repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
pykaldi/pykaldi
numpy
128
Install error from source
Hello, I have a problem by install pykaldi, during install there are no error, but at the step: python setup.py install, getting errors , I have tried many times but it always so, I want to ask if you know what can cause this problem and how can I fix it?Thank you Line .123456789.123456789.123456789.123456789 1:\n 2:from "itf/decodable-itf.h":\n 3: namespace `kaldi`:\n 4: class DecodableInterface:\n 5: """Decodable interface definition."""\n 6:\n ............ _ParseError: invalid statement in indented block (at char 86), (line:5,col:7) ............
closed
2019-05-24T06:13:20Z
2019-09-06T23:14:57Z
https://github.com/pykaldi/pykaldi/issues/128
[]
Winderxia
1
joerick/pyinstrument
django
348
CUDA Out Of Memory issue
As far as I understand it, and during some testing I kept on getting Cuda OOM errors while running code with pyinstrument where multiple models were run one after another. While making sure there was no reference kept to the tensors in the python code, I kept on getting CUDA OOM errors when using `pyinstrument`. But once disabled the errors disappeared and my VRAM reset as expected after each reference was deleted. Is there an option to ensure pyinstrument clears its references to onnx and torch tensors, especially after calling `del tensor`. As I'd like to keep using `pyinstrument` but it's not feasible atm. - Emil
open
2024-10-28T15:33:07Z
2024-11-18T13:34:50Z
https://github.com/joerick/pyinstrument/issues/348
[]
emil-peters
3
pydantic/FastUI
fastapi
134
Unable to view components when the app is mount in another app.
If I use one FastAPI app which contains all the FastUI routes and I mount this app in another FastAPI app, I can't access to any components in frontend. What I'm doing wrong ? I tried to use **root_path** parameter of FastAPI but with no success To reproduce: ```python from datetime import date from fastapi import FastAPI, HTTPException from fastapi.responses import HTMLResponse from fastui import FastUI, AnyComponent, prebuilt_html, components as c from fastui.components.display import DisplayMode, DisplayLookup from fastui.events import GoToEvent, BackEvent from pydantic import BaseModel, Field import uvicorn app = FastAPI() class User(BaseModel): id: int name: str dob: date = Field(title="Date of Birth") # define some users users = [ User(id=1, name="John", dob=date(1990, 1, 1)), User(id=2, name="Jack", dob=date(1991, 1, 1)), User(id=3, name="Jill", dob=date(1992, 1, 1)), User(id=4, name="Jane", dob=date(1993, 1, 1)), ] @app.get("/api/", response_model=FastUI, response_model_exclude_none=True) def users_table() -> list[AnyComponent]: """ Show a table of four users, `/api` is the endpoint the frontend will connect to when a user visits `/` to fetch components to render. """ return [ c.Page( # Page provides a basic container for components components=[ c.Heading(text="Users", level=2), # renders `<h2>Users</h2>` c.Table[ User ]( # c.Table is a generic component parameterized with the model used for rows data=users, # define two columns for the table columns=[ # the first is the users, name rendered as a link to their profile DisplayLookup( field="name", on_click=GoToEvent(url="/user/{id}/") ), # the second is the date of birth, rendered as a date DisplayLookup(field="dob", mode=DisplayMode.date), ], ), ] ), ] @app.get( "/api/user/{user_id}/", response_model=FastUI, response_model_exclude_none=True ) def user_profile(user_id: int) -> list[AnyComponent]: """ User profile page, the frontend will fetch this when the user visits `/user/{id}/`. """ try: user = next(u for u in users if u.id == user_id) except StopIteration: raise HTTPException(status_code=404, detail="User not found") return [ c.Page( components=[ c.Heading(text=user.name, level=2), c.Link(components=[c.Text(text="Back")], on_click=BackEvent()), c.Details(data=user), ] ), ] @app.get("/{path:path}") async def html_landing() -> HTMLResponse: """Simple HTML page which serves the React app, comes last as it matches all paths.""" return HTMLResponse(prebuilt_html(title="FastUI Demo")) if __name__ == "__main__": other_app = FastAPI() other_app.mount("/foo", app) uvicorn.run(other_app, port=8200) ```
closed
2023-12-28T15:03:52Z
2024-07-19T06:26:37Z
https://github.com/pydantic/FastUI/issues/134
[]
pbrochar
7
ivy-llc/ivy
pytorch
27,968
Fix Ivy Failing Test: tensorflow - elementwise.maximum
closed
2024-01-20T16:18:41Z
2024-01-25T09:54:03Z
https://github.com/ivy-llc/ivy/issues/27968
[ "Sub Task" ]
samthakur587
0
gunthercox/ChatterBot
machine-learning
2,169
rgrgrgrg
rgrgrgrg
closed
2021-06-08T17:38:25Z
2021-10-02T20:49:03Z
https://github.com/gunthercox/ChatterBot/issues/2169
[]
mgkw
1
koxudaxi/datamodel-code-generator
pydantic
1,823
Clean up Pydantic v2 Migration warnings
There's quite a few warnings generated by Pydantic v2 generated models that could be cleaned up to make a lot less noise in downstream project users. Some examples: ``` datamodel_code_generator/parser/jsonschema.py:1663: PydanticDeprecatedSince20: The `parse_obj` method is deprecated; use `model_validate` instead. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.5/migration/ root_obj = JsonSchemaObject.parse_obj(raw) datamodel_code_generator/parser/jsonschema.py:299: PydanticDeprecatedSince20: The `__fields_set__` attribute is deprecated, use `model_fields_set` instead. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.5/migration/ return 'default' in self.__fields_set__ or 'default_factory' in self.extras ```
open
2024-01-29T17:50:08Z
2024-01-30T17:37:31Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1823
[ "enhancement" ]
rdeaton-freenome
1
minivision-ai/photo2cartoon
computer-vision
4
请问可以公开微信小程序客户端的源代码吗?
万分感谢!
closed
2020-04-21T15:27:33Z
2020-04-22T08:35:41Z
https://github.com/minivision-ai/photo2cartoon/issues/4
[]
Z863058
2
stanfordnlp/stanza
nlp
1,070
NER for Polish
I'd like to add NER model for Polish. For now, I wonder what else is needed. **Datasets** - Char-LM: [Wikipedia Subcorpus](http://clip.ipipan.waw.pl/PolishWikipediaCorpus) - NER annotations: [NKJP Corpus](http://clip.ipipan.waw.pl/NationalCorpusOfPolish) **Baseline models** - [char-lm based](http://mozart.ipipan.waw.pl/~ksaputa/stanza/saved_models-base-wikipedia.tar.gz) - [BERT-based](http://mozart.ipipan.waw.pl/~ksaputa/stanza/saved_models-herbert-large-without-charlm.tar.gz) ([herbert-large](https://huggingface.co/allegro/herbert-large-cased)) **Results** For char-lm model: ``` 2022-06-28 13:39:24 INFO: Running NER tagger in predict mode 2022-06-28 13:39:25 INFO: Loading data with batch size 32... 2022-06-28 13:39:26 DEBUG: 38 batches created. 2022-06-28 13:39:26 INFO: Start evaluation... 2022-06-28 13:39:37 INFO: Score by entity: Prec. Rec. F1 85.55 87.69 86.61 2022-06-28 13:39:37 INFO: Score by token: Prec. Rec. F1 68.59 68.98 68.78 2022-06-28 13:39:37 INFO: NER tagger score: 2022-06-28 13:39:37 INFO: pl_nkjp 86.61 ``` I could definitely improve these models further and share an update in the coming weeks. I'd like to ask is there something more I need to prepare to include these in the next Stanza release. Especially I'm not sure about - BERT integration, for now I added only the training parameter in [my version](https://github.com/k-sap/stanza) - to what extend sharing converted NER data & conversion code is needed
closed
2022-07-04T09:29:43Z
2022-09-14T19:48:55Z
https://github.com/stanfordnlp/stanza/issues/1070
[ "enhancement" ]
k-sap
6
keras-team/keras
machine-learning
20,083
Incompatibility of TensorFlow/Keras Model Weights between Versions 2.15.0 and V3
Hi, I have a significant number of models trained using TensorFlow 2.15.0 and Keras 2.15.0, saved in HDF5 format. Upon attempting to reuse these models with Keras 3.3.3, I discovered that the models are not backward compatible due to differences in naming conventions and structure of the HDF5 files. **Observation** Upon exploring the HDF5 files with both versions, I observed major differences in naming conventions between Keras v2 and Keras v3. Here is a small overview. For Keras 3.3.3: ```bash model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/batch_normalization_139/beta model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/batch_normalization_139/gamma model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/batch_normalization_139/moving_mean model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/batch_normalization_139/moving_variance model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/conv2d_142/kernel model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/batch_normalization_140/beta model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/batch_normalization_140/gamma model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/batch_normalization_140/moving_mean model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/batch_normalization_140/moving_variance model_weights/Module/Model/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/conv2d_143/kernel ``` For Keras 2.15.0: ```bash Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/batch_normalization_57/beta:0 Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/batch_normalization_57/gamma:0 Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/batch_normalization_57/moving_mean:0 Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/batch_normalization_57/moving_variance:0 Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_1x1/conv2d_57/kernel:0 Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/batch_normalization_58/beta:0 Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/batch_normalization_58/gamma:0 Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/batch_normalization_58/moving_mean:0 Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/batch_normalization_58/moving_variance:0 Module/Module/CrossStagePartialBlock_1024_4/CrossStagePartialBlock_1024_4_0/conv_3x3/conv2d_58/kernel:0 ``` Besides the differences that can be easily seen, and easy to change with `h5py` - Prefix: In Keras v3, the prefix model_weights is added. - Suffix: In Keras v2, the suffix :0 is appended. - Model name after the first dataset of the hdf5 file. The indexing of the layers and parameters seems different. Could you please provide guidance on how to properly convert or re-index these weights from Keras v2.15.0 to Keras v3.3.3? Is there any documentation or tool available to handle this backward compatibility issue? Thanks in advance for your assistance.
closed
2024-08-02T09:26:58Z
2024-09-05T01:58:29Z
https://github.com/keras-team/keras/issues/20083
[ "type:bug/performance", "stat:awaiting response from contributor", "stale" ]
estebvac
5
pydantic/logfire
pydantic
838
TypeError: MeterProvider.get_meter() got multiple values for argument 'version' during FastAPI instrumentation
### Description Hi Logfire team, I'm encountering an issue when instrumenting my FastAPI application with Logfire. When I call logfire.instrument_fastapi, I get the following error: ```bash TypeError: MeterProvider.get_meter() got multiple values for argument 'version' The error appears to be triggered from within Logfire's metrics integration when it calls provider.get_meter(). I suspect that the version argument is inadvertently being passed more than once (perhaps both positionally and as a keyword). ``` Minimal Reproduction Code: ```python import logfire from fastapi import FastAPI app = FastAPI() # This call triggers the error: logfire.instrument_fastapi(app=app, excluded_urls=("/metrics", "/health", "/docs", "/openapi.json", "/static/*")) ``` Questions: Is this a known issue with the Logfire integration for FastAPI? Could this be due to a compatibility problem with a specific version of OpenTelemetry? Are there any workarounds or fixes in progress to resolve this error? Thanks in advance for your help. ### Python, Logfire & OS Versions, related packages (not required) ```TOML logfire="3.5.1" platform="macOS-15.2-arm64-arm-64bit" python="3.12.8 (main, Dec 3 2024, 18:42:41) [Clang 16.0.0 (clang-1600.0.26.4)]" [related_packages] requests="2.32.3" pydantic="2.10.5" fastapi="0.115.7" protobuf="5.29.3" rich="13.9.4" executing="2.1.0" opentelemetry-api="1.29.0" opentelemetry-exporter-otlp-proto-common="1.29.0" opentelemetry-exporter-otlp-proto-http="1.29.0" opentelemetry-instrumentation="0.50b0" opentelemetry-instrumentation-asgi="0.50b0" opentelemetry-instrumentation-fastapi="0.50b0" opentelemetry-instrumentation-httpx="0.50b0" opentelemetry-proto="1.29.0" opentelemetry-sdk="1.29.0" opentelemetry-semantic-conventions="0.50b0" opentelemetry-util-http="0.50b0" ```
closed
2025-02-05T09:46:06Z
2025-02-05T10:50:49Z
https://github.com/pydantic/logfire/issues/838
[]
alon710
2
roboflow/supervision
computer-vision
1,152
ultralytics_stream_example do not work
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar bug report. ### Bug I have run the ultralytics_stream_example file for time in zone example, but nothing happen shown as result tracking, despite the deprecated decorector and 2 bug: 1. when passing frame.image to the ultralytics to get the result detection, it must be frame[0].image. (fixed) 2. Is when pass detection to custom sink on_prediction method. (Not be fixed yet) Please check them out. ### Environment _No response_ ### Minimal Reproducible Example _No response_ ### Additional _No response_ ### Are you willing to submit a PR? - [x] Yes I'd like to help by submitting a PR!
closed
2024-04-29T08:29:57Z
2024-04-30T09:17:43Z
https://github.com/roboflow/supervision/issues/1152
[ "bug" ]
tgbaoo
8
randyzwitch/streamlit-folium
streamlit
92
Dynamic width foliummap stuck at 50%
When using setting the width=None, to leverage the new dynamic width functionnalities, maps are being displayed as if they were DualMap (with width 50%). I'm not good with web dev but I think the issue is related to the HTML element .float-child with has a width of 50% even for single maps. If my explanation isn't clear, please try out the script below, you'll see the issue is very obvious. ``` import streamlit as st from streamlit_folium import folium_static, st_folium import folium m = folium.Map(location=[39.949610, -75.150282], zoom_start=16) st_folium(m, width=None) ```
closed
2022-11-16T10:48:38Z
2022-12-08T13:30:29Z
https://github.com/randyzwitch/streamlit-folium/issues/92
[]
Berhinj
0
hpcaitech/ColossalAI
deep-learning
5,245
Implement speculative decoding
Development branch: https://github.com/hpcaitech/ColossalAI/tree/feat/speculative-decoding In speculative decoding, or assisted decoding, both a drafter model (small model) and a main model (large model) will be used. The drafter model will generate a few tokens sequentially, and then the main model will validate those candidate tokens in parallel and accept validated ones. The decoding process will be speeded up, for the latency of speculating multiple tokens by the drafter model is lower than that by the main model. We're going to support Speculative decoding using the inference engine, with optimized kernels and cache management for the main model. Additionally, GLIDE, a modified draft model architecture that reuses key and value caches from the main model, is expected to be supported. It improves the acceptance rate and increment the speed-up ratio. Details can be found in research paper GLIDE with a CAPE - A Low-Hassle Method to Accelerate Speculative Decoding on [arXiv](https://arxiv.org/pdf/2402.02082.pdf).
closed
2024-01-09T08:34:54Z
2024-05-08T02:34:07Z
https://github.com/hpcaitech/ColossalAI/issues/5245
[ "enhancement" ]
CjhHa1
0
chezou/tabula-py
pandas
59
Can 'convert_into()' pdf file to json but executing 'read_pdf()' as json gives UTF-8 encoding error.
# Summary of your issue Can 'convert_into()' pdf file to json, but executing 'read_pdf()' as json gives UTF-8 encoding error. # Environment Write and check your environment. - [ ] `python --version`: ? 3.6.1.final.0, jupyer notebook 5.0.0 - [ ] `java -version`: ? - [ ] OS and it's version: ? win64 anaconda 4.3.22 - [ ] Your PDF URL: https://www.dropbox.com/s/rg11o0iitia4zua/QA-17H104161-2017-09-22-DO.pdf?dl=0 # What did you do when you faced the problem? I don't understand why the convert_into function works fine with this pdf, but passing the same pdf into read_pdf() yields an encoding error. Shouldn't the default options for both functions be identical? ## Example code: ``` from tabula import read_pdf from tabula import convert_into import pandas file = 'T:/baysestuaries/Data/WDFT-Coastal/db_archive/QA/QA-17H104161-2017-09-22-DO.pdf' convert_into(file,"test.json", output_format='json') df = read_pdf(file, output_format='json') ``` ## Output: ``` --------------------------------------------------------------------------- UnicodeDecodeError Traceback (most recent call last) <ipython-input-208-fc7babef8e03> in <module>() ----> 1 df = read_pdf(file, output_format='json') C:\Users\ETurner\AppData\Local\Continuum\Anaconda3\lib\site-packages\tabula\wrapper.py in read_pdf(input_path, output_format, encoding, java_options, pandas_options, multiple_tables, **kwargs) 90 91 else: ---> 92 return json.loads(output.decode(encoding)) 93 94 else: UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb0 in position 5134: invalid start byte ``` ## What did you intend to be? Ideally, the behavior of both functions should be identical. I am actually trying to read this pdf as a pandas dataframe, but it is very messy. Just reading it as a json works for me so I can parse out the items I need. However, don't want to have to convert files first to waste disk space.
closed
2017-10-10T16:07:24Z
2022-05-16T08:44:33Z
https://github.com/chezou/tabula-py/issues/59
[]
evanleeturner
8
pytest-dev/pytest-xdist
pytest
211
looponfail tests broken on more recent pytest
#210 introduced a xfail for a looponfail test we should take a look on whether we want to fix that or solve it via the port into pytest-core
closed
2017-08-09T12:37:21Z
2021-11-18T13:09:23Z
https://github.com/pytest-dev/pytest-xdist/issues/211
[]
RonnyPfannschmidt
2
TencentARC/GFPGAN
pytorch
169
in Windows AssertionError: An object named 'ResNetArcFace' was already registered in 'arch' registry!
runfile('../GFPGAN/inference_gfpgan.py', args='-i inputs/whole_imgs -o results -v 1.3 -s 2', wdir='../GFPGAN') Traceback (most recent call last): File "..\GFPGAN\inference_gfpgan.py", line 9, in <module> from gfpgan import GFPGANer File "..\GFPGAN\gfpgan\__init__.py", line 2, in <module> from .archs import * File "..\GFPGAN\gfpgan\archs\__init__.py", line 10, in <module> _arch_modules = [importlib.import_module(f'gfpgan.archs.{file_name}') for file_name in arch_filenames] File "..\GFPGAN\gfpgan\archs\__init__.py", line 10, in <listcomp> _arch_modules = [importlib.import_module(f'gfpgan.archs.{file_name}') for file_name in arch_filenames] File "..\anaconda3\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "..\GFPGAN\gfpgan\archs\arcface_arch.py", line 172, in <module> class ResNetArcFace(nn.Module): File "..\anaconda3\lib\site-packages\basicsr\utils\registry.py", line 53, in deco self._do_register(name, func_or_class) File "..\anaconda3\lib\site-packages\basicsr\utils\registry.py", line 39, in _do_register assert (name not in self._obj_map), (f"An object named '{name}' was already registered " AssertionError: An object named 'ResNetArcFace' was already registered in 'arch' registry!
open
2022-03-02T10:16:38Z
2023-02-10T18:07:54Z
https://github.com/TencentARC/GFPGAN/issues/169
[]
Mehrancd
2
vitalik/django-ninja
pydantic
389
Throwing a HttpError with `data`
I enjoy using `HttpError` as it is the simplest way to return an error response with a message anywhere in the project. Yet, I've encountered some cases where I wish to return an error response with additional data (e.g. an error code or a dict of error fields and failed reasons). Since a dict (`{ "detail": "{message}" }`) is returned by default, so I thought it would be better to make use of it. Here is my suggestion and I would like to make PR if you agree with this feature. :) ```python3 # ninja/errors.py class HttpError(Exception): # Add a new argument: data def __init__(self, status_code: int, message: str, data: dict = None) -> None: self.status_code = status_code self.data = data # <<< super().__init__(message) def _default_http_error( request: HttpRequest, exc: HttpError, api: "NinjaAPI" ) -> HttpResponse: if exc.data is None: return api.create_response(request, {"detail": str(exc)}, status=exc.status_code) return api.create_response(request, data, status=exc.status_code) # <<< # my_api.py @api.get("/foo") def some_operation(request): raise HttpError(400, "some error message", {"bar": ... }) # <<< Usage ```
closed
2022-03-14T14:03:40Z
2022-03-16T00:15:14Z
https://github.com/vitalik/django-ninja/issues/389
[]
ach0o
4
databricks/koalas
pandas
1,974
HIVE JDBC Connection Using Pyspark-Koalas returns Column names as row values
I am using Pyspark to connect to HIVE and fetch some data. The issue is that it returns all rows with the values that are column names. It is returning correct column names. Only the Row values are incorrect. Here is my Code: ``` hive_jar_path="C:Users/shakir/Downloads/ClouderaHiveJDBC-2.6.11.1014/ClouderaHiveJDBC-2.6.11.1014/ClouderaHiveJDBC42-2.6.11.1014/HiveJDBC42.jar" print(hive_jar_path) print("") import os os.environ["HADOOP_HOME"]="c:/users/shakir/downloads/spark/spark/spark" import os os.environ["SPARK_HOME"]="c:/users/shakir/downloads/spark/spark/spark" import findspark findspark.init() from pyspark import SparkContext, SparkConf, SQLContext from pyspark.sql import SparkSession import uuid spark = SparkSession \ .builder \ .appName("Python Spark SQL Hive integration example") \ .config("spark.sql.warehouse.dir", "hdfs://...../user/hive/warehouse/..../....") spark.config("spark.driver.extraClassPath", hive_jar_path) spark.config("spark.sql.hive.llap", "true") spark.config("spark.sql.warehouse.dir", "hdfs://...../user/hive/warehouse/..../....") spark=spark.enableHiveSupport().getOrCreate() import databricks.koalas as ks print("Reading Data from Hive . . .") options={ "fetchsize":1000, "inferSchema": True, "fileFormat":"orc", "inputFormat":"org.apache.hadoop.hive.ql.io.orc.OrcInputFormat", "outputFormat":"org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat", "driver":"org.apache.hive.jdbc.HiveDriver", } df = ks.read_sql("SELECT * FROM PERSONS LIMIT 3", connection_string,options=options) print("Done") print(df) ```  Here is the code Output: ``` +------+-----+---------+ | Name | Age | Address | +------+-----+---------+ | Name | Age | Address | +------+-----+---------+ | Name | Age | Address | +------+-----+---------+ | Name | Age | Address | +------+-----+---------+  ```  
closed
2020-12-17T09:57:01Z
2020-12-21T11:16:22Z
https://github.com/databricks/koalas/issues/1974
[ "not a koalas issue" ]
shakirshakeelzargar
4
CorentinJ/Real-Time-Voice-Cloning
python
261
No GPU - can we use Google Colab?
noob here without a GPU. How would someone use this with Google Colab
closed
2020-01-10T04:36:44Z
2020-07-04T23:22:10Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/261
[]
infiniti350
2
KevinMusgrave/pytorch-metric-learning
computer-vision
194
Update Docs For Computational Performance
See #192. For other people who encounter performance problems, perhaps a 'performance optimization' section can be added to the docs that describes first using a miner of [type 2](https://github.com/KevinMusgrave/pytorch-metric-learning/issues/192#issuecomment-689814355) and either chaining the results into another miner or into a loss function.
open
2020-09-09T20:57:29Z
2020-09-09T23:52:59Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/194
[ "documentation" ]
AlexSchuy
0
dmlc/gluon-cv
computer-vision
1,434
Faster-RCNN meets CUDA illegal memory access error when converting into symbol model
Hi, I tried to convert the Faster-RCNN model from gluoncv model zoo into symbol API format. When I do inference with CPU, everything is well. However, when inferring with GPU, it raised CUDA Error The full code as following: ``` import time import mxnet as mx from gluoncv import model_zoo from tqdm import tqdm ctx = mx.gpu() model = model_zoo.get_model('faster_rcnn_resnet50_v1b_voc', pretrained=True) model.hybridize(static_alloc=True, static_shape=True) x = mx.nd.random.normal(shape=[1, 3, 300, 300]) _ = model(x) model.export('temp', 0) sym, args, aux = mx.model.load_checkpoint('temp', 0) for k, v in args.items(): args[k] = v.as_in_context(ctx) args['data'] = x.as_in_context(ctx) executor = sym.bind(ctx, args=args, aux_states=aux, grad_req='null') start = time.time() for i in tqdm(range(100)): executor.forward(is_train=False) mx.nd.waitall() end = time.time() print('Elapsed time:', end-start) ``` Here is the error message: ``` Traceback (most recent call last): File "benchmark.py", line 26, in <module> mx.nd.waitall() File "/home/elichen/faster-rcnn-benchmark/env/lib64/python3.7/site-packages/mxnet/ndarray/ndarray.py", line 166, in waitall check_call(_LIB.MXNDArrayWaitAll()) File "/home/elichen/faster-rcnn-benchmark/env/lib64/python3.7/site-packages/mxnet/base.py", line 253, in check_call raise MXNetError(py_str(_LIB.MXGetLastError())) mxnet.base.MXNetError: [02:19:17] src/storage/./pooled_storage_manager.h:97: CUDA: an illegal memory access was encountered ``` Did anyone meet this error?
closed
2020-09-02T05:19:17Z
2021-05-22T06:40:29Z
https://github.com/dmlc/gluon-cv/issues/1434
[ "Stale" ]
JIElite
1
graphdeco-inria/gaussian-splatting
computer-vision
207
Ply file
May I ask if the ply file obtained in the output is different from a typical point cloud file? Can I convert it to a grid for use?
closed
2023-09-18T03:49:02Z
2023-09-28T16:23:40Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/207
[]
HeptagramV
1
koxudaxi/fastapi-code-generator
fastapi
35
Change datamodel-code-generator version
`fastapi-code-generator` depends on [datamodel-code-generator](https://github.com/koxudaxi/datamodel-code-generator) I'm working on [refactoring the internal interface](https://github.com/koxudaxi/datamodel-code-generator/issues/237) of `datamodel-code-generator`. I will resolve the issues after the refactoring is done. https://github.com/koxudaxi/fastapi-code-generator/issues/27 https://github.com/koxudaxi/fastapi-code-generator/issues/26 https://github.com/koxudaxi/fastapi-code-generator/issues/25 https://github.com/koxudaxi/fastapi-code-generator/issues/24 https://github.com/koxudaxi/fastapi-code-generator/issues/15
closed
2020-10-13T09:25:42Z
2020-11-04T17:16:35Z
https://github.com/koxudaxi/fastapi-code-generator/issues/35
[ "released" ]
koxudaxi
0
vanna-ai/vanna
data-visualization
128
Function to duplicate a model
We might want a function to duplicate a model. It would look something like this: ```python def duplicate_model(from_model: str, to_model: str, types: list = ['ddl', 'documentation', 'sql']): vn.set_model(from_model) # Get the training data from the source model training_data = vn.get_training_data() # Set the model to the destination model vn.set_model(to_model) for ddl in training_data.query('training_data_type == "ddl"').content: vn.train(ddl=ddl) ``` The code above needs to be modified to handle filters for ddl, documentation, and sql Usage would look something like this: ```python vn.duplicate_model(from_model='chinook', to_model='chinook-duplicate', types=['ddl']) ```
closed
2023-10-13T16:02:55Z
2024-01-17T05:57:38Z
https://github.com/vanna-ai/vanna/issues/128
[ "enhancement" ]
zainhoda
0
gradio-app/gradio
machine-learning
10,277
Progress bar do not show up at the first run.
### Describe the bug This is a minimal example explaning the problem I met: The progress bar works well since the second time I clicked the "Show Reverse Result" button, anyway it do not show up the first time. ![image](https://github.com/user-attachments/assets/d5f13cd6-6b52-4377-b52c-d926696073b6) ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr import time with gr.Blocks() as demo: words_list = gr.Dropdown(['banana','alpha','rocket'], interactive=True) show_btn = gr.Button('Show Reverse Result') results = gr.Textbox(value='', visible=False) def slowly_reverse(word, progress=gr.Progress()): progress(0, desc="Starting") time.sleep(1) progress(0.05) new_string = "" for letter in progress.tqdm(word, desc="Reversing"): time.sleep(0.25) new_string = letter + new_string results = gr.Textbox(value=new_string, visible=True) return results show_btn.click(fn=slowly_reverse, inputs=words_list, outputs=results) demo.launch(server_name="0.0.0.0") ``` ### Screenshot _No response_ ### Logs _No response_ ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.8.0 gradio_client version: 1.5.1 ``` ### Severity I can work around it
closed
2025-01-02T13:50:18Z
2025-01-02T15:03:14Z
https://github.com/gradio-app/gradio/issues/10277
[ "bug" ]
RyougiShiki-214
1
pyg-team/pytorch_geometric
deep-learning
9,299
Index out of range in SchNet on a modification of QM9 dataset.
### 🐛 Describe the bug Hi! The idea of the code below is to run a custom version of SchNet on SMILES representations of molecules. Code: ```python print("Importing packages...") import torch import torch.nn.functional as F from torch_geometric.loader import DataLoader from torch_geometric.datasets import QM9 from torch_geometric.nn import SchNet from tqdm import tqdm import pickle import os print("Defining functions...") # Define a function to convert SMILES to PyG data objects def smiles_to_pyg_graph(smiles): from rdkit import Chem from rdkit.Chem import AllChem from torch_geometric.data import Data try: mol = Chem.MolFromSmiles(smiles) except: return None if mol is None: return None # Add Hydrogens to the molecule mol = Chem.AddHs(mol) AllChem.EmbedMolecule(mol) # Convert the molecule to a graph node_features = [] for atom in mol.GetAtoms(): node_features.append(atom_feature(atom)) # node_features = torch.tensor(node_features, dtype=torch.float) node_features = torch.tensor(node_features, dtype=torch.long) edge_indices = [] edge_features = [] for bond in mol.GetBonds(): start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() edge_indices.append((start, end)) edge_indices.append((end, start)) edge_features.append(bond_feature(bond)) edge_features.append(bond_feature(bond)) edge_indices = torch.tensor(edge_indices).t().to(torch.long) # edge_features = torch.tensor(edge_features, dtype=torch.float) edge_features = torch.tensor(edge_features, dtype=torch.long) return Data(x=node_features, edge_index=edge_indices, edge_attr=edge_features) # Helper functions for node and edge features def atom_feature(atom): return [atom.GetAtomicNum(), atom.GetFormalCharge()] def bond_feature(bond): return [int(bond.GetBondTypeAsDouble())] # Load dataset and convert SMILES to PyG data objects print("Creating dataset...") # if we have cached data, load it if os.path.exists('data/qm9_pyg_data.pkl'): print("Loading data from cache...") with open('data/qm9_pyg_data.pkl', 'rb') as f: data_list = pickle.load(f) else: print("Creating dataset from scratch...") dataset = QM9(root='data') data_list = [] # for i in tqdm(range(len(dataset))): for i in tqdm(range(1000)): smiles = dataset[i]['smiles'] data = smiles_to_pyg_graph(smiles) if data is not None: data_list.append(data) # Save data_list to a pickle file with open('data/qm9_pyg_data.pkl', 'wb') as f: pickle.dump(data_list, f) print(f"Example data entry in the data_list: {data_list[0]}") # Define a SchNet model class MySchNet(torch.nn.Module): def __init__(self, num_features, hidden_channels, num_targets): super(MySchNet, self).__init__() self.schnet = SchNet(hidden_channels, num_features) self.lin = torch.nn.Linear(hidden_channels, num_targets) def forward(self, data): print(f'pirnt from forward: data.x.shape: {data.x.shape}') print(f'pirnt from forward: data.edge_index.shape: {data.edge_index.shape}') print(f'pirnt from forward: data.edge_attr.shape: {data.edge_attr.shape}') out = self.schnet(data.x, data.edge_index, data.edge_attr) out = self.lin(out) return out # Instantiate the model and define other training parameters print("Defining model...") model = MySchNet(num_features=2, hidden_channels=64, num_targets=1) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) criterion = torch.nn.MSELoss() ``` The correspondign output before the Exception: ```bash Training... Batch size: 32 type(batch.x): <class 'torch.Tensor'> batch.x.dtype: torch.int64 Batch edge_index shape: torch.Size([2, 834]) Batch edge_index dtype: torch.int64 Batch edge_attr shape: torch.Size([834, 1]) Batch edge_attr dtype: torch.int64 pirnt from forward: data.x.shape: torch.Size([419, 2]) pirnt from forward: data.edge_index.shape: torch.Size([2, 834]) pirnt from forward: data.edge_attr.shape: torch.Size([834, 1]) ``` And an Exception message: ```bash --------------------------------------------------------------------------- IndexError Traceback (most recent call last) Cell In[5], [line 17](vscode-notebook-cell:?execution_count=5&line=17) [15](vscode-notebook-cell:?execution_count=5&line=15) print(f'Batch edge_attr dtype: {batch.edge_attr.dtype}') [16](vscode-notebook-cell:?execution_count=5&line=16) optimizer.zero_grad() ---> [17](vscode-notebook-cell:?execution_count=5&line=17) output = model(batch) [18](vscode-notebook-cell:?execution_count=5&line=18) loss = criterion(output, batch.y.view(-1, 1)) # Assuming targets are stored in batch.y [19](vscode-notebook-cell:?execution_count=5&line=19) loss.backward() File ~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs) [1530](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1530) return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] [1531](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1531) else: -> [1532](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1532) return self._call_impl(*args, **kwargs) File ~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1541, in Module._call_impl(self, *args, **kwargs) [1536](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1536) # If we don't have any hooks, we want to skip the rest of the logic in [1537](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1537) # this function, and just call forward. [1538](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1538) if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks [1539](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1539) or _global_backward_pre_hooks or _global_backward_hooks [1540](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1540) or _global_forward_hooks or _global_forward_pre_hooks): -> [1541](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1541) return forward_call(*args, **kwargs) [1543](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1543) try: [1544](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1544) result = None Cell In[4], [line 14](vscode-notebook-cell:?execution_count=4&line=14) [12](vscode-notebook-cell:?execution_count=4&line=12) print(f'pirnt from forward: data.edge_index.shape: {data.edge_index.shape}') [13](vscode-notebook-cell:?execution_count=4&line=13) print(f'pirnt from forward: data.edge_attr.shape: {data.edge_attr.shape}') ---> [14](vscode-notebook-cell:?execution_count=4&line=14) out = self.schnet(data.x, data.edge_index, data.edge_attr) [15](vscode-notebook-cell:?execution_count=4&line=15) out = self.lin(out) [16](vscode-notebook-cell:?execution_count=4&line=16) return out File ~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs) [1530](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1530) return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] [1531](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1531) else: -> [1532](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1532) return self._call_impl(*args, **kwargs) File ~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1541, in Module._call_impl(self, *args, **kwargs) [1536](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1536) # If we don't have any hooks, we want to skip the rest of the logic in [1537](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1537) # this function, and just call forward. [1538](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1538) if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks [1539](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1539) or _global_backward_pre_hooks or _global_backward_hooks [1540](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1540) or _global_forward_hooks or _global_forward_pre_hooks): -> [1541](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1541) return forward_call(*args, **kwargs) [1543](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1543) try: [1544](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1544) result = None File ~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:284, in SchNet.forward(self, z, pos, batch) [271](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:271) r"""Forward pass. [272](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:272) [273](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:273) Args: (...) [280](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:280) (default: :obj:`None`) [281](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:281) """ [282](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:282) batch = torch.zeros_like(z) if batch is None else batch --> [284](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:284) h = self.embedding(z) [285](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:285) edge_index, edge_weight = self.interaction_graph(pos, batch) [286](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch_geometric/nn/models/schnet.py:286) edge_attr = self.distance_expansion(edge_weight) File ~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs) [1530](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1530) return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] [1531](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1531) else: -> [1532](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1532) return self._call_impl(*args, **kwargs) File ~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1541, in Module._call_impl(self, *args, **kwargs) [1536](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1536) # If we don't have any hooks, we want to skip the rest of the logic in [1537](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1537) # this function, and just call forward. [1538](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1538) if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks [1539](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1539) or _global_backward_pre_hooks or _global_backward_hooks [1540](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1540) or _global_forward_hooks or _global_forward_pre_hooks): -> [1541](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1541) return forward_call(*args, **kwargs) [1543](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1543) try: [1544](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/module.py:1544) result = None File ~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/sparse.py:163, in Embedding.forward(self, input) [162](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/sparse.py:162) def forward(self, input: Tensor) -> Tensor: --> [163](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/sparse.py:163) return F.embedding( [164](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/sparse.py:164) input, self.weight, self.padding_idx, self.max_norm, [165](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/modules/sparse.py:165) self.norm_type, self.scale_grad_by_freq, self.sparse) File ~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/functional.py:2264, in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse) [2258](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/functional.py:2258) # Note [embedding_renorm set_grad_enabled] [2259](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/functional.py:2259) # XXX: equivalent to [2260](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/functional.py:2260) # with torch.no_grad(): [2261](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/functional.py:2261) # torch.embedding_renorm_ [2262](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/functional.py:2262) # remove once script supports set_grad_enabled [2263](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/functional.py:2263) _no_grad_embedding_renorm_(weight, input, max_norm, norm_type) -> [2264](/home/popova/Projects/citre-quantum-chemistry/nbs/~/.pyenv/versions/mambaforge/envs/pyg/lib/python3.12/site-packages/torch/nn/functional.py:2264) return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) IndexError: index out of range in self ``` Thanks for reading! I appreciate any feedback regarding the issue. Best regards, Anton. ### Versions Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.12.3 | packaged by conda-forge | (main, Apr 15 2024, 18:38:13) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-5.15.0-1058-aws-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 10.1.243 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla V100-SXM2-16GB Nvidia driver version: 535.171.04 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 79 Model name: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz Stepping: 1 CPU MHz: 3000.000 CPU max MHz: 3000.0000 CPU min MHz: 1200.0000 BogoMIPS: 4600.02 Hypervisor vendor: Xen Virtualization type: full L1d cache: 128 KiB L1i cache: 128 KiB L2 cache: 1 MiB L3 cache: 45 MiB NUMA node0 CPU(s): 0-7 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single pti fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx xsaveopt Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] pytorch-lightning==2.2.3 [pip3] torch==2.3.0 [pip3] torch_cluster==1.6.3+pt22cu121 [pip3] torch-ema==0.3 [pip3] torch_geometric==2.5.3 [pip3] torch_scatter==2.1.2+pt22cu121 [pip3] torch_sparse==0.6.18+pt22cu121 [pip3] torch_spline_conv==1.2.2+pt22cu121 [pip3] torchaudio==2.3.0 [pip3] torchmetrics==1.0.1 [pip3] torchvision==0.18.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] pytorch-lightning 2.2.3 pypi_0 pypi [conda] torch 2.3.0 pypi_0 pypi [conda] torch-cluster 1.6.3+pt22cu121 pypi_0 pypi [conda] torch-ema 0.3 pypi_0 pypi [conda] torch-geometric 2.5.3 pypi_0 pypi [conda] torch-scatter 2.1.2+pt22cu121 pypi_0 pypi [conda] torch-sparse 0.6.18+pt22cu121 pypi_0 pypi [conda] torch-spline-conv 1.2.2+pt22cu121 pypi_0 pypi [conda] torchaudio 2.3.0 pypi_0 pypi [conda] torchmetrics 1.0.1 pypi_0 pypi [conda] torchvision 0.18.0 pypi_0 pypi
open
2024-05-06T15:47:01Z
2024-05-13T09:22:23Z
https://github.com/pyg-team/pytorch_geometric/issues/9299
[ "bug" ]
CalmScout
1
nltk/nltk
nlp
2,525
install NLTK
Last login: Sat Apr 4 17:02:21 on ttys000 hanadys-mbp:~ hanadyahmed$ import nltk -bash: import: command not found hanadys-mbp:~ hanadyahmed$ python Python 2.7.10 (default, Jul 14 2015, 19:46:27) [GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> import nltk Traceback (most recent call last): File "<stdin>", line 1, in <module> ImportError: No module named nltk >>>
closed
2020-04-04T15:18:52Z
2020-04-12T22:35:35Z
https://github.com/nltk/nltk/issues/2525
[]
Hanadyma
4
PaddlePaddle/models
computer-vision
5,739
自定义切词错误
from LAC import LAC, custom lac = LAC() lac.model.custom = custom.Customization() lac.model.custom.add_word('中华人民共和国/国家') lac.model.custom.add_word('国2/标准') print(lac.run('中华人民共和国2008年奥运会')) // 返回 [['中华人民共和', '国2', '008年', '奥运会'], ['国家', '标准', 'TIME', 'nz']]
open
2023-11-09T09:20:01Z
2024-02-26T05:07:39Z
https://github.com/PaddlePaddle/models/issues/5739
[]
guoandzhong
0
numpy/numpy
numpy
27,781
BUG: `numpy.std` misbehaves with an identity array
### Describe the issue: I created a `(7,)`-shape array with the same number. Then I called `numpy.std`, and it returned `4` (far from the expected `0`). ### Reproduce the code example: ```python import numpy as np np.std(np.prod(np.full((7, 10), 45, dtype="float64"), axis=1),axis=0) ``` ### Error message: _No response_ ### Python and NumPy Versions: I tried this in two versions: ```shell 2.1.0 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] ``` ```shell 1.26.3 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] ``` ### Runtime Environment: ```shell [{'numpy_version': '2.1.0', 'python': '3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0]', 'uname': uname_result(system='Linux', node='1091aa609208', release='6.8.0-48-generic', version='#48~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Oct 7 11:24:13 UTC 2', machine='x86_64')}, {'simd_extensions': {'baseline': ['SSE', 'SSE2', 'SSE3'], 'found': ['SSSE3', 'SSE41', 'POPCNT', 'SSE42', 'AVX', 'F16C', 'FMA3', 'AVX2'], 'not_found': ['AVX512F', 'AVX512CD', 'AVX512_KNL', 'AVX512_KNM', 'AVX512_SKX', 'AVX512_CLX', 'AVX512_CNL', 'AVX512_ICL']}}, {'architecture': 'Haswell', 'filepath': '/usr/local/lib/python3.10/dist-packages/numpy.libs/libscipy_openblas64_-ff651d7f.so', 'internal_api': 'openblas', 'num_threads': 24, 'prefix': 'libscipy_openblas', 'threading_layer': 'pthreads', 'user_api': 'blas', 'version': '0.3.27'}] ``` ```shell [{'numpy_version': '1.26.3', 'python': '3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]', 'uname': uname_result(system='Linux', node='dc5b26f04603', release='6.8.0-48-generic', version='#48~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Oct 7 11:24:13 UTC 2', machine='x86_64')}, {'simd_extensions': {'baseline': ['SSE', 'SSE2', 'SSE3'], 'found': ['SSSE3', 'SSE41', 'POPCNT', 'SSE42', 'AVX', 'F16C', 'FMA3', 'AVX2'], 'not_found': ['AVX512F', 'AVX512CD', 'AVX512_KNL', 'AVX512_KNM', 'AVX512_SKX', 'AVX512_CLX', 'AVX512_CNL', 'AVX512_ICL']}}, {'architecture': 'Prescott', 'filepath': '/usr/local/lib/python3.10/dist-packages/numpy.libs/libopenblas64_p-r0-0cf96a72.3.23.dev.so', 'internal_api': 'openblas', 'num_threads': 24, 'prefix': 'libopenblas', 'threading_layer': 'pthreads', 'user_api': 'blas', 'version': '0.3.23.dev'}] ``` ### Context for the issue: The error in the returned result is significant.
closed
2024-11-17T04:35:32Z
2024-11-17T04:36:09Z
https://github.com/numpy/numpy/issues/27781
[ "00 - Bug" ]
zzctmac
0
huggingface/transformers
deep-learning
36,769
Add Audio inputs available in apply_chat_template
### Feature request Hello, I would like to request support for audio processing in the apply_chat_template function. ### Motivation With the rapid advancement of multimodal models, audio processing has become increasingly crucial alongside image and text inputs. Models like Qwen2-Audio, Phi-4-multimodal, and various models now support audio understanding, making this feature essential for modern AI applications. Supporting audio inputs would enable: ```python messages = [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}] }, { "role": "user", "content": [ {"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"}, {"type": "audio", "audio": "https://huggingface.co/microsoft/Phi-4-multimodal-instruct/resolve/main/examples/what_is_shown_in_this_image.wav"}, {"type": "text", "text": "Follow the instruction in the audio with this image."} ] } ] ``` This enhancement would significantly expand the capabilities of the library to handle the full spectrum of multimodal inputs that state-of-the-art models now support, keeping the transformers library at the forefront of multimodal AI development. ### Your contribution I've tested this implementation with several multimodal models and it works well for processing audio inputs alongside images and text. I'd be happy to contribute this code to the repository if there's interest.
open
2025-03-17T17:05:46Z
2025-03-17T20:41:41Z
https://github.com/huggingface/transformers/issues/36769
[ "Feature request" ]
junnei
1
PokemonGoF/PokemonGo-Bot
automation
6,242
Error whit pokemon_hunter.py
### Actual Behavior <!-- Tell us what is happening --> It give me this error: https://pastebin.com/Zxfq1XM6 ### Your FULL config.json (remove your username, password, gmapkey and any other private info) <!-- Provide your FULL config file, feel free to use services such as pastebin.com to reduce clutter --> ### Output when issue occurred <!-- Provide a reasonable sample from your output log (not just the error message), feel free to use services such as pastebin.com to reduce clutter --> https://pastebin.com/Zxfq1XM6 ### Steps to Reproduce <!-- Tell us the steps you have taken to reproduce the issue --> ### Other Information OS: Ubuntu 16.04 <!-- Tell us what Operating system you're using --> Branch: dev <!-- dev or master --> Git Commit: <!-- run 'git log -n 1 --pretty=format:"%H"' --> Python Version: <!-- run 'python -V' and paste it here) --> Any other relevant files/configs (eg: path files) <!-- Anything else which may be of relevance -->
open
2017-10-26T07:46:05Z
2017-11-09T02:07:59Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/6242
[]
tobias86aa
2
tqdm/tqdm
jupyter
1,359
Failing in notebook
- [x] I have marked all applicable categories: + [ ] exception-raising bug + [x] visual output bug - [x] I have visited the [source website], and in particular read the [known issues] - [x] I have searched through the [issue tracker] for duplicates - [x] I have mentioned version numbers, operating system and environment, where applicable: ``` 4.64.0 3.10.6 (main, Aug 11 2022, 13:36:31) [Clang 13.1.6 (clang-1316.0.21.2.5)] darwin ``` Upon switching to an Apple M1 chip, I have been unable to get the progress bars to work in the notebook. It is possible I have not installed something correctly. JupyterLab configuration: ``` JupyterLab v3.4.5 Other labextensions (built into JupyterLab) app dir: /opt/homebrew/Cellar/python@3.10/3.10.6_1/Frameworks/Python.framework/Versions/3.10/share/jupyter/lab @aquirdturtle/collapsible_headings v3.0.0 enabled OK @jlab-enhanced/cell-toolbar v3.5.1 enabled OK @jupyter-widgets/jupyterlab-manager v5.0.2 enabled OK @timkpaine/jupyterlab_miami_nights v0.3.1 enabled OK @yudai-nkt/jupyterlab_city-lights-theme v3.0.0 enabled OK js v0.1.0 enabled OK jupyter-matplotlib v0.11.2 enabled OK jupyterlab-code-snippets v2.1.0 enabled OK jupyterlab-jupytext v1.3.8 enabled OK jupyterlab-theme-hale v0.1.3 enabled OK ``` While everything works fine in the shell, when I run something in the notebookI get this: ```python from tqdm.notebook import tqdm for i in tqdm(range(10)): pass ``` ``` root: n: 0 total: 10 elapsed: 0.021565914154052734 ncols: null nrows: 84 prefix: "" ascii: false unit: "it" unit_scale: false rate: null bar_format: null postfix: null unit_divisor: 1000 initial: 0 colour: null ``` [source website]: https://github.com/tqdm/tqdm/ [known issues]: https://github.com/tqdm/tqdm/#faq-and-known-issues [issue tracker]: https://github.com/tqdm/tqdm/issues?q=
closed
2022-08-25T04:33:17Z
2023-04-14T13:29:11Z
https://github.com/tqdm/tqdm/issues/1359
[ "duplicate 🗐", "p2-bug-warning ⚠", "submodule-notebook 📓" ]
grburgess
7
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
1,487
Problem of pix2pix on two different devices that shows 'nan' at the begining
When I use 2 different devices to run the pix2pix training part , one can smoothly finish the training part but another leads to 'nan' in loss function since the begining as the figure shows. The environments and dataset(facades) are quite the same. ![image](https://user-images.githubusercontent.com/111649799/192196600-52aba3bc-6242-4ba2-b22a-62888e25863f.png)
open
2022-09-26T04:56:27Z
2022-09-27T20:24:54Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1487
[]
YujieXiang
1
huggingface/datasets
pytorch
6,841
Unable to load wiki_auto_asset_turk from GEM
### Describe the bug I am unable to load the wiki_auto_asset_turk dataset. I get a fatal error while trying to access wiki_auto_asset_turk and load it with datasets.load_dataset. The error (TypeError: expected str, bytes or os.PathLike object, not NoneType) is from filenames_for_dataset_split in a os.path.join call >>import datasets >>print (datasets.__version__) >>dataset = datasets.load_dataset("GEM/wiki_auto_asset_turk") System output: Generating train split: 100%|█| 483801/483801 [00:03<00:00, 127164.26 examples/s Generating validation split: 100%|█| 20000/20000 [00:00<00:00, 116052.94 example Generating test_asset split: 100%|██| 359/359 [00:00<00:00, 76155.93 examples/s] Generating test_turk split: 100%|███| 359/359 [00:00<00:00, 87691.76 examples/s] Traceback (most recent call last): File "/Users/abhinav.sethy/Code/openai_evals/evals/evals/grammarly_tasks/gem_sari.py", line 3, in <module> dataset = datasets.load_dataset("GEM/wiki_auto_asset_turk") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/datasets/load.py", line 2582, in load_dataset builder_instance.download_and_prepare( File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/datasets/builder.py", line 1005, in download_and_prepare self._download_and_prepare( File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/datasets/builder.py", line 1767, in _download_and_prepare super()._download_and_prepare( File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/datasets/builder.py", line 1100, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/datasets/builder.py", line 1565, in _prepare_split split_info = self.info.splits[split_generator.name] ~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^ File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/datasets/splits.py", line 532, in __getitem__ instructions = make_file_instructions( ^^^^^^^^^^^^^^^^^^^^^^^ File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/datasets/arrow_reader.py", line 121, in make_file_instructions info.name: filenames_for_dataset_split( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/datasets/naming.py", line 72, in filenames_for_dataset_split prefix = os.path.join(path, prefix) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<frozen posixpath>", line 76, in join TypeError: expected str, bytes or os.PathLike object, not NoneType ### Steps to reproduce the bug import datasets print (datasets.__version__) dataset = datasets.load_dataset("GEM/wiki_auto_asset_turk") ### Expected behavior Should be able to load the dataset without any issues ### Environment info datasets version 2.18.0 (was able to reproduce bug with older versions 2.16 and 2.14 also) Python 3.12.0
closed
2024-04-26T00:08:47Z
2024-05-29T13:54:03Z
https://github.com/huggingface/datasets/issues/6841
[]
abhinavsethy
8
healthchecks/healthchecks
django
858
Notify on failure rate
I have a case of a check that is a bit flaky these days, but all I care about is that it runs at least sometimes. Would it be possible to implement something like a threshold of failures for notifications? Instead of notifying immediately on the first failure, we would compute the percentage of failed jobs over a period of time and alert the user only when this threshold is crossed. Individual checks would have different thresholds and time periods. Users may also like to configure the threshold with percents, or absolute numbers (X failures over Y minutes for example). To keep the current behavior, the default would be alerting if the percentage of failed jobs exceeds 0% (or 0 failures) over a minute. If this is implemented, we could also improve it later by adding thresholds for integrations. For example, I may want to be alerted by email for every failed job but only by phone call if the failure rate exceeds some higher threshold.
open
2023-07-05T21:56:32Z
2023-12-15T12:10:52Z
https://github.com/healthchecks/healthchecks/issues/858
[ "feature" ]
Crocmagnon
7
tfranzel/drf-spectacular
rest-api
626
could not resolve authenticator JWTCookieAuthenticator
I'm seeing an error, could not resolve authenticator <class 'dj_rest_auth.jwt_auth.JWTCookieAuthentication'>. There was no OpenApiAuthenticationExtension registered for that class. Try creating one by subclassing it. Ignoring for now. my default auth classes are below: ` "DEFAULT_AUTHENTICATION_CLASSES": ( "rest_framework.authentication.SessionAuthentication", "rest_framework.authentication.TokenAuthentication", "dj_rest_auth.jwt_auth.JWTCookieAuthentication", ),`
closed
2021-12-24T15:55:00Z
2021-12-25T10:50:55Z
https://github.com/tfranzel/drf-spectacular/issues/626
[]
aabanaag
2
charlesq34/pointnet
tensorflow
33
Recognize bottle from ycb data as monitor!
hi.. I'm trying to use pointnet to recognize object from ycb dataset (http://www.ycbbenchmarks.com/) under the category of bottle, and it does have very similar shape to training dataset, but point-net did not recognize it correctly! I think the issue may be related to how I prepare/down-sample the data! I tried with the 006_mustard_bottle.ply, it contains 847289 point, down-sampled it randomly to 1024 point: ![image](https://user-images.githubusercontent.com/1568843/29121141-5f1f5566-7d1e-11e7-9940-aaf2160dfed9.png) result in following: ![image](https://user-images.githubusercontent.com/1568843/29120552-ca9cd302-7d1b-11e7-88be-a8b7647b4433.png) ![image](https://user-images.githubusercontent.com/1568843/29120560-d50a8bea-7d1b-11e7-9651-8f40e02103bf.png) The classification result was : irplane = -10065.7 bathtub = -10174.7 bed = -5508.48 bench = -6663.82 bookshelf = -7400.75 bottle = -15664.8 bowl = -6521.66 car = -14696.8 chair = -11587.8 cone = -8178.83 cup = -13763.6 curtain = -4454.49 desk = -19952.4 door = -12188.9 dresser = -4633.64 flower_pot = 1036.69 glass_box = -7719.06 guitar = -8977.43 keyboard = -15161.3 lamp = -5138.02 laptop = -6836.96 mantel = -13274.9 monitor = -9731.3 night_stand = -11224.4 person = -16864.7 piano = -17242.8 plant = 1167.26 **radio = 1352.54** range_hood = -13157.3 sink = -9762.18 sofa = -18294.6 stairs = -5749.73 stool = -10743.8 table = -6021.3 tent = -11153.3 toilet = -10596.6 tv_stand = -3238.71 vase = -7211.66 wardrobe = -13034.5 xbox = -6992.64 I tried different approach, by voxlize to get better result: ![image](https://user-images.githubusercontent.com/1568843/29120693-91cb177c-7d1c-11e7-99d5-4783f3ac221b.png) ![image](https://user-images.githubusercontent.com/1568843/29120701-982a1762-7d1c-11e7-93e9-83424acafa50.png) loss value 13.4148 airplane = -9.70358 bathtub = -19.6874 bed = -13.8628 bench = -15.0484 bookshelf = -14.7929 bottle = -10.4973 bowl = -14.3144 car = -7.3393 chair = -12.6577 cone = -8.53707 cup = -7.65949 curtain = -19.0757 desk = -16.9046 door = -20.5851 dresser = -8.47661 flower_pot = 1.46643 glass_box = -15.3492 guitar = -12.4239 keyboard = -20.1066 lamp = -8.02352 laptop = -17.523 mantel = -13.7787 **monitor = 2.63108** night_stand = -6.75316 person = -11.2164 piano = -3.55436 plant = -2.09806 radio = -3.64729 range_hood = -14.5621 sink = -10.3373 sofa = -14.9684 stairs = -3.0044 stool = -14.2689 table = -19.0393 tent = -3.54769 toilet = -4.67468 tv_stand = -15.6987 vase = -5.87417 wardrobe = -15.3384 xbox = -11.0024 What is the best approach to prepare data to get more accurate results?
closed
2017-08-09T12:24:05Z
2019-12-10T11:47:07Z
https://github.com/charlesq34/pointnet/issues/33
[]
mzaiady
5
mwaskom/seaborn
data-science
3,479
Annotations on heatmaps not shown for all values
Example: https://www.tutorialspoint.com/how-to-annotate-each-cell-of-a-heatmap-in-seaborn ```python import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True df = pd.DataFrame(np.random.random((5, 5)), columns=["a", "b", "c", "d", "e"]) sns.heatmap(df, annot=True, annot_kws={"size": 7}) plt.show() ``` My result on both my laptop and my desktop using VSCode and/or PyCharm Pro: ![image](https://github.com/mwaskom/seaborn/assets/143844667/34a2bf32-0aba-4f3c-901d-ba796db9168a) Similarly, the project I was working on had results like this: ![image](https://github.com/mwaskom/seaborn/assets/143844667/c0129994-9cb1-4d37-b9a1-e0602d1aa6d9) ````terminal pip list Package Version --------------- ------------ contourpy 1.1.1 cycler 0.11.0 fonttools 4.42.1 kiwisolver 1.4.5 matplotlib 3.8.0 numpy 1.26.0 packaging 23.1 pandas 2.1.0 Pillow 10.0.1 pip 23.2.1 pyparsing 3.1.1 python-dateutil 2.8.2 pytz 2023.3.post1 seaborn 0.12.2 setuptools 65.5.0 six 1.16.0 tzdata 2023
closed
2023-09-18T01:05:34Z
2024-09-24T03:12:06Z
https://github.com/mwaskom/seaborn/issues/3479
[]
ellie-okay
3
InstaPy/InstaPy
automation
6,050
commenting
i want to have the users follower and following list as an output and also i want my bot to comment on the post with the most likes (of every user in the list) please help me if you can thanks
open
2021-01-24T16:31:44Z
2021-07-21T02:19:12Z
https://github.com/InstaPy/InstaPy/issues/6050
[ "wontfix" ]
melikaafs
1
tradingstrategy-ai/web3-ethereum-defi
pytest
11
autosummary docs to gitignore
Currently autosummary docs are generated, but they still get committed to the repo. - Add to .gitignore. - Remove from the existing git tree - Check that readthedocs will still correctly build the docs
closed
2022-03-17T21:50:27Z
2022-03-18T14:54:49Z
https://github.com/tradingstrategy-ai/web3-ethereum-defi/issues/11
[ "priority: P2" ]
miohtama
0
BeastByteAI/scikit-llm
scikit-learn
78
Safe openai version to work on?
Hi, I try to use the few-shot classifier in the sample code. However, it seems that the openai package is restructuring their codes: https://community.openai.com/t/attributeerror-module-openai-has-no-attribute-embedding/484499. Here are the error codes: Could not obtain the completion after 3 retries: `APIRemovedInV1 :: You tried to access openai.ChatCompletion, but this is no longer supported in openai>=1.0.0 - see the README at https://github.com/openai/openai-python for the API. You can run `openai migrate` to automatically upgrade your codebase to use the 1.0.0 interface. ... A detailed migration guide is available here: https://github.com/openai/openai-python/discussions/742 ` None Could not extract the label from the completion: 'NoneType' object is not subscriptable So, is there an version of the openai package that is safe to run?
closed
2023-11-09T07:08:53Z
2023-11-09T07:23:45Z
https://github.com/BeastByteAI/scikit-llm/issues/78
[]
Dededon
0
microsoft/nni
pytorch
4,945
Supported for torch.sum
**Describe the issue**: I noticed that currently NNI does not support the `torch.sum` operation. But I did find the `torch.sum` operation in some network models, such as `resnest`. I wrote my own support for `torch.sum` but it doesn't seem right. ```python def sum_python(node, speedup): c_node = node.key_node inputs = list(c_node.inputs()) dim_list = translate_list(inputs[1], speedup) keep_dim = inputs[2].toIValue() new_sum = partial(torch.sum, dim=tuple(dim_list), keepdim=keep_dim) return new_sum ``` Some masks of layers will be omitted. ![image](https://user-images.githubusercontent.com/38418898/174245392-522b2798-223f-49f1-a2ca-51942dd51cef.png) **Environment**: - NNI version: the latest - Training service (local|remote|pai|aml|etc): - Client OS: centos 7 - Server OS (for remote mode only): - Python version: 3.8.8 - PyTorch/TensorFlow version: 1.8.0 - Is conda/virtualenv/venv used?: yes - Is running in Docker?: no **How to reproduce it?**: This is the simpe code and you can download `mmclassification` to reproduce it. Note that the pytorch version should be higher than 1.8.0 or equal. ```python import torch from argparse import ArgumentParser from mmcls.apis import inference_model, init_model, show_result_pyplot from nni.compression.pytorch import ModelSpeedup from nni.compression.pytorch.utils.counter import count_flops_params from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import SlimPruner, L1NormPruner, FPGMPruner from nni.compression.pytorch.utils import not_safe_to_prune device = 'cuda:0' config = 'configs/resnest/resnest50_8xb16_cifar10.py' checkpoint = None img_file = 'demo/demo.JPEG' # build the model from a config file and a checkpoint file model = init_model(config, checkpoint, device=device) model.forward = model.dummy_forward pre_flops, pre_params, _ = count_flops_params(model, torch.randn([128, 3, 32, 32]).to(device)) im = torch.ones(1, 3, 128, 128).to(device) out = model(im) # with torch.no_grad(): # input_name = ['input'] # output_name = ['output'] # onnxname = 'resnest.onnx' # torch.onnx.export(model, im, onnxname, input_names = input_name, output_names = output_name, # opset_version=11, training=False, verbose=False, do_constant_folding=False) # print(f'successful export onnx {onnxname}') # exit() # scores = model(return_loss=False, **data) # scores = model(return_loss=False, **im) # test a single image # result = inference_model(model, img_file) # Start to prune and speedupls print('\n' + '=' * 50 + ' START TO PRUNE THE BEST ACCURACY PRETRAINED MODEL ' + '=' * 50) not_safe = not_safe_to_prune(model, im) print('\n' + '=' * 50 + 'not_safe' + '=' * 50, not_safe) cfg_list = [] for name, module in model.named_modules(): print(name) if name in not_safe: continue if isinstance(module, torch.nn.Conv2d): cfg_list.append({'op_types':['Conv2d'], 'sparsity':0.2, 'op_names':[name]}) print('cfg_list') for i in cfg_list: print(i) pruner = FPGMPruner(model, cfg_list) _, masks = pruner.compress() pruner.show_pruned_weights() pruner._unwrap_model() pruner.show_pruned_weights() ModelSpeedup(model, dummy_input=im, masks_file=masks, confidence=32).speedup_model() torch.jit.trace(model, im, strict=False) print(model) flops, params, results = count_flops_params(model, torch.randn([128, 3, 32, 32]).to(device)) print(f'Pretrained model FLOPs {pre_flops/1e6:.2f} M, #Params: {pre_params/1e6:.2f}M') print(f'Finetuned model FLOPs {flops/1e6:.2f} M, #Params: {params/1e6:.2f}M') model.forward = model.forward_ torch.save(model, 'chek/prune_model/resnest50_8xb16_cifar10_sparsity_0.2.pth') ``` The config file for `resnest50_8xb16_cifar10.py` is: ```python _base_ = [ '../_base_/datasets/cifar10_bs16.py', '../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='ImageClassifier', backbone=dict( type='ResNeSt', depth=50, num_stages=4, out_indices=(3, ), style='pytorch'), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=10, in_channels=2048, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, num_classes=10, reduction='mean', loss_weight=1.0), topk=(1, 5), cal_acc=False)) train_cfg = dict(mixup=dict(alpha=0.2, num_classes=10)) lr_config = dict(policy='step', step=[120, 170]) runner = dict(type='EpochBasedRunner', max_epochs=200) ```
open
2022-06-17T07:14:28Z
2022-11-17T03:33:52Z
https://github.com/microsoft/nni/issues/4945
[ "bug", "model compression", "ModelSpeedup" ]
maxin-cn
29
allenai/allennlp
nlp
5,153
Implement a ROUGE metric that faithfully reproduces the official metric written in perl.
<!-- Please fill this template entirely and do not erase any of it. We reserve the right to close without a response bug reports which are incomplete. If you have a question rather than a bug, please ask on [Stack Overflow](https://stackoverflow.com/questions/tagged/allennlp) rather than posting an issue here. --> ## Checklist <!-- To check an item on the list replace [ ] with [x]. --> - [x] I have verified that the issue exists against the `main` branch of AllenNLP. - [x] I have read the relevant section in the [contribution guide](https://github.com/allenai/allennlp/blob/main/CONTRIBUTING.md#bug-fixes-and-new-features) on reporting bugs. - [x] I have checked the [issues list](https://github.com/allenai/allennlp/issues) for similar or identical bug reports. - [x] I have checked the [pull requests list](https://github.com/allenai/allennlp/pulls) for existing proposed fixes. - [x] I have checked the [CHANGELOG](https://github.com/allenai/allennlp/blob/main/CHANGELOG.md) and the [commit log](https://github.com/allenai/allennlp/commits/main) to find out if the bug was already fixed in the main branch. - [x] I have included in the "Description" section below a traceback from any exceptions related to this bug. - [x] I have included in the "Related issues or possible duplicates" section below all related issues and possible duplicate issues (If there are none, check this box anyway). - [x] I have included in the "Environment" section below the name of the operating system and Python version that I was using when I discovered this bug. - [x] I have included in the "Environment" section below the output of `pip freeze`. - [x] I have included in the "Steps to reproduce" section below a minimally reproducible example. ## Description <!-- Please provide a clear and concise description of what the bug is here. --> I was using `allennlp-models==2.3.0` and training with the script `allennlp-models/training_scripts/generation/bart_cnn_dm.jsonnet`. And I've got the following performance output: ``` { "best_epoch": 0, "peak_worker_0_memory_MB": 77679.125, "peak_gpu_0_memory_MB": 19497.5625, "training_duration": "1 day, 9:30:58.908029", "training_start_epoch": 0, "training_epochs": 2, "epoch": 2, "training_loss": 2.7070548462225283, "training_worker_0_memory_MB": 77679.125, "training_gpu_0_memory_MB": 19497.5625, "validation_ROUGE-1_R": 0.4871779537805129, "validation_ROUGE-2_R": 0.26309701739882685, "validation_ROUGE-1_P": 0.3966578995429105, "validation_ROUGE-2_P": 0.21290430088784706, "validation_ROUGE-1_F1": 0.4283963905120849, "validation_ROUGE-2_F1": 0.23045514136364303, "validation_ROUGE-L": 0.3206116030616199, "validation_BLEU": 0.18484394329002954, "validation_loss": 0.0, "best_validation_ROUGE-1_R": 0.47620558012437575, "best_validation_ROUGE-2_R": 0.25229075181929206, "best_validation_ROUGE-1_P": 0.38737318484205874, "best_validation_ROUGE-2_P": 0.20447094269175353, "best_validation_ROUGE-1_F1": 0.41917399613391276, "best_validation_ROUGE-2_F1": 0.22154245158723443, "best_validation_ROUGE-L": 0.31225680111602044, "best_validation_BLEU": 0.17805890029860716, "best_validation_loss": 0.0 } ``` However, according to the implementation from fairseq (and what's reported in the paper), the Rouge-1/2/L score should be 44.16/21.28/40.90, so that the Rouge-L score is 9.7 points below the reference value, while Rouge-1/2 scores have some improvements. I am wondering if this is expected and why the Rouge-L score is significantly worse. Is this an issue with how BART models are implemented in `allennlp-models` or how Rouge-L score is computed in `allennlp.training.metrics`. </p> </details> ## Related issues or possible duplicates - None ## Environment <!-- Provide the name of operating system below (e.g. OS X, Linux) --> OS: Linux <!-- Provide the Python version you were using (e.g. 3.7.1) --> Python version: 3.8.8 <details> <summary><b>Output of <code>pip freeze</code>:</b></summary> <p> <!-- Paste the output of `pip freeze` in between the next two lines below --> (I've created an environment with only `allennlp==2.3.0` and no other pkgs installed) ``` allennlp==2.3.0 attrs==20.3.0 blis==0.7.4 boto3==1.17.53 botocore==1.20.53 catalogue==2.0.3 certifi==2020.12.5 chardet==4.0.0 click==7.1.2 configparser==5.0.2 conllu==4.4 cymem==2.0.5 docker-pycreds==0.4.0 filelock==3.0.12 ftfy==6.0.1 gitdb==4.0.7 GitPython==3.1.14 h5py==3.2.1 idna==2.10 iniconfig==1.1.1 Jinja2==2.11.3 jmespath==0.10.0 joblib==1.0.1 jsonnet==0.17.0 lmdb==1.2.0 MarkupSafe==1.1.1 more-itertools==8.7.0 murmurhash==1.0.5 nltk==3.6.1 numpy==1.20.2 overrides==3.1.0 packaging==20.9 pathtools==0.1.2 pathy==0.4.0 Pillow==8.2.0 pluggy==0.13.1 preshed==3.0.5 promise==2.3 protobuf==3.15.8 psutil==5.8.0 py==1.10.0 pydantic==1.7.3 pyparsing==2.4.7 py-rouge==1.1 pytest==6.2.3 python-dateutil==2.8.1 PyYAML==5.4.1 regex==2021.4.4 requests==2.25.1 s3transfer==0.3.7 sacremoses==0.0.45 scikit-learn==0.24.1 scipy==1.6.2 sentencepiece==0.1.95 sentry-sdk==1.0.0 shortuuid==1.0.1 six==1.15.0 smart-open==3.0.0 smmap==4.0.0 spacy==3.0.5 spacy-legacy==3.0.2 srsly==2.4.1 subprocess32==3.5.4 tensorboardX==2.2 thinc==8.0.2 threadpoolctl==2.1.0 tokenizers==0.10.2 toml==0.10.2 torch==1.8.1+cu111 torchvision==0.9.1 tqdm==4.60.0 transformers==4.5.1 typer==0.3.2 typing-extensions==3.7.4.3 urllib3==1.26.4 wandb==0.10.26 wasabi==0.8.2 wcwidth==0.2.5 word2number==1.1 ``` </p> </details> ## Steps to reproduce 1. Create an environment with `python==3.8` and `allennlp==2.3.0` 2. Clone the `allennlp-models` repo 3. Run `allennlp train training_scripts/generaion/bart_cnn_dm.jsonnet -s tmp-save-dir --include-package allennlp_models` <details> <summary><b>Example source:</b></summary> <p> <!-- Add a fully runnable example in between the next two lines below that will reproduce the bug --> ``` ``` </p> </details>
open
2021-04-24T21:44:58Z
2021-06-09T07:42:53Z
https://github.com/allenai/allennlp/issues/5153
[ "Contributions welcome", "Feature request" ]
niansong1996
26
DistrictDataLabs/yellowbrick
scikit-learn
623
Pass fitted or unfitted objects to Classification Visualizers - how to avoid fitting X_train twice?
For yellowbrick `visualize()` - from the __Classification Visualizers__ section: - I am trying to avoid fitting a classification model twice to training data. Sould we pass fitted or unfitted model/gridsearch objects to the `visualize` method? - my question is about when to call `visualizer.fit()` - before or after performing a `GridSearchCV`? Here is a minimum example to recreate my question - I have a basic [`scikit-learn` pipeline that performs a simple grid search](https://stackoverflow.com/q/37021338/4057186) ``` from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from yellowbrick.classifier import DiscriminationThreshold import pandas as pd from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline data = ( pd.read_csv( 'https://raw.githubusercontent.com/LuisM78/Occupancy-detection-data/master/datatest2.txt' ) ) # Specify the features of interest and the classes of the target features = ["Temperature", "HumidityRatio", "Light", "CO2", "Humidity"] classes = [0, 1] # Extract the numpy arrays from the data frame X = data[features].as_matrix() y = data.Occupancy.as_matrix() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Instantiate the classification model and visualizer mypipe = Pipeline(steps=[('forest', RandomForestClassifier())]) mydict = {'forest__n_estimators': [10,11]} gs = GridSearchCV(mypipe, mydict, scoring='roc_auc', cv=3) gs.fit(X_train, y_train) print(gs.best_score_) visualizer = DiscriminationThreshold(gs) visualizer.fit(X_train, y_train) visualizer.poof() print(visualizer.best_score_) ``` Code output ``` 0.997314002777 0.997314002777 ``` In the [__Class Balance__ docs](http://www.scikit-yb.org/en/latest/api/classifier/class_balance.html#module-yellowbrick.classifier.class_balance), it says > model: estimator Scikit-Learn estimator object. Should be an instance of a classifier, else __init__() will raise an exception. though I couldn't find if it requires fitted or unfitted estimators(???) __Questions__ __Case A__ Do I pass the fitted grid search object to the [Classification Visualizers](http://www.scikit-yb.org/en/latest/api/classifier/index.html#classification-visualizers)? Or must I pass only the unfitted objects to the `visualizer`?
closed
2018-10-01T22:38:43Z
2018-11-19T16:20:06Z
https://github.com/DistrictDataLabs/yellowbrick/issues/623
[ "type: question" ]
edesz
6
feature-engine/feature_engine
scikit-learn
776
Provide optional "transform" function to run for each feature selection fit
**Is your feature request related to a problem? Please describe.** Sometimes I use transformations that are dependent on the feature set. For example, one typical transformation is scaling by the total (e.g., x/x.sum()). **Describe the solution you'd like** The original feature matrix is retained and upon each fit, the transformation is computed. Here's a wacky version just to show the concept: ``` def transform(X): return X/X.sum(axis=1).reshape(-1,1) X = np.random.RandomState(0).randint(low=0, high=1000, size=(10,5)) y = np.random.RandomState(0).choice([0,1], size=10) for i in range(1, X.shape[1]+1): X_query = X[:,:i] if X_query.shape[1] > 1: X_query = transform(X_query) # fit(X_query, y) ``` **Describe alternatives you've considered** I'm currently making a custom class and reimplementing the fit method to have this feature. **Additional context** NA
closed
2024-06-24T20:58:39Z
2024-08-24T11:57:42Z
https://github.com/feature-engine/feature_engine/issues/776
[ "wontfix" ]
jolespin
3
clovaai/donut
computer-vision
7
Release yaml files
Hi, Thank you for sharing your interesting work. I was wondering if there is an expected date on when you will be releasing yaml files regarding anything other than CORD? I want to reproduce the experimental results in my environment.
closed
2022-08-01T00:28:02Z
2022-08-10T09:49:28Z
https://github.com/clovaai/donut/issues/7
[]
rtanaka-lab
2
man-group/arctic
pandas
977
argument of type 'NoneType' is not iterable (when updating)
#### Arctic Version ``` 1.80.5 ``` #### Arctic Store ``` ChunkStore ``` #### Platform and version Linux #### Description of problem and/or code sample that reproduces the issue I also encountered the same bug. When the original collection has this row of data, but the metadata collection does not have this row of data, this bug will occur when updating https://github.com/man-group/arctic/issues/923#issue-1046762464
closed
2023-01-16T06:30:21Z
2023-02-16T09:52:01Z
https://github.com/man-group/arctic/issues/977
[]
TwoBeng
1
explosion/spaCy
deep-learning
13,709
Unable to fine-tune previously trained transformer based spaCy NER.
## How to reproduce the behaviour Use spacy to fine-tune a base model with a transformer from hugging face: python -m spacy train config.cfg --output ./output --paths.train ./train.spacy --paths.dev ./dev.spacy Collect new tagged entries under new sets and set your model location to the output/model-last in a new config: python -m spacy train fine_tune_config.cfg --output ./fine_tune_output --paths.train ./newtrain.spacy --paths.dev ./newdev.spacy You will get an error about a missing config.json. Even replacing this will then lead to an error of a missing tokenizer. ## Your Environment <!-- Include details of your environment. You can also type `python -m spacy info --markdown` and copy-paste the result here.--> * Operating System: Windows 11 - **spaCy version:** 3.7.2 - **Platform:** Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35 - **Python version:** 3.10.13
open
2024-12-06T04:46:11Z
2024-12-06T04:57:26Z
https://github.com/explosion/spaCy/issues/13709
[]
jlustgarten
1
dask/dask
numpy
11,318
cannot access local variable 'divisions' where it is not associated with a value
getting this error when trying to use sort_values multiple times **Anything else we need to know?**: Dask Scheduler Compute: 1core, 1GB mem Dask Workers: 3, 1core, 1GB mem each using docker to setup a cluster docker compose.yml **Environment**: -Dask version:2024.5.2 - Python version: 3.12 - Operating System: linux (docker) - Install method (conda, pip, source): pip
closed
2024-08-14T22:15:11Z
2024-10-10T17:02:48Z
https://github.com/dask/dask/issues/11318
[ "needs triage" ]
Cognitus-Stuti
1
datadvance/DjangoChannelsGraphqlWs
graphql
45
Graphene v3 support?
is there any plan to support v3 of graphene? if it's already in the roadmap, i can help to test :)
closed
2020-08-02T08:34:59Z
2023-04-27T21:08:38Z
https://github.com/datadvance/DjangoChannelsGraphqlWs/issues/45
[]
hyusetiawan
14
microsoft/nni
data-science
5,758
USER_CANCELED
![issue](https://github.com/microsoft/nni/assets/100355131/f41ea6b1-420e-41ed-a6fb-50fbabd8970d) When I submit the code to run on the server, without performing any operations, the status changes to "USER_CANCELED". Even the NNI code that used to run successfully before is now encountering this issue when I try to run it. Could anyone please advise on how to solve this problem?
closed
2024-03-19T11:25:33Z
2024-03-28T02:32:51Z
https://github.com/microsoft/nni/issues/5758
[]
fantasy0905
0
ultrafunkamsterdam/undetected-chromedriver
automation
1,038
selenium.common.exceptions.InvalidArgumentException: Message: invalid argument: cannot parse capability: goog:chromeOptions from invalid argument: unrecognized chrome option: excludeSwitches
I am finding this error. Please help me.
open
2023-02-05T21:22:33Z
2023-06-01T16:42:25Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/1038
[]
mominurr
3
httpie/cli
api
1,425
Support httpie in Chrome DevTools
This is not httpie tool request per-se, instead as an avid user of the httpie tool, I find it frustrating that in the network tab of the Chrome DevTools, there's an option in the context menu of a request to copy it as a Curl or Fetch command line, but not as Httpie command line. It would be great if anyone from this community will work on a browser extension to support that!
open
2022-07-27T16:12:06Z
2022-07-27T17:06:06Z
https://github.com/httpie/cli/issues/1425
[ "enhancement" ]
tomers
1
replicate/cog
tensorflow
1,784
Update cog.run nav to link to docs/deploy.md
@mattt recently made some updates to `docs/deploy.md` in https://github.com/replicate/cog/pull/1761/files I went to take a look at those changes on the [cog.run](https://cog.run/) website, but noticed that file is not currently referenced from the site's nav/sidevar. See https://github.com/replicate/cog/blob/93ec993607d14c155d4c90bd5e5b3f622f983cf7/mkdocs.yml#L4-L16 I think I may have been responsible for omitting this when setting up the website, because the doc's purpose wasn't entirely clear to me. It's called "Deploy models with Cog" but it's not really about deployment, so much as running Cog locally and a few docker incantations to be aware of. Maybe we should rename it?
open
2024-07-02T15:48:47Z
2024-07-02T15:48:47Z
https://github.com/replicate/cog/issues/1784
[]
zeke
0
onnx/onnx
pytorch
5,847
May I ask if PSD and SoudenMVDR in torchaudio support conversion to onnx?
May I ask if PSD and SoudenMVDR in torchaudio support conversion to onnx?
closed
2024-01-06T09:08:02Z
2025-01-29T06:43:46Z
https://github.com/onnx/onnx/issues/5847
[ "question", "topic: converters", "stale" ]
wrz1999
2
sinaptik-ai/pandas-ai
pandas
645
Custom Prompt
### 🐛 Describe the bug hey All, I'm just new to pandasai i want help to use my custom prompt instead of default prompt template @gventuri thanks in advance
closed
2023-10-14T13:36:52Z
2024-06-01T00:20:13Z
https://github.com/sinaptik-ai/pandas-ai/issues/645
[]
L0GESHWARAN
1
ydataai/ydata-profiling
jupyter
1,429
Common Values incorrectly reporting (missing)
### Current Behaviour OS:Mac Python:3.11 Interface: Jupyter Lab pip: 22.3.1 [dataset](https://github.com/plotly/datasets/blob/master/2015_flights.parquet) |DEPARTURE_DELAY|ARRIVAL_DELAY|DISTANCE|SCHEDULED_DEPARTURE| |---------------|-------------|--------|-------------------| | -11.0| -22.0| 1448|0.08333333333333333| | -8.0| -9.0| 2330|0.16666666666666666| | -2.0| 5.0| 2296| 0.3333333333333333| | -5.0| -9.0| 2342| 0.3333333333333333| | -1.0| -21.0| 1448| 0.4166666666666667| It appears that when a column value_counts exceeds 200 within the `common values` section: - when aggregations of a value exceed 200 the remaining is categorised as `(missing)` It overall contradicts Missing and Missing(%) main statistics for a variable <img width="1066" alt="image" src="https://github.com/ydataai/ydata-profiling/assets/39754073/e2854ae1-3fbe-41fa-8f4a-8e73e696dc1f"> ### Expected Behaviour The `(Missing)` section within `Common values` should be removed or the difference to "other values" ### Data Description https://github.com/plotly/datasets/blob/master/2015_flights.parquet ### Code that reproduces the bug ```Python from pyspark.sql import SparkSession from pyspark.sql import functions as F from ydata_profiling import ProfileReport import json spark = SparkSession.builder.appName("ydata").getOrCreate() spark_df = spark.read.parquet("ydata-test/2015_flights.parquet") n_notnull = spark_df.filter(F.col("SCHEDULED_DEPARTURE").isNotNull()).count() profile = ProfileReport(spark_df, minimal=True) value_counts_values = sum(json.loads(profile.to_json())["variables"]["SCHEDULED_DEPARTURE"]["value_counts_without_nan"].values()) missing_common_values = 1650418 # as per html report assert missing_common_values == (n_notnull - value_counts_values) ``` ### pandas-profiling version 4.5.1 ### Dependencies ```Text ydata-profiling==4.5.1 pyspark==3.4.1 pandas==2.0.3 numpy==1.23.5 ``` ### OS macos ### Checklist - [X] There is not yet another bug report for this issue in the [issue tracker](https://github.com/ydataai/pandas-profiling/issues) - [X] The problem is reproducible from this bug report. [This guide](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) can help to craft a minimal bug report. - [X] The issue has not been resolved by the entries listed under [Common Issues](https://pandas-profiling.ydata.ai/docs/master/pages/support_contrib/common_issues.html).
open
2023-08-24T12:52:21Z
2024-01-28T05:33:33Z
https://github.com/ydataai/ydata-profiling/issues/1429
[ "bug 🐛", "spark :zap:" ]
danhosanee
1
plotly/dash
dash
3,212
Dash 3.0 getattr on app recursive error
Calling `getattr(app, "property_name")` generate an infinite recursive error.
closed
2025-03-12T18:33:46Z
2025-03-13T13:21:26Z
https://github.com/plotly/dash/issues/3212
[ "bug", "P1", "dash-3.0" ]
T4rk1n
0
plotly/plotly.py
plotly
5,053
Flatten figures of subplot for easy plotting
I just dabbled into plotly for some project and i noticed via the documentation and stackoverflow that plotly does not have an easy way to flatten figures for easy subplotting. You literally have to explicitly define which rows and column you want your trace to be. It would be great if plotly could have a similar feature to matplotlib where you could flatten a series of axes subplots into a list and just for loop through it. Example below for clarity: ``` fig, axs = plt.subplots(nrows=4,ncols=4) axs = axs.flatten() for ax in axs: ax.plot() # plot on each subplot from left to right for each row ```
open
2025-02-23T05:01:56Z
2025-02-24T16:19:03Z
https://github.com/plotly/plotly.py/issues/5053
[ "feature", "P3" ]
Folarin14
0
Kanaries/pygwalker
plotly
137
Code export showing "Cancel" as "Cancal"
Just a really small one. When clicking on "export_code" on the visualization tab, the pop-out shows "Cancal" instead of "Cancel" on the bottom right (see picture in attachment). ![grafik](https://github.com/Kanaries/pygwalker/assets/111295916/a6ac062d-c1b0-4acf-9e1e-05faa4a30e98)
closed
2023-06-21T13:38:17Z
2023-06-25T12:01:32Z
https://github.com/Kanaries/pygwalker/issues/137
[ "P2" ]
abfallboerseMWE
3
mars-project/mars
pandas
2,860
[BUG]xgb train exception in py 3.9.7
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Describe the bug** raise exception when train model use xgb my code like this ``` (ray) [ray@ml-test ~]$ cat test_mars_xgb.py import ray ray.init(address="ray://172.16.210.22:10001") import mars import mars.tensor as mt import mars.dataframe as md session = mars.new_ray_session(worker_num=2, worker_mem=2 * 1024 ** 3) from sklearn.datasets import load_boston boston = load_boston() data = md.DataFrame(boston.data, columns=boston.feature_names) print("data.head().execute()") print(data.head().execute()) print("data.describe().execute()") print(data.describe().execute()) from mars.learn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(data, boston.target, train_size=0.7, random_state=0) print("after split X_train: %s" % X_train) from mars.learn.contrib import xgboost as xgb train_dmatrix = xgb.MarsDMatrix(data=X_train, label=y_train) test_dmatrix = xgb.MarsDMatrix(data=X_test, label=y_test) print("train_dmatrix: %s" % train_dmatrix) #params = {'objective': 'reg:squarederror','colsample_bytree': 0.3,'learning_rate': 0.1, 'max_depth': 5, 'alpha': 10, 'n_estimators': 10} #booster = xgb.train(dtrain=train_dmatrix, params=params) #xg_reg = xgb.XGBRegressor(objective='reg:squarederror', colsample_bytree=0.3, learning_rate=0.1, max_depth=5, alpha=10, n_estimators=10) xg_reg = xgb.XGBRegressor() print("xg_reg.fit %s" % xg_reg) model = xg_reg.fit(X_train, y_train, session=session) #xgb.predict(booster, X_test) print("results.predict") test_r = model.predict(X_test) print("output:test_r:%s" % type(test_r)) print(test_r) ``` **To Reproduce** To help us reproducing this bug, please provide information below: 1. Your Python version:3.9.7 2. The version of Mars you use:0.9.0rc1 3. Versions of crucial packages, such as numpy, scipy and pandas 1. Ray:1.11.0 2. Numpy:1.22.3 3. Pandas:1.4.1 4. Scipy:1.8.0 4. Full stack of the error. ``` (ray) [ray@ml-test ~]$ python test_mars_xgb.py 2022-03-24 10:59:42,970 INFO ray.py:432 -- Start cluster with config {'services': ['cluster', 'session', 'storage', 'meta', 'lifecycle', 'scheduling', 'subtask', 'task', 'mutable'], 'cluster': {'backend': 'ray', 'node_timeout': 120, 'node_check_interval': 1, 'ray': {'supervisor': {'standalone': False, 'sub_pool_num': 0}}}, 'session': {'custom_log_dir': None}, 'storage': {'default_config': {'transfer_block_size': '5 * 1024 ** 2'}, 'plasma': {'store_memory': '20%'}, 'backends': ['ray']}, 'meta': {'store': 'dict'}, 'task': {'default_config': {'optimize_tileable_graph': True, 'optimize_chunk_graph': True, 'fuse_enabled': True, 'initial_same_color_num': None, 'as_broadcaster_successor_num': None}}, 'scheduling': {'autoscale': {'enabled': False, 'min_workers': 1, 'max_workers': 100, 'scheduler_backlog_timeout': 20, 'worker_idle_timeout': 40}, 'speculation': {'enabled': False, 'dry': False, 'interval': 5, 'threshold': '75%', 'min_task_runtime': 3, 'multiplier': 1.5, 'max_concurrent_run': 3}, 'subtask_cancel_timeout': 5, 'subtask_max_retries': 3, 'subtask_max_reschedules': 2}, 'metrics': {'backend': 'ray', 'port': 0}} 2022-03-24 10:59:42,970 INFO api.py:53 -- Finished initialize the metrics with backend ray 2022-03-24 10:59:42,970 INFO driver.py:34 -- Setup cluster with {'ray://ray-cluster-1648090782/0': {'CPU': 2}, 'ray://ray-cluster-1648090782/1': {'CPU': 2}} 2022-03-24 10:59:42,970 INFO driver.py:40 -- Creating placement group ray-cluster-1648090782 with bundles [{'CPU': 2}, {'CPU': 2}]. 2022-03-24 10:59:43,852 INFO driver.py:55 -- Create placement group success. 2022-03-24 10:59:45,128 INFO backend.py:82 -- Submit create actor pool ClientActorHandle(44dff4e8c2ea47cdd02bb84609000000) took 1.2752630710601807 seconds. 2022-03-24 10:59:46,268 INFO backend.py:82 -- Submit create actor pool ClientActorHandle(9ee3d50e43948f0f784697b809000000) took 1.116509199142456 seconds. 2022-03-24 10:59:48,475 INFO backend.py:82 -- Submit create actor pool ClientActorHandle(01f40453e2be6ed5ff7204d409000000) took 2.1755218505859375 seconds. 2022-03-24 10:59:48,501 INFO backend.py:89 -- Start actor pool ClientActorHandle(44dff4e8c2ea47cdd02bb84609000000) took 3.352660894393921 seconds. 2022-03-24 10:59:48,501 INFO backend.py:89 -- Start actor pool ClientActorHandle(9ee3d50e43948f0f784697b809000000) took 2.2049944400787354 seconds. 2022-03-24 10:59:48,501 INFO ray.py:526 -- Create supervisor on node ray://ray-cluster-1648090782/0/0 succeeds. 2022-03-24 10:59:50,148 INFO ray.py:536 -- Start services on supervisor ray://ray-cluster-1648090782/0/0 succeeds. 2022-03-24 10:59:50,494 INFO backend.py:89 -- Start actor pool ClientActorHandle(01f40453e2be6ed5ff7204d409000000) took 1.9973196983337402 seconds. 2022-03-24 10:59:50,494 INFO ray.py:541 -- Create 2 workers succeeds. 2022-03-24 10:59:50,722 INFO ray.py:545 -- Start services on 2 workers succeeds. (RaySubPool pid=15700, ip=172.16.210.21) 2022-03-24 10:59:50,720 ERROR serialization.py:311 -- __init__() missing 1 required positional argument: 'pid' (RaySubPool pid=15700, ip=172.16.210.21) Traceback (most recent call last): (RaySubPool pid=15700, ip=172.16.210.21) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/serialization.py", line 309, in deserialize_objects (RaySubPool pid=15700, ip=172.16.210.21) obj = self._deserialize_object(data, metadata, object_ref) (RaySubPool pid=15700, ip=172.16.210.21) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/ray/communication.py", line 90, in _deserialize_object (RaySubPool pid=15700, ip=172.16.210.21) value = _ray_deserialize_object(self, data, metadata, object_ref) (RaySubPool pid=15700, ip=172.16.210.21) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/serialization.py", line 215, in _deserialize_object (RaySubPool pid=15700, ip=172.16.210.21) return self._deserialize_msgpack_data(data, metadata_fields) (RaySubPool pid=15700, ip=172.16.210.21) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/serialization.py", line 174, in _deserialize_msgpack_data (RaySubPool pid=15700, ip=172.16.210.21) python_objects = self._deserialize_pickle5_data(pickle5_data) (RaySubPool pid=15700, ip=172.16.210.21) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/serialization.py", line 164, in _deserialize_pickle5_data (RaySubPool pid=15700, ip=172.16.210.21) obj = pickle.loads(in_band) (RaySubPool pid=15700, ip=172.16.210.21) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/lib/tblib/pickling_support.py", line 29, in unpickle_exception (RaySubPool pid=15700, ip=172.16.210.21) inst = func(*args) (RaySubPool pid=15700, ip=172.16.210.21) TypeError: __init__() missing 1 required positional argument: 'pid' 2022-03-24 10:59:50,770 WARNING ray.py:556 -- Web service started at http://0.0.0.0:50749 (RaySubPool pid=3583) 2022-03-24 10:59:50,725 ERROR serialization.py:311 -- __init__() missing 1 required positional argument: 'pid' (RaySubPool pid=3583) Traceback (most recent call last): (RaySubPool pid=3583) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/serialization.py", line 309, in deserialize_objects (RaySubPool pid=3583) obj = self._deserialize_object(data, metadata, object_ref) (RaySubPool pid=3583) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/ray/communication.py", line 90, in _deserialize_object (RaySubPool pid=3583) value = _ray_deserialize_object(self, data, metadata, object_ref) (RaySubPool pid=3583) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/serialization.py", line 215, in _deserialize_object (RaySubPool pid=3583) return self._deserialize_msgpack_data(data, metadata_fields) (RaySubPool pid=3583) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/serialization.py", line 174, in _deserialize_msgpack_data (RaySubPool pid=3583) python_objects = self._deserialize_pickle5_data(pickle5_data) (RaySubPool pid=3583) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/serialization.py", line 164, in _deserialize_pickle5_data (RaySubPool pid=3583) obj = pickle.loads(in_band) (RaySubPool pid=3583) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/lib/tblib/pickling_support.py", line 29, in unpickle_exception (RaySubPool pid=3583) inst = func(*args) (RaySubPool pid=3583) TypeError: __init__() missing 1 required positional argument: 'pid' /home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function load_boston is deprecated; `load_boston` is deprecated in 1.0 and will be removed in 1.2. The Boston housing prices dataset has an ethical problem. You can refer to the documentation of this function for further details. The scikit-learn maintainers therefore strongly discourage the use of this dataset unless the purpose of the code is to study and educate about ethical issues in data science and machine learning. In this special case, you can fetch the dataset from the original source:: import pandas as pd import numpy as np data_url = "http://lib.stat.cmu.edu/datasets/boston" raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None) data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] Alternative datasets include the California housing dataset (i.e. :func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing dataset. You can load the datasets as follows:: from sklearn.datasets import fetch_california_housing housing = fetch_california_housing() for the California housing dataset and:: from sklearn.datasets import fetch_openml housing = fetch_openml(name="house_prices", as_frame=True) for the Ames housing dataset. warnings.warn(msg, category=FutureWarning) data.head().execute() 2022-03-24 10:59:51,023 INFO session.py:979 -- Time consuming to generate a tileable graph is 0.0007078647613525391s with address ray://ray-cluster-1648090782/0/0, session id zLE6ibnXqYxfFNUiCEndgZaF CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT 0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 data.describe().execute() 2022-03-24 10:59:51,504 INFO session.py:979 -- Time consuming to generate a tileable graph is 0.0005688667297363281s with address ray://ray-cluster-1648090782/0/0, session id zLE6ibnXqYxfFNUiCEndgZaF CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634 68.574901 3.795043 9.549407 408.237154 18.455534 356.674032 12.653063 std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864 7.141062 min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000 1.730000 25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500 6.950000 50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 77.500000 3.207450 5.000000 330.000000 19.050000 391.440000 11.360000 75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000 16.955000 max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000 37.970000 2022-03-24 10:59:51,992 INFO session.py:979 -- Time consuming to generate a tileable graph is 0.0019736289978027344s with address ray://ray-cluster-1648090782/0/0, session id zLE6ibnXqYxfFNUiCEndgZaF after split X_train: CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT 191 0.06911 45.0 3.44 0.0 0.437 6.739 30.8 6.4798 5.0 398.0 15.2 389.71 4.69 380 88.97620 0.0 18.10 0.0 0.671 6.968 91.9 1.4165 24.0 666.0 20.2 396.90 17.21 337 0.03041 0.0 5.19 0.0 0.515 5.895 59.6 5.6150 5.0 224.0 20.2 394.81 10.56 266 0.78570 20.0 3.97 0.0 0.647 7.014 84.6 2.1329 5.0 264.0 13.0 384.07 14.79 221 0.40771 0.0 6.20 1.0 0.507 6.164 91.3 3.0480 8.0 307.0 17.4 395.24 21.46 .. ... ... ... ... ... ... ... ... ... ... ... ... ... 275 0.09604 40.0 6.41 0.0 0.447 6.854 42.8 4.2673 4.0 254.0 17.6 396.90 2.98 217 0.07013 0.0 13.89 0.0 0.550 6.642 85.1 3.4211 5.0 276.0 16.4 392.78 9.69 369 5.66998 0.0 18.10 1.0 0.631 6.683 96.8 1.3567 24.0 666.0 20.2 375.33 3.73 95 0.12204 0.0 2.89 0.0 0.445 6.625 57.8 3.4952 2.0 276.0 18.0 357.98 6.65 277 0.06127 40.0 6.41 1.0 0.447 6.826 27.6 4.8628 4.0 254.0 17.6 393.45 4.16 [354 rows x 13 columns] train_dmatrix: DataFrame(op=ToDMatrix) /home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead. from pandas import MultiIndex, Int64Index xg_reg.fit XGBRegressor() 2022-03-24 10:59:53,085 INFO session.py:979 -- Time consuming to generate a tileable graph is 0.0010030269622802734s with address ray://ray-cluster-1648090782/0/0, session id zLE6ibnXqYxfFNUiCEndgZaF (RaySubPool pid=15805, ip=172.16.210.21) Exception in thread Thread-42: (RaySubPool pid=15805, ip=172.16.210.21) Traceback (most recent call last): (RaySubPool pid=15805, ip=172.16.210.21) File "/home/ray/anaconda3/envs/ray/lib/python3.9/threading.py", line 973, in _bootstrap_inner (RaySubPool pid=15805, ip=172.16.210.21) self.run() (RaySubPool pid=15805, ip=172.16.210.21) File "/home/ray/anaconda3/envs/ray/lib/python3.9/threading.py", line 910, in run (RaySubPool pid=15805, ip=172.16.210.21) self._target(*self._args, **self._kwargs) (RaySubPool pid=15805, ip=172.16.210.21) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/learn/contrib/xgboost/tracker.py", line 355, in join (RaySubPool pid=15805, ip=172.16.210.21) while self.thread.isAlive(): (RaySubPool pid=15805, ip=172.16.210.21) AttributeError: 'Thread' object has no attribute 'isAlive' (RaySubPool pid=3583) [10:59:53] task NULL got new rank 0 2022-03-24 10:59:54,331 ERROR session.py:1822 -- Task exception was never retrieved future: <Task finished name='Task-110' coro=<_wrap_awaitable() done, defined at /home/ray/anaconda3/envs/ray/lib/python3.9/asyncio/tasks.py:684> exception=TypeError("ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''")> Traceback (most recent call last): File "/home/ray/anaconda3/envs/ray/lib/python3.9/asyncio/tasks.py", line 691, in _wrap_awaitable return (yield from awaitable.__await__()) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/deploy/oscar/session.py", line 106, in wait return await self._aio_task File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/deploy/oscar/session.py", line 950, in _run_in_background fetch_tileables = await self._task_api.get_fetch_tileables(task_id) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/services/task/api/oscar.py", line 100, in get_fetch_tileables return await self._task_manager_ref.get_task_result_tileables(task_id) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/context.py", line 188, in send result = await self._wait(future, actor_ref.address, message) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/context.py", line 83, in _wait return await future File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/context.py", line 74, in _wait await asyncio.shield(future) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/core.py", line 50, in _listen message: _MessageBase = await client.recv() File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/communication/base.py", line 262, in recv return await self.channel.recv() File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/ray/communication.py", line 209, in recv result = await object_ref File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/util/client/server/server.py", line 375, in send_get_response serialized = dumps_from_server(result, client_id, self) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/util/client/server/server_pickler.py", line 114, in dumps_from_server sp.dump(obj) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/cloudpickle/cloudpickle_fast.py", line 620, in dump return Pickler.dump(self, obj) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/ray/communication.py", line 55, in __reduce__ return _argwrapper_unpickler, (serialize(self.message),) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/serialization/core.py", line 361, in serialize gen_to_serial = gen.send(last_serial) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/core/base.py", line 140, in serialize return (yield from super().serialize(obj, context)) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/serialization/serializables/core.py", line 108, in serialize tag_to_values = self._get_tag_to_values(obj) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/serialization/serializables/core.py", line 101, in _get_tag_to_values value = field.on_serialize(value) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/utils.py", line 157, in on_serialize_nsplits new_nsplits.append(tuple(None if np.isnan(v) else v for v in dim_splits)) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/utils.py", line 157, in <genexpr> new_nsplits.append(tuple(None if np.isnan(v) else v for v in dim_splits)) TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe'' Traceback (most recent call last): File "/home/ray/test_mars_xgb.py", line 42, in <module> model = xg_reg.fit(X_train, y_train, session=session) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/learn/contrib/xgboost/regressor.py", line 61, in fit result = train( File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/learn/contrib/xgboost/train.py", line 249, in train ret = t.execute(session=session, **run_kwargs).fetch(session=session) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/core/entity/executable.py", line 98, in execute return execute(self, session=session, **kw) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/deploy/oscar/session.py", line 1851, in execute return session.execute( File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/deploy/oscar/session.py", line 1647, in execute execution_info: ExecutionInfo = fut.result( File "/home/ray/anaconda3/envs/ray/lib/python3.9/concurrent/futures/_base.py", line 445, in result return self.__get_result() File "/home/ray/anaconda3/envs/ray/lib/python3.9/concurrent/futures/_base.py", line 390, in __get_result raise self._exception File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/deploy/oscar/session.py", line 1831, in _execute await execution_info File "/home/ray/anaconda3/envs/ray/lib/python3.9/asyncio/tasks.py", line 691, in _wrap_awaitable return (yield from awaitable.__await__()) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/deploy/oscar/session.py", line 106, in wait return await self._aio_task File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/deploy/oscar/session.py", line 950, in _run_in_background fetch_tileables = await self._task_api.get_fetch_tileables(task_id) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/services/task/api/oscar.py", line 100, in get_fetch_tileables return await self._task_manager_ref.get_task_result_tileables(task_id) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/context.py", line 188, in send result = await self._wait(future, actor_ref.address, message) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/context.py", line 83, in _wait return await future File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/context.py", line 74, in _wait await asyncio.shield(future) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/core.py", line 50, in _listen message: _MessageBase = await client.recv() File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/communication/base.py", line 262, in recv return await self.channel.recv() File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/ray/communication.py", line 209, in recv result = await object_ref File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/util/client/server/server.py", line 375, in send_get_response serialized = dumps_from_server(result, client_id, self) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/util/client/server/server_pickler.py", line 114, in dumps_from_server sp.dump(obj) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/ray/cloudpickle/cloudpickle_fast.py", line 620, in dump return Pickler.dump(self, obj) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/ray/communication.py", line 55, in __reduce__ return _argwrapper_unpickler, (serialize(self.message),) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/serialization/core.py", line 361, in serialize gen_to_serial = gen.send(last_serial) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/core/base.py", line 140, in serialize return (yield from super().serialize(obj, context)) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/serialization/serializables/core.py", line 108, in serialize tag_to_values = self._get_tag_to_values(obj) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/serialization/serializables/core.py", line 101, in _get_tag_to_values value = field.on_serialize(value) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/utils.py", line 157, in on_serialize_nsplits new_nsplits.append(tuple(None if np.isnan(v) else v for v in dim_splits)) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/utils.py", line 157, in <genexpr> new_nsplits.append(tuple(None if np.isnan(v) else v for v in dim_splits)) TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe'' (RaySubPool pid=3400) Main pool Actor(RayMainPool, 9ee3d50e43948f0f784697b809000000) has exited, exit current sub pool now. (RaySubPool pid=3400) Traceback (most recent call last): (RaySubPool pid=3400) File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/oscar/backends/ray/pool.py", line 365, in check_main_pool_alive (RaySubPool pid=3400) main_pool_start_timestamp = await main_pool.alive.remote() (RaySubPool pid=3400) ray.exceptions.RayActorError: The actor died unexpectedly before finishing this task. (RaySubPool pid=3400) class_name: RayMainPool (RaySubPool pid=3400) actor_id: 9ee3d50e43948f0f784697b809000000 (RaySubPool pid=3400) pid: 3514 (RaySubPool pid=3400) name: ray://ray-cluster-1648090782/0/1 (RaySubPool pid=3400) namespace: b7b70429-e17c-486f-9172-0872403ed6ef (RaySubPool pid=3400) ip: 172.16.210.22 (RaySubPool pid=3400) The actor is dead because because all references to the actor were removed. A worker died or was killed while executing a task by an unexpected system error. To troubleshoot the problem, check the logs for the dead worker. RayTask ID: ffffffffffffffff6f1ccaae6135c700f75befbe09000000 Worker ID: 707d6a3f910fa005ec33fe7ae60ddef5cfc1b9eb67510f1bc0f19623 Node ID: 7c54d788f2585a26ce8ef92e01f7e774359a4f0636b4bcfcb84272f7 Worker IP address: 172.16.210.21 Worker port: 10043 Worker PID: 15700 Exception ignored in: <function _TileableSession.__init__.<locals>.cb at 0x7efbd9a75160> Traceback (most recent call last): File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/core/entity/executable.py", line 52, in cb File "/home/ray/anaconda3/envs/ray/lib/python3.9/concurrent/futures/thread.py", line 156, in submit AttributeError: __enter__ Exception ignored in: <function _TileableSession.__init__.<locals>.cb at 0x7efbd9a75dc0> Traceback (most recent call last): File "/home/ray/anaconda3/envs/ray/lib/python3.9/site-packages/mars/core/entity/executable.py", line 52, in cb File "/home/ray/anaconda3/envs/ray/lib/python3.9/concurrent/futures/thread.py", line 156, in submit AttributeError: __enter__ ``` 5. Minimized code to reproduce the error. **Expected behavior** A clear and concise description of what you expected to happen. **Additional context** Add any other context about the problem here.
closed
2022-03-24T03:00:29Z
2022-03-24T07:48:45Z
https://github.com/mars-project/mars/issues/2860
[ "type: bug", "mod: learn", "prio: high" ]
wuyeguo
1
piskvorky/gensim
nlp
3,216
Number of workers when working on multicore systems
Hello, I am trying to run FastText on huge corpus of newspaper text, and on a multicore server at my University. I have requested 48 cores to run this operation, and I wondering if in the FastText parameters I have to specify workers=48 too. I don't understand from the documentation whether it has to be like this. `bsub -W 12:00 -n 48 -N -B -R "rusage[mem=8GB]" python scriptname.py` Thanks a lot. Sandra
closed
2021-08-18T08:23:03Z
2021-08-18T09:48:16Z
https://github.com/piskvorky/gensim/issues/3216
[]
sandrastampibombelli
1
pykaldi/pykaldi
numpy
92
it gives error when i use Cmvn.applpy_cmvn() function?
# C is a kaldi matrix 124*83 from kaldi.transform import cmvn from kaldi.matrix import DoubleMatrix ki=Input("cmvn.ark") cmvn_stats=DoubleMatrix() cmvn_data=cmvn_stats.read_(ki.stream(),True) from kaldi.transform.cmvn import Cmvn cmvn=Cmvn(83) cmvn.apply(C) the error is : /transform/cmvn.pyc in apply(self, feats, norm_vars, reverse) 86 _cmvn.apply_cmvn_reverse(self.stats, norm_vars, feats) 87 else: ---> 88 _cmvn.apply_cmvn(self.stats, norm_vars, feats) 89 90 def init(self, dim): RuntimeError: C++ exception:
closed
2019-03-18T10:20:50Z
2019-03-29T08:07:26Z
https://github.com/pykaldi/pykaldi/issues/92
[]
liuchenbaidu
3
opengeos/leafmap
jupyter
231
Help with netcdf files
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information - leafmap version: 0.9.1 - Python version: 3.9.10 - Operating System: macOS 10.6.5 ### Description I was trying to follow along with the [netCDF example](https://leafmap.org/notebooks/52_netcdf/), but with my own netCDF file. But when I do that, I get an error: ```python AttributeError: 'Dataset' object has no attribute 'rio' ``` ### What I Did ```python import leafmap filename = "test.nc4" data = leafmap.read_netcdf(filename) m = leafmap.Map(layers_control=True) tif = 'wind_global.tif' leafmap.netcdf_to_tif(filename, tif, variables=['U', 'V'], shift_lon=True) --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Input In [27], in <module> ----> 1 leafmap.netcdf_to_tif(filename, tif, variables=['U', 'V'], shift_lon=True) File ~/GEOSpyD/4.10.3_py3.9/2022-02-14/lib/python3.9/site-packages/leafmap/common.py:5350, in netcdf_to_tif(filename, output, variables, shift_lon, lat, lon, return_vars, **kwargs) 5348 xds.rio.set_spatial_dims(x_dim=lon, y_dim=lat).rio.to_raster(output) 5349 else: -> 5350 xds[variables].rio.set_spatial_dims(x_dim=lon, y_dim=lat).rio.to_raster(output) 5352 if return_vars: 5353 return output, allowed_vars File ~/GEOSpyD/4.10.3_py3.9/2022-02-14/lib/python3.9/site-packages/xarray/core/common.py:239, in AttrAccessMixin.__getattr__(self, name) 237 with suppress(KeyError): 238 return source[name] --> 239 raise AttributeError( 240 f"{type(self).__name__!r} object has no attribute {name!r}" 241 ) AttributeError: 'Dataset' object has no attribute 'rio' ``` Note that in my test file, I have `U` and `V` not `u_wind` and `v_wind`. I also tried the `m.add_netcdf()` version, but it died with essentially the same error. I'm not that good at Python, I just saw this project and thought, I want to try it out! :)
closed
2022-04-05T12:30:32Z
2022-04-05T16:31:04Z
https://github.com/opengeos/leafmap/issues/231
[ "bug" ]
mathomp4
6
mljar/mercury
data-visualization
135
disable execution history in watch mode
Please disable execution history in watch mode. In the watch mode, we expect to have many changes in the notebook itself. There is no need to show execution history. What is more, execution history reset widgets values: ![watch-mode-bug](https://user-images.githubusercontent.com/6959032/178469452-fdbacc5f-6e00-4a35-90f9-789d0bb5841d.gif)
closed
2022-07-12T10:25:07Z
2022-07-12T10:36:43Z
https://github.com/mljar/mercury/issues/135
[ "bug" ]
pplonski
0
saulpw/visidata
pandas
2,224
[split] Change in behaviour in visidata 3.0
regex split behavior has changed with the update to version 3 Instead of splitting columns, the behavior I expected from version 2 I instead get a new column with format: [N] first_value ; second_value where N is a number (appears to be field count) and the various fields are all contained in the first (and only) field It's clear that something is being done, as the regex field has been replaced by a semicolon Is this due to a change in how columns are handled in version 3 (it seems possible that the semicolon might be a default output) If this is more appropriately a bug, update the ticket and I'll provide more information (FWIW, I am using pipx to install, with some additional plugins with their support libraries, and I've tested without a visidatarc)
closed
2024-01-03T16:03:58Z
2024-10-12T04:41:01Z
https://github.com/saulpw/visidata/issues/2224
[ "documentation" ]
fourjay
12
deepspeedai/DeepSpeed
deep-learning
6,589
[BUG] MOE: Loading experts parameters error when using expert parallel.
**Describe the bug** I have a model with 60 experts, and I am training the experts in parallel on two GPUs. Theoretically, GPU0 should load the parameters of the first 30 experts, while GPU1 should load the parameters of the last 30 experts. However, I found that both GPUs are loading the parameters of the first 30 experts . How should I modify this?
open
2024-09-29T09:32:54Z
2024-10-08T12:49:13Z
https://github.com/deepspeedai/DeepSpeed/issues/6589
[ "bug", "training" ]
kakaxi-liu
1
pytest-dev/pytest-mock
pytest
101
Confusing requirement on mock for Python 2
The README explicitly list `mock` as a requirement for Python 2, whereas it is listed in `extras_require` in the setup script. Please clarify whether `mock` is an optional or required dependency for `pytest-mock` with Python 2. If optional, please adjust the wording of the README, if required (which I suspect), please list `mock` under `install_requires` for Python 2.
closed
2018-02-15T20:05:21Z
2018-02-16T19:51:05Z
https://github.com/pytest-dev/pytest-mock/issues/101
[]
ghisvail
1
graphdeco-inria/gaussian-splatting
computer-vision
959
How to get the cross section of reconstructions using gaussian splatting
open
2024-08-30T10:12:25Z
2024-08-30T10:12:25Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/959
[]
sdfabkapoe
0
ultralytics/ultralytics
deep-learning
19,691
Error occurred when training YOLOV11 on dataset open-images-v7
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question train.py: from ultralytics import YOLO # Load a COCO-pretrained YOLO11n model model = YOLO("yolo11n.pt") # Train the model on the Open Images V7 dataset results = model.train(data="open-images-v7.yaml", epochs=100, imgsz=640) error output: Ultralytics 8.3.85 🚀 Python-3.10.15 torch-2.5.0+cu124 CUDA:0 (NVIDIA GeForce RTX 4080, 16076MiB) engine/trainer: task=detect, mode=train, model=yolo11n.pt, data=open-images-v7.yaml, epochs=100, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train14, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=/media/user/新加卷/zxc_ubuntu/code/ultralytics/runs/detect/train14 Dataset 'open-images-v7.yaml' images not found ⚠️, missing path '/media/user/新加卷/zxc_ubuntu/code/datasets/open-images-v7/images/val' WARNING ⚠️ Open Images V7 dataset requires at least **561 GB of free space. Starting download... Downloading split 'train' to '/media/user/新加卷/zxc_ubuntu/code/datasets/fiftyone/open-images-v7/open-images-v7/train' if necessary Only found 744299 (<1743042) samples matching your requirements Necessary images already downloaded Existing download of split 'train' is sufficient Subprocess ['/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/db/bin/mongod', '--dbpath', '/home/user/.fiftyone/var/lib/mongo', '--logpath', '/home/user/.fiftyone/var/lib/mongo/log/mongo.log', '--port', '0', '--nounixsocket'] exited with error 127: /home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/db/bin/mongod: error while loading shared libraries: libcrypto.so.3: cannot open shared object file: No such file or directory Traceback (most recent call last): File "/media/user/新加卷/zxc_ubuntu/code/ultralytics/ultralytics/engine/trainer.py", line 564, in get_dataset data = check_det_dataset(self.args.data) File "/media/user/新加卷/zxc_ubuntu/code/ultralytics/ultralytics/data/utils.py", line 385, in check_det_dataset exec(s, {"yaml": data}) File "<string>", line 21, in <module> File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/zoo/datasets/__init__.py", line 399, in load_zoo_dataset if fo.dataset_exists(dataset_name): File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/core/dataset.py", line 103, in dataset_exists conn = foo.get_db_conn() File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/core/odm/database.py", line 394, in get_db_conn _connect() File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/core/odm/database.py", line 233, in _connect establish_db_conn(fo.config) File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/core/odm/database.py", line 195, in establish_db_conn port = _db_service.port File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/core/service.py", line 277, in port return self._wait_for_child_port() File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/core/service.py", line 171, in _wait_for_child_port return find_port() File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/retrying.py", line 56, in wrapped_f return Retrying(*dargs, **dkw).call(f, *args, **kw) File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/retrying.py", line 266, in call raise attempt.get() File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/retrying.py", line 301, in get six.reraise(self.value[0], self.value[1], self.value[2]) File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/six.py", line 719, in reraise raise value File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/retrying.py", line 251, in call attempt = Attempt(fn(*args, **kwargs), attempt_number, False) File "/home/user/anaconda3/envs/yolo/lib/python3.10/site-packages/fiftyone/core/service.py", line 169, in find_port raise ServiceListenTimeout(etau.get_class_name(self), port) fiftyone.core.service.ServiceListenTimeout: fiftyone.core.service.DatabaseService failed to bind to port The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/media/user/新加卷/zxc_ubuntu/code/ultralytics/train.py", line 7, in <module> results = model.train(data="open-images-v7.yaml", epochs=100, imgsz=640) File "/media/user/新加卷/zxc_ubuntu/code/ultralytics/ultralytics/engine/model.py", line 804, in train self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) File "/media/user/新加卷/zxc_ubuntu/code/ultralytics/ultralytics/engine/trainer.py", line 134, in __init__ self.trainset, self.testset = self.get_dataset() File "/media/user/新加卷/zxc_ubuntu/code/ultralytics/ultralytics/engine/trainer.py", line 568, in get_dataset raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e RuntimeError: Dataset 'open-images-v7.yaml' error ❌ fiftyone.core.service.DatabaseService failed to bind to port open-images-v7.yaml: # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google # Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/ # Example usage: yolo train data=open-images-v7.yaml # parent # ├── ultralytics # └── datasets # └── open-images-v7 ← downloads here (561 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/open-images-v7 # dataset root dir train: images/train # train images (relative to 'path') 1743042 images val: images/val # val images (relative to 'path') 41620 images test: # test images (optional) # Classes names: 0: Accordion 1: Adhesive tape 2: Aircraft 3: Airplane 4: Alarm clock 5: Alpaca 6: Ambulance 7: Animal 8: Ant 9: Antelope 10: Apple 11: Armadillo 12: Artichoke 13: Auto part 14: Axe 15: Backpack 16: Bagel 17: Baked goods 18: Balance beam 19: Ball 20: Balloon 21: Banana 22: Band-aid 23: Banjo 24: Barge 25: Barrel 26: Baseball bat 27: Baseball glove 28: Bat (Animal) 29: Bathroom accessory 30: Bathroom cabinet 31: Bathtub 32: Beaker 33: Bear 34: Bed 35: Bee 36: Beehive 37: Beer 38: Beetle 39: Bell pepper 40: Belt 41: Bench 42: Bicycle 43: Bicycle helmet 44: Bicycle wheel 45: Bidet 46: Billboard 47: Billiard table 48: Binoculars 49: Bird 50: Blender 51: Blue jay 52: Boat 53: Bomb 54: Book 55: Bookcase 56: Boot 57: Bottle 58: Bottle opener 59: Bow and arrow 60: Bowl 61: Bowling equipment 62: Box 63: Boy 64: Brassiere 65: Bread 66: Briefcase 67: Broccoli 68: Bronze sculpture 69: Brown bear 70: Building 71: Bull 72: Burrito 73: Bus 74: Bust 75: Butterfly 76: Cabbage 77: Cabinetry 78: Cake 79: Cake stand 80: Calculator 81: Camel 82: Camera 83: Can opener 84: Canary 85: Candle 86: Candy 87: Cannon 88: Canoe 89: Cantaloupe 90: Car 91: Carnivore 92: Carrot 93: Cart 94: Cassette deck 95: Castle 96: Cat 97: Cat furniture 98: Caterpillar 99: Cattle 100: Ceiling fan 101: Cello 102: Centipede 103: Chainsaw 104: Chair 105: Cheese 106: Cheetah 107: Chest of drawers 108: Chicken 109: Chime 110: Chisel 111: Chopsticks 112: Christmas tree 113: Clock 114: Closet 115: Clothing 116: Coat 117: Cocktail 118: Cocktail shaker 119: Coconut 120: Coffee 121: Coffee cup 122: Coffee table 123: Coffeemaker 124: Coin 125: Common fig 126: Common sunflower 127: Computer keyboard 128: Computer monitor 129: Computer mouse 130: Container 131: Convenience store 132: Cookie 133: Cooking spray 134: Corded phone 135: Cosmetics 136: Couch 137: Countertop 138: Cowboy hat 139: Crab 140: Cream 141: Cricket ball 142: Crocodile 143: Croissant 144: Crown 145: Crutch 146: Cucumber 147: Cupboard 148: Curtain 149: Cutting board 150: Dagger 151: Dairy Product 152: Deer 153: Desk 154: Dessert 155: Diaper 156: Dice 157: Digital clock 158: Dinosaur 159: Dishwasher 160: Dog 161: Dog bed 162: Doll 163: Dolphin 164: Door 165: Door handle 166: Doughnut 167: Dragonfly 168: Drawer 169: Dress 170: Drill (Tool) 171: Drink 172: Drinking straw 173: Drum 174: Duck 175: Dumbbell 176: Eagle 177: Earrings 178: Egg (Food) 179: Elephant 180: Envelope 181: Eraser 182: Face powder 183: Facial tissue holder 184: Falcon 185: Fashion accessory 186: Fast food 187: Fax 188: Fedora 189: Filing cabinet 190: Fire hydrant 191: Fireplace 192: Fish 193: Flag 194: Flashlight 195: Flower 196: Flowerpot 197: Flute 198: Flying disc 199: Food 200: Food processor 201: Football 202: Football helmet 203: Footwear 204: Fork 205: Fountain 206: Fox 207: French fries 208: French horn 209: Frog 210: Fruit 211: Frying pan 212: Furniture 213: Garden Asparagus 214: Gas stove 215: Giraffe 216: Girl 217: Glasses 218: Glove 219: Goat 220: Goggles 221: Goldfish 222: Golf ball 223: Golf cart 224: Gondola 225: Goose 226: Grape 227: Grapefruit 228: Grinder 229: Guacamole 230: Guitar 231: Hair dryer 232: Hair spray 233: Hamburger 234: Hammer 235: Hamster 236: Hand dryer 237: Handbag 238: Handgun 239: Harbor seal 240: Harmonica 241: Harp 242: Harpsichord 243: Hat 244: Headphones 245: Heater 246: Hedgehog 247: Helicopter 248: Helmet 249: High heels 250: Hiking equipment 251: Hippopotamus 252: Home appliance 253: Honeycomb 254: Horizontal bar 255: Horse 256: Hot dog 257: House 258: Houseplant 259: Human arm 260: Human beard 261: Human body 262: Human ear 263: Human eye 264: Human face 265: Human foot 266: Human hair 267: Human hand 268: Human head 269: Human leg 270: Human mouth 271: Human nose 272: Humidifier 273: Ice cream 274: Indoor rower 275: Infant bed 276: Insect 277: Invertebrate 278: Ipod 279: Isopod 280: Jacket 281: Jacuzzi 282: Jaguar (Animal) 283: Jeans 284: Jellyfish 285: Jet ski 286: Jug 287: Juice 288: Kangaroo 289: Kettle 290: Kitchen & dining room table 291: Kitchen appliance 292: Kitchen knife 293: Kitchen utensil 294: Kitchenware 295: Kite 296: Knife 297: Koala 298: Ladder 299: Ladle 300: Ladybug 301: Lamp 302: Land vehicle 303: Lantern 304: Laptop 305: Lavender (Plant) 306: Lemon 307: Leopard 308: Light bulb 309: Light switch 310: Lighthouse 311: Lily 312: Limousine 313: Lion 314: Lipstick 315: Lizard 316: Lobster 317: Loveseat 318: Luggage and bags 319: Lynx 320: Magpie 321: Mammal 322: Man 323: Mango 324: Maple 325: Maracas 326: Marine invertebrates 327: Marine mammal 328: Measuring cup 329: Mechanical fan 330: Medical equipment 331: Microphone 332: Microwave oven 333: Milk 334: Miniskirt 335: Mirror 336: Missile 337: Mixer 338: Mixing bowl 339: Mobile phone 340: Monkey 341: Moths and butterflies 342: Motorcycle 343: Mouse 344: Muffin 345: Mug 346: Mule 347: Mushroom 348: Musical instrument 349: Musical keyboard 350: Nail (Construction) 351: Necklace 352: Nightstand 353: Oboe 354: Office building 355: Office supplies 356: Orange 357: Organ (Musical Instrument) 358: Ostrich 359: Otter 360: Oven 361: Owl 362: Oyster 363: Paddle 364: Palm tree 365: Pancake 366: Panda 367: Paper cutter 368: Paper towel 369: Parachute 370: Parking meter 371: Parrot 372: Pasta 373: Pastry 374: Peach 375: Pear 376: Pen 377: Pencil case 378: Pencil sharpener 379: Penguin 380: Perfume 381: Person 382: Personal care 383: Personal flotation device 384: Piano 385: Picnic basket 386: Picture frame 387: Pig 388: Pillow 389: Pineapple 390: Pitcher (Container) 391: Pizza 392: Pizza cutter 393: Plant 394: Plastic bag 395: Plate 396: Platter 397: Plumbing fixture 398: Polar bear 399: Pomegranate 400: Popcorn 401: Porch 402: Porcupine 403: Poster 404: Potato 405: Power plugs and sockets 406: Pressure cooker 407: Pretzel 408: Printer 409: Pumpkin 410: Punching bag 411: Rabbit 412: Raccoon 413: Racket 414: Radish 415: Ratchet (Device) 416: Raven 417: Rays and skates 418: Red panda 419: Refrigerator 420: Remote control 421: Reptile 422: Rhinoceros 423: Rifle 424: Ring binder 425: Rocket 426: Roller skates 427: Rose 428: Rugby ball 429: Ruler 430: Salad 431: Salt and pepper shakers 432: Sandal 433: Sandwich 434: Saucer 435: Saxophone 436: Scale 437: Scarf 438: Scissors 439: Scoreboard 440: Scorpion 441: Screwdriver 442: Sculpture 443: Sea lion 444: Sea turtle 445: Seafood 446: Seahorse 447: Seat belt 448: Segway 449: Serving tray 450: Sewing machine 451: Shark 452: Sheep 453: Shelf 454: Shellfish 455: Shirt 456: Shorts 457: Shotgun 458: Shower 459: Shrimp 460: Sink 461: Skateboard 462: Ski 463: Skirt 464: Skull 465: Skunk 466: Skyscraper 467: Slow cooker 468: Snack 469: Snail 470: Snake 471: Snowboard 472: Snowman 473: Snowmobile 474: Snowplow 475: Soap dispenser 476: Sock 477: Sofa bed 478: Sombrero 479: Sparrow 480: Spatula 481: Spice rack 482: Spider 483: Spoon 484: Sports equipment 485: Sports uniform 486: Squash (Plant) 487: Squid 488: Squirrel 489: Stairs 490: Stapler 491: Starfish 492: Stationary bicycle 493: Stethoscope 494: Stool 495: Stop sign 496: Strawberry 497: Street light 498: Stretcher 499: Studio couch 500: Submarine 501: Submarine sandwich 502: Suit 503: Suitcase 504: Sun hat 505: Sunglasses 506: Surfboard 507: Sushi 508: Swan 509: Swim cap 510: Swimming pool 511: Swimwear 512: Sword 513: Syringe 514: Table 515: Table tennis racket 516: Tablet computer 517: Tableware 518: Taco 519: Tank 520: Tap 521: Tart 522: Taxi 523: Tea 524: Teapot 525: Teddy bear 526: Telephone 527: Television 528: Tennis ball 529: Tennis racket 530: Tent 531: Tiara 532: Tick 533: Tie 534: Tiger 535: Tin can 536: Tire 537: Toaster 538: Toilet 539: Toilet paper 540: Tomato 541: Tool 542: Toothbrush 543: Torch 544: Tortoise 545: Towel 546: Tower 547: Toy 548: Traffic light 549: Traffic sign 550: Train 551: Training bench 552: Treadmill 553: Tree 554: Tree house 555: Tripod 556: Trombone 557: Trousers 558: Truck 559: Trumpet 560: Turkey 561: Turtle 562: Umbrella 563: Unicycle 564: Van 565: Vase 566: Vegetable 567: Vehicle 568: Vehicle registration plate 569: Violin 570: Volleyball (Ball) 571: Waffle 572: Waffle iron 573: Wall clock 574: Wardrobe 575: Washing machine 576: Waste container 577: Watch 578: Watercraft 579: Watermelon 580: Weapon 581: Whale 582: Wheel 583: Wheelchair 584: Whisk 585: Whiteboard 586: Willow 587: Window 588: Window blind 589: Wine 590: Wine glass 591: Wine rack 592: Winter melon 593: Wok 594: Woman 595: Wood-burning stove 596: Woodpecker 597: Worm 598: Wrench 599: Zebra 600: Zucchini # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | from ultralytics.utils import LOGGER, SETTINGS, Path, is_ubuntu, get_ubuntu_version from ultralytics.utils.checks import check_requirements, check_version check_requirements('fiftyone') if is_ubuntu() and check_version(get_ubuntu_version(), '>=22.04'): # Ubuntu>=22.04 patch https://github.com/voxel51/fiftyone/issues/2961#issuecomment-1666519347 check_requirements('fiftyone-db-ubuntu2204') import fiftyone as fo import fiftyone.zoo as foz import warnings name = 'open-images-v7' fo.config.dataset_zoo_dir = Path(SETTINGS["datasets_dir"]) / "fiftyone" / name fraction = 1.0 # fraction of full dataset to use LOGGER.warning('WARNING ⚠️ Open Images V7 dataset requires at least **561 GB of free space. Starting download...') for split in 'train', 'validation': # 1743042 train, 41620 val images train = split == 'train' # Load Open Images dataset dataset = foz.load_zoo_dataset(name, split=split, label_types=['detections'], classes=["Ambulance","Bicycle","Bus","Boy","Car","Motorcycle","Man","Person","Stop sign","Girl","Truck","Traffic light","Traffic sign","Cat", "Dog","Unicycle","Vehicle","Woman","Land vehicle","Snowplow","Van"], max_samples=round((1743042 if train else 41620) * fraction)) # Define classes if train: classes = dataset.default_classes # all classes # classes = dataset.distinct('ground_truth.detections.label') # only observed classes # Export to YOLO format with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning, module="fiftyone.utils.yolo") dataset.export(export_dir=str(Path(SETTINGS['datasets_dir']) / name), dataset_type=fo.types.YOLOv5Dataset, label_field='ground_truth', split='val' if split == 'validation' else split, classes=classes, overwrite=train) ### Additional _No response_
closed
2025-03-14T06:35:34Z
2025-03-19T10:43:33Z
https://github.com/ultralytics/ultralytics/issues/19691
[ "question", "dependencies", "detect" ]
1623021453
10
dask/dask
scikit-learn
11,101
TypeError: can only concatenate str (not "traceback") to str
<!-- Please include a self-contained copy-pastable example that generates the issue if possible. `````` Please be concise with code posted. See guidelines below on how to provide a good bug report: - Craft Minimal Bug Reports http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports - Minimal Complete Verifiable Examples https://stackoverflow.com/help/mcve Bug reports that follow these guidelines are easier to diagnose, and so are often handled much more quickly. --> **Describe the issue**: **Minimal Complete Verifiable Example**: ```python # Put your MCVE code here import dask import dask.bag as db import river # Create a Dask bag from your data df=pd.DataFrame([[0]*2],columns=['VendorID','fare_amount']) data = db.from_sequence(df, npartitions=4) # Define a function to process and train on each partition def process_and_train(partition): X_train,X_test,y_train,y_test=get_dask_train_test(partition) model = river.linear_model.LinearRegression(optimizer=river.optim.SGD(0.01), l2=0.1) # Stream learning from the DataFrame for _,row in partition.iterrows(): y = row['fare_amount'] # Target x = row.drop('fare_amount') # Features model = model.learn_one(x, y) print("done") return model # Use Dask to process and train in parallel models = data.map(process_and_train).compute() ``` **Anything else we need to know?**: ![Screenshot 2024-05-06 at 7 48 57 PM](https://github.com/dask/dask/assets/50590413/11edf332-060b-41e8-a209-e3281bc93ccb) **Environment**: - Dask version: - Python version:3.10 - Operating System: - Install method (conda, pip, source):pip
open
2024-05-06T14:19:27Z
2024-05-06T14:19:41Z
https://github.com/dask/dask/issues/11101
[ "needs triage" ]
sinsniwal
0
developmentseed/lonboard
jupyter
281
Better visualization defaults
See e.g. https://github.com/developmentseed/lonboard/issues/275. Not sure how much I want to try for "perfect defaults". Maybe `viz` should have "smart" defaults, but not direct layer constructors?
closed
2023-12-01T22:11:51Z
2024-02-26T22:41:02Z
https://github.com/developmentseed/lonboard/issues/281
[]
kylebarron
0
axnsan12/drf-yasg
django
181
tox + setup.py failing with "The version specified ('0.0.0.dummy+0000016513faf897') is an invalid version"
tox and setup.py are failing for me currently on master (at 16b6ed7fd64d36f8a7ac5368a00a19da1e115c17) with this error: ``` $ /usr/bin/python setup.py /usr/local/lib/python2.7/dist-packages/setuptools/dist.py:407: UserWarning: The version specified ('0.0.0.dummy+0000016513faf897') is an invalid version, this may not work as expected with newer versions of setuptools, pip, and PyPI. Please see PEP 440 for more details. ``` This is with Python 2.7.12 on Ubuntu 16.04 (but same error with Python 3.6 via pyenv) These 2 line https://github.com/axnsan12/drf-yasg/blob/master/setup.py#L33 seems to be the culprit - if I comment out it works fine. ``` if any(any(dist in arg for dist in ['sdist', 'bdist']) for arg in sys.argv): raise ```
closed
2018-08-07T10:47:43Z
2018-08-07T14:20:09Z
https://github.com/axnsan12/drf-yasg/issues/181
[]
therefromhere
2
coqui-ai/TTS
python
3,064
[Bug] FileNotFoundError: [Errno 2] No such file or directory: ...config.json
### Describe the bug `FileNotFoundError: [Errno 2] No such file or directory: '/home/user/.local/share/tts/tts_models--multilingual--multi-dataset--bark/config.json'` ### To Reproduce 1. `pip install TTS` 2. `tts --text "some text" --model_name "tts_models/multilingual/multi-dataset/bark" --out_path /some/path` 3. Ctrl-C 4. `tts --text "some text" --model_name "tts_models/multilingual/multi-dataset/bark" --out_path /some/path` ### Expected behavior The program should check whether it was completed successfully the first time and all the necessary files were downloaded/created, and if not, repeat the process for the missing files. ### Logs _No response_ ### Environment ```shell { "CUDA": { "GPU": [], "available": false, "version": "12.1" }, "Packages": { "PyTorch_debug": false, "PyTorch_version": "2.1.0+cu121", "TTS": "0.17.8", "numpy": "1.24.3" }, "System": { "OS": "Linux", "architecture": [ "64bit", "ELF" ], "processor": "", "python": "3.11.5", "version": "#1 SMP PREEMPT_DYNAMIC Sat Sep 23 12:13:56 UTC 2023" } } ``` ### Additional context _No response_
closed
2023-10-13T10:33:13Z
2025-01-15T16:53:41Z
https://github.com/coqui-ai/TTS/issues/3064
[ "bug" ]
Kzer-Za
5
PedroBern/django-graphql-auth
graphql
18
Example with custom user model
Is there an example with custom user model?
closed
2020-03-23T02:23:36Z
2020-03-25T23:36:56Z
https://github.com/PedroBern/django-graphql-auth/issues/18
[ "documentation" ]
maxwaiyaki
2
yt-dlp/yt-dlp
python
12,585
Delay during download phase: unexplained wait time
### Checklist - [x] I'm asking a question and **not** reporting a bug or requesting a feature - [x] I've looked through the [README](https://github.com/yt-dlp/yt-dlp#readme) - [x] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [x] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766), [the FAQ](https://github.com/yt-dlp/yt-dlp/wiki/FAQ), and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=is%3Aissue%20-label%3Aspam%20%20) for similar questions **including closed ones**. DO NOT post duplicates ### Please make sure the question is worded well enough to be understood I’ve been experiencing an issue where, during the download process, there is a delay of several seconds to minutes at certain stages, and I can't seem to pinpoint why it happens. The waiting phase seems to be intermittent—sometimes it occurs, sometimes it doesn’t. All requests go smoothly, but there is a noticeable gap of several seconds between these two requests: ```shell [2025-03-13 10:15:01,872: WARNING/MainProcess] [info] xYP9GeYSSqo: Downloading 1 format(s): 774 [2025-03-13 10:15:43,074: WARNING/MainProcess] [info] Downloading video thumbnail 41 ... ``` I have tried enabling the debug mode, but it did not provide any useful output. These two requests don't show any errors between them, just a long wait. You can see that there is a significant delay before the download resumes. Is there any way to avoid or skip this waiting period? Or do you have suggestions for troubleshooting this behavior? Any help or advice would be greatly appreciated! Thanks in advance! ### Provide verbose output that clearly demonstrates the problem - [ ] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [x] If using API, add `'verbose': True` to `YoutubeDL` params instead - [x] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [2025-03-13 10:14:59,382: WARNING/MainProcess] [debug] Encodings: locale UTF-8, fs utf-8, pref UTF-8, out missing (LoggingProxy) (No ANSI), error missing (LoggingProxy) (No ANSI), screen missing (LoggingProxy) (No ANSI) [2025-03-13 10:14:59,382: WARNING/MainProcess] [debug] yt-dlp version stable@2025.01.26 from yt-dlp/yt-dlp [3b4531934] (pip) API [2025-03-13 10:14:59,382: WARNING/MainProcess] [debug] params: {'extractor_args': {'youtube': {'skip': ['translated_subs', 'dash'], 'player_skip': ['webpage'], 'player_client': {'web_music'}, 'po_token': {'web_music.gvs+******************'}}}, 'verbose': True, 'cookiefile': 'cookies.txt', 'format': '774/251', 'postprocessors': [{'key': 'FFmpegMetadata', 'add_metadata': True}], 'paths': {'temp': './Temp'}, 'writethumbnail': True, 'embedthumbnail': True, 'outtmpl': {'default': './Music/5ab8b82f1ed62ca6febfc46370a99062/e14fdf807f92922e33eda6464867c0a8.%(ext)s'}, 'compat_opts': set(), 'http_headers': {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en-us,en;q=0.5', 'Sec-Fetch-Mode': 'navigate'}} [2025-03-13 10:14:59,382: WARNING/MainProcess] [debug] Python 3.13.0 (CPython aarch64 64bit) - Linux-6.8.0-55-generic-aarch64-with-glibc2.36 (OpenSSL 3.0.15 3 Sep 2024, glibc 2.36) [2025-03-13 10:14:59,384: WARNING/MainProcess] [debug] exe versions: ffmpeg 5.1.6-0 (setts), ffprobe 5.1.6-0 [2025-03-13 10:14:59,384: WARNING/MainProcess] [debug] Optional libraries: certifi-2025.01.31, requests-2.32.3, sqlite3-3.40.1, urllib3-2.3.0 [2025-03-13 10:14:59,384: WARNING/MainProcess] [debug] Proxy map: {} [2025-03-13 10:14:59,385: WARNING/MainProcess] [debug] Request Handlers: urllib, requests [2025-03-13 10:14:59,450: WARNING/MainProcess] [debug] Loaded 1839 extractors [2025-03-13 10:14:59,452: WARNING/MainProcess] [debug] [youtube] Found YouTube account cookies [2025-03-13 10:14:59,452: WARNING/MainProcess] [youtube] Extracting URL: https://music.youtube.com/watch?v=xYP9GeYSSqo [2025-03-13 10:14:59,453: WARNING/MainProcess] [youtube] xYP9GeYSSqo: Downloading web music client config [2025-03-13 10:15:00,117: WARNING/MainProcess] [youtube] xYP9GeYSSqo: Downloading player 74e4bb46 [2025-03-13 10:15:00,219: WARNING/MainProcess] [youtube] xYP9GeYSSqo: Downloading web music player API JSON [2025-03-13 10:15:00,423: WARNING/MainProcess] [debug] [youtube] Extracting signature function js_74e4bb46_106 [2025-03-13 10:15:00,424: WARNING/MainProcess] [debug] Loading youtube-sigfuncs.js_74e4bb46_106 from cache [2025-03-13 10:15:00,424: WARNING/MainProcess] [debug] Loading youtube-nsig.74e4bb46 from cache [2025-03-13 10:15:00,780: WARNING/MainProcess] [debug] [youtube] Decrypted nsig d6gJWcCgkaNpZNOWa9X => DDs50Tw0yZGfBQ [2025-03-13 10:15:00,782: WARNING/MainProcess] [debug] Loading youtube-nsig.74e4bb46 from cache [2025-03-13 10:15:01,140: WARNING/MainProcess] [debug] [youtube] Decrypted nsig 3Td651KeN-qJNvmMkH0 => UdKeOw6TKhdp1A [2025-03-13 10:15:01,142: WARNING/MainProcess] [debug] [youtube] Extracting signature function js_74e4bb46_102 [2025-03-13 10:15:01,142: WARNING/MainProcess] [debug] Loading youtube-sigfuncs.js_74e4bb46_102 from cache [2025-03-13 10:15:01,158: WARNING/MainProcess] [youtube] xYP9GeYSSqo: Downloading initial data API JSON [2025-03-13 10:15:01,858: WARNING/MainProcess] [debug] Sort order given by extractor: quality, res, fps, hdr:12, source, vcodec, channels, acodec, lang, proto [2025-03-13 10:15:01,858: WARNING/MainProcess] [debug] Formats sorted by: hasvid, ie_pref, quality, res, fps, hdr:12(7), source, vcodec, channels, acodec, lang, proto, size, br, asr, vext, aext, hasaud, id [2025-03-13 10:15:01,872: WARNING/MainProcess] [info] xYP9GeYSSqo: Downloading 1 format(s): 774 [2025-03-13 10:15:43,074: WARNING/MainProcess] [info] Downloading video thumbnail 41 ... [2025-03-13 10:15:43,496: WARNING/MainProcess] [info] Writing video thumbnail 41 to: ./Temp/./Music/5ab8b82f1ed62ca6febfc46370a99062/e14fdf807f92922e33eda6464867c0a8.webp [2025-03-13 10:15:43,541: WARNING/MainProcess] [debug] Invoking http downloader on "https://rr5---sn-cvh7knzr.googlevideo.com/videoplayback?expire=1741882500&ei=JLDSZ4LgD8iW4t4PqNG_0QQ&" [2025-03-13 10:15:43,939: WARNING/MainProcess] [download] Destination: ./Temp/./Music/5ab8b82f1ed62ca6febfc46370a99062/e14fdf807f92922e33eda6464867c0a8.webm [2025-03-13 10:15:43,939: WARNING/MainProcess] [download] 0.0% of 4.77MiB at Unknown B/s ETA Unknown [2025-03-13 10:15:43,939: WARNING/MainProcess] [download] 0.1% of 4.77MiB at 2.77MiB/s ETA 00:01 [2025-03-13 10:15:43,940: WARNING/MainProcess] [download] 0.1% of 4.77MiB at 4.56MiB/s ETA 00:01 [2025-03-13 10:15:43,940: WARNING/MainProcess] [download] 0.3% of 4.77MiB at 7.52MiB/s ETA 00:00 [2025-03-13 10:15:43,941: WARNING/MainProcess] [download] 0.6% of 4.77MiB at 12.09MiB/s ETA 00:00 [2025-03-13 10:15:43,943: WARNING/MainProcess] [download] 1.3% of 4.77MiB at 15.13MiB/s ETA 00:00 [2025-03-13 10:15:43,944: WARNING/MainProcess] [download] 2.6% of 4.77MiB at 22.37MiB/s ETA 00:00 [2025-03-13 10:15:43,951: WARNING/MainProcess] [download] 5.2% of 4.77MiB at 20.39MiB/s ETA 00:00 [2025-03-13 10:15:43,968: WARNING/MainProcess] [download] 10.5% of 4.77MiB at 17.08MiB/s ETA 00:00 [2025-03-13 10:15:44,002: WARNING/MainProcess] [download] 20.9% of 4.77MiB at 15.67MiB/s ETA 00:00 [2025-03-13 10:15:44,312: WARNING/MainProcess] [download] 41.9% of 4.77MiB at 5.35MiB/s ETA 00:00 [2025-03-13 10:15:44,490: WARNING/MainProcess] [download] 83.8% of 4.77MiB at 7.25MiB/s ETA 00:00 [2025-03-13 10:15:44,495: WARNING/MainProcess] [download] 100.0% of 4.77MiB at 8.58MiB/s ETA 00:00 [2025-03-13 10:15:44,497: WARNING/MainProcess] [download] 100% of 4.77MiB in 00:00:00 at 5.00MiB/s [2025-03-13 10:15:44,503: WARNING/MainProcess] [Metadata] Adding metadata to "./Temp/./Music/5ab8b82f1ed62ca6febfc46370a99062/e14fdf807f92922e33eda6464867c0a8.webm" [2025-03-13 10:15:44,504: WARNING/MainProcess] [debug] ffmpeg command line: ffmpeg -y -loglevel repeat+info -i file:./Temp/./Music/5ab8b82f1ed62ca6febfc46370a99062/e14fdf807f92922e33eda6464867c0a8.webm -map 0 -dn -ignore_unknown -c copy -write_id3v1 1 -metadata 'title=Say Please' -metadata date=20221020 -metadata 'purl=https://www.youtube.com/watch?v=xYP9GeYSSqo' -metadata 'comment=https://www.youtube.com/watch?v=xYP9GeYSSqo' -metadata 'artist=Fredo Bang' -movflags +faststart file:./Temp/./Music/5ab8b82f1ed62ca6febfc46370a99062/e14fdf807f92922e33eda6464867c0a8.temp.webm ```
closed
2025-03-12T14:06:35Z
2025-03-14T03:00:04Z
https://github.com/yt-dlp/yt-dlp/issues/12585
[ "incomplete" ]
Jekylor
0
alyssaq/face_morpher
numpy
34
What is the parameter "dest_shape" in warper.warp_image()?
closed
2018-02-08T03:11:57Z
2018-02-09T15:13:53Z
https://github.com/alyssaq/face_morpher/issues/34
[]
HOTDEADGIRLS
2
PaddlePaddle/PaddleHub
nlp
2,026
Meet an error when installing paddlehub
Hi developer, When I use the latest pip to install paddlehub as follow `!pip install --upgrade paddlehub` I meet the following problem, ``` Installing collected packages: visualdl, rarfile, easydict, paddlehub ERROR: Exception: Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/pip/_internal/cli/base_command.py", line 164, in exc_logging_wrapper status = run_func(*args) File "/usr/local/lib/python3.6/dist-packages/pip/_internal/cli/req_command.py", line 205, in wrapper return func(self, options, args) File "/usr/local/lib/python3.6/dist-packages/pip/_internal/commands/install.py", line 413, in run pycompile=options.compile, File "/usr/local/lib/python3.6/dist-packages/pip/_internal/req/__init__.py", line 81, in install_given_reqs pycompile=pycompile, File "/usr/local/lib/python3.6/dist-packages/pip/_internal/req/req_install.py", line 810, in install requested=self.user_supplied, File "/usr/local/lib/python3.6/dist-packages/pip/_internal/operations/install/wheel.py", line 737, in install_wheel requested=requested, File "/usr/local/lib/python3.6/dist-packages/pip/_internal/operations/install/wheel.py", line 589, in _install_wheel file.save() File "/usr/local/lib/python3.6/dist-packages/pip/_internal/operations/install/wheel.py", line 383, in save if os.path.exists(self.dest_path): File "/usr/lib/python3.6/genericpath.py", line 19, in exists os.stat(path) UnicodeEncodeError: 'ascii' codec can't encode character '\u53f3' in position 81: ordinal not in range(128) ``` the system is Ubuntu 18.04.5 LTS
open
2022-09-16T02:10:35Z
2022-09-16T06:10:49Z
https://github.com/PaddlePaddle/PaddleHub/issues/2026
[]
Kunlun-Zhu
3
getsentry/sentry
python
87,404
[User Feedback] Feedback list loads slowly and doesn't show spam/resolve state changes
Sentry Feedback: [JAVASCRIPT-2YMF](https://sentry.sentry.io/feedback/?referrer=github_integration&feedbackSlug=javascript%3A6426713284&project=11276) The user feedback list sometimes takes a long time to load new items when scrolling to the bottom. It also does not update the list if I mark a feedback as spam or resolved, I have to reload the page for it to appear in the new list.
open
2025-03-19T16:49:32Z
2025-03-19T16:50:08Z
https://github.com/getsentry/sentry/issues/87404
[ "Component: Feedback", "Product Area: User Feedback" ]
sentry-io[bot]
1
modoboa/modoboa
django
2,602
opendkim not work
# Impacted versions * OS Type: Ubuntu 20.04 * OS Version: Number or Name * Database Type: PostgreSQL * Database version: X.y * Modoboa: 2.0.1 * installer used: Yes * Webserver: Nginx # Steps to reproduce systemctl status opendkim ● opendkim.service - OpenDKIM DomainKeys Identified Mail (DKIM) Milter Loaded: loaded (/lib/systemd/system/opendkim.service; enabled; vendor preset: enabled) Active: failed (Result: exit-code) since Sun 2022-09-18 19:11:42 CEST; 9s ago Docs: man:opendkim(8) man:opendkim.conf(5) man:opendkim-genkey(8) man:opendkim-genzone(8) man:opendkim-testadsp(8) man:opendkim-testkey http://www.opendkim.org/docs.html Process: 2123 ExecStart=/usr/sbin/opendkim -x /etc/opendkim.conf (code=exited, status=78) # Current behavior Sep 18 19:11:41 mail opendkim[2120]: opendkim: /etc/opendkim.conf: dsn:pgsql://opendkim:AUgSEhrWj0FyTMCc@127.0.0.1:5432/modoboa/table=dkim?keycol=domain_name?datacol=id: dkimf_db_open(): Invalid argument Sep 18 19:11:41 mail systemd[1]: opendkim.service: Control process exited, code=exited, status=78/CONFIG Sep 18 19:11:41 mail systemd[1]: opendkim.service: Failed with result 'exit-code'. Sep 18 19:11:41 mail systemd[1]: Failed to start OpenDKIM DomainKeys Identified Mail (DKIM) Milter. Sep 18 19:11:42 mail systemd[1]: opendkim.service: Scheduled restart job, restart counter is at 3. Sep 18 19:11:42 mail systemd[1]: Stopped OpenDKIM DomainKeys Identified Mail (DKIM) Milter. Sep 18 19:11:42 mail systemd[1]: Starting OpenDKIM DomainKeys Identified Mail (DKIM) Milter... <!-- Explain the behavior you're seeing that you think is a bug, and explain how you think things should behave instead. --> # Expected behavior # Video/Screenshot link (optional)
closed
2022-09-18T17:20:25Z
2022-09-22T08:54:35Z
https://github.com/modoboa/modoboa/issues/2602
[]
tate11
6
AntonOsika/gpt-engineer
python
240
“Ask for feedback” step.
Create a step that asks “did it run/work/perfect”?, and store to memory folder. And let the benchmark.py script check that result, and convert it to a markdown table like benchmark/RESULTS.md , and append it with some metadata to that file.
closed
2023-06-20T06:20:28Z
2023-07-02T14:00:37Z
https://github.com/AntonOsika/gpt-engineer/issues/240
[ "help wanted", "good first issue" ]
AntonOsika
6
CorentinJ/Real-Time-Voice-Cloning
pytorch
1,068
choppy stretched out audio
My spectrogram looks kinda weird and the audio sounds like heavily synthesised choppy vocals, did I install anything [wrong?[ <img width="664" alt="Screenshot 2022-05-23 at 07 08 02" src="https://user-images.githubusercontent.com/71672036/169755394-e387d753-f4ce-46a3-8553-bafcec526580.png"> ]
open
2022-05-23T06:17:29Z
2022-05-25T20:16:48Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1068
[]
zemigm
1
sqlalchemy/alembic
sqlalchemy
439
Double "%" in SQL when exporting via --sql
**Migrated issue, originally created by babak ([@babakness](https://github.com/babakness))** To summarize my issue, I have to fix the output of `alembic upgrade [id]:head --sql > foo.sql` with ` 's/[%]{2,2}/%/g'` Because all "%" characters are escaped.
closed
2017-07-20T20:54:51Z
2017-09-18T05:37:03Z
https://github.com/sqlalchemy/alembic/issues/439
[ "bug" ]
sqlalchemy-bot
4
litestar-org/litestar
api
3,780
Docs: testing + debug mode
### Summary As a new litestar user, I've just started looking at documentation to test my application. With the default example, un-handled errors are simply turning up as 500 internal server error without much to use. Simply setting `app.debug = True` inside the test module is enough to have a proper traceback. Would it be possible to add this line on the first examples? Maybe there is a better way? ----- Looking up a the source for `AsyncTestClient` I see that there is a `raise_server_exceptions` option (in my case it is set to True, the default)
closed
2024-10-07T14:21:48Z
2025-03-20T15:54:57Z
https://github.com/litestar-org/litestar/issues/3780
[ "Documentation :books:" ]
romuald
0
ultralytics/ultralytics
machine-learning
19,839
WARNING ⚠️ numpy>=1.23.0 is required, but numpy==2.2.4 is currently installed
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component _No response_ ### Bug ``` Traceback (most recent call last): File "/usr/local/bin/yolo", line 10, in <module> sys.exit(entrypoint()) ^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/ultralytics/cfg/__init__.py", line 899, in entrypoint special[a.lower()]() File "/usr/local/lib/python3.11/dist-packages/ultralytics/utils/checks.py", line 680, in collect_system_info is_met = "✅ " if check_version(current, str(r.specifier), name=r.name, hard=True) else "❌ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/ultralytics/utils/checks.py", line 253, in check_version raise ModuleNotFoundError(emojis(warning)) # assert version requirements met ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ModuleNotFoundError: WARNING ⚠️ numpy>=1.23.0 is required, but numpy==2.2.4 is currently installed ``` ### Environment ``` root@c104b728f01e:/# yolo checks Ultralytics 8.3.95 🚀 Python-3.11.10 torch-2.8.0.dev20250323+cu128 CUDA:0 (NVIDIA GeForce RTX 5090, 32120MiB) Setup complete ✅ (32 CPUs, 187.8 GB RAM, 12.0/128.0 GB disk) OS Linux-6.8.0-55-generic-x86_64-with-glibc2.35 Environment Docker Python 3.11.10 Install pip Path /usr/local/lib/python3.11/dist-packages/ultralytics RAM 187.82 GB Disk 12.0/128.0 GB CPU AMD Ryzen 9 7950X 16-Core Processor CPU count 32 GPU NVIDIA GeForce RTX 5090, 32120MiB GPU count 1 CUDA 12.8 Traceback (most recent call last): File "/usr/local/bin/yolo", line 10, in <module> sys.exit(entrypoint()) ^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/ultralytics/cfg/__init__.py", line 899, in entrypoint special[a.lower()]() File "/usr/local/lib/python3.11/dist-packages/ultralytics/utils/checks.py", line 680, in collect_system_info is_met = "✅ " if check_version(current, str(r.specifier), name=r.name, hard=True) else "❌ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/ultralytics/utils/checks.py", line 253, in check_version raise ModuleNotFoundError(emojis(warning)) # assert version requirements met ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ModuleNotFoundError: WARNING ⚠️ numpy>=1.23.0 is required, but numpy==2.2.4 is currently installed ``` ### Minimal Reproducible Example `yolo checks` after installing latest numpy ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2025-03-24T10:40:06Z
2025-03-24T18:35:06Z
https://github.com/ultralytics/ultralytics/issues/19839
[ "bug", "dependencies", "fixed" ]
glenn-jocher
2
matterport/Mask_RCNN
tensorflow
2,842
problems with transfer learning: using my own trained weights, or the Usiigaci trained wieghts
hey! my project also involves cell detection, so I thought I'd try training my CNN using [Usiigaci pre-trained weights](https://github.com/oist/Usiigaci). but when I try I get the following error: `ValueError: Layer #362 (named "anchors") expects 1 weight(s), but the saved weights have 0 element(s).` The training works fine for pretrained coco weigths for example. this is the code i use to load the weights: `model = MaskRCNN(mode='training', model_dir='./', config=config) model.load_weights('Usiigaci_3.h5', by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"])` I also get a similar problem when trying to load the weights that were generated by training my model over my own photos, to continue the training where I have stopped the last time. the error received is: `ValueError: Layer #362 (named "anchors"), weight <tf.Variable 'Variable:0' shape=(4, 261888, 4) dtype=float32> has shape (4, 261888, 4), but the saved weight has shape (2, 261888, 4). ` loading the weights: `model.load_weights('new_weigths/40_epochs/mask_rcnn_cell_cfg_0040.h5', by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) ` please let me know if you understand why is this happening. thanks!!
open
2022-06-12T07:39:09Z
2022-06-12T07:40:55Z
https://github.com/matterport/Mask_RCNN/issues/2842
[]
avnerst
0
pyjanitor-devs/pyjanitor
pandas
808
[ENH] Filter rows across Multiple Columns
# Brief Description <!-- Please provide a brief description of what you'd like to propose. --> I would like to propose a `filter_rows` function (not sure what the name should be), where rows in a dataframe can be filtered across columns or at a specific column # Example API <!-- One of the selling points of pyjanitor is the API. Hence, we guard the API very carefully, and want to make sure that it is accessible and understandable to many people. Please provide a few examples of what the API of the new function you're proposing will look like. We have provided an example that you should modify. --> Please modify the example API below to illustrate your proposed API, and then delete this sentence. ```python # example data df = {"x":["a",'b'], 'y':[1,1], 'z':[-1,1]} df = pd.DataFrame(df) df x y z 0 a 1 -1 1 b 1 1 # Find all rows where EVERY numeric variable is greater than zero # this is one way to solve it df.loc[df.select_dtypes('number').gt(0).all(1)] x y z 1 b 1 1 # or we could abstract it: def filter_rows(df, dtype, columns, condition, any_True = True): temp = df.copy() if dtype: temp = df.select_dtypes(dtype) if columns: booleans = temp.loc[:, columns].transform(condition) else: booleans = temp.transform(condition) if any_True: booleans = booleans.any(axis = 1) else: booleans = booleans.all(axis = 1) return df.loc[booleans] df.filter_rows(dtype='number', columns=None, condition= lambda df: df.gt(0), any_True=False) ``` I was working on a blog post, based on [Suzan Baert's](https://suzan.rbind.io/2018/02/dplyr-tutorial-3/#filtering-across-multiple-columns) blog, and it seemed like a good addition to the library, to abstract the steps. instead of adding another function, maybe we could modify `filter_on`? Just an idea for the rest of the team to consider and see if it is worth adding to the library.
closed
2021-03-02T06:02:09Z
2021-12-11T10:28:31Z
https://github.com/pyjanitor-devs/pyjanitor/issues/808
[]
samukweku
0
miguelgrinberg/flasky
flask
63
Something can't understand in page 80
Hi Miguel, Thanks you for your book, There're some sentences I can't understand in the book. In the second paragraph of the page 80,<b>"Importing these modules causes the routes and error handlers to be associated with the blueprint."</b> Doesn't the routes and error handlers associated with the blueprint by the decorate,like the @main.route and @main.app_errorhandler? sorry for the pool english;-)
closed
2015-08-24T03:55:12Z
2015-08-26T06:42:13Z
https://github.com/miguelgrinberg/flasky/issues/63
[ "question" ]
testerman77
2
jupyter/nbgrader
jupyter
1,360
sort_index()
### Ubuntu 18.04 ### nbgrader version 0.6.1 ### `jupyterhub --version` (if used with JupyterHub) ### 6.0.3 ### Expected behavior extract_grades.py does not crash ### Actual behavior extract_grades.py crashes `grades = pd.DataFrame(grades).set_index(['student', 'assignment']).sortlevel()` needs to be changed to `grades = pd.DataFrame(grades).set_index(['student', 'assignment']).sort_index()` sortlevel() is depricated since 0.20.0 ### Steps to reproduce the behavior `python extract_grades.py`
open
2020-08-28T16:31:37Z
2020-08-28T16:31:37Z
https://github.com/jupyter/nbgrader/issues/1360
[]
drfeinberg
0
cvat-ai/cvat
tensorflow
8,546
Error uploading annotations with Yolov8 Detection format
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce _No response_ ### Expected Behavior I want to upload new annotations done in Yolov8 to a job that already has some annotations and not deleting anything ### Possible Solution _No response_ ### Context I labelled some images, download the labels on Yolov8 Detection format to train a model. I trained a model to obtain the rest of the labels. When trying to upload those new labels, not only nothing new appears on my dataset but also the ones previously done disappear. I have organized the folder to upload the same way as it is downloaded from cvat. A .zip file containing a folder named "labels" where all the labels are organized in .txt files, a data.yaml with all the different classes and a train.txt containing the path of the images. The only file that changes is the "labels" folder where now all the labels done by the trained model of Yolov8 appear (data.yaml and train.txt are the ones that are donwload previously from cvat when exporting the job dataset with the labels) ### Environment _No response_
closed
2024-10-16T06:16:51Z
2024-11-11T10:44:37Z
https://github.com/cvat-ai/cvat/issues/8546
[ "bug" ]
uxuegu
1
QuivrHQ/quivr
api
3,187
[Backend] Update/Remove knowledge
* Moving knowledge -> Reassign knowledge id * Rename file * Remove knowledge with Cascade remove of folder empty or non empty
closed
2024-09-11T08:51:59Z
2024-09-16T14:51:17Z
https://github.com/QuivrHQ/quivr/issues/3187
[ "area: backend" ]
linear[bot]
1
mljar/mljar-supervised
scikit-learn
501
Cannot import name 'ABCIndexClass' from 'pandas.core.dtypes.generic'
Hello, unfortunately I cannot properly use MLJar due to some import error after notebook creation. It seems like some imports under the hood are not proper (pandas import throwing exception), the original problem is mentioned in screenshot: ![image](https://user-images.githubusercontent.com/33793127/145207099-8a1403a9-043b-4d8d-b7a4-b31610f51588.png) _cannot import name 'ABCIndexClass' from 'pandas.core.dtypes.generic' (C:\Users\sebas\AppData\Roaming\MLJAR-Studio\miniconda\lib\site-packages\pandas\core\dtypes\generic.py)_ I've just installed latest MLJar version for Windows (1.0.0), it is fresh and clean, problem occurs during the very first creation of notebook in the tool. It seems like it is a common bug in Pandas (meta class renaming between versions), I could find solution here: https://stackoverflow.com/questions/68704002/importerror-cannot-import-name-abcindexclass-from-pandas-core-dtypes-generic I was not very insightful about my env as MLJar creates its own miniconda's python distribution. I hope there is a way to omit the problem, I do appreciate whole project, finger crossed for You guys!
open
2021-12-08T12:23:02Z
2021-12-08T13:14:36Z
https://github.com/mljar/mljar-supervised/issues/501
[]
ghost
2
oegedijk/explainerdashboard
plotly
150
ExplainerDashboard() error in Google Colab: FormGroup was deprecated
Since one of the most recent updates, ExplainerDashboard is not working anymore in Google Colaboratory. It warns of several deprecated packages and then fails with FormGroup. Trying to run the basic example: ``` !pip install explainerdashboard ``` ``` from sklearn.ensemble import RandomForestClassifier from explainerdashboard import ClassifierExplainer, ExplainerDashboard from explainerdashboard.datasets import titanic_survive, feature_descriptions X_train, y_train, X_test, y_test = titanic_survive() model = RandomForestClassifier(n_estimators=50, max_depth=10).fit(X_train, y_train) explainer = ClassifierExplainer(model, X_test, y_test, cats=['Sex', 'Deck', 'Embarked'], descriptions=feature_descriptions, labels=['Not survived', 'Survived']) ExplainerDashboard(explainer).run() ``` returns the following error: ``` The dash_html_components package is deprecated. Please replace `import dash_html_components as html` with `from dash import html` The dash_core_components package is deprecated. Please replace `import dash_core_components as dcc` with `from dash import dcc` Detected RandomForestClassifier model: Changing class type to RandomForestClassifierExplainer... Note: model_output=='probability', so assuming that raw shap output of RandomForestClassifier is in probability space... Generating self.shap_explainer = shap.TreeExplainer(model) Building ExplainerDashboard.. Detected google colab environment, setting mode='external' Warning: calculating shap interaction values can be slow! Pass shap_interaction=False to remove interactions tab. Generating layout... Calculating shap values... The dash_table package is deprecated. Please replace `import dash_table` with `from dash import dash_table` Also, if you're using any of the table format helpers (e.g. Group), replace `from dash_table.Format import Group` with `from dash.dash_table.Format import Group` --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-3-65538403dd79> in <module>() 12 labels=['Not survived', 'Survived']) 13 ---> 14 ExplainerDashboard(explainer).run() 8 frames /usr/local/lib/python3.7/dist-packages/dash_bootstrap_components/__init__.py in __getattr__(self, name) 51 # TODO: update URL before release 52 raise AttributeError( ---> 53 f"{name} was deprecated in dash-bootstrap-components version " 54 f"1.0.0. You are using {__version__}. For more details please " 55 "see the migration guide: " AttributeError: FormGroup was deprecated in dash-bootstrap-components version 1.0.0. You are using 1.0.0. For more details please see the migration guide: https://dbc-v1.herokuapp.com/migration-guide/ ``` Any hints? Thanks in advance.
closed
2021-10-24T12:14:43Z
2021-10-31T20:28:26Z
https://github.com/oegedijk/explainerdashboard/issues/150
[]
yerbby
3
ets-labs/python-dependency-injector
flask
486
AsyncResource integration with fastapi-utils CBVs
Hello, I'm trying to use an AsyncResource (to manage SQLAlchemy AsyncSessions) with FastAPI Class-Based Views (from [fastapi-utils](https://fastapi-utils.davidmontague.xyz/user-guide/class-based-views/)) so that I can inject common resources using a base class that my endpoints will inherit. Unfortunately, I can't seem to find a way to make it work. Not even sure if what I'm wanting to do is possible, but maybe another set of eyes can help. Here's a rough simplification of my code: async_session_resource.py: ```python from dependency_injector import resources from sqlalchemy.ext.asyncio import AsyncSession class AsyncSessionProvider(resources.AsyncResource): async def init(self, sessionmaker) -> AsyncSession: return sessionmaker() async def shutdown(self, session: AsyncSession) -> None: await session.close() ``` api_container.py: ```python from async_session_provider import AsyncSessionProvider from dependency_injector import containers, providers from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine from sqlalchemy.orm import sessionmaker class ApiContainer(containers.DeclarativeContainer): config = providers.Configuration() config.db_url.from_env("DB_URL") engine = providers.Singleton(create_async_engine, url=config.db_url) async_session_factory = providers.Singleton( sessionmaker, bind=engine, autoflush=True, expire_on_commit=False, class_=AsyncSession ) session = providers.Resource(AsyncSessionProvider, async_session_factory) ``` endpoint_base.py: ```python from api_container import ApiContainer from dependency_injector.wiring import Closing, Provide, inject from fastapi.param_functions import Depends class Endpoint: @inject def __init__( self, session: AsyncSession = Depends(Closing[Provide[ApiContainer.session]]) ): self.session = session ``` my_endpoint.py: ```python from api_router import router # router = APIRouter() from endpoint_base import Endpoint from fastapi import Path from fastapi_utils.cbv import cbv from my_resource import MyResource @cbv(router) class MyEndpoint(Endpoint): @router.get("/my/{id}", response_model=MyResource) async def get(self, id: int = Path(...)): return await self.session.get(MyResource, id) ``` api_app.py: ```python import sys import endpoint_base import my_endpoint from api_container import ApiContainer from api_router import router from dependency_injector.wiring import Provide, inject from fastapi import FastAPI class MyAPI(FastAPI): def __init__(self): super().__init__(on_startup=[self.__load_container]) def __load_container(self): modules = [ sys.modules[__name__], endpoint_base, my_endpoint, ] self.container = ApiContainer() self.container.wire(modules=modules) app = MyAPI() ``` Run: ```bash uvicorn api_app:app ``` The exception I get when I hit the endpoint: ``` ERROR: Exception in ASGI application Traceback (most recent call last): File ".venv\lib\site-packages\uvicorn\protocols\http\h11_impl.py", line 369, in run_asgi result = await app(self.scope, self.receive, self.send) File ".venv\lib\site-packages\uvicorn\middleware\proxy_headers.py", line 59, in __call__ return await self.app(scope, receive, send) File ".venv\lib\site-packages\fastapi\applications.py", line 208, in __call__ await super().__call__(scope, receive, send) File ".venv\lib\site-packages\starlette\applications.py", line 112, in __call__ await self.middleware_stack(scope, receive, send) File ".venv\lib\site-packages\starlette\middleware\errors.py", line 181, in __call__ raise exc from None File ".venv\lib\site-packages\starlette\middleware\errors.py", line 159, in __call__ await self.app(scope, receive, _send) File ".venv\lib\site-packages\starlette\middleware\cors.py", line 78, in __call__ await self.app(scope, receive, send) File ".venv\lib\site-packages\starlette\exceptions.py", line 82, in __call__ raise exc from None File ".venv\lib\site-packages\starlette\exceptions.py", line 71, in __call__ await self.app(scope, receive, sender) File ".venv\lib\site-packages\starlette\routing.py", line 580, in __call__ await route.handle(scope, receive, send) File ".venv\lib\site-packages\starlette\routing.py", line 241, in handle await self.app(scope, receive, send) File ".venv\lib\site-packages\starlette\routing.py", line 52, in app response = await func(request) File ".venv\lib\site-packages\fastapi\routing.py", line 213, in app dependency_overrides_provider=dependency_overrides_provider, File ".venv\lib\site-packages\fastapi\dependencies\utils.py", line 552, in solve_dependencies solved = await run_in_threadpool(call, **sub_values) File ".venv\lib\site-packages\starlette\concurrency.py", line 40, in run_in_threadpool return await loop.run_in_executor(None, func, *args) File ".pyenv\pyenv-win\versions\3.7.9\lib\concurrent\futures\thread.py", line 57, in run result = self.fn(*self.args, **self.kwargs) File ".venv\lib\site-packages\fastapi_utils\cbv.py", line 82, in new_init old_init(self, *args, **kwargs) File ".venv\lib\site-packages\dependency_injector\wiring.py", line 595, in _patched to_inject[injection] = provider() File "src/dependency_injector/providers.pyx", line 207, in dependency_injector.providers.Provider.__call__ File "src/dependency_injector/providers.pyx", line 3616, in dependency_injector.providers.Resource._provide File "src/dependency_injector/providers.pyx", line 3674, in dependency_injector.providers.Resource._create_init_future File ".pyenv\pyenv-win\versions\3.7.9\lib\asyncio\tasks.py", line 607, in ensure_future loop = events.get_event_loop() File ".pyenv\pyenv-win\versions\3.7.9\lib\asyncio\events.py", line 644, in get_event_loop % threading.current_thread().name) RuntimeError: There is no current event loop in thread 'ThreadPoolExecutor-0_0'. ``` Notes: - Synchronous `resources.Resource` resources inject properly in `Endpoint.__init__()` - I could not find a way to call `session.close()` on an AsyncSession in a synchronous Resource that actually properly closes the session - Using `async def __init__()` does not result in the above error, but of course I can't set object properties via an async method - Injecting directly into the async `get()` methods works as expected of course Is what I'm trying to with CBVs even possible? Am I trying to be too clever? Thanks!
closed
2021-08-12T22:24:38Z
2021-08-13T15:38:54Z
https://github.com/ets-labs/python-dependency-injector/issues/486
[ "question" ]
Daveography
4
QuivrHQ/quivr
api
3,488
Documentation not up to date with new changes
<img src="https://uploads.linear.app/51e2032d-a488-42cf-9483-a30479d3e2d0/5978517c-49ef-4491-a38d-3189509a5af3/09d81e58-233c-4032-8396-568e6131fef6?signature=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJwYXRoIjoiLzUxZTIwMzJkLWE0ODgtNDJjZi05NDgzLWEzMDQ3OWQzZTJkMC81OTc4NTE3Yy00OWVmLTQ0OTEtYTM4ZC0zMTg5NTA5YTVhZjMvMDlkODFlNTgtMjMzYy00MDMyLTgzOTYtNTY4ZTYxMzFmZWY2IiwiaWF0IjoxNzMyMjEzMTA4LCJleHAiOjMzMzAyNzczMTA4fQ.SWRDX_Deinet_oEyX3nExhW-nNBziRv1bMhEGK9u-Tk " alt="image.png" width="1446" height="515" /> The documentation has not been changed on core.quivr.app to reflect the new name for max_input_token
closed
2024-11-18T22:13:57Z
2025-02-24T20:06:30Z
https://github.com/QuivrHQ/quivr/issues/3488
[ "Stale", "area: docs" ]
StanGirard
3
Anjok07/ultimatevocalremovergui
pytorch
1,243
problema con Ultimate Vocal Remover
Last Error Received: Process: MDX-Net If this error persists, please contact the developers with the error details. Raw Error Details: RuntimeError: "MPS backend out of memory (MPS allocated: 447.37 MB, other allocations: 3.05 GB, max allowed: 3.40 GB). Tried to allocate 4.50 MB on private pool. Use PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0 to disable upper limit for memory allocations (may cause system failure)." Traceback Error: " File "UVR.py", line 6584, in process_start File "separate.py", line 470, in seperate File "separate.py", line 565, in demix File "separate.py", line 606, in run_model File "torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "onnx2pytorch/convert/model.py", line 224, in forward File "torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/linear.py", line 114, in forward return F.linear(input, self.weight, self.bias) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ " Error Time Stamp [2024-03-17 13:17:29] Full Application Settings: vr_model: Choose Model aggression_setting: 5 window_size: 512 mdx_segment_size: 256 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: UVR-MDX-NET Inst HQ 3 chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: True is_secondary_stem_only: False is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: PCM_16 cuda_set: Default help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: All Stems
open
2024-03-17T12:20:58Z
2024-03-17T12:20:58Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1243
[]
Mamboitalian0
0
milesmcc/shynet
django
185
Incorrect calculation of month value
``` shynet_main | [2022-01-01 00:04:18 +0000] [9] [INFO] Booting worker with pid: 9 shynet_main | ERROR Internal Server Error: /dashboard/ shynet_main | Traceback (most recent call last): shynet_main | File "/usr/local/lib/python3.9/site-packages/django/core/handlers/exception.py", line 47, in inner shynet_main | response = get_response(request) shynet_main | File "/usr/local/lib/python3.9/site-packages/django/core/handlers/base.py", line 181, in _get_response shynet_main | response = wrapped_callback(request, *callback_args, **callback_kwargs) shynet_main | File "/usr/local/lib/python3.9/site-packages/django/views/generic/base.py", line 70, in view shynet_main | return self.dispatch(request, *args, **kwargs) shynet_main | File "/usr/local/lib/python3.9/site-packages/django/contrib/auth/mixins.py", line 71, in dispatch shynet_main | return super().dispatch(request, *args, **kwargs) shynet_main | File "/usr/local/lib/python3.9/site-packages/django/views/generic/base.py", line 98, in dispatch shynet_main | return handler(request, *args, **kwargs) shynet_main | File "/usr/local/lib/python3.9/site-packages/django/views/generic/list.py", line 157, in get shynet_main | context = self.get_context_data() shynet_main | File "/usr/src/shynet/dashboard/views.py", line 36, in get_context_data shynet_main | data = super().get_context_data(**kwargs) shynet_main | File "/usr/src/shynet/dashboard/mixins.py", line 64, in get_context_data shynet_main | data["date_ranges"] = self.get_date_ranges() shynet_main | File "/usr/src/shynet/dashboard/mixins.py", line 50, in get_date_ranges shynet_main | "start": now.replace(day=1, month=now.month - 1), shynet_main | ValueError: month must be in 1..12 ``` ``` REPOSITORY TAG IMAGE ID CREATED milesmcc/shynet latest 8fc7868f03dd 3 months ago ```
closed
2022-01-01T00:08:43Z
2022-01-01T21:28:41Z
https://github.com/milesmcc/shynet/issues/185
[]
wolfpld
6
Lightning-AI/pytorch-lightning
deep-learning
19,599
The color scheme of yaml code in the document makes it difficult to read
### 📚 Documentation <img width="334" alt="截屏2024-03-08 18 09 26" src="https://github.com/Lightning-AI/pytorch-lightning/assets/17872844/07f59352-03eb-4c8d-a28c-00308de5be0a"> The black background and the dark blue text makes the code really difficult to read. cc @borda
open
2024-03-08T10:10:48Z
2024-03-08T15:20:22Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19599
[ "bug", "duplicate", "docs" ]
BakerBunker
2
thtrieu/darkflow
tensorflow
532
how to plot recall-precision curve and print mAP on the terminal along with the validation loss
Hey all, Can anyone help me to plot recall-precision curve and print mAP on the terminal along with the loss? Also has anyone applied validation flow after particular number of steps? I want to see the loss of train and validation sets in the same plot. Any help? Thanks.
open
2018-01-20T09:07:31Z
2018-03-08T01:04:51Z
https://github.com/thtrieu/darkflow/issues/532
[]
onurbarut
0
huggingface/pytorch-image-models
pytorch
1,625
[BUG] broken source links in the documentation
**Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: 1. Clicking on the `list_models` page redirects to Broken link page &rarr; https://huggingface.co/docs/timm/reference/models ![image](https://user-images.githubusercontent.com/31466137/211210620-0a3f1232-ce9d-42b9-97de-966306708a9e.png) <https://github.com/rwightman/pytorch-image-models/blob/main/src/timm/models/_registry.py#L94> **Expected behavior** Instead, it should redirect to <https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/_registry.py#L94> I believe due to this other links in the docs are also broken.
closed
2023-01-08T17:40:32Z
2023-01-13T22:47:22Z
https://github.com/huggingface/pytorch-image-models/issues/1625
[ "bug" ]
deven367
5