repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
thtrieu/darkflow
tensorflow
371
Building net problem when load ckpt for training
HI , I have some questions. I load ckpt for training, but there is "init" not "load" in Source column. I want all "load" in this column. How to fix it ?? Thanks a lot!! ![123](https://user-images.githubusercontent.com/25317833/29153906-16986ba2-7dc3-11e7-9c71-35d9a4d0234a.png)
open
2017-08-10T03:50:39Z
2017-10-19T08:12:29Z
https://github.com/thtrieu/darkflow/issues/371
[]
Tingwei-Jen
5
mirumee/ariadne
api
54
API descriptions
GraphQL supports item descriptions, but currently, Ariadne provides no way to set those, and neither does `GraphQL-Core` version we are using. Ideally, we should provide two ways to set item descriptions: - if resolver has docstring, we should use it - add `description=` kwarg to `make_executable_schema` & friends that would take dict of dicts and would override items descriptions based on that. We could read special key (eg. `__description`) to get description for type. This approach should also support modularization.
closed
2018-10-31T17:48:25Z
2019-03-25T17:41:37Z
https://github.com/mirumee/ariadne/issues/54
[ "help wanted", "roadmap", "docs" ]
rafalp
3
keras-team/keras
python
20,979
keras.src.models.functional.Functional.__init__() got multiple values for keyword argument 'inputs'
Probably typo. ```python @keras.saving.register_keras_serializable() class DummyModel(keras.Model): def __init__( self, *, input_shape=(28, 28, 1), filters=[16, 32], activation='relu', **kwargs, ): input_spec = keras.layers.Input(shape=input_shape) x = input_spec x = layers.Conv2D(filters[0], 3, activation=activation)(x) x = layers.Conv2D(filters[1], 3, activation=activation)(x) x = layers.MaxPooling2D(3)(x) x = layers.Conv2D(filters[1], 3, activation=activation)(x) x = layers.Conv2D(filters[0], 3, activation=activation)(x) x = layers.GlobalMaxPooling2D()(x) super().__init__(inputs=input_spec, outputs=x, **kwargs) self.filters = filters self.activation = activation def get_config(self): config = super().get_config() config.update( { "input_shape": self.input_shape[1:], "filters": self.filters, "activation": self.activation, } ) return config a = np.ones((1, 28, 28, 1), dtype=np.float32); print(a.shape) model = DummyModel() output = model(a) print(output.shape) (1, 28, 28, 1) (1, 16) model.save('new.keras') # ok loaded_model = keras.saving.load_model("new.keras") ``` ```bash --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /usr/local/lib/python3.10/dist-packages/keras/src/saving/serialization_lib.py in deserialize_keras_object(config, custom_objects, safe_mode, **kwargs) 710 try: --> 711 instance = cls.from_config(inner_config) 712 except TypeError as e: /usr/local/lib/python3.10/dist-packages/keras/src/models/model.py in from_config(cls, config, custom_objects) 491 --> 492 return functional_from_config( 493 cls, config, custom_objects=custom_objects /usr/local/lib/python3.10/dist-packages/keras/src/models/functional.py in functional_from_config(cls, config, custom_objects) 555 output_tensors = map_tensors(config["output_layers"]) --> 556 return cls( 557 inputs=input_tensors, <ipython-input-17-242e47f47517> in __init__(self, input_shape, filters, activation, **kwargs) 33 x = layers.GlobalMaxPooling2D()(x) ---> 34 super().__init__(inputs=input_spec, outputs=x, **kwargs) 35 TypeError: keras.src.models.functional.Functional.__init__() got multiple values for keyword argument 'inputs' During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) <ipython-input-20-9e5a9738bac0> in <cell line: 1>() ----> 1 loaded_model = keras.saving.load_model("new.keras") /usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_api.py in load_model(filepath, custom_objects, compile, safe_mode) 174 175 if is_keras_zip: --> 176 return saving_lib.load_model( 177 filepath, 178 custom_objects=custom_objects, /usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py in load_model(filepath, custom_objects, compile, safe_mode) 153 # Construct the model from the configuration file in the archive. 154 with ObjectSharingScope(): --> 155 model = deserialize_keras_object( 156 config_dict, custom_objects, safe_mode=safe_mode 157 ) /usr/local/lib/python3.10/dist-packages/keras/src/saving/serialization_lib.py in deserialize_keras_object(config, custom_objects, safe_mode, **kwargs) 711 instance = cls.from_config(inner_config) 712 except TypeError as e: --> 713 raise TypeError( 714 f"{cls} could not be deserialized properly. Please" 715 " ensure that components that are Python object" TypeError: <class '__main__.DummyModel'> could not be deserialized properly. Please ensure that components that are Python object instances (layers, models, etc.) returned by `get_config()` are explicitly deserialized in the model's `from_config()` method. config={'module': None, 'class_name': 'DummyModel', 'config': {'name': 'dummy_model_3', 'trainable': True, 'layers': [{'module': 'keras.layers', 'class_name': 'InputLayer', 'config': {'batch_shape': [None, 28, 28, 1], 'dtype': 'float32', 'sparse': False, 'name': 'input_layer_2'}, 'registered_name': None, 'name': 'input_layer_2', 'inbound_nodes': []}, {'module': 'keras.layers', 'class_name': 'Conv2D', 'config': {'name': 'conv2d_24', 'trainable': True, 'dtype': 'float32', 'filters': 16, 'kernel_size': [3, 3], 'strides': [1, 1], 'padding': 'valid', 'data_format': 'channels_last', 'dilation_rate': [1, 1], 'groups': 1, 'activation': 'relu', 'use_bias': True, 'kernel_initializer': {'module': 'keras.initializers', 'class_name': 'GlorotUniform', 'config': {'seed': None}, 'registered_name': None}, 'bias_initializer': {'module': 'keras.initializers', 'class_name': 'Zeros', 'config': {}, 'registered_name': None}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None}, 'registered_name': None, 'build_config': {'input_shape': [None, 28, 28, 1]}, 'name': 'conv2d_24', 'inbound_nodes': [{'args': [{'class_name': '__keras_tensor__', 'config': {'shape': [None, 28, 28, 1], 'dtype': 'float32', 'keras_history': ['input_layer_2', 0, 0]}}], 'kwargs': {}}]}, {'module': 'keras.layers', 'class_name': 'Conv2D', 'config': {'name': 'conv2d_25', 'trainable': True, 'dtype': 'float32', 'filters': 32, 'kernel_size': [3, 3], 'strides': [1, 1], 'padding': 'valid', 'data_format': 'channels_last', 'dilation_rate': [1, 1], 'groups': 1, 'activation': 'relu', 'use_bias': True, 'kernel_initializer': {'module': 'keras.initializers', 'class_name': 'GlorotUniform', 'config': {'seed': None}, 'registered_name': None}, 'bias_initializer': {'module': 'keras.initializers', 'class_name': 'Zeros', 'config': {}, 'registered_name': None}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None}, 'registered_name': None, 'build_config': {'input_shape': [None, 26, 26, 16]}, 'name': 'conv2d_25', 'inbound_nodes': [{'args': [{'class_name': '__keras_tensor__', 'config': {'shape': [None, 26, 26, 16], 'dtype': 'float32', 'keras_history': ['conv2d_24', 0, 0]}}], 'kwargs': {}}]}, {'module': 'keras.layers', 'class_name': 'MaxPooling2D', 'config': {'name': 'max_pooling2d_6', 'trainable': True, 'dtype': 'float32', 'pool_size': [3, 3], 'padding': 'valid', 'strides': [3, 3], 'data_format': 'channels_last'}, 'registered_name': None, 'build_config': {'input_shape': [None, 24, 24, 32]}, 'name': 'max_pooling2d_6', 'inbound_nodes': [{'args': [{'class_name': '__keras_tensor__', 'config': {'shape': [None, 24, 24, 32], 'dtype': 'float32', 'keras_history': ['conv2d_25', 0, 0]}}], 'kwargs': {}}]}, {'module': 'keras.layers', 'class_name': 'Conv2D', 'config': {'name': 'conv2d_26', 'trainable': True, 'dtype': 'float32', 'filters': 32, 'kernel_size': [3, 3], 'strides': [1, 1], 'padding': 'valid', 'data_format': 'channels_last', 'dilation_rate': [1, 1], 'groups': 1, 'activation': 'relu', 'use_bias': True, 'kernel_initializer': {'module': 'keras.initializers', 'class_name': 'GlorotUniform', 'config': {'seed': None}, 'registered_name': None}, 'bias_initializer': {'module': 'keras.initializers', 'class_name': 'Zeros', 'config': {}, 'registered_name': None}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None}, 'registered_name': None, 'build_config': {'input_shape': [None, 8, 8, 32]}, 'name': 'conv2d_26', 'inbound_nodes': [{'args': [{'class_name': '__keras_tensor__', 'config': {'shape': [None, 8, 8, 32], 'dtype': 'float32', 'keras_history': ['max_pooling2d_6', 0, 0]}}], 'kwargs': {}}]}, {'module': 'keras.layers', 'class_name': 'Conv2D', 'config': {'name': 'conv2d_27', 'trainable': True, 'dtype': 'float32', 'filters': 16, 'kernel_size': [3, 3], 'strides': [1, 1], 'padding': 'valid', 'data_format': 'channels_last', 'dilation_rate': [1, 1], 'groups': 1, 'activation': 'relu', 'use_bias': True, 'kernel_initializer': {'module': 'keras.initializers', 'class_name': 'GlorotUniform', 'config': {'seed': None}, 'registered_name': None}, 'bias_initializer': {'module': 'keras.initializers', 'class_name': 'Zeros', 'config': {}, 'registered_name': None}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None}, 'registered_name': None, 'build_config': {'input_shape': [None, 6, 6, 32]}, 'name': 'conv2d_27', 'inbound_nodes': [{'args': [{'class_name': '__keras_tensor__', 'config': {'shape': [None, 6, 6, 32], 'dtype': 'float32', 'keras_history': ['conv2d_26', 0, 0]}}], 'kwargs': {}}]}, {'module': 'keras.layers', 'class_name': 'GlobalMaxPooling2D', 'config': {'name': 'global_max_pooling2d_6', 'trainable': True, 'dtype': 'float32', 'data_format': 'channels_last', 'keepdims': False}, 'registered_name': None, 'build_config': {'input_shape': [None, 4, 4, 16]}, 'name': 'global_max_pooling2d_6', 'inbound_nodes': [{'args': [{'class_name': '__keras_tensor__', 'config': {'shape': [None, 4, 4, 16], 'dtype': 'float32', 'keras_history': ['conv2d_27', 0, 0]}}], 'kwargs': {}}]}], 'input_layers': [['input_layer_2', 0, 0]], 'output_layers': [['global_max_pooling2d_6', 0, 0]], 'input_shape': [28, 28, 1], 'filters': [16, 32], 'activation': 'relu'}, 'registered_name': 'Custom>DummyModel', 'build_config': {'input_shape': None}}. Exception encountered: keras.src.models.functional.Functional.__init__() got multiple values for keyword argument 'inputs' ```
closed
2025-03-02T18:46:41Z
2025-03-06T02:11:16Z
https://github.com/keras-team/keras/issues/20979
[ "type:Bug" ]
innat
5
xlwings/xlwings
automation
1,875
Remote interpreter: support "include" parameter
the contrary of the current "exclude" parameter
closed
2022-03-23T13:31:12Z
2022-03-28T07:48:50Z
https://github.com/xlwings/xlwings/issues/1875
[ "enhancement", "PRO" ]
fzumstein
0
microsoft/nni
pytorch
4,796
How to dynamically skip over empty layers when performing model speedup after pruning?
**Describe the issue**: When pruning a model at various pruning percentages (10%-95%) using the L1Norm Pruner, I get a `nni.compression.pytorch.speedup.error_code.EmptyLayerError: Pruning a Layer to empty is not legal` error. I was wondering if I can dynamically skip over such layers in these cases? Based on the documentation, I can't determine if a layer will be empty after pruning and before model speedup. I couldn't find it in the documentation, but I was wondering if there was a way to tell if a layer is empty after pruning and before speedup, so that I can exclude it when speeding up, preventing the EmptyLayerError. Any help would be greatly appreciated, thanks! **Environment**: - NNI version: nni==2.7 - Python version: Python 3.8.10 - PyTorch/TensorFlow version: torch==1.10.2+cu113 **How to reproduce it?**: Prune a model to the point where it gets very small, or start with a small model and continue to prune.
closed
2022-04-23T20:11:09Z
2022-11-16T07:21:15Z
https://github.com/microsoft/nni/issues/4796
[]
pmmitche
4
RobertCraigie/prisma-client-py
pydantic
229
Remove deprecated order argument in count()
## Problem <!-- A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] --> This argument has been deprecated (#146), it should be completely removed.
closed
2022-01-18T18:27:58Z
2022-02-01T12:08:15Z
https://github.com/RobertCraigie/prisma-client-py/issues/229
[ "kind/improvement" ]
RobertCraigie
0
PaddlePaddle/ERNIE
nlp
232
where is ERNIE 2.0 ?
The paper released today mentioned that the code and pretrained model has already been open-sourced.
closed
2019-07-30T09:27:58Z
2019-08-19T03:09:51Z
https://github.com/PaddlePaddle/ERNIE/issues/232
[]
Jiakui
1
Lightning-AI/pytorch-lightning
deep-learning
20,190
shortcuts for logging weights and biases norms
### Description & Motivation Knowing the norm of weights was necessary to debug float16 training for me. ### Pitch from lightning.pytorch.utilities import grad_norm norms = grad_norm(self.layer, norm_type=2) something like this for weights would be convenient. ### Alternatives _No response_ ### Additional context _No response_ cc @borda
open
2024-08-11T23:04:44Z
2024-08-11T23:05:06Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20190
[ "feature", "needs triage" ]
heth27
0
vitalik/django-ninja
rest-api
741
Implementing User Authentication
### Discussed in https://github.com/vitalik/django-ninja/discussions/740 <div type='discussions-op-text'> <sup>Originally posted by **KrystianMaccs** April 14, 2023</sup> Hi Vitaliy, I just got started with django-ninja this week and so far it's been good and I am getting a hang of it. However, I have a little trouble implementing User Authentication and Authorization. How does it work? I have a User model already and schema. What do I do from here? Meanwhile, this is my repo: https://github.com/KrystianMaccs/cinema.git</div>
closed
2023-04-14T01:19:20Z
2023-04-20T14:38:32Z
https://github.com/vitalik/django-ninja/issues/741
[]
sauron136
10
deepinsight/insightface
pytorch
2,350
AgeDB-30
请问可以提供一份AgeDB-30数据集么,给这个数据集的作者发邮件不回复。谢谢给位大哥
open
2023-06-26T03:13:46Z
2023-06-26T03:14:15Z
https://github.com/deepinsight/insightface/issues/2350
[]
zhangfenfang12138
1
harry0703/MoneyPrinterTurbo
automation
405
关于本地素材使用
Hi, 我对本地素材的使用有些疑问: 1. 使用本地素材时,多模态LLM是必须的吗?如果不是,需要自己手动打上文本标签吗?或者说,手动打标签能获得更好的效果,比如更好的相关性? 2. 我看到本地素材的大小(所有素材的整体大小,或许?)被限制在400MB以内。我很好奇为什么被限定在400MB?能不能被放开?我打算用它来处理一些本地的影视视频片段,总大小在几GB,甚至几十GB级别。
closed
2024-06-10T03:14:54Z
2024-06-11T03:39:16Z
https://github.com/harry0703/MoneyPrinterTurbo/issues/405
[]
Mingzefei
1
pbugnion/gmaps
jupyter
47
No module named 'loader' at pip install
C:\Users\XXX\AppData\Local\Continuum\Anaconda3>pip install gmaps Collecting gmaps Downloading gmaps-0.1.6.tar.gz (98kB) 100% |################################| 102kB 1.5MB/s Complete output from command python setup.py egg_info: Traceback (most recent call last): File "<string>", line 20, in <module> File "C:\Users\XXX\AppData\Local\Temp\pip-build-m3s6zj_3\gmaps\setup.py", line 7, in <module> import gmaps File "C:\Users\XXX\AppData\Local\Temp\pip-build-m3s6zj_3\gmaps\gmaps__init__.py", line 2, in <module> from loader import init ImportError: No module named 'loader' ``` ---------------------------------------- ``` Command "python setup.py egg_info" failed with error code 1 in C:\Users\XXX\AppData\Local\Temp\pip-build-m3s6zj_3\gmaps
closed
2015-12-23T13:39:29Z
2015-12-24T17:07:37Z
https://github.com/pbugnion/gmaps/issues/47
[]
chanansh
3
mars-project/mars
scikit-learn
3,020
[BUG] Mars import took too long
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Describe the bug** When `import mars` first time, it took about 4~5 seconds which is pretty time-consuming for users ![image](https://user-images.githubusercontent.com/12445254/167792440-86729121-8d45-4320-bcbd-6e73eab936e8.png) **To Reproduce** To help us reproducing this bug, please provide information below: 1. Your Python version: 3.7.9 2. The version of Mars you use: master 3. Versions of crucial packages, such as numpy, scipy and pandas 4. Full stack of the error. 5. Minimized code to reproduce the error. **Expected behavior** `import mars` should take less than 1 second, just like pandas: ![image](https://user-images.githubusercontent.com/12445254/167799642-eb6456c4-fc12-4e5b-9b5a-c4caf787e9c2.png) **Additional context** Add any other context about the problem here.
closed
2022-05-11T08:02:46Z
2022-05-13T07:53:37Z
https://github.com/mars-project/mars/issues/3020
[]
chaokunyang
2
ultralytics/ultralytics
pytorch
19,309
new metrics for best.pt
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question I'm curious about the metric that produces best.pt. I know that the exact criteria for best.pt that I've figured out is to calculate [p,r,map50,map50-95] with the weights of [0, 0, 0.1,0.9] (in metrics.py). Is there a way to record best.pt as the accuracy of class prediction, that is, the Precision Recall score? The Precision,Recall that I wrote above also seems to be the Precision, Recall score for the bounding box. For example, while performing validation, I want to select the model that matches the class of the bounding box well as the best.pt, even though it is a Detection task. Also, is there a metric that penalizes the part where an object is incorrectly detected in the background image when it is not? thanks. ### Additional _No response_
open
2025-02-19T09:24:16Z
2025-02-20T00:10:37Z
https://github.com/ultralytics/ultralytics/issues/19309
[ "question", "detect" ]
yeonhyochoi
4
matplotlib/matplotlib
data-visualization
28,960
[Bug]: High CPU utilization of the macosx backend
### Bug summary After showing interactive figure, the CPU utilization of python process went to 100%. ### Code for reproduction ```Python ####################################################### # Case 1: 100% cpu import matplotlib.pyplot as plt fig = plt.figure() plt.plot(range(5)) plt.show() # after closing the window import pandas # starting 100% CPU utilization ####################################################### # Case 2: 100% cpu import matplotlib.pyplot as plt import pandas as pd # No CPU utilization at the moment fig = plt.figure() df = pd.DataFrame(range(5)) plt.plot(df[0]) # with this, CPU utilization is 100%. plt.show() # the same # after closing the window, still 100% ####################################################### # Case 3: no issue. import matplotlib.pyplot as plt fig = plt.figure() plt.plot(range(5)) plt.show() # strangely, this has no problem. ``` ### Actual outcome no problem except it consumes 100% cpu. The figure is still responsive. ### Expected outcome matplotlib backend should not consume 100% cpu. ### Additional information - pandas version 2.2.3 (pip) - Certain operation (closing interactive figures) causes 100% cpu with 'macosx' backend. - Closing the figure, or calling `plt.close()` does not help. (backend: macosx) - No problem with `qt5agg` backend. ### Operating system Mac (Intel) Ventura 13.6.6 ### Matplotlib Version 3.9.2 ### Matplotlib Backend macosx ### Python version Python 3.12.3 ### Jupyter version _No response_ ### Installation pip
closed
2024-10-09T21:31:04Z
2024-10-30T20:05:33Z
https://github.com/matplotlib/matplotlib/issues/28960
[ "status: confirmed bug", "GUI: MacOSX" ]
cinsk
7
AntonOsika/gpt-engineer
python
928
KeyError in apply_edits breaking improve mode
I am running improve mode, creating c# and xaml. GPT Engineer is attempting to make updates to a xaml user control (here renamed to be "myExistingUserControl.xaml") and running into an issue where the filepath is invalid. ```These edits will ensure that the code changes are in the correct format and can be found in the code.Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "C:\Users\asdf\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\Scripts\gpte.exe\__main__.py", line 7, in <module> sys.exit(app()) ^^^^^ File "C:\Users\asdf\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\gpt_engineer\applications\cli\main.py", line 194, in main files_dict = agent.improve(files_dict, prompt) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\asdf\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\gpt_engineer\applications\cli\cli_agent.py", line 131, in improve files_dict = self.improve_fn( ^^^^^^^^^^^^^^^^ File "C:\Users\asdf\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\gpt_engineer\core\default\steps.py", line 182, in improve overwrite_code_with_edits(chat, files_dict) File "C:\Users\asdf\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\gpt_engineer\core\chat_to_files.py", line 97, in overwrite_code_with_edits apply_edits(edits, files_dict) File "C:\Users\asdf\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\gpt_engineer\core\chat_to_files.py", line 185, in apply_edits occurrences_cnt = files_dict[filename].count(edit.before) ~~~~~~~~~~^^^^^^^^^^ KeyError: 'some/dir/myExistingUserControl.xaml'```
closed
2023-12-22T17:53:59Z
2024-01-05T12:56:50Z
https://github.com/AntonOsika/gpt-engineer/issues/928
[ "bug", "triage" ]
baldmanwithbeard
13
man-group/arctic
pandas
126
Append doesn't seem to work
Hi - Firstly, good work on putting out Arctic - it's awesome! I have the below script that unzip's some fx tick data and tries to write to arctic db. The files are broken down per month and goes few years, so I have used the append() to add each file, however, it looks like the data from only the last file is being persisted to the db and the remaining ones are being deleted when the new ones are added. It might be a bug in how I'm trying to append the data - would appreciate if your input. Cheers, Eric ``` Loader from arctic import Arctic from datetime import datetime as dt import pandas as pd import os, zipfile import logging logger = logging.getLogger() fhandler = logging.FileHandler(filename='fxdb.log', mode='a') formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fhandler.setFormatter(formatter) logger.addHandler(fhandler) logger.setLevel(logging.DEBUG) class fxdb(): def __init__(self, mongo_host = 'localhost'): self.store = Arctic(mongo_host) self.store.initialize_library('fx') self.library = self.store['fx'] self.folder = '../data' self.lst = os.listdir(self.folder) self.lst.sort() def csv_to_pd(self, filename): df = pd.read_csv(filename, names=['sym', 'datetime', 'bid', 'ask'], header=None, index_col=1, parse_dates=True) return df def read(self, sym): df = self.library.read(sym) return df def write(self, sym, df, metadata): self.library.write(sym, df, metadata) def append(self, sym, df, metadata): self.library.write(sym, df, metadata) def csv_to_db(self, filename, metadata): sym, year, month = filename.translate(None, '../data/').translate(None, '.csv').split('-') logging.info("Loading csv for "+sym+" year "+year+" month "+month) df = self.csv_to_pd(filename) logging.info("Converted to dataframe "+sym+" year "+year+" month "+month) self.append(sym, df, metadata) logging.info("Loaded to the db "+sym+" year "+year+" month "+month) def unzip(self, filename): with zipfile.ZipFile(filename, "r") as z: z.extractall(self.folder) logging.info("Unzipped "+filename) def zip_to_db(self, filename): try: self.unzip(filename) except: logging.error("Error unzipping "+filename) else: self.csv_to_db(filename.replace('zip','csv'), {'source': 'PepperStone'}) os.remove(filename.replace('zip','csv')) logging.info("Removed "+filename.replace('zip','csv')) folder = '../data' fx = fxdb() lst = os.listdir(folder) lst.sort() for i in [folder + '/' + s for s in lst if "zip" in s]: fx.zip_to_db(i) ``` ``` Log snippet 2016-04-10 13:31:18,940 - root - INFO - Unzipped ../data/AUDUSD-2015-08.zip 2016-04-10 13:31:18,940 - root - INFO - Loading csv for AUDUSD year 2015 month 08 2016-04-10 13:41:23,142 - root - INFO - Converted to dataframe AUDUSD year 2015 month 08 2016-04-10 13:41:24,894 - arctic.store.version_store - DEBUG - Finished writing versions for AUDUSD 2016-04-10 13:41:24,894 - root - INFO - Loaded to the db AUDUSD year 2015 month 08 2016-04-10 13:41:24,920 - root - INFO - Removed ../data/AUDUSD-2015-08.csv 2016-04-10 13:41:26,470 - root - INFO - Unzipped ../data/AUDUSD-2015-09.zip 2016-04-10 13:41:26,470 - root - INFO - Loading csv for AUDUSD year 2015 month 09 2016-04-10 13:48:19,681 - root - INFO - Converted to dataframe AUDUSD year 2015 month 09 2016-04-10 13:48:21,124 - arctic.store.version_store - DEBUG - Finished writing versions for AUDUSD 2016-04-10 13:48:21,124 - root - INFO - Loaded to the db AUDUSD year 2015 month 09 2016-04-10 13:48:21,142 - root - INFO - Removed ../data/AUDUSD-2015-09.csv 2016-04-10 13:48:22,352 - root - INFO - Unzipped ../data/AUDUSD-2015-10.zip 2016-04-10 13:48:22,352 - root - INFO - Loading csv for AUDUSD year 2015 month 10 2016-04-10 13:54:45,325 - root - INFO - Converted to dataframe AUDUSD year 2015 month 10 2016-04-10 13:54:46,691 - arctic.store.version_store - DEBUG - Finished writing versions for AUDUSD 2016-04-10 13:54:46,802 - root - INFO - Loaded to the db AUDUSD year 2015 month 10 2016-04-10 13:54:46,819 - root - INFO - Removed ../data/AUDUSD-2015-10.csv 2016-04-10 13:54:48,130 - root - INFO - Unzipped ../data/AUDUSD-2015-11.zip 2016-04-10 13:54:48,130 - root - INFO - Loading csv for AUDUSD year 2015 month 11 2016-04-10 14:01:44,774 - root - INFO - Converted to dataframe AUDUSD year 2015 month 11 2016-04-10 14:01:46,562 - arctic.store.version_store - DEBUG - Finished writing versions for AUDUSD 2016-04-10 14:01:46,563 - root - INFO - Loaded to the db AUDUSD year 2015 month 11 2016-04-10 14:01:46,581 - root - INFO - Removed ../data/AUDUSD-2015-11.csv 2016-04-10 14:01:47,692 - root - INFO - Unzipped ../data/AUDUSD-2015-12.zip 2016-04-10 14:01:47,692 - root - INFO - Loading csv for AUDUSD year 2015 month 12 2016-04-10 14:07:30,749 - root - INFO - Converted to dataframe AUDUSD year 2015 month 12 2016-04-10 14:07:31,832 - arctic.store.version_store - DEBUG - Finished writing versions for AUDUSD 2016-04-10 14:07:31,832 - root - INFO - Loaded to the db AUDUSD year 2015 month 12 2016-04-10 14:07:31,848 - root - INFO - Removed ../data/AUDUSD-2015-12.csv 2016-04-10 14:07:33,713 - root - INFO - Unzipped ../data/AUDUSD-2016-01.zip 2016-04-10 14:07:33,713 - root - INFO - Loading csv for AUDUSD year 2016 month 01 2016-04-10 14:16:54,552 - root - INFO - Converted to dataframe AUDUSD year 2016 month 01 2016-04-10 14:16:56,177 - arctic.store.version_store - DEBUG - Finished writing versions for AUDUSD 2016-04-10 14:16:56,177 - root - INFO - Loaded to the db AUDUSD year 2016 month 01 2016-04-10 14:16:56,201 - root - INFO - Removed ../data/AUDUSD-2016-01.csv `````` ``` Checks >>> import fxlib as fx >>> fxdb = fx.fxdb() >>> fxdb.library.list_symbols() [u'AUDJPY', u'AUDNZD', u'AUDUSD', u'CADJPY'] >>> fxdb.read('AUDUSD').data.head(1) sym bid ask datetime 2016-01-04 00:00:00.108 AUD/USD 0.72845 0.72849 >>> fxdb.read('AUDUSD').data.tail(1) sym bid ask datetime 2016-01-29 20:59:59.762 AUD/USD 0.70791 0.70797 >>> fxdb.read('AUDUSD').data.count() sym 3391202 bid 3391202 ask 3391202 dtype: int64 >>> list(fxdb.library.list_versions('AUDUSD')) [{'deleted': False, 'date': datetime.datetime(2016, 4, 10, 14, 16, 54, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 81, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 14, 7, 30, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 80, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 14, 1, 44, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 79, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 13, 54, 45, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 78, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 13, 48, 19, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 77, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 13, 41, 23, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 76, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 13, 31, 14, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 75, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 13, 21, 42, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 74, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 13, 15, 26, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 73, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 13, 8, 57, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 72, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 13, 0, 14, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 71, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 12, 52, 10, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 70, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 12, 46, 10, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 69, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 12, 39, 17, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 68, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 12, 37, 36, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 67, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 12, 31, 48, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 66, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 12, 23, 50, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 65, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 12, 17, 38, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 64, 'snapshots': []}, {'deleted': False, 'date': datetime.datetime(2016, 4, 10, 12, 13, 4, tzinfo=tzfile(u'/usr/share/zoneinfo/Europe/London')), 'symbol': u'AUDUSD', 'version': 63, 'snapshots': []}] >>> fxdb.library.get_info('AUDUSD') {'rows': 3391202, 'segment_count': 51, 'dtype': [('datetime', '<M8[ns]'), ('sym', 'S7'), ('bid', '<f8'), ('ask', '<f8')], 'handler': 'PandasDataFrameStore', 'col_names': {u'index': [u'datetime'], u'columns': [u'sym', u'bid', u'ask']}, 'type': u'pandasdf', 'size': 105127262} ``````
closed
2016-04-10T14:25:44Z
2016-04-11T16:51:51Z
https://github.com/man-group/arctic/issues/126
[]
ericjohn
5
dynaconf/dynaconf
django
221
dynaconf.contrib.flask_dynaconf.DynaconfConfig to flask.config.Config
Hello, is there a way to convert a dynaconf.contrib.flask_dynaconf.DynaconfConfig object into a flask.config.Config one? Otherwise, is there a way to convert dynaconf.contrib.flask_dynaconf.DynaconfConfig into a dict? I have been struggling trying to pass a dynaconf.contrib.flask_dynaconf.DynaconfConfig to a Flask Cache constructor as a config. With flask.config.Config it works but with the dynaconf class it doesn't :-/. cache = Cache().init_app(app, app.config)
closed
2019-09-04T19:09:02Z
2019-09-05T14:44:20Z
https://github.com/dynaconf/dynaconf/issues/221
[ "question" ]
tul1
6
yzhao062/pyod
data-science
549
Quasi-Monte Carlo Discrepancy always predicts an outlier
I've found that the QMCD model will always predict at least one outlier due to the normalization of its decision scores. This results in the model not performing at all if there are no outliers in the dataset. Is this intentional? If so, why was it implemented like this?
open
2024-03-27T12:48:37Z
2024-03-27T20:18:03Z
https://github.com/yzhao062/pyod/issues/549
[]
Hellsice
1
hootnot/oanda-api-v20
rest-api
184
Expiry time on Stop order not correct
Hello, I am trying to add an expiry time to a stoporder by taking the current time and adding 5 minutes. However on the Oanda trader platform it shows the expiry as tomorrow at a completely different timestamp. I am using the following code ``` Cancel_Time = datetime.now() + timedelta(minutes=5) mktOrder_DAX_Long = StopOrderRequest(instrument="DE30_EUR", units=1, price=highest_high, gtdTime=str(Cancel_Time), timeInForce="GTD") ```
closed
2021-08-10T16:07:27Z
2021-08-15T19:07:23Z
https://github.com/hootnot/oanda-api-v20/issues/184
[]
sword134
1
huggingface/pytorch-image-models
pytorch
1,050
ModuleNotFoundError: No module named 'timm.models.xcit
i got `ModuleNotFoundError: No module named 'timm.models.xcit'` . i couldn't found xcit in timm
closed
2021-12-18T13:17:53Z
2021-12-18T19:57:04Z
https://github.com/huggingface/pytorch-image-models/issues/1050
[ "bug" ]
SamMohel
3
browser-use/browser-use
python
664
ERROR [backoff] Giving up send_request(...) after 4 tries
### Bug Description Cannot run using ollama. ### Reproduction Steps Operation steps: Step 1: ``` cmd uv venv --python 3.11 .venv\Scripts\activate uv pip install browser-use playwright install ``` Step 2: Write main.py ``` python from langchain_ollama import ChatOllama from browser_use import Agent from pydantic import SecretStr # Initialize the model llm=ChatOllama(model="qwen:7b", num_ctx=32000) # Create agent with the model agent = Agent( task="open Google and search for 'hello world'", llm=llm ) ``` Step 3: ``` cmd python main.py ``` The output result is shown as follows: ![Image](https://github.com/user-attachments/assets/10122486-73aa-40a4-be9f-6dc210bbaabd) ### Code Sample ```python Same as the step code. ``` ### Version 0.1.36 ### LLM Model Local Model (Specify model in description) ### Operating System win 11 ### Relevant Log Output ```shell ```
open
2025-02-11T10:32:36Z
2025-03-11T01:19:40Z
https://github.com/browser-use/browser-use/issues/664
[ "bug" ]
zy1024
1
FlareSolverr/FlareSolverr
api
891
500 Internal Server Error
### Have you checked our README? - [X] I have checked the README ### Have you followed our Troubleshooting? - [x] I have followed your Troubleshooting ### Is there already an issue for your problem? - [X] I have checked older issues, open and closed ### Have you checked the discussions? - [X] I have read the Discussions ### Environment ```markdown - FlareSolverr version:3.3.4 - Last working FlareSolverr version:3.3.3 - Operating system:Win11 22H2 22631.1830 - Are you using Docker: [yes/no]no - FlareSolverr User-Agent (see log traces or / endpoint):Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36 - Are you using a VPN: [yes/no]yes - Are you using a Proxy: [yes/no]yes - Are you using Captcha Solver: [yes/no]no - If using captcha solver, which one: - URL to test this issue:https://soutubot.moe/ ``` ### Description About a week ago, the V3.3.3 version suddenly failed to pass the verification at https://soutubot.moe/. After downloading the V3.3.4 version, it still failed to pass the verification.And reported the following error. ``` 2023-09-07 11:33:28 INFO Incoming request => POST /v1 body: {'cmd': 'request.get', 'url': 'https://soutubot.moe/', 'maxTimeout': 60000} 2023-09-07 11:33:31 INFO Challenge detected. Selector found: #challenge-spinner 2023-09-07 11:34:29 ERROR Error: Error solving the challenge. Timeout after 60.0 seconds. 2023-09-07 11:34:29 INFO Response in 60.973 s 2023-09-07 11:34:29 INFO 127.0.0.1 POST http://localhost:8191/v1 500 Internal Server Error ``` ### Logged Error Messages ```text 2023-09-07 16:58:38 INFO ReqId 2236 Serving on http://0.0.0.0:8191 2023-09-07 16:58:46 INFO ReqId 21264 Incoming request => POST /v1 body: {'cmd': 'request.get', 'url': 'https://soutubot.moe/', 'maxTimeout': 60000} 2023-09-07 16:58:46 DEBUG ReqId 21264 Launching web browser... 2023-09-07 16:58:47 DEBUG ReqId 21264 Started executable: `C:\Users\Name\appdata\roaming\undetected_chromedriver\chromedriver.exe` in a child process with pid: 5136 2023-09-07 16:58:47 DEBUG ReqId 21264 New instance of webdriver has been created to perform the request 2023-09-07 16:58:47 DEBUG ReqId 5372 Navigating to... https://soutubot.moe/ 2023-09-07 16:58:53 INFO ReqId 5372 Challenge detected. Selector found: #challenge-spinner 2023-09-07 16:58:53 DEBUG ReqId 5372 Waiting for title (attempt 1): Just a moment... 2023-09-07 16:58:53 DEBUG ReqId 5372 Waiting for title (attempt 1): DDoS-Guard 2023-09-07 16:58:53 DEBUG ReqId 5372 Waiting for selector (attempt 1): #cf-challenge-running 2023-09-07 16:58:53 DEBUG ReqId 5372 Waiting for selector (attempt 1): .ray_id 2023-09-07 16:58:53 DEBUG ReqId 5372 Waiting for selector (attempt 1): .attack-box 2023-09-07 16:58:53 DEBUG ReqId 5372 Waiting for selector (attempt 1): #cf-please-wait 2023-09-07 16:58:53 DEBUG ReqId 5372 Waiting for selector (attempt 1): #challenge-spinner 2023-09-07 16:58:54 DEBUG ReqId 5372 Timeout waiting for selector 2023-09-07 16:58:54 DEBUG ReqId 5372 Try to find the Cloudflare verify checkbox... 2023-09-07 16:58:54 DEBUG ReqId 5372 Cloudflare verify checkbox not found on the page. 2023-09-07 16:58:54 DEBUG ReqId 5372 Try to find the Cloudflare 'Verify you are human' button... 2023-09-07 16:58:54 DEBUG ReqId 5372 The Cloudflare 'Verify you are human' button not found on the page. 2023-09-07 16:58:56 DEBUG ReqId 5372 Waiting for title (attempt 2): Just a moment... 2023-09-07 16:58:56 DEBUG ReqId 5372 Waiting for title (attempt 2): DDoS-Guard 2023-09-07 16:58:56 DEBUG ReqId 5372 Waiting for selector (attempt 2): #cf-challenge-running 2023-09-07 16:58:56 DEBUG ReqId 5372 Waiting for selector (attempt 2): .ray_id 2023-09-07 16:58:56 DEBUG ReqId 5372 Waiting for selector (attempt 2): .attack-box 2023-09-07 16:58:56 DEBUG ReqId 5372 Waiting for selector (attempt 2): #cf-please-wait 2023-09-07 16:58:56 DEBUG ReqId 5372 Waiting for selector (attempt 2): #challenge-spinner 2023-09-07 16:58:57 DEBUG ReqId 5372 Timeout waiting for selector 2023-09-07 16:58:57 DEBUG ReqId 5372 Try to find the Cloudflare verify checkbox... 2023-09-07 16:58:57 DEBUG ReqId 5372 Cloudflare verify checkbox not found on the page. 2023-09-07 16:58:57 DEBUG ReqId 5372 Try to find the Cloudflare 'Verify you are human' button... 2023-09-07 16:58:57 DEBUG ReqId 5372 The Cloudflare 'Verify you are human' button not found on the page. 2023-09-07 16:59:00 DEBUG ReqId 5372 Waiting for title (attempt 3): Just a moment... 2023-09-07 16:59:00 DEBUG ReqId 5372 Waiting for title (attempt 3): DDoS-Guard 2023-09-07 16:59:00 DEBUG ReqId 5372 Waiting for selector (attempt 3): #cf-challenge-running 2023-09-07 16:59:00 DEBUG ReqId 5372 Waiting for selector (attempt 3): .ray_id 2023-09-07 16:59:00 DEBUG ReqId 5372 Waiting for selector (attempt 3): .attack-box 2023-09-07 16:59:00 DEBUG ReqId 5372 Waiting for selector (attempt 3): #cf-please-wait 2023-09-07 16:59:00 DEBUG ReqId 5372 Waiting for selector (attempt 3): #challenge-spinner 2023-09-07 16:59:01 DEBUG ReqId 5372 Timeout waiting for selector 2023-09-07 16:59:01 DEBUG ReqId 5372 Try to find the Cloudflare verify checkbox... 2023-09-07 16:59:01 DEBUG ReqId 5372 Cloudflare verify checkbox not found on the page. 2023-09-07 16:59:01 DEBUG ReqId 5372 Try to find the Cloudflare 'Verify you are human' button... 2023-09-07 16:59:01 DEBUG ReqId 5372 The Cloudflare 'Verify you are human' button not found on the page. 2023-09-07 16:59:03 DEBUG ReqId 5372 Waiting for title (attempt 4): Just a moment... 2023-09-07 16:59:03 DEBUG ReqId 5372 Waiting for title (attempt 4): DDoS-Guard 2023-09-07 16:59:03 DEBUG ReqId 5372 Waiting for selector (attempt 4): #cf-challenge-running 2023-09-07 16:59:03 DEBUG ReqId 5372 Waiting for selector (attempt 4): .ray_id 2023-09-07 16:59:03 DEBUG ReqId 5372 Waiting for selector (attempt 4): .attack-box 2023-09-07 16:59:03 DEBUG ReqId 5372 Waiting for selector (attempt 4): #cf-please-wait 2023-09-07 16:59:03 DEBUG ReqId 5372 Waiting for selector (attempt 4): #challenge-spinner 2023-09-07 16:59:04 DEBUG ReqId 5372 Timeout waiting for selector 2023-09-07 16:59:04 DEBUG ReqId 5372 Try to find the Cloudflare verify checkbox... 2023-09-07 16:59:04 DEBUG ReqId 5372 Cloudflare verify checkbox not found on the page. 2023-09-07 16:59:04 DEBUG ReqId 5372 Try to find the Cloudflare 'Verify you are human' button... 2023-09-07 16:59:04 DEBUG ReqId 5372 The Cloudflare 'Verify you are human' button not found on the page. 2023-09-07 16:59:06 DEBUG ReqId 5372 Waiting for title (attempt 5): Just a moment... 2023-09-07 16:59:06 DEBUG ReqId 5372 Waiting for title (attempt 5): DDoS-Guard 2023-09-07 16:59:06 DEBUG ReqId 5372 Waiting for selector (attempt 5): #cf-challenge-running 2023-09-07 16:59:06 DEBUG ReqId 5372 Waiting for selector (attempt 5): .ray_id 2023-09-07 16:59:06 DEBUG ReqId 5372 Waiting for selector (attempt 5): .attack-box 2023-09-07 16:59:06 DEBUG ReqId 5372 Waiting for selector (attempt 5): #cf-please-wait 2023-09-07 16:59:06 DEBUG ReqId 5372 Waiting for selector (attempt 5): #challenge-spinner 2023-09-07 16:59:07 DEBUG ReqId 5372 Timeout waiting for selector 2023-09-07 16:59:07 DEBUG ReqId 5372 Try to find the Cloudflare verify checkbox... 2023-09-07 16:59:07 DEBUG ReqId 5372 Cloudflare verify checkbox not found on the page. 2023-09-07 16:59:07 DEBUG ReqId 5372 Try to find the Cloudflare 'Verify you are human' button... 2023-09-07 16:59:07 DEBUG ReqId 5372 The Cloudflare 'Verify you are human' button not found on the page. 2023-09-07 16:59:09 DEBUG ReqId 5372 Waiting for title (attempt 6): Just a moment... 2023-09-07 16:59:09 DEBUG ReqId 5372 Waiting for title (attempt 6): DDoS-Guard 2023-09-07 16:59:09 DEBUG ReqId 5372 Waiting for selector (attempt 6): #cf-challenge-running 2023-09-07 16:59:09 DEBUG ReqId 5372 Waiting for selector (attempt 6): .ray_id 2023-09-07 16:59:09 DEBUG ReqId 5372 Waiting for selector (attempt 6): .attack-box 2023-09-07 16:59:09 DEBUG ReqId 5372 Waiting for selector (attempt 6): #cf-please-wait 2023-09-07 16:59:09 DEBUG ReqId 5372 Waiting for selector (attempt 6): #challenge-spinner 2023-09-07 16:59:10 DEBUG ReqId 5372 Timeout waiting for selector 2023-09-07 16:59:10 DEBUG ReqId 5372 Try to find the Cloudflare verify checkbox... 2023-09-07 16:59:10 DEBUG ReqId 5372 Cloudflare verify checkbox not found on the page. 2023-09-07 16:59:10 DEBUG ReqId 5372 Try to find the Cloudflare 'Verify you are human' button... 2023-09-07 16:59:10 DEBUG ReqId 5372 The Cloudflare 'Verify you are human' button not found on the page. 2023-09-07 16:59:12 DEBUG ReqId 5372 Waiting for title (attempt 7): Just a moment... 2023-09-07 16:59:12 DEBUG ReqId 5372 Waiting for title (attempt 7): DDoS-Guard 2023-09-07 16:59:12 DEBUG ReqId 5372 Waiting for selector (attempt 7): #cf-challenge-running 2023-09-07 16:59:12 DEBUG ReqId 5372 Waiting for selector (attempt 7): .ray_id 2023-09-07 16:59:12 DEBUG ReqId 5372 Waiting for selector (attempt 7): .attack-box 2023-09-07 16:59:12 DEBUG ReqId 5372 Waiting for selector (attempt 7): #cf-please-wait 2023-09-07 16:59:12 DEBUG ReqId 5372 Waiting for selector (attempt 7): #challenge-spinner 2023-09-07 16:59:13 DEBUG ReqId 5372 Timeout waiting for selector 2023-09-07 16:59:13 DEBUG ReqId 5372 Try to find the Cloudflare verify checkbox... 2023-09-07 16:59:13 DEBUG ReqId 5372 Cloudflare verify checkbox not found on the page. 2023-09-07 16:59:13 DEBUG ReqId 5372 Try to find the Cloudflare 'Verify you are human' button... 2023-09-07 16:59:13 DEBUG ReqId 5372 The Cloudflare 'Verify you are human' button not found on the page. 2023-09-07 16:59:15 DEBUG ReqId 5372 Waiting for title (attempt 8): Just a moment... 2023-09-07 16:59:15 DEBUG ReqId 5372 Waiting for title (attempt 8): DDoS-Guard 2023-09-07 16:59:15 DEBUG ReqId 5372 Waiting for selector (attempt 8): #cf-challenge-running 2023-09-07 16:59:15 DEBUG ReqId 5372 Waiting for selector (attempt 8): .ray_id 2023-09-07 16:59:15 DEBUG ReqId 5372 Waiting for selector (attempt 8): .attack-box 2023-09-07 16:59:15 DEBUG ReqId 5372 Waiting for selector (attempt 8): #cf-please-wait 2023-09-07 16:59:15 DEBUG ReqId 5372 Waiting for selector (attempt 8): #challenge-spinner 2023-09-07 16:59:16 DEBUG ReqId 5372 Timeout waiting for selector 2023-09-07 16:59:16 DEBUG ReqId 5372 Try to find the Cloudflare verify checkbox... 2023-09-07 16:59:16 DEBUG ReqId 5372 Cloudflare verify checkbox not found on the page. 2023-09-07 16:59:16 DEBUG ReqId 5372 Try to find the Cloudflare 'Verify you are human' button... 2023-09-07 16:59:16 DEBUG ReqId 5372 The Cloudflare 'Verify you are human' button not found on the page. ...... 2023-09-07 16:59:48 DEBUG ReqId 21264 A used instance of webdriver has been destroyed 2023-09-07 16:59:48 ERROR ReqId 21264 Error: Error solving the challenge. Timeout after 60.0 seconds. 2023-09-07 16:59:48 DEBUG ReqId 21264 Response => POST /v1 body: {'status': 'error', 'message': 'Error: Error solving the challenge. Timeout after 60.0 seconds.', 'startTimestamp': 1694077126775, 'endTimestamp': 1694077188290, 'version': '3.3.4'} 2023-09-07 16:59:48 INFO ReqId 21264 Response in 61.515 s 2023-09-07 16:59:48 INFO ReqId 21264 127.0.0.1 POST http://localhost:8191/v1 500 Internal Server Error ``` ### Screenshots _No response_
closed
2023-09-07T09:13:33Z
2023-09-13T09:30:27Z
https://github.com/FlareSolverr/FlareSolverr/issues/891
[ "help wanted" ]
luoxuebinfei
15
arogozhnikov/einops
tensorflow
88
do einops' operations account for contiguous memory layout?
Upon heavy reshaping and dimension manipulations, it is necessary from time to time to call .contiguous() on the resulting tensors to straighten out the memory layout. Does einops account for this automatically? I dont see no call to contiguous() anywhere in the examples
open
2020-11-16T12:53:19Z
2021-02-23T08:15:00Z
https://github.com/arogozhnikov/einops/issues/88
[ "question" ]
CDitzel
5
quokkaproject/quokka
flask
258
quokka.utils.paas broken in Python 3
this file uses **execute** to activate a venv, find a solution for python3
closed
2015-07-15T12:36:25Z
2015-07-16T02:56:11Z
https://github.com/quokkaproject/quokka/issues/258
[ "bug", "EASY" ]
rochacbruno
1
3b1b/manim
python
1,823
- »manimgl example_scenes.py -lo« command does not work. -
### Describe the error I run the following command at the end of installation of manim, and then there is the following error. ### Code and Error **manimgl**: manimgl example_scenes.py -lo **Error**: ManimGL v1.3.0 [01:13:22] INFO Using the default configuration file, which you can modify in config.py:259 `c:\windows\system32\manimgl\manimlib\default_config.yml` INFO If you want to create a local configuration file, you can create a file named config.py:260 `custom_config.yml`, or run `manimgl --config` WARNING You may be using Windows platform and have not specified the path of config.py:226 `temporary_storage`, which may cause OSError. So it is recommended to specify the `temporary_storage` in the config file (.yml) Traceback (most recent call last): File "C:\Windows\System32\ManimGL\mgl\Scripts\manimgl-script.py", line 33, in <module> sys.exit(load_entry_point('manimgl', 'console_scripts', 'manimgl')()) File "c:\windows\system32\manimgl\manimlib\__main__.py", line 21, in main config = manimlib.config.get_configuration(args) File "c:\windows\system32\manimgl\manimlib\config.py", line 294, in get_configuration module = get_module(args.file) File "c:\windows\system32\manimgl\manimlib\config.py", line 178, in get_module spec.loader.exec_module(module) File "<frozen importlib._bootstrap_external>", line 879, in exec_module File "<frozen importlib._bootstrap_external>", line 1016, in get_code File "<frozen importlib._bootstrap_external>", line 1073, in get_data FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Windows\\System32\\ManimGL\\examples_scenes.py' ### Environment **Microsoft Windows 11 Home Single Language** **ManimGL 1.6.1**: master <!-- make sure you are using the latest version of master branch --> **Python 3.10.0**
open
2022-05-27T02:43:51Z
2022-05-28T04:18:29Z
https://github.com/3b1b/manim/issues/1823
[]
Siegfried-Gottlich-Wotansson
5
autogluon/autogluon
computer-vision
3,813
DDP issue
**Bug Report Checklist** import pyarrow.parquet as pq from autogluon.multimodal import MultiModalPredictor import os train_data = pq.read_table('features_with_label.parquet').to_pandas() metric = 'f1' time_limit = 180 predictor = MultiModalPredictor(label='label', eval_metric=metric) predictor.fit(train_data, time_limit=time_limit) **Describe the bug** I am trying to use MultiModalPredictor to perform classification on combination of text and tabular data. I am running my code on "ml.p3.8xlarge" instance with kernel "conda_pytorch_py310". I am getting below eror “Lightning can’t create new processes if CUDA is already initialized. Did you manually call `torch.cuda.*` functions, have moved the model to the device, or allocated memory on the GPU any other way? Please remove any such calls, or change the selected strategy. You will have to restart the Python kernel.” **Screenshots / Logs** [error_logs.txt](https://github.com/autogluon/autogluon/files/13666797/error_logs.txt) ```python python version = Python 3.10.13 Lightning version = '2.0.9.post0' autogluon = 2.21 ```
closed
2023-12-14T00:01:48Z
2024-06-27T10:36:23Z
https://github.com/autogluon/autogluon/issues/3813
[ "bug: unconfirmed", "Needs Triage", "module: multimodal" ]
vinayakkarande
3
miguelgrinberg/Flask-SocketIO
flask
1,536
incoming request
**Hello I am using the following code to process incoming request. Although I test the server and client with the random number but when I add get.request the host shows nothing** **server code:** ``` from flask_socketio import SocketIO, emit from flask_socketio import SocketIO, emit from flask import Flask, render_template, url_for, copy_current_request_context, request from random import random from time import sleep from threading import Thread, Event app = Flask(__name__) app.config['DEBUG'] = True #turn the flask app into a socketio app socketio = SocketIO(app, async_mode=None, logger=True, engineio_logger=True) #random number Generator Thread thread = Thread() thread_stop_event = Event() def randomNumberGenerator(): # """ # Generate a random number every 1 second and emit to a socketio instance (broadcast) # Ideally to be run in a separate thread? # """ #infinite loop of magical random numbers print("Making random numbers") while not thread_stop_event.isSet(): # number = round(random()*10, 3) number = request.values.get('test') print(number) socketio.emit('newnumber', {'number': number}, namespace='/test') socketio.sleep(5) @app.route('/') def index(): #only by sending this page first will the client be connected to the socketio instance return render_template('index.html') @socketio.on('connect', namespace='/test') def test_connect(): # need visibility of the global thread object global thread print('Client connected') #Start the random number generator thread only if the thread has not been started before. if not thread.isAlive(): print("Starting Thread") thread = socketio.start_background_task(randomNumberGenerator) @socketio.on('disconnect', namespace='/test') def test_disconnect(): print('Client disconnected') if __name__ == '__main__': socketio.run(app) ``` **client code:** ``` $(document).ready(function(){ //connect to the socket server. var socket = io.connect('http://' + document.domain + ':' + location.port + '/test'); var numbers_received = []; //receive details from server socket.on('newnumber', function(msg) { console.log("Received number" + msg.number); //maintain a list of ten numbers // if (numbers_received.length >= 10){ // numbers_received.shift() // } numbers_received.push(msg.number); numbers_string = ''; for (var i = 0; i < numbers_received.length; i++){ numbers_string = numbers_string + '<p>' + numbers_received[i].toString() + '</p>'; } $('#log').html(numbers_string); }); }); ``` I am new to coding in socket.io so I do not know how to process get request.
closed
2021-04-29T09:58:31Z
2021-06-27T19:38:22Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1536
[ "question" ]
Elappnano
10
pydantic/logfire
pydantic
206
`logfire whoami` should respect the `LOGFIRE_TOKEN` env var.
and I guess `pyproject.toml` and anywhere else we look for a token, e.g. it should have the same semantics in terms of finding a project as ```bash python -c 'import logfire; logfire.info("hello world")' ```
closed
2024-05-22T21:48:17Z
2024-06-11T09:46:16Z
https://github.com/pydantic/logfire/issues/206
[ "good first issue", "Feature Request" ]
samuelcolvin
1
ets-labs/python-dependency-injector
asyncio
358
Configuration raises AttributeError when provider is called
Hi, I just run into this issue with the `Configuration` provider. After scratching my head for a bit, I managed to find a workaround, but I was wondering if this is actually a bug or just something wrong I am doing. Any help would be appreciated! **Steps to reproduce** `containers.py` ```python from dependency_injector import providers, containers class MyService(object): def __init__(self, **kwargs): self.key = kwargs.pop('key') def trigger(self): pass class MyDevice(object): def __init__(self, **kwargs): # doesn't raise an error because it's an instance of # dependency_injector.providers.Singleton self.service = kwargs.pop('service') def do_something(self): # raises "AttributeError: 'NoneType' object has no attribute 'get'" self.service().trigger() class ServiceContainer(containers.DeclarativeContainer): config = providers.Configuration() myservice = providers.Singleton(MyService, config=config.myservice) class Container(containers.DeclarativeContainer): config = providers.Configuration() services = providers.Container(ServiceContainer, config=config.services) mydevice = providers.Factory(MyDevice) ``` If I run `app.py` ```python import sys from containers import Container container = Container() container.config.from_yaml('config.yaml') container.init_resources() container.wire(modules=[sys.modules[__name__]]) mydevice = container.mydevice(service=container.services.myservice) mydevice.do_something() ``` with `config.yaml` ```yaml foo: bar: 42 ``` it raises the following error > File "/home/stefano/personal/test-error/containers.py", line 15, in do_something self.service().trigger() File "src/dependency_injector/providers.pyx", line 168, in dependency_injector.providers.Provider.__call__ File "src/dependency_injector/providers.pyx", line 2245, in dependency_injector.providers.Singleton._provide File "src/dependency_injector/providers.pxd", line 550, in dependency_injector.providers.__factory_call File "src/dependency_injector/providers.pxd", line 536, in dependency_injector.providers.__callable_call File "src/dependency_injector/providers.pxd", line 495, in dependency_injector.providers.__call File "src/dependency_injector/providers.pxd", line 387, in dependency_injector.providers.__provide_keyword_args File "src/dependency_injector/providers.pxd", line 310, in dependency_injector.providers.__get_value File "src/dependency_injector/providers.pyx", line 168, in dependency_injector.providers.Provider.__call__ File "src/dependency_injector/providers.pyx", line 1232, in dependency_injector.providers.ConfigurationOption._provide File "src/dependency_injector/providers.pyx", line 1467, in dependency_injector.providers.Configuration.get **AttributeError: 'NoneType' object has no attribute 'get'** **Workaround** To avoid the issue, I have to pass the whole `config` to `ServiceContainer` ```python class ServiceContainer(containers.DeclarativeContainer): config = providers.Configuration() myservice = providers.Singleton(MyService, config=config.services.myservice) class Container(containers.DeclarativeContainer): config = providers.Configuration() services = providers.Container(ServiceContainer, config=config) mydevice = providers.Factory(MyDevice) ``` Running the application now, raises the following (as expected) > File "/home/stefano/personal/test-error/containers.py", line 18, in do_something self.service().trigger() File "src/dependency_injector/providers.pyx", line 168, in dependency_injector.providers.Provider.__call__ File "src/dependency_injector/providers.pyx", line 2245, in dependency_injector.providers.Singleton._provide File "src/dependency_injector/providers.pxd", line 550, in dependency_injector.providers.__factory_call File "src/dependency_injector/providers.pxd", line 536, in dependency_injector.providers.__callable_call File "src/dependency_injector/providers.pxd", line 526, in dependency_injector.providers.__call File "/home/stefano/personal/test-error/containers.py", line 5, in __init__ **self.key = kwargs.pop('key') KeyError: 'key'**
closed
2021-01-14T20:18:29Z
2021-01-28T15:06:31Z
https://github.com/ets-labs/python-dependency-injector/issues/358
[ "bug" ]
StefanoFrazzetto
21
jstrieb/github-stats
asyncio
18
Inaccurate statistics
Hello 👋. I followed all the steps stated in the readme file correctly. Added the correct perms, I clicked the links provided in both steps 2 and 3 and I named the secret correctly. However, these are the generated images: ![](https://raw.githubusercontent.com/JoseDeFreitas/github-stats/3f13dc674cd8c84712b2c823f402c16fc10ff879/generated/overview.svg) and ![](https://raw.githubusercontent.com/JoseDeFreitas/github-stats/3f13dc674cd8c84712b2c823f402c16fc10ff879/generated/languages.svg) [My fork](https://github.com/JoseDeFreitas/github-stats) They do not match my actual stats whatsoever. As I wrote, I've done all the steps correctly. I tried reloading the page and re-running the workflow, but the result was the same. I don't know if it's an issue with the API or I actually did something wrong... Thank you in advance.
closed
2021-02-10T00:23:45Z
2021-02-10T01:45:24Z
https://github.com/jstrieb/github-stats/issues/18
[]
JoseDeFreitas
3
NVlabs/neuralangelo
computer-vision
29
neuralangelo docker run issue - WSL2 + Ubuntu 20.04 LTS
After done this. https://github.com/NVlabs/neuralangelo/issues/10 I'm trying with WSL2 + Ubuntu 20.04 LTS + docker. The log is below. ```shell (neuralangelo) root@altava-farer:~/neuralangelo# nvidia-smi Thu Aug 17 10:18:03 2023 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 418.226.00 Driver Version: 536.67 CUDA Version: 12.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... On | 00000000:01:00.0 On | Off | | 0% 36C P8 32W / 450W | 2974MiB / 24564MiB | 6% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 20 G /Xwayland N/A | | 0 33 G /Xwayland N/A | +-----------------------------------------------------------------------------+ (neuralangelo) root@altava-farer:~/neuralangelo# (neuralangelo) root@altava-farer:~/neuralangelo# docker run --gpus all -it docker.io/chenhsuanlin/neuralangelo:23.04-py3 docker: Error response from daemon: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: error during container init: error running hook #0: error running hook: exit status 1, stdout: , stderr: Auto-detected mode as 'legacy' nvidia-container-cli: mount error: file creation failed: /var/lib/docker/overlay2/de790850947733812be2cb67e6dd791f79c546dfa8d87cd115ac2d82e2f352eb/merged/usr/lib/x86_64-linux-gnu/libnvidia-ml.so.1: file exists: unknown. ERRO[0000] error waiting for container: context canceled (neuralangelo) root@altava-farer:~/neuralangelo# ``` But it works without "--gpus all". ```shell (neuralangelo) root@altava-farer:~/neuralangelo# docker run -it docker.io/chenhsuanlin/neuralangelo:23.04-py3 ============= == PyTorch == ============= NVIDIA Release 23.04 (build 58180998) PyTorch Version 2.1.0a0+fe05266 Container image Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. Copyright (c) 2014-2023 Facebook Inc. Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) Copyright (c) 2011-2013 NYU (Clement Farabet) Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute (Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz) Copyright (c) 2015 Google Inc. Copyright (c) 2015 Yangqing Jia Copyright (c) 2013-2016 The Caffe contributors All rights reserved. Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license WARNING: The NVIDIA Driver was not detected. GPU functionality will not be available. Use the NVIDIA Container Toolkit to start this container with GPU support; see https://docs.nvidia.com/datacenter/cloud-native/ . NOTE: The SHMEM allocation limit is set to the default of 64MB. This may be insufficient for PyTorch. NVIDIA recommends the use of the following flags: docker run --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 ... root@bbc348e95135:/workspace# ``` And I run torchrun like below. ```shell root@bbc348e95135:/workspace/neuralangelo# ll total 92 drwxr-xr-x 9 root root 4096 Aug 17 01:23 ./ drwxrwxrwx 1 root root 4096 Aug 17 01:21 ../ drwxr-xr-x 8 root root 4096 Aug 17 01:21 .git/ -rw-r--r-- 1 root root 3497 Aug 17 01:21 .gitignore -rw-r--r-- 1 root root 104 Aug 17 01:21 .gitmodules -rw-r--r-- 1 root root 143 Aug 17 01:21 .pre-commit-config.yaml -rw-r--r-- 1 root root 5246 Aug 17 01:21 DATA_PROCESSING.md -rw-r--r-- 1 root root 4454 Aug 17 01:21 LICENSE.md -rw-r--r-- 1 root root 4158 Aug 17 01:21 README.md drwxr-xr-x 2 root root 4096 Aug 17 01:21 assets/ drwxr-xr-x 2 root root 4096 Aug 17 01:21 docker/ drwxr-xr-x 6 root root 4096 Aug 17 01:21 imaginaire/ -rw-r--r-- 1 root root 378 Aug 17 01:21 neuralangelo.yaml drwxr-xr-x 4 root root 4096 Aug 17 01:21 projects/ -rw-r--r-- 1 root root 368 Aug 17 01:21 requirements.txt drwxr-xr-x 3 root root 4096 Aug 17 01:21 third_party/ -rwxr-xr-x 1 root root 584 Aug 16 02:38 toy_example.yaml* drwxr-xr-x 4 root root 4096 Aug 16 02:38 toy_example_skip24/ -rw-r--r-- 1 root root 4130 Aug 17 01:21 train.py root@bbc348e95135:/workspace/neuralangelo# root@bbc348e95135:/workspace/neuralangelo# root@bbc348e95135:/workspace/neuralangelo# EXPERIMENT=toy_example root@bbc348e95135:/workspace/neuralangelo# GROUP=example_group E=examproot@bbc348e95135:/workspace/neuralangelo# NAME=example_name root@bbc348e95135:/workspace/neuralangelo# root@bbc348e95135:/workspace/neuralangelo# CONFIG=./toy_example.yaml root@bbc348e95135:/workspace/neuralangelo# GPUS=1 root@bbc348e95135:/workspace/neuralangelo# root@bbc348e95135:/workspace/neuralangelo# torchrun --nproc_per_node=${GPUS} train.py \ > --logdir=logs/${GROUP}/${NAME} \ > --config=${CONFIG} \ > --show_pbar Traceback (most recent call last): File "/usr/local/lib/python3.8/dist-packages/pynvml/nvml.py", line 1478, in _LoadNvmlLibrary nvmlLib = CDLL("libnvidia-ml.so.1") File "/usr/lib/python3.8/ctypes/__init__.py", line 373, in __init__ self._handle = _dlopen(self._name, mode) OSError: /usr/lib/x86_64-linux-gnu/libnvidia-ml.so.1: file too short During handling of the above exception, another exception occurred: Traceback (most recent call last): File "train.py", line 20, in <module> from imaginaire.utils.gpu_affinity import set_affinity File "/workspace/neuralangelo/imaginaire/utils/gpu_affinity.py", line 22, in <module> pynvml.nvmlInit() File "/usr/local/lib/python3.8/dist-packages/pynvml/nvml.py", line 1450, in nvmlInit nvmlInitWithFlags(0) File "/usr/local/lib/python3.8/dist-packages/pynvml/nvml.py", line 1433, in nvmlInitWithFlags _LoadNvmlLibrary() File "/usr/local/lib/python3.8/dist-packages/pynvml/nvml.py", line 1480, in _LoadNvmlLibrary _nvmlCheckReturn(NVML_ERROR_LIBRARY_NOT_FOUND) File "/usr/local/lib/python3.8/dist-packages/pynvml/nvml.py", line 765, in _nvmlCheckReturn raise NVMLError(ret) pynvml.nvml.NVMLError_LibraryNotFound: NVML Shared Library Not Found ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 414) of binary: /usr/bin/python Traceback (most recent call last): File "/usr/local/bin/torchrun", line 33, in <module> sys.exit(load_entry_point('torch==2.1.0a0+fe05266', 'console_scripts', 'torchrun')()) File "/usr/local/lib/python3.8/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/usr/local/lib/python3.8/dist-packages/torch/distributed/run.py", line 794, in main run(args) File "/usr/local/lib/python3.8/dist-packages/torch/distributed/run.py", line 785, in run elastic_launch( File "/usr/local/lib/python3.8/dist-packages/torch/distributed/launcher/api.py", line 134, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/usr/local/lib/python3.8/dist-packages/torch/distributed/launcher/api.py", line 250, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ train.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2023-08-17_01:26:31 host : bbc348e95135 rank : 0 (local_rank: 0) exitcode : 1 (pid: 414) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ root@bbc348e95135:/workspace/neuralangelo# ``` Is there anything missing ?
closed
2023-08-17T01:34:51Z
2023-08-26T04:49:54Z
https://github.com/NVlabs/neuralangelo/issues/29
[]
altava-sgp
16
matplotlib/mplfinance
matplotlib
615
Error in module of Python 3.11.3, Pmw, BLT.
I am using python 3.11.3. I am building a stock market package in python. I need menus in that package. For creating menus I want to use PMW package with tinker. To try my first steps, I used the code snippet at : https://www.slac.stanford.edu/grp/cd/soft/pmw/blt/python/html/HelloBLT.html When I ran this script, I am getting this error: ``` Traceback (most recent call last): File "D:\PYTHON_3.11.3\Lib\site-packages\Pmw\Pmw_2_1_1\lib\PmwBlt.py", line 103, in __del__ self.tk.call(_vectorCommand, 'destroy', self._name) _tkinter.TclError: invalid command name "::blt::vector" ``` Any help please
closed
2023-05-01T17:30:09Z
2023-05-30T20:49:37Z
https://github.com/matplotlib/mplfinance/issues/615
[ "question" ]
Blessvskp
6
deepfakes/faceswap
deep-learning
1,290
Missing alignements faces
Hello first of all I have searched the forum but there is no answer to my problem. When I extract the frames of any video the alignment file is not created and no error messages, I tried on several videos and it's the same result, I also uninstalled completely the faceswap and conda environment then I reinstalled but still the same problem. I have created an extract.log file hoping that someone could help me. 12/28/2022 14:02:50 MainProcess MainThread logger log_setup INFO Log level set to: INFO 12/28/2022 14:02:52 MainProcess MainThread plugin_loader _import INFO Loading Detect from S3Fd plugin... 12/28/2022 14:02:52 MainProcess MainThread plugin_loader _import INFO Loading Align from Fan plugin... 12/28/2022 14:02:52 MainProcess MainThread plugin_loader _import INFO Loading Mask from Components plugin... 12/28/2022 14:02:52 MainProcess MainThread plugin_loader _import INFO Loading Mask from Extended plugin... 12/28/2022 14:02:52 MainProcess MainThread plugin_loader _import INFO Loading Mask from Bisenet_Fp plugin... 12/28/2022 14:02:52 MainProcess MainThread pipeline _set_plugin_batchsize INFO Reset batch sizes due to available VRAM: Detect: 1, Align: 1, Mask: 1 12/28/2022 14:02:52 MainProcess MainThread extract process INFO Starting, this may take a while... 12/28/2022 14:02:52 MainProcess MainThread extract __init__ INFO Output Directory: /home/cedric/faceswap/workspace/A 12/28/2022 14:02:52 MainProcess MainThread _base initialize INFO Initializing S3FD (Detect)... 12/28/2022 14:02:53 MainProcess MainThread _base initialize INFO Initialized S3FD (Detect) with batchsize of 1 12/28/2022 14:02:53 MainProcess MainThread _base initialize INFO Initializing FAN (Align)... 12/28/2022 14:03:01 MainProcess MainThread _base initialize INFO Initialized FAN (Align) with batchsize of 1 12/28/2022 14:03:01 MainProcess MainThread _base initialize INFO Initializing Components (Mask)... 12/28/2022 14:03:01 MainProcess MainThread _base initialize INFO Initialized Components (Mask) with batchsize of 1 12/28/2022 14:03:01 MainProcess MainThread _base initialize INFO Initializing Extended (Mask)... 12/28/2022 14:03:01 MainProcess MainThread _base initialize INFO Initialized Extended (Mask) with batchsize of 1 12/28/2022 14:03:01 MainProcess MainThread _base initialize INFO Initializing BiSeNet - Face Parsing (Mask)... 12/28/2022 14:03:03 MainProcess MainThread _base initialize INFO Initialized BiSeNet - Face Parsing (Mask) with batchsize of 1 AND the save project -> { "convert": { "Input Dir": "", "Output Dir": "", "Alignments": "", "Reference Video": "", "Model Dir": "", "Color Adjustment": "avg-color", "Mask Type": "extended", "Writer": "opencv", "Output Scale": 100, "Frame Ranges": "", "Input Aligned Dir": "", "Nfilter": "", "Filter": "", "Ref Threshold": 0.4, "Jobs": 0, "Trainer": "", "On The Fly": false, "Keep Unchanged": false, "Swap Model": false, "Singleprocess": false, "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "" }, "extract": { "Input Dir": "/home/cedric/faceswap/workspace/video/Test.mp4", "Output Dir": "/home/cedric/faceswap/workspace/A", "Alignments": "", "Batch Mode": false, "Detector": "s3fd", "Aligner": "fan", "Masker": "bisenet-fp", "Normalization": "hist", "Re Feed": 9, "Re Align": false, "Rotate Images": "", "Identity": false, "Min Size": 20, "Nfilter": "", "Filter": "", "Ref Threshold": 0.6, "Size": 512, "Extract Every N": 1, "Save Interval": 0, "Debug Landmarks": false, "Singleprocess": false, "Skip Existing": false, "Skip Existing Faces": false, "Skip Saving Faces": false, "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "/home/cedric/faceswap/workspace/extract.log" }, "train": { "Input A": "", "Input B": "", "Model Dir": "", "Load Weights": "", "Trainer": "original", "Summary": false, "Freeze Weights": false, "Batch Size": 16, "Iterations": 1000000, "Distributed": false, "Distribution Strategy": "default", "Save Interval": 250, "Snapshot Interval": 25000, "Timelapse Input A": "", "Timelapse Input B": "", "Timelapse Output": "", "Preview": false, "Write Image": false, "No Logs": false, "Warp To Landmarks": false, "No Flip": false, "No Augment Color": false, "No Warp": false, "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "" }, "alignments": { "Job": "", "Output": "console", "Alignments File": "", "Faces Folder": "", "Frames Folder": "", "Extract Every N": 1, "Size": 512, "Min Size": 0, "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "" }, "effmpeg": { "Action": "extract", "Input": "input", "Output": "", "Reference Video": "", "Fps": "-1.0", "Extract Filetype": ".png", "Start": "00:00:00", "End": "00:00:00", "Duration": "00:00:00", "Mux Audio": false, "Transpose": "", "Degrees": "", "Scale": "1920x1080", "Quiet": false, "Verbose": false, "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "" }, "manual": { "Alignments": "", "Frames": "", "Thumb Regen": false, "Single Process": false, "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "" }, "mask": { "Alignments": "", "Input": "", "Input Type": "frames", "Masker": "extended", "Processing": "missing", "Output Folder": "", "Blur Kernel": 3, "Threshold": 4, "Output Type": "combined", "Full Frame": false, "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "" }, "model": { "Model Dir": "", "Job": "", "Format": "h5", "Swap Model": false, "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "" }, "preview": { "Input Dir": "", "Alignments": "", "Model Dir": "", "Swap Model": false, "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "" }, "sort": { "Input": "", "Output": "", "Batch Mode": false, "Sort By": "face", "Group By": "none", "Keep": false, "Threshold": -1.0, "Final Process": "", "Bins": 5, "Log Changes": false, "Log File": "sort_log.json", "Exclude Gpus": "", "Configfile": "", "Loglevel": "INFO", "Logfile": "" }, "tab_name": "extract" }
closed
2022-12-28T12:55:39Z
2023-01-29T03:26:30Z
https://github.com/deepfakes/faceswap/issues/1290
[]
gravitydeepper
2
yezyilomo/django-restql
graphql
185
Add a way to define a serializer with a self referencing nested field
The way which I recommend ```py class UserSerializer(DynamicFieldsMixin, NestedModelSerializer): follows = NestedField( 'self', many=True, return_pk=True, create_ops=[], update_ops=['add', 'remove'], required=False ) ```
closed
2020-08-04T21:01:19Z
2021-09-18T06:14:34Z
https://github.com/yezyilomo/django-restql/issues/185
[ "enhancement" ]
yezyilomo
8
ipyflow/ipyflow
jupyter
10
support context managers (i.e. `with` clause)
closed
2020-04-30T15:11:47Z
2020-05-07T04:26:25Z
https://github.com/ipyflow/ipyflow/issues/10
[]
smacke
0
ploomber/ploomber
jupyter
613
Better error message when incomplete pipeline.yaml
A new user may try something like this: ```yaml tasks: - source: something product: out ``` The error message isn't helpful. We should show them how to create a script/function task. ``` Error: Failed to determine task class for source 'something': Invalid dotted path 'something'. Value must be a dot separated string, with at least two parts: [module_name].[function_name]. ```
closed
2022-02-22T16:51:12Z
2022-02-27T23:49:16Z
https://github.com/ploomber/ploomber/issues/613
[]
edublancas
0
newpanjing/simpleui
django
319
Simpletags not defined
**Bug description** Invalid template library specified. ImportError raised when trying to load 'simpleui.templatetags.simpletags': No module named 'simpleui.templatetags' This happens with the new version of simpleUI (2020.9.26) and not with the older version (2020.7). **Repeat step** 1. pip install django-simpleui 2. Go to localhost:8000/admin **Environment** _Operating System_:Windows _Python Version_:3.7 _Django Version_:2.2 _SimpleUI Version_:2020.9.26 Sorry I don't speak Chinese, but I will try to help as much as I can :)
closed
2020-11-18T09:05:29Z
2020-12-22T04:25:57Z
https://github.com/newpanjing/simpleui/issues/319
[ "bug" ]
leogout
2
python-gino/gino
asyncio
698
Gino ORM query not working using Geoalchemy2 functions
* GINO version: 1.0.0 * Python version: 3.8.2 * asyncpg version: 0.20.1 * aiocontextvars version: * PostgreSQL version: 12.2 ### Description The ORM query in SANIC written with Geoalchemy2 is not working ### What I Did I have this table in a `postgreSQL` database with `postGIS` extension installed and enabled. ``` Table "public.crime_data" Column | Type | Collation | Nullable | Default -------------|-----------------------------|-----------|----------|---------------------------------------- id | integer | | not null | nextval('crime_data_id_seq'::regclass) state | character varying | | | district | character varying | | | location | character varying | | | sub_type_id | integer | | | date_time | timestamp without time zone | | | latitude | double precision | | | longitude | double precision | | | geom_point | geography(Point,4326) | | | Indexes: "crime_data_pkey" PRIMARY KEY, btree (id) "idx_crime_data_geom_point" gist (geom_point) Foreign-key constraints: "crime_data_sub_type_id_fkey" FOREIGN KEY (sub_type_id) REFERENCES sub_type(id) ``` I am using `Sanic` web framework and along with it `Gino ORM` since it's asynchronous. I am able to write and run raw SQL queries in the command line and also using `Gino`. I just want to know if it's possible to convert a certain query to ORM syntax. This is the raw query that is _working_. This code snippet is inside an async view function and this is returning the expected result. ```python data_points = await db.status(db.text(''' SELECT location, sub_type_id, latitude, longitude, date_time FROM crime_data WHERE ST_Distance( geom_point, ST_SetSRID(ST_MakePoint(:lng, :lat), 4326) ) <= 5 * 1609.34; '''), { 'lat': lat, 'lng': lng, }) ``` This is my attempt to convert it to an ORM query, which _**isn't** working_. ``` data_points = await CrimeData.query.where( geo_func.ST_Distance( 'geom_point', geo_func.ST_SetSRID( geo_func.ST_MakePoint(lng, lat), 4326 ) ) <= (5 * 1609.34) ).gino.all() ``` While trying to run this query and return the response as `text`, I'm getting this error. ``` ⚠️ 500 — Internal Server Error parse error - invalid geometry HINT: "ge" <-- parse error at position 2 within geometry Traceback of __main__ (most recent call last): InternalServerError: parse error - invalid geometry HINT: "ge" <-- parse error at position 2 within geometry File /home/disciple/Documents/Code/MyProject-All/MyProject-Sanic/venv/lib/python3.8/site-packages/sanic/app.py, line 973, in handle_request response = await response File /home/disciple/Documents/Code/MyProject-All/MyProject-Sanic/backend/services/crime_plot.py, line 30, in test data_points = await CrimeData.query.where( File /home/disciple/Documents/Code/MyProject-All/MyProject-Sanic/venv/lib/python3.8/site-packages/gino/api.py, line 127, in all return await self._query.bind.all(self._query, *multiparams, **params) File /home/disciple/Documents/Code/MyProject-All/MyProject-Sanic/venv/lib/python3.8/site-packages/gino/engine.py, line 740, in all return await conn.all(clause, *multiparams, **params) File /home/disciple/Documents/Code/MyProject-All/MyProject-Sanic/venv/lib/python3.8/site-packages/gino/engine.py, line 316, in all return await result.execute() File /home/disciple/Documents/Code/MyProject-All/MyProject-Sanic/venv/lib/python3.8/site-packages/gino/dialects/base.py, line 214, in execute rows = await cursor.async_execute( File /home/disciple/Documents/Code/MyProject-All/MyProject-Sanic/venv/lib/python3.8/site-packages/gino/dialects/asyncpg.py, line 184, in async_execute result, stmt = await getattr(conn, "_do_execute")(query, executor, timeout) File /home/disciple/Documents/Code/MyProject-All/MyProject-Sanic/venv/lib/python3.8/site-packages/asyncpg/connection.py, line 1433, in _do_execute result = await executor(stmt, None) File asyncpg/protocol/protocol.pyx, line 196, in bind_execute InternalServerError: parse error - invalid geometry HINT: "ge" <-- parse error at position 2 within geometry while handling path /crime-plot/test1 ``` I understand the ORM query is a `SELECT *` and that is fine as long as I actually get results. I don't understand what I'm doing wrong. I'm getting the work done but I just want to make sure that it's possible with the ORM too.
closed
2020-06-07T18:39:34Z
2020-06-09T02:28:39Z
https://github.com/python-gino/gino/issues/698
[ "question" ]
KoustavCode
3
taverntesting/tavern
pytest
362
[Feature request]: slurp openapi spec and produce coverage report
I think a really neat idea would be to take the OpenAPI (aka swagger) spec, and produce a "coverage report", i.e., show how many of the API endpoints in the API were successfully tested/hit by tavern. What do you think of this idea?
open
2019-05-24T13:03:12Z
2019-05-30T15:33:22Z
https://github.com/taverntesting/tavern/issues/362
[ "Type: Enhancement" ]
tommyjcarpenter
1
PokeAPI/pokeapi
api
433
Publish as a JS package
As a tool author, I'd like to rely on your data without directly querying your endpoint (it might be because I don't want to rely on third-party websites, or because I don't want to eat your bandwidth, or because I want to have a finer control on the API layout). What would you think of publishing a npm package containing the csv bundled as an sqlite database after each update to the `csv` directory? This could be automated fairly easily using the GitHub actions (or an Azure job in the worst case if we can't find out how to give Actions access to this repository). Generating the sqlite database is as simple as: ```bash DATA_DIR=v2/csv cd "${DATA_DIR}" ( echo .mode csv for TABLE in *.csv; do echo .import "${TABLE}" "$(basename "${TABLE}" .csv)" done ) | sqlite3 pokemon.db ``` The end result is ~30MB, but we can decrease it by providing a few different partial databases (for example one that would only contain the pokedex data).
closed
2019-06-07T11:48:33Z
2020-08-19T10:05:49Z
https://github.com/PokeAPI/pokeapi/issues/433
[]
arcanis
7
vimalloc/flask-jwt-extended
flask
490
Tests fails
HI, I'm working in the Debian packaging of flask-jwt-extended 4.4.3. And during the build I have this error tests: ``` __________________________________________________ test_add_context_processor ______________________________________________________ app = <Flask 'tests.test_add_context_processor'> def test_add_context_processor(app): jwt_manager = JWTManager(app, add_context_processor=True) @jwt_manager.user_lookup_loader def user_lookup_callback(_jwt_header, _jwt_data): return "test_user" test_client = app.test_client() with app.test_request_context(): access_token = create_access_token("username") access_headers = {"Authorization": "Bearer {}".format(access_token)} response = test_client.get("/context_current_user", headers=access_headers) > assert response.text == "test_user" E AttributeError: 'WrapperTestResponse' object has no attribute 'text' tests/test_add_context_processor.py:37: AttributeError ____________________________________________________ test_no_add_context_processor ____________________________________________________ app = <Flask 'tests.test_add_context_processor'> def test_no_add_context_processor(app): jwt_manager = JWTManager(app) @jwt_manager.user_lookup_loader def user_lookup_callback(_jwt_header, _jwt_data): return "test_user" test_client = app.test_client() with app.test_request_context(): access_token = create_access_token("username") access_headers = {"Authorization": "Bearer {}".format(access_token)} response = test_client.get("/context_current_user", headers=access_headers) > assert response.text == "" E AttributeError: 'WrapperTestResponse' object has no attribute 'text' tests/test_add_context_processor.py:54: AttributeError ```
closed
2022-08-01T18:27:09Z
2022-08-01T20:45:27Z
https://github.com/vimalloc/flask-jwt-extended/issues/490
[]
eamanu
2
nonebot/nonebot2
fastapi
3,074
Plugin: nonebot-plugin-leetcodeapi-khasa
### PyPI 项目名 nonebot-plugin-leetcodeAPI-KHASA ### 插件 import 包名 nonebot_plugin_leetcodeAPI_KHASA ### 标签 [{"label":"leetcode","color":"#ea5252"}] ### 插件配置项 _No response_
closed
2024-10-27T09:12:51Z
2024-11-04T13:10:28Z
https://github.com/nonebot/nonebot2/issues/3074
[ "Plugin" ]
KhasAlushird
5
pydantic/pydantic-core
pydantic
1,468
Work with Python coroutine in Rust?
I am wondering if there is anyway to deal with Python coroutine in `pydantic_core`. I found [the async-await section of PyO3 docs](https://pyo3.rs/v0.22.2/async-await), but the feature seems not enabled for `pydantic_core`. Is there any other workarounds that is equivalent to `async def` and `await` in Python? ### Context I am suspecting the [`return_validator` logic in `pydantic._validate_call`](https://github.com/pydantic/pydantic/blob/c7497c56a71504a9ddd4c374dd5479f408484043/pydantic/_internal/_validate_call.py#L70C1-L93C54) is actually a duplicate of [the similar logic in `call.rs`](https://github.com/pydantic/pydantic-core/blob/f389728432949ecceddecb1f59bb503b0998e9aa/src/validators/call.rs#L95-L102). I tried just remove the Python part and every thing worked fine except for async function, which is currently working because of pydantic/pydantic#7046. The approach taken was to wrap an async function to await the coroutine: ```py async def return_val_wrapper(aw: Awaitable[Any]) -> None: return validator.validate_python(await aw) self.__return_pydantic_validator__ = return_val_wrapper ``` Now that I want to remove the `return_validator` logic in Python and keep the Rust side, I will have to move this wrapper into `call.rs`, which is the reason I am opening this issue.
open
2024-09-26T13:22:18Z
2024-09-30T12:39:47Z
https://github.com/pydantic/pydantic-core/issues/1468
[]
kc0506
5
OFA-Sys/Chinese-CLIP
nlp
259
这个支持词性标注吗
如题
closed
2024-02-27T12:26:50Z
2024-03-01T03:44:18Z
https://github.com/OFA-Sys/Chinese-CLIP/issues/259
[]
hu394854434
1
lepture/authlib
flask
353
What is in the version 0.15.4
A new version of Authlib has been released on the `pypi` but it's nowhere to be found on GitHub tags nor the changelog. Did anything changed or was that version released due to some error? https://pypi.org/project/Authlib/ Thanks!
closed
2021-06-08T14:53:01Z
2021-07-17T03:09:03Z
https://github.com/lepture/authlib/issues/353
[ "question" ]
kawa-marcin
6
KaiyangZhou/deep-person-reid
computer-vision
381
load_pretrained_weights(model, weight_path) Warning
closed
2020-10-20T09:06:27Z
2020-10-30T03:58:50Z
https://github.com/KaiyangZhou/deep-person-reid/issues/381
[]
nanHeK
0
CorentinJ/Real-Time-Voice-Cloning
deep-learning
490
How do I train a model with my own data? Where can I find the instruction?
How do I train a model with my own data? Where can I find the instructions on how to do it? Need help
closed
2020-08-13T12:58:53Z
2020-08-25T23:29:24Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/490
[]
justinjohn0306
4
aminalaee/sqladmin
sqlalchemy
21
Offset query issue while using MSSQL
**Error while query the Model :** `sqlalchemy.exc.CompileError: MSSQL requires an order_by when using an OFFSET or a non-simple LIMIT clause` **Why?** MSSQL requires an order_by when using an offset. Setup: - fastapi - MSSQL Server 2019 - PyODBC and SqlAlchemy **Original code:** https://github.com/aminalaee/sqladmin/blob/2205de1706ed6dd8c429a34664238f95d8f0a2ad/sqladmin/models.py#L261 **My change:** https://github.com/bigg01/sqladmin/blob/main/sqladmin/models.py#L262 ```python # sqlalchemy.exc.CompileError: MSSQL requires an order_by when using an OFFSET or a non-simple LIMIT clause query = select(cls.model).order_by("id").limit(page_size).offset((page - 1) * page_size) ``` I think in general it would make sense to add an option for ordering ? What do you think ? Regards
closed
2022-01-18T20:24:59Z
2022-01-19T17:19:39Z
https://github.com/aminalaee/sqladmin/issues/21
[ "enhancement" ]
bigg01
1
eamigo86/graphene-django-extras
graphql
117
Permissions with graphene-django-extras
Hi everyone, I would like to implement an easy permissions system. With original `graphene-django`, it was quite straightforward. It was sufficient to make a similar method for each field on an object: ```python def resolve_field(self): if not has_permission(): raise PermissionError("Access Denied!") return self.field ``` Here it is a bit more difficult, since `DjangoObjectListField` just bypasses these methods. The docs say that they are not needed, but even if they are present, they are just simply ignored. Do you have any advice how to implement permissions here? Either how to force `DjangoObjectListField` not to ignore `resolve_field` method, or suggest a completely different approach. Thanks!
open
2019-08-08T14:20:18Z
2020-06-26T05:55:00Z
https://github.com/eamigo86/graphene-django-extras/issues/117
[]
karlosss
5
python-gino/gino
asyncio
56
Error when create record in Sanic
* GINO version: 0.5.0 * Python version: 3.6.2 * Operating System: Ubuntu 14.04 ### Description Error to create record in Sanic after upgraded to version 0.5.0 ### What I Did ``` @bp.post('/users') async def add_new_user(request): new_obj = request.json #dict u = await User.create(**new_obj) return ajax_maint_ok(u.id) ``` Call it like this: ``` DATA='{"nickname":"n1"}' curl \ http://dserver:9901/demo/users \ -X POST \ -H "Content-Type: application/json" \ -H "Accept: text/html,application/json" \ -d ${DATA} ```
closed
2017-09-05T09:07:48Z
2017-09-06T02:10:59Z
https://github.com/python-gino/gino/issues/56
[ "question", "wontfix" ]
jonahfang
10
pydantic/pydantic
pydantic
10,508
Inconsistent schema generation resulting from `Any` in generic types
### Initial Checks - [X] I confirm that I'm using Pydantic V2 ### Description There's some inconsistency around schema generation for types that explicitely vs implicitly have a type of `Any`. ```python from pydantic import TypeAdapter implicit = TypeAdapter(list).core_schema explicit = TypeAdapter(list[Any]).core_schema assert implicit == {'type': 'list', 'items_schema': {'type': 'any'}} assert explicit == {'type': 'list'} ``` This also happens for `dict`, and I suspect other generic types: ```python from pydantic import TypeAdapter implicit = TypeAdapter(dict).core_schema explicit = TypeAdapter(dict[Any, Any]).core_schema assert implicit == {'type': 'dict', 'keys_schema': {'type': 'any'}, 'values_schema': {'type': 'any'}} assert explicit == {'type': 'dict', 'strict': False} ``` In my particular case I'm implementing [custom type adapters](https://github.com/pydantic/pydantic/issues/8279) via [`walk_core_schema`](https://github.com/pydantic/pydantic/issues/8279#issuecomment-2135935095). This approach relies on Pydantic handling `Any` consistently since I'd like to replace all instances of `{"type": "any"}` in the schema with some dynamic serialization logic. Under the current ### Example Code ```Python See above. ``` ### Python, Pydantic & OS Version ```Text pydantic version: 2.7.3 pydantic-core version: 2.18.4 pydantic-core build: profile=release pgo=true install path: /Users/ryanmorshead/miniconda3/envs/abraxas-env/lib/python3.11/site-packages/pydantic python version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:34:54) [Clang 16.0.6 ] platform: macOS-14.2.1-arm64-arm-64bit related packages: typing_extensions-4.12.1 pyright-1.1.379 commit: unknown ```
closed
2024-09-27T19:43:52Z
2024-09-27T19:44:16Z
https://github.com/pydantic/pydantic/issues/10508
[ "bug V2", "pending" ]
rmorshea
1
AUTOMATIC1111/stable-diffusion-webui
pytorch
15,637
[Bug]: AttributeError: 'NoneType' object has no attribute 'lowvram' -- Clean install on Mac
### Checklist - [X] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [ ] The issue has not been reported before recently - [X] The issue has been reported before but has not been fixed yet ### What happened? On clean install, selecting a downloaded model or preloaded v1-5 model will result in a AttributeError. Terminal: `e1441589a6f3c5a53f5f54d0975a18a7feb7cdf0b0dee276dfc3331ae376a053 Loading weights [e1441589a6] from /Users/[obfuscated]/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned.ckpt Creating model from config: /Users/[obfuscated]/stable-diffusion-webui/configs/v1-inference.yaml changing setting sd_model_checkpoint to v1-5-pruned.ckpt: AttributeError Traceback (most recent call last): File "/Users/[obfuscated]/stable-diffusion-webui/modules/options.py", line 165, in set option.onchange() File "/Users/[obfuscated]/stable-diffusion-webui/modules/call_queue.py", line 13, in f res = func(*args, **kwargs) File "/Users/[obfuscated]/stable-diffusion-webui/modules/initialize_util.py", line 181, in <lambda> shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False) File "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py", line 860, in reload_model_weights sd_model = reuse_model_from_already_loaded(sd_model, checkpoint_info, timer) File "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py", line 793, in reuse_model_from_already_loaded send_model_to_cpu(sd_model) File "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py", line 662, in send_model_to_cpu if m.lowvram: AttributeError: 'NoneType' object has no attribute 'lowvram'` ### Steps to reproduce the problem Upon clean install and webui launch, attempt to select the v1-5 pruned ckpt file. ### What should have happened? A model should be able to be selected, and generation should be able to proceed. ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo { "Platform": "macOS-12.1-arm64-arm-64bit", "Python": "3.10.14", "Version": "v1.9.3", "Commit": "1c0a0c4c26f78c32095ebc7f8af82f5c04fca8c0", "Script path": "/Users/[obfuscated]/stable-diffusion-webui", "Data path": "/Users/[obfuscated]/stable-diffusion-webui", "Extensions dir": "/Users/[obfuscated]/stable-diffusion-webui/extensions", "Checksum": "d56275202269240dd6f316f3de94fd6195326487d0a53de5de030e8cc3084cb7", "Commandline": [ "launch.py", "--skip-torch-cuda-test", "--upcast-sampling", "--no-half-vae", "--use-cpu", "interrogate" ], "Torch env info": { "torch_version": "2.1.0", "is_debug_build": "False", "cuda_compiled_version": null, "gcc_version": null, "clang_version": "13.1.6 (clang-1316.0.21.2.5)", "cmake_version": "version 3.29.2", "os": "macOS 12.1 (arm64)", "libc_version": "N/A", "python_version": "3.10.14 (main, Mar 20 2024, 03:57:45) [Clang 14.0.0 (clang-1400.0.29.202)] (64-bit runtime)", "python_platform": "macOS-12.1-arm64-arm-64bit", "is_cuda_available": "False", "cuda_runtime_version": null, "cuda_module_loading": "N/A", "nvidia_driver_version": null, "nvidia_gpu_models": null, "cudnn_version": null, "pip_version": "pip3", "pip_packages": [ "numpy==1.26.2", "open-clip-torch==2.20.0", "pytorch-lightning==1.9.4", "torch==2.1.0", "torchdiffeq==0.2.3", "torchmetrics==1.3.2", "torchsde==0.2.6", "torchvision==0.16.0" ], "conda_packages": null, "hip_compiled_version": "N/A", "hip_runtime_version": "N/A", "miopen_runtime_version": "N/A", "caching_allocator_config": "", "is_xnnpack_available": "True", "cpu_info": "Apple M1 Pro" }, "Exceptions": [ { "exception": "Torch not compiled with CUDA enabled", "traceback": [ [ "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py, line 620, get_sd_model", "load_model()" ], [ "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py, line 770, load_model", "with devices.autocast(), torch.no_grad():" ], [ "/Users/[obfuscated]/stable-diffusion-webui/modules/devices.py, line 218, autocast", "if has_xpu() or has_mps() or cuda_no_autocast():" ], [ "/Users/[obfuscated]/stable-diffusion-webui/modules/devices.py, line 28, cuda_no_autocast", "device_id = get_cuda_device_id()" ], [ "/Users/[obfuscated]/stable-diffusion-webui/modules/devices.py, line 40, get_cuda_device_id", ") or torch.cuda.current_device()" ], [ "/Users/[obfuscated]/stable-diffusion-webui/venv/lib/python3.10/site-packages/torch/cuda/__init__.py, line 769, current_device", "_lazy_init()" ], [ "/Users/[obfuscated]/stable-diffusion-webui/venv/lib/python3.10/site-packages/torch/cuda/__init__.py, line 289, _lazy_init", "raise AssertionError(\"Torch not compiled with CUDA enabled\")" ] ] }, { "exception": "'NoneType' object has no attribute 'lowvram'", "traceback": [ [ "/Users/[obfuscated]/stable-diffusion-webui/modules/options.py, line 165, set", "option.onchange()" ], [ "/Users/[obfuscated]/stable-diffusion-webui/modules/call_queue.py, line 13, f", "res = func(*args, **kwargs)" ], [ "/Users/[obfuscated]/stable-diffusion-webui/modules/initialize_util.py, line 181, <lambda>", "shared.opts.onchange(\"sd_model_checkpoint\", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False)" ], [ "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py, line 860, reload_model_weights", "sd_model = reuse_model_from_already_loaded(sd_model, checkpoint_info, timer)" ], [ "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py, line 793, reuse_model_from_already_loaded", "send_model_to_cpu(sd_model)" ], [ "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py, line 662, send_model_to_cpu", "if m.lowvram:" ] ] } ], "CPU": { "model": "arm", "count logical": 10, "count physical": 10 }, "RAM": { "total": "16GB", "used": "5GB", "free": "62MB", "active": "3GB", "inactive": "3GB" }, "Extensions": [], "Inactive extensions": [], "Environment": { "COMMANDLINE_ARGS": "--skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate", "GIT": "git", "GRADIO_ANALYTICS_ENABLED": "False", "TORCH_COMMAND": "pip install torch==2.1.0 torchvision==0.16.0" }, "Config": { "ldsr_steps": 100, "ldsr_cached": false, "SCUNET_tile": 256, "SCUNET_tile_overlap": 8, "SWIN_tile": 192, "SWIN_tile_overlap": 8, "SWIN_torch_compile": false, "hypertile_enable_unet": false, "hypertile_enable_unet_secondpass": false, "hypertile_max_depth_unet": 3, "hypertile_max_tile_unet": 256, "hypertile_swap_size_unet": 3, "hypertile_enable_vae": false, "hypertile_max_depth_vae": 3, "hypertile_max_tile_vae": 128, "hypertile_swap_size_vae": 3, "sd_model_checkpoint": "v1-5-pruned.ckpt [e1441589a6]", "sd_checkpoint_hash": "e1441589a6f3c5a53f5f54d0975a18a7feb7cdf0b0dee276dfc3331ae376a053" }, "Startup": { "total": 68.00557136535645, "records": { "initial startup": 0.0009272098541259766, "prepare environment/checks": 4.220008850097656e-05, "prepare environment/git version info": 0.018723011016845703, "prepare environment/install torch": 13.662177085876465, "prepare environment/torch GPU test": 6.175041198730469e-05, "prepare environment/install clip": 3.7877581119537354, "prepare environment/install open_clip": 4.085432052612305, "prepare environment/clone repositores": 7.612929821014404, "prepare environment/install requirements": 29.78075909614563, "prepare environment/run extensions installers": 0.004931211471557617, "prepare environment": 58.95587396621704, "launcher": 0.022570133209228516, "import torch": 4.146008729934692, "import gradio": 0.765498161315918, "setup paths": 1.2596769332885742, "import ldm": 0.013821840286254883, "import sgm": 5.245208740234375e-06, "initialize shared": 0.3825209140777588, "other imports": 1.01145601272583, "opts onchange": 0.00033593177795410156, "setup SD model": 6.604194641113281e-05, "setup codeformer": 0.003963947296142578, "setup gfpgan": 0.010995149612426758, "set samplers": 3.886222839355469e-05, "list extensions": 0.0009171962738037109, "restore config state file": 8.821487426757812e-06, "list SD models": 0.008134841918945312, "list localizations": 0.00017118453979492188, "load scripts/custom_code.py": 0.002298116683959961, "load scripts/img2imgalt.py": 0.0015780925750732422, "load scripts/loopback.py": 0.0011126995086669922, "load scripts/outpainting_mk_2.py": 0.002089977264404297, "load scripts/poor_mans_outpainting.py": 0.0015411376953125, "load scripts/postprocessing_codeformer.py": 0.0005950927734375, "load scripts/postprocessing_gfpgan.py": 0.0011141300201416016, "load scripts/postprocessing_upscale.py": 0.0018849372863769531, "load scripts/prompt_matrix.py": 0.001984834671020508, "load scripts/prompts_from_file.py": 0.0018491744995117188, "load scripts/sd_upscale.py": 0.0013020038604736328, "load scripts/xyz_grid.py": 0.008707761764526367, "load scripts/ldsr_model.py": 0.3379373550415039, "load scripts/lora_script.py": 0.1310436725616455, "load scripts/scunet_model.py": 0.016871929168701172, "load scripts/swinir_model.py": 0.02359914779663086, "load scripts/hotkey_config.py": 0.000881195068359375, "load scripts/extra_options_section.py": 0.0009827613830566406, "load scripts/hypertile_script.py": 0.04871392250061035, "load scripts/hypertile_xyz.py": 0.0001862049102783203, "load scripts/postprocessing_autosized_crop.py": 0.0010879039764404297, "load scripts/postprocessing_caption.py": 0.0004470348358154297, "load scripts/postprocessing_create_flipped_copies.py": 0.00043702125549316406, "load scripts/postprocessing_focal_crop.py": 0.0026140213012695312, "load scripts/postprocessing_split_oversized.py": 0.0008080005645751953, "load scripts/soft_inpainting.py": 0.0022139549255371094, "load scripts/comments.py": 0.01715993881225586, "load scripts/refiner.py": 0.002248048782348633, "load scripts/sampler.py": 0.0008349418640136719, "load scripts/seed.py": 0.0009102821350097656, "load scripts": 0.6150598526000977, "load upscalers": 0.0033631324768066406, "refresh VAE": 0.0006058216094970703, "refresh textual inversion templates": 0.0002219676971435547, "scripts list_optimizers": 0.0002779960632324219, "scripts list_unets": 1.3113021850585938e-05, "reload hypernetworks": 0.00030112266540527344, "initialize extra networks": 0.006253719329833984, "scripts before_ui_callback": 0.0002532005310058594, "create ui": 0.23605775833129883, "gradio launch": 0.5480811595916748, "add APIs": 0.016994953155517578, "app_started_callback/lora_script.py": 0.0005769729614257812, "app_started_callback": 0.000576019287109375 } }, "Packages": [ "accelerate==0.21.0", "aenum==3.1.15", "aiofiles==23.2.1", "aiohttp==3.9.5", "aiosignal==1.3.1", "altair==5.3.0", "antlr4-python3-runtime==4.9.3", "anyio==3.7.1", "async-timeout==4.0.3", "attrs==23.2.0", "blendmodes==2022", "certifi==2024.2.2", "charset-normalizer==3.3.2", "clean-fid==0.1.35", "click==8.1.7", "clip==1.0", "contourpy==1.2.1", "cycler==0.12.1", "deprecation==2.1.0", "diskcache==5.6.3", "einops==0.4.1", "exceptiongroup==1.2.1", "facexlib==0.3.0", "fastapi==0.94.0", "ffmpy==0.3.2", "filelock==3.13.4", "filterpy==1.4.5", "fonttools==4.51.0", "frozenlist==1.4.1", "fsspec==2024.3.1", "ftfy==6.2.0", "gitdb==4.0.11", "gitpython==3.1.32", "gradio-client==0.5.0", "gradio==3.41.2", "h11==0.12.0", "httpcore==0.15.0", "httpx==0.24.1", "huggingface-hub==0.22.2", "idna==3.7", "imageio==2.34.1", "importlib-resources==6.4.0", "inflection==0.5.1", "jinja2==3.1.3", "jsonmerge==1.8.0", "jsonschema-specifications==2023.12.1", "jsonschema==4.21.1", "kiwisolver==1.4.5", "kornia==0.6.7", "lark==1.1.2", "lazy-loader==0.4", "lightning-utilities==0.11.2", "llvmlite==0.42.0", "markupsafe==2.1.5", "matplotlib==3.8.4", "mpmath==1.3.0", "multidict==6.0.5", "networkx==3.3", "numba==0.59.1", "numpy==1.26.2", "omegaconf==2.2.3", "open-clip-torch==2.20.0", "opencv-python==4.9.0.80", "orjson==3.10.1", "packaging==24.0", "pandas==2.2.2", "piexif==1.1.3", "pillow-avif-plugin==1.4.3", "pillow==9.5.0", "pip==24.0", "protobuf==3.20.0", "psutil==5.9.5", "pydantic==1.10.15", "pydub==0.25.1", "pyparsing==3.1.2", "python-dateutil==2.9.0.post0", "python-multipart==0.0.9", "pytorch-lightning==1.9.4", "pytz==2024.1", "pywavelets==1.6.0", "pyyaml==6.0.1", "referencing==0.35.0", "regex==2024.4.16", "requests==2.31.0", "resize-right==0.0.2", "rpds-py==0.18.0", "safetensors==0.4.2", "scikit-image==0.21.0", "scipy==1.13.0", "semantic-version==2.10.0", "sentencepiece==0.2.0", "setuptools==69.2.0", "six==1.16.0", "smmap==5.0.1", "sniffio==1.3.1", "spandrel==0.1.6", "starlette==0.26.1", "sympy==1.12", "tifffile==2024.4.24", "timm==0.9.16", "tokenizers==0.13.3", "tomesd==0.1.3", "toolz==0.12.1", "torch==2.1.0", "torchdiffeq==0.2.3", "torchmetrics==1.3.2", "torchsde==0.2.6", "torchvision==0.16.0", "tqdm==4.66.2", "trampoline==0.1.2", "transformers==4.30.2", "typing-extensions==4.11.0", "tzdata==2024.1", "urllib3==2.2.1", "uvicorn==0.29.0", "wcwidth==0.2.13", "websockets==11.0.3", "yarl==1.9.4" ] } ### Console logs ```Shell Last login: Fri Apr 26 12:46:05 on ttys002 [obfuscated]@binhyboy-M1-Pro ~ % cd stable-diffusion-webui/ [obfuscated]@binhyboy-M1-Pro stable-diffusion-webui % ./webui.sh ################################################################ Install script for stable-diffusion + Web UI Tested on Debian 11 (Bullseye), Fedora 34+ and openSUSE Leap 15.4 or newer. ################################################################ ################################################################ Running on [obfuscated] user ################################################################ ################################################################ Repo already cloned, using it as install directory ################################################################ ################################################################ Create and activate python venv ################################################################ ################################################################ Launching launch.py... ################################################################ Python 3.10.14 (main, Mar 20 2024, 03:57:45) [Clang 14.0.0 (clang-1400.0.29.202)] Version: v1.9.3 Commit hash: 1c0a0c4c26f78c32095ebc7f8af82f5c04fca8c0 Installing torch and torchvision Collecting torch==2.1.0 Using cached torch-2.1.0-cp310-none-macosx_11_0_arm64.whl.metadata (24 kB) Collecting torchvision==0.16.0 Using cached torchvision-0.16.0-cp310-cp310-macosx_11_0_arm64.whl.metadata (6.6 kB) Collecting filelock (from torch==2.1.0) Using cached filelock-3.13.4-py3-none-any.whl.metadata (2.8 kB) Collecting typing-extensions (from torch==2.1.0) Using cached typing_extensions-4.11.0-py3-none-any.whl.metadata (3.0 kB) Collecting sympy (from torch==2.1.0) Using cached sympy-1.12-py3-none-any.whl.metadata (12 kB) Collecting networkx (from torch==2.1.0) Using cached networkx-3.3-py3-none-any.whl.metadata (5.1 kB) Collecting jinja2 (from torch==2.1.0) Using cached Jinja2-3.1.3-py3-none-any.whl.metadata (3.3 kB) Collecting fsspec (from torch==2.1.0) Using cached fsspec-2024.3.1-py3-none-any.whl.metadata (6.8 kB) Collecting numpy (from torchvision==0.16.0) Using cached numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl.metadata (61 kB) Collecting requests (from torchvision==0.16.0) Using cached requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) Collecting pillow!=8.3.*,>=5.3.0 (from torchvision==0.16.0) Using cached pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl.metadata (9.2 kB) Collecting MarkupSafe>=2.0 (from jinja2->torch==2.1.0) Using cached MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl.metadata (3.0 kB) Collecting charset-normalizer<4,>=2 (from requests->torchvision==0.16.0) Using cached charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl.metadata (33 kB) Collecting idna<4,>=2.5 (from requests->torchvision==0.16.0) Using cached idna-3.7-py3-none-any.whl.metadata (9.9 kB) Collecting urllib3<3,>=1.21.1 (from requests->torchvision==0.16.0) Using cached urllib3-2.2.1-py3-none-any.whl.metadata (6.4 kB) Collecting certifi>=2017.4.17 (from requests->torchvision==0.16.0) Using cached certifi-2024.2.2-py3-none-any.whl.metadata (2.2 kB) Collecting mpmath>=0.19 (from sympy->torch==2.1.0) Using cached mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB) Using cached torch-2.1.0-cp310-none-macosx_11_0_arm64.whl (59.5 MB) Using cached torchvision-0.16.0-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB) Using cached pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB) Using cached filelock-3.13.4-py3-none-any.whl (11 kB) Using cached fsspec-2024.3.1-py3-none-any.whl (171 kB) Using cached Jinja2-3.1.3-py3-none-any.whl (133 kB) Using cached networkx-3.3-py3-none-any.whl (1.7 MB) Using cached numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB) Using cached requests-2.31.0-py3-none-any.whl (62 kB) Using cached sympy-1.12-py3-none-any.whl (5.7 MB) Using cached typing_extensions-4.11.0-py3-none-any.whl (34 kB) Using cached certifi-2024.2.2-py3-none-any.whl (163 kB) Using cached charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl (120 kB) Using cached idna-3.7-py3-none-any.whl (66 kB) Using cached MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl (18 kB) Using cached mpmath-1.3.0-py3-none-any.whl (536 kB) Using cached urllib3-2.2.1-py3-none-any.whl (121 kB) Installing collected packages: mpmath, urllib3, typing-extensions, sympy, pillow, numpy, networkx, MarkupSafe, idna, fsspec, filelock, charset-normalizer, certifi, requests, jinja2, torch, torchvision Successfully installed MarkupSafe-2.1.5 certifi-2024.2.2 charset-normalizer-3.3.2 filelock-3.13.4 fsspec-2024.3.1 idna-3.7 jinja2-3.1.3 mpmath-1.3.0 networkx-3.3 numpy-1.26.4 pillow-10.3.0 requests-2.31.0 sympy-1.12 torch-2.1.0 torchvision-0.16.0 typing-extensions-4.11.0 urllib3-2.2.1 Installing clip Installing open_clip Cloning assets into /Users/[obfuscated]/stable-diffusion-webui/repositories/stable-diffusion-webui-assets... Cloning into '/Users/[obfuscated]/stable-diffusion-webui/repositories/stable-diffusion-webui-assets'... remote: Enumerating objects: 20, done. remote: Counting objects: 100% (20/20), done. remote: Compressing objects: 100% (18/18), done. remote: Total 20 (delta 0), reused 20 (delta 0), pack-reused 0 Receiving objects: 100% (20/20), 132.70 KiB | 1.35 MiB/s, done. Cloning Stable Diffusion into /Users/[obfuscated]/stable-diffusion-webui/repositories/stable-diffusion-stability-ai... Cloning into '/Users/[obfuscated]/stable-diffusion-webui/repositories/stable-diffusion-stability-ai'... remote: Enumerating objects: 580, done. remote: Counting objects: 100% (571/571), done. remote: Compressing objects: 100% (306/306), done. remote: Total 580 (delta 278), reused 446 (delta 247), pack-reused 9 Receiving objects: 100% (580/580), 73.44 MiB | 42.75 MiB/s, done. Resolving deltas: 100% (278/278), done. Cloning Stable Diffusion XL into /Users/[obfuscated]/stable-diffusion-webui/repositories/generative-models... Cloning into '/Users/[obfuscated]/stable-diffusion-webui/repositories/generative-models'... remote: Enumerating objects: 941, done. remote: Total 941 (delta 0), reused 0 (delta 0), pack-reused 941 Receiving objects: 100% (941/941), 43.85 MiB | 35.95 MiB/s, done. Resolving deltas: 100% (489/489), done. Cloning K-diffusion into /Users/[obfuscated]/stable-diffusion-webui/repositories/k-diffusion... Cloning into '/Users/[obfuscated]/stable-diffusion-webui/repositories/k-diffusion'... remote: Enumerating objects: 1340, done. remote: Counting objects: 100% (1340/1340), done. remote: Compressing objects: 100% (433/433), done. remote: Total 1340 (delta 940), reused 1259 (delta 900), pack-reused 0 Receiving objects: 100% (1340/1340), 238.52 KiB | 1.77 MiB/s, done. Resolving deltas: 100% (940/940), done. Cloning BLIP into /Users/[obfuscated]/stable-diffusion-webui/repositories/BLIP... Cloning into '/Users/[obfuscated]/stable-diffusion-webui/repositories/BLIP'... remote: Enumerating objects: 277, done. remote: Counting objects: 100% (165/165), done. remote: Compressing objects: 100% (30/30), done. remote: Total 277 (delta 137), reused 136 (delta 135), pack-reused 112 Receiving objects: 100% (277/277), 7.03 MiB | 18.28 MiB/s, done. Resolving deltas: 100% (152/152), done. Installing requirements Launching Web UI with arguments: --skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. Warning: caught exception 'Torch not compiled with CUDA enabled', memory monitor disabled ============================================================================== You are running torch 2.1.0. The program is tested to work with torch 2.1.2. To reinstall the desired version, run with commandline flag --reinstall-torch. Beware that this will cause a lot of large files to be downloaded, as well as there are reports of issues with training tab on the latest version. Use --skip-version-check commandline argument to disable this check. ============================================================================== Calculating sha256 for /Users/[obfuscated]/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned.ckpt: Running on local URL: http://127.0.0.1:7860 To create a public link, set `share=True` in `launch()`. Startup time: 68.0s (prepare environment: 59.0s, import torch: 4.1s, import gradio: 0.8s, setup paths: 1.3s, initialize shared: 0.4s, other imports: 1.0s, load scripts: 0.6s, create ui: 0.2s, gradio launch: 0.5s). e1441589a6f3c5a53f5f54d0975a18a7feb7cdf0b0dee276dfc3331ae376a053 Loading weights [e1441589a6] from /Users/[obfuscated]/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned.ckpt Creating model from config: /Users/[obfuscated]/stable-diffusion-webui/configs/v1-inference.yaml changing setting sd_model_checkpoint to v1-5-pruned.ckpt: AttributeError Traceback (most recent call last): File "/Users/[obfuscated]/stable-diffusion-webui/modules/options.py", line 165, in set option.onchange() File "/Users/[obfuscated]/stable-diffusion-webui/modules/call_queue.py", line 13, in f res = func(*args, **kwargs) File "/Users/[obfuscated]/stable-diffusion-webui/modules/initialize_util.py", line 181, in <lambda> shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False) File "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py", line 860, in reload_model_weights sd_model = reuse_model_from_already_loaded(sd_model, checkpoint_info, timer) File "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py", line 793, in reuse_model_from_already_loaded send_model_to_cpu(sd_model) File "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py", line 662, in send_model_to_cpu if m.lowvram: AttributeError: 'NoneType' object has no attribute 'lowvram' Applying attention optimization: InvokeAI... done. loading stable diffusion model: AssertionError Traceback (most recent call last): File "/opt/homebrew/Cellar/python@3.10/3.10.14/Frameworks/Python.framework/Versions/3.10/lib/python3.10/threading.py", line 973, in _bootstrap self._bootstrap_inner() File "/opt/homebrew/Cellar/python@3.10/3.10.14/Frameworks/Python.framework/Versions/3.10/lib/python3.10/threading.py", line 1016, in _bootstrap_inner self.run() File "/opt/homebrew/Cellar/python@3.10/3.10.14/Frameworks/Python.framework/Versions/3.10/lib/python3.10/threading.py", line 953, in run self._target(*self._args, **self._kwargs) File "/Users/[obfuscated]/stable-diffusion-webui/modules/initialize.py", line 149, in load_model shared.sd_model # noqa: B018 File "/Users/[obfuscated]/stable-diffusion-webui/modules/shared_items.py", line 175, in sd_model return modules.sd_models.model_data.get_sd_model() File "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py", line 620, in get_sd_model load_model() File "/Users/[obfuscated]/stable-diffusion-webui/modules/sd_models.py", line 770, in load_model with devices.autocast(), torch.no_grad(): File "/Users/[obfuscated]/stable-diffusion-webui/modules/devices.py", line 218, in autocast if has_xpu() or has_mps() or cuda_no_autocast(): File "/Users/[obfuscated]/stable-diffusion-webui/modules/devices.py", line 28, in cuda_no_autocast device_id = get_cuda_device_id() File "/Users/[obfuscated]/stable-diffusion-webui/modules/devices.py", line 40, in get_cuda_device_id ) or torch.cuda.current_device() File "/Users/[obfuscated]/stable-diffusion-webui/venv/lib/python3.10/site-packages/torch/cuda/__init__.py", line 769, in current_device _lazy_init() File "/Users/[obfuscated]/stable-diffusion-webui/venv/lib/python3.10/site-packages/torch/cuda/__init__.py", line 289, in _lazy_init raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled Stable diffusion model failed to load Exception in thread Thread-2 (load_model): Traceback (most recent call last): File "/opt/homebrew/Cellar/python@3.10/3.10.14/Frameworks/Python.framework/Versions/3.10/lib/python3.10/threading.py", line 1016, in _bootstrap_inner self.run() File "/opt/homebrew/Cellar/python@3.10/3.10.14/Frameworks/Python.framework/Versions/3.10/lib/python3.10/threading.py", line 953, in run self._target(*self._args, **self._kwargs) File "/Users/[obfuscated]/stable-diffusion-webui/modules/initialize.py", line 154, in load_model devices.first_time_calculation() File "/Users/[obfuscated]/stable-diffusion-webui/modules/devices.py", line 267, in first_time_calculation linear(x) File "/Users/[obfuscated]/stable-diffusion-webui/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/Users/[obfuscated]/stable-diffusion-webui/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/Users/[obfuscated]/stable-diffusion-webui/extensions-builtin/Lora/networks.py", line 503, in network_Linear_forward return originals.Linear_forward(self, input) File "/Users/[obfuscated]/stable-diffusion-webui/venv/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forward return F.linear(input, self.weight, self.bias) RuntimeError: "addmm_impl_cpu_" not implemented for 'Half' ``` ### Additional information MacBook Pro (16-inch, 2021) with Apple M1 Pro, 16GB on macOS Monterey 12.1
open
2024-04-26T20:02:57Z
2024-05-06T12:48:44Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15637
[ "bug-report" ]
ghost
2
wyfo/apischema
graphql
325
Please can you push the 0.17.2 release to PyPI?
The version bump commit is there, but no git tag or release on PyPI...
closed
2022-01-14T20:52:09Z
2022-01-15T19:57:58Z
https://github.com/wyfo/apischema/issues/325
[]
thomascobb
1
Anjok07/ultimatevocalremovergui
pytorch
1,005
Is there any previous version that works on Mojave?
Cant upgrade OS due to program constraints, is there any previous version that has worked on Mojave? or has anyone figured out a workaround? Thank you
open
2023-12-05T06:44:12Z
2023-12-05T06:44:12Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1005
[]
flugenhiemen
0
amdegroot/ssd.pytorch
computer-vision
526
TypeError: not enough arguments for format string
Hi. I have the type error when run the training code(as shown as below). For your reference, I run custom object detection with 11 classes, which I already edited in config file (num_classes =12) and modify voc0712 file(VOC_CLASSES list as my custom class label),and some file path in VOCDetection class. Can you give me some advice if you know the reason behind this error and its solution? Thank you very much. Loading base network... Initializing weights... Loading the dataset... 13500 /home/koh/ssd.pytorch/ssd.py:34: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead. self.priors = Variable(self.priorbox.forward(), volatile=True) <ipython-input-4-c184efe0fbfe>:13: UserWarning: nn.init.xavier_uniform is now deprecated in favor of nn.init.xavier_uniform_. init.xavier_uniform(param) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-5-2da0ffaf5447> in <module> ----> 1 train() <ipython-input-3-8b7eddbf10e3> in train() 74 75 # load train data ---> 76 images, targets = next(batch_iterator) 77 78 images = Variable(images.cuda()) ~/anaconda3/envs/mydl/lib/python3.8/site-packages/torch/utils/data/dataloader.py in __next__(self) 361 362 def __next__(self): --> 363 data = self._next_data() 364 self._num_yielded += 1 365 if self._dataset_kind == _DatasetKind.Iterable and \ ~/anaconda3/envs/mydl/lib/python3.8/site-packages/torch/utils/data/dataloader.py in _next_data(self) 987 else: 988 del self._task_info[idx] --> 989 return self._process_data(data) 990 991 def _try_put_index(self): ~/anaconda3/envs/mydl/lib/python3.8/site-packages/torch/utils/data/dataloader.py in _process_data(self, data) 1012 self._try_put_index() 1013 if isinstance(data, ExceptionWrapper): -> 1014 data.reraise() 1015 return data 1016 ~/anaconda3/envs/mydl/lib/python3.8/site-packages/torch/_utils.py in reraise(self) 393 # (https://bugs.python.org/issue2651), so we work around it. 394 msg = KeyErrorMessage(msg) --> 395 raise self.exc_type(msg) TypeError: Caught TypeError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/koh/anaconda3/envs/mydl/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 185, in _worker_loop data = fetcher.fetch(index) File "/home/koh/anaconda3/envs/mydl/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/koh/anaconda3/envs/mydl/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/koh/ssd.pytorch/data/voc0712.py", line 129, in __getitem__ im, gt, h, w = self.pull_item(index) File "/home/koh/ssd.pytorch/data/voc0712.py", line 139, in pull_item target = ET.parse(self._annopath % img_id).getroot() TypeError: not enough arguments for format string
closed
2020-11-09T12:43:42Z
2020-11-10T07:39:30Z
https://github.com/amdegroot/ssd.pytorch/issues/526
[]
junkoh88
0
521xueweihan/HelloGitHub
python
1,906
项目推荐 | city-roads 在线生成手绘风格的城市地图
## 项目推荐 - 项目地址:https://github.com/anvaka/city-roads - 类别:JS - 项目后续更新计划:不清楚 - 项目描述:city-roads 通过 [overpass API](http://overpass-turbo.eu/) 调用 [OpenStreetMap](https://www.openstreetmap.org/) 数据生成手绘风格的城市地图 - 推荐理由:生成的手绘风格地图很适合当壁纸 - 截图:![image](https://user-images.githubusercontent.com/38283893/134846944-828a302a-d563-4d42-8b84-c42463682138.png) ![image](https://user-images.githubusercontent.com/38283893/134847247-5a1f519e-e11a-4d47-9006-033862dace8d.png) ![image](https://user-images.githubusercontent.com/38283893/134847479-b66eade5-c1b7-45ad-b828-d6caf868ebc5.png)
closed
2021-09-27T04:51:30Z
2021-10-28T02:05:53Z
https://github.com/521xueweihan/HelloGitHub/issues/1906
[ "已发布", "JavaScript 项目" ]
SekiBetu
0
ultralytics/ultralytics
deep-learning
18,766
How to determine which way the dataset rotation box is defined?
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question How to determine which way the dataset rotation box is defined? Definition of rotated box Due to the difference in the definition range of theta, the following three definitions of the rotated box gradually emerge in rotated object detection: {math}D_{oc^{\prime}}: OpenCV Definition, angle∈(0, 90°], theta∈(0, pi / 2], The angle between the width of the rectangle and the positive semi-axis of x is a positive acute angle. This definition comes from the cv2.minAreaRect function in OpenCV, which returns an angle in the range (0, 90°]. {math}D_{le135}: Long Edge Definition (135°),angle∈[-45°, 135°), theta∈[-pi / 4, 3 * pi / 4) and width > height. {math}D_{le90}: Long Edge Definition (90°),angle∈[-90°, 90°), theta∈[-pi / 2, pi / 2) and width > height. ### Additional _No response_
open
2025-01-20T03:35:06Z
2025-01-21T04:37:37Z
https://github.com/ultralytics/ultralytics/issues/18766
[ "question", "OBB" ]
yangershuai627
7
albumentations-team/albumentations
deep-learning
2,302
[SpeedUp] ThinPlateSpline
Benchmark shows that `kornia` has faster `ThinPlateSpline` implementation => need to learn from it and fix.
closed
2025-01-24T16:02:46Z
2025-01-25T23:37:46Z
https://github.com/albumentations-team/albumentations/issues/2302
[ "Speed Improvements" ]
ternaus
1
huggingface/datasets
nlp
7,092
load_dataset with multiple jsonlines files interprets datastructure too early
### Describe the bug likely related to #6460 using `datasets.load_dataset("json", data_dir= ... )` with multiple `.jsonl` files will error if one of the files (maybe the first file?) contains a full column of empty data. ### Steps to reproduce the bug real world example: data is available in this [PR-branch](https://github.com/Vipitis/shadertoys-dataset/pull/3/commits/cb1e7157814f74acb09d5dc2f1be3c0a868a9933). Because my files are chunked by months, some months contain all empty data for some columns, just by chance - these are `[]`. Otherwise it's all the same structure. ```python from datasets import load_dataset ds = load_dataset("json", data_dir="./data/annotated/api") ``` you get a long error trace, where in the middle it says something like ```cs TypeError: Couldn't cast array of type struct<id: int64, src: string, ctype: string, channel: int64, sampler: struct<filter: string, wrap: string, vflip: string, srgb: string, internal: string>, published: int64> to null ``` toy example: (on request) ### Expected behavior Some suggestions 1. give a better error message to the user 2. consider all files before deciding on a data structure for a given column. 3. if you encounter a new structure, and can't cast that to null, replace the null-hypothesis. (maybe something for pyarrow) as a workaround I have lazily implemented the following (essentially step 2) ```python import os import jsonlines import datasets api_files = os.listdir("./data/annotated/api") api_files = [f"./data/annotated/api/{f}" for f in api_files] api_file_contents = [] for f in api_files: with jsonlines.open(f) as reader: for obj in reader: api_file_contents.append(obj) ds = datasets.Dataset.from_list(api_file_contents) ``` this works fine for my usecase, but is potentially slower and less memory efficient for really large datasets (where this is unlikely to happen in the first place). ### Environment info - `datasets` version: 2.20.0 - Platform: Windows-10-10.0.19041-SP0 - Python version: 3.9.4 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2023.10.0
open
2024-08-06T17:42:55Z
2024-08-08T16:35:01Z
https://github.com/huggingface/datasets/issues/7092
[]
Vipitis
5
joeyespo/grip
flask
137
Anchor Tags not properly being rendered.
`#### <a name="setup_PHPStorm"></a>` `#### 7. Setup PHPStorm` becomes `<h4> <a id="user-content--6" class="anchor" href="#-6" aria-hidden="true"><span class="octicon octicon-link"></span></a><a name="user-content-setup_PHPStorm"></a> </h4>` `<h4> <a id="user-content-7-setup-phpstorm" class="anchor" href="#7-setup-phpstorm" aria-hidden="true"><span class="octicon octicon-link"></span></a>7. Setup PHPStorm</h4>` thereby disallowing clickable menus at the top to jump to #setup_PHPStorm.
closed
2015-07-10T23:29:39Z
2019-04-19T19:29:36Z
https://github.com/joeyespo/grip/issues/137
[ "not-a-bug" ]
dreamingbinary
14
ContextLab/hypertools
data-visualization
119
return PCA factor loadings
perhaps using a sklearn-style API?
closed
2017-05-24T17:06:44Z
2017-10-22T01:17:13Z
https://github.com/ContextLab/hypertools/issues/119
[]
jeremymanning
1
deepinsight/insightface
pytorch
2,103
Question about creating Arcface using tensorflow2.x
Hi I'm trying to create a Arcface code using Tensorflow2.x I have a problem in custom layer and the whole ArcFace Model Please help me if you can This is my implementation for arcface layer based on the algorithm from your article ``` class MyArcFaceLayer(tf.keras.layers.Layer): """ArcMarginPenaltyLogists""" def __init__(self, num_classes, kernel_regularizer, margin=0.5, logist_scale=64., **kwargs): super(MyArcFaceLayer, self).__init__(**kwargs) self.num_classes = num_classes self.margin = margin self.logist_scale = logist_scale self.kernel_regularizer = kernel_regularizer def build(self, input_shape): self.w = self.add_weight(name="arcface_weights", initializer='glorot_uniform', shape=[512, self.num_classes], trainable=True, regularizer=self.kernel_regularizer) self.pi = tf.constant(pi) def call(self, embds, labels): normed_embds = tf.nn.l2_normalize(embds, axis=1, name='normed_embd') normed_w = tf.nn.l2_normalize(self.w, axis=0, name='normed_weights') fc7 = tf.matmul(normed_embds, normed_w, name='fc7') theta = tf.math.acos(fc7) marginal_target_logit = tf.math.maximum(tf.math.cos(theta + self.margin), tf.math.cos(self.pi - self.margin)) original_target_logit = tf.math.cos(theta) print("original_target_logit = {}".format(original_target_logit.shape)) fc7 = fc7 + labels * (marginal_target_logit - original_target_logit) fc7 = fc7 * self.logist_scale return fc7 ``` Do you see a difference or a problem in that? I found some implementation from tensorflow1 that you suggested in your ReadMe but they are different from your algorithm Here is the implementation from https://github.com/auroua/InsightFace_TF/blob/master/losses/face_losses.py ``` def arcface_loss(embedding, labels, out_num, w_init=None, s=64., m=0.5): ''' :param embedding: the input embedding vectors :param labels: the input labels, the shape should be eg: (batch_size, 1) :param s: scalar value default is 64 :param out_num: output class num :param m: the margin value, default is 0.5 :return: the final cacualted output, this output is send into the tf.nn.softmax directly ''' cos_m = math.cos(m) sin_m = math.sin(m) mm = sin_m * m # issue 1 threshold = math.cos(math.pi - m) with tf.variable_scope('arcface_loss'): # inputs and weights norm embedding_norm = tf.norm(embedding, axis=1, keep_dims=True) embedding = tf.div(embedding, embedding_norm, name='norm_embedding') weights = tf.get_variable(name='embedding_weights', shape=(embedding.get_shape().as_list()[-1], out_num), initializer=w_init, dtype=tf.float32) weights_norm = tf.norm(weights, axis=0, keep_dims=True) weights = tf.div(weights, weights_norm, name='norm_weights') # cos(theta+m) cos_t = tf.matmul(embedding, weights, name='cos_t') cos_t2 = tf.square(cos_t, name='cos_2') sin_t2 = tf.subtract(1., cos_t2, name='sin_2') sin_t = tf.sqrt(sin_t2, name='sin_t') cos_mt = s * tf.subtract(tf.multiply(cos_t, cos_m), tf.multiply(sin_t, sin_m), name='cos_mt') # this condition controls the theta+m should in range [0, pi] # 0<=theta+m<=pi # -m<=theta<=pi-m cond_v = cos_t - threshold cond = tf.cast(tf.nn.relu(cond_v, name='if_else'), dtype=tf.bool) keep_val = s*(cos_t - mm) cos_mt_temp = tf.where(cond, cos_mt, keep_val) mask = tf.one_hot(labels, depth=out_num, name='one_hot_mask') # mask = tf.squeeze(mask, 1) inv_mask = tf.subtract(1., mask, name='inverse_mask') s_cos_t = tf.multiply(s, cos_t, name='scalar_cos_t') output = tf.add(tf.multiply(s_cos_t, inv_mask), tf.multiply(cos_mt_temp, mask), name='arcface_loss_output') return output ``` This is my implementation for my whole ArcFace Model ``` def create_face_verification_model_v2(input_shape=(112, 112), num_class=8732, weight_decay=0.0001): rgb_input_shape = input_shape + (3, ) input_layer = Input(rgb_input_shape) global_initializer = 'glorot_uniform' global_regularizer = l2(weight_decay) global_bias = False backbone = tf.keras.applications.ResNet101V2(input_shape=rgb_input_shape, weights=None, include_top=False) backbone_output = backbone(input_layer) x = BatchNormalization(gamma_regularizer=global_regularizer, beta_regularizer=global_regularizer)(backbone_output) x = Dropout(0.5)(x) # x = GlobalAveragePooling2D()(x) x = Flatten()(x) x = Dense(512, kernel_initializer=global_initializer, kernel_regularizer=global_regularizer, bias_regularizer=global_regularizer, use_bias=True)(x) x = BatchNormalization(gamma_regularizer=global_regularizer, beta_regularizer=global_regularizer)(x) embed_model = tf.keras.models.Model(input_layer, x) embed_model.summary() # NESSESERY? # x = BatchNormalization()(x) # OPTION 1 (ARCFACE) label_inputs = Input((num_class, )) x, original_target_logit = ArcFaceLayer(num_class, kernel_regularizer=global_regularizer)(x, label_inputs) arcface_model = tf.keras.models.Model([input_layer, label_inputs], [x, original_target_logit]) # OPTION 2 (SOFTMAX) # x = Dense(num_class, kernel_initializer=global_initializer, kernel_regularizer=global_regularizer, bias_regularizer=global_regularizer, use_bias=True)(x) # arcface_model = tf.keras.models.Model([input_layer, label_inputs], [x, x]) arcface_model.summary() for var in arcface_model.trainable_variables: print(var.name) return embed_model, arcface_model ``` When in your article you said that you trained your model with weight_decay=0.0005, which layers did you meant? Thank you
open
2022-09-14T11:03:27Z
2022-09-14T11:05:30Z
https://github.com/deepinsight/insightface/issues/2103
[]
RezaAkhoondzade
1
MycroftAI/mycroft-core
nlp
2,883
Tools for debugging intent parsing issues in mycroft
There are currently a number of issues open against Adapt that reference mycroft-core concepts (skills, vocab files, etc). It's extremely difficult to diagnose (or even reproduce) these issues outside of the context of a fully spun-up mycroft instance, including all skills installed, all vocab registered, reload/restart state, and interaction with padatious. In order to better help users of Adapt (and mycroft!), we need to build some better logging (and potentially tooling). As a first pass, there should be an intent-parsing debug mode that logs the following: All tagged entities from the utterance All context state All possible parse results All valid parse results (and the intents they matched to) All potential intents (in order that they would be generated from IntentDeterminationEngines) Which intent was selected (if any) and its source parser (Adapt vs Padatious). A longer term goal might be build a state-dump tool that can be shared for easier debugging across developers. There are potentially some data privacy concerns with this tool, and I don't immediately want to unpack that can of worms. Assuming there's no objections to the existence of this tool, there's a few Adapt issues that I'll mark as blocked by this.
closed
2021-04-17T19:29:23Z
2024-09-08T08:29:21Z
https://github.com/MycroftAI/mycroft-core/issues/2883
[ "enhancement" ]
clusterfudge
9
milesmcc/shynet
django
242
Automatically update geoip database
Currently, the geoip database is only updated when there is a new release, but outdated geoip data will lead to some mistakes in identifying countries, especially when there is no new release for a long time. Maybe we can provide an environment variable to use the user's maxmind `license_key` to automatically update the geoip library on a regular basis? For users who do not care about the accuracy of the country, they can use the database in the docker by setting the environment variable to empty string. If this is difficult to implement, you can also schedule a cronjob on the host which use `docker exec` to update it. This is what I do now. This requires additionally installing `curl` in the container.
open
2022-11-07T13:07:52Z
2022-11-07T16:51:29Z
https://github.com/milesmcc/shynet/issues/242
[]
cmj2002
2
Skyvern-AI/skyvern
automation
1,921
Create option for Azure GPT4-Turbo - Error creating workflow run from prompt
I got the same error after fix #1854 #1846 ![Image](https://github.com/user-attachments/assets/1c181399-a599-4797-b7c5-3773124d29c4)
closed
2025-03-11T17:20:52Z
2025-03-12T07:27:44Z
https://github.com/Skyvern-AI/skyvern/issues/1921
[]
devtony10
4
dask/dask
numpy
11,534
`divisions` for dataframe is ignored.
**Describe the issue**: The following snippet tries to partition the dataframe according to a groupby result, and assert that the division parameter is respected. Dask ignores the division parameter in `repartition` and packs all data into a single partition, as shown by the `assert` statement. The objective is to partition an arbitrary dataframe according to a specific division. **Minimal Complete Verifiable Example**: ```python import math import dask import numpy as np import pandas as pd from dask import array as da from dask import dataframe as dd from distributed import Client, LocalCluster, wait from sklearn.datasets import make_classification def get_client_workers(client: Client) -> list[str]: workers = client.scheduler_info()["workers"] return list(workers.keys()) def make_ltr( client: Client, n_samples: int, n_features: int, n_rel: int ) -> dd.DataFrame: workers = get_client_workers(client) n_samples_per_worker = math.floor(n_samples / len(workers)) last = 0 MAX_Q = 4 def make(n: int, seed: int) -> pd.DataFrame: rng = np.random.default_rng(seed) X, y = make_classification(n, n_features, n_informative=n_features, n_redundant=0, n_classes=n_rel) qid = rng.integers(size=(n,), low=0, high=MAX_Q) df = pd.DataFrame(X, columns=[f"f{i}" for i in range(n_features)]) df["qid"] = qid df["y"] = y return df futures = [] for k in range(0, n_samples, n_samples_per_worker): fut = client.submit(make, n=n_samples_per_worker, seed=last) futures.append(fut) last += n_samples_per_worker meta = make(1, 0) df = dd.from_delayed(futures, meta=meta) assert isinstance(df, dd.DataFrame) return df def distribute_groups(client: Client, df_train: dd.DataFrame) -> dd.DataFrame: df_train = df_train.sort_values(by="qid") cnt = df_train.groupby("qid").qid.count() div = da.cumsum(cnt.to_dask_array(lengths=True)).compute() div = np.concatenate([np.zeros(shape=(1,), dtype=div.dtype), div]) df_train = df_train.set_index("qid").persist() df_train = dd.repartition(df_train, divisions=list(div), force=True).persist() def pm(part): print("part.shape:", part.shape) assert part.shape[0] != 0 return part df_train = df_train.map_partitions(pm) wait([df_train]) return df_train if __name__ == "__main__": with LocalCluster() as cluster: with Client(cluster) as client: # Generate synthetic data for demo df = make_ltr(client, n_samples=int(2**18), n_features=32, n_rel=5) # Repartition the data df = distribute_groups(client, df) df.compute() ``` **Anything else we need to know?**: I tried to use the `divisions` in the `set_index` call, result is the same. **Environment**: - Dask version: dask, version 2024.9.0 - Python version: Python 3.12.0 - Operating System: Ubuntu 24.04 - Install method (conda, pip, source): conda
closed
2024-11-19T08:06:24Z
2024-11-19T22:08:36Z
https://github.com/dask/dask/issues/11534
[ "needs triage" ]
trivialfis
5
pytest-dev/pytest-cov
pytest
395
Running tests in parallel leads to "coverage.misc.CoverageException: Couldn't read data from"
I am using python 3.7.1, pytest 4.6.3 and pytest-cov 2.8.1 and my .coveragerc file contains parallel set to true. With the above configuration when i run tests in parallel It consistently fails with "coverage.misc.CoverageException: Couldn't read data from xyz data file". I have seen many people reported this issue and i tried multiple solutions but no help. No issues observed when i try to run these tests in serial manner. Please someone help me.
open
2020-03-11T05:20:50Z
2020-03-11T12:28:32Z
https://github.com/pytest-dev/pytest-cov/issues/395
[]
revunayar
1
pallets-eco/flask-sqlalchemy
flask
851
.paginate() seems to override .options(load_only('col_1', 'col_2')) and include all columns
### Expected Behavior Hi, I'm trying to use paginated results of a query and only selected a handful of columns in the table, however, it seems to always return all columns in the table, not just what I specify. ```python stuff = Table.query.filter_by(col_1='this')).options(load_only('col_1', 'col_2')).paginate(1, 10, False) ``` stuff.items this should return data with only two columns, col 1 and 2. ### Actual Behavior stuff.items is returning all columns in the table. ### Environment * Python version: 3.8.2 * Flask-SQLAlchemy version:2.4.3 * SQLAlchemy version:1.3.17
closed
2020-07-13T18:23:53Z
2020-12-05T19:58:22Z
https://github.com/pallets-eco/flask-sqlalchemy/issues/851
[]
christopherpickering
5
gevent/gevent
asyncio
1,977
Does it support python-zeep library?
As the title says does it support python-zeep library?
closed
2023-07-26T20:25:45Z
2023-07-26T21:22:56Z
https://github.com/gevent/gevent/issues/1977
[ "Type: Question" ]
AzikDeveloper
3
ydataai/ydata-profiling
jupyter
706
Is it possible to convert a script with pandas_profiling to executable using pyinstaller?
**Missing functionality** I have been writing a very simple tkinter application reading a csv and running pandas profiling. I couldn't convert my application to windows executable using pyinstaller. Is it possible for you to share .spec file which is working ? I have already tried to write mine without success. My intention is to share pandas_profiling withouth necessarily asking people to install python. The spec that I tried is below. Here I include extra packages like zmq because the error I get seemed related. But frankly I am not sure if I am on the right track. Thanks, # main spec block_cipher = None import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5) import zmq a = Analysis(['main.py'], pathex=['/venv/Lib/site-packages', 'C:\\Working\\git\\rds_ui', '/venv/Lib/site-packages/zmq'], binaries=[], datas=[], #hiddenimports=[zmq.backend,zmq.backend.cython, zmq.backend.cffi, zmq.error, zmq.sugar, zmq.utils], hookspath=[], runtime_hooks=[], excludes=[], win_no_prefer_redirects=False, win_private_assemblies=False, cipher=block_cipher, noarchive=False) pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher) a.datas += Tree('./venv/Lib/site-packages/pandas_profiling', prefix='pandas_profiling') a.datas += Tree('./venv/Lib/site-packages/pandas_profiling/report/presentation/flavours/html/templates/', '.') a.datas += Tree('./venv/Lib/site-packages/pandas_profiling/visualisation/', '.') a.datas += Tree('./venv/Lib/site-packages/zmq', '.') exe = EXE(pyz, a.scripts, a.binaries, a.zipfiles, a.datas, [], name='main', debug=False, bootloader_ignore_signals=False, strip=False, upx=True, upx_exclude=[], runtime_tmpdir=None, console=True )
open
2021-02-19T08:29:29Z
2022-12-20T14:50:42Z
https://github.com/ydataai/ydata-profiling/issues/706
[ "feature request 💬", "help wanted 🙋" ]
ahmetbaglan
4
xuebinqin/U-2-Net
computer-vision
290
Slow to load on iOS device
I tried to convert the model to a ML model using this article: https://rockyshikoku.medium.com/u2net-to-coreml-machine-learning-segmentation-on-iphone-eac0c721d67b The problem is that the model loads very slowly on a iOS device with this 176MB model (29 seconds). Using the quantize_weights with 1 bit it arrives to 5.6MB but it’s still very slow to load the model on iOS (26 seconds). If I try to use the already converted model u2netp.mlmodel it loads in less than 1 second. Is there an issue with the conversion?
open
2022-02-22T16:48:40Z
2022-05-18T10:29:23Z
https://github.com/xuebinqin/U-2-Net/issues/290
[]
DanielZanchi
1
voila-dashboards/voila
jupyter
1,422
Allow users to disable fix_notebook to check/resolve kernel validity
<!-- Welcome! Thanks for thinking of a way to improve Voilà. If this solves a problem for you, then it probably solves that problem for lots of people! So the whole community will benefit from this request. Before creating a new feature request please search the issues for relevant feature requests. --> ### Problem <!-- Provide a clear and concise description of what problem this feature will solve. For example: * I'm always frustrated when [...] because [...] * I would like it if [...] happened when I [...] because [...] --> [fix_notebook](https://github.com/voila-dashboards/voila/blob/main/voila/notebook_renderer.py#L324) can be very heavy handed for kernel resolution. If a user wanted to customize the kernel matching logic, they would have to fork voila to achieve any customization in this regard. While I agree it's good to have some guard rail in, users should be able to disable this logic in favor of handling it within their own kernel manager ### Proposed Solution <!-- Provide a clear and concise description of a way to accomplish what you want. For example: * Add an option so that when [...] [...] will happen --> Add a toggle that can disable this logic
closed
2023-11-29T21:49:57Z
2023-11-30T22:16:58Z
https://github.com/voila-dashboards/voila/issues/1422
[ "enhancement" ]
ClaytonAstrom
0
graphdeco-inria/gaussian-splatting
computer-vision
975
gaussian render is always giving two output images no matter what my input images are
what is possibly the issue? ![image](https://github.com/user-attachments/assets/e4396143-5da7-42c1-a897-e1e68b5a4afb) these same set of images someone else ran on theirs and it worked beautifully but for mine it just outputs 2 images which are distorted
open
2024-09-06T12:13:26Z
2025-01-07T08:54:16Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/975
[]
malamutes
3
huggingface/diffusers
pytorch
10,414
[<languageCode>] Translating docs to Chinese
<!-- Note: Please search to see if an issue already exists for the language you are trying to translate. --> Hi! Let's bring the documentation to all the <languageName>-speaking community 🌐. Who would want to translate? Please follow the 🤗 [TRANSLATING guide](https://github.com/huggingface/diffusers/blob/main/docs/TRANSLATING.md). Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list. Some notes: * Please translate using an informal tone (imagine you are talking with a friend about Diffusers 🤗). * Please translate in a gender-neutral way. * Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/diffusers/tree/main/docs/source). * Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml). * Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu for review. * 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63). Thank you so much for your help! 🤗
closed
2024-12-31T06:45:21Z
2024-12-31T06:49:52Z
https://github.com/huggingface/diffusers/issues/10414
[]
S20180576
0
PokemonGoF/PokemonGo-Bot
automation
5,996
API Updated to 0.59.1. Wait for PR
Dear All, PGoAPI API is now using 0.59.1 API I would advise all to wait for a new PR for the changes. IF you have, unfortunately updated and run into the bot telling you non stop to update... despite the fact that you have already updated, and you come here looking for solution, here's the solution to get you back running: Edit run.sh At Line 25, change pgoapi==1.1.6 to pgoapi==1.2.0 Edit pokecli.py At Line 69, change pgoapi==1.1.6 to pgoapi==1.2.0
closed
2017-04-05T05:47:55Z
2017-04-08T10:35:02Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/5996
[]
MerlionRock
1
numba/numba
numpy
9,706
TypingError when argument is None
## Reporting a bug - [x] I have tried using the latest released version of Numba (most recent is visible in the release notes (https://numba.readthedocs.io/en/stable/release-notes-overview.html). - [x] I have included a self contained code sample to reproduce the problem. i.e. it's possible to run as 'python bug.py'. ```python @jit def f(x, y=None): if y is not None: return np.add(x, y) else: y = x return np.add(x, y) f(np.zeros(3), None) ``` It seems y is treated as NoneType in the ELSE branch: ![image](https://github.com/user-attachments/assets/af4b7a07-029d-4dac-80df-e364c38668c0) The following code will work: ```python @jit def f(x, y=None): if y is not None: return np.add(x, y) else: # rename to _y _y = x return np.add(x, _y) f(np.zeros(3), None) # array([0., 0., 0.]) ``` version 0.60.0
closed
2024-08-16T05:27:37Z
2024-10-01T18:41:58Z
https://github.com/numba/numba/issues/9706
[ "SSA", "bug - typing" ]
auderson
2
pytest-dev/pytest-cov
pytest
533
Final case -> exit reported as uncovered branch on exhaustive match statement
Consider the following code: ``` from enum import Enum class MyEnum(Enum): A = 1 B = 2 C = 3 def print_value(x: MyEnum) -> None: match x: case MyEnum.A: print("A") case MyEnum.B: print("B") case MyEnum.C: print("C") ``` And the following unit test: ``` def test() -> None: print_value(MyEnum.A) print_value(MyEnum.B) print_value(MyEnum.C) ``` This should have 100% line coverage and 100% branch coverage, since the match statement is exhaustive. However pytest-cov reports missing branch coverage from `case MyEnum.C` to the `exit` of the function. Such a branch is impossible, so should not be counted as uncovered. pytest version = 7.1.1 pytest-cov version = 3.0.0 python version = 3.10.4
open
2022-04-25T11:31:03Z
2023-12-09T06:56:59Z
https://github.com/pytest-dev/pytest-cov/issues/533
[]
sirrus233
8
microsoft/unilm
nlp
820
Why not use the cls_token instead of average pooling in BeiT ?
As claimed in the section 2.2 of BeiT, "Moreover, we prepend a special token [S] to the input sequence.'' But at the finetuning stage, "Specifically, we use average pooling to aggregate the representations, and feed the global to a softmax classifier. " The implementation of BeiT also shows that BeiT uses average pooling to aggregate the final outputs for image classification instead of using the hidden output corresponding to the cls_token , so I have some questions ``` 1. "a specical token [S]" is indeed the "cls_token" according to the code and the paper, but it's meaningless due to the average pooling. 2. "cls_token" vs. average pooling, which is better? or just say both are ok due to the powerful transformer arch. ```
closed
2022-08-09T13:01:31Z
2022-08-13T13:04:27Z
https://github.com/microsoft/unilm/issues/820
[]
JosephChenHub
1
alirezamika/autoscraper
automation
70
ssl.SSLCertVerificationError:
I followed all instruction and run the sample program using the AutoScraper as shown below from autoscraper import AutoScraper url = 'https://stackoverflow.com/questions/2081586/web-scraping-with-python' # We can add one or multiple candidates here. # You can also put urls here to retrieve urls. wanted_list = ["What are metaclasses in Python?"] scraper = AutoScraper() result = scraper.build(url, wanted_list ) print(result) But I get the follwoing error ============ RESTART: D:/PythonCode-1/Web Scraping/AutoSraper 001.py =========== Traceback (most recent call last): File "C:\Python39\lib\site-packages\urllib3\connectionpool.py", line 699, in urlopen httplib_response = self._make_request( File "C:\Python39\lib\site-packages\urllib3\connectionpool.py", line 382, in _make_request self._validate_conn(conn) File "C:\Python39\lib\site-packages\urllib3\connectionpool.py", line 1010, in _validate_conn conn.connect() File "C:\Python39\lib\site-packages\urllib3\connection.py", line 416, in connect self.sock = ssl_wrap_socket( File "C:\Python39\lib\site-packages\urllib3\util\ssl_.py", line 449, in ssl_wrap_socket ssl_sock = _ssl_wrap_socket_impl( File "C:\Python39\lib\site-packages\urllib3\util\ssl_.py", line 493, in _ssl_wrap_socket_impl return ssl_context.wrap_socket(sock, server_hostname=server_hostname) File "C:\Python39\lib\ssl.py", line 500, in wrap_socket return self.sslsocket_class._create( File "C:\Python39\lib\ssl.py", line 1040, in _create self.do_handshake() File "C:\Python39\lib\ssl.py", line 1309, in do_handshake self._sslobj.do_handshake() ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: certificate has expired (_ssl.c:1129) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Python39\lib\site-packages\requests\adapters.py", line 439, in send resp = conn.urlopen( File "C:\Python39\lib\site-packages\urllib3\connectionpool.py", line 755, in urlopen retries = retries.increment( File "C:\Python39\lib\site-packages\urllib3\util\retry.py", line 574, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='stackoverflow.com', port=443): Max retries exceeded with url: /questions/2081586/web-scraping-with-python (Caused by SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: certificate has expired (_ssl.c:1129)'))) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:/PythonCode-1/Web Scraping/AutoSraper 001.py", line 11, in <module> result = scraper.build(url, wanted_list ) File "C:\Python39\lib\site-packages\autoscraper\auto_scraper.py", line 227, in build soup = self._get_soup(url=url, html=html, request_args=request_args) File "C:\Python39\lib\site-packages\autoscraper\auto_scraper.py", line 119, in _get_soup html = cls._fetch_html(url, request_args) File "C:\Python39\lib\site-packages\autoscraper\auto_scraper.py", line 105, in _fetch_html res = requests.get(url, headers=headers, **request_args) File "C:\Python39\lib\site-packages\requests\api.py", line 75, in get return request('get', url, params=params, **kwargs) File "C:\Python39\lib\site-packages\requests\api.py", line 61, in request return session.request(method=method, url=url, **kwargs) File "C:\Python39\lib\site-packages\requests\sessions.py", line 542, in request resp = self.send(prep, **send_kwargs) File "C:\Python39\lib\site-packages\requests\sessions.py", line 655, in send r = adapter.send(request, **kwargs) File "C:\Python39\lib\site-packages\requests\adapters.py", line 514, in send raise SSLError(e, request=request) requests.exceptions.SSLError: HTTPSConnectionPool(host='stackoverflow.com', port=443): Max retries exceeded with url: /questions/2081586/web-scraping-with-python (Caused by SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: certificate has expired (_ssl.c:1129)')))
closed
2021-12-29T14:18:51Z
2022-07-17T20:38:38Z
https://github.com/alirezamika/autoscraper/issues/70
[]
rosarion
1
giotto-ai/giotto-tda
scikit-learn
77
TerminatedWorkerError when calling transform on VietorisRipsPersistence
<!-- Instructions For Filing a Bug: https://github.com/giotto-learn/giotto-learn/blob/master/CONTRIBUTING.rst --> #### Description <!-- Example: Joblib Error thrown when calling fit on VietorisRipsPersistence --> When calling transform on VietorisRipsPersistence I sometimes get the following error: ``` TerminatedWorkerError: A worker process managed by the executor was unexpectedly terminated. This could be caused by a segmentation fault while calling the function or by an excessive memory usage causing the Operating System to kill the worker. The exit codes of the workers are {SIGABRT(-6)} ``` #### Steps/Code to Reproduce <!-- If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com --> The error is surprisingly hard to reproduce as it appears to depend on how much RAM is available at runtime. The best I can provide at this stage is the following snippet: ```python homologyDimensions = (0, 1) persistenceDiagram = hl.VietorisRipsPersistence(metric='euclidean', max_edge_length=10, homology_dimensions=homologyDimensions, n_jobs=-1) persistenceDiagram.fit(doc_matrix) Diagrams = persistenceDiagram.transform(doc_matrix[:n_docs]) ``` where `doc_matrix` has shape `(1902, 778, 300}` and takes 1775707200 bytes in memory. #### Expected Results <!-- Example: No error is thrown. Please paste or describe the expected results.--> I would expect that when `n_jobs=-1`, `VietorisRipsPersistence` would simply try to access the available cores / memory and not throw an error. #### Actual Results <!-- Please paste or specifically describe the actual output or traceback. --> ``` --------------------------------------------------------------------------- TerminatedWorkerError Traceback (most recent call last) <ipython-input-40-af8c35fe8d70> in <module> 7 persistenceDiagram.fit(doc_matrix[:n_docs]) 8 ----> 9 Diagrams = persistenceDiagram.transform(doc_matrix[:n_docs]) ~/git/gw_nlp/env/lib/python3.7/site-packages/giotto/homology/point_clouds.py in transform(self, X, y) 194 195 Xt = Parallel(n_jobs=self.n_jobs)(delayed(self._ripser_diagram)(X[i]) --> 196 for i in range(n_samples)) 197 198 max_n_points = {dim: max(1, np.max([Xt[i][dim].shape[0] ~/git/gw_nlp/env/lib/python3.7/site-packages/joblib/parallel.py in __call__(self, iterable) 1014 1015 with self._backend.retrieval_context(): -> 1016 self.retrieve() 1017 # Make sure that we get a last message telling us we are done 1018 elapsed_time = time.time() - self._start_time ~/git/gw_nlp/env/lib/python3.7/site-packages/joblib/parallel.py in retrieve(self) 906 try: 907 if getattr(self._backend, 'supports_timeout', False): --> 908 self._output.extend(job.get(timeout=self.timeout)) 909 else: 910 self._output.extend(job.get()) ~/git/gw_nlp/env/lib/python3.7/site-packages/joblib/_parallel_backends.py in wrap_future_result(future, timeout) 552 AsyncResults.get from multiprocessing.""" 553 try: --> 554 return future.result(timeout=timeout) 555 except LokyTimeoutError: 556 raise TimeoutError() /usr/local/anaconda3/lib/python3.7/concurrent/futures/_base.py in result(self, timeout) 430 raise CancelledError() 431 elif self._state == FINISHED: --> 432 return self.__get_result() 433 else: 434 raise TimeoutError() /usr/local/anaconda3/lib/python3.7/concurrent/futures/_base.py in __get_result(self) 382 def __get_result(self): 383 if self._exception: --> 384 raise self._exception 385 else: 386 return self._result TerminatedWorkerError: A worker process managed by the executor was unexpectedly terminated. This could be caused by a segmentation fault while calling the function or by an excessive memory usage causing the Operating System to kill the worker. The exit codes of the workers are {SIGABRT(-6) ``` #### Versions <!-- Please run the following snippet and paste the output below. import platform; print(platform.platform()) import sys; print("Python", sys.version) import numpy; print("NumPy", numpy.__version__) import scipy; print("SciPy", scipy.__version__) import joblib; print("joblib", joblib.__version__) import sklearn; print("Scikit-Learn", sklearn.__version__) import giotto; print("giotto-Learn", giotto.__version__) --> Darwin-19.0.0-x86_64-i386-64bit Python 3.7.3 (default, Mar 27 2019, 16:54:48) [Clang 4.0.1 (tags/RELEASE_401/final)] NumPy 1.17.3 SciPy 1.3.1 joblib 0.14.0 Scikit-Learn 0.21.3 giotto-Learn 0.1.1 <!-- Thanks for contributing! -->
closed
2019-11-01T10:40:51Z
2020-08-23T15:40:16Z
https://github.com/giotto-ai/giotto-tda/issues/77
[]
lewtun
0
kizniche/Mycodo
automation
788
Input I2C address not selectable when list of addresses specified in Input Module
v8.5.8 When a list of I2C addresses are specified in the Input Module, only the first is available. May be related to the option 'i2c_address_editable': False See: https://github.com/kizniche/Mycodo/blob/868a836e96ff793f7e46058c785fe9d9f47fd3dd/mycodo/inputs/ads1x15.py#L61 Ref: https://kylegabriel.com/forum/general-discussion/ads1x15-ads1115-module-cant-set-address-other-than-0x48-in-mycodo-but-hardware-supports-multiple-addresses
closed
2020-07-15T15:27:52Z
2020-07-23T01:36:26Z
https://github.com/kizniche/Mycodo/issues/788
[ "bug" ]
kizniche
0
onnx/onnx
pytorch
6,484
Objective of test: "Verify ONNX with ONNX Runtime PyPI package"?
# Ask a Question ### Question What exactly do we try to test here? When should/could we upgrade onnxruntime and the other two variables? Maybe we can the rule/idea in a comment? Could we use python 3.12 now? Comparing the different os, I would assume at lease_linux_aarch64, it should also be onnxruntime==1.17.3 ? ``` release_linux_aarch64.yml - name: Verify ONNX with ONNX Runtime PyPI package if: matrix.python-version != 'cp312-cp312' run: | docker run --rm -v ${{ github.workspace }}:/ws:rw --workdir=/ws \ ${{ env.img }} \ bash -exc '\ source .env/bin/activate && \ python -m pip uninstall -y protobuf numpy && python -m pip install -q -r requirements-release.txt && \ python -m pip install -q onnxruntime==1.16.3 && \ export ORT_MAX_IR_SUPPORTED_VERSION=9 \ export ORT_MAX_ML_OPSET_SUPPORTED_VERSION=3 \ export ORT_MAX_ONNX_OPSET_SUPPORTED_VERSION=20 \ pytest && \ deactivate' release_linux_x86_64.ym - name: Verify ONNX with ONNX Runtime PyPI package if: matrix.python-version != '3.12' run: | python -m pip uninstall -y protobuf numpy && python -m pip install -q -r requirements-release.txt python -m pip install -q onnxruntime==1.17.3 export ORT_MAX_IR_SUPPORTED_VERSION=9 export ORT_MAX_ML_OPSET_SUPPORTED_VERSION=3 export ORT_MAX_ONNX_OPSET_SUPPORTED_VERSION=20 pytest release_win.yml - name: Verify ONNX with ONNX Runtime PyPI package if: matrix.python-version != '3.12' run: | cd onnx python -m pip uninstall -y protobuf numpy python -m pip install -q -r requirements-release.txt python -m pip install -q onnxruntime==1.17.3 $Env:ORT_MAX_IR_SUPPORTED_VERSION=9 $Env:ORT_MAX_ML_OPSET_SUPPORTED_VERSION=3 $Env:ORT_MAX_ONNX_OPSET_SUPPORTED_VERSION=20 pytest release_mac.yml - name: Verify ONNX with ONNX Runtime PyPI package if: matrix.python-version != '3.12' run: | arch -${{ matrix.target-architecture }} python -m pip uninstall -y protobuf numpy arch -${{ matrix.target-architecture }} python -m pip install -q -r requirements-release.txt arch -${{ matrix.target-architecture }} python -m pip install -q onnxruntime==1.17.3 export ORT_MAX_IR_SUPPORTED_VERSION=9 export ORT_MAX_ML_OPSET_SUPPORTED_VERSION=3 export ORT_MAX_ONNX_OPSET_SUPPORTED_VERSION=20 arch -${{ matrix.target-architecture }} pytest ```
closed
2024-10-22T19:56:10Z
2024-11-21T20:01:54Z
https://github.com/onnx/onnx/issues/6484
[ "question" ]
andife
2
PaddlePaddle/PaddleHub
nlp
1,377
hub serving 显存泄漏
欢迎您反馈PaddleHub使用问题,非常感谢您对PaddleHub的贡献! 在留下您的问题时,辛苦您同步提供如下信息: - 版本、环境信息 - 构建方式:使用如下的方式构建镜像,启动,一台gpu部署若干docker, - 高峰性能gpu显存打满,且不释放,有点像这个 如果有11G,开两个,每个占5G,但是都想要6G,形成竞争,此时每台分5.5G,陷入僵局,然后都开始等待分配显存,不处理请求,没有日志,也不会挂掉,没任何提示。 - 客户端现象, 客户端请求超时 ![image](https://user-images.githubusercontent.com/12672103/115534263-3159e300-a2ca-11eb-8cb7-d405d8bb99b0.png) ``` FROM registry.baidubce.com/paddlepaddle/paddle:2.0.0-gpu-cuda10.1-cudnn7 # PaddleOCR base on Python3.7 # RUN mkdir /PaddleOCR ADD ./PaddleOCR /PaddleOCR RUN pip3.7 install --upgrade pip -i https://mirror.baidu.com/pypi/simple RUN pip3.7 install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple WORKDIR /PaddleOCR RUN pip3.7 install -r requirements.txt -i https://mirror.baidu.com/pypi/simple EXPOSE 8868 # CMD ["/bin/bash","-c","hub install deploy/hubserving/ocr_system/ && hub serving start -m ocr_system"] CMD ["/bin/bash","-c","hub install deploy/hubserving/ocr_system/ && hub serving start -c /PaddleOCR/deploy/hubserving/ocr_system/config.json"] ``` ``` λ 203f70ee6fe0 /PaddleOCR cat /PaddleOCR/deploy/hubserving/ocr_system/config.json { "modules_info": { "ocr_system": { "init_args": { "version": "1.0.0", "use_gpu": true }, "predict_args": { } } }, "port": 8868, "use_multiprocess": false, "workers": 10 } ```
open
2021-04-21T09:54:54Z
2021-04-30T09:56:00Z
https://github.com/PaddlePaddle/PaddleHub/issues/1377
[ "serving" ]
xealml
1
wagtail/wagtail
django
12,658
Default URL param value for Gravatar URL have been deprecated (`mm` -> `mp`)
### Issue Summary We currently pass in `mm` to the `d` (default) param, this is used to determine what avatar will show if there's no matching avatar. However, the latest documentation advises that this should be `mp` (mystery person) instead. https://github.com/wagtail/wagtail/blob/c2676af857a41440e05e03038d85a540dcca3ce2/wagtail/users/utils.py#L28-L29 https://github.com/wagtail/wagtail/blob/c2676af857a41440e05e03038d85a540dcca3ce2/wagtail/users/utils.py#L45 https://docs.gravatar.com/api/avatars/images/#default-image ### Describe the solution you'd like Update the param value from `mm` to `mp` and ensure any unit tests are updated. This way, if the support for this legacy value gets dropped, it will not be a breaking change for Wagtail users. ### Describe alternatives you've considered It might be nice to have a better approach to this by allowing the param to be passed into the function / overridden somehow. Best to discuss that in a different issue though - see https://github.com/wagtail/wagtail/issues/12659 ### Additional context Two PRs have attempted this (and other changes), see the feedback and the PRs for reference. - #11077 - #11800 ### Working on this - Anyone can contribute to this, be sure you understand how to reproduce the avatar scenario. - It might be good to tackle this small change before tackling the other related issues. - View our [contributing guidelines](https://docs.wagtail.org/en/latest/contributing/index.html), add a comment to the issue once you’re ready to start.
closed
2024-12-04T10:33:50Z
2024-12-06T03:46:14Z
https://github.com/wagtail/wagtail/issues/12658
[ "type:Enhancement", "good first issue", "component:User Management", "Compatibility" ]
lb-
4
MagicStack/asyncpg
asyncio
935
Cancelled query doesn't properly close transaction
<!-- Thank you for reporting an issue/feature request. If this is a feature request, please disregard this template. If this is a bug report, please answer to the questions below. It will be much easier for us to fix the issue if a test case that reproduces the problem is provided, with clear instructions on how to run it. Thank you! --> * **asyncpg version**: * **PostgreSQL version**: * **Do you use a PostgreSQL SaaS? If so, which? Can you reproduce the issue with a local PostgreSQL install?**: * **Python version**: * **Platform**: * **Do you use pgbouncer?**: * **Did you install asyncpg with pip?**: * **If you built asyncpg locally, which version of Cython did you use?**: * **Can the issue be reproduced under both asyncio and [uvloop](https://github.com/magicstack/uvloop)?**: <!-- Enter your issue details below this comment. -->
closed
2022-07-08T07:53:33Z
2022-07-08T08:35:09Z
https://github.com/MagicStack/asyncpg/issues/935
[]
arnaudsjs
0
InstaPy/InstaPy
automation
6,174
session.follow_user_followers - this function not working
closed
2021-05-07T15:01:23Z
2021-05-07T15:56:40Z
https://github.com/InstaPy/InstaPy/issues/6174
[]
saradindu-bairagi
0
tensorflow/tensor2tensor
machine-learning
1,030
Question: How can I add new tf.Variables?
### Description I wanna add new tf.Variables object in the `tensor2tensor/models/transformer.py`, and use in the ``` class Transformer()t2t_model.T@TModel: def __init__(self): self.W = tf.Variable(np.random.randn(), name='W') ... def body(self, features): ... encoder_output = self.W(encoder_output) ... ``` But I have error below: ``` # Error logs: ... tensorflow.python.framework.errors_impl.NotFoundError: Key W not found in checkpoint ... ``` How can I add new tf.Variables?
open
2018-08-30T05:45:47Z
2018-08-30T05:45:47Z
https://github.com/tensorflow/tensor2tensor/issues/1030
[]
siida36
0
horovod/horovod
tensorflow
3,933
Missing `-iface` argument in mpirun command generated by Horovod runner
**Environment:** 1. Framework: TensorFlow, PyTorch 2. Framework version: 2.12.0, 2.0.1 3. Horovod version: 0.28.0 4. MPI version: MPICH (HYDRA) 4.1.1 5. CUDA version: 11.8 6. NCCL version: 2.16.5 7. Python version: 3.11.3 8. Spark / PySpark version: N/A 9. Ray version: N/A 10. OS and version: Ubuntu 22.04 11. GCC version: 11.3.0 12. CMake version: 3.26.3 **Bug report:** **Issue Description:** The current implementation of the Horovod runner translates the command ``` horovodrun -n 3 --network-interface enp94s0 -H server2:3 ``` into an mpirun command. However, it seems that the generated mpirun command ``` mpirun -l -np 3 -ppn 3 -hosts server2 -bind-to none -map-by slot -genv NCCL_SOCKET_IFNAME=enp94s0 ``` is missing the `-iface enp94s0` argument. This omission can cause errors in setups with multiple servers. **Steps to Reproduce:** - Install MPICH and Horovod. - Run the command `horovodrun -n 3 --network-interface enp94s0 -H server2:3 echo hello`. **Error Message:** ``` [proxy:0:0@server1] HYDU_sock_connect (lib/utils/sock.c:110): unable to get host address for server1 [proxy:0:0@server1] main (proxy/pmip.c:105): unable to connect to server server2 at port 39647 (check for firewalls!) [mpiexec@server2] ui_cmd_cb (mpiexec/pmiserv_pmci.c:51): Launch proxy failed. [mpiexec@server2] HYDT_dmxu_poll_wait_for_event (lib/tools/demux/demux_poll.c:76): callback returned error status [mpiexec@server2] HYD_pmci_wait_for_completion (mpiexec/pmiserv_pmci.c:181): error waiting for event [mpiexec@server2] main (mpiexec/mpiexec.c:247): process manager error waiting for completion ``` **Expected Fix:** The mpirun command generated by the Horovod runner should include the `-iface` argument to ensure proper network interface binding and avoid the mentioned error. **References:** Possible culprit code snippet: https://github.com/horovod/horovod/blob/b93a87a6c79233d85113b8a42f5bd513d6c0de91/horovod/runner/mpi_run.py#L169-L170 **Workaround:** To work around this issue, I can manually add the `--mpi-args="-iface enp94s0"` flag to the horovodrun command. This flag allows me to pass custom arguments directly to the underlying mpirun command. I am not sure if this is the intended way to work with MPICH.
closed
2023-05-29T17:36:27Z
2023-06-26T06:46:57Z
https://github.com/horovod/horovod/issues/3933
[ "bug", "contribution welcome" ]
alumik
4
PokeAPI/pokeapi
api
272
Not compatible with DRF 3.5
In requirements.txt it calls for djangorestframework>=3.1.0, current version is 3.5.1 Error: Creating a ModelSerializer without either the 'fields' attribute or the 'exclude' attribute has been deprecated since 3.3.0, and is now disallowed. Add an explicit fields = '**all**' to the PokemonMoveSerializer serializer." Will submit pull request, with adding the fields attribute to the PokemonMoveSerializer using the fields from here; https://pokeapi.co/docsv2/#moves
closed
2016-10-25T14:56:40Z
2017-06-12T12:51:54Z
https://github.com/PokeAPI/pokeapi/issues/272
[]
dhcrain
2
jupyter-book/jupyter-book
jupyter
1,427
file open not working in Goodle Colab
### Describe the enhancement you'd like While opening data files for a Jupyter Book, f = open("filename", "r") works in Binder, it does not in Google Colab. Is there a way to fix it? ### Does this solve a specific problem? _No response_ ### What alternatives exist? _No response_ ### Additional context _No response_
open
2021-08-17T13:44:06Z
2021-08-17T13:44:08Z
https://github.com/jupyter-book/jupyter-book/issues/1427
[ "enhancement" ]
bronwojtek
1
vanna-ai/vanna
data-visualization
169
Root functions will be deprecated
In order to have a consistent experience regardless of the configuration that you choose, all the root functions will be deprecated: https://github.com/vanna-ai/vanna/blob/main/src/vanna/__init__.py The docstrings for each function should be removed. The functions themselves should not be removed -- instead, they should raise an exception with an example of how to transition old code to the new method of: ```python vn = VannaDefault(model=vanna_model_name, api_key=api_key) ``` The root functions are legacy from a time before we had multiple configuration options, which are enabled by the `VannaBase` abstract base class. The sample notebooks have already been switched. Now what remains are code samples from third parties, which is why these root functions should raise exceptions so that people can transition more easily. For now, the remaining function that will stay in the base class will be `get_api_key` for the sake of being able to run the Chinook demo.
closed
2024-01-22T00:01:48Z
2024-03-14T02:50:48Z
https://github.com/vanna-ai/vanna/issues/169
[]
zainhoda
2
gradio-app/gradio
deep-learning
9,978
gr.Sketchpad() cannot be cleared twice or more times in the event of a button click
### Describe the bug gr.Image() **can be cleared twice or mor times** in the event of a button click, the code: input_image = gr.Image() def clear_image(): return None submit_btn.click(fn=clear_image, outputs=input_image) gr.Sketchpad() **cannot be cleared twice or mor times** in the event of a button click, the code: input_sketchpad=gr.Sketchpad() def clear_sketchpad(): return None submit_btn.click(fn=clear_sketchpad, outputs=input_sketchpad) Then, i used the JS code to fix it, but it doesn't work, the code: js = """ <script> function clearCanvas(sketchpadId) { console.log('clearCanvas called with id:', sketchpadId); var canvasContainer = document.querySelector(`#${sketchpadId}`); if (canvasContainer) { var canvas = canvasContainer.querySelector('.svelte-1h72pol canvas'); if (canvas) { var ctx = canvas.getContext('2d'); ctx.clearRect(0, 0, canvas.width, canvas.height); } else { console.log('Canvas element not found'); } } else { console.log('Canvas container not found'); } } window.clearCanvas = clearCanvas; </script> """ gr.HTML(js_code) button.click(js="(sketchpad_id) => { window.clearCanvas(sketchpad_id); return []; }") And, i **find another same problem** which is input_image can be cleared twice or mor times , but input_sketchpad cannot be cleared twice or mor times when use **ClearButton**, the code: input_image = gr.Image() input_sketchpad=gr.Sketchpad() clear_btn = gr.ClearButton([*input_image, input_sketchpad]) ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr input_sketchpad=gr.Sketchpad() def clear_sketchpad(): return None submit_btn.click(fn=clear_sketchpad, outputs=input_sketchpad) ``` ### Screenshot _No response_ ### Logs _No response_ ### System Info ```shell Gradio 5.5.0 ``` ### Severity Blocking usage of gradio
closed
2024-11-18T02:01:51Z
2025-01-24T01:26:44Z
https://github.com/gradio-app/gradio/issues/9978
[ "bug", "🖼️ ImageEditor" ]
youngxz
0
clovaai/donut
nlp
323
Hi
open
2024-12-03T20:19:47Z
2024-12-03T20:19:47Z
https://github.com/clovaai/donut/issues/323
[]
Harjgrewa1
0
ading2210/poe-api
graphql
94
I have been banned for two accounts. Has Poe changed the protocol?
-
closed
2023-06-02T18:03:38Z
2023-06-02T22:52:42Z
https://github.com/ading2210/poe-api/issues/94
[ "duplicate" ]
Seikaijyu
2
huggingface/transformers
tensorflow
36,106
Requesting support in Pipeline using Florence-2 models and tasks
### Feature request Hi! Currently, microsoft/Florence-2-large-ft or related models cannot be loaded with HF pipeline("image-to-text") as its config is not recognised by AutoModelForVision2Seq. When attempting to load it, Transformers raises: “Unrecognised configuration class Florence2Config for this kind of AutoModel: AutoModelForVision2Seq.” Florence-2 also requires trust_remote_code=True to be passed to the functions. The current standard method works by loading Florence-2 with AutoModelForCausalLM and AutoProcessor, but this adds another flow if you are already using pipeline, Lora support also works well, having these in the pipeline would making it an amazing addition for its capable tasks. Thanks! Model: https://huggingface.co/microsoft/Florence-2-large ### Motivation Adding support for pipeline with these models would give it another great set of options with tasks while lowering the barrier for entry, as the pipeline is a great feature that simplifies the writing and reusability of code for people. (Like me!) Thanks again for all the amazing work. ### Your contribution I can test any proposed updates.
open
2025-02-10T02:52:47Z
2025-02-20T16:47:12Z
https://github.com/huggingface/transformers/issues/36106
[ "Feature request" ]
mediocreatmybest
8
strawberry-graphql/strawberry
asyncio
3,544
Slow performance for queries that return many items
Hello, I'm trying to improve the performance of a graphql query that looks like: ```graphql query GetSampleEidMapQuery($project: String!) { project(name: $project) { samples { assays { id externalIds meta } } } } ``` This returns a result that has around 3000 samples, and each sample has between 1 and 4 assays. So less than 10,000 objects in total. The query takes between 3 and 5 seconds and returns around 600kB of json. So it's not a small amount of data but also not exactly huge. I initially thought this might be slow SQL queries but it turns out around 85% of the query time is in strawberry processing the results. Here's the pyinstrument profiling that shows this [pyinstrument.html.zip](https://github.com/user-attachments/files/15923872/pyinstrument.html.zip) Is there anything that can be done to reduce the time that it takes for strawberry to handle results? I've tried both the `ParserCache` and `ValidationCache` as well as disabling validation entirely but unfortunately that made very little difference. Not sure if it helps but this is our graphql schema: https://github.com/populationgenomics/metamist/blob/dev/api/graphql/schema.py Thank you!
closed
2024-06-21T07:02:26Z
2025-03-20T15:56:46Z
https://github.com/strawberry-graphql/strawberry/issues/3544
[]
dancoates
7
open-mmlab/mmdetection
pytorch
12,011
how does this category information keep up to date during the interface multi-task training run?
Hello developers, I have a scene here encountered a problem, I very much hope that you can provide solutions or solutions, I through the python interface training of different detection tasks, the first task can be started smoothly, the second task will always report errors, the error is as follows: ValueError: need at least one array to concatenate. So I looked for the reasons myself, probably because of these two things: 1. classes and palette METAINFO in `\mmdet\datasets\coco.py` did not update the class and palette information in time. 2. `\mmdet\evaluation\functional\class_names.py` `coco_classes()` does not return updated class information. So I would like to ask you, how does this category information keep up to date during the interface multi-task training run? What I tried before didn't seem to work. Here's what I tried to fix `\mmdet\datasets\coco.py`, the file Objectdataset_config.yaml changes category and color palette information every time you change a different task: ``` with open('./Configs/Objectdataset_config.yaml', 'r', encoding='utf-8') as f: Object_config = yaml.safe_load(f) classes = tuple(Object_config['classes']) palette = Object_config['palette'] METAINFO = { 'classes':classes, 'palette':palette } ``` Here's what I tried to fix `\mmdet\evaluation\functional\class_names.py` `coco_classes()`: ``` def coco_classes() -> list: """Class names of COCO.""" with open('./Configs/Objectdataset_config.yaml', 'r', encoding='utf-8') as f: Object_config = yaml.safe_load(f) classes = list(Object_config['classes']) return classes ```
closed
2024-10-23T01:56:04Z
2024-10-31T07:52:58Z
https://github.com/open-mmlab/mmdetection/issues/12011
[]
1wang11lijian1
3
jina-ai/serve
fastapi
5,316
docs: jina Flow the hard way
The idea would be to create a how to / tutorials named `jina Flow the hard way` (named inspire [kubernetes the hard way](https://github.com/kelseyhightower/kubernetes-the-hard-way) ) The idea would be to show that you can start an X Executor by yourself with the CLI, start the gateway and pass the topology graph and the connection list as cli paramters and the "Flow" will live. This will gave in depth understanding to whoever want to deep dive in Jina concept. It will help user to understand how we deploy on k8s as well
closed
2022-10-26T12:31:22Z
2023-03-13T00:23:35Z
https://github.com/jina-ai/serve/issues/5316
[ "Stale" ]
samsja
5
PaddlePaddle/PaddleHub
nlp
1,669
paddlehub 预测报错C++ Traceback (most recent call last): 0 paddle::framework::SignalHandle(char const*, int)1 paddle::platform::GetCurrentTraceBackStringabi:cxx11
欢迎您反馈PaddleHub使用问题,非常感谢您对PaddleHub的贡献! 在留下您的问题时,辛苦您同步提供如下信息: - 版本、环境信息 1)PaddleHub和PaddlePaddle版本:请提供您的PaddleHub和PaddlePaddle版本号,例如PaddleHub1.4.1,PaddlePaddle1.6.2 2)系统环境:请您描述系统类型,例如Linux/Windows/MacOS/,python版本 - 复现信息:如为报错,请给出复现环境、复现步骤 ubuntu18 T4显卡 cuda10.2 cudnn 7.6 python3.6.9 python -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple 安装后显示成功 paddlehub 2.1.1 paddlenlp 2.1.1 paddlepaddle-gpu 2.1.3 使用paddlehub 进行预测 object_detector = hub.Module(name="yolov3_darknet53_coco2017") frame_start= cv2.imread('real_see.jpg') results = object_detector.object_detection(images=[frame_start],use_gpu=True) print(results) 报错信息如下: [2021-10-27 19:13:15,827] [ WARNING] - The _initialize method in HubModule will soon be deprecated, you can use the init() to handle the initialization of the object W1027 19:13:15.827836 43261 analysis_predictor.cc:1183] Deprecated. Please use CreatePredictor instead. C++ Traceback (most recent call last): 0 paddle::framework::SignalHandle(char const*, int) 1 paddle::platform::GetCurrentTraceBackStringabi:cxx11 Error Message Summary: FatalError: Segmentation fault is detected by the operating system. [TimeInfo: *** Aborted at 1635333198 (unix time) try "date -d @1635333198" if you are using GNU date ***] [SignalInfo: *** SIGSEGV (@0x0) received by PID 43261 (TID 0x7f6ab0072740) from PID 0 ***]
open
2021-10-27T11:15:56Z
2021-10-28T01:49:57Z
https://github.com/PaddlePaddle/PaddleHub/issues/1669
[ "installation" ]
xiaomujiang
1