repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
Evil0ctal/Douyin_TikTok_Download_API
web-scraping
513
[BUG] bilibili 获取指定用户的信息 一直返回风控校验失败
平台: bilibili 使用接口:api/bilibili/web/fetch_user_profile 获取指定用户的信息 接口返回: { "code": -352, "message": "风控校验失败", "ttl": 1, "data": { "v_voucher": "voucher_f7a432cb-91fb-467e-a9a3-3e861aac9478" } } 错误描述: 已经更新过config.yaml内的cookie,使用 【获取用户发布的视频数据】接口就可以正常返回数据。但是使用【获取指定用户的信息】,就返回【风控校验失败】。
open
2024-11-28T10:52:56Z
2024-11-28T10:57:11Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/513
[ "BUG" ]
sukris
0
jupyterhub/repo2docker
jupyter
1,131
/srv/conda/envs/notebook/bin/python: No module named pip
<!-- Thank you for contributing. These HTML commments will not render in the issue, but you can delete them once you've read them if you prefer! --> ### Bug description Opening a new issue as a follow-up to the comment posted in https://github.com/jupyterhub/repo2docker/pull/1062#issuecomment-1023073794. Using the latest `repo2docker` (with `python -m pip install https://github.com/jupyterhub/repo2docker/archive/main.zip`), (existing) repos that have a custom `environment.yml` don't seem to be able to invoke `pip`, for example with `python -m pip`. #### Expected behaviour Running arbitrary `python -m pip install .` or similar should still be supported in a `postBuild` file. #### Actual behaviour Getting the following error: ``` /srv/conda/envs/notebook/bin/python: No module named pip ``` ### How to reproduce **With Binder** Using the test gist: https://gist.github.com/jtpio/6268417579aaf252e06c72cd3ec29ebb With `postBuild`: ``` python -m pip --help ``` And `environment.yml`: ```yaml name: test channels: - conda-forge dependencies: - python >=3.10,<3.11 ``` ![image](https://user-images.githubusercontent.com/591645/151583923-c2110d69-473a-47e3-b767-fc75b5e5e361.png) **Locally with repo2docker** ``` mamba create -n tmp -c conda-forge python=3.10 -y conda activate tmp python -m pip install https://github.com/jupyterhub/repo2docker/archive/main.zip jupyter-repo2docker https://gist.github.com/jtpio/6268417579aaf252e06c72cd3ec29ebb ``` ![image](https://user-images.githubusercontent.com/591645/151585579-60e888df-101d-4477-97f3-ef4b97c3e9c3.png) ### Your personal set up Using this gist on mybinder.org: https://gist.github.com/jtpio/6268417579aaf252e06c72cd3ec29ebb
closed
2022-01-28T16:35:33Z
2022-02-01T10:48:39Z
https://github.com/jupyterhub/repo2docker/issues/1131
[]
jtpio
6
inducer/pudb
pytest
449
Internal shell height should be saved in the settings
I think the default height of internal shell is too small. Thx~
closed
2021-05-09T09:41:15Z
2021-07-13T11:53:25Z
https://github.com/inducer/pudb/issues/449
[]
sisrfeng
3
timkpaine/lantern
plotly
165
add "email notebook" to GUI
closed
2018-06-05T04:27:27Z
2018-08-07T14:13:28Z
https://github.com/timkpaine/lantern/issues/165
[ "feature" ]
timkpaine
1
smarie/python-pytest-cases
pytest
238
Setting `ids` in `@parametrize` leads to "ValueError: Only one of ids and idgen should be provided"
Using `ids` without setting `idgen` to None explicitly leads to this error. ```python from pytest_cases import parametrize, parametrize_with_cases class Person: def __init__(self, name): self.name = name def get_tasks(): return [Person("joe"), Person("ana")] class CasesFoo: @parametrize(task=get_tasks(), ids=lambda task: task.name) def case_task(self, task): return task @parametrize_with_cases("task", cases=CasesFoo) def test_foo(task): print(task) ``` A workaround is to set `idgen=None` too: `@parametrize(task=get_tasks(), ids=lambda task: task.name, idgen=None)` See also #237
closed
2021-11-24T09:19:47Z
2022-01-07T13:40:25Z
https://github.com/smarie/python-pytest-cases/issues/238
[]
smarie
0
deepinsight/insightface
pytorch
2,374
Failed in downloading one of the facial analysis model
RuntimeError: Failed downloading url http://insightface.cn-sh2.ufileos.com/models/buffalo_l.zip Reproduce: model = FaceAnalysis(name='buffalo_l')
closed
2023-07-17T14:12:24Z
2023-07-17T14:58:26Z
https://github.com/deepinsight/insightface/issues/2374
[]
amztc34283
1
gradio-app/gradio
data-visualization
9,956
[Gradio 5] - Gallery with two "X" close button
### Describe the bug I have noticed that the gallery in the latest version of Gradio is showing 2 buttons to close the gallery image, and the button on top is interfering with the selection of the buttons below. This happens when I am in preview mode, either starting in preview mode or after clicking on the image to preview. ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr with gr.Blocks(analytics_enabled=False) as app: gallery = gr.Gallery(label="Generated Images", interactive=True, show_label=True, preview=True, allow_preview=True) app.launch(inbrowser=True) ``` ### Screenshot ![image](https://github.com/user-attachments/assets/f9824d58-4cd5-4206-a119-c863211eece1) ### Logs ```shell N/A ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Windows gradio version: 5.5.0 gradio_client version: 1.4.2 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.4.0 audioop-lts is not installed. fastapi: 0.115.4 ffmpy: 0.4.0 gradio-client==1.4.2 is not installed. httpx: 0.27.0 huggingface-hub: 0.25.2 jinja2: 3.1.3 markupsafe: 2.1.5 numpy: 1.26.3 orjson: 3.10.6 packaging: 24.1 pandas: 2.2.2 pillow: 10.2.0 pydantic: 2.8.2 pydub: 0.25.1 python-multipart==0.0.12 is not installed. pyyaml: 6.0.1 ruff: 0.5.6 safehttpx: 0.1.1 semantic-version: 2.10.0 starlette: 0.41.2 tomlkit==0.12.0 is not installed. typer: 0.12.3 typing-extensions: 4.12.2 urllib3: 2.2.2 uvicorn: 0.30.5 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.2.0 httpx: 0.27.0 huggingface-hub: 0.25.2 packaging: 24.1 typing-extensions: 4.12.2 websockets: 12.0 ``` ### Severity I can work around it
closed
2024-11-13T23:25:20Z
2024-11-25T17:13:39Z
https://github.com/gradio-app/gradio/issues/9956
[ "bug" ]
elismasilva
9
gradio-app/gradio
machine-learning
10,738
gradio canvas won't accept images bigger then 600 x 600 on forgewebui
### Describe the bug I think it's a gradio problem since the problem started today and forge hasn't updated anything ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import gradio as gr ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell colab on forgewebui ``` ### Severity I can work around it
closed
2025-03-06T02:57:40Z
2025-03-06T15:21:24Z
https://github.com/gradio-app/gradio/issues/10738
[ "bug", "pending clarification" ]
Darknessssenkrad
13
serengil/deepface
machine-learning
709
How to avoid black padding pixels?
Thanks for the great work! I have a question about the face detector module. The README.md mentions that > To avoid deformation, deepface adds black padding pixels according to the target size argument after detection and alignment. If I don't want any padding pixels, what pre-processing steps should I do? Or is there any requirement on the shape if I want to skip the padding?
closed
2023-04-02T11:59:30Z
2023-04-02T14:53:28Z
https://github.com/serengil/deepface/issues/709
[]
xjtupanda
1
moshi4/pyCirclize
data-visualization
84
Auto annotation for sectors in chord diagram
> Annotation plotting is a feature added in v1.9.0 (python>=3.9). It is not available in v1.8.0. _Originally posted by @moshi4 in [#83](https://github.com/moshi4/pyCirclize/issues/83#issuecomment-2658729865)_ upgraded to v1.9.0 still it is not changing. ``` from pycirclize import Circos, config from pycirclize.parser import Matrix config.ann_adjust.enable = True circos = Circos.chord_diagram( matrix, cmap= sector_color_dict, link_kws=dict(direction=0, ec="black", lw=0.5, fc="black", alpha=0.5), link_kws_handler = link_kws_handler_overall, order = country_order_list, # label_kws = dict(orientation = 'vertical', r=115) ) ``` While in the documentation track.annotate is used. However I am using from to matrix and updates aren't happing still. Do you have any suggestions. full pseudocode: ``` country_order_list = sorted(list(set(edge_list['source']).union(set(edge_list['target'])))) for country in country_order_list: cnt = country.split('_')[0] if country not in country_color_dict.keys(): sector_color_dict[cnt] = 'red' else: sector_color_dict[cnt] = country_color_dict[cnt] from_to_table_df = edge_list.groupby(['source', 'target']).size().reset_index(name='count')[['source', 'target', 'count']] matrix = Matrix.parse_fromto_table(from_to_table_df) from_to_table_df['year'] = year from_to_table_overall = pd.concat([from_to_table_overall, from_to_table_df]) circos = Circos.chord_diagram( matrix, cmap= sector_color_dict, link_kws=dict(direction=0, ec="black", lw=0.5, fc="black", alpha=0.5), link_kws_handler = link_kws_handler_overall, order = country_order_list, # label_kws = dict(orientation = 'vertical', r=115) ) circos.plotfig() plt.show() plt.title(f'{year}_overall') plt.close() ```
closed
2025-02-14T09:41:38Z
2025-02-21T09:36:39Z
https://github.com/moshi4/pyCirclize/issues/84
[ "question" ]
jishnu-lab
7
autokey/autokey
automation
728
Key capture seems broken on Ubuntu 22.04
### Has this issue already been reported? - [X] I have searched through the existing issues. ### Is this a question rather than an issue? - [X] This is not a question. ### What type of issue is this? Bug ### Which Linux distribution did you use? I've been using AutoKey on Ubuntu 20.04 LTS for months now with this setup and it worked perfectly. Since updating to 22.04 LTS AutoKey no longer captures keys properly. ### Which AutoKey GUI did you use? GTK ### Which AutoKey version did you use? Autokey-gtk 0.95.10 from apt. ### How did you install AutoKey? Distro's repository, didn't change anything during upgrade to 22.04LTS. ### Can you briefly describe the issue? AutoKey no longer seems to capture keys reliably. My old scripts are set up like: ALT+A = ä, ALT+SHIFT+A = Ä, ALT+S=ß etc. This worked perfectly on 20.04LTS across multiple machines. Since the update to 22.04LTS, these scripts only work sporadically, and only in some apps. Firefox (Snap): ALT+A works in Firefox if pressed slowly. ALT+SHIFT+A produces the same output as ALT+A in Firefox if pressed slowly. If combination is pressed quickly while typing a word, such as "ändern", Firefox will capture the release of the ALT key and send the letters "ndern" to the menu, triggering EDIT=>SETTINGS. Geany (text editor): ALT key is immediately captured by the menu Gedit (text editor): ALT key is immediately captured by the menu Setting hotkeys in AutoKey-GTK itself also doesn't seem to work any more. If I click "Press to Set" the program no longer recognizes any keypresses, hanging on "press a key..." indefinitely. ![image](https://user-images.githubusercontent.com/409535/187735841-e2ee339f-d941-40f9-9049-2607c371658b.png) My scripts are set up as follows: ![image](https://user-images.githubusercontent.com/409535/187736163-cbfbd11f-b817-4089-9de1-9cd754931a5b.png) ### Can the issue be reproduced? Sometimes ### What are the steps to reproduce the issue? I've reproduced this on two different machines, both of which were upgraded from 20.04LTS to 22.04LTS and run the same script files. ### What should have happened? Same perfect performance as on 20.04LTS ### What actually happened? See issue description. AutoKey seems to no longer be capturing the keys properly, or rather the foreground app is grabbing them before AutoKey has a chance to do so. ### Do you have screenshots? _No response_ ### Can you provide the output of the AutoKey command? _No response_ ### Anything else? _No response_
closed
2022-08-31T16:58:57Z
2022-08-31T22:00:24Z
https://github.com/autokey/autokey/issues/728
[ "invalid", "installation/configuration" ]
sbroenner
4
AntonOsika/gpt-engineer
python
679
Sweep: add test coverage badge to github project
<details open> <summary>Checklist</summary> - [X] `.github/workflows/python-app.yml` > • Add a new step to run tests with coverage using pytest-cov. This step should be added after the step where the tests are currently being run. > • In the new step, use the command `pytest --cov=./` to run the tests with coverage. > • Add another step to send the coverage report to Codecov. This can be done using the codecov/codecov-action GitHub Action. The step should look like this: > - name: Upload coverage to Codecov > uses: codecov/codecov-action@v1 - [X] `README.md` > • Add the Codecov badge to the top of the README file. The markdown for the badge can be obtained from the settings page of the repository on Codecov. It should look something like this: `[![codecov](https://codecov.io/gh/AntonOsika/gpt-engineer/branch/main/graph/badge.svg?token=YOURTOKEN)](https://codecov.io/gh/AntonOsika/gpt-engineer)` </details>
closed
2023-09-06T17:47:51Z
2023-09-15T07:56:56Z
https://github.com/AntonOsika/gpt-engineer/issues/679
[ "enhancement", "sweep" ]
ATheorell
1
jupyter-book/jupyter-book
jupyter
1,919
Add on page /lectures/big-o.html
closed
2023-02-02T16:38:30Z
2023-02-12T12:47:28Z
https://github.com/jupyter-book/jupyter-book/issues/1919
[]
js-uri
1
apache/airflow
python
48,083
xmlsec==1.3.15 update on March 11/2025 breaks apache-airflow-providers-amazon builds in Ubuntu running Python 3.11+
### Apache Airflow Provider(s) amazon ### Versions of Apache Airflow Providers Looks like a return of https://github.com/apache/airflow/issues/39437 ``` uname -a Linux airflow-worker-qg8nn 6.1.123+ #1 SMP PREEMPT_DYNAMIC Sun Jan 12 17:02:52 UTC 2025 x86_64 x86_64 x86_64 GNU/Linux airflow@airflow-worker-qg8nn:~$ cat /etc/issue Ubuntu 24.04.2 LTS \n \l ``` When installing apache-airflow-providers-amazon ` ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: MIT License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running bdist_wheel running build running build_py creating build/lib.linux-x86_64-cpython-311/xmlsec copying src/xmlsec/__init__.pyi -> build/lib.linux-x86_64-cpython-311/xmlsec copying src/xmlsec/template.pyi -> build/lib.linux-x86_64-cpython-311/xmlsec copying src/xmlsec/tree.pyi -> build/lib.linux-x86_64-cpython-311/xmlsec copying src/xmlsec/constants.pyi -> build/lib.linux-x86_64-cpython-311/xmlsec copying src/xmlsec/py.typed -> build/lib.linux-x86_64-cpython-311/xmlsec running build_ext error: xmlsec1 is not installed or not in path. [end of output] ``` note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for xmlsec Building wheel for pyhive (setup.py): started Building wheel for pyhive (setup.py): finished with status 'done' Created wheel for pyhive: filename=PyHive-0.7.0-py3-none-any.whl size=53933 sha256=3db46c1d80f77ee8782f517987a0c1fc898576faf2efc3842475b53df6630d2f Stored in directory: /tmp/pip-ephem-wheel-cache-nnezwghj/wheels/11/32/63/d1d379f01c15d6488b22ed89d257b613494e4595ed9b9c7f1c Successfully built maxminddb-geolite2 thrift pure-sasl pyhive Failed to build xmlsec ERROR: Could not build wheels for xmlsec, which is required to install pyproject.toml-based projects ``` Pinning pip install xmlsec==1.3.14 resolve the issue ### Apache Airflow version 2.10.5 ### Operating System Ubuntu 24.04.2 ### Deployment Google Cloud Composer ### Deployment details _No response_ ### What happened _No response_ ### What you think should happen instead _No response_ ### How to reproduce pip install apache-airflow-providers-amazon ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
closed
2025-03-21T21:24:51Z
2025-03-23T20:02:27Z
https://github.com/apache/airflow/issues/48083
[ "kind:bug", "area:providers", "area:dependencies", "needs-triage" ]
kmarutya
4
exaloop/codon
numpy
558
Error:Tuple from_py overload match problem
The following code snippet will result in a compilation error ```python @python def t3() -> tuple[pyobj, pyobj, pyobj]: return (1, 2, 3) @python def t2() -> tuple[pyobj, pyobj]: return (1, 2) @python def t33() -> tuple[pyobj, pyobj, pyobj]: return (1, 3, 5) def test1(a, b, c): return a + b + c def test2(a, b): return a + b print(test1(*t3())) print(test2(*t2())) print(test1(*t33())) ``` ``` test_py_dec.py:10:1-41: error: 'Tuple[pyobj,pyobj,pyobj]' does not match expected type 'Tuple[T1,T2]' ╰─ test_py_dec.py:21:14-17: error: during the realization of t33() ```
closed
2024-05-10T12:26:40Z
2024-11-10T19:20:26Z
https://github.com/exaloop/codon/issues/558
[ "bug" ]
victor3d
2
huggingface/datasets
deep-learning
6,441
Trouble Loading a Gated Dataset For User with Granted Permission
### Describe the bug I have granted permissions to several users to access a gated huggingface dataset. The users accepted the invite and when trying to load the dataset using their access token they get `FileNotFoundError: Couldn't find a dataset script at .....` . Also when they try to click the url link for the dataset they get a 404 error. ### Steps to reproduce the bug 1. Grant access to gated dataset for specific users 2. Users accept invitation 3. Users login to hugging face hub using cli login 4. Users run load_dataset ### Expected behavior Dataset is loaded normally for users who were granted access to the gated dataset. ### Environment info datasets==2.15.0
closed
2023-11-21T19:24:36Z
2023-12-13T08:27:16Z
https://github.com/huggingface/datasets/issues/6441
[]
e-trop
3
miguelgrinberg/python-socketio
asyncio
443
python-socketio bridge with ws4py
what i need. client-machine (python-socketio-client) -> server-1 (python-socketio-server also ws4py-client) -> server-2(ws4py-server) currently 2 websocket connections exists from client to server-1 (socketio) from server-1 to server-2(ws4py) what i hold is server-1. server-2(ws4py) is from a third party service provider. i want to get data from client -> receive it on my server-1 thru websocket running on socketio -> send this data to server-2 thru websocket running on ws4py. What i have currently built. socketio client and server-1 = working fine ws4py server-1 to server-2 = working fine what i want get the event or class object of that connected client from socketio and send that directly to ws4py. Can someone guide me on this.
closed
2020-03-20T10:20:56Z
2020-03-20T14:52:10Z
https://github.com/miguelgrinberg/python-socketio/issues/443
[ "question" ]
Geo-Joy
6
jina-ai/clip-as-service
pytorch
310
Suggestions for building semantic search engine
Hello! I'm looking for suggestions of using BERT (and BERT-as-service) in my case. Sorry if such is off-topic here. I'm building kind of information retrieval system and trying to use BERT as semantic search engine. In my DB I have objects with descriptions like "pizza", "falafel", "Chinese restaurant", "I bake pies", "Chocolate Factory Roshen" and I want all these objects to be retrieved by a search query "food" or "I'm hungry" - with some score of semantic relatedness, of course. First of all, does it look like semantic sentence similarity task or more like word similarity? I expect max_seq_len to be 10-15, on average up to 5. So that, should I look into fine-tuning and if yes, on what task? GLUE? Or maybe on my own data creating dataset like STS-B? Or maybe it's better to extract ELMo-like contextual word embedding and then average them? Really appreciate any suggestion. Thanks in advance! **Prerequisites** > Please fill in by replacing `[ ]` with `[x]`. * [x] Are you running the latest `bert-as-service`? * [x] Did you follow [the installation](https://github.com/hanxiao/bert-as-service#install) and [the usage](https://github.com/hanxiao/bert-as-service#usage) instructions in `README.md`? * [x] Did you check the [FAQ list in `README.md`](https://github.com/hanxiao/bert-as-service#speech_balloon-faq)? * [x] Did you perform [a cursory search on existing issues](https://github.com/hanxiao/bert-as-service/issues)?
open
2019-04-04T11:57:14Z
2019-07-26T16:09:51Z
https://github.com/jina-ai/clip-as-service/issues/310
[]
realsergii
2
kensho-technologies/graphql-compiler
graphql
904
Remove cached-property dependency
I think we should remove our dependency on `cached-property`, for a few reasons: - We use a very minimal piece of functionality we can easily replicate and improve upon ourselves. - It isn't type-hinted, and the open issue for it is over a year old with no activity: https://github.com/pydanny/cached-property/issues/172 - The lack of type hints means that we have to always suppress `mypy`'s `disallow_untyped_decorators` rule. It also means that `@cached_property` properties return type `Any`, which makes `mypy` even less useful. - `@cached_property` doesn't inherit from `@property`, causing a number of other type issues. Here's the tracking issue for it, which has also been inactive in many years: https://github.com/pydanny/cached-property/issues/26
closed
2020-08-13T21:52:34Z
2020-08-14T18:22:20Z
https://github.com/kensho-technologies/graphql-compiler/issues/904
[]
obi1kenobi
0
graphql-python/gql
graphql
206
gql-cli pagination
Looks like https://gql.readthedocs.io/en/latest/gql-cli/intro.html doesn't support pagination, which is necessary to get all results from API calls like GitLab https://docs.gitlab.com/ee/api/graphql/getting_started.html#pagination in one go. Are there any plans to add it?
closed
2021-05-08T09:33:19Z
2021-08-24T15:00:39Z
https://github.com/graphql-python/gql/issues/206
[ "type: invalid", "type: question or discussion" ]
abitrolly
13
microsoft/unilm
nlp
900
Layoutlmv3 for RE
**Describe** when i use layoutlmv3 to do RE task on XFUND_zh dataset, the result is 'eval_precision': 0.5283, 'eval_recall': 0.4392. i do not konw the reason of the bad result. maybe there is something wrong with my RE task code? maybe i need more data for training? is there some suggestions for me to improve the result? Dose anyone meet the same problem?
open
2022-10-25T10:00:19Z
2022-12-05T03:01:29Z
https://github.com/microsoft/unilm/issues/900
[]
SuXuping
3
flairNLP/flair
nlp
3,487
[Bug]: GPU memory leak in TextPairRegressor when embed_separately is set to `False`
### Describe the bug When training a `TextPairRegressor` model with `embed_separately=False` (the default), via e.g. `ModelTrainer.fine_tune`, the GPU memory slowly creeps up with each batch, eventually causing an OOM even when the model and a single batch fits easily in GPU memory. The function `store_embeddings` is supposed to clear any embeddings of each DataPoint. For this model, the type of data point is `TextPair`. It actually does seem to handle clearing `text_pair.first` and `.second` when `embed_separately=True`, because it runs embed for each sentence (see `TextPairRegressor._get_embedding_for_data_point`), and that embedding is attached to each sentence so it can be referenced via the sentence. However, the default setting is `False`; in that case, to embed the pair, it concatenates the text of both sentences (adding a separator), creates a new sentence, embeds that sentence, and then returns that embedding. Since it's never attached to the `DataPoint` object, `clear_embeddings` doesn't find it when you iterate over the data points. The function `identify_dynamic_embeddings` also always comes up empty ### To Reproduce ```python import flair from flair.data import DataPairCorpus from flair.models import TextPairRegressor search_rel_corpus = DataPairCorpus(Path('text_pair_dataset'), train_file='train.tsv', test_file='test.tsv', dev_file='dev.tsv', label_type='relevance', in_memory=False) text_pair_regressor = TextPairRegressor(embeddings=embeddings, label_type='relevance') embeddings = TransformerDocumentEmbeddings( model='xlm-roberta-base', layers="-1", subtoken_pooling='first', fine_tune=True, use_context=True, is_word_embedding=True, ) trainer = ModelTrainer(text_pair_regressor, search_rel_corpus) trainer.fine_tune( "relevance_regressor", learning_rate=1e-5, epoch=0, max_epochs=5, mini_batch_size=4, save_optimizer_state=True, save_model_each_k_epochs=1, use_amp=True, # aka Automatic Mixed Precision, e.g. float16 ) ``` ### Expected behavior The memory should remain relatively flat with each epoch of training if memory is cleared correctly. In other training, such as for a `TextClassifier`, it stays roughly the same after each mini-batch, ### Logs and Stack traces ```stacktrace OutOfMemoryError Traceback (most recent call last) Cell In[15], line 1 ----> 1 final_score = trainer.fine_tune( 2 "relevance_regressor", 3 learning_rate=1e-5, 4 epoch=0, 5 max_epochs=5, 6 mini_batch_size=4, 7 save_optimizer_state=True, 8 save_model_each_k_epochs=1, 9 use_amp=True, # aka Automatic Mixed Precision, e.g. float16 10 ) 11 final_score File /pyzr/active_venv/lib/python3.10/site-packages/flair/trainers/trainer.py:253, in ModelTrainer.fine_tune(self, base_path, warmup_fraction, learning_rate, decoder_learning_rate, mini_batch_size, eval_batch_size, mini_batch_chunk_size, max_epochs, optimizer, train_with_dev, train_with_test, reduce_transformer_vocab, main_evaluation_metric, monitor_test, monitor_train_sample, use_final_model_for_eval, gold_label_dictionary_for_eval, exclude_labels, sampler, shuffle, shuffle_first_epoch, embeddings_storage_mode, epoch, save_final_model, save_optimizer_state, save_model_each_k_epochs, create_file_logs, create_loss_file, write_weights, use_amp, plugins, attach_default_scheduler, **kwargs) 250 if attach_default_scheduler: 251 plugins.append(LinearSchedulerPlugin(warmup_fraction=warmup_fraction)) --> 253 return self.train_custom( 254 base_path=base_path, 255 # training parameters 256 learning_rate=learning_rate, 257 decoder_learning_rate=decoder_learning_rate, 258 mini_batch_size=mini_batch_size, 259 eval_batch_size=eval_batch_size, 260 mini_batch_chunk_size=mini_batch_chunk_size, 261 max_epochs=max_epochs, 262 optimizer=optimizer, 263 train_with_dev=train_with_dev, 264 train_with_test=train_with_test, 265 reduce_transformer_vocab=reduce_transformer_vocab, 266 # evaluation and monitoring 267 main_evaluation_metric=main_evaluation_metric, 268 monitor_test=monitor_test, 269 monitor_train_sample=monitor_train_sample, 270 use_final_model_for_eval=use_final_model_for_eval, 271 gold_label_dictionary_for_eval=gold_label_dictionary_for_eval, 272 exclude_labels=exclude_labels, 273 # sampling and shuffling 274 sampler=sampler, 275 shuffle=shuffle, 276 shuffle_first_epoch=shuffle_first_epoch, 277 # evaluation and monitoring 278 embeddings_storage_mode=embeddings_storage_mode, 279 epoch=epoch, 280 # when and what to save 281 save_final_model=save_final_model, 282 save_optimizer_state=save_optimizer_state, 283 save_model_each_k_epochs=save_model_each_k_epochs, 284 # logging parameters 285 create_file_logs=create_file_logs, 286 create_loss_file=create_loss_file, 287 write_weights=write_weights, 288 # amp 289 use_amp=use_amp, 290 # plugins 291 plugins=plugins, 292 **kwargs, 293 ) File /pyzr/active_venv/lib/python3.10/site-packages/flair/trainers/trainer.py:624, in ModelTrainer.train_custom(self, base_path, learning_rate, decoder_learning_rate, mini_batch_size, eval_batch_size, mini_batch_chunk_size, max_epochs, optimizer, train_with_dev, train_with_test, max_grad_norm, reduce_transformer_vocab, main_evaluation_metric, monitor_test, monitor_train_sample, use_final_model_for_eval, gold_label_dictionary_for_eval, exclude_labels, sampler, shuffle, shuffle_first_epoch, embeddings_storage_mode, epoch, save_final_model, save_optimizer_state, save_model_each_k_epochs, create_file_logs, create_loss_file, write_weights, use_amp, plugins, **kwargs) 622 gradient_norm = None 623 scale_before = scaler.get_scale() --> 624 scaler.step(self.optimizer) 625 scaler.update() 626 scale_after = scaler.get_scale() File /pyzr/active_venv/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py:370, in GradScaler.step(self, optimizer, *args, **kwargs) 366 self.unscale_(optimizer) 368 assert len(optimizer_state["found_inf_per_device"]) > 0, "No inf checks were recorded for this optimizer." --> 370 retval = self._maybe_opt_step(optimizer, optimizer_state, *args, **kwargs) 372 optimizer_state["stage"] = OptState.STEPPED 374 return retval File /pyzr/active_venv/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py:290, in GradScaler._maybe_opt_step(self, optimizer, optimizer_state, *args, **kwargs) 288 retval = None 289 if not sum(v.item() for v in optimizer_state["found_inf_per_device"].values()): --> 290 retval = optimizer.step(*args, **kwargs) 291 return retval File /pyzr/active_venv/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:69, in LRScheduler.__init__.<locals>.with_counter.<locals>.wrapper(*args, **kwargs) 67 instance._step_count += 1 68 wrapped = func.__get__(instance, cls) ---> 69 return wrapped(*args, **kwargs) File /pyzr/active_venv/lib/python3.10/site-packages/torch/optim/optimizer.py:280, in Optimizer.profile_hook_step.<locals>.wrapper(*args, **kwargs) 276 else: 277 raise RuntimeError(f"{func} must return None or a tuple of (new_args, new_kwargs)," 278 f"but got {result}.") --> 280 out = func(*args, **kwargs) 281 self._optimizer_step_code() 283 # call optimizer step post hooks File /pyzr/active_venv/lib/python3.10/site-packages/torch/optim/optimizer.py:33, in _use_grad_for_differentiable.<locals>._use_grad(self, *args, **kwargs) 31 try: 32 torch.set_grad_enabled(self.defaults['differentiable']) ---> 33 ret = func(self, *args, **kwargs) 34 finally: 35 torch.set_grad_enabled(prev_grad) File /pyzr/active_venv/lib/python3.10/site-packages/torch/optim/adamw.py:171, in AdamW.step(self, closure) 158 beta1, beta2 = group["betas"] 160 self._init_group( 161 group, 162 params_with_grad, (...) 168 state_steps, 169 ) --> 171 adamw( 172 params_with_grad, 173 grads, 174 exp_avgs, 175 exp_avg_sqs, 176 max_exp_avg_sqs, 177 state_steps, 178 amsgrad=amsgrad, 179 beta1=beta1, 180 beta2=beta2, 181 lr=group["lr"], 182 weight_decay=group["weight_decay"], 183 eps=group["eps"], 184 maximize=group["maximize"], 185 foreach=group["foreach"], 186 capturable=group["capturable"], 187 differentiable=group["differentiable"], 188 fused=group["fused"], 189 grad_scale=getattr(self, "grad_scale", None), 190 found_inf=getattr(self, "found_inf", None), 191 ) 193 return loss File /pyzr/active_venv/lib/python3.10/site-packages/torch/optim/adamw.py:321, in adamw(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, foreach, capturable, differentiable, fused, grad_scale, found_inf, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize) 318 else: 319 func = _single_tensor_adamw --> 321 func( 322 params, 323 grads, 324 exp_avgs, 325 exp_avg_sqs, 326 max_exp_avg_sqs, 327 state_steps, 328 amsgrad=amsgrad, 329 beta1=beta1, 330 beta2=beta2, 331 lr=lr, 332 weight_decay=weight_decay, 333 eps=eps, 334 maximize=maximize, 335 capturable=capturable, 336 differentiable=differentiable, 337 grad_scale=grad_scale, 338 found_inf=found_inf, 339 ) File /pyzr/active_venv/lib/python3.10/site-packages/torch/optim/adamw.py:566, in _multi_tensor_adamw(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, grad_scale, found_inf, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize, capturable, differentiable) 564 exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) 565 torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) --> 566 denom = torch._foreach_add(exp_avg_sq_sqrt, eps) 568 torch._foreach_addcdiv_(device_params, device_exp_avgs, denom, step_size) OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 15.78 GiB total capacity; 14.06 GiB already allocated; 12.00 MiB free; 14.90 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF ``` ### Screenshots _No response_ ### Additional Context I printed out the GPU usage in an altered `train_custom`: ``` def print_gpu_usage(entry=None): allocated_memory = torch.cuda.memory_allocated(0) reserved_memory = torch.cuda.memory_reserved(0) print(f"{entry}\t{allocated_memory:<15,} / {reserved_memory:<15,}") ``` I saw that when training a `TextClassifier`, the memory usage goes back down to the value at the beginning of a batch after `store_embeddings` is called. In `TextPairRegressor`, the memory does not go down at all after `store_embeddings` is called. ### Environment #### Versions: ##### Flair 0.13.1 ##### Pytorch 2.3.1+cu121 ##### Transformers 4.31.0 #### GPU True
closed
2024-07-03T18:26:59Z
2024-07-24T06:24:40Z
https://github.com/flairNLP/flair/issues/3487
[ "bug" ]
MattGPT-ai
0
python-restx/flask-restx
api
141
How do I programmatically access the sample requests from the generated swagger UI
**Ask a question** For a given restx application, I can see a rich set of details contained in the generated Swagger UI, for example for each endpoint, I can see sample requests populated with default values from the restx `fields` I created to serve as the components when defining the endpoints. These show up as example `curl` commands that I can copy/paste into a shell (as well as being executed from the 'Try it out' button). However, I want to access this data programmatically from the app client itself. Suppose I load and run the app in a standalone Python program and have a handle to the Flask `app` object. I can see attributes such as `api.application.blueprints['restx_doc']` to get a handle to the `Apidoc` object. But I cannot find out where this object stores all the information I need to programmatically reconstruct valid requests to the service's endpoint.
open
2020-05-23T19:46:12Z
2020-05-23T19:46:12Z
https://github.com/python-restx/flask-restx/issues/141
[ "question" ]
espears1
0
darrenburns/posting
automation
48
Request body is saved in a non human-readable format when it contains special characters
Hello and thank you for creating this tool, it looks very promising! The overall experience has been good so far, but I did notice an issue that's a bit inconvenient. I've created a `POST` request which contains letters with diacritics in the body, such as this one: ```json { "Hello": "There", "Hi": "Čau" } ``` If I save the request into a yaml file, the body will be saved in a hard to read format: ```yaml name: Test method: POST url: https://example.org/test body: content: "{\n \"Hello\": \"There\",\n \"Hi\": \"\u010Cau\"\n}" ``` If I replace the `Č` with a regular `C`, the resulting yaml file will have the format that I expect: ```yaml name: Test method: POST url: https://example.org/test body: content: |- { "Hello": "There", "Hi": "Cau" } ``` Is it possible to fix this? The current behavior complicates manual editing and version control diffs, so I think it might be worth looking into. I'm using `posting` `1.7.0` Thanks!
closed
2024-07-19T08:54:53Z
2024-07-19T20:02:11Z
https://github.com/darrenburns/posting/issues/48
[]
MilanVasko
0
voila-dashboards/voila
jupyter
1,447
Voila not displaying Canvas from IpyCanvas
<!-- Welcome! Before creating a new issue please search for relevant issues and recreate the issue in a fresh environment. --> ## Description When executing the Jupyter Notebook, the canvas appears and works as intended, but when executing with Voila, its a blank canvas <!--Describe the bug clearly and concisely. Include screenshots/gifs if possible--> ![image](https://github.com/voila-dashboards/voila/assets/93982008/d9af70eb-a350-4e74-9922-010a31a4f0b1) ![image](https://github.com/voila-dashboards/voila/assets/93982008/19b81c57-4042-46a7-936f-677fb82202e0) Empty...
closed
2024-02-25T16:34:54Z
2024-02-27T19:21:16Z
https://github.com/voila-dashboards/voila/issues/1447
[ "bug" ]
Voranto
5
tflearn/tflearn
tensorflow
275
Error when loading multiple models - Tensor name not found
In my code, I'm loading two DNN models. Model A is a normal DNN with fully-connected layers, and Model B is a Convolutional Neural Network similar to the one used in the MNIST example. Individually, they both work just fine - they train properly, they save properly, they load properly, and predict properly. However, when loading both neural networks, tflearn crashes with an error that seems to indicate `"Tensor name 'example_name' not found in checkpoint files..."` This error will be thrown for whatever model is loaded second (i.e. Model A will load and run correctly but Model B will not, and if the order is switched, then vice-versa). This happens even when the models are saved in and loaded from completely different directories. I'm guessing it's some sort of internal caching problem with the checkpoint files. Any solutions? Here's some more of the stack trace, if it helps ``` File "/usr/local/lib/python2.7/site-packages/tflearn/models/dnn.py", line 227, in load self.trainer.restore(model_file) File "/usr/local/lib/python2.7/site-packages/tflearn/helpers/trainer.py", line 379, in restore self.restorer.restore(self.session, model_file) File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1105, in restore {self.saver_def.filename_tensor_name: save_path}) File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 372, in run run_metadata_ptr) File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 636, in _run feed_dict_string, options, run_metadata) File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 708, in _do_run target_list, options, run_metadata) File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 728, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors.NotFoundError: Tensor name "Accuracy/Mean/moving_avg_1" not found in checkpoint files classification_classifier.tfl [[Node: save_5/restore_slice_1 = RestoreSlice[dt=DT_FLOAT, preferred_shard=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_5/Const_0, save_5/restore_slice_1/tensor_name, save_5/restore_slice_1/shape_and_slice)]] Caused by op u'save_5/restore_slice_1', defined at: ```
open
2016-08-12T07:31:03Z
2020-11-19T10:46:14Z
https://github.com/tflearn/tflearn/issues/275
[]
samvaran
8
ploomber/ploomber
jupyter
726
Programmatically create tasks based on the product of the task executed in the previous pipeline step
I would like to understand how to programmatically create tasks based on the product of the task executed in the previous pipeline step. For example, `get_data` creates csv-file and I want to create tasks for each row of csv: `process_row_1`, `process_row_2`, .... Accordingly, I have code using the python api that reads a csv-file -- how do I indicate that this csv-file is the product of another task? So how do I use the upstream idiom (`upstream['get_data']`)? I formulate the question a brief, assuming that my case is quite typical. If this assumption of mine is incorrect, then I am ready to supplement the issue with code that more clearly illustrates my request.
closed
2022-04-25T12:32:48Z
2024-04-01T05:09:19Z
https://github.com/ploomber/ploomber/issues/726
[]
theotheo
5
litestar-org/litestar
api
3,995
Bug: `Unsupported type: <class 'msgspec._core.StructMeta'>`
### Description Visiting /schema when a route contains a request struct that utilizes a `msgspec` Struct via default factory is raising the error `Unsupported type: <class 'msgspec._core.StructMeta'>`. Essentially, if I have a struct like this: ``` class Stuff(msgspec.Struct): foo: list = msgspec.field(default=list) ``` And I use that struct as my request and then I visit `/schema`, I will get the error `Unsupported type: <class 'msgspec._core.StructMeta'>`. ### URL to code causing the issue _No response_ ### MCVE ```python # Your MCVE code here ``` ### Steps to reproduce ```bash 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error ``` ### Screenshots ```bash "![SCREENSHOT_DESCRIPTION](SCREENSHOT_LINK.png)" ``` ### Logs ```bash ``` ### Litestar Version 2.13.0 final ### Platform - [x] Linux - [ ] Mac - [ ] Windows - [ ] Other (Please specify in the description above)
closed
2025-02-13T09:32:13Z
2025-02-13T11:35:31Z
https://github.com/litestar-org/litestar/issues/3995
[ "Bug :bug:" ]
umarbutler
3
holoviz/panel
plotly
7,264
Bokeh: BokehJS was loaded multiple times but one version failed to initialize.
Hi team, thanks for your hard work. If possible, can we put a high priority on this fix? It's quite damaging to user experience. #### ALL software version info (this library, plus any other relevant software, e.g. bokeh, python, notebook, OS, browser, etc should be added within the dropdown below.) <details> <summary>Software Version Info</summary> ```plaintext acryl-datahub==0.10.5.5 aiohappyeyeballs==2.4.0 aiohttp==3.10.5 aiosignal==1.3.1 alembic==1.13.2 ansi2html==1.9.2 anyio==4.4.0 argon2-cffi==23.1.0 argon2-cffi-bindings==21.2.0 arrow==1.3.0 asttokens==2.4.1 async-generator==1.10 async-lru==2.0.4 attrs==24.2.0 autograd==1.7.0 autograd-gamma==0.5.0 avro==1.10.2 avro-gen3==0.7.10 awscli==1.33.27 babel==2.16.0 backports.tarfile==1.2.0 beautifulsoup4==4.12.3 black==24.8.0 bleach==6.1.0 blinker==1.8.2 bokeh==3.4.2 bokehtools==0.46.2 boto3==1.34.76 botocore==1.34.145 bouncer-client==0.4.1 cached-property==1.5.2 certifi==2024.7.4 certipy==0.1.3 cffi==1.17.0 charset-normalizer==3.3.2 click==8.1.7 click-default-group==1.2.4 click-spinner==0.1.10 cloudpickle==3.0.0 colorama==0.4.6 colorcet==3.0.1 comm==0.2.2 contourpy==1.3.0 cryptography==43.0.0 cycler==0.12.1 dash==2.17.1 dash-core-components==2.0.0 dash-html-components==2.0.0 dash-table==5.0.0 dask==2024.8.1 datashader==0.16.3 datatank-client==2.1.10.post12049 dataworks-common==2.1.10.post12049 debugpy==1.8.5 decorator==5.1.1 defusedxml==0.7.1 Deprecated==1.2.14 directives-client==0.4.4 docker==7.1.0 docutils==0.16 entrypoints==0.4 executing==2.0.1 expandvars==0.12.0 fastjsonschema==2.20.0 Flask==3.0.3 fonttools==4.53.1 formulaic==1.0.2 fqdn==1.5.1 frozenlist==1.4.1 fsspec==2024.6.1 future==1.0.0 gitdb==4.0.11 GitPython==3.1.43 greenlet==3.0.3 h11==0.14.0 holoviews==1.19.0 httpcore==1.0.5 httpx==0.27.2 humanfriendly==10.0 hvplot==0.10.0 idna==3.8 ijson==3.3.0 importlib-metadata==4.13.0 interface-meta==1.3.0 ipykernel==6.29.5 ipython==8.18.0 ipython-genutils==0.2.0 ipywidgets==8.1.5 isoduration==20.11.0 isort==5.13.2 itsdangerous==2.2.0 jaraco.classes==3.4.0 jaraco.context==6.0.1 jaraco.functools==4.0.2 jedi==0.19.1 jeepney==0.8.0 Jinja2==3.1.4 jira==3.2.0 jmespath==1.0.1 json5==0.9.25 jsonpointer==3.0.0 jsonref==1.1.0 jsonschema==4.17.3 jsonschema-specifications==2023.12.1 jupyter==1.0.0 jupyter-console==6.6.3 jupyter-dash==0.4.2 jupyter-events==0.10.0 jupyter-lsp==2.2.5 jupyter-resource-usage==1.1.0 jupyter-server-mathjax==0.2.6 jupyter-telemetry==0.1.0 jupyter_bokeh==4.0.5 jupyter_client==8.6.2 jupyter_core==5.7.2 jupyter_server==2.14.2 jupyter_server_proxy==4.3.0 jupyter_server_terminals==0.5.3 jupyterhub==4.1.4 jupyterlab==4.2.5 jupyterlab-vim==4.1.3 jupyterlab_code_formatter==3.0.2 jupyterlab_git==0.50.1 jupyterlab_pygments==0.3.0 jupyterlab_server==2.27.3 jupyterlab_templates==0.5.2 jupyterlab_widgets==3.0.13 keyring==25.3.0 kiwisolver==1.4.5 lckr_jupyterlab_variableinspector==3.2.1 lifelines==0.29.0 linkify-it-py==2.0.3 llvmlite==0.43.0 locket==1.0.0 Mako==1.3.5 Markdown==3.3.7 markdown-it-py==3.0.0 MarkupSafe==2.1.5 matplotlib==3.9.2 matplotlib-inline==0.1.7 mdit-py-plugins==0.4.1 mdurl==0.1.2 mistune==3.0.2 mixpanel==4.10.1 more-itertools==10.4.0 multidict==6.0.5 multipledispatch==1.0.0 mypy-extensions==1.0.0 nbclassic==1.1.0 nbclient==0.10.0 nbconvert==7.16.4 nbdime==4.0.1 nbformat==5.10.4 nbgitpuller==1.2.1 nest-asyncio==1.6.0 notebook==7.2.2 notebook_shim==0.2.4 numba==0.60.0 numpy==1.26.4 oauthlib==3.2.2 overrides==7.7.0 packaging==24.1 pamela==1.2.0 pandas==2.1.4 pandocfilters==1.5.1 panel==1.4.4 param==2.1.1 parso==0.8.4 partd==1.4.2 pathspec==0.12.1 pexpect==4.9.0 pillow==10.4.0 platformdirs==4.2.2 plotly==5.23.0 progressbar2==4.5.0 prometheus_client==0.20.0 prompt-toolkit==3.0.38 psutil==5.9.8 psycopg2-binary==2.9.9 ptyprocess==0.7.0 pure_eval==0.2.3 pyarrow==15.0.2 pyasn1==0.6.0 pycparser==2.22 pyct==0.5.0 pydantic==1.10.18 Pygments==2.18.0 PyHive==0.7.0 PyJWT==2.9.0 pymssql==2.3.0 PyMySQL==1.1.1 pyodbc==5.1.0 pyOpenSSL==24.2.1 pyparsing==3.1.4 pyrsistent==0.20.0 pyspork==2.24.0 python-dateutil==2.9.0.post0 python-json-logger==2.0.7 python-utils==3.8.2 pytz==2024.1 pyviz_comms==3.0.3 PyYAML==6.0.1 pyzmq==26.2.0 qtconsole==5.5.2 QtPy==2.4.1 ratelimiter==1.2.0.post0 redis==3.5.3 referencing==0.35.1 requests==2.32.3 requests-file==2.1.0 requests-oauthlib==2.0.0 requests-toolbelt==1.0.0 retrying==1.3.4 rfc3339-validator==0.1.4 rfc3986-validator==0.1.1 rpds-py==0.20.0 rsa==4.7.2 ruamel.yaml==0.17.40 ruamel.yaml.clib==0.2.8 ruff==0.6.2 s3transfer==0.10.2 scipy==1.13.0 SecretStorage==3.3.3 Send2Trash==1.8.3 sentry-sdk==2.13.0 simpervisor==1.0.0 six==1.16.0 smmap==5.0.1 sniffio==1.3.1 soupsieve==2.6 SQLAlchemy==1.4.52 sqlparse==0.4.4 stack-data==0.6.3 structlog==22.1.0 tabulate==0.9.0 tenacity==9.0.0 termcolor==2.4.0 terminado==0.18.1 tesladex-client==0.9.0 tinycss2==1.3.0 toml==0.10.2 toolz==0.12.1 tornado==6.4.1 tqdm==4.66.4 traitlets==5.14.3 types-python-dateutil==2.9.0.20240821 typing-inspect==0.9.0 typing_extensions==4.5.0 tzdata==2024.1 tzlocal==5.2 uc-micro-py==1.0.3 uri-template==1.3.0 urllib3==1.26.19 wcwidth==0.2.13 webcolors==24.8.0 webencodings==0.5.1 websocket-client==1.8.0 Werkzeug==3.0.4 widgetsnbextension==4.0.13 wrapt==1.16.0 xarray==2024.7.0 xyzservices==2024.6.0 yapf==0.32.0 yarl==1.9.4 zipp==3.20.1 ``` </details> #### Description of expected behavior and the observed behavior I should be able to use panel in 2 notebooks simultaneously, but if I save my changes and reload the page, the error will show. #### Complete, minimal, self-contained example code that reproduces the issue Steps to reproduce: 1. create 2 notebooks with the following content ```python # notebook 1 import panel as pn pn.extension() pn.Column('hi') ``` ```python # notebook 2 (open in another jupyterlab tab) import panel as pn pn.extension() pn.Column('hi') ``` 2. Run both notebooks 3. Save both notebooks 4. Reload your page 5. Try to run either of the notebooks and you'll see the error. #### Stack traceback and/or browser JavaScript console output (Ignore 'set_log_level` error. I think it's unrelated.) ![image](https://github.com/user-attachments/assets/615cf8f6-a4d6-4974-ac1f-1abecba7b9f8)
closed
2024-09-12T16:03:33Z
2024-09-13T17:34:46Z
https://github.com/holoviz/panel/issues/7264
[]
tomascsantos
4
jupyterhub/repo2docker
jupyter
1,295
--base-image not recognise as valid argument
Related with https://github.com/jupyterhub/repo2docker/issues/487 https://github.com/jupyterhub/repo2docker/blob/247e9535b167112cabf69eed59a6947e4af1ee34/repo2docker/app.py#L450 should make `--base-image` a valid argument for `repo2docker` but I'm getting ``` repo2docker: error: unrecognized arguments: --base-image ``` with ``` $ repo2docker --version 2023.06.0 ```
closed
2023-07-12T16:05:50Z
2023-07-13T07:47:53Z
https://github.com/jupyterhub/repo2docker/issues/1295
[]
rgaiacs
2
coqui-ai/TTS
pytorch
3,017
[Bug] pip install TTS failure: pip._vendor.resolvelib.resolvers.ResolutionTooDeep: 200000
### Describe the bug Can't make pip installation ### To Reproduce **1. Run the following command:** `pip install TTS` ``` C:>C:\Python38\scripts\pip install TTS ``` **2. Wait:** ``` Collecting TTS Downloading TTS-0.14.3.tar.gz (1.5 MB) ---------------------------------------- 1.5/1.5 MB 1.7 MB/s eta 0:00:00 Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... done Collecting cython==0.29.28 (from TTS) Using cached Cython-0.29.28-py2.py3-none-any.whl (983 kB) Requirement already satisfied: scipy>=1.4.0 in C:\python38\lib\site-packages (from TTS) (1.7.1) Collecting torch>=1.7 (from TTS) Downloading torch-2.0.1-cp38-cp38-win_amd64.whl (172.4 MB) ---------------------------------------- 172.4/172.4 MB ? eta 0:00:00 Collecting torchaudio (from TTS) Downloading torchaudio-2.0.2-cp38-cp38-win_amd64.whl (2.1 MB) ---------------------------------------- 2.1/2.1 MB 3.6 MB/s eta 0:00:00 Collecting soundfile (from TTS) Downloading soundfile-0.12.1-py2.py3-none-win_amd64.whl (1.0 MB) ---------------------------------------- 1.0/1.0 MB 5.8 MB/s eta 0:00:00 Collecting librosa==0.10.0.* (from TTS) Downloading librosa-0.10.0.post2-py3-none-any.whl (253 kB) ---------------------------------------- 253.0/253.0 kB 15.2 MB/s eta 0:00:00 Collecting inflect==5.6.0 (from TTS) Downloading inflect-5.6.0-py3-none-any.whl (33 kB) Requirement already satisfied: tqdm in C:\python38\lib\site-packages (from TTS) (4.60.0) Collecting anyascii (from TTS) Downloading anyascii-0.3.2-py3-none-any.whl (289 kB) ---------------------------------------- 289.9/289.9 kB 9.0 MB/s eta 0:00:00 Requirement already satisfied: pyyaml in C:\python38\lib\site-packages (from TTS) (5.4.1) Requirement already satisfied: fsspec>=2021.04.0 in C:\python38\lib\site-packages (from TTS) (2022.3.0) Requirement already satisfied: aiohttp in C:\python38\lib\site-packages (from TTS) (3.7.3) Requirement already satisfied: packaging in C:\python38\lib\site-packages (from TTS) (23.0) Collecting flask (from TTS) Downloading flask-2.3.3-py3-none-any.whl (96 kB) ---------------------------------------- 96.1/96.1 kB 5.4 MB/s eta 0:00:00 Collecting pysbd (from TTS) Downloading pysbd-0.3.4-py3-none-any.whl (71 kB) ---------------------------------------- 71.1/71.1 kB 2.0 MB/s eta 0:00:00 Collecting umap-learn==0.5.1 (from TTS) Downloading umap-learn-0.5.1.tar.gz (80 kB) ---------------------------------------- 80.9/80.9 kB 4.7 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Requirement already satisfied: pandas in C:\python38\lib\site-packages (from TTS) (1.5.1) Requirement already satisfied: matplotlib in C:\python38\lib\site-packages (from TTS) (3.6.3) Collecting trainer==0.0.20 (from TTS) Downloading trainer-0.0.20-py3-none-any.whl (45 kB) ---------------------------------------- 45.2/45.2 kB 1.1 MB/s eta 0:00:00 Collecting coqpit>=0.0.16 (from TTS) Downloading coqpit-0.0.17-py3-none-any.whl (13 kB) Collecting jieba (from TTS) Downloading jieba-0.42.1.tar.gz (19.2 MB) ---------------------------------------- 19.2/19.2 MB 2.0 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Collecting pypinyin (from TTS) Downloading pypinyin-0.49.0-py2.py3-none-any.whl (1.4 MB) ---------------------------------------- 1.4/1.4 MB 3.2 MB/s eta 0:00:00 Collecting mecab-python3==1.0.5 (from TTS) Downloading mecab_python3-1.0.5-cp38-cp38-win_amd64.whl (500 kB) ---------------------------------------- 500.8/500.8 kB 6.3 MB/s eta 0:00:00 Collecting unidic-lite==1.0.8 (from TTS) Downloading unidic-lite-1.0.8.tar.gz (47.4 MB) ---------------------------------------- 47.4/47.4 MB 1.8 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Collecting gruut[de,es,fr]==2.2.3 (from TTS) Downloading gruut-2.2.3.tar.gz (73 kB) ---------------------------------------- 73.5/73.5 kB 213.1 kB/s eta 0:00:00 Preparing metadata (setup.py) ... done Collecting jamo (from TTS) Downloading jamo-0.4.1-py3-none-any.whl (9.5 kB) Collecting nltk (from TTS) Downloading nltk-3.8.1-py3-none-any.whl (1.5 MB) ---------------------------------------- 1.5/1.5 MB 3.4 MB/s eta 0:00:00 Collecting g2pkk>=0.1.1 (from TTS) Downloading g2pkk-0.1.2-py3-none-any.whl (25 kB) Collecting bangla==0.0.2 (from TTS) Downloading bangla-0.0.2-py2.py3-none-any.whl (6.2 kB) Collecting bnnumerizer (from TTS) Downloading bnnumerizer-0.0.2.tar.gz (4.7 kB) Preparing metadata (setup.py) ... done Collecting bnunicodenormalizer==0.1.1 (from TTS) Downloading bnunicodenormalizer-0.1.1.tar.gz (38 kB) Preparing metadata (setup.py) ... done Collecting k-diffusion (from TTS) Downloading k_diffusion-0.1.0-py3-none-any.whl (33 kB) Collecting einops (from TTS) Downloading einops-0.6.1-py3-none-any.whl (42 kB) ---------------------------------------- 42.2/42.2 kB 1.0 MB/s eta 0:00:00 Collecting transformers (from TTS) Downloading transformers-4.33.3-py3-none-any.whl (7.6 MB) ---------------------------------------- 7.6/7.6 MB 3.1 MB/s eta 0:00:00 Collecting numpy==1.21.6 (from TTS) Using cached numpy-1.21.6-cp38-cp38-win_amd64.whl (14.0 MB) Collecting numba==0.55.1 (from TTS) Downloading numba-0.55.1-cp38-cp38-win_amd64.whl (2.4 MB) ---------------------------------------- 2.4/2.4 MB 4.1 MB/s eta 0:00:00 Requirement already satisfied: Babel<3.0.0,>=2.8.0 in C:\python38\lib\site-packages (from gruut[de,es,fr]==2.2.3->TT Collecting dateparser~=1.1.0 (from gruut[de,es,fr]==2.2.3->TTS) Downloading dateparser-1.1.8-py2.py3-none-any.whl (293 kB) ---------------------------------------- 293.8/293.8 kB 4.6 MB/s eta 0:00:00 Collecting gruut-ipa<1.0,>=0.12.0 (from gruut[de,es,fr]==2.2.3->TTS) Downloading gruut-ipa-0.13.0.tar.gz (101 kB) ---------------------------------------- 101.6/101.6 kB ? eta 0:00:00 Preparing metadata (setup.py) ... done Collecting gruut_lang_en~=2.0.0 (from gruut[de,es,fr]==2.2.3->TTS) Downloading gruut_lang_en-2.0.0.tar.gz (15.2 MB) ---------------------------------------- 15.2/15.2 MB 3.5 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Collecting jsonlines~=1.2.0 (from gruut[de,es,fr]==2.2.3->TTS) Downloading jsonlines-1.2.0-py2.py3-none-any.whl (7.6 kB) Requirement already satisfied: networkx<3.0.0,>=2.5.0 in C:\python38\lib\site-packages (from gruut[de,es,fr]==2.2.3- Collecting num2words<1.0.0,>=0.5.10 (from gruut[de,es,fr]==2.2.3->TTS) Downloading num2words-0.5.12-py3-none-any.whl (125 kB) ---------------------------------------- 125.2/125.2 kB 7.2 MB/s eta 0:00:00 Collecting python-crfsuite~=0.9.7 (from gruut[de,es,fr]==2.2.3->TTS) Downloading python_crfsuite-0.9.9-cp38-cp38-win_amd64.whl (138 kB) ---------------------------------------- 138.9/138.9 kB 4.2 MB/s eta 0:00:00 Requirement already satisfied: importlib_resources in C:\python38\lib\site-packages (from gruut[de,es,fr]==2.2.3->TT Collecting gruut_lang_es~=2.0.0 (from gruut[de,es,fr]==2.2.3->TTS) Downloading gruut_lang_es-2.0.0.tar.gz (31.4 MB) ---------------------------------------- 31.4/31.4 MB 2.8 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Collecting gruut_lang_fr~=2.0.0 (from gruut[de,es,fr]==2.2.3->TTS) Downloading gruut_lang_fr-2.0.2.tar.gz (10.9 MB) ---------------------------------------- 10.9/10.9 MB 3.8 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Collecting gruut_lang_de~=2.0.0 (from gruut[de,es,fr]==2.2.3->TTS) Downloading gruut_lang_de-2.0.0.tar.gz (18.1 MB) ---------------------------------------- 18.1/18.1 MB 3.9 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Collecting audioread>=2.1.9 (from librosa==0.10.0.*->TTS) Downloading audioread-3.0.1-py3-none-any.whl (23 kB) Requirement already satisfied: scikit-learn>=0.20.0 in C:\python38\lib\site-packages (from librosa==0.10.0.*->TTS) ( Requirement already satisfied: joblib>=0.14 in C:\python38\lib\site-packages (from librosa==0.10.0.*->TTS) (1.0.1) Requirement already satisfied: decorator>=4.3.0 in C:\python38\lib\site-packages (from librosa==0.10.0.*->TTS) (4.4. Collecting pooch<1.7,>=1.0 (from librosa==0.10.0.*->TTS) Downloading pooch-1.6.0-py3-none-any.whl (56 kB) ---------------------------------------- 56.3/56.3 kB 51.7 kB/s eta 0:00:00 Collecting soxr>=0.3.2 (from librosa==0.10.0.*->TTS) Downloading soxr-0.3.6-cp38-cp38-win_amd64.whl (185 kB) ---------------------------------------- 185.1/185.1 kB 431.8 kB/s eta 0:00:00 Requirement already satisfied: typing-extensions>=4.1.1 in C:\python38\lib\site-packages (from librosa==0.10.0.*->TT Collecting lazy-loader>=0.1 (from librosa==0.10.0.*->TTS) Downloading lazy_loader-0.3-py3-none-any.whl (9.1 kB) Collecting msgpack>=1.0 (from librosa==0.10.0.*->TTS) Downloading msgpack-1.0.7-cp38-cp38-win_amd64.whl (222 kB) ---------------------------------------- 222.8/222.8 kB 1.4 MB/s eta 0:00:00 Collecting llvmlite<0.39,>=0.38.0rc1 (from numba==0.55.1->TTS) Downloading llvmlite-0.38.1-cp38-cp38-win_amd64.whl (23.2 MB) ---------------------------------------- 23.2/23.2 MB 917.7 kB/s eta 0:00:00 Requirement already satisfied: setuptools in C:\python38\lib\site-packages (from numba==0.55.1->TTS) (67.6.1) Requirement already satisfied: psutil in C:\python38\lib\site-packages (from trainer==0.0.20->TTS) (5.8.0) Collecting tensorboardX (from trainer==0.0.20->TTS) Downloading tensorboardX-2.6.2.2-py2.py3-none-any.whl (101 kB) ---------------------------------------- 101.7/101.7 kB 1.9 MB/s eta 0:00:00 Requirement already satisfied: protobuf<3.20,>=3.9.2 in C:\python38\lib\site-packages (from trainer==0.0.20->TTS) (3 Collecting pynndescent>=0.5 (from umap-learn==0.5.1->TTS) Downloading pynndescent-0.5.10.tar.gz (1.1 MB) ---------------------------------------- 1.1/1.1 MB 3.3 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Requirement already satisfied: cffi>=1.0 in C:\python38\lib\site-packages (from soundfile->TTS) (1.14.5) Requirement already satisfied: filelock in C:\python38\lib\site-packages (from torch>=1.7->TTS) (3.0.12) Requirement already satisfied: sympy in C:\python38\lib\site-packages (from torch>=1.7->TTS) (1.11.1) Requirement already satisfied: jinja2 in C:\python38\lib\site-packages (from torch>=1.7->TTS) (3.0.1) Requirement already satisfied: attrs>=17.3.0 in C:\python38\lib\site-packages (from aiohttp->TTS) (21.2.0) Requirement already satisfied: chardet<4.0,>=2.0 in C:\python38\lib\site-packages (from aiohttp->TTS) (3.0.4) Requirement already satisfied: multidict<7.0,>=4.5 in C:\python38\lib\site-packages (from aiohttp->TTS) (5.1.0) Requirement already satisfied: async-timeout<4.0,>=3.0 in C:\python38\lib\site-packages (from aiohttp->TTS) (3.0.1) Requirement already satisfied: yarl<2.0,>=1.0 in C:\python38\lib\site-packages (from aiohttp->TTS) (1.6.3) Collecting Werkzeug>=2.3.7 (from flask->TTS) Downloading werkzeug-2.3.7-py3-none-any.whl (242 kB) ---------------------------------------- 242.2/242.2 kB 1.5 MB/s eta 0:00:00 Collecting jinja2 (from torch>=1.7->TTS) Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB) ---------------------------------------- 133.1/133.1 kB 7.7 MB/s eta 0:00:00 Requirement already satisfied: itsdangerous>=2.1.2 in C:\python38\lib\site-packages (from flask->TTS) (2.1.2) Requirement already satisfied: click>=8.1.3 in C:\python38\lib\site-packages (from flask->TTS) (8.1.7) Collecting blinker>=1.6.2 (from flask->TTS) Downloading blinker-1.6.2-py3-none-any.whl (13 kB) Requirement already satisfied: importlib-metadata>=3.6.0 in C:\python38\lib\site-packages (from flask->TTS) (6.0.0) Collecting accelerate (from k-diffusion->TTS) Downloading accelerate-0.23.0-py3-none-any.whl (258 kB) ---------------------------------------- 258.1/258.1 kB 4.0 MB/s eta 0:00:00 Collecting clean-fid (from k-diffusion->TTS) Downloading clean_fid-0.1.35-py3-none-any.whl (26 kB) Collecting clip-anytorch (from k-diffusion->TTS) Downloading clip_anytorch-2.5.2-py3-none-any.whl (1.4 MB) ---------------------------------------- 1.4/1.4 MB 3.1 MB/s eta 0:00:00 Collecting dctorch (from k-diffusion->TTS) Downloading dctorch-0.1.2-py3-none-any.whl (2.3 kB) Collecting jsonmerge (from k-diffusion->TTS) Downloading jsonmerge-1.9.2-py3-none-any.whl (19 kB) Collecting kornia (from k-diffusion->TTS) Downloading kornia-0.7.0-py2.py3-none-any.whl (705 kB) ---------------------------------------- 705.7/705.7 kB 3.0 MB/s eta 0:00:00 Requirement already satisfied: Pillow in C:\python38\lib\site-packages (from k-diffusion->TTS) (9.5.0) Collecting rotary-embedding-torch (from k-diffusion->TTS) Downloading rotary_embedding_torch-0.3.0-py3-none-any.whl (4.9 kB) Collecting safetensors (from k-diffusion->TTS) Downloading safetensors-0.3.3-cp38-cp38-win_amd64.whl (266 kB) ---------------------------------------- 266.3/266.3 kB 1.6 MB/s eta 0:00:00 Collecting scikit-image (from k-diffusion->TTS) Downloading scikit_image-0.21.0-cp38-cp38-win_amd64.whl (22.7 MB) ---------------------------------------- 22.7/22.7 MB 944.0 kB/s eta 0:00:00 Collecting torchdiffeq (from k-diffusion->TTS) Downloading torchdiffeq-0.2.3-py3-none-any.whl (31 kB) Collecting torchsde (from k-diffusion->TTS) Downloading torchsde-0.2.6-py3-none-any.whl (61 kB) ---------------------------------------- 61.2/61.2 kB ? eta 0:00:00 Collecting torchvision (from k-diffusion->TTS) Downloading torchvision-0.15.2-cp38-cp38-win_amd64.whl (1.2 MB) ---------------------------------------- 1.2/1.2 MB 6.3 MB/s eta 0:00:00 Collecting wandb (from k-diffusion->TTS) Downloading wandb-0.15.11-py3-none-any.whl (2.1 MB) ---------------------------------------- 2.1/2.1 MB 2.8 MB/s eta 0:00:00 Requirement already satisfied: contourpy>=1.0.1 in C:\python38\lib\site-packages (from matplotlib->TTS) (1.0.7) Requirement already satisfied: cycler>=0.10 in C:\python38\lib\site-packages (from matplotlib->TTS) (0.10.0) Requirement already satisfied: fonttools>=4.22.0 in C:\python38\lib\site-packages (from matplotlib->TTS) (4.38.0) Requirement already satisfied: kiwisolver>=1.0.1 in C:\python38\lib\site-packages (from matplotlib->TTS) (1.3.1) Requirement already satisfied: pyparsing>=2.2.1 in C:\python38\lib\site-packages (from matplotlib->TTS) (2.4.7) Requirement already satisfied: python-dateutil>=2.7 in C:\python38\lib\site-packages (from matplotlib->TTS) (2.8.2) Collecting regex>=2021.8.3 (from nltk->TTS) Downloading regex-2023.8.8-cp38-cp38-win_amd64.whl (268 kB) ---------------------------------------- 268.3/268.3 kB 4.2 MB/s eta 0:00:00 Requirement already satisfied: pytz>=2020.1 in C:\python38\lib\site-packages (from pandas->TTS) (2021.1) Collecting huggingface-hub<1.0,>=0.15.1 (from transformers->TTS) Downloading huggingface_hub-0.17.3-py3-none-any.whl (295 kB) ---------------------------------------- 295.0/295.0 kB 1.1 MB/s eta 0:00:00 Requirement already satisfied: requests in C:\python38\lib\site-packages (from transformers->TTS) (2.31.0) Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers->TTS) Downloading tokenizers-0.13.3-cp38-cp38-win_amd64.whl (3.5 MB) ---------------------------------------- 3.5/3.5 MB 4.7 MB/s eta 0:00:00 Requirement already satisfied: pycparser in C:\python38\lib\site-packages (from cffi>=1.0->soundfile->TTS) (2.20) Requirement already satisfied: colorama in C:\python38\lib\site-packages (from click>=8.1.3->flask->TTS) (0.4.6) Requirement already satisfied: six in C:\python38\lib\site-packages (from cycler>=0.10->matplotlib->TTS) (1.15.0) Requirement already satisfied: tzlocal in C:\python38\lib\site-packages (from dateparser~=1.1.0->gruut[de,es,fr]==2. Requirement already satisfied: zipp>=0.5 in C:\python38\lib\site-packages (from importlib-metadata>=3.6.0->flask->TT Requirement already satisfied: MarkupSafe>=2.0 in C:\python38\lib\site-packages (from jinja2->torch>=1.7->TTS) (2.0. Collecting docopt>=0.6.2 (from num2words<1.0.0,>=0.5.10->gruut[de,es,fr]==2.2.3->TTS) Downloading docopt-0.6.2.tar.gz (25 kB) Preparing metadata (setup.py) ... done Requirement already satisfied: appdirs>=1.3.0 in C:\python38\lib\site-packages (from pooch<1.7,>=1.0->librosa==0.10. Requirement already satisfied: charset-normalizer<4,>=2 in C:\python38\lib\site-packages (from requests->transformer Requirement already satisfied: idna<4,>=2.5 in C:\python38\lib\site-packages (from requests->transformers->TTS) (2.1 Requirement already satisfied: urllib3<3,>=1.21.1 in C:\python38\lib\site-packages (from requests->transformers->TTS Requirement already satisfied: certifi>=2017.4.17 in C:\python38\lib\site-packages (from requests->transformers->TTS Requirement already satisfied: threadpoolctl>=2.0.0 in C:\python38\lib\site-packages (from scikit-learn>=0.20.0->lib Collecting MarkupSafe>=2.0 (from jinja2->torch>=1.7->TTS) Downloading MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl (17 kB) Collecting ftfy (from clip-anytorch->k-diffusion->TTS) Downloading ftfy-6.1.1-py3-none-any.whl (53 kB) ---------------------------------------- 53.1/53.1 kB 2.7 MB/s eta 0:00:00 INFO: pip is looking at multiple versions of dctorch to determine which version is compatible with other requirements. This could take a while. Collecting dctorch (from k-diffusion->TTS) Downloading dctorch-0.1.1-py3-none-any.whl (2.3 kB) Downloading dctorch-0.1.0-py3-none-any.whl (2.3 kB) Collecting clean-fid (from k-diffusion->TTS) Downloading clean_fid-0.1.34-py3-none-any.whl (26 kB) Collecting requests (from transformers->TTS) Using cached requests-2.25.1-py2.py3-none-any.whl (61 kB) Collecting clean-fid (from k-diffusion->TTS) Downloading clean_fid-0.1.33-py3-none-any.whl (25 kB) INFO: pip is looking at multiple versions of dctorch to determine which version is compatible with other requirements. This could take a while. Downloading clean_fid-0.1.32-py3-none-any.whl (26 kB) Downloading clean_fid-0.1.31-py3-none-any.whl (24 kB) INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io u want to abort this run, press Ctrl + C. Downloading clean_fid-0.1.30-py3-none-any.whl (24 kB) Downloading clean_fid-0.1.29-py3-none-any.whl (24 kB) Downloading clean_fid-0.1.28-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.26-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.25-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.24-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.23-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.22-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.21-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.19-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.18-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.17-py3-none-any.whl (23 kB) Downloading clean_fid-0.1.16-py3-none-any.whl (22 kB) Downloading clean_fid-0.1.15-py3-none-any.whl (22 kB) Downloading clean_fid-0.1.14-py3-none-any.whl (22 kB) Downloading clean_fid-0.1.13-py3-none-any.whl (19 kB) Downloading clean_fid-0.1.12-py3-none-any.whl (19 kB) Downloading clean_fid-0.1.11-py3-none-any.whl (19 kB) Downloading clean_fid-0.1.10-py3-none-any.whl (16 kB) Downloading clean_fid-0.1.9-py3-none-any.whl (15 kB) Downloading clean_fid-0.1.8-py3-none-any.whl (16 kB) Downloading clean_fid-0.1.6-py3-none-any.whl (15 kB) Collecting accelerate (from k-diffusion->TTS) Downloading accelerate-0.22.0-py3-none-any.whl (251 kB) ---------------------------------------- 251.2/251.2 kB 15.1 MB/s eta 0:00:00 Downloading accelerate-0.21.0-py3-none-any.whl (244 kB) ---------------------------------------- 244.2/244.2 kB 7.3 MB/s eta 0:00:00 Downloading accelerate-0.20.3-py3-none-any.whl (227 kB) ---------------------------------------- 227.6/227.6 kB 6.8 MB/s eta 0:00:00 Downloading accelerate-0.20.2-py3-none-any.whl (227 kB) ---------------------------------------- 227.5/227.5 kB 2.8 MB/s eta 0:00:00 Downloading accelerate-0.20.1-py3-none-any.whl (227 kB) ---------------------------------------- 227.5/227.5 kB 2.8 MB/s eta 0:00:00 Downloading accelerate-0.20.0-py3-none-any.whl (227 kB) ---------------------------------------- 227.4/227.4 kB 7.0 MB/s eta 0:00:00 Downloading accelerate-0.19.0-py3-none-any.whl (219 kB) ---------------------------------------- 219.1/219.1 kB 13.1 MB/s eta 0:00:00 Downloading accelerate-0.18.0-py3-none-any.whl (215 kB) ---------------------------------------- 215.3/215.3 kB 3.3 MB/s eta 0:00:00 Downloading accelerate-0.17.1-py3-none-any.whl (212 kB) ---------------------------------------- 212.8/212.8 kB 13.5 MB/s eta 0:00:00 Downloading accelerate-0.17.0-py3-none-any.whl (212 kB) ---------------------------------------- 212.8/212.8 kB 6.5 MB/s eta 0:00:00 Downloading accelerate-0.16.0-py3-none-any.whl (199 kB) ---------------------------------------- 199.7/199.7 kB 11.8 MB/s eta 0:00:00 Downloading accelerate-0.15.0-py3-none-any.whl (191 kB) ---------------------------------------- 191.5/191.5 kB 12.1 MB/s eta 0:00:00 Downloading accelerate-0.14.0-py3-none-any.whl (175 kB) ---------------------------------------- 176.0/176.0 kB 11.1 MB/s eta 0:00:00 Downloading accelerate-0.13.2-py3-none-any.whl (148 kB) ---------------------------------------- 148.8/148.8 kB 4.5 MB/s eta 0:00:00 Downloading accelerate-0.13.1-py3-none-any.whl (148 kB) ---------------------------------------- 148.8/148.8 kB 9.2 MB/s eta 0:00:00 Downloading accelerate-0.13.0-py3-none-any.whl (148 kB) ---------------------------------------- 148.8/148.8 kB 2.9 MB/s eta 0:00:00 Downloading accelerate-0.12.0-py3-none-any.whl (143 kB) ---------------------------------------- 144.0/144.0 kB 8.9 MB/s eta 0:00:00 Downloading accelerate-0.11.0-py3-none-any.whl (123 kB) ---------------------------------------- 123.1/123.1 kB 7.1 MB/s eta 0:00:00 Downloading accelerate-0.10.0-py3-none-any.whl (117 kB) ---------------------------------------- 117.1/117.1 kB ? eta 0:00:00 Downloading accelerate-0.9.0-py3-none-any.whl (106 kB) ---------------------------------------- 106.8/106.8 kB 3.1 MB/s eta 0:00:00 Downloading accelerate-0.8.0-py3-none-any.whl (114 kB) ---------------------------------------- 114.5/114.5 kB 6.5 MB/s eta 0:00:00 Downloading accelerate-0.7.1-py3-none-any.whl (79 kB) ---------------------------------------- 79.9/79.9 kB 2.2 MB/s eta 0:00:00 Downloading accelerate-0.7.0-py3-none-any.whl (79 kB) ---------------------------------------- 79.8/79.8 kB 4.3 MB/s eta 0:00:00 Downloading accelerate-0.6.2-py3-none-any.whl (65 kB) ---------------------------------------- 65.9/65.9 kB ? eta 0:00:00 Downloading accelerate-0.6.1-py3-none-any.whl (65 kB) ---------------------------------------- 65.9/65.9 kB 1.8 MB/s eta 0:00:00 Downloading accelerate-0.6.0-py3-none-any.whl (65 kB) ---------------------------------------- 65.8/65.8 kB 3.5 MB/s eta 0:00:00 Downloading accelerate-0.5.1-py3-none-any.whl (58 kB) ---------------------------------------- 58.0/58.0 kB 1.5 MB/s eta 0:00:00 Downloading accelerate-0.5.0-py3-none-any.whl (57 kB) ---------------------------------------- 58.0/58.0 kB 757.7 kB/s eta 0:00:00 Downloading accelerate-0.4.0-py3-none-any.whl (55 kB) ---------------------------------------- 55.3/55.3 kB 221.9 kB/s eta 0:00:00 Collecting soxr>=0.3.2 (from librosa==0.10.0.*->TTS) Downloading soxr-0.3.5-cp38-cp38-win_amd64.whl (184 kB) ---------------------------------------- 184.4/184.4 kB 11.6 MB/s eta 0:00:00 Downloading soxr-0.3.4-cp38-cp38-win_amd64.whl (184 kB) ---------------------------------------- 184.8/184.8 kB 3.8 MB/s eta 0:00:00 Downloading soxr-0.3.3-cp38-cp38-win_amd64.whl (176 kB) ---------------------------------------- 176.7/176.7 kB 11.1 MB/s eta 0:00:00 Downloading soxr-0.3.2-cp38-cp38-win_amd64.whl (176 kB) ---------------------------------------- 176.7/176.7 kB ? eta 0:00:00 Collecting scikit-learn>=0.20.0 (from librosa==0.10.0.*->TTS) Downloading scikit_learn-1.3.1-cp38-cp38-win_amd64.whl (9.3 MB) ---------------------------------------- 9.3/9.3 MB 3.5 MB/s eta 0:00:00 Collecting joblib>=0.14 (from librosa==0.10.0.*->TTS) Downloading joblib-1.3.2-py3-none-any.whl (302 kB) ---------------------------------------- 302.2/302.2 kB 6.2 MB/s eta 0:00:00 Collecting scikit-learn>=0.20.0 (from librosa==0.10.0.*->TTS) Downloading scikit_learn-1.3.0-cp38-cp38-win_amd64.whl (9.2 MB) ---------------------------------------- 9.2/9.2 MB 2.1 MB/s eta 0:00:00 Downloading scikit_learn-1.2.2-cp38-cp38-win_amd64.whl (8.3 MB) ---------------------------------------- 8.3/8.3 MB 2.6 MB/s eta 0:00:00 Downloading scikit_learn-1.2.1-cp38-cp38-win_amd64.whl (8.3 MB) ---------------------------------------- 8.3/8.3 MB 2.6 MB/s eta 0:00:00 Downloading scikit_learn-1.2.0-cp38-cp38-win_amd64.whl (8.2 MB) ---------------------------------------- 8.2/8.2 MB 4.1 MB/s eta 0:00:00 Downloading scikit_learn-1.1.3-cp38-cp38-win_amd64.whl (7.5 MB) ---------------------------------------- 7.5/7.5 MB 4.5 MB/s eta 0:00:00 Downloading scikit_learn-1.1.2-cp38-cp38-win_amd64.whl (7.3 MB) ---------------------------------------- 7.3/7.3 MB 3.9 MB/s eta 0:00:00 Downloading scikit_learn-1.1.1-cp38-cp38-win_amd64.whl (7.3 MB) ---------------------------------------- 7.3/7.3 MB 3.5 MB/s eta 0:00:00 Downloading scikit_learn-1.1.0-cp38-cp38-win_amd64.whl (7.3 MB) ---------------------------------------- 7.3/7.3 MB 3.3 MB/s eta 0:00:00 Using cached scikit_learn-1.0.2-cp38-cp38-win_amd64.whl (7.2 MB) Downloading scikit_learn-1.0.1-cp38-cp38-win_amd64.whl (7.2 MB) ---------------------------------------- 7.2/7.2 MB 4.0 MB/s eta 0:00:00 Downloading scikit_learn-1.0-cp38-cp38-win_amd64.whl (7.2 MB) ---------------------------------------- 7.2/7.2 MB 4.2 MB/s eta 0:00:00 Downloading scikit_learn-0.24.2-cp38-cp38-win_amd64.whl (6.9 MB) ---------------------------------------- 6.9/6.9 MB 2.6 MB/s eta 0:00:00 Downloading scikit_learn-0.24.1-cp38-cp38-win_amd64.whl (6.9 MB) ---------------------------------------- 6.9/6.9 MB 4.2 MB/s eta 0:00:00 Downloading scikit_learn-0.24.0-cp38-cp38-win_amd64.whl (6.9 MB) ---------------------------------------- 6.9/6.9 MB 3.1 MB/s eta 0:00:00 Downloading scikit_learn-0.23.2-cp38-cp38-win_amd64.whl (6.8 MB) ---------------------------------------- 6.8/6.8 MB 2.7 MB/s eta 0:00:00 Downloading scikit_learn-0.23.1-cp38-cp38-win_amd64.whl (6.8 MB) ---------------------------------------- 6.8/6.8 MB 3.7 MB/s eta 0:00:00 Downloading scikit_learn-0.23.0-cp38-cp38-win_amd64.whl (6.8 MB) ---------------------------------------- 6.8/6.8 MB 4.3 MB/s eta 0:00:00 Downloading scikit_learn-0.22.2.post1-cp38-cp38-win_amd64.whl (6.6 MB) ---------------------------------------- 6.6/6.6 MB 4.0 MB/s eta 0:00:00 Downloading scikit_learn-0.22.2-cp38-cp38-win_amd64.whl (6.6 MB) ---------------------------------------- 6.6/6.6 MB 2.9 MB/s eta 0:00:00 Downloading scikit_learn-0.22.1-cp38-cp38-win_amd64.whl (6.4 MB) ---------------------------------------- 6.4/6.4 MB 3.0 MB/s eta 0:00:00 Downloading scikit_learn-0.22-cp38-cp38-win_amd64.whl (6.3 MB) ---------------------------------------- 6.3/6.3 MB 3.5 MB/s eta 0:00:00 Collecting pynndescent>=0.5 (from umap-learn==0.5.1->TTS) Downloading pynndescent-0.5.9.tar.gz (1.1 MB) ---------------------------------------- 1.1/1.1 MB 3.4 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Collecting contourpy>=1.0.1 (from matplotlib->TTS) Downloading contourpy-1.1.1-cp38-cp38-win_amd64.whl (477 kB) ---------------------------------------- 477.9/477.9 kB 7.4 MB/s eta 0:00:00 Downloading contourpy-1.1.0-cp38-cp38-win_amd64.whl (470 kB) ---------------------------------------- 470.4/470.4 kB 7.3 MB/s eta 0:00:00 Using cached contourpy-1.0.7-cp38-cp38-win_amd64.whl (162 kB) Downloading contourpy-1.0.6-cp38-cp38-win_amd64.whl (163 kB) ---------------------------------------- 163.5/163.5 kB 2.5 MB/s eta 0:00:00 Downloading contourpy-1.0.5-cp38-cp38-win_amd64.whl (164 kB) ---------------------------------------- 164.0/164.0 kB 5.0 MB/s eta 0:00:00 Downloading contourpy-1.0.4-cp38-cp38-win_amd64.whl (162 kB) ---------------------------------------- 162.5/162.5 kB 9.5 MB/s eta 0:00:00 Downloading contourpy-1.0.3-cp38-cp38-win_amd64.whl (159 kB) ---------------------------------------- 159.8/159.8 kB 9.3 MB/s eta 0:00:00 Downloading contourpy-1.0.2-cp38-cp38-win_amd64.whl (158 kB) ---------------------------------------- 158.1/158.1 kB 9.9 MB/s eta 0:00:00 Downloading contourpy-1.0.1-cp38-cp38-win_amd64.whl (158 kB) ---------------------------------------- 158.1/158.1 kB 9.2 MB/s eta 0:00:00 Collecting transformers (from TTS) Downloading transformers-4.33.2-py3-none-any.whl (7.6 MB) ---------------------------------------- 7.6/7.6 MB 3.4 MB/s eta 0:00:00 Downloading transformers-4.33.1-py3-none-any.whl (7.6 MB) ---------------------------------------- 7.6/7.6 MB 3.5 MB/s eta 0:00:00 Downloading transformers-4.33.0-py3-none-any.whl (7.6 MB) ---------------------------------------- 7.6/7.6 MB 4.6 MB/s eta 0:00:00 Downloading transformers-4.32.1-py3-none-any.whl (7.5 MB) ---------------------------------------- 7.5/7.5 MB 2.6 MB/s eta 0:00:00 Downloading transformers-4.32.0-py3-none-any.whl (7.5 MB) ---------------------------------------- 7.5/7.5 MB 3.5 MB/s eta 0:00:00 Downloading transformers-4.31.0-py3-none-any.whl (7.4 MB) ---------------------------------------- 7.4/7.4 MB 3.6 MB/s eta 0:00:00 Downloading transformers-4.30.2-py3-none-any.whl (7.2 MB) ---------------------------------------- 7.2/7.2 MB 3.5 MB/s eta 0:00:00 Downloading transformers-4.30.1-py3-none-any.whl (7.2 MB) ---------------------------------------- 7.2/7.2 MB 4.3 MB/s eta 0:00:00 Downloading transformers-4.30.0-py3-none-any.whl (7.2 MB) ---------------------------------------- 7.2/7.2 MB 3.7 MB/s eta 0:00:00 Downloading transformers-4.29.2-py3-none-any.whl (7.1 MB) ---------------------------------------- 7.1/7.1 MB 4.5 MB/s eta 0:00:00 Downloading transformers-4.29.1-py3-none-any.whl (7.1 MB) ---------------------------------------- 7.1/7.1 MB 2.4 MB/s eta 0:00:00 Downloading transformers-4.29.0-py3-none-any.whl (7.1 MB) ---------------------------------------- 7.1/7.1 MB 4.0 MB/s eta 0:00:00 Downloading transformers-4.28.1-py3-none-any.whl (7.0 MB) ---------------------------------------- 7.0/7.0 MB 3.3 MB/s eta 0:00:00 Downloading transformers-4.28.0-py3-none-any.whl (7.0 MB) ---------------------------------------- 7.0/7.0 MB 4.1 MB/s eta 0:00:00 Downloading transformers-4.27.4-py3-none-any.whl (6.8 MB) ---------------------------------------- 6.8/6.8 MB 2.8 MB/s eta 0:00:00 Downloading transformers-4.27.3-py3-none-any.whl (6.8 MB) ---------------------------------------- 6.8/6.8 MB 3.8 MB/s eta 0:00:00 Downloading transformers-4.27.2-py3-none-any.whl (6.8 MB) ---------------------------------------- 6.8/6.8 MB 3.2 MB/s eta 0:00:00 Downloading transformers-4.27.1-py3-none-any.whl (6.7 MB) ---------------------------------------- 6.7/6.7 MB 3.7 MB/s eta 0:00:00 Downloading transformers-4.27.0-py3-none-any.whl (6.8 MB) ---------------------------------------- 6.8/6.8 MB 4.7 MB/s eta 0:00:00 Downloading transformers-4.26.1-py3-none-any.whl (6.3 MB) ---------------------------------------- 6.3/6.3 MB 3.6 MB/s eta 0:00:00 Downloading transformers-4.26.0-py3-none-any.whl (6.3 MB) ---------------------------------------- 6.3/6.3 MB 4.5 MB/s eta 0:00:00 Downloading transformers-4.25.1-py3-none-any.whl (5.8 MB) ---------------------------------------- 5.8/5.8 MB 4.6 MB/s eta 0:00:00 Downloading transformers-4.24.0-py3-none-any.whl (5.5 MB) ---------------------------------------- 5.5/5.5 MB 3.5 MB/s eta 0:00:00 Downloading transformers-4.23.1-py3-none-any.whl (5.3 MB) ---------------------------------------- 5.3/5.3 MB 2.5 MB/s eta 0:00:00 Downloading transformers-4.23.0-py3-none-any.whl (5.3 MB) ---------------------------------------- 5.3/5.3 MB 2.6 MB/s eta 0:00:00 Downloading transformers-4.22.2-py3-none-any.whl (4.9 MB) ---------------------------------------- 4.9/4.9 MB 4.3 MB/s eta 0:00:00 Collecting tokenizers!=0.11.3,<0.13,>=0.11.1 (from transformers->TTS) Downloading tokenizers-0.12.1-cp38-cp38-win_amd64.whl (3.3 MB) ---------------------------------------- 3.3/3.3 MB 3.3 MB/s eta 0:00:00 Collecting transformers (from TTS) Downloading transformers-4.22.1-py3-none-any.whl (4.9 MB) ---------------------------------------- 4.9/4.9 MB 3.5 MB/s eta 0:00:00 Downloading transformers-4.22.0-py3-none-any.whl (4.9 MB) ---------------------------------------- 4.9/4.9 MB 2.4 MB/s eta 0:00:00 Downloading transformers-4.21.3-py3-none-any.whl (4.7 MB) ---------------------------------------- 4.7/4.7 MB 3.9 MB/s eta 0:00:00 Downloading transformers-4.21.2-py3-none-any.whl (4.7 MB) ---------------------------------------- 4.7/4.7 MB 2.6 MB/s eta 0:00:00 Downloading transformers-4.21.1-py3-none-any.whl (4.7 MB) ---------------------------------------- 4.7/4.7 MB 4.0 MB/s eta 0:00:00 Downloading transformers-4.21.0-py3-none-any.whl (4.7 MB) ---------------------------------------- 4.7/4.7 MB 4.4 MB/s eta 0:00:00 Downloading transformers-4.20.1-py3-none-any.whl (4.4 MB) ---------------------------------------- 4.4/4.4 MB 2.9 MB/s eta 0:00:00 Downloading transformers-4.20.0-py3-none-any.whl (4.4 MB) ---------------------------------------- 4.4/4.4 MB 3.9 MB/s eta 0:00:00 Downloading transformers-4.19.4-py3-none-any.whl (4.2 MB) ---------------------------------------- 4.2/4.2 MB 3.1 MB/s eta 0:00:00 Downloading transformers-4.19.3-py3-none-any.whl (4.2 MB) ---------------------------------------- 4.2/4.2 MB 2.8 MB/s eta 0:00:00 Downloading transformers-4.19.2-py3-none-any.whl (4.2 MB) ---------------------------------------- 4.2/4.2 MB 3.6 MB/s eta 0:00:00 Downloading transformers-4.19.1-py3-none-any.whl (4.2 MB) ---------------------------------------- 4.2/4.2 MB 3.4 MB/s eta 0:00:00 Downloading transformers-4.19.0-py3-none-any.whl (4.2 MB) ---------------------------------------- 4.2/4.2 MB 3.9 MB/s eta 0:00:00 Downloading transformers-4.18.0-py3-none-any.whl (4.0 MB) ---------------------------------------- 4.0/4.0 MB 3.8 MB/s eta 0:00:00 Collecting sacremoses (from transformers->TTS) Downloading sacremoses-0.0.53.tar.gz (880 kB) ---------------------------------------- 880.6/880.6 kB 5.1 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Collecting transformers (from TTS) Downloading transformers-4.17.0-py3-none-any.whl (3.8 MB) ---------------------------------------- 3.8/3.8 MB 4.4 MB/s eta 0:00:00 Collecting tokenizers!=0.11.3,>=0.11.1 (from transformers->TTS) Downloading tokenizers-0.14.0-cp38-none-win_amd64.whl (2.2 MB) ---------------------------------------- 2.2/2.2 MB 3.6 MB/s eta 0:00:00 Collecting transformers (from TTS) Downloading transformers-4.16.2-py3-none-any.whl (3.5 MB) ---------------------------------------- 3.5/3.5 MB 4.4 MB/s eta 0:00:00 Downloading transformers-4.16.1-py3-none-any.whl (3.5 MB) ---------------------------------------- 3.5/3.5 MB 2.5 MB/s eta 0:00:00 Downloading transformers-4.16.0-py3-none-any.whl (3.5 MB) ---------------------------------------- 3.5/3.5 MB 3.5 MB/s eta 0:00:00 Downloading transformers-4.15.0-py3-none-any.whl (3.4 MB) ---------------------------------------- 3.4/3.4 MB 2.8 MB/s eta 0:00:00 Collecting tokenizers<0.11,>=0.10.1 (from transformers->TTS) Downloading tokenizers-0.10.3-cp38-cp38-win_amd64.whl (2.0 MB) ---------------------------------------- 2.0/2.0 MB 4.1 MB/s eta 0:00:00 Collecting transformers (from TTS) Downloading transformers-4.14.1-py3-none-any.whl (3.4 MB) ---------------------------------------- 3.4/3.4 MB 2.8 MB/s eta 0:00:00 Downloading transformers-4.13.0-py3-none-any.whl (3.3 MB) ---------------------------------------- 3.3/3.3 MB 4.0 MB/s eta 0:00:00 Downloading transformers-4.12.5-py3-none-any.whl (3.1 MB) ---------------------------------------- 3.1/3.1 MB 3.3 MB/s eta 0:00:00 Downloading transformers-4.12.4-py3-none-any.whl (3.1 MB) ---------------------------------------- 3.1/3.1 MB 2.4 MB/s eta 0:00:00 Downloading transformers-4.12.3-py3-none-any.whl (3.1 MB) ---------------------------------------- 3.1/3.1 MB 3.7 MB/s eta 0:00:00 Downloading transformers-4.12.2-py3-none-any.whl (3.1 MB) ---------------------------------------- 3.1/3.1 MB 3.0 MB/s eta 0:00:00 Downloading transformers-4.12.1-py3-none-any.whl (3.1 MB) ---------------------------------------- 3.1/3.1 MB 3.0 MB/s eta 0:00:00 Downloading transformers-4.12.0-py3-none-any.whl (3.1 MB) ---------------------------------------- 3.1/3.1 MB 2.9 MB/s eta 0:00:00 Downloading transformers-4.11.3-py3-none-any.whl (2.9 MB) ---------------------------------------- 2.9/2.9 MB 2.9 MB/s eta 0:00:00 Downloading transformers-4.11.2-py3-none-any.whl (2.9 MB) ---------------------------------------- 2.9/2.9 MB 3.1 MB/s eta 0:00:00 Downloading transformers-4.11.1-py3-none-any.whl (2.9 MB) ---------------------------------------- 2.9/2.9 MB 4.3 MB/s eta 0:00:00 Downloading transformers-4.11.0-py3-none-any.whl (2.9 MB) ---------------------------------------- 2.9/2.9 MB 3.0 MB/s eta 0:00:00 Downloading transformers-4.10.3-py3-none-any.whl (2.8 MB) ---------------------------------------- 2.8/2.8 MB 2.2 MB/s eta 0:00:00 Downloading transformers-4.10.2-py3-none-any.whl (2.8 MB) ---------------------------------------- 2.8/2.8 MB 2.8 MB/s eta 0:00:00 Downloading transformers-4.10.1-py3-none-any.whl (2.8 MB) ---------------------------------------- 2.8/2.8 MB 3.4 MB/s eta 0:00:00 Downloading transformers-4.10.0-py3-none-any.whl (2.8 MB) ---------------------------------------- 2.8/2.8 MB 3.2 MB/s eta 0:00:00 Downloading transformers-4.9.2-py3-none-any.whl (2.6 MB) ---------------------------------------- 2.6/2.6 MB 4.0 MB/s eta 0:00:00 Collecting huggingface-hub==0.0.12 (from transformers->TTS) Downloading huggingface_hub-0.0.12-py3-none-any.whl (37 kB) Collecting transformers (from TTS) Downloading transformers-4.9.1-py3-none-any.whl (2.6 MB) ---------------------------------------- 2.6/2.6 MB 4.1 MB/s eta 0:00:00 Downloading transformers-4.9.0-py3-none-any.whl (2.6 MB) ---------------------------------------- 2.6/2.6 MB 4.4 MB/s eta 0:00:00 Downloading transformers-4.8.2-py3-none-any.whl (2.5 MB) ---------------------------------------- 2.5/2.5 MB 3.2 MB/s eta 0:00:00 Downloading transformers-4.8.1-py3-none-any.whl (2.5 MB) ---------------------------------------- 2.5/2.5 MB 2.6 MB/s eta 0:00:00 Downloading transformers-4.8.0-py3-none-any.whl (2.5 MB) ---------------------------------------- 2.5/2.5 MB 2.9 MB/s eta 0:00:00 Downloading transformers-4.7.0-py3-none-any.whl (2.5 MB) ---------------------------------------- 2.5/2.5 MB 4.2 MB/s eta 0:00:00 Collecting huggingface-hub==0.0.8 (from transformers->TTS) Downloading huggingface_hub-0.0.8-py3-none-any.whl (34 kB) Collecting transformers (from TTS) Downloading transformers-4.6.1-py3-none-any.whl (2.2 MB) ---------------------------------------- 2.2/2.2 MB 4.1 MB/s eta 0:00:00 Downloading transformers-4.6.0-py3-none-any.whl (2.3 MB) ---------------------------------------- 2.3/2.3 MB 4.5 MB/s eta 0:00:00 Downloading transformers-4.5.1-py3-none-any.whl (2.1 MB) ---------------------------------------- 2.1/2.1 MB 4.1 MB/s eta 0:00:00 Downloading transformers-4.5.0-py3-none-any.whl (2.1 MB) ---------------------------------------- 2.1/2.1 MB 2.9 MB/s eta 0:00:00 Downloading transformers-4.4.2-py3-none-any.whl (2.0 MB) ---------------------------------------- 2.0/2.0 MB 2.4 MB/s eta 0:00:00 Downloading transformers-4.4.1-py3-none-any.whl (2.1 MB) ---------------------------------------- 2.1/2.1 MB 3.3 MB/s eta 0:00:00 Downloading transformers-4.4.0-py3-none-any.whl (2.1 MB) ---------------------------------------- 2.1/2.1 MB 1.9 MB/s eta 0:00:00 Downloading transformers-4.3.3-py3-none-any.whl (1.9 MB) ---------------------------------------- 1.9/1.9 MB 3.3 MB/s eta 0:00:00 Downloading transformers-4.3.2-py3-none-any.whl (1.8 MB) ---------------------------------------- 1.8/1.8 MB 3.8 MB/s eta 0:00:00 Downloading transformers-4.3.1-py3-none-any.whl (1.8 MB) ---------------------------------------- 1.8/1.8 MB 4.1 MB/s eta 0:00:00 ERROR: Exception: Traceback (most recent call last): File "C:\Python38\lib\site-packages\pip\_internal\cli\base_command.py", line 169, in exc_logging_wrapper status = run_func(*args) File "C:\Python38\lib\site-packages\pip\_internal\cli\req_command.py", line 248, in wrapper return func(self, options, args) File "C:\Python38\lib\site-packages\pip\_internal\commands\install.py", line 377, in run requirement_set = resolver.resolve( File "C:\Python38\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 92, in resolve result = self._result = resolver.resolve( File "C:\Python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 546, in resolve state = resolution.resolve(requirements, max_rounds=max_rounds) File "C:\Python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 457, in resolve raise ResolutionTooDeep(max_rounds) pip._vendor.resolvelib.resolvers.ResolutionTooDeep: 200000 ``` **3. See error message:** `pip._vendor.resolvelib.resolvers.ResolutionTooDeep: 200000` ### Expected behavior _No response_ ### Logs _No response_ ### Environment ```shell nothing installed yet, just trying to do it on Windows 7, Python 3.8 ``` ### Additional context _No response_
closed
2023-09-30T15:39:23Z
2023-10-09T10:08:26Z
https://github.com/coqui-ai/TTS/issues/3017
[ "bug" ]
abubelinha
4
hbldh/bleak
asyncio
599
BleakDotNetTaskError Could not get GATT characteristics AccessDenied
* bleak version: 0.12.1 * Python version: 3.9 * Operating System: Win 10 [Version 10.0.19042.1083] * BlueZ version (`bluetoothctl -v`) in case of Linux: * Bluetooth Firmware Version: HCI 8.256 / LMP 8.256 ### Description Similar to Issue #257 #222 From what I understand I am trying to connect to a BLE Device using example code and get exceptions. For reference I have previously interfaced with the device using closed source software without issues with the same hardware. Noteworthy is that the device contains three characteristics with the same UUIDs related to the HID Service since the HID service seems to be the thing causing trouble. ### What I Did Running the example code for Services I get the following output: ``` Traceback (most recent call last): File "C:\Users\HP\PycharmProjects\Measure\venv\BLE-test3.py", line 32, in <module> loop.run_until_complete(print_services(ADDRESS)) File "C:\Users\HP\AppData\Local\Programs\Python\Python39\lib\asyncio\base_events.py", line 642, in run_until_complete return future.result() File "C:\Users\HP\PycharmProjects\Measure\venv\BLE-test3.py", line 24, in print_services async with BleakClient(mac_addr) as client: File "C:\Users\HP\PycharmProjects\Measure\venv\lib\site-packages\bleak\backends\client.py", line 61, in __aenter__ await self.connect() File "C:\Users\HP\PycharmProjects\Measure\venv\lib\site-packages\bleak\backends\winrt\client.py", line 227, in connect await self.get_services(use_cached=use_cached) File "C:\Users\HP\PycharmProjects\Measure\venv\lib\site-packages\bleak\backends\winrt\client.py", line 449, in get_services raise BleakDotNetTaskError( bleak.exc.BleakDotNetTaskError: Could not get GATT characteristics for <_winrt_Windows_Devices_Bluetooth_GenericAttributeProfile.GattDeviceService object at 0x000001A15CF7F290>: AccessDenied ``` By commenting out the ``` raise BleakDotNetTaskError( ``` in the file [winrt\client.py](https://github.com/hbldh/bleak/blob/7e0fdae6c0f6a78713e5984c2840666e0c38c3f3/bleak/backends/winrt/client.py#L449-L454) that the traceback is refering to, Bleak seems to work fairly normal, with the exception that the HID service has no characteristics.
closed
2021-07-15T13:28:36Z
2021-10-08T16:58:10Z
https://github.com/hbldh/bleak/issues/599
[ "Backend: pythonnet" ]
ertex
1
hankcs/HanLP
nlp
1,449
hanlp+jupyter的docker镜像
**Describe the feature and the current behavior/state.** 目前官方文档里没有提供更快上手HanLP 的方式,所以我做了一个HanLP + Jupyter 的Docker镜像,可以帮助感兴趣的人更快上手体验。 walterinsh/hanlp:2.0.0a41-jupyter [https://github.com/WalterInSH/hanlp-jupyter-docker](https://github.com/WalterInSH/hanlp-jupyter-docker) 如果满足你们的期望,可以加在文档里。 **Will this change the current api? How?** No **Who will benefit with this feature?** 会使用docker,期望快速尝试的人 **Are you willing to contribute it (Yes/No):** yes **System information** - OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Linux Debian - Python version: 3.6 - HanLP version: 2.0.0a41 **Any other info** * [x] I've carefully completed this form.
closed
2020-04-07T11:51:00Z
2020-04-09T11:42:18Z
https://github.com/hankcs/HanLP/issues/1449
[ "feature request" ]
WalterInSH
1
QingdaoU/OnlineJudge
django
385
新增swift语言时候出现的问题。
在languages内添加了 _swift_lang_config = { "run": { "exe_name": "t.swift", "command": "/usr/bin/swift {exe_path}", "seccomp_rule": None, } } 并且在JudgeServer 容器内安装了swift环境,并且在容器内可运行swift代码。(swift也无需编译可运行) 但是最终在项目中运行时,会出现运行时错误。 最终在此次运行的文件地址(在挂载的judege_server/run/run的目标文件中),寻找到一个错误。1.out文件内显示:<unknown>:0: error: unable to open output file '/home/code/.cache/clang/ModuleCache/VXKMIN1Y83K6/SwiftShims-1KFO504FT44T.pcm': 'No such file or directory' <unknown>:0: error: could not build C module 'SwiftShims'。 请问,该如何解决此项问题?
closed
2021-09-22T05:39:29Z
2021-09-22T09:26:50Z
https://github.com/QingdaoU/OnlineJudge/issues/385
[]
metaire
3
waditu/tushare
pandas
1,645
installer 打包时候会提示错误
1.2.62可以打包成功,但是在请求数据的时候会报403错误 1.2.84打包的时候报错 UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd7 in position 2556: invalid continuation byte
closed
2022-04-19T05:36:22Z
2022-04-20T09:13:47Z
https://github.com/waditu/tushare/issues/1645
[]
jianyuanyang
3
piccolo-orm/piccolo
fastapi
317
Improve tests for `piccolo asgi new`
We have a basic test for `piccolo asgi new`: https://github.com/piccolo-orm/piccolo/blob/master/tests/apps/asgi/commands/test_new.py It can definitely be improved though. As a minimum, we should read the generated file contents, and use `ast.parse(file_contents)` to make sure the file is valid Python code. We use a similar approach here: https://github.com/piccolo-orm/piccolo/blob/e0f04a40e868e9fa3c4f6bb9ebb1128f74180b07/tests/apps/schema/commands/test_generate.py#L91 Even better, we would try and run the app to make sure it works, but this might be too tricky.
closed
2021-10-29T18:33:28Z
2021-12-04T09:40:28Z
https://github.com/piccolo-orm/piccolo/issues/317
[ "enhancement", "good first issue" ]
dantownsend
3
pyeve/eve
flask
889
Docs are not clear about installation requirements
The docs say: > Eve is powered by Flask, Redis, Cerberus, Events but it does not indicate if all of those are required. Specifically, I have failed to find anywhere in the docs if Redis is an optional dependency. Looking into the requirements.txt and reading usage samples of Redis, `app = Eve()` vs `app = Eve(redis=r)` also suggests Redis is optional. However, that is too many hoops for those new to Eve to conclude about Redis requirement - many may give up having no option to host Redis. For example, PythonAnywhere users: [I couldn't tell from their docs whether redis is a hard requirement or something that you can use for some features](https://www.pythonanywhere.com/forums/topic/3730/#id_post_18968)).
closed
2016-08-04T08:01:03Z
2016-08-07T15:14:40Z
https://github.com/pyeve/eve/issues/889
[ "documentation" ]
mloskot
2
miLibris/flask-rest-jsonapi
sqlalchemy
187
Preventing useless queries when listing entities
Hello, On an application with about 100k entries, listing them takes minutes. This surprised me because listing entries should be fairly quick, even if there are many of them. It appears that **for each entry** it produces a query to **each** relationship. This makes a huge number of queries. To understand if I did something wrong, I started from your own example in the documentation. I created 100 computers and 100 persons, related to a computer. Then I listed all the computers (with `/computers?page[size]=0`) and I asked SQLAlchemy to log every query. This confirmed that I had one `SELECT` on the `computer` table and as many `SELECT` on the `person` table as there are owner of a computer. For instance, one of them: ``` INFO:sqlalchemy.engine.base.Engine:SELECT person.id AS person_id, person.name AS person_name, person.email AS person_email, person.birth_date AS person_birth_date, person.password AS person_password FROM person WHERE person.id = ? INFO:sqlalchemy.engine.base.Engine:(19,) ``` First: why is this query necessary? I mean the listing doesn't provide the detail of the person, so why retrieving this data? How could we prevent Flask-REST-JSONAPI from retrieving it? Second: if this query is necessary, why don't you have a join? Third: can I prevent this from happening to prevent huge efficiency losses? Thanks a lot!
closed
2020-02-20T18:32:57Z
2020-04-09T14:01:59Z
https://github.com/miLibris/flask-rest-jsonapi/issues/187
[]
mikael-s
4
hankcs/HanLP
nlp
1,819
在使用文本相似度比较时,两个字符串交换一下位置,得出来的文本相似度不一样
<!-- 感谢找出bug,请认真填写下表: --> **Describe the bug** 在使用文本相似度比较时,两个字符串交换一下位置,得出来的文本相似度不一样 **Code to reproduce the issue** ![image](https://user-images.githubusercontent.com/77441902/236605940-f5f62acf-d3f8-4a9b-adb1-b2d2edf342d3.png) ```python ``` **Describe the current behavior** 点击运行后,发现文本相似度的值不同 **Expected behavior** 交换字符串的位置,应该得到的文本相似度是一样的。 **System information** - OS Platform and Distribution (e.g., Linux Ubuntu 16.04): - Python version: - HanLP version: **Other info / logs** Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached. * [x] I've completed this form and searched the web for solutions. <!-- ⬆️此处务必勾选,否则你的issue会被机器人自动删除! --> <!-- ⬆️此处务必勾选,否则你的issue会被机器人自动删除! --> <!-- ⬆️此处务必勾选,否则你的issue会被机器人自动删除! -->
closed
2023-05-06T06:21:39Z
2023-05-07T16:53:38Z
https://github.com/hankcs/HanLP/issues/1819
[ "feature request" ]
callmebyZJ
1
nolar/kopf
asyncio
243
[PR] Fix an issue with mistakenly added Bearer auth in addition to Basic auth
> <a href="https://github.com/nolar"><img align="left" height="50" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> A pull request by [nolar](https://github.com/nolar) at _2019-11-19 22:31:04+00:00_ > Original URL: https://github.com/zalando-incubator/kopf/pull/243 > Merged by [nolar](https://github.com/nolar) at _2019-11-19 23:55:13+00:00_ > Issue : #242 ## Description `Authorization: Bearer` header was sent (without a token!) because there was a schema defined by default (`"Bearer"`), which should not be there (`None`). This caused problems when Basic auth (username+password) was used — it could not co-exist with `Authorization: Bearer` header. ## Types of Changes - Bug fix (non-breaking change which fixes an issue) --- > <a href="https://github.com/dneuhaeuser-zalando"><img align="left" height="30" src="https://avatars2.githubusercontent.com/u/37899626?v=4"></a> Commented by [dneuhaeuser-zalando](https://github.com/dneuhaeuser-zalando) at _2019-11-19 23:12:50+00:00_ > &nbsp; Approved because I understand it's somewhat urgent but ideally this should have a test, to ensure this fixes the problem and to prevent a regression. --- > <a href="https://github.com/nolar"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> Commented by [nolar](https://github.com/nolar) at _2019-11-20 01:01:26+00:00_ > &nbsp; The tests for this case are added post-factum in #244 (with other auth/ssl tests).
closed
2020-08-18T20:01:38Z
2020-08-23T20:52:21Z
https://github.com/nolar/kopf/issues/243
[ "bug", "archive" ]
kopf-archiver[bot]
0
ray-project/ray
pytorch
51,086
[core] Guard ray C++ code quality via unit test
### Description Ray core C++ components are not properly unit tested: - As people left, it's less confident to guard against improper code change with missing context; - Sanitizer on CI is only triggered on unit test; - Unit test coverage is a good indicator of code quality (i.e. 85% branch coverage). ### Use case _No response_
open
2025-03-05T02:20:07Z
2025-03-05T02:20:34Z
https://github.com/ray-project/ray/issues/51086
[ "enhancement", "P2", "core", "help-wanted" ]
dentiny
1
noirbizarre/flask-restplus
api
378
Namespace expect without model
@ns.expect(someModel) def get(self): pass Instead of having a model passed to expect decorator, can I have a custom JSON? No model required in the application.
open
2018-01-06T05:01:59Z
2018-01-06T05:01:59Z
https://github.com/noirbizarre/flask-restplus/issues/378
[]
VinayakBagaria
0
widgetti/solara
fastapi
737
`Card` component's `ma-{margin}` class takes precedence to `classes`
The view below does not seem to respect my CSS class, at least not my `margin-bottom: ... !important` property. I see that `Card` prepends `ma-{margin}` to the class order. On inspection, I see that `ma-0` is applied as `.v-application .ma-0`, which applies a `margin: # !important` property. Two things: 1. Does `v-application` overrides precedence somehow? There are several `v-application` nested classes throughout. I take it this is `vuetify`? Is their higher precedence by design? 2. The issue really is the `!important` flag on the `ma` class. It effectively blocks any user styles. Can this be modified? ```python with Card( margin=0, classes=["container node-card"], ): ... ```
closed
2024-08-16T14:22:07Z
2024-08-20T04:38:38Z
https://github.com/widgetti/solara/issues/737
[]
edan-bainglass
5
babysor/MockingBird
pytorch
554
pre.py 改进建议
**Summary[问题简述(一句话)]** 使用 `pre.py` 时如何暂停以及开始 **Env & To Reproduce[复现与环境]** 各依赖环境正常 使用 `pre.py` 开始训练后,无法停止 按 `Ctrl + C` 后报错,但计算未停止 看了一下 `pre.py` 源码,应该是 `multiprocessing` 的问题,其进程实例需人为停止 可以考虑使用 : `p.terminate()` `p.join()`
open
2022-05-15T11:04:47Z
2022-05-15T12:02:52Z
https://github.com/babysor/MockingBird/issues/554
[]
tomcup
1
ray-project/ray
python
51,574
[CG, Core] Add Ascend NPU Support for RCCL and CG
### Description This RFC proposes to provide initial support for RCCL and CG on Ascend NPU. Original work by [@Bye-legumes](https://github.com/ray-project/ray/pull/47658) and [@hipudding](https://github.com/ray-project/ray/pull/51032). However, we need to decouple them into several PRs with minor modifications and set an example for further hardware support. ## Notes: - I previously submitted a PR in September 2024 to support HCCL and refactor NCCL into a communicator, but the feedback was that it was too large and complicated and we should decouple into some PR with minor modification. - We should avoid adding additional C code into Ray, as that would influence the build stage. ## Plan for Decoupling into Several Stages: ### **PR1: Support RCCL on NPU** Ray Core supports scheduling on Ascend NPU devices, but the Ray Collective API does not yet support communication between NPUs using HCCL. 🔗 [PR #50790](https://github.com/ray-project/ray/pull/50790) 👤 @liuxsh9 ### **PR2: Refactor CG to Support Multiple Devices** We can refer to [this PR](https://github.com/ray-project/ray/pull/44086) to decouple device-related modules. Move cupy dependency, support rank mapping or different progress group. 👤 @hipudding ### **PR3: CG Support for NPU** CG support will be added after RCCL is merged, utilizing the RCCL API from [PR #47658](https://github.com/ray-project/ray/pull/47658). 👤 @Bye-legumes ### **Merge Strategy** - PR2 and PR3 can be merged independently. - PR3 will adjust accordingly based on PR2. ### CANN+torch Version Based on vLLM or latest? ### Use case Support vllm-ascend https://github.com/vllm-project/vllm-ascend
open
2025-03-21T02:09:40Z
2025-03-21T23:37:13Z
https://github.com/ray-project/ray/issues/51574
[ "enhancement", "core", "compiled-graphs" ]
Bye-legumes
0
koxudaxi/datamodel-code-generator
pydantic
1,436
Field names which begins and ends with underscores being prefixed with `field`
**Describe the bug** There was a PR some time ago: https://github.com/koxudaxi/datamodel-code-generator/pull/962 It restricts usage of protected and private variables, but it doesn't consider variables with double-underscores on both sides, e.g. `__version__`. Such variables are supported by pydantic and you can access them without any problems. **To Reproduce** Example schema: ```json { "title": "Event", "properties": { "__version__": { "type": "string", "title": "Event version" } } } ``` Used commandline: ``` $ datamodel-codegen --input event.json --output event.py ``` ** Actual behavior ** ```python class Event(BaseModel): field__version__: Optional[str] = Field( None, alias='__version__', title='Event version' ) ``` **Expected behavior** ```python class Event(BaseModel): __version__: Optional[str] = Field( None, alias='__version__', title='Event version' ) ``` **Version:** - OS: MacOS - Python version: 3.11 - datamodel-code-generator version: 0.21.1
closed
2023-07-20T11:01:10Z
2024-02-13T14:12:01Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1436
[ "bug" ]
parikls
1
mwaskom/seaborn
pandas
3,000
Release v0.12.0
Release tracker issue for v0.12.0. Mostly opening so that it gets issue #3000, which is satisfying.
closed
2022-09-05T16:53:42Z
2022-09-06T22:24:08Z
https://github.com/mwaskom/seaborn/issues/3000
[]
mwaskom
2
openapi-generators/openapi-python-client
rest-api
202
Use httpx.Client Directly
As of version 0.6.1, the generated `Client` is somewhat configurable - headers, cookies, and timeout. However, these are all abstractions which have to then be handled explicitly within each generated API method. Would it be simpler to just make calls using an `httpx.Client` or `httpx.AsyncClient` instance, and allow consumers to configure that directly? Advantages: - Multiple versions of `httpx` can be supported, and there's less likelihood that you'll have to change your package due to changes or new features in `httpx`. - It's more efficient than direct calls to `httpx.get` etc, and explicitly what `httpx` recommends in [its documentation](https://www.python-httpx.org/advanced/): > If you do anything more than experimentation, one-off scripts, or prototypes, then you should use a Client instance. of course, this package _does_ use the context manager within API operations, but that doesn't allow _multiple calls_ to share the same client and thus connection. - Everything else good in that documentation, like the ability to use the generated client package as a WSGI test client - [Event hooks](https://www.python-httpx.org/advanced/#event-hooks) will allow consumers to implement our own global retry logic (like refreshing authentication tokens) prior to official retry support from `httpx` itself. - `AuthenticatedClient` and `Client` can just each just become an `httpx.Client` configured with different headers. **tl;dr**: it decreases coupling between the two packages and lets you worry less about the client configuration and how to abstract it. More `httpx` functionality will be directly available to consumers, so you'll get fewer (actionable) feature requests. Future breaking changes here will be less likely. Seems like this alone would allow closing a couple currently pending issues (retries, different auth methods, response mimetypes), by putting them entirely in the hands of the consumer. **Describe the solution you'd like** There are a few options. 1. The `httpx.Client` could be used directly (i.e. replace `client.py` entirely). API methods would just accept the client and use it directly, and it would be up to the caller to configure and manage it. This is the simplest for sure, and meets the current use case. This is what I'd recommend. ```python def sync_detailed( *, client: httpx.Client, json_body: CreateUserRequest, ) -> Response[Union[User, Error]]: kwargs = _get_kwargs( client=client, json_body=json_body, ) response = client.post( **kwargs, ) return _build_response(response=response) ``` 2. The `Client` could wrap an `httpx.Client` which allows you to add convenience methods as needed, and stay in control of the `Client` object itself. This abstraction layer offers protected variation, but wouldn't be used for anything right now - headers, timeouts, and cookies can all be configured directly on an `httpx.Client`. _However_ this need could also be met with configuration values passed directly to each API operation. ```python def sync_detailed( *, client: Client, json_body: CreateUserRequest, ) -> Response[Union[User, Error]]: kwargs = _get_kwargs( client=client.httpx_client, json_body=json_body, ) response = client.httpx_client.post( **kwargs, ) return _build_response(response=response) ``` 3. Keep the `Client` and proxy calls (with `__getattr__`) to an inner client, _or_ typecheck `client` on each API operation to see if you've got a `Client` or `httpx.Client`. This allows them to be used interchangeably in API operations. This one's the most fragile and doesn't offer any advantages at the moment. Of course, this would all apply to `AsyncClient` for the `asyncio` calls. **Additional context** Happy to send a PR, can do it pretty quickly. Am looking to use this in production, and would love to stay on (and contribute to) mainline rather than a fork!
closed
2020-09-30T03:46:15Z
2023-07-23T19:38:25Z
https://github.com/openapi-generators/openapi-python-client/issues/202
[ "✨ enhancement" ]
kalzoo
7
babysor/MockingBird
pytorch
28
RuntimeError: CUDA error: CUBLAS_STATUS_INTERNAL_ERROR when calling `cublasSgemm( handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c, ldc)`
![image](https://user-images.githubusercontent.com/31000405/130337837-6c317318-2018-45bd-b8d9-e144b220b12a.png) 训练一半后出现这个,谁能解决help
closed
2021-08-22T00:09:53Z
2021-10-16T08:52:18Z
https://github.com/babysor/MockingBird/issues/28
[]
wangkewk
4
biosustain/potion
sqlalchemy
130
Move Model documents to different files (MongoEngine) Example
I am trying to figure out how I can create the `MongoEngine.Document` classes in separate files and still use the instance variable here: https://github.com/biosustain/potion/blob/dc71f4954422f6edfde5bfa86f65dd622a35fdea/examples/mongoengine_simple.py#L12 Is there a good way of doing this so I can create a connection to the database and pass that mongo engine object around when i define my class modules in separate files?
closed
2018-02-12T19:42:11Z
2018-02-13T09:46:21Z
https://github.com/biosustain/potion/issues/130
[]
wbashir
1
noirbizarre/flask-restplus
api
30
Refactor tests
Test files starts to be too dense. Refactor to split into more files.
closed
2015-03-18T18:26:05Z
2015-11-04T15:39:06Z
https://github.com/noirbizarre/flask-restplus/issues/30
[ "technical" ]
noirbizarre
1
pytest-dev/pytest-qt
pytest
394
Apparent leaks between tests with (customised) qapp
The [pytest-qt documentation](https://pytest-qt.readthedocs.io/en/latest/qapplication.html#testing-custom-qapplications) explains how to create a `QApplication` subclass from your own project which will then take the place of the default fixture `qapp` used to make a default `QApplication`. It tells you to put that in the conftest.py file in the relevant testing directory, and to give it "session" scope. From my experience any other scope causes horrendous crashes. But what this means is that this fixture is only run once in your whole test session. `qapp` appears to be a strange beast, because you can add attributes to it, get your application code to change these attributes, etc. So... it's kind of half an object and half a function (which is only called once). Dealing with the above wouldn't be that hard: you can prefer methods to attributes (e.g. `MyApp.set_version(...)` rather than `MyApp.version = ...`). But there's a bigger problem I've just experienced: apparent leaking of patches between tests. This test, which checks that `setWindowTitle` is set on `app.main_window`, passes OK when run on its own: ``` def test_window_title_updated_on_new_doc(request, qapp): t_logger.info(f'\n>>>>>> test name: {request.node.originalname}') qapp.main_window = main_window.AutoTransMainWindow() with unittest.mock.patch.object(qapp.main_window, 'setWindowTitle') as mock_set_wt: qapp.try_to_create_new_doc() mock_set_wt.assert_called_once() ``` ... but there is another method before this: ``` @pytest.mark.parametrize('close_result', [True, False]) def test_try_to_create_new_doc_returns_expected_result(request, close_result, qapp): t_logger.info(f'\n>>>>>> test name: {request.node.originalname}, close_result {close_result}') with unittest.mock.patch.object(qapp, 'main_window'): qapp.open_document = project.Project() with unittest.mock.patch.object(qapp, 'try_to_close_curr_doc') as mock_try: mock_try.return_value = close_result create_result = qapp.try_to_create_new_doc() assert close_result == create_result ``` ... this tests that `app.try_to_create_new_doc` returns the same boolean value as `try_to_close_curr_doc`. This method passes with `close_result` as both `True` and `False`. When both tests are run in the same `pytest` command, however, I get the following error on the *second* test (i.e. `test_window_updated_on_new_doc`): ``` E AssertionError: Expected 'setWindowTitle' to have been called once. Called 2 times. E Calls: [call('Auto_trans 0.0.1 - No projects open'), E call('Auto_trans 0.0.1 - Project: Not yet saved')]. ``` These calls happened during the *first* test, i.e. `test_try_to_create_new_doc_returns_expected_result`, something which I've been able to verify, but they get reported as fails during the *second* test! Does anyone know what to do about this?
closed
2021-11-09T21:16:14Z
2021-11-10T07:52:32Z
https://github.com/pytest-dev/pytest-qt/issues/394
[]
Mrodent
2
sloria/TextBlob
nlp
240
No module named 'textblob'
Hi there, I am a starter of Python and I would like to use 'textblob'. I am a MacOS High Sierra user. What I tried is to install textblob on a new anaconda environment by `conda install -c conda-forge textblob` and `conda install -c conda-forge/label/gcc7 textblob`. It gets installed and then I check on the conda list and textblob is there. However, when I am running `from textblob import TextBlob` on Python I get an error: **No module named 'textblob'** How can I resolve this? Thank you in advance
closed
2018-12-13T13:54:29Z
2018-12-24T13:50:07Z
https://github.com/sloria/TextBlob/issues/240
[]
VickyVouk
3
comfyanonymous/ComfyUI
pytorch
7,020
Wan2.1 result is black, when using --use-sage-attention and setting weight_dtype to fp8_e4m3fn.
When using --use-sage-attention and setting weight_dtype to fp8_e4m3fn, the result is black, Using --use-sage-attention, --force-upcast-attention and setting weight_dtype to fp8_e4m3fn, the result is still black.
open
2025-02-28T16:15:21Z
2025-03-12T21:40:16Z
https://github.com/comfyanonymous/ComfyUI/issues/7020
[]
TangYanxin
6
coqui-ai/TTS
deep-learning
3,114
[Bug] xtts OrderedVocab problem
### Describe the bug > TRAINING (2023-10-28 18:37:37) The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! ### To Reproduce training xtts with standard recipe ### Expected behavior _No response_ ### Logs ```shell python finetunextts.py >> DVAE weights restored from: C:\Users\someone\Desktop\xtts/run\training\XTTS_v1.1_original_model_files/dvae.pth | > Found 489 files in C:\Users\someone\Desktop\xtts fatal: not a git repository (or any of the parent directories): .git fatal: not a git repository (or any of the parent directories): .git > Training Environment: | > Current device: 0 | > Num. of GPUs: 1 | > Num. of CPUs: 12 | > Num. of Torch Threads: 1 | > Torch seed: 1 | > Torch CUDNN: True | > Torch CUDNN deterministic: False | > Torch CUDNN benchmark: False > Start Tensorboard: tensorboard --logdir=C:\Users\someone\Desktop\xtts/run\training\GPT_XTTS_LJSpeech_FT-October-27-2023_10+56PM-0000000 > Model has 543985103 parameters > EPOCH: 0/1000 --> C:\Users\someone\Desktop\xtts/run\training\GPT_XTTS_LJSpeech_FT-October-27-2023_10+56PM-0000000 > Filtering invalid eval samples!! > Total eval samples after filtering: 4 > EVALUATION | > Synthesizing test sentences. --> EVAL PERFORMANCE | > avg_loader_time: 0.01900 (+0.00000) | > avg_loss_text_ce: 0.04067 (+0.00000) | > avg_loss_mel_ce: 4.33739 (+0.00000) | > avg_loss: 4.37806 (+0.00000) > BEST MODEL : C:\Users\someone\Desktop\xtts/run\training\GPT_XTTS_LJSpeech_FT-October-27-2023_10+56PM-0000000\best_model_0.pth > EPOCH: 1/1000 --> C:\Users\someone\Desktop\xtts/run\training\GPT_XTTS_LJSpeech_FT-October-27-2023_10+56PM-0000000 > Sampling by language: dict_keys(['en']) > TRAINING (2023-10-27 22:57:08) The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5024, your vocabulary could be corrupted ! The OrderedVocab you are attempting to save contains a hole for index 5025, your vocabulary could be corrupted ! --> STEP: 0/243 -- GLOBAL_STEP: 0 | > loss_text_ce: 0.04536 (0.04536) | > loss_mel_ce: 4.79820 (4.79820) | > loss: 4.84356 (4.84356) | > current_lr: 0.00001 | > step_time: 0.88430 (0.88431) | > loader_time: 70.14840 (70.14841) --> STEP: 50/243 -- GLOBAL_STEP: 50 | > loss_text_ce: 0.04994 (0.04525) | > loss_mel_ce: 5.39171 (4.74854) | > loss: 5.44165 (4.79379) | > current_lr: 0.00001 | > step_time: 0.66870 (1.54556) | > loader_time: 0.01600 (0.01624) --> STEP: 100/243 -- GLOBAL_STEP: 100 | > loss_text_ce: 0.04045 (0.04345) | > loss_mel_ce: 3.84910 (4.67366) | > loss: 3.88955 (4.71711) | > current_lr: 0.00001 | > step_time: 1.74700 (1.66512) | > loader_time: 0.01520 (0.01434) --> STEP: 150/243 -- GLOBAL_STEP: 150 | > loss_text_ce: 0.05477 (0.04379) | > loss_mel_ce: 5.39814 (4.72587) | > loss: 5.45292 (4.76966) | > current_lr: 0.00001 | > step_time: 2.80970 (1.85835) | > loader_time: 0.01400 (0.01352) --> STEP: 200/243 -- GLOBAL_STEP: 200 | > loss_text_ce: 0.03867 (0.04367) | > loss_mel_ce: 4.21473 (4.71702) | > loss: 4.25340 (4.76068) | > current_lr: 0.00001 | > step_time: 3.30200 (2.20536) | > loader_time: 0.00500 (0.01207) > Filtering invalid eval samples!! > Total eval samples after filtering: 4 > EVALUATION | > Synthesizing test sentences. --> EVAL PERFORMANCE | > avg_loader_time: 0.01202 (-0.00698) | > avg_loss_text_ce: 0.03961 (-0.00106) | > avg_loss_mel_ce: 4.15599 (-0.18140) | > avg_loss: 4.19560 (-0.18246) > BEST MODEL : C:\Users\someone\Desktop\xtts/run\training\GPT_XTTS_LJSpeech_FT-October-27-2023_10+56PM-0000000\best_model_243.pth ``` ### Environment ```shell { "CUDA": { "GPU": [ "NVIDIA GeForce RTX 3060" ], "available": true, "version": "11.7" }, "Packages": { "PyTorch_debug": false, "PyTorch_version": "2.0.1", "TTS": "0.19.0", "numpy": "1.22.0" }, "System": { "OS": "Windows", "architecture": [ "64bit", "WindowsPE" ], "processor": "AMD64 Family 25 Model 80 Stepping 0, AuthenticAMD", "python": "3.9.13", "version": "10.0.22621" } } ``` ### Additional context _No response_
closed
2023-10-28T07:48:53Z
2023-10-28T08:31:28Z
https://github.com/coqui-ai/TTS/issues/3114
[ "bug" ]
jazza420
1
sinaptik-ai/pandas-ai
pandas
920
Error in exe file which made by Pyinstaller
### System Info python = 3.11.7 pandasai = 1.15.8 openai = 1.10.0 I made executable file by pyinstaller using following code. ============================================================================= import pandas as pd from pandasai import SmartDataframe from pandasai.llm import OpenAI llm = OpenAI(api_token="", model = 'gpt-4') df = pd.DataFrame({ "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"], "gdp": [19294482071552, 2891615567872, 2411255037952, 3435817336832, 1745433788416, 1181205135360, 1607402389504, 1490967855104, 4380756541440, 14631844184064], "happiness_index": [6.94, 7.16, 6.66, 7.07, 6.38, 6.4, 7.23, 7.22, 5.87, 5.12] }) df = SmartDataframe(df, config={"llm": llm}) print(df.chat('Which are the 5 happiest countries?')) ============================================================================ ### 🐛 Describe the bug If I run this exe file, I got following error =========================================================================== Unfortunately, I was not able to answer your question, because of the following error: 'help' ===========================================================================
closed
2024-02-02T01:43:27Z
2024-06-01T00:20:24Z
https://github.com/sinaptik-ai/pandas-ai/issues/920
[]
beysoftceo
2
vitalik/django-ninja
django
1,375
[BUG] AttributeError: 'method' object has no attribute '_ninja_operation'
**Describe the bug** When I'm trying to create a class-based router using the ApiRouter class as a base class, I receive this error at the time of self.add_api_operations: ``` view_func._ninja_operation = operation # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: 'method' object has no attribute '_ninja_operation' ``` When I comment out this line in the source code for django-ninja my project works absolutely correctly. Code snippet: ``` class TestRouter(Router): def __init__(self: Self) -> None: super().__init__() self.tags = ["Router"] self.add_api_operation( methods=["POST"], path="/asd", view_func=self.hello, ) def hello(self: Self, request: WSGIRequest) -> str: return "ok" ``` **Versions (please complete the following information):** - Python version: 3.12.3 Note you can quickly get this by runninng in `./manage.py shell` this line: ``` >>> import django; import pydantic; import ninja; django.__version__; ninja.__version__; pydantic.__version__ '5.1.3' '1.3.0' '2.10.4' ```
closed
2024-12-30T02:03:26Z
2025-01-03T11:25:54Z
https://github.com/vitalik/django-ninja/issues/1375
[]
shrpow
2
desec-io/desec-stack
rest-api
119
expose domain limit through API
There is a user-specific limit on how many domains can be registered. We need to expose this limit through the API so that GUIs can display it.
closed
2018-09-10T20:52:49Z
2018-09-20T11:12:38Z
https://github.com/desec-io/desec-stack/issues/119
[ "enhancement", "api", "prio: medium", "easy" ]
peterthomassen
0
aiortc/aiortc
asyncio
324
Make media codecs optional
For some use-cases, I think that media codecs are not required. For example, I am just interested in data channels. Would you accept a PR that moves `av` to [extra_require](https://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies) and make the `mediastreams` module optional?
closed
2020-03-23T01:24:04Z
2020-03-23T18:05:41Z
https://github.com/aiortc/aiortc/issues/324
[]
DurandA
1
Significant-Gravitas/AutoGPT
python
9,079
Create Exa.ai "Get Contents" and "Find Similar" Blocks
Following up from [https://github.com/Significant-Gravitas/AutoGPT/pull/8835](https://github.com/Significant-Gravitas/AutoGPT/pull/8835)**<br>**<br>Now that we have Exa Search on the platform, let's add support for their Get Contents and Find Similar endpoints.<br><br>[https://docs.exa.ai/reference/get-contents](https://docs.exa.ai/reference/get-contents)<br><br>[https://docs.exa.ai/reference/find-similar-links](https://docs.exa.ai/reference/find-similar-links)
closed
2024-12-19T12:56:29Z
2024-12-29T18:40:24Z
https://github.com/Significant-Gravitas/AutoGPT/issues/9079
[ "good first issue", "platform/blocks" ]
Torantulino
0
HumanSignal/labelImg
deep-learning
979
BUG: GUI silently crashes if `classes.txt` is not found
When a folder is opened in `labelImg` GUI that doesn't have `classes.txt`, the GUI silently crashes without showing any error popup. ### Steps to Reproduce - Put some images and corresponding annotation text files in a test folder. - DON'T create `classes.txt`. - Start `labelImg` GUI, and open the test folder using *Open Directory*. - `labelImg` tries to read `classes.txt` in the test folder, and prints `FileNotFound` error to the console. - **No error popup is shown in the GUI** and the program crashes after a few moments. ### Environment - **OS:** Windows 11 - **PyQt version:** 5.5.19 - **Python version:** 3.11
open
2023-02-22T11:44:51Z
2023-02-22T11:44:51Z
https://github.com/HumanSignal/labelImg/issues/979
[]
sohang3112
0
huggingface/datasets
machine-learning
6,584
np.fromfile not supported
How to do np.fromfile to use it like np.load ```python def xnumpy_fromfile(filepath_or_buffer, *args, download_config: Optional[DownloadConfig] = None, **kwargs): import numpy as np if hasattr(filepath_or_buffer, "read"): return np.fromfile(filepath_or_buffer, *args, **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) return np.fromfile(xopen(filepath_or_buffer, "rb", download_config=download_config).read(), *args, **kwargs) ``` this is not work
open
2024-01-12T09:46:17Z
2024-01-15T05:20:50Z
https://github.com/huggingface/datasets/issues/6584
[]
d710055071
6
sunscrapers/djoser
rest-api
649
Search filter for Djoser auth/users view ?
Hi, Is there a way to add a search filter (https://www.django-rest-framework.org/api-guide/filtering/#searchfilter) to the `auth/users/` GET endpoint of Djoser ? I would like to add a username filter without having to use an extra endpoint. Would it make sense to create a pull request to add a setting to specify some custom filters on the views ?
open
2022-01-14T18:58:11Z
2024-05-26T15:13:47Z
https://github.com/sunscrapers/djoser/issues/649
[]
ahermant
1
miguelgrinberg/Flask-SocketIO
flask
1,266
How to unit test the application without a create_app function due to known bug with socketio
Hello, I'm struggling to unit test my application because I don't have a create_app() function which I think I need for the unit tests. I heard it was a known bug with socketio that you can't use a create_app() function and then use flask run. How do you unit test an application otherwise? Or is the bug fixed perchance? My app code is as follows: ``` #!/usr/bin/python3 # maybe delete above line # app.py from flask import Flask, session from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager import configparser from flask_socketio import SocketIO, emit, send, join_room, leave_room config = configparser.ConfigParser() config.read("../settings.conf") app = Flask(__name__) # Ignores slashes on the end of URLs. app.url_map.strict_slashes = False app.config['SECRET_KEY'] = config.get('SQLALCHEMY','secret_key') app.config['SQLALCHEMY_DATABASE_URI'] = config.get('SQLALCHEMY','sqlalchemy_database_uri') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False # init SQLAlchemy so we can use it later db = SQLAlchemy(app) socketio = SocketIO() socketio.init_app(app) login_manager = LoginManager() login_manager.login_view = 'auth.login' login_manager.init_app(app) import models @login_manager.user_loader def load_user(user_id): return models.User.query.get(int(user_id)) # blueprint for auth routes in our app from controllers.auth import auth as auth_blueprint app.register_blueprint(auth_blueprint) # blueprint for non-auth parts of app from controllers.main import main as main_blueprint app.register_blueprint(main_blueprint) # blueprint for chase_the_ace parts of app from controllers.games.chase_the_ace import chase_the_ace as chase_the_ace_blueprint app.register_blueprint(chase_the_ace_blueprint) # blueprint for shed parts of app from controllers.games.shed import shed as shed_blueprint app.register_blueprint(shed_blueprint) # Game sockets import game mechanics and socketio listeners. from controllers.games import chase_the_ace_gameplay @socketio.on('connect') def handle_my_connect_event(): print('connected') @socketio.on('disconnect') def handle_my_disconnect_event(): print('disconnected') # If running app.py, then run app itself. if __name__ == '__main__': socketio.run(app) ``` Models: ```# models.py from flask_login import UserMixin from app import db class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key = True) email = db.Column(db.String(100), unique = True) username = db.Column(db.String(50), unique = True) password = db.Column(db.String(50)) firstName = db.Column(db.String(50)) lastName = db.Column(db.String(50)) chaseTheAceWins = db.Column(db.Integer) class Player(db.Model): id = db.Column(db.Integer, primary_key = True) userId = db.Column(db.Integer) roomId = db.Column(db.Integer) generatedPlayerId = db.Column(db.String(100), unique = True) name = db.Column(db.String(100)) card = db.Column(db.String(10)) lives = db.Column(db.Integer) outOfGame = db.Column(db.Boolean) class Room(db.Model): id = db.Column(db.Integer, primary_key = True) roomId = db.Column(db.Integer, unique = True) gameType = db.Column(db.String(20)) hostPlayerId = db.Column(db.String(100)) currentPlayerId = db.Column(db.String(100)) dealerPlayerId = db.Column(db.String(100)) locked = db.Column(db.Boolean) ``` Is there anything in my app that I'm doing wrong?
closed
2020-04-30T10:26:29Z
2020-10-09T19:05:40Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1266
[ "question" ]
Ash4669
4
cobrateam/splinter
automation
632
Browser opens but no further actions
Just opens the browser and sits there with both Firefox and Chrome Browsers - Firefox ESR & Chromium 68.0.3440.75 This is in the geckodriver.log [Child 2489] ###!!! ABORT: Aborting on channel error.: file /build/firefox-esr-TVuMhV/firefox-esr-52.9.0esr/ipc/glue/MessageChannel.cpp, line 2152
closed
2018-09-05T15:02:11Z
2020-02-29T15:16:48Z
https://github.com/cobrateam/splinter/issues/632
[]
impshum
6
babysor/MockingBird
deep-learning
81
载入文件失败,载入的是mp3格式的,但是没有反应。
![image](https://user-images.githubusercontent.com/23243630/132836341-6f1d75e8-d142-4ffd-83c1-eb4af084b53a.png) ![image](https://user-images.githubusercontent.com/23243630/132836422-b409932a-d24a-47a0-974d-aaa0b383c72a.png) 如图,载入了跟没载入差不多。 然后我这自己录的合成出来的声音有点像外国人学中文说话,哈哈。
closed
2021-09-10T09:58:04Z
2021-10-12T09:20:27Z
https://github.com/babysor/MockingBird/issues/81
[]
luosaidage
11
pytorch/pytorch
numpy
148,874
`torch.device.__enter__` does not affect `get_default_device` despite taking precedence over `set_default_device`
### 🐛 Describe the bug Using a `torch.device` as a context manager takes precedence over `set_default_device`, but this isn't reflected by the return value of `get_default_device`. ```python import torch import torch.utils._device torch.set_default_device("cuda:1") with torch.device("cuda:0"): print(f"get_default_device(): {torch.get_default_device()}") print(f"CURRENT_DEVICE: {torch.utils._device.CURRENT_DEVICE}") print(f"actual current device: {torch.tensor(()).device}") ``` ``` get_default_device(): cuda:1 CURRENT_DEVICE: cuda:1 actual current device: cuda:0 ``` I feel like calling `__enter__` on the `DeviceContext` created in `torch.device`'s C++ `__enter__` implementation and `__exit__` in the C++ `__exit__` implementation might be a solution. https://github.com/pytorch/pytorch/blob/00199acdb85a4355612bff28e1018b035e0e46b9/torch/csrc/Device.cpp#L179-L197 https://github.com/pytorch/pytorch/blob/00199acdb85a4355612bff28e1018b035e0e46b9/torch/utils/_device.py#L100-L104 https://github.com/pytorch/pytorch/blob/00199acdb85a4355612bff28e1018b035e0e46b9/torch/__init__.py#L1134-L1147 cc: @ezyang ### Versions torch==2.6.0 cc @albanD
open
2025-03-10T07:52:08Z
2025-03-10T19:56:44Z
https://github.com/pytorch/pytorch/issues/148874
[ "triaged", "module: python frontend" ]
ringohoffman
1
mlflow/mlflow
machine-learning
14,709
[FR] Update Anthropic tracing to handle thinking blocks for claude-3.7-sonnet
### Willingness to contribute Yes. I can contribute this feature independently. ### Proposal Summary The current MLflow integration for Anthropic doesn't properly handle the new "thinking" feature in Claude Sonnet. When thinking is enabled, Claude returns content with specialized ThinkingBlock and TextBlock objects, but these aren't correctly processed in the message conversion function. As a result, the chat messages aren't properly captured during MLflow tracing, leading to incomplete traces (missing "chat" tab). <img width="880" alt="Image" src="https://github.com/user-attachments/assets/a203b644-6f7d-403f-8023-365a145b7a50" /> I propose updating the implementation to check for the `thinking` block type and filter it out in the `convert_message_to_mlflow_chat` function, which restores the chat tab. The thinking contents are still captured in the inputs/outputs tab. A more comprehensive handling of this issue would involve adding a `thinking` type to the chat section and would likely involve updates to multiple providers that now support thinking. ### Motivation > #### What is the use case for this feature? Working with the new `claude-3-7-sonnet-20250219` model with thinking enabled. > #### Why is this use case valuable to support for MLflow users in general? `claude-3-7-sonnet-20250219` is the latest and most capable claude model and will likely see substantial usage. > #### Why is this use case valuable to support for your project(s) or organization? this will address a limitation in the tracing handling of `claude-3-7-sonnet-20250219` > #### Why is it currently difficult to achieve this use case? (see above) ### Details Proposed simple fix here: https://github.com/mlflow/mlflow/blob/9cf17478518f632004ae062e87224fea0f704b45/mlflow/anthropic/chat.py#L50 ```python for content_block in content: # Skip ThinkingBlock objects if hasattr(content_block, "type") and getattr(content_block, "type") == "thinking": continue # Handle TextBlock objects directly if hasattr(content_block, "type") and getattr(content_block, "type") == "text": if hasattr(content_block, "text"): contents.append(TextContentPart(text=getattr(content_block, "text"), type="text")) continue ``` ### What component(s) does this bug affect? - [ ] `area/artifacts`: Artifact stores and artifact logging - [ ] `area/build`: Build and test infrastructure for MLflow - [ ] `area/deployments`: MLflow Deployments client APIs, server, and third-party Deployments integrations - [ ] `area/docs`: MLflow documentation pages - [ ] `area/examples`: Example code - [ ] `area/model-registry`: Model Registry service, APIs, and the fluent client calls for Model Registry - [x] `area/models`: MLmodel format, model serialization/deserialization, flavors - [ ] `area/recipes`: Recipes, Recipe APIs, Recipe configs, Recipe Templates - [ ] `area/projects`: MLproject format, project running backends - [ ] `area/scoring`: MLflow Model server, model deployment tools, Spark UDFs - [ ] `area/server-infra`: MLflow Tracking server backend - [ ] `area/tracking`: Tracking Service, tracking client APIs, autologging ### What interface(s) does this bug affect? - [ ] `area/uiux`: Front-end, user experience, plotting, JavaScript, JavaScript dev server - [ ] `area/docker`: Docker use across MLflow's components, such as MLflow Projects and MLflow Models - [ ] `area/sqlalchemy`: Use of SQLAlchemy in the Tracking Service or Model Registry - [ ] `area/windows`: Windows support ### What language(s) does this bug affect? - [ ] `language/r`: R APIs and clients - [ ] `language/java`: Java APIs and clients - [ ] `language/new`: Proposals for new client languages ### What integration(s) does this bug affect? - [ ] `integrations/azure`: Azure and Azure ML integrations - [ ] `integrations/sagemaker`: SageMaker integrations - [ ] `integrations/databricks`: Databricks integrations
closed
2025-02-24T20:57:00Z
2025-03-16T09:43:48Z
https://github.com/mlflow/mlflow/issues/14709
[ "enhancement", "area/models" ]
djliden
4
RobertCraigie/prisma-client-py
pydantic
1,073
Deprecation of the Python client
Hello everyone, it's been long time coming but I'm officially stopping development of the Prisma Python Client. This is for a couple of reasons: - I originally built the client just for fun while I was a student, nowadays I don't have enough free time to properly maintain it. - Prisma are rewriting their [core from Rust to TypeScript](https://www.prisma.io/blog/from-rust-to-typescript-a-new-chapter-for-prisma-orm). Unfortunately, adapting Prisma Client Python to this new architecture would require a ground up rewrite of our internals with significantly increased complexity as we would have to provide our own query interpreters and database drivers which is not something I'm interested in working on. While it's certainly not impossible for community clients to exist in this new world, it is a *lot* more work. The [Go](https://github.com/steebchen/prisma-client-go/issues/1542), [Rust](https://github.com/Brendonovich/prisma-client-rust/discussions/476), and [Dart](https://github.com/medz/prisma-dart/issues/471) clients have similarly all been deprecated. I greatly appreciate everyone who has supported the project over these last few years.
open
2025-03-23T17:40:06Z
2025-03-23T17:40:06Z
https://github.com/RobertCraigie/prisma-client-py/issues/1073
[]
RobertCraigie
0
tensorflow/tensor2tensor
deep-learning
1,603
Getting duplicate logs with t2t_trainer,t2t_decoder,t2t_eval
I am getting duplicate logs for each t2t command. How can I avoid that?Like While I run t2t_eval script., It evals on eval dataset and then again starts eval and logs same as previous logs.
open
2019-06-14T07:11:55Z
2019-06-14T07:11:55Z
https://github.com/tensorflow/tensor2tensor/issues/1603
[]
ashu5644
0
pyjanitor-devs/pyjanitor
pandas
489
[DOC] We need release notes!
This one is definitely on me. Starting with version 0.18.1, we should start collecting release notes in CHANGELOG.rst.
closed
2019-07-21T01:33:29Z
2019-07-21T19:50:35Z
https://github.com/pyjanitor-devs/pyjanitor/issues/489
[ "docfix", "being worked on", "high priority" ]
ericmjl
0
gee-community/geemap
streamlit
2,213
[bug] Opacity parameter not working in geemap.deck Layer API
### Environment Information Tue Jan 28 16:21:45 2025 UTC -- OS | Linux (Ubuntu 22.04) | CPU(s) | 2 | Machine | x86_64 Architecture | 64bit | RAM | 12.7 GiB | Environment | IPython Python 3.11.11 (main, Dec 4 2024, 08:55:07) [GCC 11.4.0] geemap | 0.35.1 | ee | 1.4.6 | ipyleaflet | 0.19.2 folium | 0.19.4 | jupyterlab | Module not found | notebook | 6.5.5 ipyevents | 2.0.2 | geopandas | 1.0.1 |   |   ### Description Trying to draw an EE layer with transparency (partial opacity) using the `geemap.deck` extension module. The [geemap.deck.Layer.add_ee_layer](https://geemap.org/deck/#geemap.deck.Map.add_ee_layer) method’s documentation includes an `opacity` keyword argument which should allow setting the layer’s opacity. This is often useful when there is a need for transparency to ensure a new layer doesn’t completely occlude other layers or the base map itself. However, this argument is currently [ignored in the implementation](https://github.com/gee-community/geemap/blob/824e4e5/geemap/deck.py#L103-L187) which can cause confusion for the user. ### What I Did As an _undocumented_ workaround, I set the `opacity` within the `vis_params` dictionary explicitly to get the opacity to work. ```python import geemap.deck as gmd image_collection = ee.ImageCollection(...) vis_params = { "min": -40.0, "max": 35.0, "palette": ["blue", "purple", "cyan", "green", "yellow", "red"], # set within vis parameters instead of the add_ee_layer_kwarg "opacity": 0.2, } view_state = pdk.ViewState(,,,) m = gmd.Map(initial_view_state=view_state) # NOTE: opacity kwarg is not recognized. rely on vis_params instead m.add_ee_layer(image_collection, vis_params=vis_params, ...) m.show() ``` ~It would be a trivial fix to simply do this automatically within `add_ee_layer` to set the `opacity` within the `vis_params` dictionary if this kwarg is not `None`.~
closed
2025-01-28T16:32:56Z
2025-02-02T13:41:06Z
https://github.com/gee-community/geemap/issues/2213
[ "bug" ]
bijanvakili
4
xinntao/Real-ESRGAN
pytorch
712
TFlite version?
Do we have a mobile version of the Real-ESRGAN (.tflite version)? If not, would it be straightforward to convert the model (.pth file) to .tflite?
open
2023-10-24T20:32:15Z
2024-10-07T07:18:14Z
https://github.com/xinntao/Real-ESRGAN/issues/712
[]
arianaa30
4
ets-labs/python-dependency-injector
asyncio
61
Review docs: Feedback
closed
2015-05-08T15:40:47Z
2015-05-13T15:42:25Z
https://github.com/ets-labs/python-dependency-injector/issues/61
[ "docs" ]
rmk135
0
satwikkansal/wtfpython
python
38
"Let's make a giant string!" code example is not representative
`add_string_with_plus()` and `add_string_with_join()` take the same time in the example. It implies that CPython's `+=` optimization is in effect (unrelated to the example in the very next section with a possibly misleading title: ["String concatenation interpreter optimizations"](https://github.com/satwikkansal/wtfpython#string-concatenation-interpreter-optimizations) -- the example is more about string interning, string *literals* than string concatination -- the linked StackOverflow [answer](https://stackoverflow.com/a/24245514/4279) explains it quite well). The explanation in ["Let's make a giant string!"](https://github.com/satwikkansal/wtfpython#lets-make-a-giant-string) claims *quadratic* behavior for `str + str + str + ...` in Python (correct) but the example `add_string_with_plus()` uses CPython `+= ` optimizations -- the actual times are *linear* on my machine (in theory the worst case is still O(n<sup>2</sup>) -- it depends on `realloc()` being O(n) in the worst case on the given platform -- unlike for Python lists x1.125 overallocation (`add_string_with_join()` is linear) is not used for str): ``` In [2]: %timeit add_string_with_plus(10000) 1000 loops, best of 3: 1.1 ms per loop In [3]: %timeit add_string_with_format(10000) 1000 loops, best of 3: 539 µs per loop In [4]: %timeit add_string_with_join(10000) 1000 loops, best of 3: 1.1 ms per loop In [5]: L = ["xyz"]*10000 In [6]: %timeit convert_list_to_string(L, 10000) 10000 loops, best of 3: 118 µs per loop In [7]: %timeit add_string_with_plus(100000) 100 loops, best of 3: 11.9 ms per loop In [8]: %timeit add_string_with_join(100000) 100 loops, best of 3: 11.8 ms per loop In [9]: %timeit add_string_with_plus(1000000) 10 loops, best of 3: 121 ms per loop In [10]: %timeit add_string_with_join(1000000) 10 loops, best of 3: 116 ms per loop ``` Increasing `iters` x10, increases the time x10 -- *linear* behavior. If you try the same code with `bytes` on Python 3; you get *quadratic* behavior (increasing x10 leads to x100 time) -- no optimization: ``` In [11]: def add_bytes_with_plus(n): ...: s = b"" ...: for _ in range(n): ...: s += b"abc" ...: assert len(s) == 3*n ...: In [12]: %timeit add_bytes_with_plus(10000) 100 loops, best of 3: 10.8 ms per loop In [13]: %timeit add_bytes_with_plus(100000) 1 loop, best of 3: 1.26 s per loop In [14]: %timeit add_bytes_with_plus(1000000) 1 loop, best of 3: 2min 37s per loop ``` [Here's a detailed explanation in Russian](https://ru.stackoverflow.com/a/710403/23044) (look at the timings, follow the links in the answer).
closed
2017-09-07T18:46:13Z
2017-10-11T13:25:23Z
https://github.com/satwikkansal/wtfpython/issues/38
[ "enhancement", "Hacktoberfest" ]
zed
2
dask/dask
pandas
11,691
Errors with Zarr v3 and da.to_zarr()
I'm having various issues and errors with `da.to_zarr()` using: ``` dask==2025.1.0 zarr==3.0.1 fsspec==2024.12.0 ``` ``` from skimage import data import dask.array as da import zarr dask_data = da.from_array(data.coins(), chunks=(64, 64)) da.to_zarr(dask_data, "test_dask_to_zarr.zarr", compute=True, storage_options={"chunks": (64, 64)}) # Traceback (most recent call last): # File "/Users/wmoore/Desktop/python-scripts/zarr_scripts/test_dask_to_zarr.py", line 7, in <module> # da.to_zarr(dask_data, "test_dask_to_zarr.zarr", compute=True, storage_options={"chunks": (64, 64)}) # File "/Users/wmoore/opt/anaconda3/envs/zarrv3_py312/lib/python3.12/site-packages/dask/array/core.py", line 3891, in to_zarr # store = zarr.storage.FsspecStore.from_url( # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # File "/Users/wmoore/opt/anaconda3/envs/zarrv3_py312/lib/python3.12/site-packages/zarr/storage/_fsspec.py", line 182, in from_url # return cls(fs=fs, path=path, read_only=read_only, allowed_exceptions=allowed_exceptions) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # File "/Users/wmoore/opt/anaconda3/envs/zarrv3_py312/lib/python3.12/site-packages/zarr/storage/_fsspec.py", line 96, in __init__ # raise TypeError("Filesystem needs to support async operations.") # TypeError: Filesystem needs to support async operations. ``` Trying to use a local store has a different error: ``` store = zarr.storage.LocalStore("test_dask_to_zarr.zarr", read_only=False) da.to_zarr(dask_data, store, compute=True, storage_options={"chunks": (64, 64)}) # File "/Users/wmoore/Desktop/python-scripts/zarr_scripts/test_dask_to_zarr.py", line 46, in <module> # da.to_zarr(dask_data, store, compute=True, storage_options={"chunks": (64, 64)}) # File "/Users/wmoore/opt/anaconda3/envs/zarrv3_py312/lib/python3.12/site-packages/dask/array/core.py", line 3891, in to_zarr # store = zarr.storage.FsspecStore.from_url( # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # File "/Users/wmoore/opt/anaconda3/envs/zarrv3_py312/lib/python3.12/site-packages/zarr/storage/_fsspec.py", line 174, in from_url # fs, path = url_to_fs(url, **opts) # ^^^^^^^^^^^^^^^^^^^^^^ # File "/Users/wmoore/opt/anaconda3/envs/zarrv3_py312/lib/python3.12/site-packages/fsspec/core.py", line 403, in url_to_fs # chain = _un_chain(url, kwargs) # ^^^^^^^^^^^^^^^^^^^^^^ # File "/Users/wmoore/opt/anaconda3/envs/zarrv3_py312/lib/python3.12/site-packages/fsspec/core.py", line 335, in _un_chain # if "::" in path: # ^^^^^^^^^^^^ # TypeError: argument of type 'LocalStore' is not iterable ``` And also tried with FsspecStore: ``` store = zarr.storage.FsspecStore("test_dask_to_zarr.zarr", read_only=False) da.to_zarr(dask_data, store, compute=True, storage_options={"chunks": (64, 64)}) # Traceback (most recent call last): # File "/Users/wmoore/Desktop/python-scripts/zarr_scripts/test_dask_to_zarr.py", line 32, in <module> # store = zarr.storage.FsspecStore("test_dask_to_zarr_v3.zarr", read_only=False) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # File "/Users/wmoore/opt/anaconda3/envs/zarrv3_py312/lib/python3.12/site-packages/zarr/storage/_fsspec.py", line 95, in __init__ # if not self.fs.async_impl: # ^^^^^^^^^^^^^^^^^^ # AttributeError: 'str' object has no attribute 'async_impl' ``` Many thanks for your help
closed
2025-01-23T10:44:50Z
2025-03-13T07:20:46Z
https://github.com/dask/dask/issues/11691
[ "needs triage" ]
will-moore
4
ResidentMario/missingno
pandas
44
Cite SciPy family of packages and seaborn
The final sentence of your paper states: > The underlying packages involved (numpy, pandas, scipy, matplotlib, and seaborn) are familiar parts of the core scientific Python ecosystem, and hence very learnable and extensible. missingno works "out of the box" with a variety of data types and formats, and provides an extremely compact API. The packages numpy, pandas, scipy, matplotlib, and seaborn should be cited. You can use this link to find the appropriate citation methods: https://scipy.org/citing.html (for all but seaborn).
closed
2018-01-29T15:24:27Z
2018-02-06T20:02:40Z
https://github.com/ResidentMario/missingno/issues/44
[]
zkamvar
2
ScrapeGraphAI/Scrapegraph-ai
machine-learning
9
add security policy
closed
2024-02-05T08:16:58Z
2024-02-07T15:46:54Z
https://github.com/ScrapeGraphAI/Scrapegraph-ai/issues/9
[]
VinciGit00
0
ray-project/ray
pytorch
50,947
Release test microbenchmark.aws failed
Release test **microbenchmark.aws** failed. See https://buildkite.com/ray-project/release/builds/34295#01954658-83ea-482b-b817-7731040b6ee1 for more details. Managed by OSS Test Policy
closed
2025-02-27T08:16:23Z
2025-02-28T05:24:59Z
https://github.com/ray-project/ray/issues/50947
[ "bug", "P0", "triage", "core", "release-test", "jailed-test", "ray-test-bot", "weekly-release-blocker", "stability" ]
can-anyscale
5
ned2/slapdash
dash
3
datatable_experiments does not display
Love the boilerplate mate! Keep up with the good work. I am trying to implement one of the datatables (via import dash_table_experiments ) but they do not seem to work. Take the code from this [example](https://github.com/plotly/dash-recipes/blob/master/dash-datatable-filter.py): ```python _pages.py_ import dash import dash_core_components as dcc import dash_html_components as html import dash_table_experiments as dt import pandas as pd import json import pandas as pd import plotly from .components import Col, Row page1 = html.Div([ dt.DataTable( id='datatable', rows=[ {'x': 1, 'y': 3}, {'x': 2, 'y': 10} ], columns=['x'], filterable=True, filters={ "x": { "column": { "sortable": True, "name": "x", "filterable": True, "editable": True, "width": 673, "rowType": "filter", "key": "x", "left": 673 }, "filterTerm": "2" } } ), html.Div(id='content') ]) ``` ```python _callbacks.py_ @app.callback(Output('content', 'children'), [Input('datatable', 'filters')]) def display_filters(filters): return html.Pre(json.dumps(filters, indent=2)) ``` When I run this, I not seem to get any errors but it doesnt display the table as it should. Could you perhaps have a quick look?
closed
2018-08-17T08:26:12Z
2018-08-20T05:20:21Z
https://github.com/ned2/slapdash/issues/3
[]
markofferman
5
xuebinqin/U-2-Net
computer-vision
350
Cannot Import U2NET
I am trying to ```from model import U2NET`` but its not working. Module "model" does not exist. How to fix it?
open
2023-01-22T18:23:01Z
2023-01-22T18:23:01Z
https://github.com/xuebinqin/U-2-Net/issues/350
[]
FASTANDEXTREME
0
graphistry/pygraphistry
jupyter
62
Add a .register() option to accept self-signed certificates (no validation)
closed
2016-04-20T22:10:27Z
2016-05-07T20:41:17Z
https://github.com/graphistry/pygraphistry/issues/62
[ "enhancement" ]
thibaudh
0
pydantic/pydantic-ai
pydantic
495
Test
Test for @samuelcolvin
closed
2024-12-19T11:59:44Z
2024-12-19T11:59:51Z
https://github.com/pydantic/pydantic-ai/issues/495
[]
tomhamiltonstubber
0
jupyter-book/jupyter-book
jupyter
1,966
A content in `extra_navbar` is no longer shown after updating to 0.15.0
### Describe the bug **context** A content in `extra_navbar` for `html` in `_config.yml` is no longer shown after updating to 0.15.0 **expectation** I expected the content to be shown. **bug** No error message. ### Reproduce the bug Update to 0.15.0 and build the book. ### List your environment Jupyter Book : 0.15.0 External ToC : 0.3.1 MyST-Parser : 0.18.1 MyST-NB : 0.17.1 Sphinx Book Theme : 1.0.0 Jupyter-Cache : 0.5.0 NbClient : 0.5.13
open
2023-03-09T14:31:42Z
2023-04-17T12:30:40Z
https://github.com/jupyter-book/jupyter-book/issues/1966
[ "bug" ]
spring-haru
1
allenai/allennlp
data-science
5,430
MultiLabelField not being indexed correctly with pre-trained transformer
This is probably a user error but I cannot find a jsonl vocab constructor which works correctly with a MultiLabelField (i.e. a multi-label classifier). I need to set the vocabs `unk` and `pad` token as I'm using a huggingface transformer, and of course, I need to index the labels. When I use `from_pretrained_transformer` to construct my vocabulary there are two issues, first, when `MultiLabelField.index` is called, the vocab only contains a tokens namespace, no labels. This causes 'index' to crash - oddly `vocab.get_token_index(label, self._label_namespace)` returns 1 (one) for every label despite the namespace not existing, should it not return an error? vocabulary: { type: "from_pretrained_transformer", model_name: "models/transformer", } Also inspecting the vocab object I'm seeing _oov_token:'\<unk\>' _padding_token:'@@PADDING@@' So it's failed to infer the padding token. From what I can see the from_pretrained_transformer has no `padding_token` argument? If I use 'from_instances' it indexes the labels correctly but afaik it's reindexing the original vocab but it's out of alignment. My model is vocabulary: { type: "from_pretrained_transformer", model_name: "models/transformer", }, dataset_reader: { type: "multi_label", tokenizer: { type: "pretrained_transformer", model_name: "models/transformer" }, token_indexers: { tokens: { type: "pretrained_transformer", model_name: "models/transformer", namespace: "tokens" }, }, }, model: { type: "multi_label", text_field_embedder: { token_embedders: { tokens: { type: "pretrained_transformer", model_name: "models/transformer" } }, }, seq2vec_encoder: { type: "bert_pooler", pretrained_model: "models/transformer", dropout: 0.1, }, },
closed
2021-10-05T04:22:16Z
2021-10-15T04:13:00Z
https://github.com/allenai/allennlp/issues/5430
[ "bug" ]
david-waterworth
1
horovod/horovod
pytorch
3,294
Building `horovod-cpu` image failed with cmake errors
**Environment:** 1. Framework: TensorFlow, PyTorch, MXNet 2. Framework version: 2.5.0, 1.8.1, 1.8.0.post0 3. Horovod version: v0.23.0 4. MPI version: 3.0.0 5. CUDA version: None 6. NCCL version: None 7. Python version: 3.7 8. Spark / PySpark version: 3.1.1 9. Ray version: None 10. OS and version: Ubuntu 18.04 11. GCC version: 7.5.0 12. CMake version: 3.10.2 **Checklist:** 1. Did you search issues to find if somebody asked this question before? Yes 2. If your question is about hang, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/running.rst)? 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? Yes 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? Yes **Bug report:** I was trying to build a horovod-cpu image locally using this [provided Dockerfile](https://github.com/horovod/horovod/blob/v0.23.0/docker/horovod-cpu/Dockerfile) and with command ``` docker build -f docker/horovod-cpu/Dockerfile . ``` however the build failed with the following errors: ``` #22 48.71 running build_ext #22 48.76 -- Could not find CCache. Consider installing CCache to speed up compilation. #22 48.90 -- The CXX compiler identification is GNU 7.5.0 #22 48.90 -- Check for working CXX compiler: /usr/bin/c++ #22 49.00 -- Check for working CXX compiler: /usr/bin/c++ -- works #22 49.00 -- Detecting CXX compiler ABI info #22 49.10 -- Detecting CXX compiler ABI info - done #22 49.11 -- Detecting CXX compile features #22 49.56 -- Detecting CXX compile features - done #22 49.58 -- Build architecture flags: -mf16c -mavx -mfma #22 49.58 -- Using command /usr/bin/python #22 49.97 -- Found MPI_CXX: /usr/local/lib/libmpi.so (found version "3.1") #22 49.97 -- Found MPI: TRUE (found version "3.1") #22 49.97 -- Could NOT find NVTX (missing: NVTX_INCLUDE_DIR) #22 49.97 CMake Error at CMakeLists.txt:265 (add_subdirectory): #22 49.97 add_subdirectory given source "third_party/gloo" which is not an existing #22 49.98 directory. #22 49.98 #22 49.98 #22 49.98 CMake Error at CMakeLists.txt:267 (target_compile_definitions): #22 49.98 Cannot specify compile definitions for target "gloo" which is not built by #22 49.98 this project. #22 49.98 #22 49.98 #22 52.34 Tensorflow_LIBRARIES := -L/usr/local/lib/python3.7/dist-packages/tensorflow -l:libtensorflow_framework.so.2 #22 52.35 -- Found Tensorflow: -L/usr/local/lib/python3.7/dist-packages/tensorflow -l:libtensorflow_framework.so.2 (found suitable version "2.5.0", minimum required is "1.15.0") #22 53.16 -- Found Pytorch: 1.8.1+cu102 (found suitable version "1.8.1+cu102", minimum required is "1.2.0") #22 59.99 -- Found Mxnet: /usr/local/lib/python3.7/dist-packages/mxnet/libmxnet.so (found suitable version "1.8.0", minimum required is "1.4.0") #22 61.13 CMake Error at CMakeLists.txt:327 (file): #22 61.13 file COPY cannot find "/tmp/pip-req-build-s0z_ufky/third_party/gloo". #22 61.13 #22 61.13 #22 61.13 CMake Error at CMakeLists.txt:328 (file): #22 61.13 file failed to open for reading (No such file or directory): #22 61.13 #22 61.13 /tmp/pip-req-build-s0z_ufky/third_party/compatible_gloo/gloo/CMakeLists.txt #22 61.13 #22 61.13 #22 61.13 CMake Error at CMakeLists.txt:331 (add_subdirectory): #22 61.13 The source directory #22 61.13 #22 61.13 /tmp/pip-req-build-s0z_ufky/third_party/compatible_gloo #22 61.13 #22 61.13 does not contain a CMakeLists.txt file. #22 61.13 #22 61.13 #22 61.13 CMake Error at CMakeLists.txt:332 (target_compile_definitions): #22 61.13 Cannot specify compile definitions for target "compatible_gloo" which is #22 61.13 not built by this project. #22 61.13 #22 61.13 #22 61.13 CMake Error: The following variables are used in this project, but they are set to NOTFOUND. #22 61.13 Please set them or make sure they are set and tested correctly in the CMake files: #22 61.13 /tmp/pip-req-build-s0z_ufky/horovod/mxnet/TF_FLATBUFFERS_INCLUDE_PATH #22 61.13 used as include directory in directory /tmp/pip-req-build-s0z_ufky/horovod/mxnet #22 61.13 /tmp/pip-req-build-s0z_ufky/horovod/tensorflow/TF_FLATBUFFERS_INCLUDE_PATH #22 61.13 used as include directory in directory /tmp/pip-req-build-s0z_ufky/horovod/tensorflow #22 61.13 /tmp/pip-req-build-s0z_ufky/horovod/torch/TF_FLATBUFFERS_INCLUDE_PATH #22 61.13 used as include directory in directory /tmp/pip-req-build-s0z_ufky/horovod/torch #22 61.13 #22 61.13 -- Configuring incomplete, errors occurred! #22 61.13 See also "/tmp/pip-req-build-s0z_ufky/build/temp.linux-x86_64-3.7/RelWithDebInfo/CMakeFiles/CMakeOutput.log". #22 61.14 Traceback (most recent call last): #22 61.14 File "<string>", line 1, in <module> #22 61.14 File "/tmp/pip-req-build-s0z_ufky/setup.py", line 211, in <module> #22 61.14 'horovodrun = horovod.runner.launch:run_commandline' #22 61.14 File "/usr/local/lib/python3.7/dist-packages/setuptools/__init__.py", line 153, in setup #22 61.14 return distutils.core.setup(**attrs) #22 61.14 File "/usr/lib/python3.7/distutils/core.py", line 148, in setup #22 61.14 dist.run_commands() #22 61.14 File "/usr/lib/python3.7/distutils/dist.py", line 966, in run_commands #22 61.14 self.run_command(cmd) #22 61.14 File "/usr/lib/python3.7/distutils/dist.py", line 985, in run_command #22 61.14 cmd_obj.run() #22 61.14 File "/usr/local/lib/python3.7/dist-packages/wheel/bdist_wheel.py", line 299, in run #22 61.14 self.run_command('build') #22 61.14 File "/usr/lib/python3.7/distutils/cmd.py", line 313, in run_command #22 61.14 self.distribution.run_command(command) #22 61.14 File "/usr/lib/python3.7/distutils/dist.py", line 985, in run_command #22 61.14 cmd_obj.run() #22 61.14 File "/usr/lib/python3.7/distutils/command/build.py", line 135, in run #22 61.14 self.run_command(cmd_name) #22 61.14 File "/usr/lib/python3.7/distutils/cmd.py", line 313, in run_command #22 61.14 self.distribution.run_command(command) #22 61.15 File "/usr/lib/python3.7/distutils/dist.py", line 985, in run_command #22 61.15 cmd_obj.run() #22 61.15 File "/usr/local/lib/python3.7/dist-packages/setuptools/command/build_ext.py", line 79, in run #22 61.15 _build_ext.run(self) #22 61.15 File "/usr/lib/python3.7/distutils/command/build_ext.py", line 340, in run #22 61.15 self.build_extensions() #22 61.15 File "/tmp/pip-req-build-s0z_ufky/setup.py", line 99, in build_extensions #22 61.15 cwd=cmake_build_dir) #22 61.15 File "/usr/lib/python3.7/subprocess.py", line 363, in check_call #22 61.15 raise CalledProcessError(retcode, cmd) #22 61.15 subprocess.CalledProcessError: Command '['cmake', '/tmp/pip-req-build-s0z_ufky', '-DCMAKE_BUILD_TYPE=RelWithDebInfo', '-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_RELWITHDEBINFO=/tmp/pip-req-build-s0z_ufky/build/lib.linux-x86_64-3.7', '-DPYTHON_EXECUTABLE:FILEPATH=/usr/bin/python']' returned non-zero exit status 1. #22 61.17 Building wheel for horovod (setup.py): finished with status 'error' #22 61.17 ERROR: Failed building wheel for horovod #22 61.17 Running setup.py clean for horovod #22 61.17 Running command /usr/bin/python -u -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-req-build-s0z_ufky/setup.py'"'"'; __file__='"'"'/tmp/pip-req-build-s0z_ufky/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' clean --all #22 61.43 running clean #22 61.43 removing 'build/temp.linux-x86_64-3.7' (and everything under it) #22 61.44 removing 'build/lib.linux-x86_64-3.7' (and everything under it) #22 61.44 'build/bdist.linux-x86_64' does not exist -- can't clean it #22 61.44 'build/scripts-3.7' does not exist -- can't clean it #22 61.44 removing 'build' #22 61.46 Failed to build horovod #22 62.05 Installing collected packages: pytz, python-dateutil, pyrsistent, pycparser, importlib-resources, deprecated, redis, pyzmq, pyarrow, psutil, pandas, msgpack, jsonschema, hiredis, filelock, diskcache, dill, cloudpickle, click, cffi, ray, petastorm, horovod, h5py, aioredis #22 63.76 changing mode of /usr/local/bin/plasma_store to 755 #22 67.56 changing mode of /usr/local/bin/jsonschema to 755 #22 70.60 changing mode of /usr/local/bin/ray to 755 #22 70.60 changing mode of /usr/local/bin/ray-operator to 755 #22 70.60 changing mode of /usr/local/bin/rllib to 755 #22 70.60 changing mode of /usr/local/bin/serve to 755 #22 70.60 changing mode of /usr/local/bin/tune to 755 #22 70.79 changing mode of /usr/local/bin/petastorm-copy-dataset.py to 755 #22 70.79 changing mode of /usr/local/bin/petastorm-generate-metadata.py to 755 #22 70.79 changing mode of /usr/local/bin/petastorm-throughput.py to 755 #22 70.80 Running setup.py install for horovod: started #22 70.80 Running command /usr/bin/python -u -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-req-build-s0z_ufky/setup.py'"'"'; __file__='"'"'/tmp/pip-req-build-s0z_ufky/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record /tmp/pip-record-2urw0_at/install-record.txt --single-version-externally-managed --compile --install-headers /usr/local/include/python3.7/horovod #22 71.08 running install #22 71.08 /usr/local/lib/python3.7/dist-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. #22 71.08 setuptools.SetuptoolsDeprecationWarning, #22 71.08 running build #22 71.08 running build_py #22 71.08 creating build #22 71.08 creating build/lib.linux-x86_64-3.7 #22 71.08 creating build/lib.linux-x86_64-3.7/horovod #22 71.08 copying horovod/__init__.py -> build/lib.linux-x86_64-3.7/horovod #22 71.08 creating build/lib.linux-x86_64-3.7/horovod/spark #22 71.08 copying horovod/spark/runner.py -> build/lib.linux-x86_64-3.7/horovod/spark #22 71.08 copying horovod/spark/gloo_run.py -> build/lib.linux-x86_64-3.7/horovod/spark #22 71.08 copying horovod/spark/conf.py -> build/lib.linux-x86_64-3.7/horovod/spark #22 71.08 copying horovod/spark/mpi_run.py -> build/lib.linux-x86_64-3.7/horovod/spark #22 71.09 copying horovod/spark/__init__.py -> build/lib.linux-x86_64-3.7/horovod/spark #22 71.09 creating build/lib.linux-x86_64-3.7/horovod/keras #22 71.09 copying horovod/keras/elastic.py -> build/lib.linux-x86_64-3.7/horovod/keras #22 71.09 copying horovod/keras/callbacks.py -> build/lib.linux-x86_64-3.7/horovod/keras #22 71.09 copying horovod/keras/__init__.py -> build/lib.linux-x86_64-3.7/horovod/keras #22 71.09 creating build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 copying horovod/tensorflow/elastic.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 copying horovod/tensorflow/mpi_ops.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 copying horovod/tensorflow/sync_batch_norm.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 copying horovod/tensorflow/functions.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 copying horovod/tensorflow/gradient_aggregation.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 copying horovod/tensorflow/__init__.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 copying horovod/tensorflow/util.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 copying horovod/tensorflow/compression.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 copying horovod/tensorflow/gradient_aggregation_eager.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow #22 71.09 creating build/lib.linux-x86_64-3.7/horovod/data #22 71.09 copying horovod/data/__init__.py -> build/lib.linux-x86_64-3.7/horovod/data #22 71.09 copying horovod/data/data_loader_base.py -> build/lib.linux-x86_64-3.7/horovod/data #22 71.10 creating build/lib.linux-x86_64-3.7/horovod/_keras #22 71.10 copying horovod/_keras/elastic.py -> build/lib.linux-x86_64-3.7/horovod/_keras #22 71.10 copying horovod/_keras/callbacks.py -> build/lib.linux-x86_64-3.7/horovod/_keras #22 71.10 copying horovod/_keras/__init__.py -> build/lib.linux-x86_64-3.7/horovod/_keras #22 71.10 creating build/lib.linux-x86_64-3.7/horovod/common #22 71.10 copying horovod/common/elastic.py -> build/lib.linux-x86_64-3.7/horovod/common #22 71.10 copying horovod/common/basics.py -> build/lib.linux-x86_64-3.7/horovod/common #22 71.10 copying horovod/common/process_sets.py -> build/lib.linux-x86_64-3.7/horovod/common #22 71.10 copying horovod/common/__init__.py -> build/lib.linux-x86_64-3.7/horovod/common #22 71.10 copying horovod/common/exceptions.py -> build/lib.linux-x86_64-3.7/horovod/common #22 71.10 copying horovod/common/util.py -> build/lib.linux-x86_64-3.7/horovod/common #22 71.10 creating build/lib.linux-x86_64-3.7/horovod/mxnet #22 71.10 copying horovod/mxnet/mpi_ops.py -> build/lib.linux-x86_64-3.7/horovod/mxnet #22 71.10 copying horovod/mxnet/functions.py -> build/lib.linux-x86_64-3.7/horovod/mxnet #22 71.10 copying horovod/mxnet/__init__.py -> build/lib.linux-x86_64-3.7/horovod/mxnet #22 71.10 copying horovod/mxnet/compression.py -> build/lib.linux-x86_64-3.7/horovod/mxnet #22 71.10 creating build/lib.linux-x86_64-3.7/horovod/runner #22 71.10 copying horovod/runner/task_fn.py -> build/lib.linux-x86_64-3.7/horovod/runner #22 71.10 copying horovod/runner/launch.py -> build/lib.linux-x86_64-3.7/horovod/runner #22 71.10 copying horovod/runner/run_task.py -> build/lib.linux-x86_64-3.7/horovod/runner #22 71.10 copying horovod/runner/gloo_run.py -> build/lib.linux-x86_64-3.7/horovod/runner #22 71.10 copying horovod/runner/js_run.py -> build/lib.linux-x86_64-3.7/horovod/runner #22 71.10 copying horovod/runner/mpi_run.py -> build/lib.linux-x86_64-3.7/horovod/runner #22 71.10 copying horovod/runner/__init__.py -> build/lib.linux-x86_64-3.7/horovod/runner #22 71.10 creating build/lib.linux-x86_64-3.7/horovod/torch #22 71.10 copying horovod/torch/optimizer.py -> build/lib.linux-x86_64-3.7/horovod/torch #22 71.10 copying horovod/torch/mpi_ops.py -> build/lib.linux-x86_64-3.7/horovod/torch #22 71.10 copying horovod/torch/sync_batch_norm.py -> build/lib.linux-x86_64-3.7/horovod/torch #22 71.10 copying horovod/torch/functions.py -> build/lib.linux-x86_64-3.7/horovod/torch #22 71.11 copying horovod/torch/__init__.py -> build/lib.linux-x86_64-3.7/horovod/torch #22 71.11 copying horovod/torch/compression.py -> build/lib.linux-x86_64-3.7/horovod/torch #22 71.11 creating build/lib.linux-x86_64-3.7/horovod/ray #22 71.11 copying horovod/ray/runner.py -> build/lib.linux-x86_64-3.7/horovod/ray #22 71.11 copying horovod/ray/elastic.py -> build/lib.linux-x86_64-3.7/horovod/ray #22 71.11 copying horovod/ray/worker.py -> build/lib.linux-x86_64-3.7/horovod/ray #22 71.11 copying horovod/ray/strategy.py -> build/lib.linux-x86_64-3.7/horovod/ray #22 71.11 copying horovod/ray/driver_service.py -> build/lib.linux-x86_64-3.7/horovod/ray #22 71.11 copying horovod/ray/ray_logger.py -> build/lib.linux-x86_64-3.7/horovod/ray #22 71.11 copying horovod/ray/__init__.py -> build/lib.linux-x86_64-3.7/horovod/ray #22 71.11 copying horovod/ray/utils.py -> build/lib.linux-x86_64-3.7/horovod/ray #22 71.11 creating build/lib.linux-x86_64-3.7/horovod/spark/keras #22 71.11 copying horovod/spark/keras/optimizer.py -> build/lib.linux-x86_64-3.7/horovod/spark/keras #22 71.11 copying horovod/spark/keras/tensorflow.py -> build/lib.linux-x86_64-3.7/horovod/spark/keras #22 71.11 copying horovod/spark/keras/__init__.py -> build/lib.linux-x86_64-3.7/horovod/spark/keras #22 71.11 copying horovod/spark/keras/bare.py -> build/lib.linux-x86_64-3.7/horovod/spark/keras #22 71.11 copying horovod/spark/keras/remote.py -> build/lib.linux-x86_64-3.7/horovod/spark/keras #22 71.11 copying horovod/spark/keras/util.py -> build/lib.linux-x86_64-3.7/horovod/spark/keras #22 71.11 copying horovod/spark/keras/estimator.py -> build/lib.linux-x86_64-3.7/horovod/spark/keras #22 71.11 creating build/lib.linux-x86_64-3.7/horovod/spark/lightning #22 71.11 copying horovod/spark/lightning/datamodule.py -> build/lib.linux-x86_64-3.7/horovod/spark/lightning #22 71.11 copying horovod/spark/lightning/legacy.py -> build/lib.linux-x86_64-3.7/horovod/spark/lightning #22 71.11 copying horovod/spark/lightning/__init__.py -> build/lib.linux-x86_64-3.7/horovod/spark/lightning #22 71.11 copying horovod/spark/lightning/remote.py -> build/lib.linux-x86_64-3.7/horovod/spark/lightning #22 71.11 copying horovod/spark/lightning/util.py -> build/lib.linux-x86_64-3.7/horovod/spark/lightning #22 71.11 copying horovod/spark/lightning/estimator.py -> build/lib.linux-x86_64-3.7/horovod/spark/lightning #22 71.11 creating build/lib.linux-x86_64-3.7/horovod/spark/data_loaders #22 71.11 copying horovod/spark/data_loaders/pytorch_data_loaders.py -> build/lib.linux-x86_64-3.7/horovod/spark/data_loaders #22 71.11 copying horovod/spark/data_loaders/__init__.py -> build/lib.linux-x86_64-3.7/horovod/spark/data_loaders #22 71.12 creating build/lib.linux-x86_64-3.7/horovod/spark/task #22 71.12 copying horovod/spark/task/gloo_exec_fn.py -> build/lib.linux-x86_64-3.7/horovod/spark/task #22 71.12 copying horovod/spark/task/__init__.py -> build/lib.linux-x86_64-3.7/horovod/spark/task #22 71.12 copying horovod/spark/task/task_info.py -> build/lib.linux-x86_64-3.7/horovod/spark/task #22 71.12 copying horovod/spark/task/task_service.py -> build/lib.linux-x86_64-3.7/horovod/spark/task #22 71.12 copying horovod/spark/task/mpirun_exec_fn.py -> build/lib.linux-x86_64-3.7/horovod/spark/task #22 71.12 creating build/lib.linux-x86_64-3.7/horovod/spark/driver #22 71.12 copying horovod/spark/driver/driver_service.py -> build/lib.linux-x86_64-3.7/horovod/spark/driver #22 71.12 copying horovod/spark/driver/host_discovery.py -> build/lib.linux-x86_64-3.7/horovod/spark/driver #22 71.12 copying horovod/spark/driver/__init__.py -> build/lib.linux-x86_64-3.7/horovod/spark/driver #22 71.12 copying horovod/spark/driver/rendezvous.py -> build/lib.linux-x86_64-3.7/horovod/spark/driver #22 71.12 copying horovod/spark/driver/job_id.py -> build/lib.linux-x86_64-3.7/horovod/spark/driver #22 71.12 copying horovod/spark/driver/mpirun_rsh.py -> build/lib.linux-x86_64-3.7/horovod/spark/driver #22 71.12 copying horovod/spark/driver/rsh.py -> build/lib.linux-x86_64-3.7/horovod/spark/driver #22 71.12 creating build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.12 copying horovod/spark/common/serialization.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.12 copying horovod/spark/common/cache.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.12 copying horovod/spark/common/backend.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.12 copying horovod/spark/common/_namedtuple_fix.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.12 copying horovod/spark/common/constants.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.12 copying horovod/spark/common/__init__.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.12 copying horovod/spark/common/util.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.12 copying horovod/spark/common/params.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.13 copying horovod/spark/common/store.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.13 copying horovod/spark/common/estimator.py -> build/lib.linux-x86_64-3.7/horovod/spark/common #22 71.13 creating build/lib.linux-x86_64-3.7/horovod/spark/torch #22 71.13 copying horovod/spark/torch/__init__.py -> build/lib.linux-x86_64-3.7/horovod/spark/torch #22 71.13 copying horovod/spark/torch/remote.py -> build/lib.linux-x86_64-3.7/horovod/spark/torch #22 71.13 copying horovod/spark/torch/util.py -> build/lib.linux-x86_64-3.7/horovod/spark/torch #22 71.13 copying horovod/spark/torch/estimator.py -> build/lib.linux-x86_64-3.7/horovod/spark/torch #22 71.13 creating build/lib.linux-x86_64-3.7/horovod/tensorflow/keras #22 71.13 copying horovod/tensorflow/keras/elastic.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow/keras #22 71.13 copying horovod/tensorflow/keras/callbacks.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow/keras #22 71.13 copying horovod/tensorflow/keras/__init__.py -> build/lib.linux-x86_64-3.7/horovod/tensorflow/keras #22 71.13 creating build/lib.linux-x86_64-3.7/horovod/runner/util #22 71.13 copying horovod/runner/util/cache.py -> build/lib.linux-x86_64-3.7/horovod/runner/util #22 71.13 copying horovod/runner/util/threads.py -> build/lib.linux-x86_64-3.7/horovod/runner/util #22 71.13 copying horovod/runner/util/__init__.py -> build/lib.linux-x86_64-3.7/horovod/runner/util #22 71.13 copying horovod/runner/util/lsf.py -> build/lib.linux-x86_64-3.7/horovod/runner/util #22 71.13 copying horovod/runner/util/remote.py -> build/lib.linux-x86_64-3.7/horovod/runner/util #22 71.13 copying horovod/runner/util/streams.py -> build/lib.linux-x86_64-3.7/horovod/runner/util #22 71.13 copying horovod/runner/util/network.py -> build/lib.linux-x86_64-3.7/horovod/runner/util #22 71.13 creating build/lib.linux-x86_64-3.7/horovod/runner/http #22 71.13 copying horovod/runner/http/http_server.py -> build/lib.linux-x86_64-3.7/horovod/runner/http #22 71.13 copying horovod/runner/http/__init__.py -> build/lib.linux-x86_64-3.7/horovod/runner/http #22 71.13 copying horovod/runner/http/http_client.py -> build/lib.linux-x86_64-3.7/horovod/runner/http #22 71.13 creating build/lib.linux-x86_64-3.7/horovod/runner/task #22 71.13 copying horovod/runner/task/__init__.py -> build/lib.linux-x86_64-3.7/horovod/runner/task #22 71.13 copying horovod/runner/task/task_service.py -> build/lib.linux-x86_64-3.7/horovod/runner/task #22 71.13 creating build/lib.linux-x86_64-3.7/horovod/runner/driver #22 71.13 copying horovod/runner/driver/driver_service.py -> build/lib.linux-x86_64-3.7/horovod/runner/driver #22 71.13 copying horovod/runner/driver/__init__.py -> build/lib.linux-x86_64-3.7/horovod/runner/driver #22 71.13 creating build/lib.linux-x86_64-3.7/horovod/runner/common #22 71.13 copying horovod/runner/common/__init__.py -> build/lib.linux-x86_64-3.7/horovod/runner/common #22 71.13 creating build/lib.linux-x86_64-3.7/horovod/runner/elastic #22 71.14 copying horovod/runner/elastic/worker.py -> build/lib.linux-x86_64-3.7/horovod/runner/elastic #22 71.14 copying horovod/runner/elastic/driver.py -> build/lib.linux-x86_64-3.7/horovod/runner/elastic #22 71.14 copying horovod/runner/elastic/registration.py -> build/lib.linux-x86_64-3.7/horovod/runner/elastic #22 71.14 copying horovod/runner/elastic/constants.py -> build/lib.linux-x86_64-3.7/horovod/runner/elastic #22 71.14 copying horovod/runner/elastic/settings.py -> build/lib.linux-x86_64-3.7/horovod/runner/elastic #22 71.14 copying horovod/runner/elastic/__init__.py -> build/lib.linux-x86_64-3.7/horovod/runner/elastic #22 71.14 copying horovod/runner/elastic/rendezvous.py -> build/lib.linux-x86_64-3.7/horovod/runner/elastic #22 71.14 copying horovod/runner/elastic/discovery.py -> build/lib.linux-x86_64-3.7/horovod/runner/elastic #22 71.14 creating build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/secret.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/host_hash.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/settings.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/tiny_shell_exec.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/__init__.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/config_parser.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/env.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/hosts.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/timeout.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/network.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/safe_shell_exec.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 copying horovod/runner/common/util/codec.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/util #22 71.14 creating build/lib.linux-x86_64-3.7/horovod/runner/common/service #22 71.14 copying horovod/runner/common/service/driver_service.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/service #22 71.14 copying horovod/runner/common/service/__init__.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/service #22 71.14 copying horovod/runner/common/service/task_service.py -> build/lib.linux-x86_64-3.7/horovod/runner/common/service #22 71.14 creating build/lib.linux-x86_64-3.7/horovod/torch/mpi_lib #22 71.14 copying horovod/torch/mpi_lib/__init__.py -> build/lib.linux-x86_64-3.7/horovod/torch/mpi_lib #22 71.14 creating build/lib.linux-x86_64-3.7/horovod/torch/mpi_lib_impl #22 71.14 copying horovod/torch/mpi_lib_impl/__init__.py -> build/lib.linux-x86_64-3.7/horovod/torch/mpi_lib_impl #22 71.14 creating build/lib.linux-x86_64-3.7/horovod/torch/elastic #22 71.14 copying horovod/torch/elastic/state.py -> build/lib.linux-x86_64-3.7/horovod/torch/elastic #22 71.14 copying horovod/torch/elastic/__init__.py -> build/lib.linux-x86_64-3.7/horovod/torch/elastic #22 71.15 copying horovod/torch/elastic/sampler.py -> build/lib.linux-x86_64-3.7/horovod/torch/elastic #22 71.15 running build_ext #22 71.16 -- Could not find CCache. Consider installing CCache to speed up compilation. #22 71.23 -- The CXX compiler identification is GNU 7.5.0 #22 71.24 -- Check for working CXX compiler: /usr/bin/c++ #22 71.34 -- Check for working CXX compiler: /usr/bin/c++ -- works #22 71.34 -- Detecting CXX compiler ABI info #22 71.43 -- Detecting CXX compiler ABI info - done #22 71.45 -- Detecting CXX compile features #22 71.91 -- Detecting CXX compile features - done #22 71.92 -- Build architecture flags: -mf16c -mavx -mfma #22 71.92 -- Using command /usr/bin/python #22 72.31 -- Found MPI_CXX: /usr/local/lib/libmpi.so (found version "3.1") #22 72.31 -- Found MPI: TRUE (found version "3.1") #22 72.31 -- Could NOT find NVTX (missing: NVTX_INCLUDE_DIR) #22 72.31 CMake Error at CMakeLists.txt:265 (add_subdirectory): #22 72.31 add_subdirectory given source "third_party/gloo" which is not an existing #22 72.31 directory. #22 72.31 #22 72.31 #22 72.31 CMake Error at CMakeLists.txt:267 (target_compile_definitions): #22 72.31 Cannot specify compile definitions for target "gloo" which is not built by #22 72.32 this project. #22 72.32 #22 72.32 #22 73.91 Tensorflow_LIBRARIES := -L/usr/local/lib/python3.7/dist-packages/tensorflow -l:libtensorflow_framework.so.2 #22 73.91 -- Found Tensorflow: -L/usr/local/lib/python3.7/dist-packages/tensorflow -l:libtensorflow_framework.so.2 (found suitable version "2.5.0", minimum required is "1.15.0") #22 74.42 -- Found Pytorch: 1.8.1+cu102 (found suitable version "1.8.1+cu102", minimum required is "1.2.0") #22 81.17 -- Found Mxnet: /usr/local/lib/python3.7/dist-packages/mxnet/libmxnet.so (found suitable version "1.8.0", minimum required is "1.4.0") #22 82.47 CMake Error at CMakeLists.txt:327 (file): #22 82.47 file COPY cannot find "/tmp/pip-req-build-s0z_ufky/third_party/gloo". #22 82.47 #22 82.47 #22 82.47 CMake Error at CMakeLists.txt:331 (add_subdirectory): #22 82.47 The source directory #22 82.47 #22 82.47 /tmp/pip-req-build-s0z_ufky/third_party/compatible_gloo #22 82.47 #22 82.47 does not contain a CMakeLists.txt file. #22 82.47 #22 82.47 #22 82.47 CMake Error at CMakeLists.txt:332 (target_compile_definitions): #22 82.47 Cannot specify compile definitions for target "compatible_gloo" which is #22 82.47 not built by this project. #22 82.47 #22 82.47 #22 82.47 CMake Error: The following variables are used in this project, but they are set to NOTFOUND. #22 82.47 Please set them or make sure they are set and tested correctly in the CMake files: #22 82.47 /tmp/pip-req-build-s0z_ufky/horovod/mxnet/TF_FLATBUFFERS_INCLUDE_PATH #22 82.47 used as include directory in directory /tmp/pip-req-build-s0z_ufky/horovod/mxnet #22 82.47 /tmp/pip-req-build-s0z_ufky/horovod/tensorflow/TF_FLATBUFFERS_INCLUDE_PATH #22 82.47 used as include directory in directory /tmp/pip-req-build-s0z_ufky/horovod/tensorflow #22 82.47 /tmp/pip-req-build-s0z_ufky/horovod/torch/TF_FLATBUFFERS_INCLUDE_PATH #22 82.47 used as include directory in directory /tmp/pip-req-build-s0z_ufky/horovod/torch #22 82.47 #22 82.47 -- Configuring incomplete, errors occurred! #22 82.48 See also "/tmp/pip-req-build-s0z_ufky/build/temp.linux-x86_64-3.7/RelWithDebInfo/CMakeFiles/CMakeOutput.log". #22 82.48 Traceback (most recent call last): #22 82.48 File "<string>", line 1, in <module> #22 82.48 File "/tmp/pip-req-build-s0z_ufky/setup.py", line 211, in <module> #22 82.48 'horovodrun = horovod.runner.launch:run_commandline' #22 82.48 File "/usr/local/lib/python3.7/dist-packages/setuptools/__init__.py", line 153, in setup #22 82.48 return distutils.core.setup(**attrs) #22 82.48 File "/usr/lib/python3.7/distutils/core.py", line 148, in setup #22 82.48 dist.run_commands() #22 82.48 File "/usr/lib/python3.7/distutils/dist.py", line 966, in run_commands #22 82.48 self.run_command(cmd) #22 82.48 File "/usr/lib/python3.7/distutils/dist.py", line 985, in run_command #22 82.49 cmd_obj.run() #22 82.49 File "/usr/local/lib/python3.7/dist-packages/setuptools/command/install.py", line 68, in run #22 82.49 return orig.install.run(self) #22 82.49 File "/usr/lib/python3.7/distutils/command/install.py", line 589, in run #22 82.49 self.run_command('build') #22 82.49 File "/usr/lib/python3.7/distutils/cmd.py", line 313, in run_command #22 82.49 self.distribution.run_command(command) #22 82.49 File "/usr/lib/python3.7/distutils/dist.py", line 985, in run_command #22 82.49 cmd_obj.run() #22 82.49 File "/usr/lib/python3.7/distutils/command/build.py", line 135, in run #22 82.49 self.run_command(cmd_name) #22 82.49 File "/usr/lib/python3.7/distutils/cmd.py", line 313, in run_command #22 82.49 self.distribution.run_command(command) #22 82.49 File "/usr/lib/python3.7/distutils/dist.py", line 985, in run_command #22 82.49 cmd_obj.run() #22 82.49 File "/usr/local/lib/python3.7/dist-packages/setuptools/command/build_ext.py", line 79, in run #22 82.49 _build_ext.run(self) #22 82.49 File "/usr/lib/python3.7/distutils/command/build_ext.py", line 340, in run #22 82.49 self.build_extensions() #22 82.49 File "/tmp/pip-req-build-s0z_ufky/setup.py", line 99, in build_extensions #22 82.50 cwd=cmake_build_dir) #22 82.50 File "/usr/lib/python3.7/subprocess.py", line 363, in check_call #22 82.50 raise CalledProcessError(retcode, cmd) #22 82.50 subprocess.CalledProcessError: Command '['cmake', '/tmp/pip-req-build-s0z_ufky', '-DCMAKE_BUILD_TYPE=RelWithDebInfo', '-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_RELWITHDEBINFO=/tmp/pip-req-build-s0z_ufky/build/lib.linux-x86_64-3.7', '-DPYTHON_EXECUTABLE:FILEPATH=/usr/bin/python']' returned non-zero exit status 1. #22 82.52 Running setup.py install for horovod: finished with status 'error' #22 82.52 ERROR: Command errored out with exit status 1: /usr/bin/python -u -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-req-build-s0z_ufky/setup.py'"'"'; __file__='"'"'/tmp/pip-req-build-s0z_ufky/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record /tmp/pip-record-2urw0_at/install-record.txt --single-version-externally-managed --compile --install-headers /usr/local/include/python3.7/horovod Check the logs for full command output. ------ executor failed running [/bin/bash -cu python setup.py sdist && bash -c "HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITH_MXNET=1 pip install --no-cache-dir -v $(ls /horovod/dist/horovod-*.tar.gz)[spark,ray]" && horovodrun --check-build]: exit code: 1 ``` Thank you.
closed
2021-11-30T00:24:39Z
2021-11-30T17:42:08Z
https://github.com/horovod/horovod/issues/3294
[ "question" ]
jizezhang
2
Nemo2011/bilibili-api
api
814
[提问] {获取弹幕的时候,现在报错KeyError: 'total'}
**Python 版本:** 3.12 **模块版本:** x.y.z **运行环境:** Linux 这个还在维护嘛 --------------------------------------------------------------------------- # 这是我的代码 # 获取rank排行 实时查询查询在线观看人数 收集弹幕 import asyncio from bilibili_api import video # 实例化 v = video.Video(bvid="BV15EtgeUEaD") # 获取在线人数 print(sync(v.get_online())) print(sync(v.get_danmakus())) #此处会报错 --------------------------------------------------------------------------- KeyError Traceback (most recent call last) Cell In[43], line 10 7 # 获取在线人数 8 print(sync(v.get_online())) ---> 10 print(sync(v.get_danmakus())) File ~/anaconda3/lib/python3.12/site-packages/bilibili_api/utils/sync.py:33, in sync(coroutine) 31 __ensure_event_loop() 32 loop = asyncio.get_event_loop() ---> 33 return loop.run_until_complete(coroutine) File ~/anaconda3/lib/python3.12/site-packages/nest_asyncio.py:98, in _patch_loop.<locals>.run_until_complete(self, future) 95 if not f.done(): 96 raise RuntimeError( 97 'Event loop stopped before Future completed.') ---> 98 return f.result() File ~/anaconda3/lib/python3.12/asyncio/futures.py:203, in Future.result(self) 201 self.__log_traceback = False 202 if self._exception is not None: --> 203 raise self._exception.with_traceback(self._exception_tb) 204 return self._result File ~/anaconda3/lib/python3.12/asyncio/tasks.py:314, in Task.__step_run_and_handle_result(***failed resolving arguments***) 310 try: 311 if exc is None: 312 # We use the `send` method directly, because coroutines 313 # don't have `__iter__` and `__next__` methods. --> 314 result = coro.send(None) 315 else: 316 result = coro.throw(exc) File ~/anaconda3/lib/python3.12/site-packages/bilibili_api/video.py:883, in Video.get_danmakus(self, page_index, date, cid, from_seg, to_seg) 881 if to_seg == None: 882 view = await self.get_danmaku_view(cid=cid) --> 883 to_seg = view["dm_seg"]["total"] - 1 885 danmakus = [] 887 for seg in range(from_seg, to_seg + 1): KeyError: 'total' Selection deleted
open
2024-09-18T07:42:27Z
2024-10-29T10:37:31Z
https://github.com/Nemo2011/bilibili-api/issues/814
[ "question" ]
Sukang1002
1
pallets-eco/flask-sqlalchemy
sqlalchemy
918
RuntimeError During Pytest Collection Because no App Context is Set Up Yet
## Current Behavior My application uses the factory method for setting up the application, so I use a pattern similar to the following: ```python # ./api/__init__.py from flask import Flask from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() def create_app(): app = Flask(__name__) db.init_app(app) ``` When collecting tests, pytest imports the test files as defined by in the pytest settings (in my case, the `pytest.ini` specifies that all `test_*` files in the directory `./tests` are collected). During the collection, the test files are imported before any of the fixtures are set up. I have a file which defines a model which is subclassed from `api.db.Model`. My test makes use of this model by using sqlalchemy to scan the database to evaluate the precondition. Something like this: ```python from api.models import User def it_creates_a_user(self, session): # GIVEN there is no existing user assert session.query(User).count() == 0 ``` So when this file is imported, the `api.models.__init__.py` file is imported which, in turn, imports `api.models.user.User` which has a definition similar to the following: ```python from api import db class User(db.Model): # columns ``` Again, when this import happens, pytest has not yet created the app fixture where I push the app_context, which means flask_sqlalchemy does not know which app the db is bound to and so it raises a `RuntimeError`: ``` RuntimeError: No application found. Either work inside a view function or push an application context. See http://flask-sqlalchemy.pocoo.org/contexts/. ``` This perplexed me greatly at first since I definitely am pushing an application context in my app fixture: ```python @pytest.fixture(scope="session", autouse=True) def app(): logger.info("Creating test application") test_app = create_app() with test_app.app_context(): yield test_app ``` It wasn't until I thought to run `pytest --continue-on-collection-errors` that I found that the tests all run and pass just fine after the RuntimeError is raised during the collection phase. It was then that it dawned on me what the cause of the issue was. I have worked around this issue by pushing the context in my `tests/__init__.py` file: ```python # ./tests/__init__.py from api import create_app """ This is a workaround for pytest collection of flask-sqlalchemy models. When running tests, the first thing that pytest does is to collect the tests by importing all the test files. If a test file imports a model, as they will surely do, then the model tries to use the api.db before the app has been created. Doing this makes flask-sqlalchemy raise a RuntimeError saying that there is no application found. The following code only exists to set the app context during test import to avoid this RuntimeError. The tests will us the app fixture which sets up the context and so this has no effect on the tests when they are run. """ app = create_app() app.app_context().push() ``` This feels a little dirty and I'm hopeful that there is a way for this issue to be solved. ### Relevant Code ```toml # pyproject.toml # Unrelated items [tool.pytest.ini_options] minversion = "6.0" log_auto_indent = true log_cli = true log_cli_format = "%(levelname)-5.5s [%(name)s] %(message)s" testpaths = ["tests"] python_functions = ["test_*", "it_*"] ``` ```python # api/__init__.py import os import shlex import subprocess from dotenv import load_dotenv from flask import Flask from flask_marshmallow import Marshmallow from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() ma = Marshmallow() def create_app(test_config=None): app = Flask(__name__, instance_relative_config=True) if test_config is None: app.config.from_object(os.getenv("APP_SETTINGS")) else: app.config.from_mapping(test_config) db.init_app(app) ma.init_app(app) # a simple page that says hello @app.route("/health-check") def health_check(): # pragma: no cover cmd = "git describe --always" current_rev = subprocess.check_output(shlex.split(cmd)).strip() return current_rev return app ``` ```python # ./app/models/__init__.py from .user import User ``` ```python # ./api/models/user.py from uuid import uuid4 from sqlalchemy_utils import EmailType, UUIDType from api import db class User(db.Model): id = db.Column(UUIDType, primary_key=True, default=uuid4) email = db.Column(EmailType, nullable=False) def __repr__(self): return f"<User: {self.email}>" ``` ```python # ./tests/unit/models/test_user.py import logging import pytest import sqlalchemy from api.models import User # pytest imports this line before it sets up any fixtures logger = logging.getLogger(__name__) class TestUserModel: class TestNormalCase: def it_creates_a_user(self, session): # GIVEN No user exists in our database assert session.query(User).count() == 0 # WHEN we add a new user test_user = User(email="test@testing.com") session.add(test_user) session.commit() # THEN the user is persisted in the database actual_user = session.query(User).get(test_user.id) assert actual_user == test_user assert repr(actual_user) == f"<User: {test_user.email}>" class TestErrorCase: def it_requires_a_user_email(self, session): with pytest.raises(sqlalchemy.exc.IntegrityError): test_user = User() session.add(test_user) session.commit() ``` ```python # ./tests/conftest.py # other stuff here, just showing that I am using the context in my app fixture @pytest.fixture(scope="session", autouse=True) def app(): logger.info("Creating test application") test_app = create_app() with test_app.app_context(): yield test_app ``` Environment: - Python version: `3.9.1` - Flask-SQLAlchemy version: `2.4.4` - SQLAlchemy version: `1.3.23`
closed
2021-02-23T03:05:53Z
2021-03-10T00:34:05Z
https://github.com/pallets-eco/flask-sqlalchemy/issues/918
[]
mikelane
1
nonebot/nonebot2
fastapi
2,674
Plugin: 三爻易数
### PyPI 项目名 nonebot-plugin-sanyao ### 插件 import 包名 nonebot_plugin_sanyao ### 标签 [{"label":"占卜","color":"#415656"}] ### 插件配置项 _No response_
closed
2024-04-21T16:37:31Z
2024-04-23T04:36:38Z
https://github.com/nonebot/nonebot2/issues/2674
[ "Plugin" ]
afterow
7
microsoft/nni
tensorflow
4,803
Error: PolicyBasedRL
**Describe the issue**: I tried running the the following models space with PolicyBasedRL and I will also put in the experiment configuration: #BASELINE NAS USING v2.7 from nni.retiarii.serializer import model_wrapper import torch.nn.functional as F import nni.retiarii.nn.pytorch as nn class Block1(nn.Module): def __init__(self, layer_size): super().__init__() self.conv1 = nn.Conv2d(3, layer_size*2, 3, stride=1,padding=1) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(layer_size*2, layer_size*8, 3, stride=1, padding=1) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool(x) x = F.relu(self.conv2(x)) x = self.pool(x) return x class Block2(nn.Module): def __init__(self, layer_size): super().__init__() self.conv1 = nn.Conv2d(3, layer_size, 3, stride=1,padding=1) self.conv2 = nn.Conv2d(layer_size, layer_size*2, 3, stride=1,padding=1) self.pool = nn.MaxPool2d(2, 2) self.conv3 = nn.Conv2d(layer_size*2, layer_size*8, 3, stride=1,padding=1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.pool(x) x = F.relu(self.conv3(x)) x = self.pool(x) return x class Block3(nn.Module): def __init__(self, layer_size): super().__init__() self.conv1 = nn.Conv2d(3, layer_size, 3, stride=1,padding=1) self.conv2 = nn.Conv2d(layer_size, layer_size*2, 3, stride=1,padding=1) self.pool = nn.MaxPool2d(2, 2) self.conv3 = nn.Conv2d(layer_size*2, layer_size*4, 3, stride=1,padding=1) self.conv4 = nn.Conv2d(layer_size*4, layer_size*8, 3, stride=1, padding=1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.pool(x) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = self.pool(x) return x @model_wrapper class Net(nn.Module): def __init__(self): super().__init__() rand_var = nn.ValueChoice([32,64]) self.conv1 = nn.LayerChoice([Block1(rand_var),Block2(rand_var),Block3(rand_var)]) self.conv2 = nn.Conv2d(rand_var*8,rand_var*16 , 3, stride=1, padding=1) self.fc1 = nn.Linear(rand_var*16*8*8, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(self.conv2(x)) x = x.reshape(x.shape[0],-1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x model = Net() from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment exp = RetiariiExperiment(model, trainer, [], RL_strategy) exp_config = RetiariiExeConfig('local') exp_config.experiment_name = '5%_RL_10_epochs_64_batch' exp_config.trial_concurrency = 2 exp_config.max_trial_number = 100 #exp_config.trial_gpu_number = 2 exp_config.max_experiment_duration = '660m' exp_config.execution_engine = 'base' exp_config.training_service.use_active_gpu = False --> This led to the following error: [2022-04-24 23:49:22] ERROR (nni.runtime.msg_dispatcher_base/Thread-5) 3 Traceback (most recent call last): File "/Users/sh/opt/anaconda3/lib/python3.7/site-packages/nni/runtime/msg_dispatcher_base.py", line 88, in command_queue_worker self.process_command(command, data) File "/Users/sh/opt/anaconda3/lib/python3.7/site-packages/nni/runtime/msg_dispatcher_base.py", line 147, in process_command command_handlers[command](data) File "/Users/sh/opt/anaconda3/lib/python3.7/site-packages/nni/retiarii/integration.py", line 170, in handle_report_metric_data self._process_value(data['value'])) File "/Users/sh/opt/anaconda3/lib/python3.7/site-packages/nni/retiarii/execution/base.py", line 111, in _intermediate_metric_callback model = self._running_models[trial_id] KeyError: 3 What does this error mean/ why does it occur/ how can I fix it? Thanks for your help! **Environment**: - NNI version: - Training service (local|remote|pai|aml|etc): - Client OS: - Server OS (for remote mode only): - Python version: - PyTorch/TensorFlow version: - Is conda/virtualenv/venv used?: - Is running in Docker?: **Configuration**: - Experiment config (remember to remove secrets!): - Search space: **Log message**: - nnimanager.log: - dispatcher.log: - nnictl stdout and stderr: <!-- Where can you find the log files: LOG: https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/HowToDebug.md#experiment-root-director STDOUT/STDERR: https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/Nnictl.md#nnictl%20log%20stdout --> **How to reproduce it?**:
open
2022-04-25T09:36:27Z
2023-04-25T13:28:22Z
https://github.com/microsoft/nni/issues/4803
[]
NotSure2732
2
benbusby/whoogle-search
flask
877
[BUG] Whoogle personal cloud docker instance suddenly showing arabic and right to left layout
I setup an instance of whoogle on a ubuntu oracle cloud server last week. I used docker to get the latest version of whoogle and have been using it on my fedora laptop and my Pixel 6 phone. It's been working fine and the results have always been in English with the interface showing English too. Unfortunately about 1 or 2 hours ago I noticed I was getting search results in English but with the display showing right to left and the interface language showing in Arabic This happened on both my laptop and my phone. I actually thought someone had hacked my instance so deleted the docker instance and tried again but am still getting the issue. **To Reproduce** Steps to reproduce the behavior: 1. Go to 'my whoogle instance url' - I don't want to share the url as I want to keep it personal 2. Click on 'search box and enter search term then return' 3. See error = search results shown in English with right to left formatting and the interface (like NEXT) showing in Arabic **Deployment Method** - [ ] Heroku (one-click deploy) - [x] Docker - [ ] `run` executable - [ ] pip/pipx - [ ] Other: [describe setup] **Version of Whoogle Search** - [x] Latest build from [source] (i.e. GitHub, Docker Hub, pip, etc) - [ ] Version [version number] - [ ] Not sure **Desktop (please complete the following information):** - OS: [e.g. iOS] Fedora Silverblue on laptop and - Browser [e.g. chrome, safari] Firefox - Version [e.g. 22] 105.1 **Smartphone (please complete the following information):** - Device: [e.g. iPhone6] Pixel 6 - OS: [e.g. iOS8.1] Android 13 - Browser [e.g. stock browser, safari] Bromite - Version [e.g. 22] 106 **Additional context** I tired setting the additional env variables for language and I seem to have fixed the mobile version with these additional settings but the desktop version is still showing the issues. added env: -e WHOOGLE_CONFIG_LANGUAGE=lang_en \ -e WHOOGLE_CONFIG_SEARCH_LANGUAGE=lang_en \ docker command: docker run --restart=always --publish 5000:5000 --detach --name whoogle-search \ -e WHOOGLE_CONFIG_URL=https://xxx.xxx.xx\ -e WHOOGLE_CONFIG_THEME=system \ -e WHOOGLE_CONFIG_DISABLE=1\ -e WHOOGLE_CONFIG_ALTS=1 \ -e WHOOGLE_ALT_TW=xxx.xxx.xxx \ -e WHOOGLE_ALT_YT=xxx.xxx.xxx \ -e WHOOGLE_ALT_RD=xxx.xxx.xxx \ -e WHOOGLE_ALT_TL=xxx.xxx.xxx\ -e WHOOGLE_ALT_WIKI=xxx.xxx.xxx \ -e WHOOGLE_CONFIG_NEW_TAB=1 \ -e WHOOGLE_RESULTS_PER_PAGE=30 \ -e WHOOGLE_CONFIG_GET_ONLY=1 \ -e WHOOGLE_CONFIG_LANGUAGE=lang_en \ -e WHOOGLE_CONFIG_SEARCH_LANGUAGE=lang_en \ benbusby/whoogle-search:latest Happy to share my personal URL with support for help with troubleshooting. I just don't want to post it publicly.
closed
2022-11-03T15:10:34Z
2022-12-05T20:38:11Z
https://github.com/benbusby/whoogle-search/issues/877
[ "bug" ]
Rochey
3
ultralytics/ultralytics
pytorch
19,640
I try use one backbone and neck to achieve a multitask model (include pose and seg)
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question I have already reviewed the related topics in the issue and Repositories . **Such as:** https://github.com/ultralytics/ultralytics/issues/6949 https://github.com/ultralytics/ultralytics/pull/5219 https://github.com/ultralytics/ultralytics/issues/5073 https://github.com/yermandy/ultralytics/tree/multi-task-model https://github.com/stedavkle/ultralytics/tree/multitask https://github.com/JiayuanWang-JW/YOLOv8-multi-task My `PoSeg` Repositories base on https://github.com/stedavkle/ultralytics/tree/multitask **(Thank stedavkle)** Now My model has some error: During the training process, the accuracy for both keypoints and segmentation masks is 0, as follows: ``` shell Epoch GPU_mem box_loss pose_loss seg_loss kobj_loss cls_loss dfl_loss Instances Size 19/20 0G 3.686 9.066 5.869 4.282 1.412 0.7072 55 640: 100%|██████████| 2/2 [00:04<00:00, 2.05s/it] Class Images Instances Box(P R mAP50 mAP50-95) Pose(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 3.59it/s] all 4 15 0 0 0 0 0 0 0 0 0 0 0 0 Epoch GPU_mem box_loss pose_loss seg_loss kobj_loss cls_loss dfl_loss Instances Size 20/20 0G 3.689 10.34 5.701 4.333 1.571 0.7128 83 640: 100%|██████████| 2/2 [00:04<00:00, 2.12s/it] Class Images Instances Box(P R mAP50 mAP50-95) Pose(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 3.54it/s] all 4 15 0 0 0 0 0 0 0 0 0 0 0 0 ``` I am not sure which part has gone wrong, leading to the inference accuracy being 0 for all parts My yolo-poSeg address : https://github.com/Mosazh/yolo-poSeg ### Additional _No response_
open
2025-03-11T09:47:40Z
2025-03-17T23:23:41Z
https://github.com/ultralytics/ultralytics/issues/19640
[ "question", "segment", "pose" ]
Mosazh
10
GibbsConsulting/django-plotly-dash
plotly
241
Bad dependencies in v1.3.0
The packaged v1.3.0 has a dependency of >=2, < 3 for Django version. This should be relaxed to be >=2 in `setup.py` to match `requirements.txt` In addition, whilst it requires Dash < 1.11 it doesn't constrain dash-core-components (1.9.0) or dash-renderer (1.3.0) which also leads to errors on installation.
closed
2020-04-16T21:35:03Z
2020-04-17T03:57:51Z
https://github.com/GibbsConsulting/django-plotly-dash/issues/241
[ "bug" ]
GibbsConsulting
1
deeppavlov/DeepPavlov
nlp
1,122
building go-bot in russian
Good day! I want to build a go-bot using DeepPavlov in russian language (on example of this [notebook](https://colab.research.google.com/github/deepmipt/DeepPavlov/blob/master/examples/gobot_extended_tutorial.ipynb)). I created dataset by DSTC2 format. Now i want add NER training in go bot config pipline. Because my dataset includes **_names_** and **_phones_**. All possible variants i **can't** include in slot_vals.json It is possible to implement on DeepPavlov?
closed
2020-01-23T12:43:24Z
2020-05-21T10:04:10Z
https://github.com/deeppavlov/DeepPavlov/issues/1122
[]
Grossmend
1
graphdeco-inria/gaussian-splatting
computer-vision
943
jlvbl
closed
2024-08-22T19:42:26Z
2024-08-22T19:42:35Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/943
[]
jb-ye
0
junyanz/pytorch-CycleGAN-and-pix2pix
computer-vision
706
Training with various input sizes?
I have various photographs of different sizes that I am trying to train and I keep getting errors similar to `RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 1. Got 16 and 17 in dimension 3` I've tried setting `--preprocess` to either `none` or `scale_width` and I have tried setting the `batch_size` to 1. Is it possible to input images of different rectangular sizes for training and testing?
open
2019-07-16T23:40:27Z
2019-07-17T18:50:16Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/706
[]
0003mg
1
litestar-org/polyfactory
pydantic
115
Factories cannot randomly generate missing parameters for child factories if all params passed on higher level
When at least one field doesn't passed in nested objects all child objects created right way: ```python from pydantic_factories import ModelFactory from pydantic import BaseModel class A(BaseModel): name: str age: int class B(BaseModel): a: A name: str # THIS LINE DIFFERENT TO NEXT EXAMPLE class C(BaseModel): b: B name: str class CFactory(ModelFactory): __model__ = C CFactory.build(**{'b': {'a': {'name': 'test'}}}) # C(b=B(a=A(name='test', age=8345), name='dLiQxkFuLvlMINwbCkbp'), name='uWGxEDUWlAejTgMePGXZ') ``` However if we pass all fields in nested objects then nested objects creation ignored: ```python from pydantic_factories import ModelFactory from pydantic import BaseModel class A(BaseModel): name: str age: int class B(BaseModel): a: A # name: str # THIS LINE DIFFERENT TO PREV EXAMPLE class C(BaseModel): b: B name: str class CFactory(ModelFactory): __model__ = C CFactory.build(**{'b': {'a': {'name': 'test'}}}) ``` ``` --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) Cell In [19], line 1 ----> 1 CFactory.build(**{'b': {'a': {'name': 'test'}}}) File ./venv/lib/python3.10/site-packages/pydantic_factories/factory.py:724, in ModelFactory.build(cls, factory_use_construct, **kwargs) 721 return cast("T", cls.__model__.construct(**kwargs)) 722 raise ConfigurationError("factory_use_construct requires a pydantic model as the factory's __model__") --> 724 return cast("T", cls.__model__(**kwargs)) File ./venv/lib/python3.10/site-packages/pydantic/main.py:342, in BaseModel.__init__(__pydantic_self__, **data) 340 values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data) 341 if validation_error: --> 342 raise validation_error 343 try: 344 object_setattr(__pydantic_self__, '__dict__', values) ValidationError: 1 validation error for C b -> a -> age field required (type=value_error.missing) ``` that explained by next logic https://github.com/starlite-api/pydantic-factories/blob/main/pydantic_factories/factory.py#L200 expected that child objects created in both cases
closed
2022-11-07T22:06:41Z
2022-11-21T14:29:21Z
https://github.com/litestar-org/polyfactory/issues/115
[ "bug" ]
tbicr
2
xinntao/Real-ESRGAN
pytorch
122
Strange margin in the Mesh-ish material.
![ASUS1](https://user-images.githubusercontent.com/42407840/136804377-434ac274-05cc-490c-9c58-08c35c514e01.jpg) ![output1](https://user-images.githubusercontent.com/42407840/136804398-e51d852f-feb6-409e-866e-9bf28f7f62fd.png) Using realesrgan-x4plus-anime. The slice of the input and outpt is above.
open
2021-10-11T14:11:58Z
2022-01-25T16:07:54Z
https://github.com/xinntao/Real-ESRGAN/issues/122
[ "hard-samples reported" ]
ChiseHatori
2
wkentaro/labelme
computer-vision
750
[Feature] Add Key-value attributes/properties
**Is your feature request related to a problem? Please describe.** For a data set which is going to be used for instance segmentation, I want to add for each annotation certain properties with non-discrete values. For example I have dataset of objects and I want to add a mass attribute and add a ground-truth mass (which is a floating number) to the annotated object. In this case the current labelflags doesn't suffice in this case. **Describe the solution you'd like** Each time you have to choose a label for the annotation, you also have the option to select a certain attribute, and for a selected attribute you have to fill in a number, string or whatever.
closed
2020-08-12T17:50:51Z
2022-06-25T04:57:52Z
https://github.com/wkentaro/labelme/issues/750
[]
MennoK
1
Evil0ctal/Douyin_TikTok_Download_API
fastapi
540
[BUG] 抖音-获取指定视频的评论回复数据 返回400
大佬你好, 拉去项目后,测试 抖音-获取指定视频的评论回复数据 返回400 之后仔细查看文档,并在你的在线接口测试同样也返回400 https://douyin.wtf/docs#/Douyin-Web-API/fetch_video_comments_reply_api_douyin_web_fetch_video_comment_replies_get ![Image](https://github.com/user-attachments/assets/a1192500-676f-469a-8c33-954ea3f282cf)
closed
2025-01-17T09:47:12Z
2025-02-14T09:04:35Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/540
[ "BUG" ]
yumingzhu
4