protein_name
stringlengths
8
11
species
stringclasses
13 values
sequence
stringlengths
5
2.31k
annotation
stringlengths
19
1.16k
UGTK5_MANES
Manihot esculenta
MGSLASEIPPHAVLVPYPAQGHVNPLMQLGKLLHSRGFYITFVNTEHNHRRLIRSRGQEFIDGLPDFKFEAIPDGLPYTDRDATQHVPSLSDSTRKHCLAPFIDLIAKLKASPDVPPITCIISDGVMAFAIDAARHFGIPEIQFWTTSACGFMAYLHHIELVRRGIVPFKDESFLHDGTLDQPVDFIPGMPNMKLRDMPSFIRVTDVNDIMFDFMGSEAHKSLKADAIILNTYDELEQEVLDAIAARYSKNIYTVGPFILLEKGIPEIKSKAFRSSLWKEDLSCIEWLDKREPDSVVYVNYGCVTTITNEQLNEFAWGLANSKHPFLWIVRPDVVMGESAVLPEEFYEAIKDRGLLVSWVPQDRVLQHPAVGVFLSHCGWNSTIECISGGKPMICWPFFAEQQTNCKYACDVWKTGVELSTNLKREELVSIIKEMMETEIGRERRRRAVEWRKKAEEATSVGGVSYNNFDRFIKEAILQHKTK
UDP-glucosyltransferase catalyzing in planta synthesis of cyanogenic glucosides. Able to glucosylate acetone cyanohydrin and 2-hydroxy-2-methylbutyronitrile, forming linamarin and lotaustralin. Accepts also to some extent, a wide range of potential acceptor substrates, including simple alcohols, flavonoids, isoflavonoids and other hydroxynitriles such as p-hydroxymandelonitrile, mandelonitrile, (E)-4-hydroxy-2-methylbut-2-enenitrile and (E)- 2-(hydroxymethyl)but-2-enenitrile. Expressed in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf.
UP01_DAUCA
Daucus carota
YGLAGDHVLDAR
null
VATA_DAUCA
Daucus carota
MPSVYGDRLTTFEDSEKESEYGYVRKVSGPVVVADGMGGAAMYELVRVGHDNLIGEIIRLEGDSATIQVYEETAGLMVNDPVLRTHKPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDTLWEFQPKKIGEGDLLTGGDLYATVFENSLMQHHVALPPDAMGKITYVAPAGQYSLKDTVLELEFQGVKKQFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFPSVLGGTCAIPGAFGCGKTVISQALSKYSNSDTVVYVGCGERGNEMAEVLMDFPQLTMTLPDGREESVMKRTTLVANTSNMPVAAREASIYTGITIAEYFRDMGYNVSMMADSTSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGKVKCLGGPERNGSVTIVGAVSPPGGDFSDPVTSATLSIVQVFWGLDKKLAQRKHFPSVNWLISYSKYSTALESFYEKFDSDFIDIRTKAREVLQREDDLNEIVQLVGKDALAETDKITLETAKLLREDYLAQNAFTPYDKFCPFYKSVWMMRNIIHFYNLANQAVERGAGMDGQKISYTLIKHRLGDLFYRLVSQKFEDPAEGEDVLVGKFKKLHDDLTSGFRNLEDETR
Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
B2_DAUCA
Daucus carota
MIDQEESNFNFNFNQPQQPQQQQFHGKSVKKNKNKNNNNNSESGNKNGGENKNGVEKRFKTLPPAESLPRNETVGGYIFVCNNDTMQENLKRQLFGLPPRYRDSVRAITPGLPLFLYNYSTHQLHGVFEAASFGGTNIDPTAWEDKKNQGESRFPAQVRVMTRKICEPLEEDSFRPILHHYDGPKFRLELNIPEAISLLDIFEETKA
null
C71E7_MANES
Manihot esculenta
MSVAILTSLPPQWLSILAVFLLPILTLLLFRGKDDNQKKGLKLPPGPRQLPLIGNLHQLGGQPYVDFWKMAKKYGPVMYLQLGRCPTVVLSSTETSKELMKDRDVECCSRPLSVGPGQLSYNFLDVAFSPYSDYWREMRKLFIFELLSMRRVQTFWYAREEQMDKMIEILDGAYPNPVNLTEKVFNMMDGIIGTIAFGRTTYAQQEFRDGFVKVLAATMDMLDNFHAENFFPVVGRFIDSLTGALAKRQRTFTDVDRYFEKVIEQHLDPNRPKPETEDIVDVLIGLMKDESTSFKITKDHVKAILMNVFVGGIDTSAVTITWAFSELLKNPKLMKKAQEEVRRAVGPNKRRVEGKEVEKIKYIDCIVKETFRKHPPVPLLVPHFSMKHCKIGGYDILPGTTIYVNAWAMGKDPTIWENPEEYNPDRFMNSEVDFRGSDFELVPFGAGRRICPGLAMGTTAVKYILSNLLYGWDYEMPRGKKFEDFPLIEEGGLTVHNKQDIMVIPKKHKWD
Catalyzes the conversion of (E)-2-methylpropanal oxime (valox) to 2-hydroxy-2-methylpropanenitrile (acetone cyanohydrin) and of (E)-2-methylbutanal oxime (ilox) to 2-hydroxy-2-methylbutyronitrile. The reaction takes place in three steps. First, the oxime is isomerized to the (Z)- isomer, next the (Z)-isomer is dehydrated to the corresponding nitrile, followed by a C-hydroxylation of the nitrile. Can use both aliphatic and aromatic oximes as substrates. Subcellular locations: Microsome membrane Expressed in storage roots, primary roots, petioles and vascular tissues. Expressed in the outer cortex cells, the endodermis and around the xylem, phloem cells and laticifers.
CCNAL_DAUCA
Daucus carota
APSMTTPEPASKRRVVLGEISNNSSAVSGNEDLLCREFEVPKCVAQKKRKRGVKEDVGVDFGEKFDDPQMCSAYVSDVYEYLKQMEMETKRRPMMNYIEQVQKDVTSNMRGVLVDWLVEVSLEYKLLPETLYLAISYVDRYLSVNVLNRQKLQLLGVSSFLIASKYEEIKPKNVADFVDITDNTYSQQEVVKMEADLLKTLKFEMGSPTVKTFLGFIRAVQENPDVPKLKFEFLANYLAELSLLDYGCLEFVPSLIAASVTFLARFTIRPNVNPWSIALQKCSGYKSKDLKECVLLLHDLQMGRRGGSLSAVRDKYKKHKFKCVSTLSPAPEIPESIFNDV
Essential for the control of the cell cycle at the G2/M (mitosis) transition. Interacts with the CDC2 and CDK2 protein kinases to form MPF. G2/M cyclins accumulate steadily during G2 and are abruptly destroyed at mitosis.
CCSA_DAUCA
Daucus carota
MIFSTLEHILTHISFSIVCIVITIHLITLLIDEIIKLNNSSEKGMIATFLCITVLLVTRCIYSGHLPLSDLYESLIFLSWSLSFIHIVPYFKKNKSHLSTITASSVIFTQGFATSGLLTEIHQSAILVPALQSEWLIMHVSMMILGYAALLCGSLLSVALLVLTFRKNRNLLCKKNPLLLKLTEEFSFGEIQYINEINNIFGNASFFSDNNYYRSQLIQQLDYWSYRVISLGFIFLTIGILSGAVWANEAWGSYWNWDPKETWAFITWIVFAVYLHTRTNTNLQVENSAIVASMGFLIIWICYFGVNLLGIGLHTYGSFTLTSN
Required during biogenesis of c-type cytochromes (cytochrome c6 and cytochrome f) at the step of heme attachment. Subcellular locations: Plastid, Chloroplast thylakoid membrane
CRTSO_DAUCA
Daucus carota
MSTSIFETPLPRSDLFLCSNSLLSQNYKLFDNSRSFGLKSLRPRCQKDGLLYPKPLNFGFCRVSRRKRKPNFVLNSVLSVDKELESDETVGLGRSREYDAIVIGSGIGGLVAATQLAVKGAKVLVLEKYLIPGGSSGYYERDGFTFDVGSSVMFGFSDKGNLNLITQALAAVGCKMEVIPDPSTVHFHLPSNLSVLVHREYNEFFSELTSKFPHEKEGIFKFYGECWKIFNALNSLELKSLEEPIYLFGQFFKKPMECLTLAYYLPQNAGDIARKFIKDPEVLSFIDAECFIVSTVNALKTPMINASMVLCDRHYGGINYPVGGVGGIAKSLAKGLVDQGSEIQYKANVKSIIVENGKAVGVRLANGNEIFAKNIISNATRWDTFGKLLKQDELPKEEENFQKLYIKAPSFLSIHLGVKSDVLPPDTDCHHFVLEDDWSNLEVPYGSIFLSIPTVLDSSLAPEGNHILHIFTTSSIEDWQGMSQKDYEKKKELVADEIISRLEKKLFPGLQSSIVLKEVGTPKTHRRYLARDSGTYGPMPQGTPKGLLGMPFNTTAIDGLYCVGDSCFPGQGVIAVAFSGVMCAHRVAADLGLEQKSPILDAALLRLLGWFRTLA
Carotene cis-trans-isomerase that converts 7,9,9'-tri-cis-neurosporene to 9'-cis-neurosporene and 7,9,9',7'-tetra-cis-lycopene (also known as prolycopene) into all-trans-lycopene. Isomerization requires redox-active components, suggesting that isomerization is achieved by a reversible redox reaction acting at specific double bonds. Isomerizes adjacent cis-double bonds at C7 and C9 pairwise into the trans-configuration, but is incapable of isomerizing single cis-double bonds at C9 and C9' (By similarity). Subcellular locations: Plastid, Chloroplast membrane
GRDH_DAUCA
Daucus carota
MASGGQFPPQKQESQPGKEHLMDPSPQHASPHYKPANKLQGKVALVTGGDSGIGRSVCYHFALEGATVAFTFVKGHEDKDANETLELLRKAKSSDAKDPIAIAADLGFDDNCKKVVDQVVNAFGSIDVLVNNAAEQYKASTVEDIDEERLERVFRTNIFAYFFMARHALKHMREGSTIINTTSINAYKGNAKLLDYTATKGAIVAFTRGLSLQLISKGIRVNGVAPGPVWTPLIPSSFDEEEVKQFGSEVPMKRAGQPYEIATAYVFLASCDSSYYSGQVLHPNGGAIVNG
May act as a short alcohol-polyol-sugar dehydrogenase possibly related to carbohydrate metabolism and the acquisition of desiccation tolerance. May also be involved in signal transduction. Expressed in embryogenic cells, somatic embryos and seeds in the later stages of development, but not in non-embryogenic cells and mature leaves.
HSP70_DAUCA
Daucus carota
MASKGGKAIGIDLGTTYSCVGVWQNDRVEIIANDQGNRTTPSYFAFTDTSRLIGDAKNQVAMNPSNTVFDAKRLIGRRFNHPSVQSDMKLWPLQVIPGPGEKPMIVVNYKGESKQFAAEEISSMVLIKMLEIAEAFLGHSVNDAVVTVPAYFNDSQRQATKDTGVIAGLNVMRIINEPNCAQIAYGLDKKSSNPPEQNVLIFDLGGGTFDVSLLTIEEGIYEVKAPKSDTHLGGEDFDNRLVNRFVTEFLTNNKKDIRWECEALRRLRTACERAKRTLSSSTAQTTIEIDSLYEGVDFYTTITRARFEELNMDLFKKCMDPVEKCLRDSKIDKAQVHEVVLVGGSTRIPKVQQLLQDFFNGKELCKSINPDEAVAYGAAVQAAILSGEGNERSDLLLLDVTPLSLGLETAGGVMTVLIPRNTTIPTKKEQIFSTYSDNQPGVLIQVYEGERARTRDNKLLGKLLGKFELTGIPPAPRGVPQINVVFDIDANGILNVFAEDKTAGVKNKITITNDNGRLSKDEIEKLVKEAEKYKAEDEEVKKKVEAKNALENYAYNMRNTIKDDKIPGKLDAGDKEKIETAVNEAIEWLEKNQLAEVDELEDKLKELEGLCNPIIARLYQGRGDVPIGGPGDMPGGGYGGSRGSSGAGPKIEEVD
null
LEAD3_DAUCA
Daucus carota
MASHQDQSYKAGEPKGHAQEKTGQMADTMKDKAQAAKDKASEMAGSARDRTVESKDQTGSYVSDKAGAVKDKTCETAQAAKEKTGGAMQATKEKASEMGESAKETAVAGKEKTGGLMSSAAEQVKGMAQGATEAVKNTFGMAGADEEEKTTTTRVTRSSARTE
null
LEAD8_DAUCA
Daucus carota
MASRKDERAAKEERAQAAAELAAKELRDVNQDRERGIKVVEHKEEVSGGPGVIGSILKSVQGTLGQAKEVVVGKAHDTAEVSRENTDYAYDKGREGGDVAAQKAEEAKEKAKMAKDTTMGKAGEYKDYTAQKAEEAKEKAAQKAEETKEKAGEYKNYTAQKAGEAKDTTLGKAGEYKDYAAQKAAEAKDTTAQKAAEAKEKTGEYKDYAAQKAAEAKVLAAQKAAEAKDTTGKDGEYKDYAAQKAAEAKDATMQKTGEYKDYAAQKTAETKDATMEKAKEYKEYAAQKAAEAKDATMQKTGEYKDYSAQKAAETKDATMEKTKEYKDYTAQKAAETKDATMEKAKEAKDTTVQKTGEYKDYAAEKAKEGKDVTVEKAKEGKDTTVGKMTELKDSAADAARKAMDMFLGKKEEVKGKAGETAEAAKEKYEDTEFAARKKMEELKLQEEGVKDEAKQRAEADRETAGDRGSAAKGTIFGAMGSVKDAIVGKLTMPSDVVKDKQQQEAVIKVDETRPGAVAEALKAADQMHGQAFNDVGKMGDEEVIVERKETRQGKM
May play a role in late embryogeny. Subcellular locations: Cytoplasm, Secreted, Cell wall Cytoplasmic, protein bodies, and cell walls of zygotic embryo and endosperm tissue.
MDL2_PRUDU
Prunus dulcis
MEKSTMSAILLVLYIFVLHLQYSEVHSLATTSDHDFSYLSFAYDATDLELEGSYDYVIVGGGTSGCPLAATLSEKYKVLVLERGSLPTAYPNVLTADGFVYNLQQEDDGKTPVERFVSEDGIDNVRGRVLGGTSIINAGVYARANTSIYSASGVDWDMDLVNQTYEWVEDTIVYKPNSQSWQSVTKTAFLEAGVHPNHGFSLDHEEGTRITGSTFDNKGTRHAADELLNKGNSNNLRVGVHASVEKIIFSNAPGLTATGVIYRDSNGTPHQAFVRSKGEVIVSAGTIGTPQLLLLSGVGPESYLSSLNIPVVLSHPYVGQFLHDNPRNFINILPPNPIEPTIVTVLGISNDFYQCSFSSLPFTTPPFGFFPSASYPLPNSTFAHFASKVAGPLSYGSLTLKSSSNVRVSPNVKFNYYSNLTDLSHCVSGMKKIGELLSTDALKPYKVEDLPGVEGFNILGIPLPKDQTDDAAFETFCRESVASYWHYHGGCLVGKVLDGDFRVTGINALRVVDGSTFPYTPASHPQGFYLMLGRYVGIKILQERSASDLKILDSLKSAASLVL
Involved in cyanogenesis, the release of HCN from injured tissues. Catalyzes the stereospecific addition of HCN to a variety of aldehydes in vitro. Has no oxidase activity. The redox properties of the FAD cofactor appear to be unimportant for catalysis.
MDL2_PRUSE
Prunus serotina
MVKSTMSAILVLALHLFVLHLQYSEVQSLANTSAHDFSYLEFVYDANDTELEGTYDYIIVGGGTAGCPLAATLSANYSVLVLERGTLPTEYPNLLTSDGFIYNLQQEDDGQTPVERFVSGDGIDNVRGRVLGGTSMINAGVYVRANTSFFNQTGIEWDMDLVNKTYDWVEDTIVFKPDFQFWQNLTGTAFLEVGILPDNGFSLDHLEGTRLTGSTFDNNGTRHASDELLNKGDPNNLRVAVHAAVEKIIFSSDSSGVTAIGVIYTDSNGTTHQAFVRGDGEVILSAGPIGSPQLLLLSGVGLESYLTSLNISVVASHPYVGQYIYDNPRNFINILPPNPIEASTVTVLGITSDFYQCSISSLPFSTAPFGFFPNPTYPLPNTTFAHIVNKVPGPLSHGTVLLQSTSDVRVAPNVTFNYYSNTTDLAHCVSGMKKIGEFLSSDALKPYKVEDLPGIEGFDILGIPLPENQTDDAAFETFCREAVASYWHYHGGCLVGEVLDDDFRVTGINALRVVDGSTFPSTPASHPQGFYLMLGRYMGTKILQERLASEEALHKSTFEPKILESLESALSFAFES
Involved in cyanogenesis, the release of HCN from injured tissues. Catalyzes the stereospecific addition of HCN to a variety of aldehydes in vitro. It is a major seed constituent, and could have the additional role of a storage form for reduced nitrogen (By similarity). Subcellular locations: Vacuole, Aleurone grain Primarily found within protein bodies of the cotyledonary parenchyma cells, with lesser amounts within the procambium.
MDL3_PRUSE
Prunus serotina
MVKSTMSAVLLVLHIFVLHLQYSEVQSLANTSSHDFSYLSFVYDATDPELEGSYDYIIVGGGTAGCPLAATLSANYSVLVLERGSLPTEYPNLLISDGFVYNLQQEDDGKTPVERFVSEDGIDNVRGRVLGGTSMINAGVYVRANTSFFNQTGIEWDMDLVNQTYEWVEDTIVFEPDSQTWQTVIGTAYLEAGILPNNGFSVDHLAGTRLTGSTFDNNGTRHASDELLNKGDPNNLRVAVQAAVEKIIFSSNTSGVTAIGVIYTDSNGTTHQAFVRGEGEVILSAGPIGSPQLLLLSGVGPESYLTSLNISVVASHPYVGQYIYDNPRNFINILPPNPIEASTVTVLGITSDFYQCSISSLPFDTPPFSFFPTTSYPLPNQTFAHIVNKVPGPLSHGTVTLNSSSDVRVGPNVKFNYYSNLTDLSHCVSGMKKLGEVLSTDALEPYKVEDLPGIDGFNILGIPLPENQTDDAAFETFCRESVASYWHYHGGCLVGKVLDDGFRVTGINALRVVDGSTFPSTPASHPQGFYLMLGRYMGIQILQERSASEDAIRNLGFQENILDSPKSTSSFAF
Involved in cyanogenesis, the release of HCN from injured tissues. Catalyzes the stereospecific addition of HCN to a variety of aldehydes in vitro. It is a major seed constituent, and could have the additional role of a storage form for reduced nitrogen. Subcellular locations: Vacuole, Aleurone grain Primarily found within protein bodies of the cotyledonary parenchyma cells, with lesser amounts within the procambium.
MDL4_PRUSE
Prunus serotina
MEKSTMSAVVLVLNLLVLHLQYSEVHSLANTSSEHDFGYLKFVYNAVDLELEGSYDYIIVGGGTSGCPLAATLSANYSVLVLERGTIATEYPNTLTVDGFAYNLQQQDDGKTPVERFVSEDGIDNVRSRILGGTTIINAGVYARANESFYNNSGVEWDLDLVNEAYEWVEDAIVYKPSNQSWQSITGTAFLEAGVHPDNGFGLVHEEGTRLTGSTFDNSGTRHASDELLNKGDPDNLKVAVEAAVQKIIFSTESSGLTAVGVVYTDSNGTSHRALVSGKGEVILSAGTLGTPQLLLLSGVGPESYLTSLNISVVASHPYVGQYVNDNPRNFINILPPNPIEPSTVTVLGITSDFYQCSLSSLPFDTPPFSLFPTTSYPLPNQTFAHIVSKVPGPLSAGSLTLQSSSNVSVAPNVKFNYCSDPVDLTHCVSGMKKIGVFLSTDALKPYKVDDLPGIDGFNILGTPLPENQTDDAAFEKFCRDTVASYWHYHGGAIVGKVIDGNFRVTGINALRVVDGSTFPATPASHPQGFYLMLGRYVGTKIVQERSASGEAIHTSTFKPKLMDSLKSALSFAF
Involved in cyanogenesis, the release of HCN from injured tissues. Catalyzes the stereospecific addition of HCN to a variety of aldehydes in vitro. It is a major seed constituent, and could have the additional role of a storage form for reduced nitrogen (By similarity). Subcellular locations: Vacuole, Aleurone grain Primarily found within protein bodies of the cotyledonary parenchyma cells, with lesser amounts within the procambium.
NDHJ_MANES
Manihot esculenta
MQGRLSAWLVKHGLVHRFLGFDYQGIETLQIKPEDWHSIAVILYVYGYNYLRSQCAYDVAPGGLLASVYHLTRIEYGIDQPEEVCIKVFAPRKNPRIPSVFWVWKSADFQERESYDMLGIFYDNHPRLKRILMPESWIGWPLRKDYIAPNFYEIQDAH
NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Subcellular locations: Plastid, Chloroplast thylakoid membrane
NLTP1_PRUAR
Prunus armeniaca
ITCGQVSSSLAPCIGYVRGGGAVPPACCNGIRNVNNLARTTPDRRTACNCLKQLSGSISGVNPNNAAALPGKCGVNIPYKISASTNCATVK
Plant non-specific lipid-transfer proteins transfer phospholipids as well as galactolipids across membranes. May play a role in wax or cutin deposition in the cell walls of expanding epidermal cells and certain secretory tissues.
NLTP1_PRUDO
Prunus domestica
ITCGQVSSNLAPCINYVKGGGAVPPACCNGIRNVNNLARTTADRRAACNCLKQLSGSIPGVNPNNAAALPGKCGVNVPYKISASTNCATVK
Plant non-specific lipid-transfer proteins transfer phospholipids as well as galactolipids across membranes. May play a role in wax or cutin deposition in the cell walls of expanding epidermal cells and certain secretory tissues.
NLTP1_PRUDU
Prunus dulcis
MAYSAMTKLALVVALCMVVSVPIAQAITCGQVSSNLAPCIPYVRGGGAVPPACCNGIRNVNNLARTTPDRQAACNCLKQLSASVPGVNPNNAAALPGKCGVNIPYQISPSTNCANVK
Plant non-specific lipid-transfer proteins transfer phospholipids as well as galactolipids across membranes. May play a role in wax or cutin deposition in the cell walls of expanding epidermal cells and certain secretory tissues (By similarity).
NLTP1_PRUPE
Prunus persica
ITCGQVSSALAPCIPYVRGGGAVPPACCNGIRNVNNLARTTPDRQAACNCLKQLSASVPGVNPNNAAALPGKCGVHIPYKISASTNCATVK
Plant non-specific lipid-transfer proteins transfer phospholipids as well as galactolipids across membranes. May play a role in wax or cutin deposition in the cell walls of expanding epidermal cells and certain secretory tissues.
NMCP1_DAUCS
Daucus carota subsp. sativus
MGRVEDMGLNAKLMKLETELFDYQYNMGLLLIEKKEWTSKFEELQQVYTETKDALKQEQEAHLIAISDAEKREENLTKALGVEKQCVLDLEKALRDMRSDYAEIKFTSDSKLAEASALITKVEEKSLEVESKLHSADAKLAELSRKGSDIERKSHELEARESALRRERLALNAEREALTDNISRQREDLREWERKLQEDEERLAEVRRLLNQREERANENDRLYQQKQSELDGEQKKIEIIMVSLKNKEDDISSRIAKLNIKEKEADAVKHSLEVKEKDLTEFEQKLNAREQSEIQKLLDEHKAILEVKKQSFEMEMDKRKNDFENDLQNRAVEVEKKEVEVKHLEAKLAKREHALDQKHEKLKEKEQYLASKLQDLNEREKSMKLEENKIEDERNQLLSDKQEMLCLKAEIEKDRASTEEQRLKLSEEIERLKITEEERLELARLQSELKQEIENCRHQRELLLKEEDELKQEKMRFEKEWEDLDERRTALMKDLKDITVQKENFEKLKHSEEDRLNNKKLDTESYVQKELDALRLTKDSFAATMEHEKAVLAERTSSEKKQMLNDFELWKRELETKLFNEREDMENALRLREKQFDEEREKELNNINYIKEVISKEREDIKLERSRIAKEKQEILMHQKHLDEQHVVMQKDIGQLVSLSEKLKDQREQFFKERECFIRFVESQKSCKNCGEMTSEFVVSDLQSLAELENLKALSVPQLAENYLRQDLQGTPDKNLSTVTPGAVGLGSPASGGTKSWLQKCTSKIFIFSASKKNNSPDQNTSRRLHVEASPNKLLNTEVIPELPSGVAGETLEMQNMQVSNSNREMESNLNLSGTEQSNIDSKALDVEDSQQSDVRAGNRKPGKRAKGRVRRKRSAKEVAEEAKTVLADPIELNENEHSNGLASAYTNESRGDSSLVGKRTRNSRKRNPSQPSQSAAGDVGADSEGHSDSVTAGGRQKRRRKVVPAVQAPTGRYNLRRHKTAAPLVANGALSDPNKGKEKEIDDGGGIGEEIPDEVDGNTHLVQVTTLKKRINVVNEFSSAGFHGINATSESQDRDAANQLVSDTMLSEEVNGTPEQSRGYQNQGDTSGAEGEDEDGDEVEHPGEVSMRKKVWKFLTT
Architectural component of nuclear structure that plays different roles in controlling nuclear size and morphology. Subcellular locations: Nucleus matrix, Nucleus lamina Localizes at the nuclear periphery.
NU2C2_DAUCA
Daucus carota
MIWHVQNENFILDSTRIFMKAFHLLLFDGSLIVPECILIFGLILLLMIDSTSDQKDIPWLYFISSTSLVMSITALLFRWREEPVISFSGNFQTNNFNEIFQFLILLCSTLCIPLSVEYIECTEMAITEFLLFVLTATLGGMFLCGANDLITIFVAPECFSLCSYLLSGYTKKDVRSNEATMKYLLMGGASSSILVHGFSWLYGSSGGEIELQEIVNGLINTQMYNSPGISIALIFITVGIGFKLSPAPSHQWTPDVYEGSPTPVVAFLSVTSKVAASASATRIFDIPFYFSSNEWHLLLETLAILSMILGNLIAITQTSMKRMLAYSSIGQIGYVIIGIIVGDSNDGYASMITYMLFYISMNLGTFACIVLFGLRTGTDNIRDYAGLYTKDPFLALSLALCLLSLGGLPPLAGFFGKLYLFWCGWQAGLYFLVLIGLLTSVVSIYYYLKIIKLLMTGRTQEITPHVRNYRRSPFRSNNSIELSMIVCVIASTIPGISMNPIIAIAQDTLF
NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Subcellular locations: Plastid, Chloroplast thylakoid membrane
NU3C_DAUCA
Daucus carota
MFLLYEYDIFWAFLIISSLIPILAFFVSGVLAPINKGPEKLSSYESGIEPMGNAWLQFRIRYYMFALVFVVFDVETVFLYPWAMSFDVLGISVFVEALIFVLILIVGLVYAWRKGALEWS
NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Subcellular locations: Plastid, Chloroplast thylakoid membrane
NU4LC_DAUCA
Daucus carota
MMLEHVLVLSAYLFSVGLYGLITSRNMVRALMCLELILNAVNINFVTFSDFFDSRQLKGSIFSIFVIAIAAAEAAIGLAIVSSIYRNRKSTRINQSNLLNK
NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Subcellular locations: Plastid, Chloroplast thylakoid membrane
PAL1_DAUCA
Daucus carota
MDCENKNVVLGNGLCMQKDPLNWGMAAEALTGSHLDEVKRMVAEFRKPMVQLGGETLTVSQVAAIAAGSVKVELAESARAGVKASSDWVMESMNKGTDSYGVTTGFGATSHRRTKQGGALQKELIRFLNAGIFGSGNDSSNILPHSATRAAMLVRINTLLQGYSGIRFEILEAITKFLNQNITPCLPLRGTITASGDLVPLSYIAGLLTGRPNSKAVGPTGENLTAAEAFKLAGVDGGFFELQPKEGLALVNGTAVGSGMASMVLFETNILAVLAEVMSAIFAEVMQGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSYVKAAEKQHEMDPLQKPKQDRYALRTSPQWLGPQIEVIRSSTKMIEREINSVNDNPLIDVSRNKAIHGGNFQGTPIGVSMDNTRLAIAAIGKLMFAQFSELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMASYCSELQFLGNPVTNHVQSAEQHNQDVNSLGLISSRKTAEAVEILKLMSTTFLVGLCQAVDLRHLEENLKSTVKNTVSQVAKKVLTMGVNGELHPSRFCELDLLRVVDREYIFAYIDDPCSATYPLMQKLRQVLVEHALKNGETEKNLSTSIFQKIAAFEDELKALLPKEVESARAVVESGNPAIPNRIKECRSYPLYKFIREELGTVYLTGEKVTSPGEEFDKVFTAMSKGEIIDPLLACLESWNGAPLPIA
This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton. Subcellular locations: Cytoplasm
PER6_DAUCA
Daucus carota
LVSGCADLTALAAR
Removal of H(2)O(2), oxidation of toxic reductants, biosynthesis and degradation of lignin, suberization, auxin catabolism, response to environmental stresses such as wounding, pathogen attack and oxidative stress. These functions might be dependent on each isozyme/isoform in each plant tissue.
PETL_DAUCA
Daucus carota
MPTITSYFGFLLAALTVTSALFIGLSKIRLI
Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetL is important for photoautotrophic growth as well as for electron transfer efficiency and stability of the cytochrome b6-f complex. Subcellular locations: Plastid, Chloroplast thylakoid membrane
PMLN_PRUPE
Prunus persica
GSSFCDSKCGVRCSKAGYQERCLKYCGICCEKCHCVPSGTYGNKDECPCYRDLKNSKGNPKCP
Expressed in peel and pulp of fruit (at protein level).
PROF_LITCN
Litchi chinensis
MSWQTYVDDHLMCETDGQHLTAAAIIGHDGSVWAQSANFPQFKPAEIAAIMKDFDEPGSLAPTGLHLGGTKYMVIQGEPGAVIRGKKGPGGITVKKTTQALIIGIYDEPMTPGQCNMVVERLGDYLVDQGL
Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton
PROF_PRUAV
Prunus avium
MSWQAYVDDHLMCDIDGNRLTAAAILGQDGSVWSQSATFPAFKPEEIAAILKDLDQPGTLAPTGLFLGGTKYMVIQGEAGAVIRGKKGSGGITVKKTNQALIIGIYDEPLTPGQCNMIVERLGDYLIEQGL
Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton
PROF_PRUDU
Prunus dulcis
MSWQQYVDDHLMCDIDGNRLTAAAILGQDGSVWSQSATFPAFKPEEIAAILKDFDQPGTLAPTGLFLGGTKYMVIQGEAGAVIRGKKGSGGITVKKTNQALIIGIYDEPLTPGQCNMIVERLGDYLIEQGL
Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton
PROF_PRUPE
Prunus persica
MSWQAYVDDHLMCEIEGNHLSAAAIIGHDGSVWAQSATFPQLKPEEVTGILNDFNEPGSLAPTGLYLGGTKYMVIQGEPGAVIRGKKGPGGVTVKKSTLALLIGIYDEPMTPGQCNMIVERLGDYLVEQGL
Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton
PRS7_PRUPE
Prunus persica
MAPEPEDIKDEKNPRPLDEDDIALLKTYGLGPYSTHIKKAEKEVKDLAKKVNDLCGIKESDTGLAAPSQWDLVSDKQMMQEEQPLQVARCTKIINPNSEDAKYVINVKQIAKFVVGLGDKVSPTDIEEGMRVGVDRNKYQIQIPLPPKIDPSVTMMTVEEKPDVTYNDVGGCKEQIEKMREVVELPMLHPEKFVKLGIDPPKGVLCYGPPGTGKTLLARAVANRTDACFIRVIGSELVQKYVGEGARMVRELFQMARSKKACIVFFDEVDAIGGARFDDGVGGDNEVQRTMLEIVNQLDGFDARGNIKVLMATNRPDTLDPALLRPGRLDRKVEFGLPDLESRTQIFKIHTRTMNCERDIRFELLARLCPNSTGADIRSVCTEAGMYAIRARRKTVTEKDFLDAVNKVIKGYQKFSATPKYMVYN
The 26S proteasome is involved in the ATP-dependent degradation of ubiquitinated proteins. The regulatory (or ATPase) complex confers ATP dependency and substrate specificity to the 26S complex (By similarity). Subcellular locations: Cytoplasm, Nucleus
PSBA_MANES
Manihot esculenta
MTAILERRESESLWGRFCNWITSTENRLYIGWFGVLMIPTLLTATSVFIIAFIAAPPVDIDGIREPVSGSLLYGNNIISGAIIPTSAAIGLHFYPIWEAASVDEWLYNGGPYELIVLHFLLGVACYMGREWELSFRLGMRPWIAVAYSAPVAAATAVFLIYPIGQGSFSDGMPLGISGTFNFMIVFQAEHNILMHPFHMLGVAGVFGGSLFSAMHGSLVTSSLIRETTENESANEGYRFGQEEETYNIVAAHGYFGRLIFQYASFNNSRSLHFFLAAWPVVGIWFTALGISTMAFNLNGFNFNQSVVDSQGRVINTWADIINRANLGMEVMHERNAHNFPLDLAAVEAPSTNG
Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbD) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. Subcellular locations: Plastid, Chloroplast thylakoid membrane
PSBD_DAUCA
Daucus carota
MTIALGKFTKDEKDLFDIMDDWLRRDRFVFVGWSGLLLFPCAYFAVGGWFTGTTFVTSWYTHGLASSYLEGCNFLTAAVSTPANSLAHSLLLLWGPEAQGDFTRWCQLGGLWTFVALHGAFGLIGFMLRQFELARSVQLRPYNAIAFSGPIAVFVSVFLIYPLGQSGWFFAPSFGVAAIFRFILFFQGFHNWTLNPFHMMGVAGVLGAALLCAIHGATVENTLFEDGDGANTFRAFNPTQAEETYSMVTANRFWSQIFGVAFSNKRWLHFFMLFVPVTGLWMSALGVVGLALNLRAYDFVSQEIRAAEDPEFETFYTKNILLNEGIRAWMAAQDQPHENLIFPEEVLPRGNAL
Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbD) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. Subcellular locations: Plastid, Chloroplast thylakoid membrane
PSBI_DAUCA
Daucus carota
MLTLKLFVYTVVIFFVSLFIFGFLSNDPGRNPGREE
One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Subcellular locations: Plastid, Chloroplast thylakoid membrane
PSBJ_DAUCA
Daucus carota
MADTTGRIPLWIIGTVAGILVIGLIGIFFYGSYSGLGSSL
One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Subcellular locations: Plastid, Chloroplast thylakoid membrane