCHPSIEGFTPRLPMNKEWPSNLDLRKELSEPSSTRIYAIAKAIDDNMSLDEIEKLTYIDKWFLYKMRDILNMEKTLKGLNSESMTEETLKRAKEIGFSDKQISKCLGLTEAQTRELRLKKNIHPWVKQIDTLAAEYPSVTNYLYVTYNGQEHDVNFDDHGMMVLGCGPYHIGSSVEFDWCAVSSIRTLRQLGKKTVVVNCNPETVSTDFDECDKLYFEELSLERILDIYHQEACGGCIISVGGQIPNNLAVPLYKNGVKIMGTSPLQIDRAEDRSIFSAVLDELKVAQAPWKAVNTLNEALEFAKSVDYPCLLRPSYVLSGSAMNVVFSEDEMKKFLEEATRVSQEHPVVLTKFVEGAREVEMDAVGKDGRVISHAISEHVEDAGVHSGDATLMLPTQTISQGAIEKVKDATRKIAKAFAISGPFNVQFLVKGNDVLVIECNLRASRSFPFVSKTLGVDFIDVATKVMIGENVDEKHLPTLDHPIIPADYVAIKAPMFSWPRLRDADPILRCEMASTGEVACFGEGIHTAFLKAMLSTGFKIPQKGILIGIQQSFRPRFLGVAEQLHNEGFKLFATEATSDWLNANNVPATPVAWPSQEGQNPSLSSIRKLIRDGSIDLVINLPNNNTKFVHDNYVIRRTAVDSGIPLLTNFQVTKLFAEAVQKSRKVDSKSLFHYRQYSAGKAA
Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. Subcellular locations: Mitochondrion, Nucleus, Nucleolus, Cell membrane Localizes to the cell surface of hepatocytes. Primarily in the liver and small intestine.
CPT1A_HUMAN
Homo sapiens
MAEAHQAVAFQFTVTPDGIDLRLSHEALRQIYLSGLHSWKKKFIRFKNGIITGVYPASPSSWLIVVVGVMTTMYAKIDPSLGIIAKINRTLETANCMSSQTKNVVSGVLFGTGLWVALIVTMRYSLKVLLSYHGWMFTEHGKMSRATKIWMGMVKIFSGRKPMLYSFQTSLPRLPVPAVKDTVNRYLQSVRPLMKEEDFKRMTALAQDFAVGLGPRLQWYLKLKSWWATNYVSDWWEEYIYLRGRGPLMVNSNYYAMDLLYILPTHIQAARAGNAIHAILLYRRKLDREEIKPIRLLGSTIPLCSAQWERMFNTSRIPGEETDTIQHMRDSKHIVVYHRGRYFKVWLYHDGRLLKPREMEQQMQRILDNTSEPQPGEARLAALTAGDRVPWARCRQAYFGRGKNKQSLDAVEKAAFFVTLDETEEGYRSEDPDTSMDSYAKSLLHGRCYDRWFDKSFTFVVFKNGKMGLNAEHSWADAPIVAHLWEYVMSIDSLQLGYAEDGHCKGDINPNIPYPTRLQWDIPGECQEVIETSLNTANLLANDVDFHSFPFVAFGKGIIKKCRTSPDAFVQLALQLAHYKDMGKFCLTYEASMTRLFREGRTETVRSCTTESCDFVRAMVDPAQTVEQRLKLFKLASEKHQHMYRLAMTGSGIDRHLFCLYVVSKYLAVESPFLKEVLSEPWRLSTSQTPQQQVELFDLENNPEYVSSGGGFGPVADDGYGVSYILVGENLINFHISSKFSCPETDSHRFGRHLKEAMTDIITLFGLSSNSKK
Catalyzes the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the mitochondrion ( , ). Plays an important role in hepatic triglyceride metabolism (By similarity). Subcellular locations: Mitochondrion outer membrane Strong expression in kidney and heart, and lower in liver and skeletal muscle.
CPT1B_HUMAN
Homo sapiens
MAEAHQAVAFQFTVTPDGVDFRLSREALKHVYLSGINSWKKRLIRIKNGILRGVYPGSPTSWLVVIMATVGSSFCNVDISLGLVSCIQRCLPQGCGPYQTPQTRALLSMAIFSTGVWVTGIFFFRQTLKLLLCYHGWMFEMHGKTSNLTRIWAMCIRLLSSRHPMLYSFQTSLPKLPVPRVSATIQRYLESVRPLLDDEEYYRMELLAKEFQDKTAPRLQKYLVLKSWWASNYVSDWWEEYIYLRGRSPLMVNSNYYVMDLVLIKNTDVQAARLGNIIHAMIMYRRKLDREEIKPVMALGIVPMCSYQMERMFNTTRIPGKDTDVLQHLSDSRHVAVYHKGRFFKLWLYEGARLLKPQDLEMQFQRILDDPSPPQPGEEKLAALTAGGRVEWAQARQAFFSSGKNKAALEAIERAAFFVALDEESYSYDPEDEASLSLYGKALLHGNCYNRWFDKSFTLISFKNGQLGLNAEHAWADAPIIGHLWEFVLGTDSFHLGYTETGHCLGKPNPALAPPTRLQWDIPKQCQAVIESSYQVAKALADDVELYCFQFLPFGKGLIKKCRTSPDAFVQIALQLAHFRDRGKFCLTYEASMTRMFREGRTETVRSCTSESTAFVQAMMEGSHTKADLRDLFQKAAKKHQNMYRLAMTGAGIDRHLFCLYLVSKYLGVSSPFLAEVLSEPWRLSTSQIPQSQIRMFDPEQHPNHLGAGGGFGPVADDGYGVSYMIAGENTIFFHISSKFSSSETNAQRFGNHIRKALLDIADLFQVPKAYS
Catalyzes the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the mitochondrion. Subcellular locations: Mitochondrion outer membrane Strong expression in heart and skeletal muscle. No expression in liver and kidney.
CRGB_HUMAN
Homo sapiens
MGKITFYEDRAFQGRSYECTTDCPNLQPYFSRCNSIRVESGCWMIYERPNYQGHQYFLRRGEYPDYQQWMGLSDSIRSCCLIPPHSGAYRMKIYDRDELRGQMSELTDDCISVQDRFHLTEIHSLNVLEGSWILYEMPNYRGRQYLLRPGEYRRFLDWGAPNAKVGSLRRVMDLY
Crystallins are the dominant structural components of the vertebrate eye lens.
CRGB_MACMU
Macaca mulatta
MGKITFYEDRAFQGRSYECTTDCPNLQPYFSRCNSIRVESGCWMIYERPNCQGHQYFLRRGEYPNYQQWMGLSDSIRSCHLIPPHSGTYRMKIYERDELRGQMSELTDDCLSVQDRFHLTEIHSLNVLEGSWILYEMPNYRGRQYLLRPGEYRRFLDWGAPNAKVGSLRRVMDLY
Crystallins are the dominant structural components of the vertebrate eye lens.
CRY1_HUMAN
Homo sapiens
MGVNAVHWFRKGLRLHDNPALKECIQGADTIRCVYILDPWFAGSSNVGINRWRFLLQCLEDLDANLRKLNSRLFVIRGQPADVFPRLFKEWNITKLSIEYDSEPFGKERDAAIKKLATEAGVEVIVRISHTLYDLDKIIELNGGQPPLTYKRFQTLISKMEPLEIPVETITSEVIEKCTTPLSDDHDEKYGVPSLEELGFDTDGLSSAVWPGGETEALTRLERHLERKAWVANFERPRMNANSLLASPTGLSPYLRFGCLSCRLFYFKLTDLYKKVKKNSSPPLSLYGQLLWREFFYTAATNNPRFDKMEGNPICVQIPWDKNPEALAKWAEGRTGFPWIDAIMTQLRQEGWIHHLARHAVACFLTRGDLWISWEEGMKVFEELLLDADWSINAGSWMWLSCSSFFQQFFHCYCPVGFGRRTDPNGDYIRRYLPVLRGFPAKYIYDPWNAPEGIQKVAKCLIGVNYPKPMVNHAEASRLNIERMKQIYQQLSRYRGLGLLASVPSNPNGNGGFMGYSAENIPGCSSSGSCSQGSGILHYAHGDSQQTHLLKQGRSSMGTGLSGGKRPSQEEDTQSIGPKVQRQSTN
Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. CRY1 and CRY2 have redundant functions but also differential and selective contributions at least in defining the pace of the SCN circadian clock and its circadian transcriptional outputs. More potent transcriptional repressor in cerebellum and liver than CRY2, though more effective in lengthening the period of the SCN oscillator. On its side, CRY2 seems to play a critical role in tuning SCN circadian period by opposing the action of CRY1. With CRY2, is dispensable for circadian rhythm generation but necessary for the development of intercellular networks for rhythm synchrony. Capable of translocating circadian clock core proteins such as PER proteins to the nucleus. Interacts with CLOCK-BMAL1 independently of PER proteins and is found at CLOCK-BMAL1-bound sites, suggesting that CRY may act as a molecular gatekeeper to maintain CLOCK-BMAL1 in a poised and repressed state until the proper time for transcriptional activation. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. Represses the CLOCK-BMAL1 induced transcription of ATF4, MTA1, KLF10 and NAMPT (By similarity). May repress circadian target genes expression in collaboration with HDAC1 and HDAC2 through histone deacetylation. Mediates the clock-control activation of ATR and modulates ATR-mediated DNA damage checkpoint. In liver, mediates circadian regulation of cAMP signaling and gluconeogenesis by binding to membrane-coupled G proteins and blocking glucagon-mediated increases in intracellular cAMP concentrations and CREB1 phosphorylation. Inhibits hepatic gluconeogenesis by decreasing nuclear FOXO1 levels that down-regulates gluconeogenic gene expression (By similarity). Besides its role in the maintenance of the circadian clock, is also involved in the regulation of other processes. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by binding to glucocorticoid response elements (GREs). Plays a key role in glucose and lipid metabolism modulation, in part, through the transcriptional regulation of genes involved in these pathways, such as LEP or ACSL4 (By similarity). Represses PPARD and its target genes in the skeletal muscle and limits exercise capacity (By similarity). Plays an essential role in the generation of circadian rhythms in the retina (By similarity). Represses the transcriptional activity of NR1I2 (By similarity). Subcellular locations: Cytoplasm, Nucleus Translocated to the nucleus through interaction with other clock proteins such as PER2 or BMAL1.
CRY1_MACFA
Macaca fascicularis
MGVNAVHWFRKGLRLHDNPALKECIQGADTIRCVYILDPWFAGSSNVGINRWRFLLQCLEDLDANLRKLNSRLFVIRGQPADVFPRLFKEWNITKLSIEYDSEPFGKERDAAIKKLATEAGVEVIVRISHTLYDLDKIIELNGGQPPLTYKRFQTLISKMEPLEIPVETITSEVIEKCTTPLSDDHDEKYGVPSLEELGFDTDGLSSAVWPGGETEALTRLERHLERKAWVANFERPRMNANSLLASPTGLSPYLRFGCLSCRLFYFKLTDLYKKVKRNSSPPLSLYGQLLWREFFYTAATNNPRFDKMEGNPICVQIPWDKNPEALAKWAEGRTGFPWIDAIMTQLRQEGWIHHLARHAVACFLTRGDLWISWEEGMKVFEELLLDADWSINAGSWMWLSCSSFFQQFFHCYCPVGFGRRTDPNGDYIRRYLPVLRGFPAKYIYDPWNAPEGIQKVAKCLIGINYPKPMVNHAEASRLNIERMKQIYQQLSRYRGLGLLASVPSNPNGNGGFMGYSTENIPGCSSSGSCSQGSGILHYTHGDSQQTHLLKQGRSSMGTGLSGGKRPSQEEDTQSIGPKVQRQSTN
Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. CRY1 and CRY2 have redundant functions but also differential and selective contributions at least in defining the pace of the SCN circadian clock and its circadian transcriptional outputs. More potent transcriptional repressor in cerebellum and liver than CRY2, though more effective in lengthening the period of the SCN oscillator. On its side, CRY2 seems to play a critical role in tuning SCN circadian period by opposing the action of CRY1. With CRY2, is dispensable for circadian rhythm generation but necessary for the development of intercellular networks for rhythm synchrony. Capable of translocating circadian clock core proteins such as PER proteins to the nucleus. Interacts with CLOCK-BMAL1 independently of PER proteins and is found at CLOCK-BMAL1-bound sites, suggesting that CRY may act as a molecular gatekeeper to maintainCLOCK-BMAL1 in a poised and repressed state until the proper time for transcriptional activation. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1, ATF4, MTA1, KLF10 and NAMPT. May repress circadian target genes expression in collaboration with HDAC1 and HDAC2 through histone deacetylation. Mediates the clock-control activation of ATR and modulates ATR-mediated DNA damage checkpoint. In liver, mediates circadian regulation of cAMP signaling and gluconeogenesis by binding to membrane-coupled G proteins and blocking glucagon-mediated increases in intracellular cAMP concentrations and CREB1 phosphorylation. Inhibits hepatic gluconeogenesis by decreasing nuclear FOXO1 levels that down-regulates gluconeogenic gene expression. Besides its role in the maintenance of the circadian clock, is also involved in the regulation of other processes. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by binding to glucocorticoid response elements (GREs). Plays a key role in glucose and lipid metabolism modulation, in part, through the transcriptional regulation of genes involved in these pathways, such as LEP or ACSL4 (By similarity). Represses PPARD and its target genes in the skeletal muscle and limits exercise capacity (By similarity). Plays an essential role in the generation of circadian rhythms in the retina (By similarity). Represses the transcriptional activity of NR1I2 (By similarity). Subcellular locations: Cytoplasm, Nucleus Translocated to the nucleus through interaction with other clock proteins such as PER2 or BMAL1.
CRY2_HUMAN
Homo sapiens
MAATVATAAAVAPAPAPGTDSASSVHWFRKGLRLHDNPALLAAVRGARCVRCVYILDPWFAASSSVGINRWRFLLQSLEDLDTSLRKLNSRLFVVRGQPADVFPRLFKEWGVTRLTFEYDSEPFGKERDAAIMKMAKEAGVEVVTENSHTLYDLDRIIELNGQKPPLTYKRFQAIISRMELPKKPVGLVTSQQMESCRAEIQENHDETYGVPSLEELGFPTEGLGPAVWQGGETEALARLDKHLERKAWVANYERPRMNANSLLASPTGLSPYLRFGCLSCRLFYYRLWDLYKKVKRNSTPPLSLFGQLLWREFFYTAATNNPRFDRMEGNPICIQIPWDRNPEALAKWAEGKTGFPWIDAIMTQLRQEGWIHHLARHAVACFLTRGDLWVSWESGVRVFDELLLDADFSVNAGSWMWLSCSAFFQQFFHCYCPVGFGRRTDPSGDYIRRYLPKLKAFPSRYIYEPWNAPESIQKAAKCIIGVDYPRPIVNHAETSRLNIERMKQIYQQLSRYRGLCLLASVPSCVEDLSHPVAEPSSSQAGSMSSAGPRPLPSGPASPKRKLEAAEEPPGEELSKRARVAELPTPELPSKDA
Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. CRY1 and CRY2 have redundant functions but also differential and selective contributions at least in defining the pace of the SCN circadian clock and its circadian transcriptional outputs. Less potent transcriptional repressor in cerebellum and liver than CRY1, though less effective in lengthening the period of the SCN oscillator. Seems to play a critical role in tuning SCN circadian period by opposing the action of CRY1. With CRY1, dispensable for circadian rhythm generation but necessary for the development of intercellular networks for rhythm synchrony. May mediate circadian regulation of cAMP signaling and gluconeogenesis by blocking glucagon-mediated increases in intracellular cAMP concentrations and in CREB1 phosphorylation. Besides its role in the maintenance of the circadian clock, is also involved in the regulation of other processes. Plays a key role in glucose and lipid metabolism modulation, in part, through the transcriptional regulation of genes involved in these pathways, such as LEP or ACSL4. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by binding to glucocorticoid response elements (GREs). Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. Represses the CLOCK-BMAL1 induced transcription of NAMPT (By similarity). Represses PPARD and its target genes in the skeletal muscle and limits exercise capacity (By similarity). Represses the transcriptional activity of NR1I2 (By similarity). Subcellular locations: Cytoplasm, Nucleus Translocated to the nucleus through interaction with other Clock proteins such as PER2 or BMAL1. Expressed in all tissues examined including fetal brain, fibroblasts, heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, colon and leukocytes. Highest levels in heart and skeletal muscle.
CSN3_HUMAN
Homo sapiens
MASALEQFVNSVRQLSAQGQMTQLCELINKSGELLAKNLSHLDTVLGALDVQEHSLGVLAVLFVKFSMPSVPDFETLFSQVQLFISTCNGEHIRYATDTFAGLCHQLTNALVERKQPLRGIGILKQAIDKMQMNTNQLTSIHADLCQLCLLAKCFKPALPYLDVDMMDICKENGAYDAKHFLCYYYYGGMIYTGLKNFERALYFYEQAITTPAMAVSHIMLESYKKYILVSLILLGKVQQLPKYTSQIVGRFIKPLSNAYHELAQVYSTNNPSELRNLVNKHSETFTRDNNMGLVKQCLSSLYKKNIQRLTKTFLTLSLQDMASRVQLSGPQEAEKYVLHMIEDGEIFASINQKDGMVSFHDNPEKYNNPAMLHNIDQEMLKCIELDERLKAMDQEITVNPQFVQKSMGSQEDDSGNKPSSYS
Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Subcellular locations: Cytoplasm, Nucleus Widely expressed. Expressed at high level in heart and skeletal muscle.
CSN3_MACFA
Macaca fascicularis
MASALEQFVNSVRQLSAQGQMTQLCELINKSGELLAKNLSHLDTVLGALDVQEHSLGVLAVLFVKFSMPSVPDFETLFSQVQLFISTCNGEHIRYATDTFAGLCHQLTNALVERKQPLRGIGILKQAIDKMQMNTNQLTSIHADLCQLCLLAKCFKPALPYLDVDMMDICKENGAYDAKHFLCYYYYGGMIYTGLKNFERALYFYEQAITTPAMAVSHIMLESYKKYILVSLILLGKVQQLPKYTSQIVGRFIKPLSNAYHELAQVYSTNNPSELRNLVNKHSETFTRDNNMGLVKQCLSSLYKKNIQRLTKTFLTLSLQDMASRVQLSGPQEAEKYVLHMIEDGEIFASINQKDGMVSFHDNPEKYNNPAMLHNIDQEMLKCIELDERLKAMDQEITVNPQFVQKSMGSQEDDSGNKPSSYS
Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes (By similarity). The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2 (By similarity). The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases (By similarity). CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively (By similarity). Essential to maintain the survival of epiblast cells and thus the development of the postimplantation embryo (By similarity). Subcellular locations: Cytoplasm, Nucleus
CSN3_PONAB
Pongo abelii
MASALEQFVNSVRQLSAQGQMTQLCELINKSGELLAKNLSHLDTVLGALDVQEHSLGVLAVLFVKFSMPSVPDFETLFSQVQLFISTCNGEHIRYATDTFAGLCHQLTNALVERKQPLRGIGILKQAIDKMQMNTNQLTSIHADLCQLCLLAKCFKPALPYLDVDMMDICKENGAYDAKHFLCYYYYGGMIYTGLKNFERALYFYEQAITTPAMAVSHIMLESYKKYILVSLILLGKVQQLPKYTSQIVGRFIKPLSNAYHELAQVYSTNNPSELRNLVNKHSETFTRDNNMGLVKQCLSSLYKKNIQRLTKTFLTLSLQDMASRVQLSGPQEAEKYVLHMIEDGEIFASINQKDGMVSFHDNPEKYNNPAMLHNIDQEMLKCIELDERLKAMDQEITVNPQFVQKSMGSQEDDSGNKPSSYS
Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes (By similarity). The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2 (By similarity). The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases (By similarity). CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively (By similarity). Essential to maintain the survival of epiblast cells and thus the development of the postimplantation embryo (By similarity). Subcellular locations: Cytoplasm, Nucleus
CSN4_HUMAN
Homo sapiens
MAAAVRQDLAQLMNSSGSHKDLAGKYRQILEKAIQLSGAEQLEALKAFVEAMVNENVSLVISRQLLTDFCTHLPNLPDSTAKEIYHFTLEKIQPRVISFEEQVASIRQHLASIYEKEEDWRNAAQVLVGIPLETGQKQYNVDYKLETYLKIARLYLEDDDPVQAEAYINRASLLQNESTNEQLQIHYKVCYARVLDYRRKFIEAAQRYNELSYKTIVHESERLEALKHALHCTILASAGQQRSRMLATLFKDERCQQLAAYGILEKMYLDRIIRGNQLQEFAAMLMPHQKATTADGSSILDRAVIEHNLLSASKLYNNITFEELGALLEIPAAKAEKIASQMITEGRMNGFIDQIDGIVHFETREALPTWDKQIQSLCFQVNNLLEKISQTAPEWTAQAMEAQMAQ
Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. Also involved in the deneddylation of non-cullin subunits such as STON2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1, IRF8/ICSBP and SNAPIN, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Subcellular locations: Cytoplasm, Nucleus, Cytoplasmic vesicle, Secretory vesicle, Synaptic vesicle
CSN4_MACFA
Macaca fascicularis
MAAAVRQDLAQLMNSSGSHKDLAGKYRQILEKAIQLSGAEQLEALKAFVEAMVNENVSLVISRQLLTDFCTHLPNLPDSTAKEIYHFTLEKIQPRVISFEEQVASIRQHLASIYEKEEDWRNAAQVLVGIPLETGQKQYNVDYKLETYLKIARLYLEDDDPVQAEAYINRASLLQNESTNEQLQIHYKVCYARVLDYRRKFIEAAQRYNELSYKTIVHESERLEALKHALHCTILASAGQQRSRMLATLFKDERCQQLAAYGILEKMYLDRIIRGNQLQEFAAMLMPHQKATTADGSSILDRAVIEHNLLSASKLYNNITFEELGALLEIPAAKAEKIASQMITEGRMNGFIDQIDGIVHFETREALPTWDKQIQSLCFQVNNLLEKISQTAPEWTAQAMEAQMAQ
Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes (By similarity). The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2 (By similarity). Also involved in the deneddylation of non-cullin subunits such as STON2 (By similarity). The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1, IRF8/ICSBP and SNAPIN, possibly via its association with CK2 and PKD kinases (By similarity). CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively (By similarity). Subcellular locations: Cytoplasm, Nucleus, Cytoplasmic vesicle, Secretory vesicle, Synaptic vesicle
CSTN1_HUMAN
Homo sapiens
MLRRPAPALAPAARLLLAGLLCGGGVWAARVNKHKPWLEPTYHGIVTENDNTVLLDPPLIALDKDAPLRFAESFEVTVTKEGEICGFKIHGQNVPFDAVVVDKSTGEGVIRSKEKLDCELQKDYSFTIQAYDCGKGPDGTNVKKSHKATVHIQVNDVNEYAPVFKEKSYKATVIEGKQYDSILRVEAVDADCSPQFSQICSYEIITPDVPFTVDKDGYIKNTEKLNYGKEHQYKLTVTAYDCGKKRATEDVLVKISIKPTCTPGWQGWNNRIEYEPGTGALAVFPNIHLETCDEPVASVQATVELETSHIGKGCDRDTYSEKSLHRLCGAAAGTAELLPSPSGSLNWTMGLPTDNGHDSDQVFEFNGTQAVRIPDGVVSVSPKEPFTISVWMRHGPFGRKKETILCSSDKTDMNRHHYSLYVHGCRLIFLFRQDPSEEKKYRPAEFHWKLNQVCDEEWHHYVLNVEFPSVTLYVDGTSHEPFSVTEDYPLHPSKIETQLVVGACWQEFSGVENDNETEPVTVASAGGDLHMTQFFRGNLAGLTLRSGKLADKKVIDCLYTCKEGLDLQVLEDSGRGVQIQAHPSQLVLTLEGEDLGELDKAMQHISYLNSRQFPTPGIRRLKITSTIKCFNEATCISVPPVDGYVMVLQPEEPKISLSGVHHFARAASEFESSEGVFLFPELRIISTITREVEPEGDGAEDPTVQESLVSEEIVHDLDTCEVTVEGEELNHEQESLEVDMARLQQKGIEVSSSELGMTFTGVDTMASYEEVLHLLRYRNWHARSLLDRKFKLICSELNGRYISNEFKVEVNVIHTANPMEHANHMAAQPQFVHPEHRSFVDLSGHNLANPHPFAVVPSTATVVIVVCVSFLVFMIILGVFRIRAAHRRTMRDQDTGKENEMDWDDSALTITVNPMETYEDQHSSEEEEEEEEEEESEDGEEEDDITSAESESSEEEEGEQGDPQNATRQQQLEWDDSTLSY
Postsynaptic adhesion molecule that binds to presynaptic neurexins to mediate both excitatory and inhibitory synapse formation (By similarity). Promotes synapse development by acting as a cell adhesion molecule at the postsynaptic membrane, which associates with neurexin-alpha at the presynaptic membrane (By similarity). Also functions as a cargo in axonal anterograde transport by acting as a molecular adapter that promotes KLC1 association with vesicles . Complex formation with APBA2 and APP, stabilizes APP metabolism and enhances APBA2-mediated suppression of beta-APP40 secretion, due to the retardation of intracellular APP maturation . As intracellular fragment AlcICD, suppresses APBB1-dependent transactivation stimulated by APP C-terminal intracellular fragment (AICD), most probably by competing with AICD for APBB1-binding . In complex with APBA2 and C99, a C-terminal APP fragment, abolishes C99 interaction with PSEN1 and thus APP C99 cleavage by gamma-secretase, most probably through stabilization of the direct interaction between APBA2 and APP . Subcellular locations: Postsynaptic cell membrane, Endoplasmic reticulum membrane, Golgi apparatus membrane, Cell projection, Neuron projection Localized in the postsynaptic membrane of both excitatory and inhibitory synapses. Subcellular locations: Nucleus The AlcICD fragment is translocated to the nucleus upon interaction with APBB1. Expressed in the brain and, a lower level, in the heart, skeletal muscle, kidney and placenta. Accumulates in dystrophic neurites around the amyloid core of Alzheimer disease senile plaques (at protein level).
CSTN2_HUMAN
Homo sapiens
MLPGRLCWVPLLLALGVGSGSGGGGDSRQRRLLAAKVNKHKPWIETSYHGVITENNDTVILDPPLVALDKDAPVPFAGEICAFKIHGQELPFEAVVLNKTSGEGRLRAKSPIDCELQKEYTFIIQAYDCGAGPHETAWKKSHKAVVHIQVKDVNEFAPTFKEPAYKAVVTEGKIYDSILQVEAIDEDCSPQYSQICNYEIVTTDVPFAIDRNGNIRNTEKLSYDKQHQYEILVTAYDCGQKPAAQDTLVQVDVKPVCKPGWQDWTKRIEYQPGSGSMPLFPSIHLETCDGAVSSLQIVTELQTNYIGKGCDRETYSEKSLQKLCGASSGIIDLLPSPSAATNWTAGLLVDSSEMIFKFDGRQGAKVPDGIVPKNLTDQFTITMWMKHGPSPGVRAEKETILCNSDKTEMNRHHYALYVHNCRLVFLLRKDFDQADTFRPAEFHWKLDQICDKEWHYYVINVEFPVVTLYMDGATYEPYLVTNDWPIHPSHIAMQLTVGACWQGGEVTKPQFAQFFHGSLASLTIRPGKMESQKVISCLQACKEGLDINSLESLGQGIKYHFNPSQSILVMEGDDIGNINRALQKVSYINSRQFPTAGVRRLKVSSKVQCFGEDVCISIPEVDAYVMVLQAIEPRITLRGTDHFWRPAAQFESARGVTLFPDIKIVSTFAKTEAPGDVKTTDPKSEVLEEMLHNLDFCDILVIGGDLDPRQECLELNHSELHQRHLDATNSTAGYSIYGVGSMSRYEQVLHHIRYRNWRPASLEARRFRIKCSELNGRYTSNEFNLEVSILHEDQVSDKEHVNHLIVQPPFLQSVHHPESRSSIQHSSVVPSIATVVIIISVCMLVFVVAMGVYRVRIAHQHFIQETEAAKESEMDWDDSALTITVNPMEKHEGPGHGEDETEGEEEEEAEEEMSSSSGSDDSEEEEEEEGMGRGRHGQNGARQAQLEWDDSTLPY
Postsynaptic adhesion molecule that binds to presynaptic neurexins to mediate synapse formation, and which is involved in learning and memory (By similarity). Promotes synapse development by acting as a cell adhesion molecule at the postsynaptic membrane, which associates with neurexin-alpha at the presynaptic membrane (By similarity). Subcellular locations: Postsynaptic cell membrane, Endoplasmic reticulum membrane, Golgi apparatus membrane, Cell projection, Dendrite Most prominent in the postsynaptic specializations of asymmetric (type I) synapses with both axodendritic and axospinous localization. Restricted to the brain.
CTF2_PANTR
Pan troglodytes
MSCSLARLCLLTLLSPPLSSAASISPAEPISQAYSLALYMQKNTSALLRTYLQYQGSPLSDPGFSAPELQLSSLPPATAFFKTWHALDDGEWLSLAQRAFLALTQHLQLVEDDQSDLNPGSPILLAQLGAARLRAQGLLGNMAAITTALGLPIPPEEDTLGLAAFGASAFERKCRGYVVTREYGHWTDRAVRDLALLKAKYSA
May have an important role in neuronal precursor development and maturation. Subcellular locations: Secreted
CTF8_HUMAN
Homo sapiens
MVQIVISSARAGGLAEWVLMELQGEIEARYSTGLAGNLLGDLHYTTEGIPVLIVGHHILYGKIIHLEKPFAVLVKHTPGDQDCDELGRETGTRYLVTALIKDKILFKTRPKPIITSVPKKV
Chromosome cohesion factor involved in sister chromatid cohesion and fidelity of chromosome transmission. Component of one of the cell nuclear antigen loader complexes, CTF18-replication factor C (CTF18-RFC), which consists of CTF18, CTF8, DSCC1, RFC2, RFC3, RFC4 and RFC5. The CTF18-RFC complex binds to single-stranded and primed DNAs and has weak ATPase activity that is stimulated the presence of primed DNA, replication protein A (RPA) and proliferating cell nuclear antigen (PCNA). The CTF18-RFC complex catalyzes the ATP-dependent loading of PCNA onto primed and gapped DNA. It also interacts with and stimulates POLH, which is suggestive of a protein network that coordinates DNA repair, recombination and chromosome cohesion reactions with replication fork progression. Subcellular locations: Nucleus Associates with chromatin during S phase.
CTG1B_HUMAN
Homo sapiens
MQAEGRGTGGSTGDADGPGGPGIPDGPGGNAGGPGEAGATGGRGPRGAGAARASGPGGGAPRGPHGGAASGLNGCCRCGARGPESRLLEFYLAMPFATPMEAELARRSLAQDAPPLPVPGVLLKEFTVSGNILTIRLTAADHRQLQLSISSCLQQLSLLMWITQCFLPVFLAQPPSGQRR
Subcellular locations: Cytoplasm Expressed in testis and ovary and in a wide variety of cancers. Detected in uterine myometrium. Expressed from 18 weeks until birth in human fetal testis. In the adult testis, is strongly expressed in spermatogonia and in primary spermatocytes, but not in post-meiotic cells or in testicular somatic cells (at protein level).
CTGE1_HUMAN
Homo sapiens
MFVIISLHNCVVISFVLFLFGGNNFIQNFYLPQNYIDQFLLTSFPTFTSVGVLIVLVLCSAFLLLWQGEGVNLR
Subcellular locations: Membrane Testis. Expressed in several cutaneous T-cell lymphoma (CTCL) cell lines, in head-neck carcinomas and carcinoma of ovarian tissues.
CTNS_HUMAN
Homo sapiens
MIRNWLTIFILFPLKLVEKCESSVSLTVPPVVKLENGSSTNVSLTLRPPLNATLVITFEITFRSKNITILELPDEVVVPPGVTNSSFQVTSQNVGQLTVYLHGNHSNQTGPRIRFLVIRSSAISIINQVIGWIYFVAWSISFYPQVIMNWRRKSVIGLSFDFVALNLTGFVAYSVFNIGLLWVPYIKEQFLLKYPNGVNPVNSNDVFFSLHAVVLTLIIIVQCCLYERGGQRVSWPAIGFLVLAWLFAFVTMIVAAVGVTTWLQFLFCFSYIKLAVTLVKYFPQAYMNFYYKSTEGWSIGNVLLDFTGGSFSLLQMFLQSYNNDQWTLIFGDPTKFGLGVFSIVFDVVFFIQHFCLYRKRPGYDQLN
Cystine/H(+) symporter that mediates export of cystine, the oxidized dimer of cysteine, from lysosomes ( ). Plays an important role in melanin synthesis by catalyzing cystine export from melanosomes, possibly by inhibiting pheomelanin synthesis . In addition to cystine export, also acts as a positive regulator of mTORC1 signaling in kidney proximal tubular cells, via interactions with components of the v-ATPase and Ragulator complexes . Also involved in small GTPase-regulated vesicle trafficking and lysosomal localization of LAMP2A, independently of cystine transporter activity (By similarity). Subcellular locations: Lysosome membrane, Melanosome membrane AP-3 complex is required for localization to the lysosome. Subcellular locations: Lysosome membrane, Cell membrane Strongly expressed in pancreas, kidney (adult and fetal), skeletal muscle, melanocytes and keratinocytes . Expressed at lower levels in placenta and heart. Weakly expressed in lung, liver and brain (adult and fetal) . Represents 5-20 % of CTNS transcripts, with the exception of the testis that expresses both isoforms in equal proportions.
CTTB2_AOTNA
Aotus nancymaae
MATDGASCEPDLSRAPEDAAGAAAEAAKKEFDVDTLSKSELRMLLSVMEGELEARDLVIEALRARRKEVFIQERYGRFNLNDPFLALQRDYEAGAGDKEKKPVCTNPLSILEAVMAHCRKMQERMSAQLAAAESRQKKLEMEKLQLQALEQEHKKLATRLEEERGKNKQVVLMLVKECKQLSGKVIEEAQKLEDVMAKLEEEKKKTNELEEELCAEKRRSTEMEAQMEKQLSEFDTEREQLRAKLNREEAHTTDLKEEIDKMKKMIEQLKRGSDSKPSLSLPRKTKDRRLVSISVGTEGTVTRSVACQTDLVTESADHVKKLPLTMPVKPSTGSPLASANAKGSVCTSAAMARPGIDRQASHGDLIGVSVPAFPPSSASRIEENGPSTGSTPDPTSSTPPLPSNAAPPTAQTPGITPQNSQAPPMHSLHSPCANASLHPGLNPRIQAARFRFQGNANDPDQNGNTTQSPPSRDVSPTSRDNLVAKQLARNTVTQALSRFTGPQAGAPPRPGAPPAGDVGTHPSVGRTSVKTHGVARVDRGNPPPIPPKKPGLSQTPSPPHPQLKVIIDSSRASNTGAKGDNKTVASPPSSLPQGNRVINEENLPKSSSPQLPPKPSIDLTVAPAGCAVSALATSQVGAWPAATPGLNQPACSDSSLVIPTTIAFCSSINPVSASSCRPGASDSLLVTASGWSPSLTPLLMSGGPAPLAGRPTLLQQAAAQGNVTLLSMLLNEEGLDINYSCEDGHSALYSAAKNGHTDCVRLLLSAEAQVNAADKNGFTPLCAAAAQGHFKCVELLIAYDANINHAADGGQTPLYLACKNGNKECIKLLLEAGTDRSVKTTDGWTPVHAAVDTGNVDSLKLLMYHRVPAHGNSFSEEESESGVFDLDGGEESPEGKSKPVVTADLINHANREGWTAAHIAASKGFKNCLEILCRHGGLETERRDKCNRTVHDVATDDCKHLLENLNALKIPLRISVGEIEPSNYGSDDFECENTICALNIRKQTSWDDFSKAVSQALTNHFQAISSDGWWSLEDVTCNNTTDSNIGLSARSIRSITLGNVPWSVGQSFAQSPWDFMMKNKAEHITVLLSGPQEGCLSSVTYASMIPLQMMQNYLRLVEQYHNVIFHGPEGSLQDYIVHQLALCLKHRQMAAGFSCEIVRAEVDAGFSKKQLLDLFISSACLIPVKQSPVKKKIIIILENLEKSSLSELLRDFLAPLENRSTESPCTFQKGNGMSECYYFHENCFLMGTIAKACLQGSDLLVQQHFRWVQLRWDAEPMQGLLQRFLRRKVVNKFRGQVPPPCDPVCKTVDWALSVWRQLNSCLARLGTPEALLGPKYFLSCPVVPGHAQVTVKWMSKLWNGVITPRVQEAILSRASVKRQPGFGQTTAKRHPSQGQQAVVKAALSILLNKAVLHGCPLPRAELEQHTADFKGGSFPLSIVSSYNSCSKKKGESGAWRRVNTSPRRKSSRFSLPTWNKPDLSNEGIKNKTLSQLNCNRNASLSKQKSLENDVSLTLNLDQRLSLGSDDEADLVKELQSMCSSKSESDISKIADSRDDLRMFDSSGNHPVFSATINNLRMPVSQKEVCPLSSHQTTECSNSKSKTELGVSRVKSFLPVPRSKVTQCSQNTKRSSSSSNTRQIEINNNSKEEN
Regulates the dendritic spine distribution of CTTN/cortactin in hippocampal neurons, thus controls dendritic spinogenesis and dendritic spine maintenance. Subcellular locations: Cytoplasm, Cell cortex, Cell projection, Dendritic spine Remains associated with dendritic spines even after glutamate stimulation.
CTTB2_ATEGE
Ateles geoffroyi
MATDGASCEPDLSRAPEDAAGATAEAAKKEFDVDTLSKSELRMLLSVMEGELEARDLVIEALRARRKEVFIQERYGRFNLNDPFLALQRDYEAGAGDKEKKPVCTNPLSILEAVMAHCRKMQERMSAQLAAAESRQKKLEMEKLQLQALEQEHKKLAARLEEERGKNKQVVLMLVKECKQLSGKVIEEAQKLEDVMAKLEEEKKKTNELEEELSAEKRRSTEMEAQMEKQLSEFDTEREQLRAKLNREEAHTTDLKEEIDKMKKMIEQLKRGSDSKPSLSLPRKTKDRRLVSISVGTEGTVTRSVACQTDLVTESADHVKKLPLTTPVKPSTGSPLASANAKGSVCTSAAMARPGIDRQASHGDLIGVSVPAFPPSSANRIEENGPSTGSTPDPTSSTPPLPSNAAPPTAQTPGITPQNSQAPPMHSLHSPCANASLHPGLNPRIQAARFRFQGNANDPDQNGNTTQSPPSRDVSPTSRDNLVAKQLARNTVTQALSRFTGPQAGAPPRPGAPPTADVGTHPSVGRTSVKTHGVARVDRGNPPPIPPKKPGLSQTPSPPHPQLKVLIDSSRASNTGAKGDNKTVASPPSSLPQGNRVINEENLSKSSSPQLPPKPSIDLTVAPAGCAVSALATSQVGAWPAATPGLNQPACSDSSLVIPTTIAFCSSINPVSASSCRPGASDSLLVTASGWSPSLTPLLMSGGPAPLAGRPTLLQQAAAQGNVTLLSMLLNEEGLDINYSCEDGHSALYSAAKNGHTDCVRLLLSAEAQVNAADKNGFTPLCAAAAQGHFECVELLVAYDAHINHAADGGQTPLYLACKNGNKECIKLLLEAGADRSVKTTDGWTSVHAAVDTGNVDSLKLLMYHRVPAHGNSFSEEESESGVFDLDGEEESPEGKSKPVVTADLINHANREGWTAAHIAASKGFKNCLEILCRHGGLETERRDKCNRTAHDVATDDCKHLLENLNALKIPLRILVDEVEPSNYGSDDFECENTICALNIRKQTSWDDFSKAVSQALTNHFQAISSDGWWSLEDVTCNNTTDSNIGLSARSIRSITLGNVPWSVGQSFAQSPWDFMMKNKAEHITVLLSGPQEGCLSSVTYASMIPLQMMQNYLRLVEQYHNVIFHGPEGSLQDYIVHQLALCLKHRQMAAGFSCEIVRAEVDASFSKKQLLDLFISSACLIPVKQSPVKKKIIIILENLEKSSLSELLRDFLAPLENRSTESPCTFQKGNGMSECYYFHENCFLMGTIAKACLQGSDLLVQQHFRWVQLRWDGEPMQGLLQRFLRRKVVNKFRGQVPPPCDPVCKIVDWALSVWRQLNSCLARLGTPEALLGPKYFLSCPVVPGHAQVTVKWMSKLWNGVITPRVQEAILSRASVKRQPGFGQTTAKRHPSQGQQAVVKAALSILLNKAVLHGCPLPRAELAQHTADFKGGSFPLSIVSSYNSCSKKKGESGSWRKVNTSPRRKSGRFSLPTWNKPDLSTEGIKNKTLSQLNCNRNASLSKQKSLENDVSLTLNLDQSLFLGSDDEADLVKELQSMCSSKSESDISKIADSRDDLRTFDSSGNNPVFLATINNLRMPVSQKEVCPLSSHQTTECSNSKSKTELDVSRVKSFLPVPRSKVTQCSQNTKSSSSNTRQIEINNSKEENWNFHKNEHLEKPNK
Regulates the dendritic spine distribution of CTTN/cortactin in hippocampal neurons, thus controls dendritic spinogenesis and dendritic spine maintenance. Subcellular locations: Cytoplasm, Cell cortex, Cell projection, Dendritic spine Remains associated with dendritic spines even after glutamate stimulation.