repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
QuivrHQ/quivr
api
3,170
[Backend] KMS upload limits
## KMS Limits: ### Uploads (Local) * \[x\] Single file size ? (50Mb / file ) * \[x\] Single Folder total size ? No limits * Concurrent file upload ? ( rate limit upload route, for now can't upload whole folders) * \[x\] # Files per folder ? -> No limits * Total storage per tier of users ? * 500Mb free * 100GB premium ### Knowledge linked to Brains ( sync & local ) * Total size for all brains: * free: 500 Mb * premium: 100Gb for all brains ( get size users in production) * No limits for # brains * Nb or files ? * correct metric **# of chunks in brain** -> have the infos back to the user (too much chunks / files in brain . * File size across syncs + local ? No diff * \# sync files per user to add to brain ? * Limit to # chunks in a brain ### KM Processing * \# max concurrent processing of files ? * max queue size of 10_000 (check ) 4 worker * \# max concurrent processing files per user * fairness scheduler / per user * Max time processing per file * p99 celery worker * Max batch size sync * Randomize across users * Priorize refresh for connected users
open
2024-09-09T08:48:46Z
2025-01-27T16:06:37Z
https://github.com/QuivrHQ/quivr/issues/3170
[ "area: backend" ]
linear[bot]
2
supabase/supabase-py
flask
45
update insert and filter docs for python
# Improve documentation ## Link https://supabase.io/docs/guides/client-libraries#managing-data ## Describe the problem Python example missing for filtering and insert not updated yet. ## Describe the improvement Add python examples for filtering and insert section.
closed
2021-09-11T14:16:45Z
2021-09-11T14:18:27Z
https://github.com/supabase/supabase-py/issues/45
[ "documentation" ]
sureshdsk
1
encode/apistar
api
158
Url encoding on TestClient requests
I'm adding tests and I have some urls with spaces in it. the tests fail because the url parameters are not properly encoded in the handler function. For example I have a handler function that recieves one parameter "time" `routes.py` ```python Route('/{time}', 'GET', timestamp) ``` `views.py` ```python def timestamp(time): print(time) .... code here ``` `test` ```python def test_http_request(): """ Testing a view, using the test client. """ client = TestClient() response = client.get("/December 15, 2015") ``` `time` in `timestamp` function is now `December%2015,%202015` instead of `December 15, 2015` I've also tried with `client.get("/December%2015,%202015")` Am I doing something wrong or is this a bug? Thanks
closed
2017-05-21T18:04:11Z
2017-05-22T23:48:32Z
https://github.com/encode/apistar/issues/158
[]
marcosfede
2
apify/crawlee-python
automation
928
Implement a playwright-based `HttpClient` implementation
There are two advantages to this: 1. `PlaywrightCrawler` could use it for `send_request` which would make those "AJAX calls" look more natural and probably less likely to be blocked 2. We could use it in e.g. `ParselCrawler` an another option to avoid blocking
open
2025-01-22T12:54:40Z
2025-03-06T09:44:21Z
https://github.com/apify/crawlee-python/issues/928
[ "enhancement", "t-tooling" ]
janbuchar
0
mage-ai/mage-ai
data-science
4,941
[BUG] free -t -m command not compatible with Windows shell
### Mage version 0.9.68 ### Describe the bug When running any pipeline using conda on Windows (no Docker), the below exception keeps popping up: ``` 'free' is not recognized as an internal or external command, operable program or batch file. Command 'free -t -m' returned non-zero exit status 1. ``` The command seems to get the current memory usage. ### To reproduce 1. Execute `mage init mage` in cmd terminal 2. Execute `mage start mage` in cmd terminal 3. Start running the pipeline `example_pipeline` 4. Check the log in terminal ### Expected behavior The exception should not be popping up. ### Screenshots ![image](https://github.com/mage-ai/mage-ai/assets/14330702/dd2a5fb4-eb68-4150-9d3d-7e7afe05f8d9) ### Operating system conda virtual environment on Windows 10 Pro ### Additional context It looks like the command `free -t -m` is not executable in Windows OS I did a code search: https://github.com/mage-ai/mage-ai/blob/ebdd95ff3410602aeb37c05692dc93f864757274/mage_ai/orchestration/utils/resources.py#L22
closed
2024-04-15T21:28:43Z
2024-04-16T09:42:26Z
https://github.com/mage-ai/mage-ai/issues/4941
[ "bug" ]
alangan17
0
iperov/DeepFaceLab
deep-learning
5,273
why when i run quick 96 will error occurred? THANKS
Running trainer. Loading model... Model first run. Using plaidml.keras.backend backend. INFO:plaidml:Opening device "opencl_amd_ellesmere.0" Error: The Keras backend function 'random_binomial' is not yet implemented in Plaid. You can help us prioritize by letting us know if this function is important to you, and as always, contributions are welcome! Traceback (most recent call last): File "F:\deep\DeepFaceLab_OpenCL_SSE\_internal\DeepFaceLab\mainscripts\Trainer.py", line 50, in trainerThread device_args=device_args) File "F:\deep\DeepFaceLab_OpenCL_SSE\_internal\DeepFaceLab\models\Model_Quick96\Model.py", line 21, in __init__ ask_random_flip=False) File "F:\deep\DeepFaceLab_OpenCL_SSE\_internal\DeepFaceLab\models\ModelBase.py", line 145, in __init__ self.onInitialize() File "F:\deep\DeepFaceLab_OpenCL_SSE\_internal\DeepFaceLab\models\Model_Quick96\Model.py", line 161, in onInitialize self.src_train = K.function ([self.model.warped_src, self.model.target_src, self.model.target_srcm], [src_loss], self.src_dst_opt.get_updates( src_loss, self.model.src_trainable_weights) ) File "F:\deep\DeepFaceLab_OpenCL_SSE\_internal\DeepFaceLab\nnlib\nnlib.py", line 932, in get_updates lr_rnds = [ K.random_binomial(K.int_shape(p), p=self.lr_dropout, dtype=K.dtype(p)) for p in params ] File "F:\deep\DeepFaceLab_OpenCL_SSE\_internal\DeepFaceLab\nnlib\nnlib.py", line 932, in <listcomp> lr_rnds = [ K.random_binomial(K.int_shape(p), p=self.lr_dropout, dtype=K.dtype(p)) for p in params ] File "F:\deep\DeepFaceLab_OpenCL_SSE\_internal\python-3.6.8\lib\site-packages\plaidml\keras\backend.py", line 1070, in random_binomial _report_unimplemented('random_binomial') File "F:\deep\DeepFaceLab_OpenCL_SSE\_internal\python-3.6.8\lib\site-packages\plaidml\keras\backend.py", line 103, in _report_unimplemented raise NotImplementedError(report) NotImplementedError: The Keras backend function 'random_binomial' is not yet implemented in Plaid. You can help us prioritize by letting us know if this function is important to you, and as always, contributions are welcome!
open
2021-02-03T13:25:30Z
2023-06-08T22:21:00Z
https://github.com/iperov/DeepFaceLab/issues/5273
[]
super18863
1
pytorch/pytorch
python
149,048
multinomial does not preserve dynamic dimension
### 🐛 Describe the bug multinomial expects a fixed dimension for the number of samples. It should be dynamic. ```python import torch class Model(torch.nn.Module): def forward(self, x, y): return torch.multinomial(x, y.shape[0]) model = Model() inputs = ( torch.tensor([[4, 5],[6,7]], dtype=torch.float32), torch.tensor([0, 5], dtype=torch.int64), ) model(*inputs) DYNAMIC = torch.export.Dim.DYNAMIC ep = torch.export.export( model, inputs, dynamic_shapes={"x": {0: DYNAMIC, 1: DYNAMIC}, "y": {0: DYNAMIC}} ) print(ep) ``` Raises an error: ``` - Not all values of RelaxedUnspecConstraint(L['y'].size()[0]) are valid because L['y'].size()[0] was inferred to be a constant (2). ``` ### Versions ``` PyTorch version: 2.7.0.dev20250311+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.12.8 (main, Dec 4 2024, 08:54:12) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Laptop GPU Nvidia driver version: 538.92 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i7-13800H CPU family: 6 Model: 186 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 Stepping: 2 BogoMIPS: 5836.80 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 480 KiB (10 instances) L1i cache: 320 KiB (10 instances) L2 cache: 12.5 MiB (10 instances) L3 cache: 24 MiB (1 instance) Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] model-explorer-onnx==0.3.4 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.25.1 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnx==1.18.0 [pip3] onnx-array-api==0.3.0 [pip3] onnx-extended==0.3.0 [pip3] onnxruntime_extensions==0.13.0 [pip3] onnxruntime-genai-cuda==0.6.0 [pip3] onnxruntime-training==1.21.0+cu126 [pip3] onnxscript==0.3.0.dev20250301 [pip3] optree==0.14.0 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250311+cu126 [pip3] torch_geometric==2.4.0 [pip3] torchaudio==2.6.0.dev20250311+cu126 [pip3] torchmetrics==1.6.2 [pip3] torchvision==0.22.0.dev20250311+cu126 [conda] Could not collect ``` cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
closed
2025-03-12T15:03:08Z
2025-03-19T23:16:55Z
https://github.com/pytorch/pytorch/issues/149048
[ "oncall: pt2", "oncall: export" ]
xadupre
0
fastapi/sqlmodel
sqlalchemy
594
How to add current date time by default on a table declaration?
### Privileged issue - [X] I'm @tiangolo or he asked me directly to create an issue here. ### Issue Content how to add a field in the table with the current date by default?
closed
2023-05-15T00:36:07Z
2025-03-16T12:32:50Z
https://github.com/fastapi/sqlmodel/issues/594
[]
fraddygil
17
jupyterhub/zero-to-jupyterhub-k8s
jupyter
2,861
Remove old GitHub Releases for this project?
We currently don't rely on [GitHub Releases](https://github.com/jupyterhub/zero-to-jupyterhub-k8s/releases), but instead on git tags to declare new versions etc. If someone relied on GitHub Releases, for example because they use a github api to access the latest GitHub release, they can do so with `helm show chart` from the helm chart repo directly instead. The situation is that whenever we now make a new release by pushing a git tag, we end up also needing to create a GitHub Release to avoid that the github UI showing us an old version. ![image](https://user-images.githubusercontent.com/3837114/188832336-2b154425-31c7-424f-9119-d0c96a0f5770.png) So, should we simply remove all old github releases?
closed
2022-09-07T08:39:35Z
2022-10-31T20:33:27Z
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues/2861
[]
consideRatio
2
flasgger/flasgger
flask
168
does not support upload
""" test --- tags: - test parameters: - in: file name: formData type: file required: true responses: 200: description: """ hello,this is my yaml,it can not upload file succ,I saw the request payload not have "Content-Disposition" when the post request,is this a bug?need you help and can you give me a upload example,thanks very much.
open
2017-11-03T08:51:40Z
2020-04-06T21:38:43Z
https://github.com/flasgger/flasgger/issues/168
[ "bug", "help wanted", "hacktoberfest" ]
yumen
2
httpie/cli
api
913
PATCH support
Hi, Is there a possibility to use other HTTP verbs instead of GET, PUT and DELETE? I would like to use the PATCH but it returns an error: unrecognised arguments. Thanks!
closed
2020-05-11T14:18:20Z
2020-05-11T14:48:18Z
https://github.com/httpie/cli/issues/913
[]
LanderMoerkerke
1
pytest-dev/pytest-django
pytest
180
Why do you override settings and set DEBUG=False?
This happens after 2821e4178fa09732cbdaaf4ac369ada0e0b8f558. What was the reason for it?
closed
2014-10-13T10:46:20Z
2014-10-13T14:14:36Z
https://github.com/pytest-dev/pytest-django/issues/180
[]
andreif
1
adbar/trafilatura
web-scraping
136
Tables not removed
I have just installed trafilatura 0.9.3 with Python 3.9.6. The attached file (apache.txt, which is actually a html file) contains tables that are not removed when I run: $ trafilatura --no-tables <apache.txt [apache.txt](https://github.com/adbar/trafilatura/files/7491052/apache.txt)
closed
2021-11-06T18:35:11Z
2021-12-08T17:12:07Z
https://github.com/adbar/trafilatura/issues/136
[ "bug" ]
pieterhartel
9
lukas-blecher/LaTeX-OCR
pytorch
98
Error while trying running the GUI
Hello , I appreciate the effort and time you are putting into this project it is indeed the utility most of us need but haven't known existed. However, I have an issue. I have just installed all requirements and then tried running `python gui.py` and got the following error `Traceback (most recent call last): File "D:\Latex_OCR\LaTeX-OCR-main\LaTeX-OCR-main\gui.py", line 274, in <module> ex = App(arguments) File "D:\Latex_OCR\LaTeX-OCR-main\LaTeX-OCR-main\gui.py", line 26, in __init__ self.initModel() File "D:\Latex_OCR\LaTeX-OCR-main\LaTeX-OCR-main\gui.py", line 33, in initModel args, *objs = pix2tex.initialize(self.args) File "D:\Latex_OCR\LaTeX-OCR-main\LaTeX-OCR-main\pix2tex.py", line 55, in initialize model.load_state_dict(torch.load(args.checkpoint, map_location=args.device)) File "C:\Users\amuka\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\nn\modules\module.py", line 1482, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for Model: Missing key(s) in state_dict: "decoder.net.attn_layers.layers.0.0.0.weight", "decoder.net.attn_layers.layers.0.0.0.bias", "decoder.net.attn_layers.layers.1.0.0.weight", "decoder.net.attn_layers.layers.1.0.0.bias", "decoder.net.attn_layers.layers.2.0.0.weight", "decoder.net.attn_layers.layers.2.0.0.bias", "decoder.net.attn_layers.layers.2.1.net.3.weight", "decoder.net.attn_layers.layers.2.1.net.3.bias", "decoder.net.attn_layers.layers.3.0.0.weight", "decoder.net.attn_layers.layers.3.0.0.bias", "decoder.net.attn_layers.layers.4.0.0.weight", "decoder.net.attn_layers.layers.4.0.0.bias", "decoder.net.attn_layers.layers.5.0.0.weight", "decoder.net.attn_layers.layers.5.0.0.bias", "decoder.net.attn_layers.layers.5.1.net.3.weight", "decoder.net.attn_layers.layers.5.1.net.3.bias", "decoder.net.attn_layers.layers.6.0.0.weight", "decoder.net.attn_layers.layers.6.0.0.bias", "decoder.net.attn_layers.layers.7.0.0.weight", "decoder.net.attn_layers.layers.7.0.0.bias", "decoder.net.attn_layers.layers.8.0.0.weight", "decoder.net.attn_layers.layers.8.0.0.bias", "decoder.net.attn_layers.layers.8.1.net.3.weight", "decoder.net.attn_layers.layers.8.1.net.3.bias", "decoder.net.attn_layers.layers.9.0.0.weight", "decoder.net.attn_layers.layers.9.0.0.bias", "decoder.net.attn_layers.layers.10.0.0.weight", "decoder.net.attn_layers.layers.10.0.0.bias", "decoder.net.attn_layers.layers.11.0.0.weight", "decoder.net.attn_layers.layers.11.0.0.bias", "decoder.net.attn_layers.layers.11.1.net.3.weight", "decoder.net.attn_layers.layers.11.1.net.3.bias". Unexpected key(s) in state_dict: "decoder.net.attn_layers.layers.0.0.weight", "decoder.net.attn_layers.layers.0.0.bias", "decoder.net.attn_layers.layers.1.0.weight", "decoder.net.attn_layers.layers.1.0.bias", "decoder.net.attn_layers.layers.2.0.weight", "decoder.net.attn_layers.layers.2.0.bias", "decoder.net.attn_layers.layers.2.1.net.2.weight", "decoder.net.attn_layers.layers.2.1.net.2.bias", "decoder.net.attn_layers.layers.3.0.weight", "decoder.net.attn_layers.layers.3.0.bias", "decoder.net.attn_layers.layers.4.0.weight", "decoder.net.attn_layers.layers.4.0.bias", "decoder.net.attn_layers.layers.5.0.weight", "decoder.net.attn_layers.layers.5.0.bias", "decoder.net.attn_layers.layers.5.1.net.2.weight", "decoder.net.attn_layers.layers.5.1.net.2.bias", "decoder.net.attn_layers.layers.6.0.weight", "decoder.net.attn_layers.layers.6.0.bias", "decoder.net.attn_layers.layers.7.0.weight", "decoder.net.attn_layers.layers.7.0.bias", "decoder.net.attn_layers.layers.8.0.weight", "decoder.net.attn_layers.layers.8.0.bias", "decoder.net.attn_layers.layers.8.1.net.2.weight", "decoder.net.attn_layers.layers.8.1.net.2.bias", "decoder.net.attn_layers.layers.9.0.weight", "decoder.net.attn_layers.layers.9.0.bias", "decoder.net.attn_layers.layers.10.0.weight", "decoder.net.attn_layers.layers.10.0.bias", "decoder.net.attn_layers.layers.11.0.weight", "decoder.net.attn_layers.layers.11.0.bias", "decoder.net.attn_layers.layers.11.1.net.2.weight", "decoder.net.attn_layers.layers.11.1.net.2.bias".` Any help or comment would be highly appreciated
closed
2022-02-09T16:45:36Z
2022-02-09T16:50:10Z
https://github.com/lukas-blecher/LaTeX-OCR/issues/98
[ "duplicate" ]
DoozyDoz
2
litestar-org/litestar
pydantic
3,399
Bug: Exception not handled correctly
### Description I noticed that when I tried to raise an HTTPException, instead of returning the dedicated HTTP status code, it was automatically returned as an error 500. ### URL to code causing the issue _No response_ ### MCVE ```python from litestar import Litestar, get from litestar.exceptions import HTTPException @get("/") def hello_world() -> dict[str, str]: """Keeping the tradition alive with hello world.""" raise HTTPException(410, "Gone") app = Litestar(route_handlers=[hello_world]) ``` ### Steps to reproduce ```bash Just navigate to the / route and notice that we get an 500 error instead of a 410. ``` ### Screenshots ```bash "![SCREENSHOT_DESCRIPTION](SCREENSHOT_LINK.png)" ``` ### Logs _No response_ ### Litestar Version litestar==2.8.2 ### Platform - [X] Linux - [ ] Mac - [ ] Windows - [ ] Other (Please specify in the description above)
closed
2024-04-17T20:12:37Z
2025-03-20T15:54:36Z
https://github.com/litestar-org/litestar/issues/3399
[ "Question" ]
sorasful
1
python-gino/gino
asyncio
344
Can not connect with sanic
I'm trying to connect with sanic using this [doc](https://github.com/fantix/gino/blob/master/docs/sanic.rst). But I can't start the sanic server ``` web_1 | [2018-09-20 16:10:09 +0600] [1] [INFO] Goin' Fast @ http://0.0.0.0:5000 web_1 | Executing <Task pending coro=<before_server_start() running at /usr/local/lib/python3.6/site-packages/gino/ext/sanic.py:124> wait_for=<Future pending cb=[<TaskWakeupMethWrapper object at 0x7f878f697b88>()] created at /usr/local/lib/python3.6/asyncio/tasks.py:341> cb=[run_until_complete.<locals>.<lambda>()] created at /usr/local/lib/python3.6/site-packages/sanic/server.py:496> took 0.194 seconds web_1 | [2018-09-20 16:10:09 +0600] [1] [ERROR] Experienced exception while trying to serve web_1 | Traceback (most recent call last): web_1 | File "/usr/local/lib/python3.6/site-packages/sanic/app.py", line 646, in run web_1 | serve(**server_settings) web_1 | File "/usr/local/lib/python3.6/site-packages/sanic/server.py", line 588, in serve web_1 | trigger_events(before_start, loop) web_1 | File "/usr/local/lib/python3.6/site-packages/sanic/server.py", line 496, in trigger_events web_1 | loop.run_until_complete(result) web_1 | File "uvloop/loop.pyx", line 1448, in uvloop.loop.Loop.run_until_complete web_1 | File "/usr/local/lib/python3.6/site-packages/gino/ext/sanic.py", line 124, in before_server_start web_1 | loop=loop, web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/ext/sanic.py", line 142, in set_bind web_1 | return await super().set_bind(bind, loop=loop, **kwargs) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/api.py", line 386, in set_bind web_1 | bind = await create_engine(bind, loop=loop, **kwargs) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/strategies.py", line 42, in create web_1 | pool = await dialect.init_pool(u, loop) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/dialects/asyncpg.py", line 318, in init_pool web_1 | **self._pool_kwargs) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/dialects/asyncpg.py", line 209, in _init web_1 | self._pool = await asyncpg.create_pool(**args) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/pool.py", line 398, in _async__init__ web_1 | await self._initialize() web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/pool.py", line 415, in _initialize web_1 | await first_ch.connect() web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/pool.py", line 125, in connect web_1 | self._con = await self._pool._get_new_connection() web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/pool.py", line 461, in _get_new_connection web_1 | **self._connect_kwargs) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/connection.py", line 1602, in connect web_1 | max_cacheable_statement_size=max_cacheable_statement_size) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/connect_utils.py", line 434, in _connect web_1 | raise last_error web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/connect_utils.py", line 426, in _connect web_1 | connection_class=connection_class) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/connect_utils.py", line 396, in _connect_addr web_1 | connector, timeout=timeout, loop=loop) web_1 | File "/usr/local/lib/python3.6/asyncio/tasks.py", line 358, in wait_for web_1 | return fut.result() web_1 | File "uvloop/loop.pyx", line 1884, in create_connection web_1 | OSError: Multiple exceptions: [Errno 111] Connection refused, [Errno 99] Cannot assign requested address web_1 | Traceback (most recent call last): web_1 | File "app.py", line 66, in <module> web_1 | app.run(host="0.0.0.0", port=5000, debug=True) web_1 | File "/usr/local/lib/python3.6/site-packages/sanic/app.py", line 646, in run web_1 | serve(**server_settings) web_1 | File "/usr/local/lib/python3.6/site-packages/sanic/server.py", line 588, in serve web_1 | trigger_events(before_start, loop) web_1 | File "/usr/local/lib/python3.6/site-packages/sanic/server.py", line 496, in trigger_events web_1 | loop.run_until_complete(result) web_1 | File "uvloop/loop.pyx", line 1448, in uvloop.loop.Loop.run_until_complete web_1 | File "/usr/local/lib/python3.6/site-packages/gino/ext/sanic.py", line 124, in before_server_start web_1 | loop=loop, web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/ext/sanic.py", line 142, in set_bind web_1 | return await super().set_bind(bind, loop=loop, **kwargs) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/api.py", line 386, in set_bind web_1 | bind = await create_engine(bind, loop=loop, **kwargs) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/strategies.py", line 42, in create web_1 | pool = await dialect.init_pool(u, loop) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/dialects/asyncpg.py", line 318, in init_pool web_1 | **self._pool_kwargs) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/gino/dialects/asyncpg.py", line 209, in _init web_1 | self._pool = await asyncpg.create_pool(**args) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/pool.py", line 398, in _async__init__ web_1 | await self._initialize() web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/pool.py", line 415, in _initialize web_1 | await first_ch.connect() web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/pool.py", line 125, in connect web_1 | self._con = await self._pool._get_new_connection() web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/pool.py", line 461, in _get_new_connection web_1 | **self._connect_kwargs) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/connection.py", line 1602, in connect web_1 | max_cacheable_statement_size=max_cacheable_statement_size) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/connect_utils.py", line 434, in _connect web_1 | raise last_error web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/connect_utils.py", line 426, in _connect web_1 | connection_class=connection_class) web_1 | File "/usr/local/lib/python3.6/asyncio/coroutines.py", line 110, in __next__ web_1 | return self.gen.send(None) web_1 | File "/usr/local/lib/python3.6/site-packages/asyncpg/connect_utils.py", line 396, in _connect_addr web_1 | connector, timeout=timeout, loop=loop) web_1 | File "/usr/local/lib/python3.6/asyncio/tasks.py", line 358, in wait_for web_1 | return fut.result() web_1 | File "uvloop/loop.pyx", line 1884, in create_connection web_1 | OSError: Multiple exceptions: [Errno 111] Connection refused, [Errno 99] Cannot assign requested address web_1 | sys:1: RuntimeWarning: coroutine 'Loop.create_server' was never awaited ```
closed
2018-09-20T10:18:18Z
2018-09-20T11:19:37Z
https://github.com/python-gino/gino/issues/344
[]
rana-ahmed
4
ymcui/Chinese-BERT-wwm
nlp
221
关于词表没有中文双引号的问题
我发现从huggingface上下载的全掩码中文[Bert/RoBerta](https://huggingface.co/hfl/chinese-roberta-wwm-ext)的词表(vocab.txt)中都没有中文的双引号`“”`,请问为什么会有这种情况呢? 我的下游任务是一个本文纠错的任务,因此当句子中出现中文双引号时,tokenizer会将其变成[UNK],非常影响纠错结果。有推荐的方法解决这个问题嘛?或许我应该手动在词表中添加中文双引号?
closed
2022-06-14T07:40:53Z
2022-06-14T13:03:13Z
https://github.com/ymcui/Chinese-BERT-wwm/issues/221
[]
Dicer-Zz
3
huggingface/transformers
pytorch
36,258
Bug introduced in `from_pretrained` `v4.48.3`..`v4.49.0`
Hi 🤗 Diffusers 🧨 noticed some failing tests starting with `v4.49.0` in `Kolors`, one of our models that uses a custom text encoder. ## Reproduction This is working on `v4.48.3`. ```python from transformers import AutoModel model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b", trust_remote_code=True) ``` On `v4.49.0`: ```python TypeError: empty() received an invalid combination of arguments - got (tuple, dtype=str, device=str), but expected one of: * (tuple of ints size, *, tuple of names names, torch.memory_format memory_format = None, torch.dtype dtype = None, torch.layout layout = None, torch.device device = None, bool pin_memory = False, bool requires_grad = False) * (tuple of ints size, *, torch.memory_format memory_format = None, Tensor out = None, torch.dtype dtype = None, torch.layout layout = None, torch.device device = None, bool pin_memory = False, bool requires_grad = False) ``` The issue seems to be that the config in the [test model](https://huggingface.co/hf-internal-testing/tiny-random-chatglm3-6b/blob/main/config.json) and checkpoints like [`Kwai-Kolors/Kolors-diffusers`](https://huggingface.co/Kwai-Kolors/Kolors-diffusers/blob/main/text_encoder/config.json) contain `torch_dtype` as a string. On Diffusers end explicitly setting `torch_dtype` when using `ChatGLMModel` and setting a default `torch_dtype` for `from_pretrained` paths is working https://github.com/huggingface/diffusers/pull/10816 and it's mainly internal effects as `torch_dtype` wasn't passed for some tests, should be ok for end users as they would generally pass `torch_dtype`.
closed
2025-02-18T12:28:18Z
2025-03-21T12:27:48Z
https://github.com/huggingface/transformers/issues/36258
[ "bug" ]
hlky
3
mwaskom/seaborn
data-science
3,413
Error thrown upon import with `numpy` versions >= 1.24.0
Hi all, When I try to import the latest seaborn (0.12.2), I am getting an AttributeError on numpy: ``` --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[1], line 1 ----> 1 import seaborn as sns File /opt/conda/lib/python3.8/site-packages/seaborn/__init__.py:5 3 from .utils import * # noqa: F401,F403 4 from .palettes import * # noqa: F401,F403 ----> 5 from .relational import * # noqa: F401,F403 6 from .regression import * # noqa: F401,F403 7 from .categorical import * # noqa: F401,F403 File /opt/conda/lib/python3.8/site-packages/seaborn/relational.py:17 8 from ._oldcore import ( 9 VectorPlotter, 10 ) 11 from .utils import ( 12 locator_to_legend_entries, 13 adjust_legend_subtitles, 14 _default_color, 15 _deprecate_ci, 16 ) ---> 17 from ._statistics import EstimateAggregator 18 from .axisgrid import FacetGrid, _facet_docs 19 from ._docstrings import DocstringComponents, _core_docs File /opt/conda/lib/python3.8/site-packages/seaborn/_statistics.py:31 29 import pandas as pd 30 try: ---> 31 from scipy.stats import gaussian_kde 32 _no_scipy = False 33 except ImportError: File /opt/conda/lib/python3.8/site-packages/scipy/stats/__init__.py:384 1 """ 2 .. _statsrefmanual: 3 (...) 380 381 """ 382 from __future__ import division, print_function, absolute_import --> 384 from .stats import * 385 from .distributions import * 386 from .morestats import * File /opt/conda/lib/python3.8/site-packages/scipy/stats/stats.py:179 176 from numpy import array, asarray, ma 178 from scipy._lib.six import callable, string_types --> 179 from scipy.spatial.distance import cdist 180 from scipy.ndimage import measurements 181 from scipy._lib._version import NumpyVersion File /opt/conda/lib/python3.8/site-packages/scipy/spatial/__init__.py:97 1 """ 2 ============================================================= 3 Spatial algorithms and data structures (:mod:`scipy.spatial`) (...) 92 93 """ 95 from __future__ import division, print_function, absolute_import ---> 97 from .kdtree import * 98 from .ckdtree import * 99 from .qhull import * File /opt/conda/lib/python3.8/site-packages/scipy/spatial/kdtree.py:8 6 import numpy as np 7 from heapq import heappush, heappop ----> 8 import scipy.sparse 10 __all__ = ['minkowski_distance_p', 'minkowski_distance', 11 'distance_matrix', 12 'Rectangle', 'KDTree'] 15 def minkowski_distance_p(x, y, p=2): File /opt/conda/lib/python3.8/site-packages/scipy/sparse/__init__.py:229 223 # Original code by Travis Oliphant. 224 # Modified and extended by Ed Schofield, Robert Cimrman, 225 # Nathan Bell, and Jake Vanderplas. 227 import warnings as _warnings --> 229 from .base import * 230 from .csr import * 231 from .csc import * File /opt/conda/lib/python3.8/site-packages/scipy/sparse/base.py:8 6 from scipy._lib.six import xrange 7 from scipy._lib._numpy_compat import broadcast_to ----> 8 from .sputils import (isdense, isscalarlike, isintlike, 9 get_sum_dtype, validateaxis, check_reshape_kwargs, 10 check_shape, asmatrix) 12 __all__ = ['spmatrix', 'isspmatrix', 'issparse', 13 'SparseWarning', 'SparseEfficiencyWarning'] 16 class SparseWarning(Warning): File /opt/conda/lib/python3.8/site-packages/scipy/sparse/sputils.py:17 11 __all__ = ['upcast', 'getdtype', 'isscalarlike', 'isintlike', 12 'isshape', 'issequence', 'isdense', 'ismatrix', 'get_sum_dtype'] 14 supported_dtypes = ['bool', 'int8', 'uint8', 'short', 'ushort', 'intc', 15 'uintc', 'longlong', 'ulonglong', 'single', 'double', 16 'longdouble', 'csingle', 'cdouble', 'clongdouble'] ---> 17 supported_dtypes = [np.typeDict[x] for x in supported_dtypes] 19 _upcast_memo = {} 22 def upcast(*args): File /opt/conda/lib/python3.8/site-packages/scipy/sparse/sputils.py:17, in <listcomp>(.0) 11 __all__ = ['upcast', 'getdtype', 'isscalarlike', 'isintlike', 12 'isshape', 'issequence', 'isdense', 'ismatrix', 'get_sum_dtype'] 14 supported_dtypes = ['bool', 'int8', 'uint8', 'short', 'ushort', 'intc', 15 'uintc', 'longlong', 'ulonglong', 'single', 'double', 16 'longdouble', 'csingle', 'cdouble', 'clongdouble'] ---> 17 supported_dtypes = [np.typeDict[x] for x in supported_dtypes] 19 _upcast_memo = {} 22 def upcast(*args): File /opt/conda/lib/python3.8/site-packages/numpy/__init__.py:320, in __getattr__(attr) 317 from .testing import Tester 318 return Tester --> 320 raise AttributeError("module {!r} has no attribute " 321 "{!r}".format(__name__, attr)) AttributeError: module 'numpy' has no attribute 'typeDict' ``` I noticed that `pyproject.toml` within `seaborn` has the line `"numpy>=1.20,!=1.24.0"`, and was wondering if this should be changed to `"numpy>=1.20,<=1.24.0"` instead? I am reproducing my `pip list` below: ``` WARNING: Ignoring invalid distribution -eerml (/opt/conda/lib/python3.8/site-packages) Package Version ---------------------------------- ------------------- absl-py 0.12.0 aiohttp 3.7.4.post0 alabaster 0.7.12 alembic 1.11.1 anndata 0.9.1 anyio 3.7.0 appdirs 1.4.4 argon2-cffi 20.1.0 arrow 1.2.3 astroid 2.5.6 astropy 4.2.1 asttokens 2.2.1 astunparse 1.6.3 async-generator 1.10 async-timeout 3.0.1 atomicwrites 1.4.0 attrs 21.2.0 Automat 20.2.0 autopep8 1.5.5 Babel 2.9.1 backcall 0.2.0 backports.shutil-get-terminal-size 1.0.0 backports.zoneinfo 0.2.1 batchglm 0.7.4 bcrypt 4.0.1 beautifulsoup4 4.9.3 binaryornot 0.4.4 biopython 1.81 bitarray 2.1.0 bkcharts 0.2 black 21.5b1 blaze 0.10.1 bleach 3.3.0 blessed 1.20.0 bokeh 2.3.2 boto 2.49.0 boto3 1.26.163 botocore 1.29.163 Bottleneck 1.3.2 boxsdk 3.7.2 brewer2mpl 1.4.1 Brotli 1.0.9 brotlipy 0.7.0 bs4 0.0.1 bson 0.5.10 cachetools 4.2.2 cairocffi 1.2.0 certifi 2020.12.5 cffi 1.14.5 cfgv 3.3.1 chardet 3.0.4 charset-normalizer 3.1.0 click 8.0.0 cloudpickle 1.6.0 clyent 1.2.1 cmake 3.26.4 colorama 0.4.4 conda 4.10.1 conda-package-handling 1.7.3 configobj 5.0.6 constantly 15.1.0 contextlib2 0.6.0.post1 contourpy 1.1.0 cookiecutter 1.7.0 coverage 5.5 croniter 1.3.15 cryptography 3.4.7 cx-Oracle 8.1.0 cycler 0.10.0 Cython 0.29.23 cytoolz 0.11.0 dash 2.10.2 dash-core-components 2.0.0 dash-html-components 2.0.0 dash-table 5.0.0 dask 2021.4.1 databricks-cli 0.17.7 datashape 0.5.2 dateutils 0.6.12 decorator 4.4.2 deepdiff 6.3.0 defusedxml 0.7.1 deprecation 2.1.0 diff-match-patch 20200713 diffxpy 0.7.4 distlib 0.3.6 distributed 2021.4.1 Django 2.2.5 django-research 1.8.0 dnspython 2.3.0 docker 6.1.3 docutils 0.16 entrypoints 0.3 et-xmlfile 1.1.0 exceptiongroup 1.1.1 executing 1.2.0 fastapi 0.88.0 fastcache 1.1.0 fastcluster 1.2.6 filelock 3.12.2 flake8 3.8.4 Flask 2.0.0 Flask-Compress 1.9.0 Flask-Cors 3.0.10 fonttools 4.40.0 fsspec 2023.6.0 future 0.18.2 gast 0.3.3 gevent 21.1.2 ggplot 0.11.5 gitdb 4.0.7 GitPython 3.1.14 glob2 0.7 gmpy2 2.0.8 google-auth 1.30.0 google-auth-oauthlib 0.4.4 google-pasta 0.2.0 gprofiler-official 1.0.0 greenlet 1.1.0 grpcio 1.37.1 gunicorn 20.1.0 h11 0.14.0 h5py 3.8.0 HeapDict 1.0.1 html5lib 1.1 hyperlink 21.0.0 hyperopt 0.2.7 hypothesis 6.12.0 identify 2.5.24 idna 2.10 igraph 0.10.4 imageio 2.9.0 imagesize 1.2.0 importlib-metadata 4.0.1 importlib-resources 5.12.0 incremental 21.3.0 inflection 0.5.1 iniconfig 1.1.1 inquirer 3.1.3 intervaltree 3.1.0 ipdb 0.13.13 ipykernel 5.5.4 ipyparallel 8.6.1 ipython 8.12.2 ipython-genutils 0.2.0 ipywidgets 7.6.3 isort 5.8.0 itsdangerous 2.1.2 JayDeBeApi 1.2.3 jdcal 1.4.1 jedi 0.17.2 jeepney 0.6.0 Jinja2 3.0.0 jinja2-time 0.2.0 jmespath 1.0.1 joblib 1.0.1 JPype1 1.2.1 json5 0.9.5 jsonify 0.5 jsonschema 3.2.0 jupyter 1.0.0 jupyter-client 6.1.12 jupyter-codeserver-proxy 1.0b1 jupyter-console 6.4.0 jupyter-contrib-core 0.4.2 jupyter-contrib-nbextensions 0.7.0 jupyter-core 4.7.1 jupyter-highlight-selected-word 0.2.0 jupyter-nbextensions-configurator 0.6.3 jupyter-server 1.7.0 jupyter-server-mathjax 0.2.2 jupyter-server-proxy 3.0.2 jupyterlab 2.3.2 jupyterlab-git 0.24.0 jupyterlab-pygments 0.1.2 jupyterlab-server 1.2.0 jupyterlab-widgets 1.0.0 kaleido 0.2.1 Keras 2.4.3 Keras-Preprocessing 1.1.2 keyring 23.0.1 kiwisolver 1.3.1 lazy-object-proxy 1.6.0 lightning 2.0.3 lightning-cloud 0.5.36 lightning-utilities 0.8.0 lit 16.0.5.post0 llvmlite 0.40.1 locket 0.2.1 lxml 4.6.3 Mako 1.2.4 Markdown 3.3.4 markdown-it-py 3.0.0 MarkupSafe 2.0.0 matplotlib 3.7.1 matplotlib-inline 0.1.2 matplotlib-venn 0.11.9 mccabe 0.6.1 mdurl 0.1.2 mistune 0.8.4 mlflow 2.4.1 mpltools 0.2.0 mpmath 1.2.1 msgpack 1.0.2 multidict 5.1.0 multipledispatch 0.6.0 mypy-extensions 0.4.3 natsort 8.3.1 nbclassic 0.2.8 nbclient 0.5.3 nbconvert 6.0.7 nbdime 2.1.1 nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5.1 nltk 3.6.2 nodeenv 1.8.0 nose 1.3.7 notebook 6.3.0 numba 0.57.1 numexpr 2.7.3 numpy 1.24.4 numpydoc 1.1.0 nvidia-cublas-cu11 11.10.3.66 nvidia-cuda-cupti-cu11 11.7.101 nvidia-cuda-nvrtc-cu11 11.7.99 nvidia-cuda-runtime-cu11 11.7.99 nvidia-cudnn-cu11 8.5.0.96 nvidia-cufft-cu11 10.9.0.58 nvidia-curand-cu11 10.2.10.91 nvidia-cusolver-cu11 11.4.0.1 nvidia-cusparse-cu11 11.7.4.91 nvidia-nccl-cu11 2.14.3 nvidia-nvtx-cu11 11.7.91 oauthlib 3.1.0 odo 0.5.0 olefile 0.46 openpyxl 3.0.7 opt-einsum 3.3.0 ordered-set 4.1.0 packaging 23.1 pandas 1.2.4 pandocfilters 1.4.3 paramiko 3.2.0 parso 0.7.0 partd 1.2.0 path 15.1.2 path.py 12.5.0 pathlib2 2.3.5 pathspec 0.8.1 patsy 0.5.3 pep8 1.7.1 pexpect 4.8.0 pickleshare 0.7.5 Pillow 8.2.0 pip 23.1.2 pkginfo 1.7.0 platformdirs 3.5.3 plotly 5.15.0 pluggy 0.13.1 ply 3.11 polling2 0.4.6 poyo 0.5.0 pre-commit 3.3.2 prometheus-client 0.10.1 prompt-toolkit 3.0.38 protobuf 3.16.0 psutil 5.8.0 psycopg2-binary 2.8.6 ptyprocess 0.7.0 pure-eval 0.2.2 py 1.10.0 py4j 0.10.9.7 pyarrow 12.0.1 pyasn1 0.4.8 pyasn1-modules 0.2.8 pycodestyle 2.6.0 pycosat 0.6.3 pycparser 2.20 pycrypto 2.6.1 pycurl 7.43.0.6 pydantic 1.10.9 pydocstyle 6.0.0 pyerfa 1.7.3 pyflakes 2.2.0 Pygments 2.15.1 PyJWT 2.7.0 pylint 2.8.2 pyls-black 0.4.6 pyls-spyder 0.3.2 pymongo 4.4.0 PyNaCl 1.5.0 pynndescent 0.5.10 pyodbc 4.0.30 pyopenms 2.7.0 pyOpenSSL 20.0.1 pypandoc 1.5 pyparsing 2.4.7 PyQt5 5.12.3 PyQt5-sip 12.9.0 PyQtWebEngine 5.12.1 pyquickbase 0.0.6 pyro-api 0.1.2 pyro-ppl 1.8.5 pyrsistent 0.17.3 pysam 0.21.0 pysftp 0.2.9 PySocks 1.7.1 pyteomics 4.6 pytest 6.2.4 pytest-arraydiff 0.3 pytest-astropy 0.8.0 pytest-astropy-header 0.1.2 pytest-cov 2.11.1 pytest-doctestplus 0.9.0 pytest-filter-subpackage 0.1.1 pytest-openfiles 0.5.0 pytest-remotedata 0.3.2 python-dateutil 2.8.1 python-domino 1.0.4 python-editor 1.0.4 python-jsonrpc-server 0.4.0 python-language-server 0.36.2 python-multipart 0.0.6 pytorch-lightning 2.0.3 pytz 2021.1 pytz-deprecation-shim 0.1.0.post0 PyWavelets 1.1.1 pyxdg 0.27 PyYAML 5.4.1 pyzmq 22.0.3 QDarkStyle 3.0.2 qmplot 0.3.2 qstylizer 0.2.0 QtAwesome 1.0.2 qtconsole 5.1.0 QtPy 1.9.0 querystring-parser 1.2.4 readchar 4.0.5 regex 2021.4.4 requests 2.31.0 requests-oauthlib 1.3.0 requests-toolbelt 1.0.0 rich 13.4.2 rope 0.19.0 rpy2 3.5.12 rsa 4.7.2 ruamel-yaml-conda 0.15.100 s3fs 0.4.2 s3transfer 0.6.1 scanpy 1.9.3 scikit-image 0.18.1 scikit-learn 0.24.2 scipy 1.4.1 seaborn 0.12.2 SecretStorage 3.3.1 seerbio-library 2.1.1 seerml 0.0.1a1 seerml-source 0.3.0 Send2Trash 1.5.0 service-identity 21.1.0 session-info 1.0.0 setuptools 52.0.0.post20210125 simpervisor 0.4 simplegeneric 0.8.1 singledispatch 3.6.1 six 1.15.0 smart-open 6.3.0 smmap 4.0.0 sniffio 1.2.0 snowballstemmer 2.1.0 sortedcollections 2.1.0 sortedcontainers 2.3.0 soupsieve 2.2.1 sparse 0.14.0 Sphinx 3.5.4 sphinxcontrib-applehelp 1.0.2 sphinxcontrib-devhelp 1.0.2 sphinxcontrib-htmlhelp 1.0.3 sphinxcontrib-jsmath 1.0.1 sphinxcontrib-qthelp 1.0.3 sphinxcontrib-serializinghtml 1.1.4 sphinxcontrib-websupport 1.2.4 spyder 5.0.2 spyder-kernels 2.0.2 SQLAlchemy 1.4.15 sqlparse 0.4.4 stack-data 0.6.2 starlette 0.22.0 starsessions 1.3.0 statsmodels 0.14.0 stdlib-list 0.8.0 sympy 1.8 tables 3.6.1 tabulate 0.9.0 tblib 1.7.0 tenacity 8.2.2 tensorboard 2.5.0 tensorboard-data-server 0.6.1 tensorboard-plugin-wit 1.8.0 tensorflow-estimator 2.3.0 termcolor 1.1.0 terminado 0.9.5 testpath 0.4.4 textdistance 4.2.1 texttable 1.6.7 threadpoolctl 2.1.0 three-merge 0.1.1 tifffile 2021.4.8 tinycss2 1.1.0 toml 0.10.2 tomli 2.0.1 tomli_w 1.0.0 toolz 0.11.1 torch 2.0.1 torchmetrics 0.11.4 torchvision 0.15.2 tornado 6.1 tqdm 4.59.0 traitlets 5.9.0 triton 2.0.0 Twisted 21.2.0 typing_extensions 4.6.3 tzdata 2023.3 tzlocal 4.3 ujson 4.0.2 umap-learn 0.5.3 unicodecsv 0.14.1 UpSetPlot 0.8.0 urllib3 1.26.16 uvicorn 0.22.0 uWSGI 2.0.19.1 venn 0.1.3 virtualenv 20.23.0 watchdog 1.0.2 wcwidth 0.2.5 webencodings 0.5.1 websocket 0.2.1 websocket-client 0.59.0 websockets 11.0.3 Werkzeug 2.0.0 wheel 0.36.2 whichcraft 0.6.1 widgetsnbextension 3.5.1 wrapt 1.12.1 wurlitzer 2.1.0 xgboost 1.7.5 xlrd 2.0.1 XlsxWriter 1.4.2 xlwt 1.3.0 yapf 0.31.0 yarl 1.6.3 zict 2.0.0 zipp 3.4.1 zope.event 4.5.0 zope.interface 5.4.0 zstandard 0.21.0 ``` Thanks a bunch.
closed
2023-06-29T18:28:40Z
2023-07-01T17:42:20Z
https://github.com/mwaskom/seaborn/issues/3413
[]
guhanrv
4
miLibris/flask-rest-jsonapi
sqlalchemy
27
Decorator wrapping when creating new Resource class
Every time new Resource class instantiates, methods (get, post, patch, put) are wrapped with check_headers decorator. Wrapping occures on class level. For example, after creating ten Resource classes, there are ten same decorators wrapping get method. https://github.com/miLibris/flask-rest-jsonapi/blob/master/flask_rest_jsonapi/resource.py#L39 Since Flask [creates new instance](https://github.com/pallets/flask/blob/master/flask/views.py#L83) of View class (which is inherited by Resource) with every incoming request, in the end there are lots of same decorators wrapping (get, post, patch, put) methods. That causes RecursionError at some point.
closed
2017-04-07T15:53:40Z
2017-04-11T07:32:06Z
https://github.com/miLibris/flask-rest-jsonapi/issues/27
[]
kypsibir
3
omar2535/GraphQLer
graphql
100
[QOL] Make objects bucket a singleton
It's tedious to pass around the objects bucket through the `fuzzer` to the `fengine` module. Refactoring the objects bucket from a simple dictionary into its singleton class will allow us to contain all objects-bucket-related functions in a single file. # Deliverable Create a `objects_bucket.py` in the which has a singleton for the objects bucket. Reference this for all calls to the objects bucket except for the first call in the fuzzer initialization step. # Extension Add not only IDs that are seen in the responses, but also other object fields
closed
2024-08-24T05:17:46Z
2024-08-29T05:50:55Z
https://github.com/omar2535/GraphQLer/issues/100
[ "➕enhancement" ]
omar2535
1
streamlit/streamlit
data-science
10,407
Default `set_page_config` through `.streamlit/config.toml`
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary Currently, when setting `st.set_page_config()` with `page_title` and `page_icon`, Streamlit still displays the default "Streamlit" title and icon during the initial loading phase. This behavior can be disruptive for larger web applications where branding consistency is important. It would be useful to define default values for `set_page_config` parameters inside `.streamlit/config.toml`, ensuring that even before `st.set_page_config()` is explicitly called in a script, the title and icon match the expected defaults. ### Why? I'm always frustrated when the page first loads with the Streamlit default title and icon, even though I have set my own values using `st.set_page_config()`. This creates an unpolished user experience, especially for production-ready applications. ### How? Introduce the ability to specify default values for `page_title`, `page_icon`, `layout`, and other `st.set_page_config` parameters inside `.streamlit/config.toml`. If a user does not call `st.set_page_config()` in their script, Streamlit should use these defaults from the config file instead of falling back to "Streamlit" and the default icon. For example, the `.streamlit/config.toml` file could support: ```toml [theme] defaultPageTitle = "My App" defaultPageIcon = "favicon.png" ``` ### Additional Context _No response_
open
2025-02-15T13:42:52Z
2025-02-16T17:39:18Z
https://github.com/streamlit/streamlit/issues/10407
[ "type:enhancement", "feature:st.set_page_config", "feature:config" ]
pallagj
1
BlinkDL/RWKV-LM
pytorch
250
RWKV only show lower GPU memory occupancy when inference?
I tried to use RWKV(e.g., Vision-RWKV) in CV tasks. But I found RWKV shows similar GPU memory occupancy to full-attention Transformer (like ViT) when training. I found both RWKV and Vision-RWKV only present their inference memory occupancy in the paper. The high memory consume is not friendly for my tasks. Do you have any advice?
open
2024-07-21T10:27:46Z
2024-09-08T19:40:17Z
https://github.com/BlinkDL/RWKV-LM/issues/250
[]
thucz
3
Kanaries/pygwalker
plotly
359
[DEV-523] [BUG] pygwalker duckdb for large dataset may crash in frontend
- version: pygwalker 0.3.17 Reference article: https://zenn.dev/aidemy/articles/3aeea1470f1535 <sub>[DEV-523](https://linear.app/kanaries/issue/DEV-523/[bug]-pygwalker-duckdb-for-large-dataset-may-crash-in-frontend)</sub>
closed
2023-12-19T03:31:10Z
2024-01-08T08:21:58Z
https://github.com/Kanaries/pygwalker/issues/359
[ "bug", "linear" ]
ObservedObserver
0
strawberry-graphql/strawberry-django
graphql
655
Returning a Query type in a mutation's payload
I have a `Query` type in my schema that defines some custom resolvers and uses `strawberry_django.field`/`strawberry_django.node` without providing resolver functions. ```python @strawberry_django.type(SomeModel) class SomeType: id: auto name: auto @strawberry.type(name='Query') class Query: some_type_query: SomeType = strawberry_django.field() @strawberry_django.field() def custom_resolver(self) -> bool: return True ``` I want to return a `Query` along with the mutation result, enabling the user to fetch whatever data they need in a single request. However, when I initialize a Query object, I must provide arguments. ```python @strawberry.type class MutationPayload: some_type: SomeType @strawberry_django.field( def query(self) -> Query: return Query() @strawberry.type class Mutation: @strawberry_django.mutation() def mutation_resolver(self) -> MutationPayload: some_model = SomeModel.objects.create(name="test") return MutationPayload(some_type=some_model) ``` ``` { "data": null, "errors": [ { "message": "Query.__init__() missing 1 required keyword-only argument: 'some_type_query'", "locations": [ { "line": 7, "column": 5 } ], "path": [ "mutationResolver", "query" ] } ] } ``` Is it possible to initialize the `Query` type without providing all the arguments? Or is there an easy way to provide the arguments to the query? <!-- POLAR PLEDGE BADGE START --> ## Upvote & Fund - We're using [Polar.sh](https://polar.sh/strawberry-graphql) so you can upvote and help fund this issue. - We receive the funding once the issue is completed & confirmed by you. - Thank you in advance for helping prioritize & fund our backlog. <a href="https://polar.sh/strawberry-graphql/strawberry-django/issues/655"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://polar.sh/api/github/strawberry-graphql/strawberry-django/issues/655/pledge.svg?darkmode=1"> <img alt="Fund with Polar" src="https://polar.sh/api/github/strawberry-graphql/strawberry-django/issues/655/pledge.svg"> </picture> </a> <!-- POLAR PLEDGE BADGE END -->
closed
2024-11-08T14:51:01Z
2024-12-14T17:32:31Z
https://github.com/strawberry-graphql/strawberry-django/issues/655
[]
rcybulski1122012
1
cvat-ai/cvat
pytorch
8,227
backup task and import it in CVAT online website
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce I backup task and download it locally when I try to create a new task from backup it gives me error AttributeError: 'list' object has no attribute 'get' [error cvat backup.docx](https://github.com/user-attachments/files/16414027/error.cvat.backup.docx) see attached file can you please advise how to solve it also I tried to export the annotation using CVAT format and coco and import it alone but it did not work ### Expected Behavior _No response_ ### Possible Solution _No response_ ### Context _No response_ ### Environment _No response_
closed
2024-07-29T13:32:43Z
2024-09-06T11:18:46Z
https://github.com/cvat-ai/cvat/issues/8227
[ "bug", "need info" ]
kh-diab
7
axnsan12/drf-yasg
django
453
Migrating django-rest-swagger to drf-yasg issue. How to display input parameters ?
I am trying to migrate my API from django-rest-swagger==2.1.1 to drf-yasg Meaning, trying to use this since I am migrating Django 1.11.7 --> 2.2 djangorestframework==3.9 drf-yasg==1.16.1 In the current code, I'ved used django-rest-swagger simply by creating the API this way: (https://gist.github.com/axilaris/92d9d2de6bdd2476cdd02fb535d9bde5 - here are more details in url.py, api.py, swagger_schema.py) in api.py: @api_view(['POST']) def get_countries(request): # ----- YAML below for Swagger ----- """ description: countries list parameters: - name: token type: string required: true location: form """ ...... return Response(countries_list, status=status.HTTP_200_OK) Having now enabled djangorestframework==3.9 drf-yasg==1.16.1 I notice the new swagger does not have any input forms parameter like in this screenshot https://i.imgur.com/YLYihRi.png How can I customize drf-yasg based on my current API since I dont want to break the mobile to have that kind of documentation. It doesnt matter if its swagger or redoc ?
closed
2019-09-12T03:45:49Z
2020-10-26T01:12:00Z
https://github.com/axnsan12/drf-yasg/issues/453
[]
axilaris
2
tensorflow/tensor2tensor
deep-learning
1,193
checkpoint_path AttributeError during exporting
### Description I am trying to use t2t-exporter to export a specific checkpoint. I set checkpoint_path, but when i ran t2t-exporter, it complains AttributeError. ``` t2t-exporter \ --data_dir=$DATA_DIR \ --checkpoint_path=$TRAIN_DIR\/model.ckpt-251001 \ --problem=$PROBLEM \ --model=$MODEL \ --hparams_set=$HPARAMS \ --t2t_usr_dir=$USR_DIR ``` INFO:tensorflow:Importing user module train_mat_adv from path /models Traceback (most recent call last): File "/home/ubuntu/tensorflow/bin/t2t-exporter", line 16, in <module> tf.app.run() File "/home/ubuntu/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 126, in run _sys.exit(main(argv)) File "/home/ubuntu/tensorflow/bin/t2t-exporter", line 12, in main export.main(argv) File "/home/ubuntu/tensorflow/local/lib/python2.7/site-packages/tensor2tensor/serving/export.py", line 59, in main run_config = t2t_trainer.create_run_config(hparams) File "/home/ubuntu/tensorflow/local/lib/python2.7/site-packages/tensor2tensor/bin/t2t_trainer.py", line 189, in create_run_config assert FLAGS.output_dir or FLAGS.checkpoint_path File "/home/ubuntu/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/platform/flags.py", line 85, in __getattr__ return wrapped.__getattr__(name) File "/home/ubuntu/tensorflow/local/lib/python2.7/site-packages/absl/flags/_flagvalues.py", line 470, in __getattr__ raise AttributeError(name) AttributeError: checkpoint_path
open
2018-11-01T00:39:22Z
2018-11-15T05:55:52Z
https://github.com/tensorflow/tensor2tensor/issues/1193
[]
KayShenClarivate
7
adbar/trafilatura
web-scraping
41
Importing only the extract utilities
Hello @adbar, thanks for your tremendous work on the library. Do you know if there is a way to install and then import the library so that you will only load the utilities related to raw content extraction from a html string? If not, is there anyway we can discuss this particular topic and see if I could help you implement this in any way? My use case is basically the following: I have a CLI tool that currently relies on dragnet and I would like to jump ship and adopt trafilatura. My issue is that I don't want to install the net-related dependencies you list in your setup.py (notably `requests` and `tldextract`) because they will clash with some of my dependencies and I have my own means of downloading things, dealing with urls etc. Have a good day,
closed
2020-12-14T18:07:56Z
2021-01-04T14:25:18Z
https://github.com/adbar/trafilatura/issues/41
[]
Yomguithereal
8
huggingface/transformers
tensorflow
36,341
suppress_tokens=[] should be legal as some older. whisper models rely on this
### System Info - `transformers` version: 4.46.0 - Platform: macOS-15.2-arm64-arm-64bit - Python version: 3.11.8 - Huggingface_hub version: 0.25.2 - Safetensors version: 0.4.2 - Accelerate version: not installed - Accelerate config: not found - PyTorch version (GPU?): 2.2.1 (False) - Tensorflow version (GPU?): 2.16.1 (False) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed ### Who can help? I'm intending to fix this at once ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [x] My own task or dataset (give details below) ### Reproduction Run this code ```python import torch from transformers import pipeline # path to the audio file to be transcribed audio = "/path/to/audio.format" device = "cuda:0" if torch.cuda.is_available() else "cpu" transcribe = pipeline(task="automatic-speech-recognition", model="vasista22/whisper-tamil-large-v2", chunk_length_s=30, device=device) transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="ta", task="transcribe") print('Transcription: ', transcribe(audio)["text"]) ``` on any machine ### Expected behavior The model produces a prediction, and no error is thrown What actually happens is I get ``` /Users/plato/code/translation-station/.venv/lib/python3.11/site-packages/transformers/models/whisper/generation_whisper.py:573: FutureWarning: The input name `inputs` is deprecated. Please make sure to use `input_features` instead. warnings.warn( Traceback (most recent call last): File "/Users/plato/code/translation-station/pad.py", line 11, in <module> print('Transcription: ', transcribe(audio)["text"]) ^^^^^^^^^^^^^^^^^ File "/Users/plato/code/translation-station/.venv/lib/python3.11/site-packages/transformers/pipelines/automatic_speech_recognition.py", line 283, in __call__ return super().__call__(inputs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/plato/code/translation-station/.venv/lib/python3.11/site-packages/transformers/pipelines/base.py", line 1360, in __call__ return next( ^^^^^ File "/Users/plato/code/translation-station/.venv/lib/python3.11/site-packages/transformers/pipelines/pt_utils.py", line 124, in __next__ item = next(self.iterator) ^^^^^^^^^^^^^^^^^^^ File "/Users/plato/code/translation-station/.venv/lib/python3.11/site-packages/transformers/pipelines/pt_utils.py", line 269, in __next__ processed = self.infer(next(self.iterator), **self.params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/plato/code/translation-station/.venv/lib/python3.11/site-packages/transformers/pipelines/base.py", line 1275, in forward model_outputs = self._forward(model_inputs, **forward_params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/plato/code/translation-station/.venv/lib/python3.11/site-packages/transformers/pipelines/automatic_speech_recognition.py", line 521, in _forward tokens = self.model.generate( ^^^^^^^^^^^^^^^^^^^^ File "/Users/plato/code/translation-station/.venv/lib/python3.11/site-packages/transformers/models/whisper/generation_whisper.py", line 739, in generate decoder_input_ids, kwargs = self._prepare_decoder_input_ids( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/plato/code/translation-station/.venv/lib/python3.11/site-packages/transformers/models/whisper/generation_whisper.py", line 1782, in _prepare_decoder_input_ids prev_start_of_text = suppress_tokens[-2] if suppress_tokens is not None else None ~~~~~~~~~~~~~~~^^^^ IndexError: index -2 is out of bounds for dimension 0 with size 0 ``` this exact same error was noticed on some other models posted on huggingface by https://huggingface.co/vasista22 around 2 years ago, for example https://huggingface.co/vasista22/whisper-tamil-large-v2/discussions/4 and https://huggingface.co/vasista22/whisper-hindi-small/discussions/7
closed
2025-02-22T00:45:55Z
2025-02-28T20:55:24Z
https://github.com/huggingface/transformers/issues/36341
[ "bug" ]
Lewington-pitsos
2
MagicStack/asyncpg
asyncio
363
Got an unexpected number of seconds in datetime from asyncpg
* **asyncpg version**: 0.17.0 * **PostgreSQL version**: 10.3 * **Do you use a PostgreSQL SaaS? If so, which? Can you reproduce the issue with a local PostgreSQL install?**: reproduced with a local install * **Python version**: 3.6.5 * **Platform**: Linux x86_64 * **Do you use pgbouncer?**: no * **Did you install asyncpg with pip?**: yes ```python from datetime import datetime import asyncio import asyncpg async def main(): pool = await asyncpg.create_pool( database='postgres', user='postgres', host='127.0.0.1', password='1234', port=2000 ) async with pool.acquire() as connection: dt_in = datetime(1970, 1, 1, 20, 31, 23, 648000) dt_out = await connection.fetchval("SELECT '%s'::timestamp" % dt_in) op = '==' if dt_in == dt_out else '!=' print('%s %s %s' % (dt_in, op, dt_out)) loop = asyncio.get_event_loop() loop.run_until_complete(main()) ``` Output: ``` 1970-01-01 20:31:23.648000 != 1970-01-01 20:31:24.648000 ``` But in psql all works fine: ``` postgres=# select '1970-01-01 20:31:23.648000'::timestamp; timestamp ------------------------- 1970-01-01 20:31:23.648 (1 row) ``` I guess there is a problem with time parsing in asyncpg. Maybe seconds were rounded somewhere, like this: ``` >>> d datetime.datetime(1970, 1, 1, 20, 31, 23, 648000) >>> d.timestamp() 63083.648 >>> int(d.timestamp()) % 60 23 >>> round(d.timestamp()) % 60 24 ```
closed
2018-09-18T16:21:54Z
2018-09-18T19:42:16Z
https://github.com/MagicStack/asyncpg/issues/363
[]
rossnomann
0
google-research/bert
tensorflow
973
Question about using function 'tf.squeeze' for selecting 'first_token_tensor'
https://github.com/google-research/bert/blob/cc7051dc592802f501e8a6f71f8fb3cf9de95dc9/modeling.py#L227 I'd like to ask there is a reason to use tf.squeeze rather than below? ```python first_token_tensor = self.sequence_output[:, 0, :] ``` Is it related with performance issue? Thanks
open
2019-12-28T08:08:42Z
2019-12-28T08:08:42Z
https://github.com/google-research/bert/issues/973
[]
jihobak
0
PokemonGoF/PokemonGo-Bot
automation
6,216
nicodeDecodeError: 'ascii' codec can't decode byte 0x9c in position 1: ordinal not in range(128)
### Steps to Reproduce Fresh start of the bot after a clean generation of config+auth files ### Output when issue occurred --------------------Starting bot-------------------- 2017-10-10 14:40:02,233 [ cli] [INFO] PokemonGO Bot v1.0 2017-10-10 14:40:02,244 [ cli] [INFO] commit: unknown 2017-10-10 14:40:02,246 [ cli] [INFO] No auth argument specified, checking for C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\..\configs\auth.json 2017-10-10 14:40:02,246 [ cli] [INFO] No config argument specified, checking for C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\..\configs\config.json 2017-10-10 14:40:02,250 [ cli] [INFO] Configuration initialized 2017-10-10 14:40:02,250 [pokemongo_bot.health_record.bot_event] [INFO] Health check is enabled. For more information: 2017-10-10 14:40:02,252 [pokemongo_bot.health_record.bot_event] [INFO] https://github.com/PokemonGoF/PokemonGo-Bot/tree/dev#analytics 2017-10-10 14:40:02,259 [requests.packages.urllib3.connectionpool] [INFO] Starting new HTTP connection (1): www.google-analytics.com (6532) wsgi starting up on http://127.0.0.1:4000 [2017-10-10 14:40:02] [PokemonGoBot] [INFO] Setting start location. [2017-10-10 14:40:04] [PokemonGoBot] [INFO] Location found: budapest (47.497912, 19.040235, 0.0) [2017-10-10 14:40:04] [PokemonGoBot] [INFO] Now at (47.497912, 19.040235, 0.0) [2017-10-10 14:40:04] [PokemonGoBot] [INFO] Login procedure started. [2017-10-10 14:40:11] [PokemonGoBot] [INFO] Login successful. [2017-10-10 14:40:11] [PokemonGoBot] [INFO] Checking for captcha challenge. [2017-10-10 14:40:11] [PokemonGoBot] [WARNING] No 2captcha token set, executing manual solving [2017-10-10 14:40:11] [PokemonGoBot] [ERROR] Error with Chromedriver, please ensure it is the latest version. Exception AttributeError: "'Service' object has no attribute 'process'" in <bound method Service.__del__ of <selenium.webdriver.chrome.service.Service object at 0x0000000008ABC208>> ignored _inventory was not initialized _inventory was not initialized [2017-10-10 14:40:11] [ cli] [INFO] [2017-10-10 14:40:11] [ cli] [INFO] Ran for 0:00:09 [2017-10-10 14:40:11] [ cli] [INFO] Total XP Earned: 0 Average: 0.00/h [2017-10-10 14:40:11] [ cli] [INFO] Travelled 0.00km [2017-10-10 14:40:11] [ cli] [INFO] Visited 0 stops [2017-10-10 14:40:11] [ cli] [INFO] Encountered 0 pokemon, 0 caught, 0 released, 0 evolved, 0 never seen before () [2017-10-10 14:40:11] [ cli] [INFO] Threw 0 pokeballs [2017-10-10 14:40:11] [ cli] [INFO] Earned 0 Stardust [2017-10-10 14:40:11] [ cli] [INFO] Hatched eggs 0 [2017-10-10 14:40:11] [ cli] [INFO] [2017-10-10 14:40:11] [ cli] [INFO] Highest CP Pokemon: [2017-10-10 14:40:11] [ cli] [INFO] Most Perfect Pokemon: Traceback (most recent call last): File "pokecli.py", line 978, in <module> main() File "pokecli.py", line 247, in main bot = start_bot(bot, config) File "pokecli.py", line 199, in start_bot bot.start(bot) File "C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\__init__.py", line 186, in start self._setup_api() File "C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\__init__.py", line 1187, in _setup_api self.login() File "C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\__init__.py", line 1099, in login formatted="Login successful." File "C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\event_manager.py", line 209, in emit handler.handle_event(event, sender, level, formatted_msg, data) File "C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\event_handlers\captcha_handler.py", line 98, in handle_event token = self.get_token(url) File "C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\event_handlers\captcha_handler.py", line 48, in get_token sys.exit(1) NameError: global name 'sys' is not defined [2017-10-10 14:40:11] [sentry.errors] [ERROR] Sentry responded with an error: 'ascii' codec can't decode byte 0x9c in position 1: ordinal not in range(128) (url: https://app.getsentry.com/api/90254/store/) Traceback (most recent call last): File "C:\Python27\lib\site-packages\raven\transport\threaded.py", line 174, in send_sync super(ThreadedHTTPTransport, self).send(data, headers) File "C:\Python27\lib\site-packages\raven\transport\http.py", line 47, in send ca_certs=self.ca_certs, File "C:\Python27\lib\site-packages\raven\utils\http.py", line 66, in urlopen return opener.open(url, data, timeout) File "C:\Python27\lib\site-packages\future\backports\urllib\request.py", line 494, in open response = self._open(req, data) File "C:\Python27\lib\site-packages\future\backports\urllib\request.py", line 512, in _open '_open', req) File "C:\Python27\lib\site-packages\future\backports\urllib\request.py", line 466, in _call_chain result = func(*args) File "C:\Python27\lib\site-packages\raven\utils\http.py", line 46, in https_open return self.do_open(ValidHTTPSConnection, req) File "C:\Python27\lib\site-packages\future\backports\urllib\request.py", line 1284, in do_open h.request(req.get_method(), req.selector, req.data, headers) File "C:\Python27\lib\httplib.py", line 1057, in request self._send_request(method, url, body, headers) File "C:\Python27\lib\httplib.py", line 1097, in _send_request self.endheaders(body) File "C:\Python27\lib\httplib.py", line 1053, in endheaders self._send_output(message_body) File "C:\Python27\lib\httplib.py", line 895, in _send_output msg += message_body UnicodeDecodeError: 'ascii' codec can't decode byte 0x9c in position 1: ordinal not in range(128) [2017-10-10 14:40:11] [sentry.errors.uncaught] [ERROR] [u"NameError: global name 'sys' is not defined", u' File "pokecli.py", line 978, in <module>', u' File "pokecli.py", line 247, in main', u' File "pokecli.py", line 199, in start_bot', u' File "C:\\Users\\birdo\\PokemonGo-BootPokemonGo-Bot\\pokemongo_bot\\__init__.py", line 186, in start', u' File "C:\\Users\\birdo\\PokemonGo-BootPokemonGo-Bot\\pokemongo_bot\\__init__.py", line 1187, in _setup_api', u' File "C:\\Users\\birdo\\PokemonGo-BootPokemonGo-Bot\\pokemongo_bot\\__init__.py", line 1099, in login', u' File "C:\\Users\\birdo\\PokemonGo-BootPokemonGo-Bot\\pokemongo_bot\\event_manager.py", line 209, in emit', u' File "C:\\Users\\birdo\\PokemonGo-BootPokemonGo-Bot\\pokemongo_bot\\event_handlers\\captcha_handler.py", line 98, in handle_event', u' File "C:\\Users\\birdo\\PokemonGo-BootPokemonGo-Bot\\pokemongo_bot\\event_handlers\\captcha_handler.py", line 48, in get_token'] Something went wrong and the bot needed to be restarted. Please investigate the cause. Waiting for 56 seconds, press a key to continue ... 2017-10-10 14:40:23,204 [ cli] [INFO] PokemonGO Bot v1.0 2017-10-10 14:44:38,732 [ cli] [INFO] commit: unknown 2017-10-10 14:44:38,733 [ cli] [INFO] No auth argument specified, checking for C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\..\configs\auth.json 2017-10-10 14:44:38,733 [ cli] [INFO] No config argument specified, checking for C:\Users\birdo\PokemonGo-BootPokemonGo-Bot\pokemongo_bot\..\configs\config.json 2017-10-10 14:44:38,739 [ cli] [INFO] Configuration initialized 2017-10-10 14:44:38,740 [pokemongo_bot.health_record.bot_event] [INFO] Health check is enabled. For more information: 2017-10-10 14:44:38,740 [pokemongo_bot.health_record.bot_event] [INFO] https://github.com/PokemonGoF/PokemonGo-Bot/tree/dev#analytics 2017-10-10 14:44:38,759 [requests.packages.urllib3.connectionpool] [INFO] Starting new HTTP connection (1): www.google-analytics.com Traceback (most recent call last): File "C:\Python27\lib\site-packages\eventlet\hubs\hub.py", line 457, in fire_timers timer() File "C:\Python27\lib\site-packages\eventlet\hubs\timer.py", line 58, in __call__ cb(*args, **kw) File "C:\Python27\lib\site-packages\eventlet\green\thread.py", line 41, in __thread_body func(*args, **kwargs) File "C:\Python27\lib\threading.py", line 774, in __bootstrap self.__bootstrap_inner() File "C:\Python27\lib\threading.py", line 814, in __bootstrap_inner (self.name, _format_exc())) File "C:\Python27\lib\codecs.py", line 369, in write data, consumed = self.encode(object, self.errors) UnicodeDecodeError: 'ascii' codec can't decode byte 0xf6 in position 665: ordinal not in range(128) --------------------------------------- ### Other Information OS: Win10 Branch: master Git Commit: 6f6ca78eba2a683486e78a8eed2c2f2fd3bb9765' config.json:valid Python Version: Python 2.7.12 I am attempting to start the bot with the Windows bat file, but crashes immidiatelly with the above errorlog.
closed
2017-10-10T13:03:44Z
2017-10-14T07:44:40Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/6216
[]
rakuuhwa
9
scikit-tda/kepler-mapper
data-visualization
5
How to show the 3D
I am totally new to the topological data analysis. I try to learn some. When I copy the code to the Python Notebook and replace with my own data, The code is ok. But no plot output. Do i need to install other software? Then python I use is Anaconda.
closed
2017-07-20T23:27:49Z
2017-07-25T23:30:30Z
https://github.com/scikit-tda/kepler-mapper/issues/5
[]
LiyuMa
14
pydantic/FastUI
pydantic
223
Support for discriminated union component
I have a data structure which is discriminated union like this: ```json [ { "type":"foo", "value":true }, { "type":"bar", "value":3 }, { "type":"baz", "upper_bound":4, "lower_bound":1 } ] ``` would be nice to be a way to make the filter based on the discriminated union, then I can use it on forms (in modifying/adding data), or in search filter.
open
2024-02-27T12:11:41Z
2024-02-27T12:11:41Z
https://github.com/pydantic/FastUI/issues/223
[]
ManiMozaffar
0
serpapi/google-search-results-python
web-scraping
19
Provide a more convenient way to paginate via the Python package
Currently, the way to paginate searches is to get the `serpapi_pagination.current` and increase the `offset` or `start` parameters in the loop. Like with regular HTTP requests to `serpapi.com/search` without an API wrapper. ```python import os from serpapi import GoogleSearch params = { "engine": "google", "q": "coffee", "tbm": "nws", "api_key": os.getenv("API_KEY"), } search = GoogleSearch(params) results = search.get_dict() print(f"Current page: {results['serpapi_pagination']['current']}") for news_result in results["news_results"]: print(f"Title: {news_result['title']}\nLink: {news_result['link']}\n") while 'next' in results['serpapi_pagination']: search.params_dict[ "start"] = results['serpapi_pagination']['current'] * 10 results = search.get_dict() print(f"Current page: {results['serpapi_pagination']['current']}") for news_result in results["news_results"]: print( f"Title: {news_result['title']}\nLink: {news_result['link']}\n" ) ``` A more convenient way for an official API wrapper would be to provide some function like `search.paginate(callback: Callable)` which will properly calculate offset for the specific search engine and loop through pages until the end. ```python import os from serpapi import GoogleSearch def print_results(results): print(f"Current page: {results['serpapi_pagination']['current']}") for news_result in results["news_results"]: print(f"Title: {news_result['title']}\nLink: {news_result['link']}\n") params = { "engine": "google", "q": "coffee", "tbm": "nws", "api_key": os.getenv("API_KEY"), } search = GoogleSearch(params) search.paginate(print_results) ``` @jvmvik @hartator What do you think?
closed
2021-04-14T09:09:25Z
2021-06-07T03:18:26Z
https://github.com/serpapi/google-search-results-python/issues/19
[ "enhancement", "question" ]
ilyazub
6
vitalik/django-ninja
rest-api
429
Delete please
closed
2022-04-25T13:00:55Z
2022-04-25T13:14:14Z
https://github.com/vitalik/django-ninja/issues/429
[]
6691a
0
flaskbb/flaskbb
flask
522
typo in editor.js
I'm working on some issues around previewing posts using server-side rendering and so have been digging into the editor.js file. Shouldn't `output` in this line be `msg`? https://github.com/flaskbb/flaskbb/blob/520fc7a22ffde4203b80dc81646ddc1fc20ee904/flaskbb/themes/aurora/src/js/editor.js#L45
closed
2019-04-17T06:35:52Z
2019-04-25T08:15:41Z
https://github.com/flaskbb/flaskbb/issues/522
[ "bug" ]
bmjjr
2
pyg-team/pytorch_geometric
pytorch
9,469
The default `bias = 0.0` of PGExplainer frequently results in `edge_mask` values containing NaNs.
### 🐛 Describe the bug Setting a small bias value prevents this issue. However, the bias hyperparameter is not mentioned in the PyG documentation: https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.explain.algorithm.PGExplainer.html?highlight=PGExplainer The occurrence of NaN values can be confusing for users, requiring them to investigate the cause, which can be time-consuming. The original implementation by the authors of PGExplainer sets `bias = 0.01` as the default: https://github.com/flyingdoog/PGExplainer/blob/51edc7b3000e980635f68618af027ae24297f6e5/codes/Explainer.py#L122 https://github.com/flyingdoog/PGExplainer/issues/2#issuecomment-733462580 For convenience and to prevent confusion, I suggest setting the default bias to `bias = 0.01`, consistent with the authors' implementation. # description ```python def _concrete_sample(self, logits: Tensor, temperature: float = 1.0) -> Tensor: bias = self.coeffs['bias'] eps = (1 - 2 * bias) * torch.rand_like(logits) + bias return (eps.log() - (1 - eps).log() + logits) / temperature ``` The current default bias of PGExplainer is 0.0. Since `torch.rand_like()` can output values close to 0 or 1, setting `bias = 0.0` can cause `eps` to also be close to 0 or 1. This results in `eps.log()` or `(1 - eps).log()` becoming `-inf`, which in turn leads to NaN model parameters after the update. https://github.com/pyg-team/pytorch_geometric/blob/44007acc55a28089f673aba9f830a00a773726ea/torch_geometric/explain/algorithm/pg_explainer.py#L237 ### Versions PyG version: 2.3.0 PyTorch version: 2.0.1 OS: Ubuntu Server Python version: 3.10.14 How you installed PyTorch and PyG (conda, pip, source): conda
closed
2024-06-29T09:16:29Z
2024-07-02T10:47:08Z
https://github.com/pyg-team/pytorch_geometric/issues/9469
[ "bug" ]
kano5266
0
jupyterhub/jupyterhub-deploy-docker
jupyter
55
500 Error when starting Notebook
I have followed the instructions to get setup with JupyterHub and the GitHub Authenticator. However, I am using my own Docker image, built from jupyter/base-notebook. Once I log in and authenticate, I get the following message: ``` 500 : Internal Server Error Redirect loop detected. Notebook has jupyterhub version unknown (likely < 0.8), but the Hub expects 0.8.0. Try installing jupyterhub==0.8.0 in the user environment if you continue to have problems. You can try restarting your server from the home page. ``` What does this mean exactly? Is this error coming from my individual notebook server?
closed
2017-11-09T14:33:14Z
2017-11-09T15:03:04Z
https://github.com/jupyterhub/jupyterhub-deploy-docker/issues/55
[]
rwmajor2
2
graphql-python/graphene
graphql
1,552
More documentation for DisableIntrospection?
The docs currently give this example: ``` validation_errors = validate( schema=schema.graphql_schema, document_ast=parse('THE QUERY'), rules=( DisableIntrospection, ) ) ``` But it's not obvious how to set `document_ast`, and leave it as an exercise to the reader assuming knowledge on Query AST. How should this be setup to disable introspection across all queries? (Appreciate you might prefer support requests elsewhere, but no hits on my SO post on this https://stackoverflow.com/questions/78100152/how-to-disable-introspection-on-graphene-python/78498422#78498422 and see it was also raised in https://github.com/graphql-python/graphene/issues/1388#issuecomment-1282388489)
open
2024-05-21T04:05:35Z
2024-06-22T09:49:33Z
https://github.com/graphql-python/graphene/issues/1552
[ "✨ enhancement", "📖 documentation" ]
dwjp
0
vvbbnn00/WARP-Clash-API
flask
180
请问安卓使用哪个客户端可以正常使用呢?
ClashA 3.0.3订阅后启动会闪退 MetaClash订阅后启动不生效 Sing-Box订阅不了 请问一下安卓哪个客户端可以正常使用?
closed
2024-04-28T06:14:06Z
2024-04-28T06:41:29Z
https://github.com/vvbbnn00/WARP-Clash-API/issues/180
[]
hitsword
0
matplotlib/matplotlib
data-science
29,704
Option to add FancyBboxPatch around quiverkey()
### Bug summary Pretty self explanatory. Grok has this to say: <details><summary>Grok's advice</summary> <p> Thank you for sharing the full traceback and your Matplotlib version (3.10). The error AttributeError: PolyCollection.set() got an unexpected keyword argument 'bbox' occurring within QuiverKey._init() suggests that the bbox parameter, while intended for the label of the quiverkey, is being incorrectly passed down to the underlying PolyCollection object (which draws the arrow), where it’s not a valid keyword. This seems like a bug or misunderstanding in how Matplotlib 3.10 handles quiverkey with bbox, especially in combination with Cartopy. The bbox parameter is supposed to apply to the label text, not the arrow itself, but the traceback shows it’s being propagated incorrectly. Since the first snippet didn’t work, and you’re on a recent version (Matplotlib 3.10), let’s pivot to the alternative approach using axes.text with a bbox, which avoids this issue entirely by separating the label and its box from the quiverkey arrow. </p> </details> ### Code for reproduction ```Python import cartopy.crs as ccrs import matplotlib.pyplot as plt fig = plt.figure(figsize=(12, 6)) axes = plt.axes(projection=ccrs.PlateCarree()) axes.coastlines() # Simple quiver plot q = axes.quiver([0], [0], [1], [1], transform=ccrs.PlateCarree()) axes.quiverkey(q, X=0.85, Y=0.95, U=1, label='1 unit', labelpos='E', bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.5')) plt.show() ``` ### Actual outcome AttributeError Traceback (most recent call last) File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/IPython/core/formatters.py:402, in BaseFormatter.__call__(self, obj) 400 pass 401 else: --> 402 return printer(obj) 403 # Finally look for special method names 404 method = get_real_method(obj, self.print_method) File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/IPython/core/pylabtools.py:170, in print_figure(fig, fmt, bbox_inches, base64, **kwargs) 167 from matplotlib.backend_bases import FigureCanvasBase 168 FigureCanvasBase(fig) --> 170 fig.canvas.print_figure(bytes_io, **kw) 171 data = bytes_io.getvalue() 172 if fmt == 'svg': File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/backend_bases.py:2155, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists, backend, **kwargs) 2152 # we do this instead of `self.figure.draw_without_rendering` 2153 # so that we can inject the orientation 2154 with getattr(renderer, "_draw_disabled", nullcontext)(): -> 2155 self.figure.draw(renderer) 2156 if bbox_inches: 2157 if bbox_inches == "tight": File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/artist.py:94, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args, **kwargs) 92 @wraps(draw) 93 def draw_wrapper(artist, renderer, *args, **kwargs): ---> 94 result = draw(artist, renderer, *args, **kwargs) 95 if renderer._rasterizing: 96 renderer.stop_rasterizing() File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/artist.py:71, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 68 if artist.get_agg_filter() is not None: 69 renderer.start_filter() ---> 71 return draw(artist, renderer) 72 finally: 73 if artist.get_agg_filter() is not None: File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/figure.py:3257, in Figure.draw(self, renderer) 3254 # ValueError can occur when resizing a window. 3256 self.patch.draw(renderer) -> 3257 mimage._draw_list_compositing_images( 3258 renderer, self, artists, self.suppressComposite) 3260 renderer.close_group('figure') 3261 finally: File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/image.py:134, in _draw_list_compositing_images(renderer, parent, artists, suppress_composite) 132 if not_composite or not has_images: 133 for a in artists: --> 134 a.draw(renderer) 135 else: 136 # Composite any adjacent images together 137 image_group = [] File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/artist.py:71, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 68 if artist.get_agg_filter() is not None: 69 renderer.start_filter() ---> 71 return draw(artist, renderer) 72 finally: 73 if artist.get_agg_filter() is not None: File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/cartopy/mpl/geoaxes.py:524, in GeoAxes.draw(self, renderer, **kwargs) 519 self.imshow(img, extent=extent, origin=origin, 520 transform=factory.crs, *factory_args[1:], 521 **factory_kwargs) 522 self._done_img_factory = True --> 524 return super().draw(renderer=renderer, **kwargs) File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/artist.py:71, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 68 if artist.get_agg_filter() is not None: 69 renderer.start_filter() ---> 71 return draw(artist, renderer) 72 finally: 73 if artist.get_agg_filter() is not None: File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/axes/_base.py:3181, in _AxesBase.draw(self, renderer) 3178 if artists_rasterized: 3179 _draw_rasterized(self.get_figure(root=True), artists_rasterized, renderer) -> 3181 mimage._draw_list_compositing_images( 3182 renderer, self, artists, self.get_figure(root=True).suppressComposite) 3184 renderer.close_group('axes') 3185 self.stale = False File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/image.py:134, in _draw_list_compositing_images(renderer, parent, artists, suppress_composite) 132 if not_composite or not has_images: 133 for a in artists: --> 134 a.draw(renderer) 135 else: 136 # Composite any adjacent images together 137 image_group = [] File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/artist.py:71, in allow_rasterization.<locals>.draw_wrapper(artist, renderer) 68 if artist.get_agg_filter() is not None: 69 renderer.start_filter() ---> 71 return draw(artist, renderer) 72 finally: 73 if artist.get_agg_filter() is not None: File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/quiver.py:400, in QuiverKey.draw(self, renderer) 398 @martist.allow_rasterization 399 def draw(self, renderer): --> 400 self._init() 401 self.vector.draw(renderer) 402 pos = self.get_transform().transform((self.X, self.Y)) File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/quiver.py:379, in QuiverKey._init(self) 377 kwargs = self.Q.polykw 378 kwargs.update(self.kw) --> 379 self.vector = mcollections.PolyCollection( 380 self.verts, 381 offsets=[(self.X, self.Y)], 382 offset_transform=self.get_transform(), 383 **kwargs) 384 if self.color is not None: 385 self.vector.set_color(self.color) File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/collections.py:1210, in PolyCollection.__init__(self, verts, sizes, closed, **kwargs) 1190 def __init__(self, verts, sizes=None, *, closed=True, **kwargs): 1191 """ 1192 Parameters 1193 ---------- (...) 1208 Forwarded to `.Collection`. 1209 """ -> 1210 super().__init__(**kwargs) 1211 self.set_sizes(sizes) 1212 self.set_verts(verts, closed) File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/collections.py:209, in Collection.__init__(self, edgecolors, facecolors, linewidths, linestyles, capstyle, joinstyle, antialiaseds, offsets, offset_transform, norm, cmap, colorizer, pickradius, hatch, urls, zorder, **kwargs) 206 self._offset_transform = offset_transform 208 self._path_effects = None --> 209 self._internal_update(kwargs) 210 self._paths = None File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/artist.py:1233, in Artist._internal_update(self, kwargs) 1226 def _internal_update(self, kwargs): 1227 """ 1228 Update artist properties without prenormalizing them, but generating 1229 errors as if calling `set`. 1230 1231 The lack of prenormalization is to maintain backcompatibility. 1232 """ -> 1233 return self._update_props( 1234 kwargs, "{cls.__name__}.set() got an unexpected keyword argument " 1235 "{prop_name!r}") File ~/Miniforge3/envs/RSL/lib/python3.13/site-packages/matplotlib/artist.py:1206, in Artist._update_props(self, props, errfmt) 1204 func = getattr(self, f"set_{k}", None) 1205 if not callable(func): -> 1206 raise AttributeError( 1207 errfmt.format(cls=type(self), prop_name=k), 1208 name=k) 1209 ret.append(func(v)) 1210 if ret: AttributeError: PolyCollection.set() got an unexpected keyword argument 'bbox' ### Expected outcome A box around the text with the specified properties. ### Additional information _No response_ ### Operating system _No response_ ### Matplotlib Version 3.10.0 ### Matplotlib Backend _No response_ ### Python version _No response_ ### Jupyter version _No response_ ### Installation None
open
2025-03-04T22:49:45Z
2025-03-08T01:49:19Z
https://github.com/matplotlib/matplotlib/issues/29704
[ "New feature" ]
bbuzz31
7
huggingface/transformers
machine-learning
36,783
Throw messages in text-generation task with deepseek r1 with PEFTModel
### System Info Copy-and-paste the text below in your GitHub issue and FILL OUT the two last points. - `transformers` version: 4.49.0 - Platform: Linux-5.15.0-134-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.29.3 - Safetensors version: 0.5.3 - Accelerate version: 1.3.0 - Accelerate config: - compute_environment: LOCAL_MACHINE - distributed_type: DEEPSPEED - use_cpu: False - debug: False - num_processes: 1 - machine_rank: 0 - num_machines: 0 - rdzv_backend: static - same_network: True - main_training_function: main - enable_cpu_affinity: False - deepspeed_config: {'deepspeed_config_file': '/opt/config/train_config.json', 'zero3_init_flag': True} - downcast_bf16: no - tpu_use_cluster: False - tpu_use_sudo: False - tpu_env: [] - DeepSpeed version: 0.16.4 - PyTorch version (GPU?): 2.5.1+cu124 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using distributed or parallel set-up in script?: No - Using GPU in script?: No - GPU type: NVIDIA H100 80GB HBM3 ### Who can help? @ArthurZucker @Rocketknight1 @muellerzr ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction ```python import torch from transformers import pipeline, AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer from peft import PeftModel ADAPTER_PATH = "./output/adapter/mnc_adapter" BASE_PATH = "./output/model" BNB_CONFG = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) # input text = "Who is a Elon Musk?" model = AutoModelForCausalLM.from_pretrained( BASE_PATH, quantization_config=BNB_CONFG, torch_dtype=torch.float16, device_map = 'auto', ) tokenizer = AutoTokenizer.from_pretrained(BASE_PATH) lora_model = PeftModel.from_pretrained( model, ADAPTER_PATH, quantization_config=BNB_CONFG, torch_dtype=torch.float16, device_map = 'auto', ) default_generator = pipeline( task="text-generation", model=model, tokenizer=tokenizer, device_map="auto", torch_dtype=torch.float16 ) print(f"this is base model result: {default_generator(text)}") lora_generator = pipeline( task="text-generation", model=lora_model, tokenizer=tokenizer, device_map="auto", torch_dtype=torch.float16 ) print(f"this is lora model result: {lora_generator(text)}") ``` 1. execute `lora_generator(text)` 2. output warning messages with followings 3. With my debugging, `transformers/pipelines/base.py` that section was problems ```python def check_model_type(self, supported_models: Union[List[str], dict]): """ Check if the model class is in supported by the pipeline. Args: supported_models (`List[str]` or `dict`): The list of models supported by the pipeline, or a dictionary with model class values. """ if not isinstance(supported_models, list): # Create from a model mapping supported_models_names = [] for _, model_name in supported_models.items(): # Mapping can now contain tuples of models for the same configuration. if isinstance(model_name, tuple): supported_models_names.extend(list(model_name)) else: supported_models_names.append(model_name) if hasattr(supported_models, "_model_mapping"): for _, model in supported_models._model_mapping._extra_content.items(): if isinstance(model_name, tuple): supported_models_names.extend([m.__name__ for m in model]) else: supported_models_names.append(model.__name__) supported_models = supported_models_names if self.model.__class__.__name__ not in supported_models: logger.error( f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are" f" {supported_models}." ) ``` ### Expected behavior without unsupported models message. This error might be occured the deepseek model was not in `supported_models` List * The pipeline was successfully worked, but I wanna remove this annoying message ```python python hug_inference.py /root/workspace/lora_test/.venv/lib/python3.10/site-packages/transformers/quantizers/auto.py:206: UserWarning: You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading already has a `quantization_config` attribute. The `quantization_config` from the model will be used. warnings.warn(warning_msg) Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:07<00:00, 1.12it/s] Device set to use cuda:0 /root/workspace/lora_test/.venv/lib/python3.10/site-packages/bitsandbytes/nn/modules.py:451: UserWarning: Input type into Linear4bit is torch.float16, but bnb_4bit_compute_dtype=torch.float32 (default). This will lead to slow inference or training speed. warnings.warn( this is base model result: [{'generated_text': "Who is a Elon Musk? Well, he's a business magnate, investor, and entrepreneur. He's known for his ambitious"}] Device set to use cuda:0 The model 'PeftModel' is not supported for text-generation. Supported models are ['AriaTextForCausalLM', 'BambaForCausalLM', 'BartForCausalLM', 'BertLMHeadModel', 'BertGenerationDecoder', 'BigBirdForCausalLM', 'BigBirdPegasusForCausalLM', 'BioGptForCausalLM', 'BlenderbotForCausalLM', 'BlenderbotSmallForCausalLM', 'BloomForCausalLM', 'CamembertForCausalLM', 'LlamaForCausalLM', 'CodeGenForCausalLM', 'CohereForCausalLM', 'Cohere2ForCausalLM', 'CpmAntForCausalLM', 'CTRLLMHeadModel', 'Data2VecTextForCausalLM', 'DbrxForCausalLM', 'DiffLlamaForCausalLM', 'ElectraForCausalLM', 'Emu3ForCausalLM', 'ErnieForCausalLM', 'FalconForCausalLM', 'FalconMambaForCausalLM', 'FuyuForCausalLM', 'GemmaForCausalLM', 'Gemma2ForCausalLM', 'GitForCausalLM', 'GlmForCausalLM', 'GotOcr2ForConditionalGeneration', 'GPT2LMHeadModel', 'GPT2LMHeadModel', 'GPTBigCodeForCausalLM', 'GPTNeoForCausalLM', 'GPTNeoXForCausalLM', 'GPTNeoXJapaneseForCausalLM', 'GPTJForCausalLM', 'GraniteForCausalLM', 'GraniteMoeForCausalLM', 'GraniteMoeSharedForCausalLM', 'HeliumForCausalLM', 'JambaForCausalLM', 'JetMoeForCausalLM', 'LlamaForCausalLM', 'MambaForCausalLM', 'Mamba2ForCausalLM', 'MarianForCausalLM', 'MBartForCausalLM', 'MegaForCausalLM', 'MegatronBertForCausalLM', 'MistralForCausalLM', 'MixtralForCausalLM', 'MllamaForCausalLM', 'MoshiForCausalLM', 'MptForCausalLM', 'MusicgenForCausalLM', 'MusicgenMelodyForCausalLM', 'MvpForCausalLM', 'NemotronForCausalLM', 'OlmoForCausalLM', 'Olmo2ForCausalLM', 'OlmoeForCausalLM', 'OpenLlamaForCausalLM', 'OpenAIGPTLMHeadModel', 'OPTForCausalLM', 'PegasusForCausalLM', 'PersimmonForCausalLM', 'PhiForCausalLM', 'Phi3ForCausalLM', 'PhimoeForCausalLM', 'PLBartForCausalLM', 'ProphetNetForCausalLM', 'QDQBertLMHeadModel', 'Qwen2ForCausalLM', 'Qwen2MoeForCausalLM', 'RecurrentGemmaForCausalLM', 'ReformerModelWithLMHead', 'RemBertForCausalLM', 'RobertaForCausalLM', 'RobertaPreLayerNormForCausalLM', 'RoCBertForCausalLM', 'RoFormerForCausalLM', 'RwkvForCausalLM', 'Speech2Text2ForCausalLM', 'StableLmForCausalLM', 'Starcoder2ForCausalLM', 'TransfoXLLMHeadModel', 'TrOCRForCausalLM', 'WhisperForCausalLM', 'XGLMForCausalLM', 'XLMWithLMHeadModel', 'XLMProphetNetForCausalLM', 'XLMRobertaForCausalLM', 'XLMRobertaXLForCausalLM', 'XLNetLMHeadModel', 'XmodForCausalLM', 'ZambaForCausalLM', 'Zamba2ForCausalLM']. this is lora model result: [{'generated_text': "Who is a Elon Musk? I mean, I know he's a business magnate or something, but what has he actually done"}] ```
open
2025-03-18T04:54:56Z
2025-03-21T16:17:18Z
https://github.com/huggingface/transformers/issues/36783
[ "bug" ]
falconlee236
9
Farama-Foundation/Gymnasium
api
361
[Bug Report] Blackjack-v1 env observation state return type is different from docs
### Describe the bug Blackjack-v1 environment docs, observation space return as tuple(int(), int(), int()) https://gymnasium.farama.org/environments/toy_text/blackjack/ but, it return tuple(int(), int(), boolen()) ```python import gymnasium as gym env = gym.make('Blackjack-v1', natural=False, sab=False) s, _ = env.reset() print(s) print(type(s[0]), type(s[1]), type(s[2])) ``` output is ``` <class 'tuple'> (11, 6, False) <class 'int'> <class 'int'> <class 'bool'> ``` ### Code example ```shell import gymnasium as gym env = gym.make('Blackjack-v1', natural=False, sab=False) s, _ = env.reset() print(s) print(type(s[0]), type(s[1]), type(s[2])) ``` ### System info gymnasium=0.27.1 ### Additional context gymnasium/envs/toy_text/blackjack.py line: 28 ```python return 1 in hand and sum(hand) + 10 <= 21 ``` to ```python return int(1 in hand and sum(hand) + 10 <= 21) ``` can be solution _No response_ ### Checklist - [x] I have checked that there is no similar [issue](https://github.com/Farama-Foundation/Gymnasium/issues) in the repo
closed
2023-03-06T06:42:30Z
2023-03-08T11:46:19Z
https://github.com/Farama-Foundation/Gymnasium/issues/361
[ "bug" ]
devhoodit
3
GibbsConsulting/django-plotly-dash
plotly
18
Dash opens its own DB connections to Django
This is not necessarily an issue but I have noticed that Dash must be opening it's own session with the database. I noticed this when I was accessing a database that had user specific security policies applied. In order to use a Django defined model, I had to send to the database the user id for Dash and Django separately to acquire data from the database. This makes sense considering that Dash is loaded in as an IFrame. Are there plans on the roadmap to integrate the two more closely? Is this even practical in your opinion or will this need recoding by Plotly before this is possible?
closed
2018-07-23T21:45:38Z
2018-11-03T09:31:48Z
https://github.com/GibbsConsulting/django-plotly-dash/issues/18
[ "question" ]
eddy-ojb
4
flairNLP/flair
nlp
2,786
HIPE-2022: Add all test data
Hi, test data for the HIPE-2022 shared task is released and should be added to the `NER_HIPE_2022` data loader.
closed
2022-05-20T08:58:17Z
2022-06-18T08:03:35Z
https://github.com/flairNLP/flair/issues/2786
[]
stefan-it
1
SCIR-HI/Huatuo-Llama-Med-Chinese
nlp
105
请问考虑释放基于llama-13B的huatuo模型吗?
13B相比于7B应该会表现更好,尤其是在细粒度要求更高的医学领域吧。如果能释放模型,感谢
open
2024-01-30T07:19:43Z
2024-01-30T07:19:43Z
https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/issues/105
[]
jzssz
0
eriklindernoren/ML-From-Scratch
deep-learning
9
Tiene probela
closed
2017-03-02T18:35:39Z
2017-03-02T18:37:22Z
https://github.com/eriklindernoren/ML-From-Scratch/issues/9
[]
Anon23456
0
jupyterlab/jupyter-ai
jupyter
306
Custom inference endpoints
<!-- Welcome! Thank you for contributing. These HTML comments will not render in the issue, but you can delete them once you've read them if you prefer! --> <!-- Thanks for thinking of a way to improve JupyterLab. If this solves a problem for you, then it probably solves that problem for lots of people! So the whole community will benefit from this request. Before creating a new feature request please search the issues for relevant feature requests. --> ### Problem <!-- Provide a clear and concise description of what problem this feature will solve. For example: * I'm always frustrated when [...] because [...] * I would like it if [...] happened when I [...] because [...] --> A lot of enterprises are building their own llm models, can we use them instead of chatgpt/hugging face, etc. Sagemaker is one option but I should be able to provide just an inference endpoint to use this for prompts in jupyter lab! ### Proposed Solution <!-- Provide a clear and concise description of a way to accomplish what you want. For example: * Add an option so that when [...] [...] will happen -->A lot of enterprises are building their own llm models, can we use them instead of chatgpt/hugging face, etc. Sagemaker is one option but I should be able to provide just an inference endpoint to use this for prompts in jupyter lab! ### Additional context <!-- Add any other context or screenshots about the feature request here. You can also include links to examples of other programs that have something similar to your request. For example: * Another project [...] solved this by [...] -->
closed
2023-07-31T15:55:27Z
2023-12-29T00:29:56Z
https://github.com/jupyterlab/jupyter-ai/issues/306
[ "duplicate", "enhancement" ]
himsgpt
6
koxudaxi/datamodel-code-generator
pydantic
1,362
0.18.0 introduced a breaking change - UnionIntFloat
**Describe the bug** When upgrading from 0.17.2 to 0.18.0 or any later version, I get the following error on the identical YAML: ``` File "/Users/matt.holden/.cache/pre-commit/repoi7nrpoo1/py_env-3.11/lib/python3.11/site-packages/datamodel_code_generator/model/pydantic/types.py", line 251, in <dictcomp> kwargs={k: Decimal(v) for k, v in data_type_kwargs.items()}, ^^^^^^^^^^ TypeError: conversion from UnionIntFloat to Decimal is not supported **To Reproduce** Run my (quite complex) YAML against 0.17.2 or any earlier version, see it work. Run it against 0.18.0 or any newer version, see it fail. I've tried with `target-python-version` of both `3.11` and `3.10`, no change. Example schema: **Because there is no traceability in errors (see https://github.com/koxudaxi/datamodel-code-generator/issues/1330) I can't identify where in my huge YAML this is. I've tried ensuring all `number` fields in my OpenAPI document have `type: double`, as this is the only way I could see having a field that didn't know if it was a int or a float, but no change. I'm happy to submit samples if I can get more of an idea where to look for the problem; our YAML is fairly enormous and complex and posting it all would just give everyone a migraine. Used commandline: ``` #!/usr/bin/env bash set -e # clean rm -vrf app/v1/models/* cat >app/v1/models/base.py <<EOL from decimal import Decimal from pydantic import validator from pydantic.main import BaseModel as PydanticBaseModel, Extra class BaseModel(PydanticBaseModel): class Config: json_encoders = {Decimal: str} extra = Extra.forbid @validator('*', pre=True, each_item=True) def strict_decimal(cls, v, field): if field.type_ == Decimal: assert type(v) in {str, Decimal}, f'must be a string' return v EOL # strict-nullable: https://github.com/koxudaxi/datamodel-code-generator/issues/327#issuecomment-775236310 datamodel-codegen --input descriptions/v1/api.bundled.yaml --output app/v1/models/ \ --use-standard-collections \ --enum-field-as-literal all \ --target-python-version 3.11 \ --disable-timestamp \ --strict-nullable \ --use-subclass-enum \ --base-class app.v1.models.base.BaseModel ``` **Expected behavior** The same YAML that worked in 0.17.2 works in 0.18.0 and up **Version:** - OS: MacOS - Python version: 3.11.3 - datamodel-code-generator version: [e.g. 18] **Additional context** Add any other context about the problem here.
closed
2023-06-09T17:35:35Z
2023-08-09T17:14:34Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1362
[ "bug" ]
St0rmdrag0n
0
paperless-ngx/paperless-ngx
django
8,918
[BUG] When attempting to add more than 25 Document Links, new links become "Not Found"
### Description It seems I can only link 25 together in a related doc reference. The reason I feel it's a bug is that it lets me link as many as I wish (I currently wish to link 36). But after 25, new links turn into 'Not Found" (as shown in the attached screenshot), silently failing. ![Image](https://github.com/user-attachments/assets/d2e6e9d8-2bfb-4bb0-8387-c088660d778c) ### Steps to reproduce 1. make a doc 2. Add a custom field "Document Link" 3. add more than 25 other docs 4. Try to link the additional 25+ docs to the original using the new custom field "document link" 5. Go back to the original doc and see if all 26+ documents are linked. ### Webserver logs ```bash No log entries are generated when adding links. ``` ### Browser logs ```bash ``` ### Paperless-ngx version 2.14.5 ### Host OS Unraid 7 / ghcr.io/paperless-ngx/paperless-ngx ### Installation method Docker - official image ### System status ```json { "pngx_version": "2.14.5", "server_os": "Linux-6.6.68-Unraid-x86_64-with-glibc2.36", "install_type": "docker", "storage": { "total": 90990558269440, "available": 56558888435712 }, "database": { "type": "sqlite", "url": "/usr/src/paperless/data/db.sqlite3", "status": "OK", "error": null, "migration_status": { "latest_migration": "documents.1061_workflowactionwebhook_as_json", "unapplied_migrations": [] } }, "tasks": { "redis_url": "redis://redis:6379", "redis_status": "OK", "redis_error": null, "celery_status": "OK", "index_status": "OK", "index_last_modified": "2025-01-26T14:32:23.883353-05:00", "index_error": null, "classifier_status": "OK", "classifier_last_trained": "2025-01-26T19:05:01.974489Z", "classifier_error": null } } ``` ### Browser Firefox 134.0.2 ### Configuration changes Only real overrides are PAPERLESS_FILENAME_FORMAT = {correspondent}/{document_type}/{created_year}-{created_month}-{created_day} - {title}, {tag_list} PAPERLESS_DATE_ORDER = MDY ### Please confirm the following - [x] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [x] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [x] I have already searched for relevant existing issues and discussions before opening this report. - [x] I have updated the title field above with a concise description.
closed
2025-01-26T19:42:28Z
2025-02-26T03:09:49Z
https://github.com/paperless-ngx/paperless-ngx/issues/8918
[ "bug", "frontend" ]
matthewdavis
1
pbugnion/gmaps
jupyter
55
support only about 1500 points. Doesn't work for more points
I have a list of 200,000 lat,lon pairs. The heatmap works fine until 1500 points. When set to 2000, it just show a regular map without heat. Is that there's a limit on how many points can be supported? The code is running on jupyter in datascientist workbench with spark import gmaps longitude_list = sqlContext.sql("SELECT lon From table_15_1") latitude_list = sqlContext.sql("SELECT lat From table_15_1") data = [] for lat,lon in zip(latitude_list.collect()[:2000], longitude_list.collect()[:2000]): point = [] point.append(lat) point.append(lon) data.append(point) gmaps.heatmap(data)
closed
2016-03-28T01:03:18Z
2016-04-02T11:11:46Z
https://github.com/pbugnion/gmaps/issues/55
[]
beizhao215
1
taverntesting/tavern
pytest
542
Saving response with correct format... trying to use it in other stage... empty
I just recently updated to 1.0.0 I was saving a response in an anchor stage. Then that anchor was used throughout other steps, and the saved response was used in the next stage of the test. It seems that even though I am saving the response it is bringing in an empty string. I had issues first getting the correct new format, but once I figured that out it seemed to be correct. Now issue is reusing that var.
closed
2020-04-23T15:40:19Z
2020-05-01T15:17:22Z
https://github.com/taverntesting/tavern/issues/542
[]
rebecca-makar
2
miguelgrinberg/python-socketio
asyncio
80
Accessing underlying app when using AsyncServer
With the current implementation, the `app` that `socketio.AsyncServer` attaches to is unavailable in `on` method calls. For example, when using python-socketio with sanic, we're unable to access the request object (which provides access to `request.app`). ``` # in __init__.py file from myproj.sio import sio ... sio.attach(app) # in sio.py @sio.on('my event') def test_message(sid, message): return app.config['my_setting'] ``` I've manually resorted to calling `sio.app = app` to access the app instance. But I'm wondering if you had a reason for not providing `AsyncServer.app`?
closed
2017-03-10T21:02:52Z
2019-08-04T22:57:52Z
https://github.com/miguelgrinberg/python-socketio/issues/80
[ "investigate" ]
dfee
5
jupyterhub/zero-to-jupyterhub-k8s
jupyter
3,380
Cull jupyter-user pods that were started before hub restart
<!-- Thank you for contributing. These HTML comments will not render in the issue, but you can delete them once you've read them if you prefer! --> ### Proposed change [User pods do not have ownerReferences set](https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues/2837) and are not cleaned up when the `hub` pod is restarted. The hub culling mechanism doesn't work on these "dangling pods" ### Who would use this feature? This would benefit all z2jh admins. ### (Optional): Suggest a solution <!-- Describe what you think needs to be done. Doing that is an excellent first step to get the feature implemented. --> I'm not sure how to implement this-- ownerReferences is the way I know, but that would disrupt user pods during maintenance. Maybe on startup the hub pod can register jupyter-* pods that are already up?
closed
2024-03-26T01:52:32Z
2024-03-26T15:08:51Z
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues/3380
[ "enhancement" ]
asmacdo
3
zappa/Zappa
django
439
[Migrated] Async Tasks DynamoDB in VPC?
Originally from: https://github.com/Miserlou/Zappa/issues/1149 by [Erstwild](https://github.com/Erstwild) Is the DynamoDB instance for async task handling created in the VPC specified in "vpc_config"? Or is that only for the Lambda functions? If not, what would be the best way to go about configuring that?
closed
2021-02-20T08:32:57Z
2024-04-13T16:17:55Z
https://github.com/zappa/Zappa/issues/439
[ "aws", "feature-request", "no-activity", "auto-closed" ]
jneves
2
healthchecks/healthchecks
django
123
Telegram integration not working with supergroups
The telegram integration is working great! I can integrate with a single user or even add the bot to a group and it will message me/us everytime a check fails. But when adding the bot to a supergroup it will not work. I try to `/start`/`/start@bot_name` and it will simply not reply to me.
closed
2017-05-22T14:44:35Z
2017-05-22T19:52:24Z
https://github.com/healthchecks/healthchecks/issues/123
[]
bellini666
2
dfki-ric/pytransform3d
matplotlib
163
How to update the transformation in TransformManager? Should remove the old transformation and add again?
Just like the example, In real robot control, if we change the transformation, such as ee2robot, object2cam, how should we pass the new data to the defined transformation ,tm.add_transform("camera", "robot", cam2robot), should we delete the old one and add again? Moreover, how we plot the whole TransformManager in animation to avoid plot the old one, just keep the newest frame. <img width="599" alt="bugs---1" src="https://user-images.githubusercontent.com/45029643/133107331-96c0e4bd-01d7-4684-8a88-b74da6578a0d.png"> import numpy as np import matplotlib.pyplot as plt from pytransform3d import rotations as pr from pytransform3d import transformations as pt from pytransform3d.transform_manager import TransformManager random_state = np.random.RandomState(0) ee2robot = pt.transform_from_pq( np.hstack((np.array([0.4, -0.3, 0.5]), pr.random_quaternion(random_state)))) cam2robot = pt.transform_from_pq( np.hstack((np.array([0.0, 0.0, 0.8]), pr.q_id))) object2cam = pt.transform_from( pr.active_matrix_from_intrinsic_euler_xyz(np.array([0.0, 0.0, -0.5])), np.array([0.5, 0.1, 0.1])) tm = TransformManager() tm.add_transform("end-effector", "robot", ee2robot) tm.add_transform("camera", "robot", cam2robot) tm.add_transform("object", "camera", object2cam) tm.add_transform("end-effector", "robot", object2cam) ee2object = tm.get_transform("end-effector", "object") ax = tm.plot_frames_in("robot", s=0.1) ax.set_xlim((-0.25, 0.75)) ax.set_ylim((-0.5, 0.5)) ax.set_zlim((0.0, 1.0)) plt.show()
closed
2021-09-13T14:58:55Z
2021-09-13T15:12:59Z
https://github.com/dfki-ric/pytransform3d/issues/163
[]
caimingxue
2
JaidedAI/EasyOCR
pytorch
786
Repository with all models in ONNX format
In this [Drive folder](https://drive.google.com/drive/folders/1n_LOrJHkMVcZhyCgg37PYMAcsJ7_Sxsn?usp=sharing) you can find all EasyOCR models in ONNX format covering all currently available languages. **Look at the text file** in the folder to see which one corresponds to the language you are using. [ONNX](https://onnx.ai/) is an agnostic and standardized format for storing models. Models in ONNX format can be imported and used in several Runtimes including PyTorch, TensorFlow and OpenVINO. The ONNX team also provides its own runtine, [ONNX Runtime](https://onnxruntime.ai/). This Runtime allows development in several languages, operating systems and acceleration hardware. By owning the EasyOCR models in ONNX it is possible to cover new scenarios where the use of Python and/or PyTorch is not adequate. In my use case, I am using the EasyOCR and ONNX Runtime models to be able to develop C++ applications. This makes it much easier to bring EasyOCR functionalities into production. In [this issue](https://github.com/JaidedAI/EasyOCR/issues/746) you can find a general guide on how I have managed to modify EasyOCR to export the models, initially developed in Torch to ONNX. Note that the export process explained in the guide can only be achieved if you have CUDA acceleration. As not everyone has access to such hardware, I have decided to share a copy of the models already exported. The models that I make available are a **first version**, I may optimize the exported models in the next weeks.
open
2022-07-17T02:33:35Z
2024-08-13T02:24:19Z
https://github.com/JaidedAI/EasyOCR/issues/786
[]
Kromtar
19
huggingface/datasets
nlp
6,663
`write_examples_on_file` and `write_batch` are broken in `ArrowWriter`
### Describe the bug `write_examples_on_file` and `write_batch` are broken in `ArrowWriter` since #6636. The order between the columns and the schema is not preserved anymore. So these functions don't work anymore unless the order happens to align well. ### Steps to reproduce the bug Try to do `write_batch` with anything that has many columns, and it's likely to break. ### Expected behavior I expect these functions to work, instead of it trying to cast a column to its incorrect type. ### Environment info - `datasets` version: 2.17.0 - Platform: Linux-5.15.0-1040-aws-x86_64-with-glibc2.35 - Python version: 3.10.13 - `huggingface_hub` version: 0.19.4 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2023.10.0
closed
2024-02-15T01:43:27Z
2024-02-16T09:25:00Z
https://github.com/huggingface/datasets/issues/6663
[]
bryant1410
3
onnx/onnx
scikit-learn
6,279
---
# Bug Report ### Is the issue related to model conversion? I dont know. I have no idea what i am doing ### Describe the bug i am following this tutorial: https://www.youtube.com/watch?v=_6yP3Gv04-w and when doing the step at 19:40 i recieve the following error: Traceback (most recent call last): File "C:\Users\Domin\Desktop\convert_stable_diffusion_checkpoint_to_onnx.py", line 20, in <module> import onnx File "C:\Users\Domin\miniconda3\envs\sd39new\lib\site-packages\onnx\__init__.py", line 77, in <module> from onnx.onnx_cpp2py_export import ONNX_ML ImportError: DLL load failed while importing onnx_cpp2py_export: A dynamic link library (DLL) initialization routine failed. ### System information <!-- - WIn 23h2 - ONNX version: i have no idea - Python version: miniconda 3 - GCC/Compiler version (if compiling from source): - CMake version: - Protobuf version: - Visual Studio version (if applicable):--> ### Reproduction instructions I have no idea what i am doing so i dont know how to reproduce it ... ``` - Attach the ONNX model to the issue (where applicable)--> ### Expected behavior Expected it to just install ### Notes Sorry but i am just following this tutorial so i have no idea about how to properly do a bug report
closed
2024-08-05T12:02:59Z
2025-01-21T12:45:40Z
https://github.com/onnx/onnx/issues/6279
[ "bug" ]
Dodonicc
2
aio-libs/aiomysql
sqlalchemy
413
when minsize reach can't acquire a new connection ,it return a exit conn
code as folows:--------- ```python import aiomysql import asyncio from aiomysql.cursors import DictCursor class MySQL_Pool(object): async def init_pool(self): self.pool = await aiomysql.create_pool(host='10.16.xx.xx', port=3306, minsize=5, maxsize=50, user='k8sadmin', password='123456', db='kubernetes_backend') return self.pool class MySQL_Conn(object): def __init__(self, pool): self.pool = pool async def get_conn(self): async with self.pool.acquire() as self.conn: print(self.conn) pass def close_conn(self): self.pool.release(self.conn) async def execute(self, sql): async with self.conn.cursor(DictCursor) as cur: await cur.execute(sql) r = await cur.fetchall() await self.conn.commit() print(r) async def query_db(pool): mysql = MySQL_Conn(pool) await mysql.get_conn() k = await mysql.execute("select name from tb_deployment where id=60") #mysql.close_conn() async def main(): task_lst = [] for i in range(6): task_lst.append( asyncio.create_task(query_db(pool)) ) for i in task_lst: await i mysql_loop = asyncio.get_event_loop() pool = mysql_loop.run_until_complete(MySQL_Pool().init_pool()) mysql_loop.run_until_complete(main()) ``` ------------- I run less than 5 coroutine to select ,it has no problem, when I run more than 5 coroutine ,pool.acquire() will get an existing conn,not new connection, I print the conn, such i run this with 6 coroutine ,as result as follows: --------------------- ```python <aiomysql.connection.Connection object at 0x7fde099b5a90> <aiomysql.connection.Connection object at 0x7fde099b5f60> <aiomysql.connection.Connection object at 0x7fde099d1240> <aiomysql.connection.Connection object at 0x7fde099d1470> <aiomysql.connection.Connection object at 0x7fde099d16a0> <aiomysql.connection.Connection object at 0x7fde099b5a90> Traceback (most recent call last): File "aiomysqltest.py", line 48, in <module> mysql_loop.run_until_complete(main()) File "/usr/local/Python-3.7.3/lib/python3.7/asyncio/base_events.py", line 584, in run_until_complete return future.result() File "aiomysqltest.py", line 44, in main await i File "aiomysqltest.py", line 35, in query_db k = await mysql.execute("select name from tb_deployment where id=60") File "aiomysqltest.py", line 29, in execute await self.conn.commit() File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/connection.py", line 353, in commit await self._read_ok_packet() File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/connection.py", line 333, in _read_ok_packet raise OperationalError(2014, "Command Out of Sync") pymysql.err.OperationalError: (2014, 'Command Out of Sync') Task exception was never retrieved future: <Task finished coro=<query_db() done, defined at aiomysqltest.py:32> exception=RuntimeError('readexactly() called while another coroutine is already waiting for incoming data')> Traceback (most recent call last): File "aiomysqltest.py", line 35, in query_db k = await mysql.execute("select name from tb_deployment where id=60") File "aiomysqltest.py", line 27, in execute await cur.execute(sql) File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/cursors.py", line 239, in execute await self._query(query) File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/cursors.py", line 457, in _query await conn.query(q) File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/connection.py", line 428, in query await self._read_query_result(unbuffered=unbuffered) File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/connection.py", line 622, in _read_query_result await result.read() File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/connection.py", line 1105, in read first_packet = await self.connection._read_packet() File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/connection.py", line 561, in _read_packet packet_header = await self._read_bytes(4) File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/connection.py", line 598, in _read_bytes data = await self._reader.readexactly(num_bytes) File "/usr/local/Python-3.7.3/lib/python3.7/asyncio/streams.py", line 679, in readexactly await self._wait_for_data('readexactly') File "/usr/local/Python-3.7.3/lib/python3.7/asyncio/streams.py", line 460, in _wait_for_data f'{func_name}() called while another coroutine is ' RuntimeError: readexactly() called while another coroutine is already waiting for incoming data ``` ------------------ you can see the printed conn has 6,but one is same as the other:<aiomysql.connection.Connection object at 0x7fde099b5a90> Am I using the wrong method? and how can i release the conn, when i use pool.release(conn),Remove the comment(mysql_close_conn()), it will exception: ------------------------ ```python Traceback (most recent call last): File "aiomysqltest.py", line 49, in <module> mysql_loop.run_until_complete(main()) File "/usr/local/Python-3.7.3/lib/python3.7/asyncio/base_events.py", line 584, in run_until_complete return future.result() File "aiomysqltest.py", line 45, in main await i File "aiomysqltest.py", line 36, in query_db mysql.close_conn() File "aiomysqltest.py", line 23, in close_conn self.pool.release(self.conn) File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/pool.py", line 204, in release assert conn in self._used, (conn, self._used) AssertionError: (<aiomysql.connection.Connection object at 0x7f30c3745eb8>, set()) Task exception was never retrieved future: <Task finished coro=<query_db() done, defined at aiomysqltest.py:32> exception=AssertionError((<aiomysql.connection.Connection object at 0x7f30bf5266d8>, set()))> Traceback (most recent call last): File "aiomysqltest.py", line 36, in query_db mysql.close_conn() File "aiomysqltest.py", line 23, in close_conn self.pool.release(self.conn) File "/usr/local/Python-3.7.3/lib/python3.7/site-packages/aiomysql/pool.py", line 204, in release assert conn in self._used, (conn, self._used) AssertionError: (<aiomysql.connection.Connection object at 0x7f30bf5266d8>, set()) ``` ----------------------------- this is not a problem, when the coroutine ended the conn will auto release thanks
closed
2019-06-11T10:49:36Z
2019-06-12T03:19:43Z
https://github.com/aio-libs/aiomysql/issues/413
[]
futianshi1314
4
ContextLab/hypertools
data-visualization
95
support multiindex Pandas DataFrames
open
2017-04-18T14:49:43Z
2017-04-28T17:21:59Z
https://github.com/ContextLab/hypertools/issues/95
[ "enhancement", "help wanted", "low priority" ]
andrewheusser
1
microsoft/nni
data-science
5,748
it only ran 8 combinations each time, and then no code was running. But nni didn’t stop
**Describe the issue**: I ran it with the settings below, but it only ran 8 combinations each time, and then no code was running. But nni didn’t stop **Environment**: - NNI version: 3.0 - Training service (local|remote|pai|aml|etc): remote - Client OS: mac - Server OS (for remote mode only): linux - Python version: 3.8 - PyTorch/TensorFlow version: 1.13 - Is conda/virtualenv/venv used?: conda **Configuration**: - Experiment config (remember to remove secrets!): experimentName: sgd searchSpaceFile: search_space.json trialGpuNumber: 1 trialConcurrency: 8 max_trial_number: 10000 tuner: name: TPE classArgs: optimize_mode: maximize trainingService: platform: local useActiveGpu: True - Search space: { "lr": {"_type": "uniform", "_value": [0.0001, 1.0]}, "batch_size":{"_type":"choice","_value": [8, 16, 32, 64, 128]} } **How to reproduce it?**:Why and How to deal with it?
open
2024-02-26T14:55:29Z
2024-02-26T14:55:29Z
https://github.com/microsoft/nni/issues/5748
[]
CCJing14
0
AutoGPTQ/AutoGPTQ
nlp
223
Apple silicon cannot install the AutoGPT
When I use "pip install auto-gptq" to quick start, it prompts that cant get the Cuda version, do we support MPS or Apple Silicon Chip? (base) kenneth@KenStudio AutoGPTQ % pip install auto-gptq Collecting auto-gptq Downloading auto_gptq-0.3.2.tar.gz (63 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 63.5/63.5 kB 131.0 kB/s eta 0:00:00 Preparing metadata (setup.py) ... error error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [7 lines of output] Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "/private/var/folders/2c/lk_jmzrs53bdr3np4k5tr9kr0000gn/T/pip-install-cc1gf7m1/auto-gptq_7f3e2b1f14334c129f6bf5d18dea8201/setup.py", line 21, in <module> CUDA_VERSION = "".join(torch.version.cuda.split(".")) ^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: 'NoneType' object has no attribute 'split' [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed × Encountered error while generating package metadata. ╰─> See above for output. note: This is an issue with the package mentioned above, not pip. hint: See above for details.
open
2023-08-02T03:00:47Z
2025-01-16T15:29:15Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/223
[]
canychan
5
Anjok07/ultimatevocalremovergui
pytorch
1,652
Asking for cuda toolkit version
Hello, I have the Cuda Toolkit 12.4 installed on my system, but I'm unable to run UVR properly. Each time I start processing, the application crashes after 5% progress. I suspect this may be due to an incompatibility between the UVR torch version and the Cuda Toolkit version on my system. Below is the error log. My Graphic card is Nvidia GeForce GTX 1080Ti with 11GB dedicated GPU memory Faulting application name: UVR.exe, version: 0.0.0.0, time stamp: 0x652f4a81 Faulting module name: c10_cuda.dll, version: 0.0.0.0, time stamp: 0x6356f675 Exception code: 0xc0000005 Fault offset: 0x000000000002fb9b Faulting process id: 0x0x4240 Faulting application start time: 0x0x1DB4777CC03154E Faulting application path: C:\Users\***\AppData\Local\Programs\Ultimate Vocal Remover\UVR.exe Faulting module path: C:\Users\***\AppData\Local\Programs\Ultimate Vocal Remover\torch\lib\c10_cuda.dll Report Id: 7946691e-29a9-4c58-9707-7586a6a492d8 Faulting package full name: Faulting package-relative application ID: I hope someone can tell me which Cuda Toolkit version should I install on my system.
closed
2024-12-06T09:22:56Z
2024-12-07T06:02:13Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1652
[]
cyrus-arch
1
JaidedAI/EasyOCR
pytorch
651
dataset used for english/latin language
Hello, Thank you for sharing this very good work! I have a question regarding latin/english dataset used for the training of the CRNN model. Is it trained only on the Synth dataset ? (https://www.robots.ox.ac.uk/~vgg/data/scenetext/) or is there more datasets than this one ?
closed
2022-01-24T13:04:12Z
2022-08-25T10:52:27Z
https://github.com/JaidedAI/EasyOCR/issues/651
[]
Shiro-LK
1
chrieke/prettymapp
streamlit
74
Line width scaling with map size
The width of lines is given as a fixed value of matplotlib "points" which means the width of a line stays the same regardless of the map size. In small maps the lines end up smaller and in large maps the lines end up so big you can't see anything. I thought it would be nice to allow configuring the width of lines in meters. I'm not sure if doing so is in scope for this project or not, whether it would break things for people. If there would be an interest in having all the width configuration be in meters I'd be happy to open a PR to implement that, but otherwise I'd like to just leave the solution I wrote in case it's useful for anybody else. This ended up generating reasonably looking small and large maps. When generating very large (radius >10km) maps it works when saving to svg, but the resolution ends up being too small when exporting to jpg or png without increasing the dpi. ``` from shapely import Point from geopandas import GeoDataFrame ( xmin, ymin, xmax, ymax, ) = aoi.bounds ymid = (ymin + ymax) / 2 # Width of the figure in matplotlib "points" width_points = plot.fig.get_size_inches()[0] * 72 left_point = Point(xmin, ymid) right_point = Point(xmax, ymid) gdf = GeoDataFrame(geometry=[left_point, right_point], crs="EPSG:4326") gdf = gdf.to_crs("EPSG:32633") # This represents the (longitudal) distance (in meters) of the plot # through the center of the plot. # # Should be equal to two times the radius. width_meters = gdf.geometry.iloc[0].distance(gdf.geometry.iloc[1]) # The width in points of one meter (at the center of the plot) meter_points = width_points / width_meters for key in STREETS_WIDTH: STREETS_WIDTH[key] *= meter_points ``` and also modify plotting.py to multiply by `meter_points` (at https://github.com/chrieke/prettymapp/blob/3a6ef573f343718f001be8ee8038c15b687876f9/prettymapp/plotting.py#L126 and https://github.com/chrieke/prettymapp/blob/3a6ef573f343718f001be8ee8038c15b687876f9/prettymapp/plotting.py#L146)
open
2024-12-30T15:00:03Z
2024-12-30T15:00:03Z
https://github.com/chrieke/prettymapp/issues/74
[]
C4K3
0
twelvedata/twelvedata-python
matplotlib
74
Daily price is not adjusted for the splits
**Describe the bug** The prices are not adjusted for the splits. **To Reproduce** ts = td.time_series( symbol="EVAV", interval="1day", outputsize=5000, timezone="America/New_York", **Expected behavior** The Twelve Data website mentions that the prices are adjusted for daily prices. **Screenshots** <img width="503" alt="image" src="https://github.com/twelvedata/twelvedata-python/assets/11630907/1044e2fb-1960-4327-8aac-050a0a900e48">
closed
2023-12-27T15:38:22Z
2024-01-08T15:47:00Z
https://github.com/twelvedata/twelvedata-python/issues/74
[]
misik
1
suitenumerique/docs
django
677
Prerequisites for Multi-Page Search
For the multipage update, the search will evolve to not only (1) be able to search for documents (as it does today), but also **(2) be able to search for sub-pages within their context**. This means that under the sub-page, **the parent document is displayed** (see Figure below). The displayed parent document is the highest page accessible to the user in the tree. The backend must therefore be able to return it. ![Image](https://github.com/user-attachments/assets/a39de677-95b6-41b4-91ac-5bb9a5ef5b2b) [Figma Prototype (FR)](https://www.figma.com/design/qdCWR4tTUr7vQSecEjCyqO/DOCS?node-id=6924-19895&t=pXmgIcFel1cMxdaQ-1)
open
2025-03-04T16:17:03Z
2025-03-04T16:17:38Z
https://github.com/suitenumerique/docs/issues/677
[ "backend", "designed" ]
rl-83
0
matplotlib/matplotlib
data-visualization
29,535
[Doc]: Typo in Solarized Light stylesheet example code
### Documentation Link https://matplotlib.org/devdocs/gallery/style_sheets/plot_solarizedlight2.html ### Problem There is a ` * x` missing in the 4th plot line of the example plot. The plots renders fine, but looks a bit odd. ### Suggested improvement Add ` * x` to the line.
closed
2025-01-28T17:22:50Z
2025-01-28T23:23:29Z
https://github.com/matplotlib/matplotlib/issues/29535
[ "Documentation" ]
johanneskopton
0
horovod/horovod
deep-learning
3,972
A question about model parallel
Hello, are there any examples of model parallel when using horovod?
open
2023-08-14T06:00:56Z
2023-08-14T06:00:56Z
https://github.com/horovod/horovod/issues/3972
[ "enhancement" ]
etoilestar
0
jina-ai/serve
machine-learning
5,482
support opentelemetry export more params like headers
**Describe the bug** <!-- A clear and concise description of what the bug is. --> jina init param <img width="636" alt="image" src="https://user-images.githubusercontent.com/114633619/205478332-40854617-136b-4270-ba4c-d0641b5a16f6.png"> opentelemetry init param <img width="655" alt="image" src="https://user-images.githubusercontent.com/114633619/205478341-27d5e35e-b68c-4eeb-a0d6-9dfb9a378e48.png"> **Describe how you solve it** <!-- copy past your code/pull request link --> apm like uptrace https://github.com/uptrace/uptrace will need opentelemetry header to collect information, now jina not support pass header to tracer and meter --- <!-- Optional, but really help us locate the problem faster --> **Environment** <!-- Run `jina --version-full` and copy paste the output here --> **Screenshots** <!-- If applicable, add screenshots to help explain your problem. -->
closed
2022-12-04T06:51:15Z
2022-12-07T16:19:17Z
https://github.com/jina-ai/serve/issues/5482
[]
big-thousand
2
huggingface/peft
pytorch
1,562
How do I easily inherit and register the new method?
Is there an example of inheriting existing methods and registering my own new methods, I guess this will help enhance the extensibility of the repository. Such as, how can i add a linear layer for Lora?
closed
2024-03-14T08:26:53Z
2024-03-14T10:30:42Z
https://github.com/huggingface/peft/issues/1562
[]
mrwu-mac
2
akfamily/akshare
data-science
5,158
AKShare 股票 - 深圳中小板与主板合并
> 欢迎加入《数据科学实战》知识星球,交流财经数据与量化投资相关内容, > 详细信息参考:https://akshare.akfamily.xyz/learn.html ## 前提 遇到任何问题,请先将您的 AKShare 版本升级到**最新版**,可以通过如下命令升级: ``` pip install akshare --upgrade # Python 版本需要大于等于 3.8 ``` ## 如何提交问题 提交问题的同时,请提交以下相关信息,以更精准的解决问题。 **不符合提交规范的 issues 会被关闭!** **详细问题描述** 1. 请先详细阅读文档对应接口的使用方式:https://akshare.akfamily.xyz 2. 操作系统版本,目前只支持 64 位操作系统 windows 11 3. Python 版本,目前只支持 3.8 以上的版本 3.11 4. AKShare 版本,请升级到最新版 最新版本 5. 接口的名称和相应的调用代码 接口: stock_szse_summary 目标地址: http://www.szse.cn/market/overview/index.html 描述: 深圳证券交易所-市场总貌-证券类别统计 限量: 单次返回指定 date 的市场总貌数据-证券类别统计(当前交易日的数据需要交易所收盘后统计) 6. 接口报错的截图或描述 因为主板和中小板合并了,所以目标地址的页面内容变了。 目标地址: http://www.szse.cn/market/overview/index.html 7. 期望获得的正确结果
closed
2024-09-01T03:19:54Z
2024-09-01T08:39:09Z
https://github.com/akfamily/akshare/issues/5158
[ "bug" ]
raphaelxiao
1
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
903
read and write DCM image
hello, I have tried your code to train the DICOM image of scanner. but the Dicom image is 16bit grayscale image which can not traited by PIL.image objet. Have you any idea how to overcome this problem? can we use mode 'I' (32bit int) for data input? Thank you
open
2020-01-19T21:14:47Z
2022-10-30T06:22:13Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/903
[]
qiuLimoges
5
facebookresearch/fairseq
pytorch
4,919
TypeError: Can't instantiate abstract class TrainModule with abstract methods requirements
## ❓ Questions and Help ### Before asking: 1. search the issues. [x] 2. search the docs. [x] <!-- If you still can't find what you need: --> #### Trying to train NLLB but got an error? ``` TypeError: Can't instantiate abstract class TrainModule with abstract methods requirements ``` ### Complete Error ``` examples/nllb/modeling/train/train_script.py:287: UserWarning: The version_base parameter is not specified. Please specify a compatability version level, or None. Will assume defaults for version 1.1 @hydra.main(config_path="conf", config_name="base_config") /home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/_internal/hydra.py:119: UserWarning: Future Hydra versions will no longer change working directory at job runtime by default. See https://hydra.cc/docs/next/upgrades/1.1_to_1.2/changes_to_job_working_dir/ for more information. ret = run_job( Error executing job with overrides: ['cfg=bilingual', 'cfg.fairseq_root=/home/sn/phd/experiments/2022-2023/nllb/fairseq', 'cfg.output_dir=/home/sn/outdir/nllb', 'cfg.dropout=0.1'] Traceback (most recent call last): File "examples/nllb/modeling/train/train_script.py", line 294, in <module> main() File "/home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/main.py", line 90, in decorated_main _run_hydra( File "/home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/_internal/utils.py", line 389, in _run_hydra _run_app( File "/home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/_internal/utils.py", line 452, in _run_app run_and_report( File "/home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/_internal/utils.py", line 216, in run_and_report raise ex File "/home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/_internal/utils.py", line 213, in run_and_report return func() File "/home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/_internal/utils.py", line 453, in <lambda> lambda: hydra.run( File "/home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/_internal/hydra.py", line 132, in run _ = ret.return_value File "/home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/core/utils.py", line 260, in return_value raise self._return_value File "/home/sn/miniconda3/envs/nllb/lib/python3.8/site-packages/hydra/core/utils.py", line 186, in run_job ret.return_value = task_function(task_cfg) File "examples/nllb/modeling/train/train_script.py", line 289, in main train_module = TrainModule(config) TypeError: Can't instantiate abstract class TrainModule with abstract methods requirements ``` #### Code ``` export OUTPUT_DIR=/tmp/nllb export DROP=0.1 python examples/nllb/modeling/train/train_script.py \ cfg=bilingual \ cfg.fairseq_root=$(pwd) \ cfg.output_dir=$OUTPUT_DIR \ cfg.dropout=$DROP ``` <!-- Please paste a code snippet if your question requires it! --> #### What have you tried? #### What's your environment? - fairseq Version (e.g., nllb): nllb - PyTorch Version (e.g., 1.10): 1.10.1+cu113 - OS (e.g., Linux): Ubuntu 20.04 - How you installed fairseq (`pip`,`source`): - Build command you used (if compiling from source): `pip install --editable .` - Python version: 3.8 - CUDA/cuDNN version: 11.3 - GPU models and configuration: Tesla V100 - Any other relevant information:
open
2022-12-23T04:38:54Z
2023-03-07T10:47:30Z
https://github.com/facebookresearch/fairseq/issues/4919
[ "question", "needs triage" ]
sanjibnarzary
3
django-import-export/django-import-export
django
1,133
Is there a way to export two different tables (which are linked by ForeignKey in TabularInline) in one excel file?
Like, models.py ``` class Person(models.Model): name = models.CharField(max_length=50) age = models.IntegerField() income = models.CharField(choices=income_choices, max_length=50) class DetailsOfEducationQualification(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) course_class = models.CharField(max_length=50, blank=True) satisfaction_of_study = models.BooleanField(default=False, blank=True) scholarship_received = models.BooleanField(default=False, blank=True) "Specify the scholarship Left" drop_out = models.BooleanField(default=False, blank=True) "Reason Of DropOut Left" drop_out_reason = models.CharField(max_length=1000, blank=True) class ScholarshipNames(models.Model): details = models.ForeignKey(Person, on_delete=models.CASCADE) name = models.CharField(max_length=200, blank=True) ``` In admin.py, ``` from .models import Person, DetailsOfEducationQualification, ScholarshipNames class DetailsOfEducationQualificationInline(admin.TabularInline): model = DetailsOfEducationQualification extra = 1 class ScholarshipNamesInline(admin.TabularInline): model = ScholarshipNames extra = 1 class PersonAdmin(admin.ModelAdmin): fieldsets = [ ( 'Personal Information', { 'fields':[ 'name', 'age', 'education_level', 'occupation_status', 'income', ] } ), ] inlines = [ DetailsOfEducationQualificationInline, ScholarshipNamesInline, ] ``` The question I asked is, How do I put these three models in one CSV file while exporting since it is related to each other...
closed
2020-05-09T13:11:23Z
2023-09-15T21:14:04Z
https://github.com/django-import-export/django-import-export/issues/1133
[ "question" ]
wan0004
3
matterport/Mask_RCNN
tensorflow
2,293
Has anyone tried training only the RPN from scratch?
I am getting very high scores for all the anchors
open
2020-07-28T08:41:11Z
2020-07-30T11:43:00Z
https://github.com/matterport/Mask_RCNN/issues/2293
[]
nnnetizen
1
flairNLP/flair
nlp
3,049
Training of TARS model based on xlm-roberta-base not supported?
In the [tutorial](https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_10_TRAINING_ZERO_SHOT_MODEL.md) to train a TARS model, I replaced the bert-base-uncased embeddings with xml-roberta-base embeddings. ``` # 5a: alternatively, comment out previous line and comment in next line to train a new TARS model from scratch instead # tars = TARSClassifier(embeddings="bert-base-uncased") tars = TARSClassifier(embeddings="xlm-roberta-base") ``` No error or warning message shows up during training, but loss is not really decreasing, and predictions seem to be empty, which results in 0.0 evaluation scores. see loss: ``` EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY 1 13:34:20 0 0.0200 0.6781343320539873 0.5536978244781494 0.0 0.0 0.0 0.0 2 13:36:27 0 0.0200 0.6408121450934816 0.5375534296035767 0.0 0.0 0.0 0.0 3 13:38:33 0 0.0200 0.6377008462209723 0.5173110365867615 0.0 0.0 0.0 0.0 4 13:40:40 1 0.0200 0.6371011527674117 0.5206502676010132 0.0 0.0 0.0 0.0 5 13:42:46 2 0.0200 0.6370353295454698 0.5219637155532837 0.0 0.0 0.0 0.0 ``` see predictions: ``` How far is it from Denver to Aspen ? - Gold: question about number - Pred: -> MISMATCH! What county is Modesto , California in ? - Gold: question about location - Pred: -> MISMATCH! ``` Are other TransformerEmbeddings not supported for TARS models?
closed
2023-01-09T15:04:08Z
2023-01-11T14:03:21Z
https://github.com/flairNLP/flair/issues/3049
[ "question" ]
ann-so
2
ultralytics/yolov5
pytorch
12,993
Saving Augmented Images
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question Hello friends, "As you know, data augmentation methods lead to a slower training process. Therefore, I have decided to perform augmentation methods once and save the new images. Then, for another training process, I will only use these new images and will not use augmentation methods in the training process. In the _getitem_ method of the LoadImagesAndLabels class, I saved the images and their corresponding labels. To achieve this, I used one epoch with a batch size of one to perform these methods for each image. After the process was finished, I checked the images and labels, and everything is fine. However, the problem is that I can't achieve the same accuracy as before with this new dataset (augmented method)." ### Additional _No response_
closed
2024-05-09T14:34:19Z
2024-06-20T00:22:02Z
https://github.com/ultralytics/yolov5/issues/12993
[ "question", "Stale" ]
BehdadSDP
2
frappe/frappe
rest-api
29,994
node not found when saving website theme
## Description of the issue When creating a new website theme, and then save it, it will fail saying that the node executable is not found. When printing the environments of the web application process, it does run as the frappe user, however, since the master process is spawned by root, i believe the supervisor worker process like gunicorn it is inheriting the root environment, hence the failure to load the node executable as the node inside nvm is not loaded in $PATH of root user, but the frappe user inside their own shell. ## Context information (for bug reports) **Output of `bench version`** ``` erpnext 15.49.1 frappe 15.53.0 hrms 15.38.0 ``` ## Steps to reproduce the issue 1. Use bare-metal installation method 2. Create new site 3. Create website theme 4. Save website theme, and then error will pop-out saying node is not found. ### Observed result Node is not found, because the $PATH is from root, not frappe user ### Expected result Website theme saved successfully ### Stacktrace / full error message ``` Traceback (most recent call last): File "apps/frappe/frappe/app.py", line 114, in application response = frappe.api.handle(request) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/api/__init__.py", line 49, in handle data = endpoint(**arguments) ^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/api/v1.py", line 36, in handle_rpc_call return frappe.handler.handle() ^^^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/handler.py", line 50, in handle data = execute_cmd(cmd) ^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/handler.py", line 86, in execute_cmd return frappe.call(method, **frappe.form_dict) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/__init__.py", line 1726, in call return fn(*args, **newargs) ^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/utils/typing_validations.py", line 31, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/desk/form/save.py", line 39, in savedocs doc.save() File "apps/frappe/frappe/model/document.py", line 342, in save return self._save(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/model/document.py", line 364, in _save return self.insert() ^^^^^^^^^^^^^ File "apps/frappe/frappe/model/document.py", line 295, in insert self.run_before_save_methods() File "apps/frappe/frappe/model/document.py", line 1103, in run_before_save_methods self.run_method("validate") File "apps/frappe/frappe/model/document.py", line 974, in run_method out = Document.hook(fn)(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/model/document.py", line 1334, in composer return composed(self, method, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/model/document.py", line 1316, in runner add_to_return_value(self, fn(self, *args, **kwargs)) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/model/document.py", line 971, in fn return method_object(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "apps/frappe/frappe/website/doctype/website_theme/website_theme.py", line 50, in validate self.generate_bootstrap_theme() File "apps/frappe/frappe/website/doctype/website_theme/website_theme.py", line 110, in generate_bootstrap_theme process = Popen(command, cwd=frappe.get_app_source_path("frappe"), stdout=PIPE, stderr=PIPE) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frappe/.pyenv/versions/3.12.8/lib/python3.12/subprocess.py", line 1026, in __init__ self._execute_child(args, executable, preexec_fn, close_fds, File "/home/frappe/.pyenv/versions/3.12.8/lib/python3.12/subprocess.py", line 1955, in _execute_child raise child_exception_type(errno_num, err_msg, err_filename) FileNotFoundError: [Errno 2] No such file or directory: 'node' ``` ## Additional information OS version / distribution, `Frappe` install method, etc. Bare metal installation method using Ubuntu 24.04.1 Environment of the gunicorn process: ![Image](https://github.com/user-attachments/assets/f2b19f80-a433-4c3b-816d-c4d5cae9acc8) the link below is the same issue but raised in the forums instead, because the last two days i was unable to open the issue here https://discuss.frappe.io/t/node-not-found-when-saving-website-theme/141009/1
open
2025-01-23T03:11:25Z
2025-01-23T03:16:08Z
https://github.com/frappe/frappe/issues/29994
[ "bug" ]
ismxilxrif
0
rthalley/dnspython
asyncio
811
TXT records are parsed incorrect if contain spaces
**Describe the bug** In case of TXT records, which contain spaces, like "localhost localhost6 suchhost,verylocal", result of rdata.from_text() is ambigious string '"localhost" "localhost6" "suchhost,verylocal"'. The latter, according to [rfc7208](https://www.rfc-editor.org/rfc/rfc7208#section-3.3) must be treated as if there is no spaces between parts, which is not what user wants. **To Reproduce** - In [1]: from dns import name, rdata, rdatatype - In [2]: origin = name.from_text("example.com") - In [3]: rd = rdata.from_text(1, rdatatype.TXT, "localhost localhost6 suchhost,verylocal", origin=origin) - In [4]: rd.to_text() - Out[4]: '"localhost" "localhost6" "suchhost,verylocal"' - In [5]: rd - Out[5]: <DNS IN TXT rdata: "localhost" "localhost6" "suchhost,verylocal"> **Context (please complete the following information):** - dnspython version 2.2.1 - Python version 3.7.0 - OS: macOS Monterey
closed
2022-05-26T10:20:50Z
2022-05-26T11:44:50Z
https://github.com/rthalley/dnspython/issues/811
[]
anpenik
1
praw-dev/praw
api
1,819
Comment stream providing comments out of order
### Describe the Bug When using a comment stream on a specific subreddit, if a high load of comments are pushed through the stream, some will not be processed until the stream is caught up. For example, here we tested by spamming many many many comments replying to our own comments with a command that triggers the bot to reply with the current UTC time. Hypothetically, all the replies should be in order of which the comments were placed. Here is how it actually came out: ![image_2021-11-19_202705](https://user-images.githubusercontent.com/13283879/142713073-509a4e18-965b-48b7-9220-14c54e799a12.jpg) ### Desired Result Comments come through the reddit stream oldest to newest https://praw.readthedocs.io/en/stable/code_overview/other/subredditstream.html#praw.models.reddit.subreddit.SubredditStream.comments ### Relevant Logs _No response_ ### Code to reproduce the bug ```python for comment in reddit.subreddit(subreddit).stream.comments(): comment.reply(datetime.datetime.now()) ``` ### My code example does not include the `Reddit()` initialization to prevent credential leakage. Yes ### This code has previously worked as intended. No ### Operating System/Environment Windows 10 Version 21H1, CentOS 7 ### Python Version Python 3.9 ### PRAW Version 7.3.0 ### Prawcore Version 2.2.0 ### Anything else? This issue was discovered via /r/KickOpenTheDoor. An RPG inside of reddit. When bosses in this game get low, the races (4 teams) will rally their members and all attack the boss with as much people as possible to try and get the final hit and kill it. We noticed this bug happens most when these comments are spammed quickly. Other players comments which are newer will process before a certain attack. These are rare but it means a player will not actually get to hit the boss until the bot has caught up to real time, by which time, the boss is already dead. Then, the bot will proceed to go back to the comment it skipped, then process it. Possibly a general API issue and how reddit delivers the comments.
closed
2021-11-20T03:41:12Z
2021-11-20T17:57:07Z
https://github.com/praw-dev/praw/issues/1819
[]
ZorudaRinku
4
litestar-org/polyfactory
pydantic
617
Bug: Imperative Factory Creation doesn't respect pydantic Field constrains
### Description I have this pydantic model: ![image](https://github.com/user-attachments/assets/70a90b74-f347-4f1b-a201-0c8c5b507cce) I have this base factory: ![image](https://github.com/user-attachments/assets/1e15b835-d13c-4a20-bdca-23033b845eed) When i create a factory, it does not respect the pydantic Field constrains: ![image](https://github.com/user-attachments/assets/5b4b82b6-44cf-48b5-a806-ccdef58b9348) ### Release Version 2.18.1
open
2024-12-04T22:15:51Z
2024-12-05T13:07:19Z
https://github.com/litestar-org/polyfactory/issues/617
[ "bug" ]
idan-rahamim-lendbuzz
2
skypilot-org/skypilot
data-science
4,179
[Core] No oci installation abort the `sky launch`
<!-- Describe the bug report / feature request here --> If OCI is not enabled and local python environment does not have oci installation, it breaks the provision process. We should fix this before the 0.7.0 release. Steps to produce: 1. Start a fresh container using `docker run -it --rm --name skypilot-debug berkeleyskypilot/skypilot-debug /bin/bash`. 2. Installing skypilot w/ AWS: `cd skypilot; pip install -e '.[aws]' 3. `aws configure` and input tokens 4. `sky launch` gives the following output: ```bash (base) root@6d62005c658d:/sky_repo/skypilot# sky launch D 10-25 20:45:49 common.py:231] Updated AWS catalog aws/vms.csv. D 10-25 20:45:49 optimizer.py:292] #### Task<name=sky-cmd>(run=<empty>) D 10-25 20:45:49 optimizer.py:292] resources: default instances #### D 10-25 20:45:49 optimizer.py:317] Defaulting the task's estimated time to 1 hour. D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.4 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 D 10-25 20:45:49 optimizer.py:339] resources: AWS(m6i.2xlarge) D 10-25 20:45:49 optimizer.py:358] estimated_runtime: 3600 s (1.0 hr) D 10-25 20:45:49 optimizer.py:362] estimated_cost (not incl. egress): $0.5 I 10-25 20:45:50 optimizer.py:881] Considered resources (1 node): I 10-25 20:45:50 optimizer.py:951] ------------------------------------------------------------------------------------------ I 10-25 20:45:50 optimizer.py:951] CLOUD INSTANCE vCPUs Mem(GB) ACCELERATORS REGION/ZONE COST ($) CHOSEN I 10-25 20:45:50 optimizer.py:951] ------------------------------------------------------------------------------------------ I 10-25 20:45:50 optimizer.py:951] AWS m6i.2xlarge 8 32 - us-east-1 0.38 ✔ I 10-25 20:45:50 optimizer.py:951] ------------------------------------------------------------------------------------------ Launching a new cluster 'sky-9922-root'. Proceed? [Y/n]: D 10-25 20:45:50 cloud_vm_ray_backend.py:4408] cluster_ever_up: False D 10-25 20:45:50 cloud_vm_ray_backend.py:4409] record: None D 10-25 20:45:52 common.py:231] Updated AWS catalog aws/instance_quota_mapping.csv. D 10-25 20:45:52 common.py:231] Updated AWS catalog aws/images.csv. Traceback (most recent call last): File "/sky_repo/skypilot/sky/adaptors/common.py", line 31, in load_module self._module = importlib.import_module(self._module_name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<frozen importlib._bootstrap>", line 1204, in _gcd_import File "<frozen importlib._bootstrap>", line 1176, in _find_and_load File "<frozen importlib._bootstrap>", line 1140, in _find_and_load_unlocked ModuleNotFoundError: No module named 'oci' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/sky_repo/skypilot/sky/clouds/oci.py", line 466, in get_credential_file_mounts oci_cfg = oci_adaptor.get_oci_config( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/adaptors/oci.py", line 26, in get_oci_config oci_config = oci.config.from_file(file_location=conf_file_path, ^^^^^^^^^^ File "/sky_repo/skypilot/sky/adaptors/common.py", line 46, in __getattr__ return getattr(self.load_module(), name) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/adaptors/common.py", line 36, in load_module raise ImportError(self._import_error_message) from e ImportError: Failed to import dependencies for OCI. Try running: pip install "skypilot[oci]" During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/sky_repo/skypilot/sky/adaptors/common.py", line 31, in load_module self._module = importlib.import_module(self._module_name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<frozen importlib._bootstrap>", line 1204, in _gcd_import File "<frozen importlib._bootstrap>", line 1176, in _find_and_load File "<frozen importlib._bootstrap>", line 1140, in _find_and_load_unlocked ModuleNotFoundError: No module named 'oci' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/bin/sky", line 8, in <module> sys.exit(cli()) ^^^^^ File "/opt/conda/lib/python3.11/site-packages/click/core.py", line 1157, in __call__ return self.main(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/click/core.py", line 1078, in main rv = self.invoke(ctx) ^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/utils/common_utils.py", line 366, in _record return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/cli.py", line 818, in invoke return super().invoke(ctx) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/click/core.py", line 1688, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/click/core.py", line 1434, in invoke return ctx.invoke(self.callback, **ctx.params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/click/core.py", line 783, in invoke return __callback(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/cli.py", line 1131, in launch _launch_with_confirm(task, File "/sky_repo/skypilot/sky/cli.py", line 609, in _launch_with_confirm sky.launch( File "/sky_repo/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/execution.py", line 454, in launch return _execute( ^^^^^^^^^ File "/sky_repo/skypilot/sky/execution.py", line 280, in _execute handle = backend.provision(task, ^^^^^^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/utils/common_utils.py", line 366, in _record return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/backends/backend.py", line 60, in provision return self._provision(task, to_provision, dryrun, stream_logs, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/backends/cloud_vm_ray_backend.py", line 2810, in _provision config_dict = retry_provisioner.provision_with_retries( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/backends/cloud_vm_ray_backend.py", line 1988, in provision_with_retries config_dict = self._retry_zones( ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/backends/cloud_vm_ray_backend.py", line 1399, in _retry_zones config_dict = backend_utils.write_cluster_config( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/backends/backend_utils.py", line 832, in write_cluster_config credentials = sky_check.get_cloud_credential_file_mounts(excluded_clouds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/check.py", line 213, in get_cloud_credential_file_mounts cloud_file_mounts = cloud.get_credential_file_mounts() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/clouds/oci.py", line 471, in get_credential_file_mounts except (ImportError, oci_adaptor.oci.exceptions.ConfigFileNotFound): ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/adaptors/common.py", line 46, in __getattr__ return getattr(self.load_module(), name) ^^^^^^^^^^^^^^^^^^ File "/sky_repo/skypilot/sky/adaptors/common.py", line 36, in load_module raise ImportError(self._import_error_message) from e ImportError: Failed to import dependencies for OCI. Try running: pip install "skypilot[oci]" ``` <!-- If relevant, fill in versioning info to help us troubleshoot --> _Version & Commit info:_ * `sky -v`: skypilot, version 1.0.0-dev0 * `sky -c`: skypilot, commit ee708e7aad508fab1b48b1f6f297ebe6fb5dbe63
closed
2024-10-25T20:50:36Z
2024-12-19T09:31:38Z
https://github.com/skypilot-org/skypilot/issues/4179
[ "P0" ]
cblmemo
1
sammchardy/python-binance
api
1,148
websocket's interval is not changed. how to fix it ?
# depth cache manager using threads dcm = ThreadedDepthCacheManager() dcm.start() def handle_socket_message(msg): print(f"message type: {msg['e']}") print(msg) def handle_dcm_message(depth_cache): print(f"symbol {depth_cache.symbol}") print("top 5 bids") print(depth_cache.get_bids()[:5]) print("top 5 asks") print(depth_cache.get_asks()[:5]) print("last update time {}".format(depth_cache.update_time)) twm.start_kline_socket(callback=handle_socket_message, symbol='BNBBTC') dcm.start_depth_cache(callback=handle_dcm_message, symbol='ETHBTC') # replace with a current options symbol options_symbol = 'BTC-210430-36000-C' dcm.start_options_depth_cache(callback=handle_dcm_message, symbol=options_symbol) # join the threaded managers to the main thread twm.join() dcm.join() i used this code, it is not change the interval ( now interval is 1 second. i want to change it live data.) how to fix it to loas live streamimg ? thank you.
open
2022-02-22T06:34:43Z
2022-03-05T17:33:16Z
https://github.com/sammchardy/python-binance/issues/1148
[]
tjddnjs124
1
open-mmlab/mmdetection
pytorch
11,880
training speed slower 2X
I use 1 coputer,which have 2 GPU,and i trained 1 model by 1 GPU, when 1GPU is used , training speed is normal , but when i trained 2 model use 2 GPU(1 model training use 1GPU),speed is 2X slower. ![图片](https://github.com/user-attachments/assets/cec03280-e59f-4fc2-9548-f25825cc5c64)
closed
2024-07-26T05:15:43Z
2024-07-26T05:16:41Z
https://github.com/open-mmlab/mmdetection/issues/11880
[]
zhaohai1314
0
jstrieb/github-stats
asyncio
25
Still not so convenient
It still need to add this files to the repo, even to every repo so that the stats can be updated. But it's possible to checkout another user's repo in GitHub Action...why not just checkout this repo and use the python source files inside?
closed
2021-02-23T16:27:05Z
2021-02-26T10:56:06Z
https://github.com/jstrieb/github-stats/issues/25
[]
PassionPenguin
8
huggingface/datasets
computer-vision
7,467
load_dataset with streaming hangs on parquet datasets
### Describe the bug When I try to load a dataset with parquet files (e.g. "bigcode/the-stack") the dataset loads, but python interpreter can't exit and hangs ### Steps to reproduce the bug ```python3 import datasets print('Start') dataset = datasets.load_dataset("bigcode/the-stack", data_dir="data/yaml", streaming=True, split="train") it = iter(dataset) next(it) print('Finish') ``` The program prints finish but doesn't exit and hangs indefinitely. I tried this on two different machines and several datasets. ### Expected behavior The program exits successfully ### Environment info datasets==3.4.1 Python 3.12.9. MacOS and Ubuntu Linux
open
2025-03-18T23:33:54Z
2025-03-18T23:33:54Z
https://github.com/huggingface/datasets/issues/7467
[]
The0nix
0
kymatio/kymatio
numpy
785
Reviewing `core` JTFS
I recommend focusing on the "standard" variant: - `average=True; average_fr=True/False; aligned=True; out_3D=False; sampling_filters_fr='resample'; out_exclude=None` All other code can be ignored (e.g. `if out_3D: ...`). This should cut code to under 25% of full size. The rest can be validated via `test_jtfs.py`. ### Pseudocode Up to a spinned pair: ```python # first order time scattering U1 = [] for p1t in psi1_t: U1.append(abs(conv(x, p1t))) # joint scattering U2 = [] for p2t in psi2_t: # second order time scattering U2_tm = [] for u1 in U1: U2_tm.append(conv(u1, p2t)) U2_tm = array(U2_tm) # shape == (freq, time) # frequential scattering for p1f in psi1_fr_up: U2.append(abs(conv(U2_tm, p1f, axis=-2))) ``` JTFS is exactly this, but with 1. padding, unpadding 2. lowpass filtering 3. subsampling 4. other joint pairs Majority of complexity goes into 3; implementation subsamples as much as possible, ~losslessly, which is very complicated in light of all variants. ### Complete validation The most complicated method, by far, is `_get_stride` in `timefrequency_scattering1d.py`; a 300+ line docstring dedicates to explaining it. Validating this requires familiarity with the entire implementation, and accounting for every possible kwarg combination. The rest can be traversed in an exploratory fashion: picking a test signal, and tracking the output back to input - breakpointing into various stages, and printing all pertinent attributes and plotting intermediate outputs. It's also helpful to familiarize with `compute_meta_jtfs`, which encodes the entire computational graph into a dictionary. Lastly, majority of features are explained in depth in [Discussions](https://github.com/kymatio/kymatio/discussions) via my posts and discussions with @lostanlen. For those without an IDE preference, I recommend [Spyder](https://github.com/kymatio/kymatio/discussions/782).
closed
2021-10-10T16:12:06Z
2022-05-30T15:18:10Z
https://github.com/kymatio/kymatio/issues/785
[]
OverLordGoldDragon
1
sqlalchemy/sqlalchemy
sqlalchemy
12,341
Add dialect-specific support for Oracle's FETCH EXACT/APPROXIMATE
### Discussed in https://github.com/sqlalchemy/sqlalchemy/discussions/12337 support for FETCH EXACT/APPROXIMATE feature described at https://docs.oracle.com/en/database/oracle/oracle-database/23/sqlrf/SELECT.html#GUID-CFA006CA-6FF1-4972-821E-6996142A51C6__BABBADDD
open
2025-02-12T20:49:45Z
2025-02-13T13:49:25Z
https://github.com/sqlalchemy/sqlalchemy/issues/12341
[ "oracle", "use case" ]
CaselIT
2
TracecatHQ/tracecat
automation
95
Clerk migration
# Motivation 1. Supabase auth isn't robust enough for our usage. Move to Clerk. 2. Supabase auth primitives are quite low-level and a lot of the authentication logic has to be managed directly by us 3. Handling sessions and middleware is cumbersome # Implementation - Leverage middleware to decouple auth logic from application logic - This means we should only use redirects where necessary - Use Axios interceptors to apply authentication for all backend requests - Offload onboarding and new user flow responsibilities to custom Clerk `publicMetadata` for each user, and handled within a `/onboarding` component # Tasks - [x] Migrate sign in/up page - [x] Replaced these with Clerk builtins - [x] Migrate `middleware.ts` - [x] Migrate all `supabase.auth` usage to Clerk alternative - [x] Update onboarding flow (creating first workflow) to use Clerk onboarding middleware - [x] Update FastAPI backend - [x] Update fastapi auth dependencies? - [x] How to handle authing sessions - [x] [v0] No need to replace Supabase as a DB provider, but decouple Supabase dependency - [ ] [v1] Replace supabase with generic postgres - [x] Allow passing of `TRACECAT__DISABLE_AUTH` build flag to disable auth - [x] This works nicely because we've centralized (almost) all auth logic into the Axios interceptor. We can conditionally apply the authenticated interceptor at application startup. - [x] Update backend to change authentication strategy based on `TRACECAT__DISABLE_AUTH` flag
closed
2024-04-23T20:30:19Z
2024-04-28T20:04:59Z
https://github.com/TracecatHQ/tracecat/issues/95
[ "tracker" ]
daryllimyt
0
neuml/txtai
nlp
829
Persist embeddings components to specified schema
Currently, all the embeddings components that support persistence with relational databases store content in the default schema for the session. This change will allow setting what the default schema should be for the following components. - [PGVector ANN](https://neuml.github.io/txtai/embeddings/configuration/ann/#pgvector) - [RDBMS Database Storage](https://neuml.github.io/txtai/embeddings/configuration/database/#content) - [Graph RDBMS](https://neuml.github.io/txtai/embeddings/configuration/graph/#rdbms) - [PGText Scoring](https://neuml.github.io/txtai/embeddings/configuration/scoring/#method) This is set on a per Embeddings database instance.
closed
2024-12-04T19:53:31Z
2024-12-04T20:19:44Z
https://github.com/neuml/txtai/issues/829
[]
davidmezzetti
0
akfamily/akshare
data-science
5,025
【南华期货-南华指数所有品种一览表】响应报错
调用示例:`ak.futures_return_index_nh('NHCI')`; 报错原因:调用函数接口`futures_index_symbol_table_nh`中的南华期货数据网址`https://www.nanhua.net/ianalysis/plate-variety.json` 无法得到响应数据。
closed
2024-07-07T11:07:22Z
2024-07-08T05:59:51Z
https://github.com/akfamily/akshare/issues/5025
[]
hugsk
1
plotly/plotly.py
plotly
4,583
zorder doesn't work on version 5.21.0
The `zorder` attribute was added recently. However, the following code does not work as expected (exact code as [here](https://github.com/plotly/plotly.py/issues/2345#issuecomment-2064818826)): ```python import plotly import plotly.graph_objects as go fig = go.Figure( go.Bar( x=[0, 1, 2], y=[1, 2, 3] ), ) fig.add_trace( go.Scatter( x=[0, 1, 2], y=[3, 2, 1], zorder=-2 ) ) fig.update_layout( title=dict(text=f"{plotly.__version__ = }") ) fig.show() ``` Expected Behavior: Bar chart should have a higher z-order, meaning it should be at the front. Instead, the code produces the following: ![image](https://github.com/plotly/plotly.py/assets/16806141/b6a57fa1-f4fa-4c74-a7e0-9ecbebf4c638)
closed
2024-04-21T00:59:42Z
2024-04-22T16:39:28Z
https://github.com/plotly/plotly.py/issues/4583
[]
khisr0w
5
SYSTRAN/faster-whisper
deep-learning
951
Cannot start faster-whisper
I attempted to use faster-whisper in PyCharm, created a new project with dedicated venv and followed the installation instructions given in this repo. However, when I tried to run the example script I got the following error message: `Could not load library libcudnn_ops_infer.so.8. Error: libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory` OS: Linux Mint
open
2024-08-06T12:47:45Z
2024-09-08T16:51:28Z
https://github.com/SYSTRAN/faster-whisper/issues/951
[]
Denis-Kazakov
8
google-research/bert
tensorflow
1,302
Degraded bookcorpus link at README.md
Refer to README.md, search for BookCorpus & click on the link. It will redirect you to [here](https://yknzhu.wixsite.com/mbweb) & you will notice BookCorpus is no longer available from the original authors. <img width="674" alt="image" src="https://user-images.githubusercontent.com/56106630/158722360-596527d4-f0b6-415a-ad1a-65611acc14b2.png">
open
2022-03-17T02:15:08Z
2022-03-26T16:14:30Z
https://github.com/google-research/bert/issues/1302
[]
teohsinyee
1
man-group/arctic
pandas
195
Top level tickstore write with list of dicts fails on timezones
Each dict contains a key 'index' that is a datetime. Whether the datetime is timezone aware or naive the write will fail, either in the top level slicing or in the low level write. Current top level write tests just the pandas dataframe data. I propose to convert the top level date ranges to UTC if naive and add an integration test to write a list of dicts to a top level library.
closed
2016-08-11T09:50:48Z
2016-08-15T14:14:14Z
https://github.com/man-group/arctic/issues/195
[]
reasto
1