repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
deezer/spleeter
tensorflow
775
[Discussion] How can I make sure separate running on GPU?
The separate worked, I use --verbose and it shows some info, but i'm not sure it run on GPU. how can i make sure it? ``` C:\Users\Administrator\Desktop\testSound>python -m spleeter separate -p spleeter:5stems -o output --verbose audio_example.mp3 INFO:tensorflow:Using config: {'_model_dir': 'pretrained_models\\5stems', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': gpu_options { per_process_gpu_memory_fraction: 0.7 } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\spleeter\separator.py:146: calling DatasetV2.from_generator (from tensorflow.python.data.ops.dataset_ops) with output_types is deprecated and will be removed in a future version. Instructions for updating: Use output_signature instead WARNING:tensorflow:From C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\spleeter\separator.py:146: calling DatasetV2.from_generator (from tensorflow.python.data.ops.dataset_ops) with output_shapes is deprecated and will be removed in a future version. Instructions for updating: Use output_signature instead INFO:tensorflow:Calling model_fn. INFO:tensorflow:Apply unet for vocals_spectrogram WARNING:tensorflow:From C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\layers\normalization\batch_normalization.py:532: _colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. INFO:tensorflow:Apply unet for piano_spectrogram INFO:tensorflow:Apply unet for drums_spectrogram INFO:tensorflow:Apply unet for bass_spectrogram INFO:tensorflow:Apply unet for other_spectrogram INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from pretrained_models\5stems\model INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:spleeter:File output\audio_example/piano.wav written succesfully INFO:spleeter:File output\audio_example/other.wav written succesfully INFO:spleeter:File output\audio_example/vocals.wav written succesfully INFO:spleeter:File output\audio_example/drums.wav written succesfully INFO:spleeter:File output\audio_example/bass.wav written succesfully ``` I don't think it worked on GPU, because it run 28s. I don't think this is the right speed. Am I right?
open
2022-06-24T04:23:56Z
2024-02-04T05:38:42Z
https://github.com/deezer/spleeter/issues/775
[ "question" ]
limengqilove
2
mckinsey/vizro
plotly
376
Custom actions do not work when applied through a component that gets added to a union such as `ControlType`
### Description The code below should to my understanding work, ie the dropdown value should be reflected in the Jumbotron subtitle. ```python from typing import Literal from dash import html import vizro.models as vm from vizro import Vizro from vizro.models.types import capture from dash import callback, Input, Output @capture("action") def subtitle_changer(subtitle: str): """Custom action.""" print("SUBTITLE",subtitle) return subtitle # 1. Create new custom component class Jumbotron(vm.VizroBaseModel): """New custom component `Jumbotron`.""" type: Literal["jumbotron"] = "jumbotron" title: str subtitle: str text: str def build(self): return html.Div( [ html.H2(self.title), html.H3(id = "subtitle_id_to_target",children=self.subtitle), html.P(self.text), ] ) # 2. Add new components to expected type - here the selector of the parent components vm.Page.add_type("components", Jumbotron) vm.Page.add_type("controls", vm.Dropdown) page = vm.Page( title="Custom Component", components=[ Jumbotron( id="my_jumbotron", title="Jumbotron", subtitle="This is a subtitle to summarize some content.", text="This is the main body of text of the Jumbotron.", ), vm.Card(id="my_card", text="Click on a point on the above graph."), ], controls=[vm.Dropdown( id = "my_dropdown", options = ["Subtitle 1", "Subtitle 2", "Subtitle 3"], multi = False, actions = [ vm.Action( function = subtitle_changer(), inputs = ["my_dropdown.value"], outputs = ["subtitle_id_to_target.children"], ), ] )], ) dashboard = vm.Dashboard(pages=[page]) Vizro().build(dashboard).run() ``` ### Expected behavior Expected behaviour as described above. Interestingly the custom action works when we use the `Dropdown` inside a `Filter` or `Parameter` and overwrite the pre-defined action there. Defining a dash `callback` with the relevant `Input` and `Output` also works! ### Which package? vizro ### Package version 0.1.14.dev0 ### Python version 3.9.12 ### OS Mac ### How to Reproduce See above ### Output _No response_ ### Code of Conduct - [X] I agree to follow the [Code of Conduct](https://github.com/mckinsey/vizro/blob/main/CODE_OF_CONDUCT.md).
closed
2024-03-20T09:21:50Z
2024-05-21T11:44:05Z
https://github.com/mckinsey/vizro/issues/376
[ "Bug Report :bug:" ]
maxschulz-COL
1
httpie/http-prompt
rest-api
47
Question: Storing cookies
Hi, nice app! Can http-prompt store cookies automatically from a response like this? ``` Set-Cookie: author=f0a117c7-75a4-4abe-8617-1d3d06c4d2a7; path=/; httponly Set-Cookie: author.sig=y4Kfr_MNE7RJmeL1x6vLhixHUAo; path=/; httponly ``` What I do now is copy/pasting (a bit painful): ``` Cookie:author=f0a117c7-75a4-4abe-8617-1d3d06c4d2a7;author.sig=y4Kfr_MNE7RJmeL1x6vLhixHUAo; ```
closed
2016-06-12T21:32:33Z
2016-06-12T21:32:50Z
https://github.com/httpie/http-prompt/issues/47
[]
arve0
1
iMerica/dj-rest-auth
rest-api
150
/login happened 401 error, when the HTTP Header has invalid or expired access_token. use right username & password also invaild.
When my front-end(ReactJS&HTML5) login interface logs in by calling / login, if the HTTP header of "Authentication: bear {access_token} " is invalid or expired, under normal circumstances, the user can log in again by re-entering the right user-name and password, but 401 error is always reported. I understand / login is AllowAny. How to solve this problem?
open
2020-09-24T16:23:28Z
2025-01-31T10:42:13Z
https://github.com/iMerica/dj-rest-auth/issues/150
[]
fineartit
3
pyro-ppl/numpyro
numpy
1,198
Question about sample API
Hey! I am learning a bit about PPLs in JAX and I am very curious as to why Numpyro is using and API like this: ```python mu = numpyro.sample("mu", dist.Normal(0, 5)) ``` Instead of something like: ```python mu = dist.Normal("mu", 0, 5) ``` Sorry if the question is dumb 😅
closed
2021-10-25T14:14:12Z
2021-10-29T03:46:38Z
https://github.com/pyro-ppl/numpyro/issues/1198
[ "question" ]
cgarciae
2
plotly/dash-core-components
dash
287
Plotly.js mutates data passed into Graph component
We've discovered that `plotly.js` mutates not just the `figure` (which caused the Graph resizing bug in Tabs #279) but also the `data`. Our contract with props in our components is that they are immutable, so that subsequent renders of the components will not cause side-effects. We've solved the issue of the Graph resizing by cloning the `figure.layout` array. We could do this with `data` as well, but the `data` could get very big, and cloning that on every render could get very expensive very quickly. At some point, it would be nice to make sure that `data` and other props passed to `plotly.js` are treated as immutable.
open
2018-08-28T18:49:47Z
2018-08-29T17:29:42Z
https://github.com/plotly/dash-core-components/issues/287
[ "Status: Discussion Needed" ]
valentijnnieman
1
pydata/pandas-datareader
pandas
444
Unable to install the pandas-datareader package
Hi, I have been trying to install the pandas-datareader package via the following two methods: 1. C:\>conda install -c anaconda pandas-datareader This method hung on the following message: **Fetching package metadata: ...^C** Once I tried to close the command line window the ^C was added to the line above and the window would not close. 2. C:\>pip install pandas-datareader **Downloading/unpacking pandas-datareader Cannot fetch index base URL https://pypi.python.org/simple/ Could not find any downloads that satisfy the requirement pandas-datareader Cleaning up... No distributions at all found for pandas-datareader Storing debug log for failure in C:\Users\rpatel2550\pip\pip.log** This method created an error log file, which I have pasted below: C:\Program Files (x86)\Anaconda\Scripts\pip-script.py run on 01/12/18 17:52:47 Downloading/unpacking pandas-datareader Getting page https://pypi.python.org/simple/pandas-datareader/ Could not fetch URL https://pypi.python.org/simple/pandas-datareader/: connection error: HTTPSConnectionPool(host='pypi.python.org', port=443): Max retries exceeded with url: /simple/pandas-datareader/ (Caused by <class 'socket.error'>: [Errno 10051] A socket operation was attempted to an unreachable network) Will skip URL https://pypi.python.org/simple/pandas-datareader/ when looking for download links for pandas-datareader Getting page https://pypi.python.org/simple/ Could not fetch URL https://pypi.python.org/simple/: connection error: HTTPSConnectionPool(host='pypi.python.org', port=443): Max retries exceeded with url: /simple/ (Caused by <class 'socket.error'>: [Errno 10051] A socket operation was attempted to an unreachable network) Will skip URL https://pypi.python.org/simple/ when looking for download links for pandas-datareader Cannot fetch index base URL https://pypi.python.org/simple/ URLs to search for versions for pandas-datareader: * https://pypi.python.org/simple/pandas-datareader/ Getting page https://pypi.python.org/simple/pandas-datareader/ Could not fetch URL https://pypi.python.org/simple/pandas-datareader/: connection error: HTTPSConnectionPool(host='pypi.python.org', port=443): Max retries exceeded with url: /simple/pandas-datareader/ (Caused by <class 'socket.error'>: [Errno 10051] A socket operation was attempted to an unreachable network) Will skip URL https://pypi.python.org/simple/pandas-datareader/ when looking for download links for pandas-datareader Could not find any downloads that satisfy the requirement pandas-datareader Cleaning up... Removing temporary dir c:\users\rpatel2550\appdata\local\temp\pip_build_rpatel2550... No distributions at all found for pandas-datareader Using this error message I was able to go to this website: https://pypi.python.org/simple/pandas-datareader/ The most recent file pandas-datareader-0.5.0.tar.gz is evidently available but I don't know how to install it. Please help! Thanks, R
closed
2018-01-13T17:47:48Z
2018-01-18T16:21:45Z
https://github.com/pydata/pandas-datareader/issues/444
[]
rpatel2550
8
browser-use/browser-use
python
257
Browser disregards --user-agent parameter
Playwright browser disregards the UA parameter given via extra_chromium_args. I am testing it by opening https://whatismyuseragent.com; whenever I open it using browser-use, I get Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36 I have tried changing browser.py _setup_browser() to add the parameter to args, but it is still ignored. When I try playwright cr --user-agent foobarfoo it works OK fine and I get the user agent foobarfoo.
closed
2025-01-13T19:50:11Z
2025-01-26T10:22:38Z
https://github.com/browser-use/browser-use/issues/257
[]
ranlo
2
pallets-eco/flask-wtf
flask
408
ImportError: cannot import name 'HTMLString' from 'wtforms.widgets'
WTFS was upgraded in today, 2020/04/22,zh. ![image](https://user-images.githubusercontent.com/34978943/79938098-39e8c500-848e-11ea-9364-cb5e0e4a9ca6.png) When I init env, then the importError was happended. So If you wanted to workround, just set the version of WTForms to be lower 2.3.0
closed
2020-04-22T03:45:11Z
2021-05-26T00:54:53Z
https://github.com/pallets-eco/flask-wtf/issues/408
[]
Mukvin
1
ranaroussi/yfinance
pandas
1,950
Period '2d' is invalid error when fetching 2-day data with yfinance
### Describe bug I am encountering an issue with the yfinance library when trying to fetch 2-day historical data with 1-minute intervals for the ticker symbol ES=F. The code returns an error stating that the period ‘2d’ is invalid. ### Simple code that reproduces your problem import yfinance as yf symbol = input("Enter the symbol: ") equity = yf.Ticker(symbol) try: df = equity.history(period="2d", interval="1m") if df.empty: raise ValueError("No data available for the specified period and interval.") except Exception as e: print(f"An error occurred: {e}") print("Attempting to fetch alternative data...") ### Debug log ERROR:yfinance:ES=F: Period '2d' is invalid, must be one of ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max'] An error occurred: No data available for the specified period and interval. Attempting to fetch alternative data... ### Bad data proof _No response_ ### `yfinance` version Latest ### Python version _No response_ ### Operating system _No response_
closed
2024-05-29T04:54:03Z
2024-05-29T19:56:11Z
https://github.com/ranaroussi/yfinance/issues/1950
[]
bruce1095
1
Lightning-AI/pytorch-lightning
pytorch
20,124
Why does the progress bar not show the total steps when using iterable dataset?
### Bug description The parameters to Trainer: ``` max_epochs=-1, max_steps=200000 ``` The progress bar does not show the total iters and the estimated remaining time is also nonsense. ``` Epoch 1: | | 43/? [00:26<00:00 **** ``` ### What version are you seeing the problem on? master ### How to reproduce the bug ```python The version is 2.3.3 ``` ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> ``` #- PyTorch Lightning Version (e.g., 1.5.0): #- PyTorch Version (e.g., 2.0): #- Python version (e.g., 3.9): #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): ``` </details> ### More info _No response_
closed
2024-07-24T11:26:15Z
2025-02-06T13:40:35Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20124
[ "question", "ver: 2.2.x" ]
hiyyg
3
python-gitlab/python-gitlab
api
2,978
Support User service account API
Besides group-level service accounts, which is more targeted for Gitlab.com users, GitLab 16.1 also introduced the Service account users API for self-hosted and dedicated instances: https://docs.gitlab.com/ee/api/user_service_accounts.html. Like group-level service accounts, they can only be added using the API right now. Thus, it would be great to have this feature added to python-gitlab.
open
2024-09-12T17:09:20Z
2025-01-29T11:20:19Z
https://github.com/python-gitlab/python-gitlab/issues/2978
[ "EE" ]
skycaptain
1
jwkvam/bowtie
plotly
5
add docstrings so users can know what datatype to expect from events
closed
2016-06-07T05:39:01Z
2016-12-03T22:11:01Z
https://github.com/jwkvam/bowtie/issues/5
[]
jwkvam
1
xuebinqin/U-2-Net
computer-vision
272
How to get foreground object from the output on u2net_test.py? Thanks
Hi, Thanks for sharing the great work! Is there a small example to extract foreground using this method? Thanks
closed
2021-12-03T18:42:00Z
2022-04-09T18:21:33Z
https://github.com/xuebinqin/U-2-Net/issues/272
[]
gsrujana
3
CorentinJ/Real-Time-Voice-Cloning
deep-learning
672
No voice generating
I'm using a colab notebook and for some reason I only get some noise. https://user-images.githubusercontent.com/66216869/108493161-4b654e00-72a6-11eb-9da0-cec04228c304.mp4
closed
2021-02-19T10:33:36Z
2021-02-19T11:02:30Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/672
[]
Jojo-M-C
1
lanpa/tensorboardX
numpy
70
A few questions about add_graph
Hi @lanpa , thanks for this amazing tool. I'm trying to use `add_graph` in my own project, where I met these questions: 1. How to use `add_graph` in the training iteration? Am I supposed to initialize the `SummaryWriter` outside the main training loop and call `w.add_graph` inside the loop? If so how do I get the model output? Or this feature is only possible for dummy input and being called only once? Why it's necessary to feed input to the model? It would be nice if you can provide an example with `add_graph` used in a complete project(instead of `demo_graph.py`). 2. Does it support custom CUDA layer? I tried with a custom correlation layer, and no matter what kind of data is fed into the model(random or image) the custom correlation failed for unknown reason. Thanks for your time!
closed
2018-01-24T09:51:38Z
2018-03-28T14:38:31Z
https://github.com/lanpa/tensorboardX/issues/70
[]
JiamingSuen
8
dynaconf/dynaconf
fastapi
1,235
[bug] list command must error for not found key
```bash # /venv/bin/dynaconf list -k "D" --json Key not found # echo $? 0 ``` Expected: `1` retcode --- Open for discussion: - Should retcode be `1` - Should return empty json `{}` ?
open
2025-02-07T17:40:53Z
2025-02-19T15:39:00Z
https://github.com/dynaconf/dynaconf/issues/1235
[ "bug", "good first issue" ]
rochacbruno
0
plotly/dash
data-visualization
2,592
Be compatible with Flask 2.3
dash dependency of end of support **flask** branch ```Flask>=1.0.4,<2.3.0``` since https://github.com/plotly/dash/commit/7bd5b7ebec72ffbfca85a57d0d4c19b595371a5a The 2.3.x branch is now the supported fix branch, the 2.2.x branch will become a tag marking the end of support for that branch. https://github.com/pallets/flask/releases
closed
2023-07-07T22:57:24Z
2023-10-26T21:01:54Z
https://github.com/plotly/dash/issues/2592
[]
VelizarVESSELINOV
1
home-assistant/core
asyncio
140,707
Fritz Tools Error
### The problem Error by Log shows up from time to time: Logger: homeassistant.components.fritz.coordinator Quelle: helpers/update_coordinator.py:380 Integration: AVM FRITZ!Box Tools (Dokumentation, Probleme) Erstmals aufgetreten: 01:05:58 (14 Vorkommnisse) Zuletzt protokolliert: 09:09:05 Unexpected error fetching fritz-192.168.178.1-coordinator data Traceback (most recent call last): File "/usr/src/homeassistant/homeassistant/components/fritz/coordinator.py", line 443, in _async_update_hosts_info hosts_attributes = await self.hass.async_add_executor_job( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ self.fritz_hosts.get_hosts_attributes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/usr/local/lib/python3.13/concurrent/futures/thread.py", line 59, in run result = self.fn(*self.args, **self.kwargs) File "/usr/local/lib/python3.13/site-packages/fritzconnection/lib/fritzhosts.py", line 216, in get_hosts_attributes storage = HostStorage(get_xml_root(source=url, session=self.fc.session)) ~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.13/site-packages/fritzconnection/core/utils.py", line 83, in get_xml_root return etree.fromstring(source) ~~~~~~~~~~~~~~~~^^^^^^^^ File "/usr/local/lib/python3.13/xml/etree/ElementTree.py", line 1343, in XML return parser.close() ~~~~~~~~~~~~^^ xml.etree.ElementTree.ParseError: unclosed token: line 1305, column 17 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/src/homeassistant/homeassistant/helpers/update_coordinator.py", line 380, in _async_refresh self.data = await self._async_update_data() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/components/fritz/coordinator.py", line 338, in _async_update_data await self.async_scan_devices() File "/usr/src/homeassistant/homeassistant/components/fritz/coordinator.py", line 571, in async_scan_devices hosts = await self._async_update_hosts_info() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/components/fritz/coordinator.py", line 452, in _async_update_hosts_info raise HomeAssistantError( ...<2 lines>... ) from ex homeassistant.exceptions.HomeAssistantError: Error refreshing hosts info ### What version of Home Assistant Core has the issue? newest ### What was the last working version of Home Assistant Core? newest ### What type of installation are you running? Home Assistant OS ### Integration causing the issue Fritz Tools ### Link to integration documentation on our website _No response_ ### Diagnostics information Logger: homeassistant.components.fritz.coordinator Quelle: helpers/update_coordinator.py:380 Integration: AVM FRITZ!Box Tools (Dokumentation, Probleme) Erstmals aufgetreten: 01:05:58 (14 Vorkommnisse) Zuletzt protokolliert: 09:09:05 Unexpected error fetching fritz-192.168.178.1-coordinator data Traceback (most recent call last): File "/usr/src/homeassistant/homeassistant/components/fritz/coordinator.py", line 443, in _async_update_hosts_info hosts_attributes = await self.hass.async_add_executor_job( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ self.fritz_hosts.get_hosts_attributes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/usr/local/lib/python3.13/concurrent/futures/thread.py", line 59, in run result = self.fn(*self.args, **self.kwargs) File "/usr/local/lib/python3.13/site-packages/fritzconnection/lib/fritzhosts.py", line 216, in get_hosts_attributes storage = HostStorage(get_xml_root(source=url, session=self.fc.session)) ~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.13/site-packages/fritzconnection/core/utils.py", line 83, in get_xml_root return etree.fromstring(source) ~~~~~~~~~~~~~~~~^^^^^^^^ File "/usr/local/lib/python3.13/xml/etree/ElementTree.py", line 1343, in XML return parser.close() ~~~~~~~~~~~~^^ xml.etree.ElementTree.ParseError: unclosed token: line 1305, column 17 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/src/homeassistant/homeassistant/helpers/update_coordinator.py", line 380, in _async_refresh self.data = await self._async_update_data() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/components/fritz/coordinator.py", line 338, in _async_update_data await self.async_scan_devices() File "/usr/src/homeassistant/homeassistant/components/fritz/coordinator.py", line 571, in async_scan_devices hosts = await self._async_update_hosts_info() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/components/fritz/coordinator.py", line 452, in _async_update_hosts_info raise HomeAssistantError( ...<2 lines>... ) from ex homeassistant.exceptions.HomeAssistantError: Error refreshing hosts info ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information _No response_
open
2025-03-16T09:11:41Z
2025-03-16T19:27:35Z
https://github.com/home-assistant/core/issues/140707
[ "integration: fritz" ]
steps56
2
ymcui/Chinese-LLaMA-Alpaca
nlp
817
是否有基于Llama-2的增量训练模型?
我们已发布基于Llama-2的相关模型,模型大小包括7B和13B,以及长上下文版7B-16K和13B-16K模型。 **项目地址:https://github.com/ymcui/Chinese-LLaMA-Alpaca-2** - 【新】已发布长上下文版模型,支持16K上下文长度,并可通过NTK方法扩展至24K+ - 目前已发布13B级别的模型,效果优于一代项目(本项目)的Plus/Pro-13B,部分指标超过Plus/Pro-33B,推荐使用相关模型的用户迁移到我们的二代模型上 - 目前已发布7B级别的模型,效果优于一代项目(本项目)的Plus/Pro-7B和Plus/Pro-13B,推荐使用相关模型的用户迁移到我们的二代模型上 - 目前暂无33B级别二代模型(meta还没发布),可先使用一代Plus/Pro-33B模型。
open
2023-08-09T08:54:24Z
2023-08-25T05:19:29Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/817
[]
ymcui
0
jina-ai/clip-as-service
pytorch
586
Unable to load Bert as service for uncased_L-24_H-1024_A-16
**Prerequisites** > Please fill in by replacing `[ ]` with `[x]`. * [X] Are you running the latest `bert-as-service`? * [X] Did you follow [the installation](https://github.com/hanxiao/bert-as-service#install) and [the usage](https://github.com/hanxiao/bert-as-service#usage) instructions in `README.md`? * [X] Did you check the [FAQ list in `README.md`](https://github.com/hanxiao/bert-as-service#speech_balloon-faq)? * [X] Did you perform [a cursory search on existing issues](https://github.com/hanxiao/bert-as-service/issues)? I get the below error when i load the model via API. I never get an output. Howvever this words for remain model like `uncased_L-12_H-768_A-12` or `multi_cased_L-12_H-768_A-12` I am using below command to run`bert-serving-start -model_dir=/opt/web2pyapp/applications/Advanced_Python/uncased_L-24_H-1024_A-16 -http_port 8170 -port 5571 -port_out 5572` (https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh ![image](https://user-images.githubusercontent.com/58899985/90671698-ae801480-e272-11ea-8ea7-535470352aae.png) ![image](https://user-images.githubusercontent.com/58899985/90672929-8abdce00-e274-11ea-89a5-370af6590afa.png)
open
2020-08-19T17:51:58Z
2020-08-19T18:04:47Z
https://github.com/jina-ai/clip-as-service/issues/586
[]
nishithbenhur
1
allenai/allennlp
data-science
5,717
Unclear how to use text2sql model
<!-- Please fill this template entirely and do not erase any of it. We reserve the right to close without a response bug reports which are incomplete. If you have a question rather than a bug, please ask on [Stack Overflow](https://stackoverflow.com/questions/tagged/allennlp) rather than posting an issue here. --> ## Checklist <!-- To check an item on the list replace [ ] with [x]. --> - [x] I have verified that the issue exists against the `main` branch of AllenNLP. - [x] I have read the relevant section in the [contribution guide](https://github.com/allenai/allennlp/blob/main/CONTRIBUTING.md#bug-fixes-and-new-features) on reporting bugs. - [x] I have checked the [issues list](https://github.com/allenai/allennlp/issues) for similar or identical bug reports. - [x] I have checked the [pull requests list](https://github.com/allenai/allennlp/pulls) for existing proposed fixes. - [ x] I have checked the [CHANGELOG](https://github.com/allenai/allennlp/blob/main/CHANGELOG.md) and the [commit log](https://github.com/allenai/allennlp/commits/main) to find out if the bug was already fixed in the main branch. - [x] I have included in the "Description" section below a traceback from any exceptions related to this bug. - [x] I have included in the "Related issues or possible duplicates" section beloew all related issues and possible duplicate issues (If there are none, check this box anyway). - [x] I have included in the "Environment" section below the name of the operating system and Python version that I was using when I discovered this bug. - [x] I have included in the "Environment" section below the output of `pip freeze`. - [x] I have included in the "Steps to reproduce" section below a minimally reproducible example. ## Description I am able to load the text2sql model as follows: ``` from allennlp_models import pretrained SQL_model_name = 'semparse-text-to-sql' pred_model = pretrained.load_predictor(SQL_model_name) ``` However, the model doesn't appear to allow predictions, since the `predict` method isn't implemented (as compared to other AllenNLP models where `predict` works as expected). Am I using the model incorrectly? Traceback: ``` $pred_model.predict('what is the temperature in Berlin?') AttributeError Traceback (most recent call last) ----> 1 pred.predict AttributeError: 'Predictor' object has no attribute 'predict' ``` ## Related issues or possible duplicates - None ## Environment <!-- Provide the name of operating system below (e.g. OS X, Linux) --> OS: Linux? (Colab) <!-- Provide the Python version you were using (e.g. 3.7.1) --> Python version: 3.7 <details> <summary><b>Output of <code>pip freeze</code>:</b></summary> <p> <!-- Paste the output of `pip freeze` in between the next two lines below --> ``` absl-py==1.2.0 aeppl==0.0.33 aesara==2.7.9 aiohttp==3.8.3 aiosignal==1.2.0 alabaster==0.7.12 albumentations==1.2.1 allennlp==2.10.0 allennlp-models==2.10.0 allennlp-semparse==0.0.4 altair==4.2.0 appdirs==1.4.4 arviz==0.12.1 astor==0.8.1 astropy==4.3.1 astunparse==1.6.3 async-timeout==4.0.2 asynctest==0.13.0 atari-py==0.2.9 atomicwrites==1.4.1 attrs==22.1.0 audioread==3.0.0 autograd==1.5 Babel==2.10.3 backcall==0.2.0 base58==2.1.1 beautifulsoup4==4.6.3 bleach==5.0.1 blis==0.7.8 bokeh==2.3.3 boto3==1.24.89 botocore==1.27.89 branca==0.5.0 bs4==0.0.1 CacheControl==0.12.11 cached-path==1.1.6 cached-property==1.5.2 cachetools==4.2.4 catalogue==2.0.8 certifi==2022.9.24 cffi==1.15.1 cftime==1.6.2 chardet==3.0.4 charset-normalizer==2.1.1 click==7.1.2 clikit==0.6.2 cloudpickle==1.5.0 cmake==3.22.6 cmdstanpy==1.0.7 colorcet==3.0.1 colorlover==0.3.0 commonmark==0.9.1 community==1.0.0b1 confection==0.0.2 conllu==4.4.2 cons==0.4.5 contextlib2==0.5.5 convertdate==2.4.0 crashtest==0.3.1 crcmod==1.7 cufflinks==0.17.3 cvxopt==1.3.0 cvxpy==1.2.1 cycler==0.11.0 cymem==2.0.6 Cython==0.29.32 daft==0.0.4 dask==2022.2.0 datascience==0.17.5 datasets==2.5.2 debugpy==1.0.0 decorator==4.4.2 defusedxml==0.7.1 descartes==1.1.0 dill==0.3.5.1 distributed==2022.2.0 dlib==19.24.0 dm-tree==0.1.7 docker-pycreds==0.4.0 docutils==0.17.1 dopamine-rl==1.0.5 earthengine-api==0.1.326 easydict==1.10 ecos==2.0.10 editdistance==0.5.3 en-core-web-lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.4.0/en_core_web_lg-3.4.0-py3-none-any.whl en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.4.0/en_core_web_sm-3.4.0-py3-none-any.whl entrypoints==0.4 ephem==4.1.3 et-xmlfile==1.1.0 etils==0.8.0 etuples==0.3.8 fa2==0.3.5 fairscale==0.4.6 fastai==2.7.9 fastcore==1.5.27 fastdownload==0.0.7 fastdtw==0.3.4 fastjsonschema==2.16.2 fastprogress==1.0.3 fastrlock==0.8 feather-format==0.4.1 filelock==3.7.1 firebase-admin==4.4.0 fix-yahoo-finance==0.0.22 flaky==3.7.0 Flask==1.1.4 flatbuffers==22.9.24 folium==0.12.1.post1 frozenlist==1.3.1 fsspec==2022.8.2 ftfy==6.1.1 future==0.16.0 gast==0.5.3 GDAL==2.2.2 gdown==4.4.0 gensim==3.6.0 geographiclib==1.52 geopy==1.17.0 gin-config==0.5.0 gitdb==4.0.9 GitPython==3.1.28 glob2==0.7 google==2.0.3 google-api-core==1.31.6 google-api-python-client==1.12.11 google-auth==1.35.0 google-auth-httplib2==0.0.4 google-auth-oauthlib==0.4.6 google-cloud-bigquery==1.21.0 google-cloud-bigquery-storage==1.1.2 google-cloud-core==2.3.2 google-cloud-datastore==1.8.0 google-cloud-firestore==1.7.0 google-cloud-language==1.2.0 google-cloud-storage==2.5.0 google-cloud-translate==1.5.0 google-colab @ file:///colabtools/dist/google-colab-1.0.0.tar.gz google-crc32c==1.5.0 google-pasta==0.2.0 google-resumable-media==2.4.0 googleapis-common-protos==1.56.4 googledrivedownloader==0.4 graphviz==0.10.1 greenlet==1.1.3 grpcio==1.49.1 gspread==3.4.2 gspread-dataframe==3.0.8 gym==0.25.2 gym-notices==0.0.8 h5py==3.7.0 HeapDict==1.0.1 hijri-converter==2.2.4 holidays==0.16 holoviews==1.14.9 html5lib==1.0.1 httpimport==0.5.18 httplib2==0.17.4 httplib2shim==0.0.3 httpstan==4.6.1 huggingface-hub==0.10.0 humanize==0.5.1 hyperopt==0.1.2 idna==2.10 imageio==2.9.0 imagesize==1.4.1 imbalanced-learn==0.8.1 imblearn==0.0 imgaug==0.4.0 importlib-metadata==5.0.0 importlib-resources==5.9.0 imutils==0.5.4 inflect==2.1.0 iniconfig==1.1.1 intel-openmp==2022.2.0 intervaltree==2.1.0 ipykernel==5.3.4 ipython==7.9.0 ipython-genutils==0.2.0 ipython-sql==0.3.9 ipywidgets==7.7.1 itsdangerous==1.1.0 jax==0.3.21 jaxlib @ https://storage.googleapis.com/jax-releases/cuda11/jaxlib-0.3.20+cuda11.cudnn805-cp37-cp37m-manylinux2014_x86_64.whl jieba==0.42.1 Jinja2==2.11.3 jmespath==1.0.1 joblib==1.2.0 jpeg4py==0.1.4 jsonnet==0.18.0 jsonschema==4.3.3 jupyter-client==6.1.12 jupyter-console==6.1.0 jupyter-core==4.11.1 jupyterlab-widgets==3.0.3 kaggle==1.5.12 kapre==0.3.7 keras==2.8.0 Keras-Preprocessing==1.1.2 keras-vis==0.4.1 kiwisolver==1.4.4 korean-lunar-calendar==0.3.1 langcodes==3.3.0 libclang==14.0.6 librosa==0.8.1 lightgbm==2.2.3 llvmlite==0.39.1 lmdb==1.3.0 locket==1.0.0 logical-unification==0.4.5 LunarCalendar==0.0.9 lxml==4.9.1 Markdown==3.4.1 MarkupSafe==2.0.1 marshmallow==3.18.0 matplotlib==3.2.2 matplotlib-venn==0.11.7 miniKanren==1.0.3 missingno==0.5.1 mistune==0.8.4 mizani==0.7.3 mkl==2019.0 mlxtend==0.14.0 more-itertools==8.14.0 moviepy==0.2.3.5 mpmath==1.2.1 msgpack==1.0.4 multidict==6.0.2 multipledispatch==0.6.0 multiprocess==0.70.13 multitasking==0.0.11 murmurhash==1.0.8 music21==5.5.0 natsort==5.5.0 nbconvert==5.6.1 nbformat==5.6.1 netCDF4==1.6.1 networkx==2.6.3 nibabel==3.0.2 nltk==3.7 notebook==5.3.1 numba==0.56.2 numexpr==2.8.3 numpy==1.21.6 oauth2client==4.1.3 oauthlib==3.2.1 okgrade==0.4.3 opencv-contrib-python==4.6.0.66 opencv-python==4.6.0.66 opencv-python-headless==4.6.0.66 openpyxl==3.0.10 opt-einsum==3.3.0 osqp==0.6.2.post0 packaging==21.3 palettable==3.3.0 pandas==1.3.5 pandas-datareader==0.9.0 pandas-gbq==0.13.3 pandas-profiling==1.4.1 pandocfilters==1.5.0 panel==0.12.1 param==1.12.2 parsimonious==0.10.0 parso==0.8.3 partd==1.3.0 pastel==0.2.1 pathlib==1.0.1 pathtools==0.1.2 pathy==0.6.2 patsy==0.5.2 pep517==0.13.0 pexpect==4.8.0 pickleshare==0.7.5 Pillow==7.1.2 pip-tools==6.2.0 plac==1.1.3 plotly==5.5.0 plotnine==0.8.0 pluggy==1.0.0 pooch==1.6.0 portpicker==1.3.9 prefetch-generator==1.0.1 preshed==3.0.7 prettytable==3.4.1 progressbar2==3.38.0 promise==2.3 prompt-toolkit==2.0.10 prophet==1.1.1 protobuf==3.20.0 psutil==5.4.8 psycopg2==2.9.3 ptyprocess==0.7.0 py==1.11.0 py-rouge==1.1 pyarrow==6.0.1 pyasn1==0.4.8 pyasn1-modules==0.2.8 pycocotools==2.0.5 pycparser==2.21 pyct==0.4.8 pydantic==1.8.2 pydata-google-auth==1.4.0 pydot==1.3.0 pydot-ng==2.0.0 pydotplus==2.0.2 PyDrive==1.3.1 pyemd==0.5.1 pyerfa==2.0.0.1 Pygments==2.6.1 pygobject==3.26.1 pylev==1.4.0 pymc==4.1.4 PyMeeus==0.5.11 pymongo==4.2.0 pymystem3==0.2.0 PyOpenGL==3.1.6 pyparsing==3.0.9 pyrsistent==0.18.1 pysimdjson==3.2.0 pysndfile==1.3.8 PySocks==1.7.1 pystan==3.3.0 pytest==7.1.3 python-apt==0.0.0 python-chess==0.23.11 python-dateutil==2.8.2 python-louvain==0.16 python-slugify==6.1.2 python-utils==3.3.3 pytz==2022.4 pyviz-comms==2.2.1 PyWavelets==1.3.0 PyYAML==6.0 pyzmq==23.2.1 qdldl==0.1.5.post2 qudida==0.0.4 regex==2022.6.2 requests==2.28.1 requests-oauthlib==1.3.1 resampy==0.4.2 responses==0.18.0 rich==12.1.0 rpy2==3.4.5 rsa==4.9 s3transfer==0.6.0 sacremoses==0.0.53 scikit-image==0.18.3 scikit-learn==1.0.2 scipy==1.7.3 screen-resolution-extra==0.0.0 scs==3.2.0 seaborn==0.11.2 Send2Trash==1.8.0 sentencepiece==0.1.97 sentry-sdk==1.9.10 setproctitle==1.3.2 setuptools-git==1.2 Shapely==1.8.4 shortuuid==1.0.9 six==1.15.0 sklearn-pandas==1.8.0 smart-open==5.2.1 smmap==5.0.0 snowballstemmer==2.2.0 sortedcontainers==2.4.0 soundfile==0.11.0 spacy==3.4.1 spacy-legacy==3.0.10 spacy-loggers==1.0.3 Sphinx==1.8.6 sphinxcontrib-serializinghtml==1.1.5 sphinxcontrib-websupport==1.2.4 SQLAlchemy==1.4.41 sqlparse==0.4.3 srsly==2.4.4 statsmodels==0.12.2 sympy==1.7.1 tables==3.7.0 tabulate==0.8.10 tblib==1.7.0 tenacity==8.1.0 tensorboard==2.8.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.1 tensorboardX==2.5.1 tensorflow==2.8.2+zzzcolab20220929150707 tensorflow-datasets==4.6.0 tensorflow-estimator==2.8.0 tensorflow-gcs-config==2.8.0 tensorflow-hub==0.12.0 tensorflow-io-gcs-filesystem==0.27.0 tensorflow-metadata==1.10.0 tensorflow-probability==0.16.0 termcolor==1.1.0 terminado==0.13.3 testpath==0.6.0 text-unidecode==1.3 textblob==0.15.3 thinc==8.1.3 threadpoolctl==3.1.0 tifffile==2021.11.2 tokenizers==0.12.1 toml==0.10.2 tomli==2.0.1 toolz==0.12.0 torch==1.11.0 torchaudio @ https://download.pytorch.org/whl/cu113/torchaudio-0.12.1%2Bcu113-cp37-cp37m-linux_x86_64.whl torchsummary==1.5.1 torchtext==0.13.1 torchvision==0.12.0 tornado==5.1.1 tqdm==4.64.1 traitlets==5.4.0 transformers==4.20.1 tweepy==3.10.0 typeguard==2.7.1 typer==0.4.2 typing-extensions==4.1.1 tzlocal==1.5.1 ujson==5.5.0 Unidecode==1.3.6 uritemplate==3.0.1 urllib3==1.26.12 vega-datasets==0.9.0 wandb==0.12.21 wasabi==0.10.1 wcwidth==0.2.5 webargs==8.2.0 webencodings==0.5.1 Werkzeug==1.0.1 widgetsnbextension==3.6.1 word2number==1.1 wordcloud==1.8.2.2 wrapt==1.14.1 xarray==0.20.2 xarray-einstats==0.2.2 xgboost==0.90 xkit==0.0.0 xlrd==1.1.0 xlwt==1.3.0 xxhash==3.0.0 yarl==1.8.1 yellowbrick==1.5 zict==2.2.0 zipp==3.8.1 ``` </p> </details> ## Steps to reproduce <details> <summary><b>Example source:</b></summary> <p> <!-- Add a fully runnable example in between the next two lines below that will reproduce the bug --> ``` !pip install torch !pip install allennlp !pip install allennlp-models !pip install allennlp-semparse ``` ``` from allennlp_models import pretrained SQL_model_name = 'semparse-text-to-sql' pred_model = pretrained.load_predictor(SQL_model_name) pred_model.predict('what is the temperature in Berlin?') ``` </p> </details>
closed
2022-10-07T23:19:55Z
2022-11-23T01:20:28Z
https://github.com/allenai/allennlp/issues/5717
[ "bug" ]
ianbstewart
5
google-research/bert
nlp
879
OOM error fine-tuning
When trying to finetune BERT on a classification task (`run_classifier.py`) using my own dataset, I am running into the OOM issue with the following traceback: ``` iB 2019-10-15 18:21:25.247491: I tensorflow/core/common_runtime/bfc_allocator.cc:641] 1 Chunks of size 8384512 totalling 8.00MiB 2019-10-15 18:21:25.247501: I tensorflow/core/common_runtime/bfc_allocator.cc:641] 262 Chunks of size 16777216 totalling 4.09GiB 2019-10-15 18:21:25.247511: I tensorflow/core/common_runtime/bfc_allocator.cc:641] 1 Chunks of size 16781312 totalling 16.00MiB 2019-10-15 18:21:25.247520: I tensorflow/core/common_runtime/bfc_allocator.cc:641] 1 Chunks of size 20971520 totalling 20.00MiB 2019-10-15 18:21:25.247530: I tensorflow/core/common_runtime/bfc_allocator.cc:641] 5 Chunks of size 118767616 totalling 566.33MiB 2019-10-15 18:21:25.247540: I tensorflow/core/common_runtime/bfc_allocator.cc:641] 1 Chunks of size 128971776 totalling 123.00MiB 2019-10-15 18:21:25.247548: I tensorflow/core/common_runtime/bfc_allocator.cc:645] Sum Total of in-use chunks: 6.88GiB 2019-10-15 18:21:25.247560: I tensorflow/core/common_runtime/bfc_allocator.cc:647] Stats: Limit: 7392346112 InUse: 7392346112 MaxInUse: 7392346112 NumAllocs: 2204 MaxAllocSize: 128971776 2019-10-15 18:21:25.247633: W tensorflow/core/common_runtime/bfc_allocator.cc:271] **************************************************************************************************** 2019-10-15 18:21:25.247668: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cwise_ops_common.cc:70 : Resource exhausted: OOM when allocating tensor with shape[1024,4096] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc ``` (This doesn't break the script, it just keeps running). I've tried reducing the batch size from 32 -> 16 -> 4 -> 1, none of which have an impact. I am using a Tesla P4 with 8GB. Is my issue as simple as having to increase my GPU memory? Or is there something else going on?
open
2019-10-15T18:26:30Z
2019-10-16T12:47:57Z
https://github.com/google-research/bert/issues/879
[]
ecatkins
1
hyperspy/hyperspy
data-visualization
2,953
Release 1.7.1
There have been a few regressions introduced in 1.7, which are already fixed or pending review. It would be good to release [1.7.1 ](https://github.com/hyperspy/hyperspy/milestone/47) as soon as #2948 and #2952 are merged.
closed
2022-06-03T09:55:16Z
2022-06-18T16:56:35Z
https://github.com/hyperspy/hyperspy/issues/2953
[]
ericpre
0
InstaPy/InstaPy
automation
6,022
Unable to follow a whole list (including delays)
Like it says in the title, Unable to follow a whole list (including delays) BEFORE instapy begins the next step of unfollowing all. I'm trying to setup so that instapy follows 7500 users in total from inside of the specified list, and then AFTER to go to the next step which is to unfollow allfollowing At the moment, it's following 10 per hour, 200 a day, which is allworking fine. But as soon as it finishes the first 10, because the unfollow command is right after it seems to bypass the amount I set to 7500 and just begins unfollowing. I am considering that maybe I could copy the follow by follow command in a loop over and over which might work but I am sure there are MUCH better ways lol If anyone can help me this will be great. Here are the setting controlling this: session.set_action_delays(enabled=True, follow=5, unfollow=4, randomize=True, random_range_from=70, random_range_to=140) session.set_quota_supervisor(enabled=True, peak_follows_hourly=10, peak_follows_daily=200, peak_unfollows_hourly=10, peak_unfollows_daily=200, peak_server_calls_hourly=None, peak_server_calls_daily=2000, sleep_after=["server_calls_d"], sleepyhead=True, stochastic_flow=True, notify_me=True) Here is the action code: # activities # replace users with list name e.g. user_followers above """ Step 1 - Massive Follow of users followers (I suggest to follow not less than 3500/4000 users for better results)... """ follow_by_list(followlist=['target-usrname'], times=1, amount=7500, sleep_delay=3600, randomize=False, interact=False) # activities # replace users with list name e.g. user_followers above """ Step 2 - Massive Unfollow of all following... """ session.unfollow_users(allFollowing=True, style="FIFO", unfollow_after=72 * 60 * 60, sleep_delay=3600) Thanks in advance for any help, it's my first time creating a bot and took me nearly a month I imagine this is super simple
open
2021-01-13T15:04:48Z
2021-07-21T03:19:08Z
https://github.com/InstaPy/InstaPy/issues/6022
[ "wontfix" ]
molasunfish
1
tiangolo/uwsgi-nginx-flask-docker
flask
32
Logging problems
Hi tiangolo, I am having problems logging messages when I used the uwsgi-nginx-flask image. The application works. I am only having issues with the logging. On the other hand, If I run the app in standalone, everything, including logging, works as expected. I tried to look for info on how to configure the logging mechanism when using uwsgi-nginx-flask, but I was not able to find anything. Let me explain the scenario. I am using uwsgi-nginx-flask:python3.6 to run a flask app. My uwsgi.ini is ``` [uwsgi] module = iedapp.app callable = app logger = python ``` The app is using resources for handling request. ``` .... app = Flask(__name__, static_folder=None) app.config.from_object(config) api = Api(app, prefix='/api', base_path='/api', api_version='1.0') api.add_resource(IedOnline, '/online/<string:ied_key>/<string:layout>') .... ``` And in the resource, I have something like ``` .... logger = logging.getLogger('test') class IedOnline(Resource): def post(self, ied_key, layout): print("Hello!!!") current_app.logger.error("Hello again!!!!") logger.error("Hello again and again") .... ``` What happens to me is that both the print and logging messages in the resource function get lost. I am not able to find them either in the docker logs not if I exec into the docker image and look for entries in all the *.log files in the image. Could you provide guidance on what I should be going wrong?
closed
2018-01-05T14:54:07Z
2018-04-19T08:44:09Z
https://github.com/tiangolo/uwsgi-nginx-flask-docker/issues/32
[]
mcuervoe
4
gee-community/geemap
jupyter
1,617
Add stretch options for visualizing images
<!-- Please search existing issues to avoid creating duplicates. --> ### Description Hi folks! I'd like to suggest adding "Stretch" options to adjust the vis param range for images automatically, similar to what can be done in the Code Editor. I'm happy to implement this and make a PR. ### Implementation I would suggest we follow the lead of the Code Editor add a dropdown menu to select different percent and sigma stretches. When selected, reducers would be run on the selected image bands over the current map bounds, and values would be pulled client-side and processed to set the current range. I believe all the different percentile and sigma stretches can be calculated using min, max, and std dev reducers. As in the Code Editor, we could disable the range inputs when a stretch option is selected, adding a `Custom` option for user-defined values. ### API It looks like there's a lot of great refactoring work going on in geemap, so I don't want to interfere with ongoing plans! My tentative suggestion would be to add a dropdown widget to the `range_hbox` in the main `Map` class, with a listener that would call a new method `Map.get_stretch_values()` that returns the min and max range values for a given `ee.Image`, but I'm open to any feedback! ### UI It will be a little tricky to fit the range slider, range values, and stretch dropdown on a single row (see screenshot of a quick prototype I put together below). ![image](https://github.com/gee-community/geemap/assets/50475791/01cd2775-6477-4932-9cf6-4839b3159465) We could try swapping the slider for two text boxes, more similar to the Code Editor, although that would require a more substantial rewrite. I'm open to any other ideas as well! Thanks!
closed
2023-07-07T05:56:23Z
2023-10-31T17:58:57Z
https://github.com/gee-community/geemap/issues/1617
[ "Feature Request" ]
aazuspan
8
pytest-dev/pytest-qt
pytest
276
Using QThread causes sefault
Hi, I have just started using pytest-qt and have run across an issue with the use of `QThread`. I have been able to isolate it into a simple example: ``` from PySide2.QtCore import QThread def test_load(qtbot): thread = QThread() thread.start() ``` Running on Linux: ``` =============================================================================================== test session starts =============================================================================================== platform linux -- Python 3.7.3rc1, pytest-4.6.3, py-1.8.0, pluggy-0.12.0 PySide2 5.13.0 -- Qt runtime 5.13.0 -- Qt compiled 5.13.0 rootdir: /mnt/e/Projects/Desktop/YerToob.py plugins: cov-2.7.1, mock-1.10.4, qt-3.2.2, testmon-0.9.16 collected 1 item ../../tests/ui/test_login.py Aborted (core dumped) ``` Running on Windows (through pycharm) ``` aunching pytest with arguments E:/Projects/Desktop/YerToob.py/tests/ui/test_login.py in E:\Projects\Desktop\YerToob.py\tests\ui ============================= test session starts ============================= platform win32 -- Python 3.6.5, pytest-4.6.3, py-1.8.0, pluggy-0.12.0 -- E:\Projects\Desktop\YerToob.py\venv\Scripts\python.exe cachedir: .pytest_cache PySide2 5.13.0 -- Qt runtime 5.13.0 -- Qt compiled 5.13.0 rootdir: E:\Projects\Desktop\YerToob.py plugins: cov-2.7.1, mock-1.10.4, qt-3.2.2, testmon-0.9.16 collecting ... collected 1 item test_login.py::test_load Process finished with exit code -1073740791 (0xC0000409) ``` Any ideas on what might be causing this? Googling did not help me much though it does suggest the loading of multiple app instances as a possibility. Any help in getting to the bottom of this would be appreciated. Thank you :D
closed
2019-11-19T17:41:37Z
2019-11-19T19:44:48Z
https://github.com/pytest-dev/pytest-qt/issues/276
[]
drone-ah
2
ansible/awx
automation
15,745
Add Metric for License Expiry
### Please confirm the following - [x] I agree to follow this project's [code of conduct](https://docs.ansible.com/ansible/latest/community/code_of_conduct.html). - [x] I have checked the [current issues](https://github.com/ansible/awx/issues) for duplicates. - [x] I understand that AWX is open source software provided for free and that I might not receive a timely response. ### Feature type New Feature ### Feature Summary Add a metric to show the time until the license for the awx/automation controller will expire. ### Select the relevant components - [ ] UI - [x] API - [ ] Docs - [ ] Collection - [ ] CLI - [ ] Other ### Steps to reproduce Currently the license expiry date is save as a label in the awx_system_info metric ### Current results Cannot query prometheus on license expiry easily in promql ### Sugested feature result Being able to monitor with prometheus alerts when the awx license is expiring (mostly relevent for AnsibleAutomationPlatform) ### Additional information I opened a PR for this feature request - https://github.com/ansible/awx/pull/15483
open
2025-01-14T14:53:09Z
2025-01-22T18:20:21Z
https://github.com/ansible/awx/issues/15745
[ "type:enhancement", "community" ]
neevnuv
0
fastapi/sqlmodel
pydantic
448
Relationships with multiple schemas and same table names not working
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python ############################################# ################## main.py ################## ############################################# from sqlmodel import Session, create_engine, select import workplace1 import workplace2 engine = create_engine("mysql+pymysql://user@localhost") with Session(engine) as session: print(select(workplace1.Employee)) print(select(workplace2.Employee)) ################################################### ################## workplace1.py ################## ################################################### from typing import Optional from sqlmodel import Field, MetaData, Relationship from sqlmodel import SQLModel as _SQLModel class SQLModel(_SQLModel): metadata = MetaData(schema="workplace1") class Employee(SQLModel, table=True): __tablename__ = "employees" # type: ignore employee_id: Optional[int] = Field(primary_key=True) name: str business_id: int = Field(foreign_key="business.id") business: 'Business' = Relationship(back_populates='employees') class Business(SQLModel, table=True): __tablename__ = "business" # type: ignore id: Optional[int] = Field(primary_key=True) title: str employees: list['Employee'] = Relationship(back_populates='business_id') ################################################### ################## workplace2.py ################## ################################################### from typing import Optional from sqlmodel import Field, MetaData from sqlmodel import SQLModel as _SQLModel class SQLModel(_SQLModel): metadata = MetaData(schema="workplace2") class Employee(SQLModel, table=True): __tablename__ = "employees" # type: ignore employee_id: Optional[int] = Field(primary_key=True) full_name: str ``` ### Description I'm trying to setup a python project that contains SQLModel models for tables from multiple schemas and some of these schemas share tables with the same name even though the tables are not always related. The example code above should be split into 3 separate files `main.py`, `workplace1.py` and `workplace2.py` all in the same python module and run from `main.py`. The separate files are used to separate 2 schemas `workplace1` and `workplace2` which both contain different definitions for a table called `employees`. What I expect to happen when I run the code (assuming the mysql connection is setup correctly) is to print out 2 `SELECT` statements for the 2 different employees: ``` SELECT workplace1.employees.employee_id, workplace1.employees.name, workplace1.employees.business_id FROM workplace1.employees SELECT workplace2.employees.employee_id, workplace2.employees.full_name FROM workplace2.employees ``` However the following error occurs: ``` sqlalchemy.exc.InvalidRequestError: Multiple classes found for path "Employee" in the registry of this declarative base. Please use a fully module-qualified path. ``` <details> <summary>See full error</summary> ``` Traceback (most recent call last): File "/home/bryley/Documents/testing/python/sqlmodel-testing/main.py", line 68, in <module> print(select(workplace1.Employee)) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/sql/elements.py", line 570, in __str__ return str(self.compile()) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/sql/elements.py", line 502, in compile return self._compiler(dialect, **kw) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/sql/elements.py", line 566, in _compiler return dialect.statement_compiler(dialect, self, **kw) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/sql/compiler.py", line 790, in __init__ Compiled.__init__(self, dialect, statement, **kwargs) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/sql/compiler.py", line 463, in __init__ self.string = self.process(self.statement, **compile_kwargs) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/sql/compiler.py", line 498, in process return obj._compiler_dispatch(self, **kwargs) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/sql/visitors.py", line 82, in _compiler_dispatch return meth(self, **kw) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/sql/compiler.py", line 3301, in visit_select compile_state = select_stmt._compile_state_factory( File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/sql/base.py", line 510, in create_for_statement return klass.create_for_statement(statement, compiler, **kw) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/context.py", line 699, in create_for_statement _QueryEntity.to_compile_state( File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/context.py", line 2451, in to_compile_state _MapperEntity( File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/context.py", line 2524, in __init__ entity._post_inspect File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/util/langhelpers.py", line 1184, in __get__ obj.__dict__[self.__name__] = result = self.fget(obj) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/mapper.py", line 2182, in _post_inspect self._check_configure() File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/mapper.py", line 1924, in _check_configure _configure_registries({self.registry}, cascade=True) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/mapper.py", line 3483, in _configure_registries _do_configure_registries(registries, cascade) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/mapper.py", line 3522, in _do_configure_registries mapper._post_configure_properties() File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/mapper.py", line 1941, in _post_configure_properties prop.init() File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/interfaces.py", line 231, in init self.do_init() File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/relationships.py", line 2150, in do_init self._generate_backref() File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/relationships.py", line 2486, in _generate_backref self._add_reverse_property(self.back_populates) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/relationships.py", line 2077, in _add_reverse_property if not other.mapper.common_parent(self.parent): File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/util/langhelpers.py", line 1113, in __get__ obj.__dict__[self.__name__] = result = self.fget(obj) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/relationships.py", line 2141, in mapper return self.entity.mapper File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/util/langhelpers.py", line 1113, in __get__ obj.__dict__[self.__name__] = result = self.fget(obj) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/relationships.py", line 2107, in entity argument = self._clsregistry_resolve_name(self.argument)() File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/clsregistry.py", line 393, in _resolve_name rval = d[token] File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/util/_collections.py", line 746, in __missing__ self[key] = val = self.creator(key) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/clsregistry.py", line 352, in _access_cls return _determine_container(key, decl_class_registry[key]) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/clsregistry.py", line 313, in _determine_container value = value.attempt_get([], key) File "/home/bryley/.local/lib/python3.10/site-packages/sqlalchemy/orm/clsregistry.py", line 144, in attempt_get raise exc.InvalidRequestError( sqlalchemy.exc.InvalidRequestError: Multiple classes found for path "Employee" in the registry of this declarative base. Please use a fully module-qualified path. ``` </details> It seems as though the code works perfectly fine when removing the `business` and `employees` `Relationship`s from `workplace1` meaning that it most likely has to do with SQLModel/SQLAlchemy getting confused about what `'Employee'` object is being referenced about when executing ```python employees: list['Employee'] = Relationship(back_populates='business_id') ``` Is there a way to specify what `Employee` object the registry should use in-order to fix this error? ### Operating System Linux ### Operating System Details Arch ### SQLModel Version 0.0.8 ### Python Version 3.9.13 ### Additional Context For the mysql database driver I use PyMySQL version 1.0.2
closed
2022-09-15T00:52:01Z
2022-11-20T12:19:46Z
https://github.com/fastapi/sqlmodel/issues/448
[ "question" ]
Bryley
4
python-arq/arq
asyncio
267
Option to Cancel Jobs without Incrementing Retries
Currently when a job is canceled (sigint, sigterm), retries is incremented. I'd like for there to be an option for these types of failures to not increment retries. Another way to say it is only jobs that raise an exception should increment retries. My use case is that I have some long running jobs that I would like to retry if they get canceled due to deploying new code. I don't want it to retry if there's an actually exception though.
open
2021-10-13T06:32:45Z
2021-10-13T06:32:45Z
https://github.com/python-arq/arq/issues/267
[]
tobymao
0
BlinkDL/RWKV-LM
pytorch
53
Any results on few-shot settings?
Thanks for your wonderful work! Do you have any results on the few-shot settings? Do RWKV-LLMs perform the similar emergent ability like GPT-3, e.g. the chain-of-thought?
closed
2023-03-23T12:41:01Z
2023-03-24T10:50:56Z
https://github.com/BlinkDL/RWKV-LM/issues/53
[]
ustcwhy
1
proplot-dev/proplot
data-visualization
219
xminorlocator=1 or yminorlocator=1 doesn't work
I think this line creates a problem when we define `yminorlocator=1` or `xminorlocator=1`: https://github.com/lukelbd/proplot/blob/e1a603729305abe791ed23d84cfeff11e5a4cea6/proplot/axes/cartesian.py#L1101 ### Example ```python import proplot as plot import numpy as np fig, ax = plot.subplots(aspect=4, axwidth=5) ax.format( xlim=(0, 200), xminorlocator=10, xlocator=30, ylim=(0, 4), yminorlocator=1, ylocator=2 ) ``` Raise the warning: ```python proplot/axes/cartesian.py:1102: ProPlotWarning: You passed yminorticks=1, but this argument is used to specify tick *locations*. If you just want to *toggle* minor ticks on and off, please use ytickminor=True or ytickminor=False. ``` A way to fix this is to pass `minorlocator=1.000001` for example, I guess the problem is that in Python `1` is equivalent to `True`. ### Proplot version 0.6.4
closed
2020-08-14T13:39:16Z
2021-06-30T01:52:35Z
https://github.com/proplot-dev/proplot/issues/219
[ "bug" ]
mickaellalande
1
piccolo-orm/piccolo
fastapi
625
exception raised on update with a join in the where clause
i couldn't think of a concise way to explain my problem so here's an example: ```python In [19]: await Band.select(Band.name).where(Band.manager.name == 'Guido') SELECT "band"."name" FROM band LEFT JOIN manager band$manager ON (band.manager = band$manager.id) WHERE "band$manager"."name" = 'Guido' Out[19]: [{'name': 'Pythonistas'}] In [20]: await Band.update({Band.name: 'The Pythonistas'}).where(Band.manager.name == 'Guido') UPDATE band SET "name" = 'The Pythonistas' WHERE "band$manager"."name" = 'Guido' --------------------------------------------------------------------------- OperationalError Traceback (most recent call last) Cell In [20], line 1 ----> 1 await Band.update({Band.name: 'The Pythonistas'}).where(Band.manager.name == 'Guido') ... traceback removed ... OperationalError: no such column: band$manager.name ```
closed
2022-09-28T13:02:13Z
2023-02-21T19:03:27Z
https://github.com/piccolo-orm/piccolo/issues/625
[]
backwardspy
4
timkpaine/lantern
plotly
25
matplotlib - candlestick
closed
2017-10-10T01:30:48Z
2017-11-26T05:13:38Z
https://github.com/timkpaine/lantern/issues/25
[ "feature", "matplotlib/seaborn" ]
timkpaine
1
allure-framework/allure-python
pytest
45
Extract python commons
closed
2017-02-19T16:46:12Z
2017-03-21T16:42:26Z
https://github.com/allure-framework/allure-python/issues/45
[]
sseliverstov
0
donnemartin/system-design-primer
python
816
Update to a URL
https://github.com/donnemartin/system-design-primer/blob/a07e261677c012d37d26255de6e7b128a2643946/README.md?plain=1#L1321C32-L1321C109 The URL for Elasticache caching strategies must be updated to https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Strategies.html
open
2023-12-07T14:31:59Z
2024-06-23T17:39:50Z
https://github.com/donnemartin/system-design-primer/issues/816
[ "needs-review" ]
alimoosavi27
4
aleju/imgaug
machine-learning
68
OneOf wrong behaviour
Hi, looks like there is something broken there, I suppose. With this code, I get at the same time: dropout and Add+ Dropout is always used. Never get Add- nor constrastNorm. ``` color = iaa.Sometimes(1,iaa.OneOf([ iaa.Add((-50, -20)), iaa.Add((20, 50)), iaa.ContrastNormalization((0.3, 0.5)), iaa.ContrastNormalization((1.5, 1.9)) iaa.CoarseDropout(p=0.05, size_percent=0.2) ])) ``` I use like this (I know, it's not good..): ``` img1 = iaa.Sequential([iaa.Fliplr(p=1),color]).augment_image(img) img2 = iaa.Sequential([iaa.Fliplr(p=1),color]).augment_image(img) ```
closed
2017-10-04T15:39:58Z
2017-10-04T17:46:04Z
https://github.com/aleju/imgaug/issues/68
[]
vimalaguti
2
gradio-app/gradio
data-science
10,436
Theme is only used on first tab
### Describe the bug Monochrome is set for the interface, but only gets applied to the first tab. Tab 2 and 3 seem to be still using the default theme. ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import gradio as gr with gr.Blocks(title='Admin UI', theme=gr.themes.Monochrome) as app: with gr.Tabs(): with gr.Tab("Tab 1"): button1 = gr.Button("Button") with gr.Tab("Tab 2"): button2 = gr.Button("Button") with gr.Tab("Tab 3"): button3 = gr.Button("Button") ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.13.1 gradio_client version: 1.6.0 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.8.0 audioop-lts is not installed. fastapi: 0.115.7 ffmpy: 0.5.0 gradio-client==1.6.0 is not installed. httpx: 0.28.1 huggingface-hub: 0.27.1 jinja2: 3.1.5 markupsafe: 3.0.2 numpy: 2.2.1 orjson: 3.10.15 packaging: 24.2 pandas: 2.2.3 pillow: 11.1.0 pydantic: 2.10.5 pydub: 0.25.1 python-multipart: 0.0.20 pyyaml: 6.0.2 ruff: 0.9.3 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.45.3 tomlkit: 0.13.2 typer: 0.15.1 typing-extensions: 4.12.2 urllib3: 2.3.0 uvicorn: 0.34.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.12.0 httpx: 0.28.1 huggingface-hub: 0.27.1 packaging: 24.2 typing-extensions: 4.12.2 websockets: 14.2 ``` ### Severity I can work around it
closed
2025-01-24T22:41:03Z
2025-01-27T19:15:26Z
https://github.com/gradio-app/gradio/issues/10436
[ "bug", "needs repro" ]
GregSommerville
3
lux-org/lux
pandas
500
[BUG]
**Describe the bug** Unexpected error in rendering Lux widget and recommendations. Falling back to Pandas display.
open
2023-10-01T19:39:17Z
2023-10-01T19:39:17Z
https://github.com/lux-org/lux/issues/500
[]
Saramagit
0
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,551
[Bug]: ModuleNotFoundError: No module named 'timm'
### Checklist - [ ] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [ ] The issue exists in the current version of the webui - [ ] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? root@debian:/dockerx/stable-diffusion-webui# REQS_FILE='requirements.txt' python launch.py --precision full --no-half Python 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] Version: v1.10.1 Commit hash: 82a973c04367123ae98bd9abdf80d9eda9b910e2 Launching Web UI with arguments: --precision full --no-half no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/launch.py", line 48, in <module> main() File "/dockerx/stable-diffusion-webui/launch.py", line 44, in main start() File "/dockerx/stable-diffusion-webui/modules/launch_utils.py", line 465, in start import webui File "/dockerx/stable-diffusion-webui/webui.py", line 13, in <module> initialize.imports() File "/dockerx/stable-diffusion-webui/modules/initialize.py", line 39, in imports from modules import processing, gradio_extensons, ui # noqa: F401 File "/dockerx/stable-diffusion-webui/modules/processing.py", line 31, in <module> from ldm.data.util import AddMiDaS File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/data/util.py", line 3, in <module> from ldm.modules.midas.api import load_midas_transform File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/api.py", line 8, in <module> from ldm.modules.midas.midas.dpt_depth import DPTDepthModel File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/midas/dpt_depth.py", line 6, in <module> from .blocks import ( File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/midas/blocks.py", line 4, in <module> from .vit import ( File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/midas/vit.py", line 3, in <module> import timm ModuleNotFoundError: No module named 'timm' ### Steps to reproduce the problem 1. Install the prooject using the docker method. 2. get to the steep where you have to run the following command 3. `root@debian:/dockerx/stable-diffusion-webui# REQS_FILE='requirements.txt' python launch.py --precision full --no-half` 4. You get this error: ``` root@debian:/dockerx/stable-diffusion-webui# REQS_FILE='requirements.txt' python launch.py --precision full --no-half Python 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] Version: v1.10.1 Commit hash: 82a973c04367123ae98bd9abdf80d9eda9b910e2 Launching Web UI with arguments: --precision full --no-half no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/launch.py", line 48, in <module> main() File "/dockerx/stable-diffusion-webui/launch.py", line 44, in main start() File "/dockerx/stable-diffusion-webui/modules/launch_utils.py", line 465, in start import webui File "/dockerx/stable-diffusion-webui/webui.py", line 13, in <module> initialize.imports() File "/dockerx/stable-diffusion-webui/modules/initialize.py", line 39, in imports from modules import processing, gradio_extensons, ui # noqa: F401 File "/dockerx/stable-diffusion-webui/modules/processing.py", line 31, in <module> from ldm.data.util import AddMiDaS File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/data/util.py", line 3, in <module> from ldm.modules.midas.api import load_midas_transform File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/api.py", line 8, in <module> from ldm.modules.midas.midas.dpt_depth import DPTDepthModel File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/midas/dpt_depth.py", line 6, in <module> from .blocks import ( File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/midas/blocks.py", line 4, in <module> from .vit import ( File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/midas/vit.py", line 3, in <module> import timm ModuleNotFoundError: No module named 'timm' ``` ### What should have happened? The project should be installed correctly. ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo Debian 12 ### Console logs ```Shell root@debian:/dockerx/stable-diffusion-webui# REQS_FILE='requirements.txt' python launch.py --precision full --no-half Python 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] Version: v1.10.1 Commit hash: 82a973c04367123ae98bd9abdf80d9eda9b910e2 Launching Web UI with arguments: --precision full --no-half no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/launch.py", line 48, in <module> main() File "/dockerx/stable-diffusion-webui/launch.py", line 44, in main start() File "/dockerx/stable-diffusion-webui/modules/launch_utils.py", line 465, in start import webui File "/dockerx/stable-diffusion-webui/webui.py", line 13, in <module> initialize.imports() File "/dockerx/stable-diffusion-webui/modules/initialize.py", line 39, in imports from modules import processing, gradio_extensons, ui # noqa: F401 File "/dockerx/stable-diffusion-webui/modules/processing.py", line 31, in <module> from ldm.data.util import AddMiDaS File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/data/util.py", line 3, in <module> from ldm.modules.midas.api import load_midas_transform File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/api.py", line 8, in <module> from ldm.modules.midas.midas.dpt_depth import DPTDepthModel File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/midas/dpt_depth.py", line 6, in <module> from .blocks import ( File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/midas/blocks.py", line 4, in <module> from .vit import ( File "/dockerx/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/midas/midas/vit.py", line 3, in <module> import timm ModuleNotFoundError: No module named 'timm' ``` ### Additional information I installed timm manually and it fixed the problem. ``` root@debian:/dockerx/stable-diffusion-webui# pip install timm Collecting timm Downloading timm-1.0.9-py3-none-any.whl.metadata (42 kB) Requirement already satisfied: torch in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from timm) (2.3.0a0+gitd2f9472) Requirement already satisfied: torchvision in /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torchvision-0.18.0a0+68ba7ec-py3.10-linux-x86_64.egg (from timm) (0.18.0a0+68ba7ec) Requirement already satisfied: pyyaml in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from timm) (6.0.1) Requirement already satisfied: huggingface_hub in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from timm) (0.25.2) Requirement already satisfied: safetensors in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from timm) (0.4.5) Requirement already satisfied: filelock in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from huggingface_hub->timm) (3.16.1) Requirement already satisfied: fsspec>=2023.5.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages/fsspec-2024.9.0-py3.10.egg (from huggingface_hub->timm) (2024.9.0) Requirement already satisfied: packaging>=20.9 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from huggingface_hub->timm) (24.1) Requirement already satisfied: requests in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from huggingface_hub->timm) (2.32.3) Requirement already satisfied: tqdm>=4.42.1 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from huggingface_hub->timm) (4.66.5) Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from huggingface_hub->timm) (4.12.2) Requirement already satisfied: sympy<=1.12.1 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->timm) (1.12.1) Requirement already satisfied: networkx in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->timm) (2.8.8) Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->timm) (3.1.3) Requirement already satisfied: numpy<2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchvision->timm) (1.26.4) Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchvision->timm) (10.2.0) Requirement already satisfied: mpmath<1.4.0,>=1.1.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from sympy<=1.12.1->torch->timm) (1.3.0) Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from jinja2->torch->timm) (2.1.5) Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->huggingface_hub->timm) (3.4.0) Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->huggingface_hub->timm) (3.10) Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->huggingface_hub->timm) (1.26.20) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->huggingface_hub->timm) (2024.8.30) Downloading timm-1.0.9-py3-none-any.whl (2.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.3/2.3 MB 15.9 MB/s eta 0:00:00 Installing collected packages: timm Successfully installed timm-1.0.9 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning. ``` Then i get this error: ``` root@debian:/dockerx/stable-diffusion-webui# REQS_FILE='requirements.txt' python launch.py --precision full --no-half Python 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] Version: v1.10.1 Commit hash: 82a973c04367123ae98bd9abdf80d9eda9b910e2 Launching Web UI with arguments: --precision full --no-half no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. Pytorch_lightning.distributed not found, attempting pytorch_lightning.rank_zero Downloading: "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors" to /dockerx/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors 100%|██████████████████████████████████████████████████████████████| 3.97G/3.97G [02:48<00:00, 25.4MB/s] *** Error creating UI for None: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 640, in create_script_ui self.create_script_ui_inner(script) File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 645, in create_script_ui_inner import modules.api.models as api_models File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 113, in <module> ).generate_model() File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 96, in generate_model DynamicModel.__config__.allow_population_by_field_name = True File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py", line 262, in __getattr__ raise AttributeError(item) AttributeError: __config__ --- *** Error creating UI for None: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 640, in create_script_ui self.create_script_ui_inner(script) File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 645, in create_script_ui_inner import modules.api.models as api_models File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 113, in <module> ).generate_model() File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 96, in generate_model DynamicModel.__config__.allow_population_by_field_name = True File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py", line 262, in __getattr__ raise AttributeError(item) AttributeError: __config__ --- *** Error creating UI for None: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 640, in create_script_ui self.create_script_ui_inner(script) File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 645, in create_script_ui_inner import modules.api.models as api_models File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 113, in <module> ).generate_model() File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 96, in generate_model DynamicModel.__config__.allow_population_by_field_name = True File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py", line 262, in __getattr__ raise AttributeError(item) AttributeError: __config__ --- *** Error creating UI for None: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 640, in create_script_ui self.create_script_ui_inner(script) File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 645, in create_script_ui_inner import modules.api.models as api_models File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 113, in <module> ).generate_model() File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 96, in generate_model DynamicModel.__config__.allow_population_by_field_name = True File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py", line 262, in __getattr__ raise AttributeError(item) AttributeError: __config__ --- *** Error creating UI for Hypertile: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 640, in create_script_ui self.create_script_ui_inner(script) File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 645, in create_script_ui_inner import modules.api.models as api_models File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 113, in <module> ).generate_model() File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 96, in generate_model DynamicModel.__config__.allow_population_by_field_name = True File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py", line 262, in __getattr__ raise AttributeError(item) AttributeError: __config__ --- *** Error creating UI for None: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 640, in create_script_ui self.create_script_ui_inner(script) File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 645, in create_script_ui_inner import modules.api.models as api_models File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 113, in <module> ).generate_model() File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 96, in generate_model DynamicModel.__config__.allow_population_by_field_name = True File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py", line 262, in __getattr__ raise AttributeError(item) AttributeError: __config__ --- *** Error creating UI for None: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 640, in create_script_ui self.create_script_ui_inner(script) File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 645, in create_script_ui_inner import modules.api.models as api_models File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 113, in <module> ).generate_model() File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 96, in generate_model DynamicModel.__config__.allow_population_by_field_name = True File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py", line 262, in __getattr__ raise AttributeError(item) AttributeError: __config__ --- *** Error creating UI for None: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 640, in create_script_ui self.create_script_ui_inner(script) File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 645, in create_script_ui_inner import modules.api.models as api_models File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 113, in <module> ).generate_model() File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 96, in generate_model DynamicModel.__config__.allow_population_by_field_name = True File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py", line 262, in __getattr__ raise AttributeError(item) AttributeError: __config__ --- *** Error creating UI for None: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 640, in create_script_ui self.create_script_ui_inner(script) File "/dockerx/stable-diffusion-webui/modules/scripts.py", line 645, in create_script_ui_inner import modules.api.models as api_models File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 113, in <module> ).generate_model() File "/dockerx/stable-diffusion-webui/modules/api/models.py", line 96, in generate_model DynamicModel.__config__.allow_population_by_field_name = True File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py", line 262, in __getattr__ raise AttributeError(item) AttributeError: __config__ --- Calculating sha256 for /dockerx/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors: Traceback (most recent call last): File "/dockerx/stable-diffusion-webui/launch.py", line 48, in <module> main() File "/dockerx/stable-diffusion-webui/launch.py", line 44, in main start() File "/dockerx/stable-diffusion-webui/modules/launch_utils.py", line 469, in start webui.webui() File "/dockerx/stable-diffusion-webui/webui.py", line 64, in webui shared.demo = ui.create_ui() File "/dockerx/stable-diffusion-webui/modules/ui.py", line 489, in create_ui toprow.ui_styles.dropdown.change(fn=wrap_queued_call(update_token_counter), inputs=[toprow.prompt, steps, toprow.ui_styles.dropdown], outputs=[toprow.token_counter]) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/gradio/events.py", line 140, in __call__ dep, dep_index = self.trigger.set_event_trigger( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/gradio/blocks.py", line 286, in set_event_trigger "inputs": [block._id for block in inputs], File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/gradio/blocks.py", line 286, in <listcomp> "inputs": [block._id for block in inputs], AttributeError: 'NoneType' object has no attribute '_id' 6ce0161689b3853acaa03779ec93eafe75a02f4ced659bee03f50797806fa2fa Loading weights [6ce0161689] from /dockerx/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors Creating model from config: /dockerx/stable-diffusion-webui/configs/v1-inference.yaml /opt/conda/envs/py_3.10/lib/python3.10/site-packages/huggingface_hub/file_download.py:1142: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`. warnings.warn( vocab.json: 100%|████████████████████████████████████████████████████| 961k/961k [00:00<00:00, 3.86MB/s] merges.txt: 100%|████████████████████████████████████████████████████| 525k/525k [00:00<00:00, 5.36MB/s] special_tokens_map.json: 100%|█████████████████████████████████████████| 389/389 [00:00<00:00, 3.12MB/s] tokenizer_config.json: 100%|███████████████████████████████████████████| 905/905 [00:00<00:00, 10.8MB/s] config.json: 100%|█████████████████████████████████████████████████| 4.52k/4.52k [00:00<00:00, 33.4MB/s] ```
open
2024-10-13T00:25:23Z
2025-01-11T16:53:43Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16551
[ "bug-report" ]
wolfred24
3
axnsan12/drf-yasg
rest-api
235
Swagger not fetching details from swagger_auto_schema
I am using **swagger_auto_schema** in **function based views** like below. It seems like **Swagger** is not using the **annotations** at all. What am I doing wrong? urls.py ``` from django.conf.urls import url from .views import check_phone urlpatterns = [ url(r'^check_phone/?', check_phone), ] ``` views.py ``` class CheckPhoneSerializer(serializers.Serializer): phone = serializers.CharField(max_length=20) exist = serializers.BooleanField() phone_param = Parameter('phone', IN_QUERY, description="user phone number", type=TYPE_STRING) check_phone_response = Response('Response contains phone exists or not', CheckPhoneSerializer) @csrf_exempt @api_view(["GET"]) @swagger_auto_schema(operation_description="Checks whether phone number already exists", operation_id='agent_auth_check_phone', manual_parameters=[phone_param], responses={200: check_phone_response}) @permission_classes((IsAuthenticated,)) @require_http_methods(["GET", "POST"]) @renderer_classes([renderers.OpenAPIRenderer, renderers.SwaggerUIRenderer]) def check_phone(request): phone = request.GET.get("phone") if request.method == 'GET' else request.POST.get("phone") data = {"phone": phone, "exist": True} return JsonResponse(data) ```
closed
2018-10-18T21:01:13Z
2018-10-23T06:09:54Z
https://github.com/axnsan12/drf-yasg/issues/235
[]
deepakzipgo
4
pytest-dev/pytest-randomly
pytest
550
Feature enhancement to allow turning plugin on and off
### Description Hello, Using this plugin occasionally while writing new tests to prevent flakiness, but old tests still need to run without the random order. Currently accomplishing this via pytest.ini which includes -p no:randomly and a separate one you use via -c pytest-randomly.ini This feels rather clunky, I'd like to propose creating a pytest command line argument to turn the plugin off as needed The other option is to create a bash variable PYTEST_USE_RANDOMLY which defaults to true, but can be flipped on and off as you go I'm more than happy to make this change, but wanted to run it by the community before opening the PR.
closed
2023-06-07T16:10:34Z
2024-10-12T05:59:39Z
https://github.com/pytest-dev/pytest-randomly/issues/550
[]
clintonsteiner
7
Kanaries/pygwalker
matplotlib
510
Would it be possbile to walk it with Datatable.frame type in the future?
https://github.com/h2oai/datatable It has higher performance reading and manipulating big csv data than pandas/polars/modin. But I can't walk this datatable.frame type.
open
2024-04-01T17:59:46Z
2024-04-02T06:55:41Z
https://github.com/Kanaries/pygwalker/issues/510
[ "Vote if you want it", "proposal" ]
plusmid
1
lanpa/tensorboardX
numpy
155
add_video() got an unexpected keyword argument 'fps'
error: add_video() got an unexpected keyword argument 'fps'
closed
2018-06-01T17:27:37Z
2018-06-01T17:33:31Z
https://github.com/lanpa/tensorboardX/issues/155
[]
kekmodel
0
bmoscon/cryptofeed
asyncio
254
Understanding content of order and trade
Hello, I have rather general questions, but I think others can have the same, so I write this in a ticket instead of using slack. Order and trade structures are defined in https://github.com/bmoscon/cryptofeed/blob/master/cryptofeed/defines.py Order has most notably these fields: ```python { order_id: str, side: str, # bids or ask order_type: str, # limit/market/etc, price: Decimal, total: Decimal, executed: Decimal, pending: Decimal, order_status: str #FILLED/PARTIAL/CANCELLED/OPEN } ``` Please, can you confirm 'pending' is only for limit orders? Also, assuming there is one market order, bigger than the 1st available limit order in the order book. In the order structure, there is a field for a single price. How is it then materialized in this order structure? Will there be as many orders as the market order needs to be sliced to get fully filled? Also, trade has following structure: ```python { 'price': Decimal, 'amount': Decimal, 'timestamp': float, 'side': str 'fee_currency': str, 'fee_amount': Decimal, 'trade_id': str, 'order_id': str } ``` So for one market order, does it create as many `trade`s and `order`s as required to get it filled ? On the opposite, for a limit order, only one `order` is created and no `trade`? Am I right in this understanding? Thanks a lot for your reply. Have a good day, Bests,
closed
2020-06-25T20:04:57Z
2020-06-25T20:55:55Z
https://github.com/bmoscon/cryptofeed/issues/254
[]
yohplala
4
mwaskom/seaborn
data-science
3,466
Address deprecations shown with pandas 2.1.0
Hi Michael, Not sure if this is already being addressed...there seem to be a few deprecation warnings with the latest version of pandas (https://pandas.pydata.org/docs/whatsnew/v2.1.0.html#backwards-incompatible-api-changes): ```text .../venv/lib/python3.9/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead .../venv/lib/python3.9/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. ``` I am also seeing a few different deprecated calls in _oldcore.py. Seems though as if these are easy fixes. Are you planning to address these? Many thanks, Karsten
closed
2023-09-07T17:34:31Z
2023-09-07T23:10:39Z
https://github.com/mwaskom/seaborn/issues/3466
[]
km2023-4
1
BeanieODM/beanie
pydantic
302
[feature] Custom type encoders
Have you considered to allow for custom type encoders? Let me explain. Pydantic supports custom types. In fact I can implement one classes to overload default types, like in this example: ```python class SpecialStr(str, BaseType): __slots__ = [] @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate(cls, v): return cls(v) def __repr__(self): return f'{self.__class__.__name__}({super().__repr__()})' def party(self) -> "SpecialString": return SpecialString(f'🥳 {self} 🥳') class Model(BaseModel): value: SpecialStr m = Model(value='house') m.value.party() # '🥳 house 🥳' ``` But this function alone does not give the flexibility to abstract database values. As an example, let's assume I would like to have a type `ImgurUrl` which is used to store cdn links like `https://i.imgur.com/rr7pioJ.png`. Easy to see that the link contains a lot of redundant data and assuming the CDN provider does not change it can be stored as `rr7pioJ.png`. I would like to have the possibility to solve this with just a simple custom type, that isolates this behavior in a single class. Something like this: ```python class ImgurUrl(str, BaseType): __slots__ = [] @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate(cls, v): return cls(v) @classmethod def _from_db(cls, value: str) -> "ImgurUrl": return ImgurUrl(f'https://i.imgur.com/{value}') def _to_db(self) -> str: if self.startswith('https://i.imgur.com/'): return self[20:] else: raise RuntimeError(f'ImgurUrl does not contain a Imgur Url') class Model(Document): link: ImgurUrl ``` To achieve this the addition of functions like `_to_db` and `_from_db` is required. The first can be solved by modifyling `beanie.odm.utils.encoder` the second one would need a bit more work in `beanie.odm.utils.parsing`. Such functions would allow the implementation of custom behavior at the argument or document level.
closed
2022-07-07T23:05:28Z
2023-01-07T02:28:53Z
https://github.com/BeanieODM/beanie/issues/302
[ "Stale" ]
svaraborut
3
google-research/bert
tensorflow
1,177
3090
I used a 3090 graphics card, TensorFlow1.14. There will be a problem. The same code will work on 2080. Have you come across anything like this?
open
2020-11-23T06:50:48Z
2020-11-23T06:50:48Z
https://github.com/google-research/bert/issues/1177
[]
Mbdn
0
strawberry-graphql/strawberry
graphql
3,276
Incorrect template rendering when overriding graphql IDE template
The GraphQLView and its async version allow overriding the template file. However, the loading of the template is incorrect, resulting in `JSON.parse("") // empty string` , because the variable is already replaced. ## Additional Context In the view we see the following code: ```python try: template = Template(render_to_string("graphql/graphiql.html")) except TemplateDoesNotExist: template = Template(self.graphql_ide_html) ``` The loading in the try section, erronously calls render_to_string and sticks the result into a Template class. However, render_to_string already renders the entire template, replacing its variables.
open
2023-12-05T18:22:15Z
2025-03-20T15:56:30Z
https://github.com/strawberry-graphql/strawberry/issues/3276
[ "bug" ]
msopacua
2
ets-labs/python-dependency-injector
asyncio
91
Add Python 3.5 support
closed
2015-09-21T14:43:49Z
2015-10-12T15:23:02Z
https://github.com/ets-labs/python-dependency-injector/issues/91
[ "enhancement" ]
rmk135
1
iperov/DeepFaceLab
deep-learning
5,533
3050ti. 2 root error found
Starting. Press "Enter" to stop training and save model. Trying to do the first iteration. If an error occurs, reduce the model parameters. !!! Windows 10 users IMPORTANT notice. You should set this setting in order to work correctly. https://i.imgur.com/B7cmDCB.jpg !!! You are training the model from scratch. It is strongly recommended to use a pretrained model to speed up the training and improve the quality. Error: 2 root error(s) found. (0) Resource exhausted: failed to allocate memory [[node mul_89 (defined at D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py:64) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. [[concat_8/concat/_103]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. (1) Resource exhausted: failed to allocate memory [[node mul_89 (defined at D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py:64) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. 0 successful operations. 0 derived errors ignored. Errors may have originated from an input operation. Input Source operations connected to node mul_89: src_dst_opt/vs_inter_AB/upscale1/conv1/weight_0/read (defined at D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py:38) Input Source operations connected to node mul_89: src_dst_opt/vs_inter_AB/upscale1/conv1/weight_0/read (defined at D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py:38) Original stack trace for 'mul_89': File "threading.py", line 884, in _bootstrap File "threading.py", line 916, in _bootstrap_inner File "threading.py", line 864, in run File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread debug=debug) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__ self.on_initialize() File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 564, in on_initialize src_dst_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gvs)) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py", line 64, in get_update_op v_t = self.beta_2*vs + (1.0-self.beta_2) * tf.square(g-m_t) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variables.py", line 1076, in _run_op return tensor_oper(a.value(), *args, **kwargs) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1400, in r_binary_op_wrapper return func(x, y, name=name) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1710, in _mul_dispatch return multiply(x, y, name=name) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 206, in wrapper return target(*args, **kwargs) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\math_ops.py", line 530, in multiply return gen_math_ops.mul(x, y, name) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 6245, in mul "Mul", x=x, y=y, name=name) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper attrs=attr_protos, op_def=op_def) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _create_op_internal op_def=op_def) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 2045, in __init__ self._traceback = tf_stack.extract_stack_for_node(self._c_op) Traceback (most recent call last): File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1375, in _do_call return fn(*args) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1360, in _run_fn target_list, run_metadata) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1453, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: failed to allocate memory [[{{node mul_89}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. [[concat_8/concat/_103]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. (1) Resource exhausted: failed to allocate memory [[{{node mul_89}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. 0 successful operations. 0 derived errors ignored. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 129, in trainerThread iter, iter_time = model.train_one_iter() File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 474, in train_one_iter losses = self.onTrainOneIter() File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 774, in onTrainOneIter src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 584, in src_dst_train self.target_dstm_em:target_dstm_em, File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 968, in run run_metadata_ptr) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1191, in _run feed_dict_tensor, options, run_metadata) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1369, in _do_run run_metadata) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1394, in _do_call raise type(e)(node_def, op, message) # pylint: disable=no-value-for-parameter tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: failed to allocate memory [[node mul_89 (defined at D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py:64) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. [[concat_8/concat/_103]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. (1) Resource exhausted: failed to allocate memory [[node mul_89 (defined at D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py:64) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. 0 successful operations. 0 derived errors ignored. Errors may have originated from an input operation. Input Source operations connected to node mul_89: src_dst_opt/vs_inter_AB/upscale1/conv1/weight_0/read (defined at D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py:38) Input Source operations connected to node mul_89: src_dst_opt/vs_inter_AB/upscale1/conv1/weight_0/read (defined at D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py:38) Original stack trace for 'mul_89': File "threading.py", line 884, in _bootstrap File "threading.py", line 916, in _bootstrap_inner File "threading.py", line 864, in run File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread debug=debug) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__ self.on_initialize() File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 564, in on_initialize src_dst_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gvs)) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\optimizers\AdaBelief.py", line 64, in get_update_op v_t = self.beta_2*vs + (1.0-self.beta_2) * tf.square(g-m_t) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variables.py", line 1076, in _run_op return tensor_oper(a.value(), *args, **kwargs) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1400, in r_binary_op_wrapper return func(x, y, name=name) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1710, in _mul_dispatch return multiply(x, y, name=name) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 206, in wrapper return target(*args, **kwargs) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\math_ops.py", line 530, in multiply return gen_math_ops.mul(x, y, name) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 6245, in mul "Mul", x=x, y=y, name=name) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper attrs=attr_protos, op_def=op_def) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _create_op_internal op_def=op_def) File "D:\FACELAB\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 2045, in __init__ self._traceback = tf_stack.extract_stack_for_node(self._c_op)
open
2022-06-15T07:56:51Z
2023-06-08T23:18:54Z
https://github.com/iperov/DeepFaceLab/issues/5533
[]
knaxLFea
1
dask/dask
pandas
11,158
calling repartition on ddf with timeseries index after resample causes ValueError: left side of old and new divisions are different
**issue**: If you have a DataFrame (ddf) with a time series index that doesn’t align perfectly with whole seconds (for example, ‘2024-06-01 10:00:00.873821’), and you resample it, the new DataFrame’s divisions will be rounded down to the nearest second. This can cause an error when you try to repartition the DataFrame afterwards. The error message will say there’s a mismatch in the divisions on the left side. Probably because the new data frames first division is nonexistent in the data To fix this, you can run `ddf.loc[ddf.divisions[0].ceil('s'):]` before you resample. This removes any data at the start that doesn’t align with whole seconds. However this seems confusing **Minimal Complete Verifiable Example**: ``` import dask.dataframe as dd import pandas as pd # create data idx = pd.date_range(start="10:00:00.873821", end="10:05:00", freq="0.002s") data = [i for i in range(idx.size)] df = pd.DataFrame({'data': data}, index=idx) ddf = dd.from_pandas(df, npartitions=10) print(ddf.divisions[0]) ``` output: Timestamp('2024-06-01 10:00:00.873821') ``` ddf_res = ddf.resample("0.03s").mean() print(ddf_res.divisions[0]) ``` output: Timestamp('2024-06-01 10:00:00.870000') ``` ddf_res = ddf_res.repartition(freq="1T") ddf_res.head() ``` output: ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[105], line 1 ----> 1 ddf_res.head() File [/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py:702](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py#line=701), in FrameBase.head(self, n, npartitions, compute) 700 out = new_collection(expr.Head(self, n=n, npartitions=npartitions)) 701 if compute: --> 702 out = out.compute() 703 return out File [/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py:476](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py#line=475), in FrameBase.compute(self, fuse, **kwargs) 474 out = out.repartition(npartitions=1) 475 out = out.optimize(fuse=fuse) --> 476 return DaskMethodsMixin.compute(out, **kwargs) File [/opt/conda/lib/python3.12/site-packages/dask/base.py:375](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask/base.py#line=374), in DaskMethodsMixin.compute(self, **kwargs) 351 def compute(self, **kwargs): 352 """Compute this dask collection 353 354 This turns a lazy Dask collection into its in-memory equivalent. (...) 373 dask.compute 374 """ --> 375 (result,) = compute(self, traverse=False, **kwargs) 376 return result File [/opt/conda/lib/python3.12/site-packages/dask/base.py:654](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask/base.py#line=653), in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs) 646 return args 648 schedule = get_scheduler( 649 scheduler=scheduler, 650 collections=collections, 651 get=get, 652 ) --> 654 dsk = collections_to_dsk(collections, optimize_graph, **kwargs) 655 keys, postcomputes = [], [] 656 for x in collections: File [/opt/conda/lib/python3.12/site-packages/dask/base.py:426](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask/base.py#line=425), in collections_to_dsk(collections, optimize_graph, optimizations, **kwargs) 424 graphs = [] 425 for opt, val in groups.items(): --> 426 dsk, keys = _extract_graph_and_keys(val) 427 dsk = opt(dsk, keys, **kwargs) 429 for opt_inner in optimizations: File [/opt/conda/lib/python3.12/site-packages/dask/base.py:452](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask/base.py#line=451), in _extract_graph_and_keys(vals) 450 graphs, keys = [], [] 451 for v in vals: --> 452 graphs.append(v.__dask_graph__()) 453 keys.append(v.__dask_keys__()) 455 if any(isinstance(graph, HighLevelGraph) for graph in graphs): File [/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py:559](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py#line=558), in FrameBase.__dask_graph__(self) 557 out = self.expr 558 out = out.lower_completely() --> 559 return out.__dask_graph__() File [/opt/conda/lib/python3.12/site-packages/dask_expr/_core.py:506](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_core.py#line=505), in Expr.__dask_graph__(self) 503 continue 504 seen.add(expr._name) --> 506 layers.append(expr._layer()) 507 for operand in expr.dependencies(): 508 stack.append(operand) File [/opt/conda/lib/python3.12/site-packages/dask_expr/_repartition.py:269](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_repartition.py#line=268), in RepartitionDivisions._layer(self) 267 if a[0] != b[0]: 268 msg = "left side of old and new divisions are different" --> 269 raise ValueError(msg) 270 if a[-1] != b[-1]: 271 msg = "right side of old and new divisions are different" ValueError: left side of old and new divisions are different ``` **UPDATE :** it also happens at the right side: ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[84], line 1 ----> 1 ddf_hf.head() File [/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py:702](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py#line=701), in FrameBase.head(self, n, npartitions, compute) 700 out = new_collection(expr.Head(self, n=n, npartitions=npartitions)) 701 if compute: --> 702 out = out.compute() 703 return out File [/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py:476](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py#line=475), in FrameBase.compute(self, fuse, **kwargs) 474 out = out.repartition(npartitions=1) 475 out = out.optimize(fuse=fuse) --> 476 return DaskMethodsMixin.compute(out, **kwargs) File [/opt/conda/lib/python3.12/site-packages/dask/base.py:375](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask/base.py#line=374), in DaskMethodsMixin.compute(self, **kwargs) 351 def compute(self, **kwargs): 352 """Compute this dask collection 353 354 This turns a lazy Dask collection into its in-memory equivalent. (...) 373 dask.compute 374 """ --> 375 (result,) = compute(self, traverse=False, **kwargs) 376 return result File [/opt/conda/lib/python3.12/site-packages/dask/base.py:654](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask/base.py#line=653), in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs) 646 return args 648 schedule = get_scheduler( 649 scheduler=scheduler, 650 collections=collections, 651 get=get, 652 ) --> 654 dsk = collections_to_dsk(collections, optimize_graph, **kwargs) 655 keys, postcomputes = [], [] 656 for x in collections: File [/opt/conda/lib/python3.12/site-packages/dask/base.py:426](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask/base.py#line=425), in collections_to_dsk(collections, optimize_graph, optimizations, **kwargs) 424 graphs = [] 425 for opt, val in groups.items(): --> 426 dsk, keys = _extract_graph_and_keys(val) 427 dsk = opt(dsk, keys, **kwargs) 429 for opt_inner in optimizations: File [/opt/conda/lib/python3.12/site-packages/dask/base.py:452](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask/base.py#line=451), in _extract_graph_and_keys(vals) 450 graphs, keys = [], [] 451 for v in vals: --> 452 graphs.append(v.__dask_graph__()) 453 keys.append(v.__dask_keys__()) 455 if any(isinstance(graph, HighLevelGraph) for graph in graphs): File [/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py:559](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_collection.py#line=558), in FrameBase.__dask_graph__(self) 557 out = self.expr 558 out = out.lower_completely() --> 559 return out.__dask_graph__() File [/opt/conda/lib/python3.12/site-packages/dask_expr/_core.py:506](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_core.py#line=505), in Expr.__dask_graph__(self) 503 continue 504 seen.add(expr._name) --> 506 layers.append(expr._layer()) 507 for operand in expr.dependencies(): 508 stack.append(operand) File [/opt/conda/lib/python3.12/site-packages/dask_expr/_repartition.py:272](http://10.4.201.45:11000/opt/conda/lib/python3.12/site-packages/dask_expr/_repartition.py#line=271), in RepartitionDivisions._layer(self) 270 if a[-1] != b[-1]: 271 msg = "right side of old and new divisions are different" --> 272 raise ValueError(msg) 274 def _is_single_last_div(x): 275 """Whether last division only contains single label""" ValueError: right side of old and new divisions are different ``` **Environment**: - Dask version: 2024.5.2 - Python version: 3.12.3 - Operating System: debian - Install method (conda, pip, source): conda
closed
2024-06-01T07:11:40Z
2024-06-03T16:22:50Z
https://github.com/dask/dask/issues/11158
[ "dataframe" ]
N4321D
0
LibrePhotos/librephotos
django
1,030
can not view photos from nextcloud
# 🐛 Bug Report * [x] 📁 I've Included a ZIP file containing my librephotos `log` files:[__logs.zip__](https://github.com/LibrePhotos/librephotos/files/12705941/logs.zip) * [x] ❌ I have looked for similar issues (including closed ones): __yes, I've looked through similar issue and get `fixed`, but I still met same issue.__ * [x] 🎬 (If applicable) I've provided pictures or links to videos that clearly demonstrate the issue <img width="679" alt="image" src="https://github.com/LibrePhotos/librephotos/assets/44010936/169c558a-6dad-4eec-b7e8-67e522a19036"> ## 📝 Description of issue: * My nextcloud is installed using docker,and my librephotos is install using docker too.They are running on the same machine,x86 ubuntu 22.04 LTS.They all work fine individually but I met problems adding album from nextcloud. * I've reinstalled them and still met this problem. ## 🔁 How can we reproduce it: Maybe this problem is related to the fact that they all use docker on the same machine? ## Please provide additional information: - 💻 Operating system: __ubuntu 22.04 LTS__ - ⚙ Architecture (x86 or ARM): __X86__ - 🔢 Librephotos version: __I pull the latest docker image on 2023/9/13__ - 📸 Librephotos installation method (Docker, Kubernetes, .deb, etc.): __docker__ * 🐋 If Docker or Kubernets, provide docker-compose image tag: __reallibrephotos/singleton:latest__ - 📁 How is you picture library mounted (Local file system (Type), NFS, SMB, etc.): local: ```bash sudo docker run --name librephotos -v /home/mydir/librephotos/photos:/var/lib/librephotos/photos/ ``` - ☁ If you are virtualizing librephotos, Virtualization platform (Proxmox, Xen, HyperV, etc.): __No,just using docker on ubuntu.__ ### If you need me to provide more information, just tell me! LibrePhotos is an awsome photo management service, I'd like to help it do better!
open
2023-09-23T08:48:56Z
2023-10-04T17:27:35Z
https://github.com/LibrePhotos/librephotos/issues/1030
[ "bug", "singleton" ]
LUCKandII
0
adamerose/PandasGUI
pandas
215
Fatal Python error: PyEval_RestoreThread - moving Tkinter window with PandasGUI open
Trying to move a Tkinter window at any time gives me this error across multiple systems. **Environment** Windows 10 64-bit Python 3.10 64-bit pandasgui-0.2.13 Error: PandasGUI INFO � pandasgui.gui � Opening PandasGUI Fatal Python error: PyEval_RestoreThread: the function must be called with the GIL held, but the GIL is released (the current Python thread state is NULL) Python runtime state: initialized Current thread 0x000038c4 (most recent call first): File "C:\Python\lib\site-packages\pandasgui\gui.py", line 106 in __init__ File "C:\Python\lib\site-packages\pandasgui\gui.py", line 468 in show File "C:\Desktop\file.py", line 398 in start_pandasgui File "C:\Python\lib\site-packages\customtkinter\widgets\ctk_button.py", line 372 in clicked File "C:\Python\lib\tkinter\__init__.py", line 1921 in __call__ File "C:\Python\lib\tkinter\__init__.py", line 1458 in mainloop File "C:\Python\lib\site-packages\customtkinter\windows\ctk_tk.py", line 106 in mainloop File "C:\Desktop\file.py", line 1535 in <module> Extension modules: win32api, _win32sysloader, numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.strptime, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.tslib, pandas._libs.lib, pandas._libs.hashing, pyarrow.lib, pyarrow._hdfsio, pandas._libs.ops, pandas._libs.arrays, pandas._libs.index, pandas._libs.join, pandas._libs.sparse, pyarrow._compute, pandas._libs.reduction, pandas._libs.indexing, pandas._libs.internals, pandas._libs.writers, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.testing, pandas._libs.parsers, pandas._libs.json, PyQt5.QtCore, PyQt5.QtGui, PyQt5.QtWidgets, win32com.shell.shell, PyQt5.QtWebChannel, PyQt5.QtNetwork, PyQt5.QtWebEngineCore, PyQt5.QtPrintSupport, PyQt5.QtWebEngineWidgets, pyodbc, matplotlib._c_internal_utils, PIL._imaging, matplotlib._path, kiwisolver._cext, matplotlib._image (total: 74)
open
2022-11-11T20:12:08Z
2022-11-11T20:12:45Z
https://github.com/adamerose/PandasGUI/issues/215
[ "bug" ]
lachesis17
0
modelscope/data-juicer
data-visualization
63
[MM] image_deduplicator
A new Deduplicator image_deduplicator will be supported. It will remove duplicate images in multimodal samples. Maybe based on imagededup library TBD: when a sample contains multiple images, remove duplicate images only or remove this whole sample?
closed
2023-11-02T09:43:50Z
2023-11-15T03:11:01Z
https://github.com/modelscope/data-juicer/issues/63
[ "enhancement", "dj:multimodal" ]
HYLcool
0
serengil/deepface
machine-learning
1,318
[FEATURE]: Improve represent performance
### Description Performance is very slow when aligning faces when using the `represent` API. Please see my PR here: https://github.com/serengil/deepface/pull/1319 ### Additional Info _No response_
closed
2024-08-23T16:10:02Z
2024-08-26T13:51:26Z
https://github.com/serengil/deepface/issues/1318
[ "enhancement" ]
Circuit8
2
tflearn/tflearn
data-science
1,048
tflearn getting stuck when predicting
When model.predict is carried when using a sanic server, it is getting blocked and hanged. The issue is in config.py at line tf.get_collection('is_training_ops')[1].eval(session=session) under def is_training() error shown when evaluating the expression is "Timeout waiting for response 113" please help?
open
2018-05-09T14:11:01Z
2018-05-09T14:12:02Z
https://github.com/tflearn/tflearn/issues/1048
[]
spawn08
0
ultralytics/ultralytics
machine-learning
19,689
Yolo v10 model supported in Java
Dear expert I use the code with Yolov8 model for extraction it works well but i use the similar coding for Yolov10 model extraction it does not work Do you know any format changes for the output between v8 and v10? I try to make the java work for the extraction on yolov10 output, please advise OrtSession.Result output = session.run(...); float[][][] outputData = (float[][][]) output.get(0).getValue(); float[][] predictions= outputData[0]; predictions = transposeMatrix(predictions); for (float[] bbox : predictions) { int label = predMax(bbox, 4); // bbox[4] is the confidence // bbox[0] - bbox[3] = boundbox } // Function to get the max probablities int predMax(float[] probabilities, int startIdx) { float maxVal = Float.NEGATIVE_INFINITY; int idx = startIdx; for (int i = startIdx; i < probabilities.length; i++) { if (probabilities[i] > maxVal) { maxVal = probabilities[i]; idx = i; } } return idx; } float[][] transposeMatrix(float[][] matrix) { float[][] transMatrix = new float[matrix[0].length][matrix.length]; for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[0].length; j++) { transMatrix[j][i] = matrix[i][j]; } } return transMatrix; }
open
2025-03-14T03:17:13Z
2025-03-14T06:23:12Z
https://github.com/ultralytics/ultralytics/issues/19689
[ "question", "exports" ]
felixchan68
2
gradio-app/gradio
data-science
10,818
Bitdefender Issue
### Describe the bug ![Image](https://github.com/user-attachments/assets/8db5d656-1182-4773-99ed-88fdde280028) ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction I have no clue ### Screenshot ![Image](https://github.com/user-attachments/assets/554fb1a7-26cd-4b58-b654-8c081c53054e) ### Logs ```shell ``` ### System Info ```shell PS G:\Projects2\Imagen Edit> gradio environment Gradio Environment Information: ------------------------------ Operating System: Windows gradio version: 5.15.0 gradio_client version: 1.7.0 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.8.0 audioop-lts is not installed. fastapi: 0.115.7 ffmpy: 0.4.0 gradio-client==1.7.0 is not installed. httpx: 0.28.1 huggingface-hub: 0.29.3 jinja2: 3.1.6 markupsafe: 2.1.5 numpy: 1.24.3 orjson: 3.10.7 packaging: 23.2 pandas: 2.2.3 pillow: 10.0.0 pydantic: 2.10.6 pydub: 0.25.1 python-multipart: 0.0.18 pyyaml: 6.0.2 ruff: 0.9.6 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.45.3 tomlkit: 0.12.0 typer: 0.15.1 typing-extensions: 4.12.2 urllib3: 2.3.0 uvicorn: 0.34.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2023.10.0 httpx: 0.28.1 huggingface-hub: 0.29.3 packaging: 23.2 typing-extensions: 4.12.2 websockets: 14.2 PS G:\Projects2\Imagen Edit> ``` ### Severity Blocking usage of gradio
open
2025-03-17T17:42:00Z
2025-03-17T19:20:36Z
https://github.com/gradio-app/gradio/issues/10818
[ "bug" ]
PierrunoYT
1
vimalloc/flask-jwt-extended
flask
366
DeprecationWarning: The verify parameter is deprecated. Please use options instead.
The code line 91 in the file [ask_jwt_extended/utils.py](https://github.com/vimalloc/flask-jwt-extended/blob/master/flask_jwt_extended/utils.py) ``` jwt_manager = _get_jwt_manager() unverified_claims = jwt.decode( encoded_token, verify=False, algorithms=config.decode_algorithms ) ``` triggers a deprecation warning in jwt/api_jws.py:119 saying: ``` venv/lib/python3.7/site-packages/jwt/api_jws.py:119: DeprecationWarning: The verify parameter is deprecated. Please use options instead. 'Please use options instead.', DeprecationWarning) ```
closed
2020-10-26T17:33:44Z
2021-01-18T15:48:18Z
https://github.com/vimalloc/flask-jwt-extended/issues/366
[]
fabrizio2210
2
holoviz/panel
plotly
7,407
Cannot upload accepted_filetypes pdf
I'm on panel 1.5.2 using the FileDropper and try to make a working example for https://discourse.holoviz.org/t/problem-with-accessing-pdf-file-s-input-in-panel/8339. ![image](https://github.com/user-attachments/assets/72998338-44de-4191-bf7f-858a9d09b5d0) ```python import io import panel as pn import base64 from PyPDF2 import PdfReader pn.extension('filedropper') def transform_pdfs(value): pages = {} for key, value in value: f=io.BytesIO(file_input.value) reader = PdfReader(f) page = reader.pages[0] pages[key]=page print(pages) file_input = pn.widgets.FileDropper(accepted_filetypes=[".pdf"]) pn.Column( file_input, pn.bind(transform_pdfs, file_input) ).servable() ``` I've also tried `accepted_filetypes=["pdf"]` without success.
closed
2024-10-16T09:13:19Z
2024-12-23T07:58:59Z
https://github.com/holoviz/panel/issues/7407
[ "duplicate" ]
MarcSkovMadsen
3
xonsh/xonsh
data-science
5,718
shell exits if $THREAD_SUBPROCS=None and history is invoked with invalid argument
## Current Behavior Xonsh terminates after calling the history command with an invalid parameter if $THREAD_SUBPROCS=None <!--- For general xonsh issues, please try to replicate the failure using `xonsh --no-rc --no-env`. Short, reproducible code snippets are highly appreciated. You can use `$XONSH_SHOW_TRACEBACK=1`, `$XONSH_TRACE_SUBPROC=2`, or `$XONSH_DEBUG=1` to collect more information about the failure. --> Traceback (if applicable): <details> ```xsh $ /usr/bin/xonsh --no-rc --no-env user@machine ~ @ $XONSH_SHOW_TRACEBACK=1 user@machine ~ @ $XONSH_TRACE_SUBPROC=2 user@machine ~ @ $XONSH_DEBUG=1 user@machine ~ @ ${...}["THREAD_SUBPROCS"]=None user@machine ~ @ history badarg<stdin>:1:8 - history badarg <stdin>:1:8 + ![history badarg] user@machine ~ @ history badarg <stdin>:1:8 - history badarg <stdin>:1:8 + ![history badarg] Trace run_subproc({'cmds': (['history', 'badarg'],), 'captured': 'hiddenobject'}) 0: {'cmd': ['history', 'badarg'], 'cls': 'xonsh.procs.proxies.ProcProxy', 'alias_name': 'history', 'alias': <xonsh.history.main.HistoryAlias object at 0x772879d2ea80>, 'background': False} usage: history [-h] {show,id,file,info,pull,flush,off,on,clear,delete,gc,transfer,diff} ... history: error: cannot convert 'badarg' to slice --- shell exits here --- $ ``` </details> ## Expected Behavior <!--- What you expect and what is your real life use case. --> Xonsh should continue running after printing the error. ## xonfig <details> ```xsh +-----------------------------+-----------------+ | xonsh | 0.18.3 | | Python | 3.12.7 | | PLY | 3.11 | | have readline | True | | prompt toolkit | 3.0.48 | | shell type | prompt_toolkit | | history backend | json | | pygments | 2.18.0 | | on posix | True | | on linux | True | | distro | unknown | | on wsl | False | | on darwin | False | | on windows | False | | on cygwin | False | | on msys2 | False | | is superuser | False | | default encoding | utf-8 | | xonsh encoding | utf-8 | | encoding errors | surrogateescape | | xontrib | [] | | RC file | [] | | UPDATE_OS_ENVIRON | False | | XONSH_CAPTURE_ALWAYS | False | | XONSH_SUBPROC_OUTPUT_FORMAT | stream_lines | | THREAD_SUBPROCS | True | | XONSH_CACHE_SCRIPTS | True | +-----------------------------+-----------------+ ``` </details> ## For community ⬇️ **Please click the 👍 reaction instead of leaving a `+1` or 👍 comment**
open
2024-10-31T16:44:19Z
2024-10-31T20:32:28Z
https://github.com/xonsh/xonsh/issues/5718
[ "history", "edge-case" ]
mrschyte
0
3b1b/manim
python
2,172
when i run example by manimgl, circle displayed not coorectly
### Describe the bug when i run manim, circle displayed not coorectly.it seems has may lines around the circle. ![image](https://github.com/user-attachments/assets/807f1411-6121-4a29-9755-9a4b76d35b67) ![image](https://github.com/user-attachments/assets/4e047f17-b5da-4755-88c6-91c72abeb933) **Code**: from manimlib import * class SquareToCircle(Scene): def construct(self): circle = Circle() circle.set_fill(BLUE, opacity=0.5) circle.set_stroke(BLUE_E, width=4) self.add(circle) **Wrong display or Error traceback**: <!-- the wrong display result of the code you run, or the error Traceback --> ### Additional context <!-- Add any other context about the problem here. --> Windows;Python 3.10,
closed
2024-09-30T08:32:24Z
2024-10-11T12:36:00Z
https://github.com/3b1b/manim/issues/2172
[ "bug" ]
hashixuehua
5
smiley/steamapi
rest-api
54
PyPi support
I am suggesting to support the package through pypi, so installation as well as distribution is easier. Currently installing this package otherwise is just unnecessary complicated. The package could even be tagged as alpha and nicht production ready. If requested I could modify the setup.py accordingly.
closed
2018-02-25T20:47:12Z
2019-04-09T16:10:59Z
https://github.com/smiley/steamapi/issues/54
[]
indietyp
1
DistrictDataLabs/yellowbrick
matplotlib
1,131
MissingValuesBar does not work on categorical columns
## Describe the solution you'd like Currently, I am unable to get MissingValuesBar to work on data that has categorical columns. It is internally trying to convert these columns to a floating point value and producing an error at this step. I am hoping this can be handles internally in the class itself since it is just checking for missing values so it should not care about the type of column. ## Is your feature request related to a problem? Please describe. Described above, but this is the error that I get on categorical data. One of the columns has continent values and it looks like it is producing an error at that point. ```python # Instantiate the visualizer plt.figure(figsize=(15,10)) visualizer = MissingValuesBar(features=features) visualizer.fit(X=data[features], y=data[target].values) # Supply the targets via y _ = visualizer.show() # Finalize and render the figure ``` **Traceback** ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-7-2b58032dfe22> in <module> 3 visualizer = MissingValuesBar(features=features) 4 ----> 5 visualizer.fit(X=data[features], y=data[target].values) # Supply the targets via y 6 _ = visualizer.show() # Finalize and render the figure ~\.conda\envs\ds7337_cs3\lib\site-packages\yellowbrick\contrib\missing\base.py in fit(self, X, y, **kwargs) 70 self.y = y 71 ---> 72 self.draw(X, y, **kwargs) 73 return self 74 ~\.conda\envs\ds7337_cs3\lib\site-packages\yellowbrick\contrib\missing\bar.py in draw(self, X, y, **kwargs) 137 target values. 138 """ --> 139 nan_col_counts = self.get_nan_col_counts() 140 141 # the x locations for the groups ~\.conda\envs\ds7337_cs3\lib\site-packages\yellowbrick\contrib\missing\bar.py in get_nan_col_counts(self, **kwargs) 110 111 else: --> 112 nan_matrix = self.X.astype(np.float) 113 114 if self.y is None: ValueError: could not convert string to float: 'euorpe' ``` **If I just take the numeric features, it works well** ```python # Instantiate the visualizer plt.figure(figsize=(15,10)) visualizer = MissingValuesBar(features=features_numerical) visualizer.fit(X=data[features_numerical], y=data[target].values) # Supply the targets via y _ = visualizer.show() # Finalize and render the figure ``` **See output below** ![image](https://user-images.githubusercontent.com/33585645/100137410-0cb02b00-2e52-11eb-8a0f-04a94c07dfdd.png)
closed
2020-11-24T18:40:36Z
2022-05-07T21:00:55Z
https://github.com/DistrictDataLabs/yellowbrick/issues/1131
[ "type: bug", "type: technical debt" ]
ngupta23
2
ResidentMario/missingno
data-visualization
127
Using missingno from the python command line
I was unable to generate graphs from the command line, I tried to use missing.plot() or missing.show() without any output. I saw the missingno functions (using dir(missingno) and nothing seems to show graphs. Does it work just in Jupyter notebooks? Thanks,
closed
2021-02-04T22:29:23Z
2021-02-04T22:59:40Z
https://github.com/ResidentMario/missingno/issues/127
[]
ggutierrezc
1
aiortc/aiortc
asyncio
877
Crash when negotiating after a video transceiver has been added by the server
How to reproduce: 1) add transceivers to the peerConnection from the server (for example when the datachannel opens): ```py @pc.on("datachannel") async def on_datachannel(channel): pc.addTransceiver("audio") pc.addTransceiver("video") # if this line is commented, or replaced by an "audio" transceiver, there is no crash. send_offer() ``` 2) complete the negotiation normally from the client (adding the offer description and sending an answer) -> the transaction is complete and the signaling state is back to stable 3) start a new negotiation from the client ```js async function reNegotiate() { const offer = await pc.createOffer(); await pc.setLocalDescription(offer); // <- crashing here dc.send(JSON.stringify(pc.localDescription)); } The crash depends on the browser: Chrome: ``` Failed to execute 'setLocalDescription' on 'RTCPeerConnection': Failed to set local offer sdp: Failed to set local video description recv parameters for m-section with mid='2'. ``` Firefox (even if it's just an audio transceiver): ``` Remote description indicates ICE restart but offer did not request ICE restart ``` could be related to Issue https://github.com/aiortc/aiortc/issues/803 ? Here is a modified version of the server example to reproduce the crash (press "Start" then "Renegotiate"): ```py import argparse import asyncio import json import logging import os import ssl import uuid from aiohttp import web from aiortc import RTCPeerConnection, RTCSessionDescription ROOT = os.path.dirname(__file__) logger = logging.getLogger("pc") pcs = set() async def send_offer(channel, pc): offer = await pc.createOffer() await pc.setLocalDescription(offer) channel.send(json.dumps({"sdp": pc.localDescription.sdp, "type": pc.localDescription.type})) async def send_answer(channel, pc): answer = await pc.createAnswer() await pc.setLocalDescription(answer) channel.send(json.dumps({"sdp": pc.localDescription.sdp, "type": pc.localDescription.type})) async def index(request): content = open(os.path.join(ROOT, "index.html"), "r").read() return web.Response(content_type="text/html", text=content) async def javascript(request): content = open(os.path.join(ROOT, "client.js"), "r").read() return web.Response(content_type="application/javascript", text=content) async def offer(request): params = await request.json() offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"]) pc = RTCPeerConnection() pc_id = "PeerConnection(%s)" % uuid.uuid4() pcs.add(pc) def log_info(msg, *args): logger.info(pc_id + " " + msg, *args) log_info("Created for %s", request.remote) @pc.on("datachannel") async def on_datachannel(channel): global DATA_CHANNEL DATA_CHANNEL = channel pc.addTransceiver("audio") pc.addTransceiver("video") await send_offer(channel, pc) @channel.on("message") async def on_message(message): nego = json.loads(message) await pc.setRemoteDescription(RTCSessionDescription(**nego)) if nego['type'] == "offer": await send_answer(channel, pc) @pc.on("connectionstatechange") async def on_connectionstatechange(): log_info("Connection state is %s", pc.connectionState) if pc.connectionState == "failed": await pc.close() pcs.discard(pc) @pc.on("track") def on_track(track): log_info("Track %s received", track.kind) @track.on("ended") async def on_ended(): log_info("Track %s ended", track.kind) # handle offer await pc.setRemoteDescription(offer) # send answer answer = await pc.createAnswer() await pc.setLocalDescription(answer) return web.Response( content_type="application/json", text=json.dumps( {"sdp": pc.localDescription.sdp, "type": pc.localDescription.type} ), ) async def on_shutdown(app): # close peer connections coros = [pc.close() for pc in pcs] await asyncio.gather(*coros) pcs.clear() if __name__ == "__main__": parser = argparse.ArgumentParser( description="WebRTC audio / video / data-channels demo" ) parser.add_argument("--cert-file", help="SSL certificate file (for HTTPS)") parser.add_argument("--key-file", help="SSL key file (for HTTPS)") parser.add_argument( "--host", default="0.0.0.0", help="Host for HTTP server (default: 0.0.0.0)" ) parser.add_argument( "--port", type=int, default=8080, help="Port for HTTP server (default: 8080)" ) parser.add_argument("--record-to", help="Write received media to a file."), parser.add_argument("--verbose", "-v", action="count") args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) if args.cert_file: ssl_context = ssl.SSLContext() ssl_context.load_cert_chain(args.cert_file, args.key_file) else: ssl_context = None app = web.Application() app.on_shutdown.append(on_shutdown) app.router.add_get("/", index) app.router.add_get("/client.js", javascript) app.router.add_post("/offer", offer) web.run_app( app, access_log=None, host=args.host, port=args.port, ssl_context=ssl_context ) ``` ```js // get DOM elements var dataChannelLog = document.getElementById('data-channel'), iceConnectionLog = document.getElementById('ice-connection-state'), iceGatheringLog = document.getElementById('ice-gathering-state'), signalingLog = document.getElementById('signaling-state'); // peer connection var pc = null; // data channel var dc = null, dcInterval = null; function createPeerConnection() { var config = { sdpSemantics: 'unified-plan', iceServers: [{urls: ['stun:stun.l.google.com:19302']}], }; pc = new RTCPeerConnection(config); // register some listeners to help debugging pc.addEventListener('icegatheringstatechange', function() { iceGatheringLog.textContent += ' -> ' + pc.iceGatheringState; }, false); iceGatheringLog.textContent = pc.iceGatheringState; pc.addEventListener('iceconnectionstatechange', function() { iceConnectionLog.textContent += ' -> ' + pc.iceConnectionState; }, false); iceConnectionLog.textContent = pc.iceConnectionState; pc.addEventListener('signalingstatechange', function() { signalingLog.textContent += ' -> ' + pc.signalingState; }, false); signalingLog.textContent = pc.signalingState; return pc; } function negotiate() { return pc.createOffer().then(function(offer) { return pc.setLocalDescription(offer); }).then(function() { // wait for ICE gathering to complete return new Promise(function(resolve) { if (pc.iceGatheringState === 'complete') { resolve(); } else { function checkState() { if (pc.iceGatheringState === 'complete') { pc.removeEventListener('icegatheringstatechange', checkState); resolve(); } } pc.addEventListener('icegatheringstatechange', checkState); } }); }).then(function() { var offer = pc.localDescription; document.getElementById('offer-sdp').textContent = offer.sdp; return fetch('/offer', { body: JSON.stringify({ sdp: offer.sdp, type: offer.type, }), headers: { 'Content-Type': 'application/json' }, method: 'POST' }); }).then(function(response) { return response.json(); }).then(function(answer) { document.getElementById('answer-sdp').textContent = answer.sdp; const remote_description = new window.RTCSessionDescription(answer); return pc.setRemoteDescription(remote_description); }).catch(function(e) { alert(e); }); } async function renegotiate() { pc.getTransceivers().forEach((transceiver) => { transceiver.direction = "sendonly"; }); try { const offer = await pc.createOffer(); await pc.setLocalDescription(offer); } catch (e) { console.log(e); alert(e); } dc.send(JSON.stringify(pc.localDescription)); } function start() { document.getElementById('start').style.display = 'none'; pc = createPeerConnection(); var time_start = null; dc = pc.createDataChannel('chat', {"ordered": true}); dc.onclose = function() { clearInterval(dcInterval); dataChannelLog.textContent += '- close\n'; }; dc.onmessage = async function(message) { console.log(message); const nego = JSON.parse(message.data); const desc = new window.RTCSessionDescription(nego); await pc.setRemoteDescription(desc); if (nego.type === "offer") { console.log("data channel: offer from server"); console.log(desc.sdp); const answ = await pc.createAnswer(); await pc.setLocalDescription(answ); dc.send(JSON.stringify(pc.localDescription)); console.log("data channel: answer to server"); console.log(pc.localDescription); } else { console.log("data channel: answer from server"); console.log(desc.sdp); } }; return negotiate(); document.getElementById('stop').style.display = 'inline-block'; } function stop() { document.getElementById('stop').style.display = 'none'; // close data channel if (dc) { dc.close(); } // close transceivers if (pc.getTransceivers) { pc.getTransceivers().forEach(function(transceiver) { if (transceiver.stop) { transceiver.stop(); } }); } // close local audio / video pc.getSenders().forEach(function(sender) { sender.track.stop(); }); // close peer connection setTimeout(function() { pc.close(); }, 500); } ``` ```html <html> <head> <meta charset="UTF-8"/> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title>WebRTC demo</title> <style> button { padding: 8px 16px; } pre { overflow-x: hidden; overflow-y: auto; } video { width: 100%; } .option { margin-bottom: 8px; } #media { max-width: 1280px; } </style> </head> <body> <button id="start" onclick="start()">Start</button> <button id="stop" style="display: none" onclick="stop()">Stop</button> <button onclick="renegotiate()">Re-negotiate</button> <h2>State</h2> <p> ICE gathering state: <span id="ice-gathering-state"></span> </p> <p> ICE connection state: <span id="ice-connection-state"></span> </p> <p> Signaling state: <span id="signaling-state"></span> </p> <div id="media" style="display: none"> <h2>Media</h2> <audio id="audio" autoplay="true"></audio> <video id="video" autoplay="true" playsinline="true"></video> </div> <h2>Data channel</h2> <pre id="data-channel" style="height: 200px;"></pre> <h2>SDP</h2> <h3>Offer</h3> <pre id="offer-sdp"></pre> <h3>Answer</h3> <pre id="answer-sdp"></pre> <script src="client.js"></script> </body> </html> ```
closed
2023-05-11T12:00:16Z
2023-10-06T02:00:35Z
https://github.com/aiortc/aiortc/issues/877
[ "stale" ]
nullishReturn
2
eriklindernoren/ML-From-Scratch
deep-learning
59
Add Gaussian Process
Pretty cool project. Gaussian Process might be something you can add in the future.
open
2019-09-27T07:33:28Z
2022-09-12T02:46:56Z
https://github.com/eriklindernoren/ML-From-Scratch/issues/59
[]
shikunyu8
2
home-assistant/core
python
140,642
MQTT Sensor have no Unit after Upgrading to 2025.3.3
### The problem Hi, I have done an update to HA 2025.3.3 After restart my MQTT Sensor entities don't show any unit any more, although they are defined in YAML with unit_of_measurement and device_class properly. In 2025.3.2 units show up! ### What version of Home Assistant Core has the issue? 2025.3.3 ### What was the last working version of Home Assistant Core? 2025.3.2 ### What type of installation are you running? Home Assistant Supervised ### Integration causing the issue _No response_ ### Link to integration documentation on our website _No response_ ### Diagnostics information _No response_ ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information _No response_
closed
2025-03-15T04:58:56Z
2025-03-24T11:33:48Z
https://github.com/home-assistant/core/issues/140642
[ "wontfix", "integration: mqtt" ]
Vippis2000
9
onnx/onnx
scikit-learn
6,229
onnx.utils.extract_model failed to extract subgraph from whisper-tiny-decoder
I tried to extract a subgraph from whisper-tiny-decoder. In whisper-tiny-decoder, it has a control if node. Below code is tring to extract a subgraph from no_past branch: ``` import onnx name = "whisper-tiny-decoder" if name == "whisper-tiny-decoder": input_path = "whisper-tiny-decoder.onnx" output_path = "whisper-tiny-decoder-if.onnx" input_names = ["/model/decoder/ConstantOfShape_output_0"] output_names = ["/model/decoder/Concat_2_output_0"] onnx.utils.extract_model(input_path, output_path, input_names, output_names) ``` However, I got below errors: ``` Traceback (most recent call last): File "C:\ort\ort-models\split.py", line 24, in <module> onnx.utils.extract_model(input_path, output_path, input_names, output_names) File "C:\Users\abc\AppData\Local\Programs\Python\Python310\lib\site-packages\onnx\utils.py", line 210, in extract_model extracted = e.extract_model(input_names, output_names) File "C:\Users\abc\AppData\Local\Programs\Python\Python310\lib\site-packages\onnx\utils.py", line 165, in extract_model inputs = self._collect_new_inputs(input_names) File "C:\Users\abc\AppData\Local\Programs\Python\Python310\lib\site-packages\onnx\utils.py", line 44, in _collect_new_inputs return self._collect_new_io_core(self.graph.input, names) # type: ignore File "C:\Users\abc\AppData\Local\Programs\Python\Python310\lib\site-packages\onnx\utils.py", line 37, in _collect_new_io_core new_io_tensors.append(self.vimap[name]) KeyError: '/model/decoder/ConstantOfShape_output_0' ```
open
2024-07-12T07:20:06Z
2024-07-12T08:15:26Z
https://github.com/onnx/onnx/issues/6229
[ "bug" ]
axinging
2
Python3WebSpider/ProxyPool
flask
159
docker部署,无法关闭日志
其实跟此问题有点类似 https://github.com/Python3WebSpider/ProxyPool/issues/158 我设置了环境变量APP_ENV=prod以及ENABLE_LOG_FILE=false,依然有大量日志
open
2022-05-17T09:56:35Z
2022-07-10T16:35:08Z
https://github.com/Python3WebSpider/ProxyPool/issues/159
[ "bug" ]
star7th
2
tqdm/tqdm
pandas
765
Step size for proper scaling of units when using tqdm as an iterable wrapper.
- [x] I have visited the [source website], and in particular read the [known issues] - [x] I have searched through the [issue tracker] for duplicates - [x] I have mentioned version numbers, operating system and environment, where applicable: tqdm: 4.32.2 Python: 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 21:26:53) [MSC v.1916 32 bit (Intel)] Platform: win32 I'm using tqdm to show the progress of a download using the requests library. My current code looks like this: ``` from requests import get, post, Response, request from tqdm import tqdm def direct_download(url, target, progress_decorator=tqdm): res:Response = get(url, stream=True) with open(target, "wb") as output: for chunk in progress_decorator( res.iter_content(1024, False), unit_scale=True, total=int(res.headers['Content-Length'])/1024, unit="kB" ): output.write(chunk) ``` I have to specify a "larger" chunk size, otherwise the download is needlessly slow (specifying 1 byte leads to download in kBs, specifiying 1 kB leads to download in MBs), I'm trying to figure out a way to have the units scale based on the value of the progress, and tell the tqdm that one iteration doesn't download 1 unit off the content length but 1024. What I have right now, is I just divide the total in bytes by the chunk size, but this way, the unit prefixing breaks (kB actually means MB, etc.), and setting kB as the main unit doesn't lead (for better or wose) to tqdm detecting the k as a prefix, and replacing it with the proper one. Edit: Yes, I know the solution for now is manually updating the progressbar, the aim of this issue is to bring this functionality to the iterable wrapper.
open
2019-06-26T11:36:57Z
2020-11-01T17:07:37Z
https://github.com/tqdm/tqdm/issues/765
[ "p3-enhancement 🔥", "question/docs ‽", "to-review 🔍" ]
golyalpha
13
cvat-ai/cvat
computer-vision
8,490
Can't build SiamMask and TransT functions
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce I'm encountering an issue where building automated annotation functions (SiamMask and TransT) in CVAT gets stuck in the "building" state. Below are the steps I followed and the output logs. **Steps to Reproduce:** 1. Installed CVAT locally using WSL 2 and Docker, following the installation instructions. 2. CVAT runs fine, and I can annotate videos. 3. Tried building automated annotation functions (SiamMask, TransT) using: `./serverless/deploy_cpu.sh serverless/pytorch/foolwood/siammask/` Both SiamMask and TransT get stuck in the "building" state. Here's the console output for SiamMask: > 24.09.30 21:28:55.948 (I) nuctl Project created {"Name": "cvat", "Namespace": "nuclio"} > Deploying pytorch/foolwood/siammask function... > 24.09.30 21:28:56.094 (W) nuctl.platform MaxWorkers is deprecated and will be removed in v1.15.x, use NumWorkers instead > 24.09.30 21:28:56.192 (I) nuctl Deploying function {"name": "pth-foolwood-siammask"} > 24.09.30 21:28:56.193 (I) nuctl Building {"builderKind": "docker", "versionInfo": "Label: 1.13.13, Git commit: 028989fe9d3fec47692e4a1384ac42267a8b7e0b, OS: linux, Arch: amd64, Go version: go1.21.13", "name": "pth-foolwood-siammask"} > 24.09.30 21:28:56.329 (I) nuctl Staging files and preparing base images > 24.09.30 21:28:56.393 (W) nuctl Using user provided base image, runtime interpreter version is provided by the base image {"baseImage": "ubuntu:2a0.04"} > 24.09.30 21:28:56.454 (I) nuctl Building processor image {"registryURL": "", "taggedImageName": "cvat.pth.foolwood.siammask:latest"} > 24.09.30 21:28:56.454 (I) nuctl.platform.docker Pulling image {"imageName": "quay.io/nuclio/handler-builder-python-onbuild:1.13.13-amd64"} > 24.09.30 21:28:59.486 (I) nuctl.platform.docker Pulling image {"imageName": "quay.io/nuclio/uhttpc:0.0.1-amd64"} > 24.09.30 21:29:02.353 (I) nuctl.platform Building docker image {"image": "cvat.pth.foolwood.siammask:latest"} It halts at this point. When accessing http://localhost:8070/projects/cvat/functions, I see the functions stuck in the "building" state, and the build log shows nothing. Found somewhat similar issues: https://github.com/cvat-ai/cvat/issues/3059 https://github.com/cvat-ai/cvat/issues/4475 Followed the suggestions from the first one (adding port and IP address into SiamMask function.yaml), but it didn't solve the problem. ### Expected Behavior SiamMask and TransT functions should be deployed successfully and appear in the AI Tools section of the CVAT annotation UI. ### Possible Solution _No response_ ### Context _No response_ ### Environment ```Markdown Docker Desktop 4.34.2 (167172) on Windows 10 CVAT: Server version: 2.20.0 Core version: 15.2.0 Canvas version: 2.20.9 UI version: 1.66.0 ```
closed
2024-09-30T14:52:23Z
2024-10-18T12:56:52Z
https://github.com/cvat-ai/cvat/issues/8490
[ "need info" ]
midnightdim
1
yeongpin/cursor-free-vip
automation
81
可否考虑一下 手动指定版本号
```bash ✅ SQLite數據庫更新成功 ℹ️ 更新系統ID... ✅ 系統ID更新成功 ❌ reset.check_version_failed ℹ️ Cursor 版本 < 0.45.0,跳过 getMachineId 修补 ✅ 機器標識重置成功 ``` 我本地是 cursor 0.45.11 nixos , 重置后 依旧会提示 请求次数过多.
closed
2025-02-22T08:53:54Z
2025-02-25T08:31:21Z
https://github.com/yeongpin/cursor-free-vip/issues/81
[ "feature" ]
joyanhui
2
laughingman7743/PyAthena
sqlalchemy
88
How to specify output bucket for query results in s3?
Hi, we are moving frmo pyathenajdbc to pyathena, but we are trying to specify the `S3OutputLocation` parameter. We need it in our code. is this possible for this library? thanks.
closed
2019-06-18T16:36:01Z
2019-11-23T12:22:13Z
https://github.com/laughingman7743/PyAthena/issues/88
[]
otmezger
9
FactoryBoy/factory_boy
sqlalchemy
406
No module named 'faker.config'
Hello dear friends, I use Python 3.6 with Anaconda distribution. I have just installed factory_boy with pip `pip install factory_boy==2.9.2`. In the dependencies I have the following: - factory_boy==2.9.2 - Faker==0.7.18 And when I want to load the library I got the following message: ```python >>> import factory Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\GITPRO~1\FEEDCR~1.IO\venv\lib\site-packages\factory\__init__.py", line 26, in <module> from .faker import Faker File "C:\GITPRO~1\FEEDCR~1.IO\venv\lib\site-packages\factory\faker.py", line 23, in <module> import faker.config ModuleNotFoundError: No module named 'faker.config' ``` Which is for me quite ... disturbing ... I have tried other versions, but never seemed to make it work ... Thanks a lot for your help. Jonathan
closed
2017-08-16T14:12:42Z
2023-02-05T15:19:04Z
https://github.com/FactoryBoy/factory_boy/issues/406
[ "Bug", "NeedInfo", "Packaging" ]
DEKHTIARJonathan
8
mars-project/mars
numpy
2,354
Support DataFrame operations on data which generates unknown dtypes
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Is your feature request related to a problem? Please describe.** Some DataFrame operands would generate output with unknown dtypes, like `tranpose`, `get_dummies`, we should add some mechanism that upcoming operations on these objects would fail.
closed
2021-08-19T03:51:13Z
2021-08-19T13:38:28Z
https://github.com/mars-project/mars/issues/2354
[ "type: feature", "mod: dataframe" ]
qinxuye
0
amidaware/tacticalrmm
django
2,057
[Feature request] Check list overview
**Is your feature request related to a problem? Please describe.** There is no way of knowing what check is deployed where without going into each agent. the worst is when most of the checks are done with policies and a couple here and there are done on the agents there is no way of knowing what has been deployed where. **Describe the solution you'd like** a new feature that would display a table with all the currently deployed checks with sorting, filtering, search, exculde for each row of the data **Describe alternatives you've considered** nada **Additional context** something similar to this table into an overlay window like the alerts overview ![thruk3](https://github.com/user-attachments/assets/e558900a-91f4-4307-a414-4951d84b6206)
open
2024-11-01T07:51:02Z
2024-11-01T07:51:02Z
https://github.com/amidaware/tacticalrmm/issues/2057
[]
P6g9YHK6
0
ydataai/ydata-profiling
jupyter
776
OSError: [Errno 28] No space left on device
**Describe the bug** Met the same bug with [this issue](https://github.com/pandas-profiling/pandas-profiling/issues/518). The bug still happened when I set the envrionment variable `JOBLIB_TEMP_FOLDER` to a folder that is big enough. Also, I am quite sure that my memory is big enough( about 128G) **Version information:** * _Python version_: 3.7.9. * _Environment_: Jupyter Notebook (local) * _`pandas-profiling`_:'2.12.0'
closed
2021-05-06T03:43:19Z
2021-05-09T20:42:51Z
https://github.com/ydataai/ydata-profiling/issues/776
[]
IncubatorShokuhou
1
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,694
[Bug]: a1111 stopped loading
### Checklist - [ ] The issue exists after disabling all extensions - [ ] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [ ] The issue exists in the current version of the webui - [ ] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? Today I watched a video about the Adetailer, how to install it and how to work. I launched the stable diffusion and tried to install it through the extension tab using the link, but for some reason it just took a long time to load and nothing happened, even in the command line nothing happened at that moment. I tried to restart the stable, but it just stopped starting as a result. I also tried restarting the computer, it didn't help either. Before that, everything worked fine. I was going to download it using this link https://github.com/Bing-su/adetailer.git. Please tell me if anyone knows how to solve the problem, I haven't reinstalled the stable completely yet, hoping to find an answer. I don't really understand all this, I'm a simple user who is learning this program. ### Steps to reproduce the problem launch stable diffusion ### What should have happened? start up ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo ### Console logs ```Shell i don't know ``` ### Additional information _No response_
closed
2024-11-29T17:06:40Z
2024-11-29T17:31:45Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16694
[ "bug-report" ]
Colotus
0
deepspeedai/DeepSpeed
pytorch
7,121
AttributeError: partially initialized module 'deepspeed' has no attribute 'init_inference'
**To Reproduce** inference script: `import torch from transformers import AutoModelForCausalLM, AutoTokenizer import deepspeed model_name = "/home/pzl/models/Qwen2.5-3B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ds_engine = deepspeed.init_inference(model, mp_size=1, dtype=torch.half, replace_with_kernel_inject=True) input_text = "DeepSpeed is?" inputs = tokenizer(input_text, return_tensors="pt") with torch.no_grad(): outputs = ds_engine.module.generate(**inputs, max_length=10) output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(output_text) ` **Expected behavior** get the correct result **ds_report output** ![Image](https://github.com/user-attachments/assets/79d0c384-e586-4b11-84e8-4568f6df2307) **Screenshots** ![Image](https://github.com/user-attachments/assets/60df4e74-911c-4a9c-b674-46fd4bbc2d97) **System info (please complete the following information):** - OS: Ubuntu 22.04 - GPU count and types 0 - Python 3.10
open
2025-03-09T13:24:32Z
2025-03-09T13:24:32Z
https://github.com/deepspeedai/DeepSpeed/issues/7121
[ "bug", "inference" ]
JocelynPanPan
0
sqlalchemy/sqlalchemy
sqlalchemy
11,728
Permanently corrupted hybrid_property column labeling as a result of selecting column returned by hybrid_property.expression
### Describe the bug The issue causes a select of `hybrid_property` to return its value under wrong label. The ORM model becomes "corrupted" by construction of a different specific select, selecting the column returned by `hybrid_property.expression`. The select causes memoization of `_proxy_key`, which is then incorrectly used as label of the column in the corrupted select. `select(Model.id)` will return the `id` hybrid_property under `_id` key which is the name of the column returned by `hybrid_property.expression` of the `id` hybrid_property. We have found this issue during migration of a large codebase from SQLAlchemy `1.3` to `1.4`, we will be thankful for a `1.4` fix. ### Optional link from https://docs.sqlalchemy.org which documents the behavior that is expected _No response_ ### SQLAlchemy Version in Use 1.4.52, 2.0.32 ### DBAPI (i.e. the database driver) Any, psycopg2 ### Database Vendor and Major Version Any, PostgreSQL 15 ### Python Version 3.11, Any ### Operating system Windows, Any ### To Reproduce ```python from sqlalchemy import Column, select from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm import declarative_base Base = declarative_base() class Model(Base): __tablename__ = 'model' _id = Column(UUID(as_uuid=True), primary_key=True, nullable=False) @hybrid_property def id(self): return self._id @id.expression def id(cls): return cls._id assert select(Model.id).subquery().c[0].key == 'id' and Model.id.expression._proxy_key == 'id' assert select(Model._id).subquery().c[0].key == '_id' # Creating above select causes the first select to fail when repeated. # Selecting the underscored hybrid.expression's "target" Column causes # memoization of `_proxy_key` in `Model._id.__clause_element__().__dict__` # As a consequence column `id` is returned under name `_id` in the result rows # instead of the expected `id`. # Presence of the memoized `_proxy_key` in __dict__ causes it to be cloned # in `sqlalchemy_sql_annotation_annotated._with_annotations` # and it takes precedence when accessed via the Proxy class of hybrid property # during select construction. # The broken memoized state can be reverted by deleting memoized `_proxy_key` using following line # del Model._id.__clause_element__().__dict__['_proxy_key'] assert ( select(Model.id).subquery().c[0].key == 'id' ), "Resulting `id` column would be returned incorrectly under `_id` attribute/key." assert Model.id.expression._proxy_key == 'id' ``` ### Error ``` # No exceptions ``` ### Additional context _No response_
closed
2024-08-12T20:46:39Z
2024-08-14T14:05:01Z
https://github.com/sqlalchemy/sqlalchemy/issues/11728
[ "bug", "orm", "hard orm" ]
tomas-sk
8
nok/sklearn-porter
scikit-learn
38
Port CountVectorizer
For text mining it's important to fit also a CountVectorizer (or a TFIDFTransformer), so should be possible to export it in the targhet lenguage
open
2018-07-06T18:29:02Z
2022-05-16T21:55:30Z
https://github.com/nok/sklearn-porter/issues/38
[ "question", "new feature" ]
nicolalandro
3
vaexio/vaex
data-science
1,601
Filtering using multiple conditions on the same column
Hi, I want to filter on multiple conditions about the same column, but looks like the conditions don't apply correctly. The reproducible script is as follows. ```python import vaex import pandas as pd pandas_df = pd.DataFrame( data=[{ 'a': 1, 'b': 2, }, { 'a': 3, 'b': 4, }, { 'a': 5, 'b': 6, }]) vaex_df = vaex.from_pandas(df=pandas_df, copy_index=False) vaex_df[3 < vaex_df.a and vaex_df.a < 6] ``` result : ``` # a b 0 1 2 1 3 4 2 5 6 ``` I expected, ``` # a b 0 5 6 ``` **Software information** - Vaex version : {'vaex': '4.5.0', 'vaex-core': '4.5.1', 'vaex-viz': '0.5.0', 'vaex-hdf5': '0.10.0', 'vaex-server': '0.6.1', 'vaex-astro': '0.9.0', 'vaex-jupyter': '0.6.0', 'vaex-ml': '0.14.0'} - Vaex was installed via pip - OS: MacOS Catatlina (Intel)
closed
2021-10-03T06:01:18Z
2021-10-03T08:07:57Z
https://github.com/vaexio/vaex/issues/1601
[]
SyureNyanko
2
axnsan12/drf-yasg
rest-api
74
Validation error on serializer used only for responses
Note: This may be what https://github.com/axnsan12/drf-yasg/issues/51 was trying to get at... Trying to do this, but getting a validation error ("... 'ssv': "Unresolvable JSON pointer: 'definitions/Detail'") ``` class DetailSerializer(serializers.Serializer): detail = serializers.CharField() ``` ``` class ManufacturerViewSet(viewsets.ModelViewSet): serializer_class = ManufacturerSerializer model = Manufacturer queryset = Manufacturer.objects.all() @swagger_auto_schema(responses={404: openapi.Response("Not found or Not accessible", DetailSerializer, examples={ 'Not found': DetailSerializer({'detail':'Not found'}).data, 'Not accessible': DetailSerializer({'detail':'Not accessible'}).data, }, )}) def retrieve(self, request, *args, **kwargs): return super().retrieve(self, request, *args, **kwargs) ``` However, if I add the serializer to recognized model, it does work, e.g., ``` class ManufacturerSerializer(serializers.ModelSerializer): status = DetailSerializer(many=False) class Meta: model = Manufacturer fields = '__all__' ``` Full text of validation error... ``` {'flex': "'paths':\n" " - '/manufacturers/{id}/':\n" " - 'get':\n" " - 'responses':\n" " - '404':\n" " - 'referenceObject':\n" " - 'additionalProperties':\n" ' - "When `additionalProperties` is False, ' 'no unspecified properties are allowed. The following unspecified ' "properties were found:\\n\\t`{'headers', 'description', 'examples', " '\'schema\'}`"\n' " - 'required':\n" " - '$ref':\n" " - 'This value is required'\n" " - 'responseObject':\n" " - 'schema':\n" " - '$ref':\n" " - 'The $ref `#/definitions/Detail` " "was not found in the schema'", 'ssv': "Unresolvable JSON pointer: 'definitions/Detail'"} ```
closed
2018-03-04T19:44:11Z
2018-03-05T09:51:52Z
https://github.com/axnsan12/drf-yasg/issues/74
[ "bug" ]
rmorison
1
deepspeedai/DeepSpeed
deep-learning
6,519
[BUG] RuntimeError: Error building extension 'inference_core_ops'
**Describe the bug** I am trying to run the non-persistent example given for mistralai/Mistral-7B-Instruct-v0.3 on a RTX A6000 GPU (on a server) so compute capability is met, ubuntu is 22.04, CUDA toolkit is 11.5 (I am not a sudoer of the server so I am not able to upgrade the toolkit, instead I have created a conda environment and installed CUDA toolkit 11.8). On running the python3 pipeline.py command I am running into the error: RuntimeError: Error building extension 'inference_core_ops' **To Reproduce** Steps to reproduce the behavior: 1. conda create -n my_env python=3.12.4 cudatoolkit=11.8 2. pip install deepspeed-mii (in the conda environment with CUDA toolkit 11.8) 3. https://github.com/microsoft/DeepSpeedExamples/blob/master/inference/mii/non-persistent/pipeline.py 4. What packages are required and their versions: NVIDIA GPU(s) with compute capability of: 8.0, 8.6, 8.9, 9.0. CUDA 11.6+ Ubuntu 20+ 5. python3 pipeline.py or deepspeed --num_gpus 1 --no_local_rank pipeline.py **ds_report output** (deep) (base) cpatil@meherangarh:/data1/cpatil/simplismart$ ds_report [2024-09-10 13:49:31,073] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect) -------------------------------------------------- DeepSpeed C++/CUDA extension op report -------------------------------------------------- NOTE: Ops not installed will be just-in-time (JIT) compiled at runtime if needed. Op compatibility means that your system meet the required dependencies to JIT install the op. -------------------------------------------------- JIT compiled ops requires ninja ninja .................. [OKAY] -------------------------------------------------- op name ................ installed .. compatible -------------------------------------------------- [WARNING] async_io requires the dev libaio .so object and headers but these were not found. [WARNING] async_io: please install the libaio-dev package with apt [WARNING] If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found. async_io ............... [NO] ....... [NO] fused_adam ............. [NO] ....... [OKAY] cpu_adam ............... [NO] ....... [OKAY] cpu_adagrad ............ [NO] ....... [OKAY] cpu_lion ............... [NO] ....... [OKAY] [WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH evoformer_attn ......... [NO] ....... [NO] [WARNING] FP Quantizer is using an untested triton version (2.2.0), only 2.3.(0, 1) and 3.0.0 are known to be compatible with these kernels fp_quantizer ........... [NO] ....... [NO] fused_lamb ............. [NO] ....... [OKAY] fused_lion ............. [NO] ....... [OKAY] x86_64-linux-gnu-gcc -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -g -fwrapv -O2 -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -c /tmp/tmphfej6tlu/test.c -o /tmp/tmphfej6tlu/test.o x86_64-linux-gnu-gcc /tmp/tmphfej6tlu/test.o -L/usr -lcufile -o /tmp/tmphfej6tlu/a.out /usr/bin/ld: cannot find -lcufile: No such file or directory collect2: error: ld returned 1 exit status gds .................... [NO] ....... [NO] inference_core_ops ..... [NO] ....... [OKAY] cutlass_ops ............ [NO] ....... [OKAY] transformer_inference .. [NO] ....... [OKAY] quantizer .............. [NO] ....... [OKAY] ragged_device_ops ...... [NO] ....... [OKAY] ragged_ops ............. [NO] ....... [OKAY] random_ltd ............. [NO] ....... [OKAY] [WARNING] sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.2 [WARNING] using untested triton version (2.2.0), only 1.0.0 is known to be compatible sparse_attn ............ [NO] ....... [NO] spatial_inference ...... [NO] ....... [OKAY] transformer ............ [NO] ....... [OKAY] stochastic_transformer . [NO] ....... [OKAY] -------------------------------------------------- DeepSpeed general environment info: torch install path ............... ['/home/cpatil/.local/lib/python3.10/site-packages/torch'] torch version .................... 2.2.2+cu121 deepspeed install path ........... ['/home/cpatil/.local/lib/python3.10/site-packages/deepspeed'] deepspeed info ................... 0.15.1, unknown, unknown torch cuda version ............... 12.1 torch hip version ................ None nvcc version ..................... 11.5 deepspeed wheel compiled w. ...... torch 2.2, cuda 12.1 shared memory (/dev/shm) size .... 503.87 GB **Output on running the command** (deep) (base) cpatil@meherangarh:/data1/cpatil/simplismart$ python3 pipeline.py [2024-09-10 13:43:54,824] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-09-10 13:43:56,883] [INFO] [comm.py:652:init_distributed] cdb=None [2024-09-10 13:43:56,884] [INFO] [comm.py:683:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl Fetching 11 files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 11/11 [00:00<00:00, 79410.23it/s] [2024-09-10 13:43:57,612] [INFO] [engine_v2.py:82:__init__] Building model... Using /home/cpatil/.cache/torch_extensions/py312_cu121 as PyTorch extensions root... Detected CUDA files, patching ldflags Emitting ninja build file /home/cpatil/.cache/torch_extensions/py312_cu121/inference_core_ops/build.ninja... /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/utils/cpp_extension.py:1965: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST']. warnings.warn( Building extension module inference_core_ops... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/2] /usr/bin/nvcc --generate-dependencies-with-compile --dependency-output linear_kernels_cuda.cuda.o.d -DTORCH_EXTENSION_NAME=inference_core_ops -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/gated_activations -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/includes -isystem /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/include -isystem /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/include/torch/csrc/api/include -isystem /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/include/TH -isystem /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/include/THC -isystem /home/cpatil/miniconda3/envs/deep/include/python3.12 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 --compiler-options '-fPIC' -O3 --use_fast_math -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_HALF2_OPERATORS__ --threads=8 -gencode=arch=compute_86,code=sm_86 -gencode=arch=compute_86,code=compute_86 -DBF16_AVAILABLE -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -c /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels_cuda.cu -o linear_kernels_cuda.cuda.o FAILED: linear_kernels_cuda.cuda.o /usr/bin/nvcc --generate-dependencies-with-compile --dependency-output linear_kernels_cuda.cuda.o.d -DTORCH_EXTENSION_NAME=inference_core_ops -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/gated_activations -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear -I/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/includes -isystem /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/include -isystem /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/include/torch/csrc/api/include -isystem /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/include/TH -isystem /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/include/THC -isystem /home/cpatil/miniconda3/envs/deep/include/python3.12 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 --compiler-options '-fPIC' -O3 --use_fast_math -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_HALF2_OPERATORS__ --threads=8 -gencode=arch=compute_86,code=sm_86 -gencode=arch=compute_86,code=compute_86 -DBF16_AVAILABLE -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -c /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels_cuda.cu -o linear_kernels_cuda.cuda.o /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_mma.cuh(59): warning #174-D: expression has no effect /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_mma.cuh(135): warning #174-D: expression has no effect /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_cp.async.cuh(33): warning #174-D: expression has no effect /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_cp.async.cuh(44): warning #174-D: expression has no effect /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_cp.async.cuh(56): warning #174-D: expression has no effect /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_cp.async.cuh(70): warning #174-D: expression has no effect /home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/kernel_matmul.cuh(268): warning #174-D: expression has no effect /usr/include/c++/11/bits/std_function.h:435:145: error: parameter packs not expanded with ‘...’: 435 | function(_Functor&& __f) | ^ /usr/include/c++/11/bits/std_function.h:435:145: note: ‘_ArgTypes’ /usr/include/c++/11/bits/std_function.h:530:146: error: parameter packs not expanded with ‘...’: 530 | operator=(_Functor&& __f) | ^ /usr/include/c++/11/bits/std_function.h:530:146: note: ‘_ArgTypes’ ninja: build stopped: subcommand failed. [rank0]: Traceback (most recent call last): [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 2105, in _run_ninja_build [rank0]: subprocess.run( [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/subprocess.py", line 571, in run [rank0]: raise CalledProcessError(retcode, process.args, [rank0]: subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/data1/cpatil/simplismart/pipeline.py", line 12, in <module> [rank0]: pipe = mii.pipeline(args.model) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/mii/api.py", line 231, in pipeline [rank0]: inference_engine = load_model(model_config) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/mii/modeling/models.py", line 17, in load_model [rank0]: inference_engine = build_hf_engine( [rank0]: ^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/engine_factory.py", line 135, in build_hf_engine [rank0]: return InferenceEngineV2(policy, engine_config) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/engine_v2.py", line 83, in __init__ [rank0]: self._model = self._policy.build_model(self._config, self._base_mp_group) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/model_implementations/inference_policy_base.py", line 156, in build_model [rank0]: self.model = self.instantiate_model(engine_config, mp_group) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/model_implementations/mistral/policy.py", line 17, in instantiate_model [rank0]: return MistralInferenceModel(config=self._model_config, engine_config=engine_config, base_mp_group=mp_group) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/model_implementations/inference_transformer_base.py", line 215, in __init__ [rank0]: self.make_norm_layer() [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/model_implementations/inference_transformer_base.py", line 518, in make_norm_layer [rank0]: self.norm = heuristics.instantiate_pre_norm(norm_config, self._engine_config) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/modules/heuristics.py", line 176, in instantiate_pre_norm [rank0]: return DSPreNormRegistry.instantiate_config(config) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/modules/module_registry.py", line 36, in instantiate_config [rank0]: if not target_implementation.supports_config(config_bundle.config): [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/modules/implementations/pre_norm/cuda_pre_rms.py", line 36, in supports_config [rank0]: _ = CUDARMSPreNorm(config.channels, config.residual_dtype) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm_base.py", line 36, in __init__ [rank0]: self.inf_module = InferenceCoreBuilder().load() [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/ops/op_builder/builder.py", line 531, in load [rank0]: return self.jit_load(verbose) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/deepspeed/ops/op_builder/builder.py", line 578, in jit_load [rank0]: op_module = load(name=self.name, [rank0]: ^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 1312, in load [rank0]: return _jit_compile( [rank0]: ^^^^^^^^^^^^^ [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 1722, in _jit_compile [rank0]: _write_ninja_file_and_build_library( [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 1834, in _write_ninja_file_and_build_library [rank0]: _run_ninja_build( [rank0]: File "/home/cpatil/miniconda3/envs/deep/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 2121, in _run_ninja_build [rank0]: raise RuntimeError(message) from e [rank0]: RuntimeError: Error building extension 'inference_core_ops' [rank0]:[W910 13:45:07.069688599 ProcessGroupNCCL.cpp:1168] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) **System info (please complete the following information):** - OS: Ubuntu 22.04 - GPU count and types: Single GPU, RTX A6000, 48GB (Compute Capability 8.6) - DeepSpeed-MII version: 0.3.0 - Python version: 3.12.4 **Additional context** I am running the pipeline.py script on a server with CUDA toolkit version 11.5, since I am not a sudoer I have instead created a conda env with toolkit version 11.8.
closed
2024-09-10T08:37:09Z
2024-11-15T22:50:56Z
https://github.com/deepspeedai/DeepSpeed/issues/6519
[ "bug", "build" ]
Chetan3200
3
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,234
[Bug]: Upscaler.py causes infinite loop (fix inside)
### Checklist - [ ] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [ ] The issue has not been reported before recently - [X] The issue has been reported before but has not been fixed yet ### What happened? The current ([9d4fdc4](https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/9d4fdc45d3c4b9431551fd53de64a67726dcbd64)) copy of upscaler.py does not fix the 1x upscaler infinite loop issue: https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/modules/upscaler.py. Here is what is wrong ... The if statement on line 59 checks three conditions simultaneously: img.width >= dest_w, img.height >= dest_h, and scale != 1. The loop will break only if all three conditions are met. If any one of them is not met, the loop will continue to the next iteration. **The code inside the loop does not include any logic for upscaling the image.** Without upscaling logic, the image dimensions will not change, and the conditions will not be reevaluated correctly. There is no check to see if the dimensions of the image have changed after a potential upscaling operation. This means there's no way to break the loop if the upscaling doesn't affect the image dimensions. So here's what I tried to do: 1. Check if the image dimensions are already at or above the desired width and height. If so, it breaks out of the loop. 2. Store the current dimensions of the image in shape. 3. Upscale the image using the do_upscale method and the selected model. 4. Check if the dimensions of the image are the same after upscaling. If so, it breaks out of the loop. Remove lines 59-61 in upscaler.py and insert this instead ``` for _ in range(3): if img.width >= dest_w and img.height >= dest_h: break shape = (img.width, img.height) img = self.do_upscale(img, selected_model) if shape == (img.width, img.height): break ``` Hooray, it upscales now! ___________________ [sysinfo-2024-07-18-21-29.json](https://github.com/user-attachments/files/16289442/sysinfo-2024-07-18-21-29.json) Chrome Version 126.0.6478.127 Windows 10 2080 GTX with 8GB ### Steps to reproduce the problem Use any upscaler and set "upscale by" to 1x ### What should have happened? Should've upscaled ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo [sysinfo-2024-07-18-21-29.json](https://github.com/user-attachments/files/16289457/sysinfo-2024-07-18-21-29.json) ### Console logs ```Shell wasn't saving them to txt sorry ``` ### Additional information _No response_
open
2024-07-18T21:33:46Z
2024-07-19T19:27:05Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16234
[ "bug-report" ]
NPDX909
2
deepspeedai/DeepSpeed
machine-learning
5,803
run evaluate_cogagent_demo.py error from sat import mpu, get_args, get_tokenizer error
My environment is transformers 4.42.3 torch 2.3.0+cu121 deepspeed 0.14.5+unknow when I run evaluate_cogagent_demo.py I encountered the following error message 2024-07-27 16:07:37,915] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect) D:\conda3\envs\pytorch\lib\site-packages\transformers\utils\hub.py:127: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead. warnings.warn( [2024-07-27 16:07:40,151] [INFO] DeepSpeed/CUDA is not installed, fallback to Pytorch checkpointing. Traceback (most recent call last): File "D:\PycharmProjects\CogVLM-main\finetune_demo\evaluate_cogagent_demo.py", line 7, in <module> from sat import mpu, get_args, get_tokenizer File "D:\conda3\envs\pytorch\lib\site-packages\sat\__init__.py", line 6, in <module> from .training.deepspeed_training import training_main File "D:\conda3\envs\pytorch\lib\site-packages\sat\training\deepspeed_training.py", line 27, in <module> import deepspeed File "D:\conda3\envs\pytorch\lib\site-packages\deepspeed\__init__.py", line 25, in <module> from . import ops File "D:\conda3\envs\pytorch\lib\site-packages\deepspeed\ops\__init__.py", line 11, in <module> from . import transformer File "D:\conda3\envs\pytorch\lib\site-packages\deepspeed\ops\transformer\__init__.py", line 8, in <module> from ...model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference File "D:\conda3\envs\pytorch\lib\site-packages\deepspeed\model_implementations\transformers\ds_transformer.py", line 17, in <module> from deepspeed.ops.transformer.inference.triton.mlp import TritonMLP File "D:\conda3\envs\pytorch\lib\site-packages\deepspeed\ops\transformer\inference\__init__.py", line 7, in <module> from ....model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference ImportError: cannot import name 'DeepSpeedTransformerInference' from partially initialized module 'deepspeed.model_implementations.transformers.ds_transformer' (most likely due to a circular import) (D:\conda3\envs\pytorch\lib\site-packages\deepspeed\model_implementations\transformers\ds_transformer.py) Process finished with exit code 1 I can't find the solution. Any suggestions ? Thank you for your help.
closed
2024-07-27T08:19:50Z
2024-08-01T17:29:54Z
https://github.com/deepspeedai/DeepSpeed/issues/5803
[ "bug", "inference" ]
gyjlll
3
OthersideAI/self-operating-computer
automation
102
Poor accuracy of pointer X/Y location inference
the X/Y coordinates inferred by the model are always off. It can't even select the address bar correctly.
closed
2023-12-12T21:46:40Z
2024-02-09T04:17:32Z
https://github.com/OthersideAI/self-operating-computer/issues/102
[]
ahsin-s
19
learning-at-home/hivemind
asyncio
88
Support tensor compression (fp16/int8)
In preliminary tests we observed * no quality degradation from converting tensors to fp16 and back before sending them across * negligible drawdown when tensors are encoded as fp32 mean/std and int8 data It would be great to enable quantization as a builtin feature for ExpertBackend, e.g. ``` expert = ExpertBackend(..., outputs_schema=[BatchTensorDescriptor(..., compression="int8_normalize")] ```
closed
2020-08-27T14:22:47Z
2021-02-24T13:21:05Z
https://github.com/learning-at-home/hivemind/issues/88
[ "enhancement" ]
justheuristic
1
CorentinJ/Real-Time-Voice-Cloning
python
811
Here is a model in Mandarin/Chinese 中文模型
Finally I got it work and it's really fun that you are listening to your own voice. 终于可以玩耍起来了, Link:https://pan.baidu.com/s/10t3XycWiNIg5dN5E_bMORQ Code:aid4 Codebase: https://github.com/babysor/Realtime-Voice-Clone-Chinese
closed
2021-08-07T04:27:05Z
2022-10-03T13:46:32Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/811
[]
babysor
19
nschloe/tikzplotlib
matplotlib
231
Cannot pass extra_axis_parameters
Whenever I run tikz_save(), I get the annoying messages: ``` Horizontal alignment will be ignored as no 'x tick label text width' has been passed in the 'extra' parameter ``` To get rid of them, I need to pass another argument extra_axis_parameters={...} which is supposed to be of type 'set' to tikz_save. This input variable is then used in axes.py to define the variable tick_label_text_width (l. 410-414) ``` if tick_label_text_width_identifier in data['extra axis options']: tick_label_text_width = data['extra axis options [base]'][ tick_label_text_width_identifier ] del data['extra axis options'][tick_label_text_width_identifier] ``` The variable `data['extra axis options [base]']` however is also of type `set`, therefore causing a ``` TypeError: 'set' object is not subscriptable ``` Am I doing something wrong or is this a bug? This is the command that I use: ``` tikz_save(directory + data_name[:-4] + '.tex', figureheight='\\figureheight', figurewidth='\\figurewidth', extra_axis_parameters={ ## 'x tick label text width={\\textwidth}', 'x tick label text width', '10 pt', }, show_info=False, ) ```
closed
2018-04-18T13:30:15Z
2019-03-20T10:57:44Z
https://github.com/nschloe/tikzplotlib/issues/231
[]
Steffen1989
2
healthchecks/healthchecks
django
341
integration editing is awkward
You're probably aware of this, but I thought I'd summarize my experience anyway. I just went through setting up an integration with zulipchat (compare #202) via a custom webhook. That involved a bit of tweaking things, which turned out to be quite painful because 1. integrations don't start out with a name / distinguishable in the listing 2. integrations can't be edited From my outside perspective, the best fix for this would be to allow editing integrations with a form similar to the "create integration" form, and to include the integration name there.
closed
2020-03-10T12:27:05Z
2020-04-06T12:59:52Z
https://github.com/healthchecks/healthchecks/issues/341
[]
robx
3
allure-framework/allure-python
pytest
586
2 SubSuite defined while using dynamic definition (pytest)
#### I'm submitting a ... - [x] bug report - [ ] feature request - [ ] support request => Please do not submit support request here, see note at the top of this template. #### What is the current behavior? I want to use allure to generate report, and especially write some data into the report dynamically. We already did implementation for data like: feature, title, description, ... and it is working fine. But, in the case of sub_suite, if it is **NOT** defined in the pytest script, with **@allure.sub_suite('value1')**, then it will add to the report a new subsuite, automatically with the name of the class. Then, when I add the subsuite with allure.dynamic.sub_suite('value1'), I have in the same report: - {"name": "subSuite", "value": "className"} - {"name": "subSuite", "value": "value1"} #### If the current behavior is a bug, please provide the steps to reproduce and if possible a minimal demo of the problem - Do not define any subsuite in the pytest script. eg: **@allure.sub_suite('value1')** - While generating the allure report dynamically, use the function: allure.dynamic.sub_suite('value1') #### What is the expected behavior? Only 1 entry should be available in the allure report: {"name": "subSuite", "value": "value1"} #### What is the motivation / use case for changing the behavior? Get data from a configuration file or document and define the data based on those files, dynamically. #### Please tell us about your environment: - Allure version: 2.13.6 - Test framework: pytest@5.0.1 - Allure adaptor: allure-pytest@2.8.40
closed
2021-04-29T14:48:20Z
2023-04-25T11:56:11Z
https://github.com/allure-framework/allure-python/issues/586
[ "bug", "theme:pytest" ]
Shionigami
1
allenai/allennlp
nlp
5,237
Accept compressed files as input to `predict` when using a `Predictor`
**Is your feature request related to a problem? Please describe.** I typically used compressed datasets (e.g. gzipped) to save disk space. This works fine with AllenNLP during training because I can write my dataset reader to load the compressed data. However, the `predict` command opens the file and reads lines for the `Predictor`. This fails when it tries to load data from my compressed files. https://github.com/allenai/allennlp/blob/39d7e5ae06551fe371d3e16f4d93162e55ec5dcc/allennlp/commands/predict.py#L208-L218 **Describe the solution you'd like** Either automatically detect the file is compressed or add a flag to `predict` that indicates that the file is compressed. One method that I have used to detect if a file is gzipped is [here](https://stackoverflow.com/questions/3703276/how-to-tell-if-a-file-is-gzip-compressed), although it isn't 100% accurate. I have an implementation [here](https://github.com/danieldeutsch/sacrerouge/blob/master/sacrerouge/io/util.py). Otherwise a flag like `--compression-type` to mark how the file is compressed should be sufficient. Passing the type of compression would allow support for gzip, bz2, or any other method.
open
2021-06-02T17:29:15Z
2022-09-12T16:23:07Z
https://github.com/allenai/allennlp/issues/5237
[ "Good First Issue", "Contributions welcome", "Feature request" ]
danieldeutsch
10
ultralytics/yolov5
machine-learning
12,968
Run yolov5 using tensor rt
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question I exported Tensor RT weights (last.engine). When i use the weights in yolov5 detect it generates an error ` File "detect.py", line 112, in run model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) File "C:\Users\shen\yolov5\models\common.py", line 426, in __init__ with open(w, "rb") as f, trt.Runtime(logger) as runtime: TypeError: pybind11::init(): factory function returned nullptr` ### Additional _No response_
closed
2024-04-28T01:10:43Z
2024-06-08T00:22:31Z
https://github.com/ultralytics/yolov5/issues/12968
[ "question", "Stale" ]
tasyoooo
2
2noise/ChatTTS
python
332
在海量音频中寻找相似音色的可能
理论上如果生成的音色范围足够广,大多数音频有办法找到相似的音色。 https://github.com/cronrpc/Audio-Speaker-Needle-In-Haystack 这里用的3ds-speaker的音频embs,可能扩充到一万人到五万人会产生质变,并且文本需要选择一个尽可能相似的。 Huggingface Sapce: https://huggingface.co/spaces/omniway/Audio-Needle-In-Haystack ![image](https://github.com/2noise/ChatTTS/assets/147160173/b987e0ac-5603-4956-95db-30eca20bb98b)
closed
2024-06-17T19:07:28Z
2024-07-20T07:26:32Z
https://github.com/2noise/ChatTTS/issues/332
[ "ad" ]
cronrpc
5
PokeAPI/pokeapi
graphql
188
evolution-chain uses inconsistent schema for evolution_details
Best example to compare is evolution-chain/1 and evolution-chain/34. The evolution_details property for evolves_to can be null, a single value, or an array. I propose wrapping all values in an array so that the expected type remains consistent.
closed
2016-05-12T13:29:12Z
2016-05-24T13:56:16Z
https://github.com/PokeAPI/pokeapi/issues/188
[]
zberk
4
marcomusy/vedo
numpy
606
Plotter in Qt - Mouse Click Event not registering at the correct position
I have tried several different things about the mouse clicks not registering correctly in my Qt mainwindow. When using only my QHD monitor, the program worked just fine ([video](https://drive.google.com/file/d/1v-2o86Stp6tS1EWGkR2dSy2Iit1Rnkl6/view?usp=sharing)). However, when using my laptop (zoomed in at 1792 x 1120) as the only display, the mouse clicks seemed to have a varying up-right offset and register more accurately near the bottom left corner of the widget ([video](https://drive.google.com/file/d/1v79_tnGgVg0CvtoSho9r66VPj8YWBY26/view?usp=sharing)). I am suspicious that the screen resolution of the display might cause a problem for vedo. The mouse event is a vedo plotter event. Changing the "screensize", "size", "pos" attribute of the plotter did not fix the issue. I looked up some examples provided by vedo, specifically mousehover.py and qt_window1.py. The mousehover example worked fine on my laptop. However, adding a clicking event in qt_window1.py also created the same issue. Therefore, the problem most likely was caused by the qt widget. ``` def __init__(self,size): super(MainWindow, self).__init__() # load the components defined in th xml file loadUi("viewer_gui.ui", self) self.screenSize = size # Connections for all elements in Mainwindow self.pushButton_inputfile.clicked.connect(self.getFilePath) self.pushButton_clearSelection.clicked.connect(self.clearScreen) self.action_selectVertex.toggled.connect(self.actionSelection_state_changed) self.action_selectActor.toggled.connect(self.actionSelection_state_changed) # Set up VTK widget self.vtkWidget = QVTKRenderWindowInteractor() self.splitter_viewer.addWidget(self.vtkWidget) # ipy console self.ipyConsole = QIPythonWidget(customBanner="Welcome to the embedded ipython console\n") self.splitter_viewer.addWidget(self.ipyConsole) self.ipyConsole.pushVariables({"foo":43, "print_process_id":print_process_id, "ipy":self.ipyConsole, "self":self}) self.ipyConsole.printText("The variable 'foo' and the method 'print_process_id()' are available.\ Use the 'whos' command for information.\n\nTo push variables run this before starting the UI:\ \n ipyConsole.pushVariables({\"foo\":43,\"print_process_id\":print_process_id})") # Create renderer and add the vedo objects and callbacks self.plt = Plotter(qtWidget=self.vtkWidget,bg='DarkSlateBlue',bg2='MidnightBlue',screensize=(1792,1120)) self.id1 = self.plt.addCallback("mouse click", self.onMouseClick) self.id2 = self.plt.addCallback("key press", self.onKeypress) self.plt.show() # <--- show the vedo rendering def onMouseClick(self, event): if(self.action_selectActor.isChecked()): self.selectActor(event) elif(self.action_selectVertex.isChecked()): self.selectVertex(event) def selectActor(self,event): if(not event.actor): return printc("You have clicked your mouse button. Event info:\n", event, c='y') printc("Left button pressed on", [event.picked3d]) # adding a silhouette might cause some lags # self.plt += event.actor.silhouette().lineWidth(2).c('red') #an alternative solution self.actorSelection = event.actor.clone() self.actorSelection.c('red') self.plt += self.actorSelection def selectVertex(self,event): if(not event.isPoints): return # print(arr[event.actor.closestPoint(event.picked3d, returnPointId=True)]) printc("You have clicked your mouse button. Event info:\n", event, c='y') printc("Left button pressed on 3d: ", [event.picked3d]) printc("Left button pressed on 2d: ", [event.picked2d]) p = pointcloud.Point(pos=(event.picked3d[0],event.picked3d[1],event.picked3d[2]),r=12,c='red',alpha=0.5) self.vertexSelections.append(p) self.plt += p ``` Running the following lines: ``` app = QApplication(sys.argv) screen = app.primaryScreen() print('Screen: %s' % screen.name()) size = screen.size() print('Size: %d x %d' % (size.width(), size.height())) ``` outputted ``` Screen: Color LCD Size: 1792 x 1120 ```
closed
2022-03-02T04:49:20Z
2022-04-21T17:47:36Z
https://github.com/marcomusy/vedo/issues/606
[ "long-term" ]
danieljiang520
11