repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
pytest-dev/pytest-xdist
pytest
663
Exit code consolidation
We don't know in advance how many workers we need for the tests (it depends on information we calculate in `pytest_generate_tests`), so if we have too many workers, we skip the redundant ones (as suggested here - https://stackoverflow.com/questions/33400071/skip-parametrized-tests-generated-by-pytest-generate-tests-at-module-level) and it works Problem now is the exit code. For some reason, if I have some workers which returns exitstatus 0 (OK), and some workers which returns exitstatus 5 (NO_TESTS_COLLECTED), the general return code from the pytest run (from master) is 5 (where I want it to be 0, because all of the collected tests passed). Is that a bug or the desired behavior? And if it's the latter, any ideas to how can I accomplish the behavior I want?
open
2021-05-18T15:26:27Z
2021-05-19T12:36:59Z
https://github.com/pytest-dev/pytest-xdist/issues/663
[]
cr-omermazig
11
python-gitlab/python-gitlab
api
2,890
Improve download files from artifacts
## Description of the problem, including code/CLI snippet If file is absent in repository that will error: `('Connection broken: IncompleteRead(0 bytes read, 2 more expected)', IncompleteRead(0 bytes read, 2 more expected))` It has not information, and I can`t clearly use try-except to handle this error. ## Expected Behavior gitlab.exceptions.IncompleteRead to add this as exception line ## Actual Behavior ``` Traceback (most recent call last): File "/venv/lib/python3.11/site-packages/urllib3/response.py", line 737, in _error_catcher yield File "/venv/lib/python3.11/site-packages/urllib3/response.py", line 883, in _raw_read raise IncompleteRead(self._fp_bytes_read, self.length_remaining) urllib3.exceptions.IncompleteRead: IncompleteRead(0 bytes read, 2 more expected) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/venv/lib/python3.11/site-packages/requests/models.py", line 816, in generate yield from self.raw.stream(chunk_size, decode_content=True) File "/venv/lib/python3.11/site-packages/urllib3/response.py", line 1043, in stream data = self.read(amt=amt, decode_content=decode_content) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/venv/lib/python3.11/site-packages/urllib3/response.py", line 935, in read data = self._raw_read(amt) ^^^^^^^^^^^^^^^^^^^ File "/venv/lib/python3.11/site-packages/urllib3/response.py", line 861, in _raw_read with self._error_catcher(): File "/usr/lib/python3.11/contextlib.py", line 158, in __exit__ self.gen.throw(typ, value, traceback) File "/venv/lib/python3.11/site-packages/urllib3/response.py", line 761, in _error_catcher raise ProtocolError(arg, e) from e urllib3.exceptions.ProtocolError: ('Connection broken: IncompleteRead(0 bytes read, 2 more expected)', IncompleteRead(0 bytes read, 2 more expected)) During handling of the above exception, another exception occurred: File "/venv/lib/python3.11/site-packages/requests/models.py", line 899, in content self._content = b"".join(self.iter_content(CONTENT_CHUNK_SIZE)) or b"" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/venv/lib/python3.11/site-packages/requests/models.py", line 818, in generate raise ChunkedEncodingError(e) requests.exceptions.ChunkedEncodingError: ('Connection broken: IncompleteRead(0 bytes read, 2 more expected)', IncompleteRead(0 bytes read, 2 more expected)) ``` ## Specifications - python-gitlab version: python3.11 - API version you are using (v3/v4): default - Gitlab server version (or gitlab.com): gitlab.com
closed
2024-06-04T14:11:45Z
2024-07-29T02:22:01Z
https://github.com/python-gitlab/python-gitlab/issues/2890
[ "need info", "stale" ]
q000p
3
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,544
[Bug]: restarting the PC when using stable diffusion
### Checklist - [X] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? It turned out that when generating images of different sizes, my PC reboots. But I can generate large size images and everything is fine.The video card is new and I checked its performance using a benchmark - there are no errors, overheating too, the power supply is coping. I completely reinstalled stable diffusion, but the problem remains. The problem arises both in converting text to an image and in converting an image to a picture. the python image(version 3.10.6) bp:700w ram:16 Video card: 4060ti If you need additional information, I am ready to provide it. a critical error occurs in the windows log: Kernel-Power. code 41. task category (63) ### Steps to reproduce the problem 1. I generate a picture based on the text. 640x840. 28 steps. dpm++ sde 2.during generation, my computer restarts ### What should have happened? I think most likely there is some kind of conflict between the drivers of my video card and the sd ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo [sysinfo.txt](https://github.com/user-attachments/files/17346609/sysinfo.txt) ### Console logs ```Shell windows log: - <Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"> - <System> <Provider Name="Microsoft-Windows-Kernel-Power" Guid="{331c3b3a-2005-44c2-ac5e-77220c37d6b4}" /> <EventID>41</EventID> <Version>8</Version> <Level>1</Level> <Task>63</Task> <Opcode>0</Opcode> <Keywords>0x8000400000000002</Keywords> <TimeCreated SystemTime="2024-10-11T18:25:57.6042399Z" /> <EventRecordID>2226</EventRecordID> <Correlation /> <Execution ProcessID="4" ThreadID="8" /> <Channel>System</Channel> <Computer>DESKTOP-VSCHOK7</Computer> <Security UserID="S-1-5-18" /> </System> - <EventData> <Data Name="BugcheckCode">0</Data> <Data Name="BugcheckParameter1">0x0</Data> <Data Name="BugcheckParameter2">0x0</Data> <Data Name="BugcheckParameter3">0x0</Data> <Data Name="BugcheckParameter4">0x0</Data> <Data Name="SleepInProgress">0</Data> <Data Name="PowerButtonTimestamp">0</Data> <Data Name="BootAppStatus">0</Data> <Data Name="Checkpoint">0</Data> <Data Name="ConnectedStandbyInProgress">false</Data> <Data Name="SystemSleepTransitionsToOn">0</Data> <Data Name="CsEntryScenarioInstanceId">0</Data> <Data Name="BugcheckInfoFromEFI">false</Data> <Data Name="CheckpointStatus">0</Data> <Data Name="CsEntryScenarioInstanceIdV2">0</Data> <Data Name="LongPowerButtonPressDetected">false</Data> </EventData> </Event> ``` ### Additional information I installed a new ssd, I installed the operating system on it. I installed a new graphics card and installed the latest studio drivers. established a new stable diffusion
open
2024-10-11T19:18:52Z
2024-10-12T20:53:52Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16544
[ "bug-report" ]
Wertat12
1
CTFd/CTFd
flask
2,394
Docker compose: Mounting volumes
**Environment**: - master - Operating System: Ubuntu 22.04 / Docker - Web Browser and Version: Hey all, I'm trying to mount local custom themes into a docker instance. Was hoping someone can share some examples of how they are doing this? Something like this does not seem to work: - .data/CTFd/themes:/opt/CTFd/CTFd/themes
closed
2023-08-29T20:02:40Z
2023-08-31T08:19:20Z
https://github.com/CTFd/CTFd/issues/2394
[]
socialstijn
0
streamlit/streamlit
data-visualization
9,934
Provide tooltip icon to show when label is hidden.
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [X] I added a descriptive title and summary to this issue. ### Summary I have reported this before [here](https://github.com/streamlit/streamlit/issues/9705#issue-2605477818) but was [informed](https://github.com/streamlit/streamlit/issues/9705#issuecomment-2452665722) tooltip would show when label_visibility was `hidden`. I have tried this in st.text_input but the tooltip did not show. Would love for this to show when `label_visibility` is `hidden`. ### Why? import streamlit as st st.text_input(label="CV name", label_visibility="hidden", help="Call it whatever you want. When downloading, it will be called [first name]_[last name]_CV", key="name_of_CV_for_internal_template") ### How? _No response_ ### Additional Context _No response_
open
2024-11-26T23:04:24Z
2024-12-28T23:30:08Z
https://github.com/streamlit/streamlit/issues/9934
[ "type:enhancement", "area:widgets" ]
Socvest
3
tflearn/tflearn
tensorflow
1,154
Not working with tensorflow 2.3.1
from tensorflow.contrib.framework.python.ops import add_arg_scope as contrib_add_arg_scope ModuleNotFoundError: No module named 'tensorflow.contrib'
open
2020-10-16T19:18:09Z
2020-11-13T01:30:03Z
https://github.com/tflearn/tflearn/issues/1154
[]
AkilaUd96
5
gee-community/geemap
jupyter
1,561
cartoee.add_scale_bar_lite() issue
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information Please run the following code on your computer and share the output with us so that we can better debug your issue: ```python import ee import geemap import cartopy.crs as ccrs # import the cartoee functionality from geemap from geemap import cartoee ``` ### Description Scale bar seems have a problem. I guess maybe the projection problem, but I can not solve. ![image](https://github.com/gee-community/geemap/assets/55346414/c7a1cad8-c8c7-4ce2-8284-fb125dcecdf0) ### What I Did ```python import datetime import ee import geemap Map = geemap.Map() import numpy as np import matplotlib.pyplot as plt import cartopy.crs as ccrs # import the cartoee functionality from geemap from geemap import cartoee year = 2001 startDate = str(year) +'-01-01' endDate = str(year) +'-12-31' daymet= ee.ImageCollection('NASA/ORNL/DAYMET_V4').filter(ee.Filter.date(startDate, endDate)); tmax = daymet.select('tmax').first(); fig = plt.figure(figsize=(10, 8)) # region = [-180, 0, 0, 90] vis = { "min": -40.0, "max": 30.0, "palette": ['1621A2', '#0000FF', '#00FF00', '#FFFF00', '#FF0000'], }; Map.setCenter(-110.21, 35.1, 4); # target_crs = region.projection().crs() # Corr = crossCorr.reproject(crs=target_crs, scale=500) # use cartoee to get a map ax = cartoee.get_map(tmax, region=[-180, 0, 0, 90], vis_params=vis,ccrs=ccrs.PlateCarree()) # add gridlines to the map at a specified interval # cartoee.add_gridlines(ax, interval=[30, 30], linestyle=":") cartoee.add_gridlines(ax, interval=[30, 30], linestyle="--") # add a colorbar to the map using the visualization params we passed to the map cartoee.add_colorbar(ax, vis, loc="bottom", label="Correlation", orientation="horizontal") # ax.set_title(label='Correlation', fontsize=15) # add coastlines using the cartopy api ax.coastlines(color="red") # add north arrow cartoee.add_north_arrow(ax, text="N", xy=(0.1, 0.35), arrow_length=0.15,text_color="black", arrow_color="black", fontsize=20) # add scale bar cartoee.add_scale_bar_lite(ax, length=100, xy=(0.1, 0.05), linewidth=8, fontsize=20, color="red", unit="km", ha='center', va='bottom') show() ```
closed
2023-06-13T02:30:42Z
2023-06-13T03:25:07Z
https://github.com/gee-community/geemap/issues/1561
[ "bug" ]
caomy7
6
InstaPy/InstaPy
automation
5,932
Commenting with '@{}' inserts my own username instead of the target's username
<!-- Did you know that we have a Discord channel ? Join us: https://discord.gg/FDETsht --> <!-- Is this a Feature Request ? Please, check out our Wiki first https://github.com/timgrossmann/InstaPy/wiki --> ## Expected Behavior @{} should insert the target's username in comments ## Current Behavior @{} inserts my own username ## InstaPy configuration 0.6.12 - latest unreleaded
closed
2020-11-30T04:32:50Z
2020-12-06T21:12:18Z
https://github.com/InstaPy/InstaPy/issues/5932
[]
sharmanshah
1
wkentaro/labelme
computer-vision
1,018
How can I enable side bar that is label list, file list, etc
I accidentally clicked on the "crossed" button which made the label list, file list, etc from the side bar disappear. How can I enable those back?
closed
2022-05-13T19:52:48Z
2022-05-13T19:53:53Z
https://github.com/wkentaro/labelme/issues/1018
[]
jaskiratsingh2000
0
wkentaro/labelme
computer-vision
644
[Feature] Set yes button as default in delete label warning popup
**Is your feature request related to a problem? Please describe.** I use macOS when I'm labeling and verifying images. When I delete a label, the warning dialog box pops up. Currently, pressing Enter selects "No" in the dialog box. There is no way to change it to "Yes" using just the keyboard. Also, when I select to delete the label, I'm certain I want to delete it. If I deleted the label by mistake, I can bring it back via the Undo command. Using the mouse to select "Yes" every time is very time-consuming. **Describe the solution you'd like** Have the "Yes" button in the delete warning box as the default button so that when the dialog box pops up, all we have to do to delete the labels is press Enter.
closed
2020-04-16T07:40:22Z
2020-05-26T14:59:06Z
https://github.com/wkentaro/labelme/issues/644
[]
aksharpatel47
0
tensorflow/tensor2tensor
deep-learning
1,532
How to restore a trained Transformer model to make predictions in Python?
I trained the Transformer model on my own data by defining an own Problem class (called "sequence", which is a text2text problem). I used `model=transformer` and `hparams=transformer_base_single_gpu`. After data generation, training and decoding I successfully exported the model using `t2t-exporter` as I can see a `saved_model.pbtxt` file and a `variables/` directory created in my export directory. My question is: how can I now restore that trained model to make predictions on new sentences in Python? I'm working in Google Colab. I read that for text problems, the exported model expects the inputs to already be encoded as integers. How to do this? I tried to work as in [this notebook](https://colab.research.google.com/notebooks/t2t/hello_t2t.ipynb#scrollTo=oILRLCWN_16u) but I am not able to retrieve the Problem I defined earlier. When I run ``` from tensor2tensor import problems # Fetch the problem problem = problems.problem("sequence") ``` it throws an error stating that `sequence not in the set of supported problems`. Thanks for any help!
open
2019-04-07T19:03:22Z
2019-10-09T14:08:38Z
https://github.com/tensorflow/tensor2tensor/issues/1532
[]
NielsRogge
6
jupyter/nbgrader
jupyter
1,242
Generate assignments from a folder structure with subfolders
Hi, I have a small problem using nbgrader on Jupyterhub. I am using following versions: Ubuntu 18.04 Nbgrader 0.6.0 Jupyterhub 1.0.0 (tljh) Jupyter Notebook 5.7.8 I'm trying to generate assignments from a folder structure with subfolders. So my source folder looks something like this: ./source/assignment_1 ./source/assignment_1/folder_1 ./source/assignment_1/folder_2 When executing "nbgrader generate_assignment" only the ipynb-files in the folder assignment_1 are converted and copied to the release folder. The files in folder_1 and folder_2 are ignored. I already tried to add the --CourseDirectory.include=['**'] option to "nbgrader generate_assignment" as well as to the config file. However, the ipynb-files in the subfolders are still ignored. Any idea why this is the case? Am I missing some necessary config option? Thanks in advance :)
closed
2019-10-10T11:28:28Z
2019-11-02T09:59:33Z
https://github.com/jupyter/nbgrader/issues/1242
[ "duplicate" ]
DerFerdi
2
sqlalchemy/alembic
sqlalchemy
981
Autogenerated revisions want to change foreignkeys without code changes
**Describe the bug** Initially I had the issue of having `None` in my autogenerated Foreignkeys, but I managed to get past that from #588, but now when I autogenerate without changing anything in the code Alembic changes the foreignkeys. I can run autogenerate multiple times and the new revisions are constantly trying to change the foreignkeys. **Expected behavior** <!-- A clear and concise description of what you expected to happen. --> The foreignkeys stay the same. **To Reproduce** I have a naming convention in the Base class that all my schemas inherit from. ```py metadata = MetaData(schema="my_schema", naming_convention={"ix": "ix_%(column_0_label)s", "uq": "uq_%(table_name)s_%(column_0_name)s", "ck": "ck_%(table_name)s_%(constraint_name)s", "fk": "fk_%(table_name)s_%(column_0_name)s_%(referred_table_name)s", "pk": "pk_%(table_name)s"}, ) Base = automap_base(metadata=metadata) ``` The new revisions look like the following: ```py """change1 Revision ID: de0b721b57b8 Revises: 2272f316e54a Create Date: 2022-01-25 16:32:43.697034 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'de0b721b57b8' down_revision = '2272f316e54a' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint('fk_bookings_member_id_members', 'bookings', type_='foreignkey') op.drop_constraint('fk_bookings_voucher_id_vouchers', 'bookings', type_='foreignkey') op.create_foreign_key(op.f('fk_bookings_member_id_members'), 'bookings', 'members', ['member_id'], ['member_id'], source_schema='my_schema', referent_schema='my_schema') op.create_foreign_key(op.f('fk_bookings_voucher_id_vouchers'), 'bookings', 'vouchers', ['voucher_id'], ['voucher_id'], source_schema='my_schema', referent_schema='my_schema') op.drop_constraint('fk_trainings_partner_event_id_partners', 'trainings', type_='foreignkey') op.create_foreign_key(op.f('fk_trainings_partner_event_id_partners'), 'trainings', 'partners', ['partner_event_id'], ['event_id'], source_schema='my_schema', referent_schema='my_schema') op.drop_constraint('fk_travelbookings_client_id_travelclients', 'travelbookings', type_='foreignkey') op.create_foreign_key(op.f('fk_travelbookings_client_id_travelclients'), 'travelbookings', 'travelclients', ['client_id'], ['client_id'], source_schema='my_schema', referent_schema='my_schema') op.drop_constraint('fk_travelclients_member_id_members', 'travelclients', type_='foreignkey') op.create_foreign_key(op.f('fk_travelclients_member_id_members'), 'travelclients', 'members', ['member_id'], ['member_id'], source_schema='my_schema', referent_schema='my_schema') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(op.f('fk_travelclients_member_id_members'), 'travelclients', schema='my_schema', type_='foreignkey') op.create_foreign_key('fk_travelclients_member_id_members', 'travelclients', 'members', ['member_id'], ['member_id']) op.drop_constraint(op.f('fk_travelbookings_client_id_travelclients'), 'travelbookings', schema='my_schema', type_='foreignkey') op.create_foreign_key('fk_travelbookings_client_id_travelclients', 'travelbookings', 'travelclients', ['client_id'], ['client_id']) op.drop_constraint(op.f('fk_trainings_partner_event_id_partners'), 'trainings', schema='my_schema', type_='foreignkey') op.create_foreign_key('fk_trainings_partner_event_id_partners', 'trainings', 'partners', ['partner_event_id'], ['event_id']) op.drop_constraint(op.f('fk_bookings_voucher_id_vouchers'), 'bookings', schema='my_schema', type_='foreignkey') op.drop_constraint(op.f('fk_bookings_member_id_members'), 'bookings', schema='my_schema', type_='foreignkey') op.create_foreign_key('fk_bookings_voucher_id_vouchers', 'bookings', 'vouchers', ['voucher_id'], ['voucher_id']) op.create_foreign_key('fk_bookings_member_id_members', 'bookings', 'members', ['member_id'], ['member_id']) # ### end Alembic commands ### ``` I can upgrade and do autogenerate again and get the same code in a new revision. **Versions.** - OS: MacOS - Python: 3.7.11 - Alembic: 1.7.5 - SQLAlchemy: 1.4.22 - Database: MySQL - DBAPI: **Additional context** <!-- Add any other context about the problem here. --> **Have a nice day!**
closed
2022-01-26T07:23:24Z
2022-03-13T16:21:26Z
https://github.com/sqlalchemy/alembic/issues/981
[ "question" ]
HansBambel
3
jupyter-incubator/sparkmagic
jupyter
13
Explore alternate SQL contexts
Sparkmagic currently supports only vanilla SQLContexts as first class interfaces. If a user wants to use an alternate context (like a HiveQLContext), they can do so through the pyspark or scala interfaces, but they must handle the context itself. It may be useful to allow the user to specify a type of SQLContext when using the SQL interface.
closed
2015-09-28T20:28:29Z
2015-10-30T20:06:59Z
https://github.com/jupyter-incubator/sparkmagic/issues/13
[ "kind:enhancement" ]
alope107
0
lundberg/respx
pytest
274
Test error in Python 3.12 -Debian
Hi, I am getting the following test error while building the package in Debian unstable. ``` _____________________ ERROR at setup of test_plain_fixture _____________________ file /tmp/pytest-of-yogu/pytest-0/test_respx_mock_fixture0/test_respx_mock_fixture.py, line 8 def test_plain_fixture(respx_mock): E fixture 'respx_mock' not found > available fixtures: anyio_backend, anyio_backend_name, anyio_backend_options, autojump_clock, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, cov, doctest_namespace, event_loop, http_client, http_server, http_server_client, http_server_port, io_loop, mock_clock, monkeypatch, no_cover, nursery, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, some_fixture, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, twisted_greenlet, unused_tcp_port, unused_tcp_port_factory, unused_udp_port, unused_udp_port_factory > use 'pytest --fixtures [testpath]' for help on them. /tmp/pytest-of-yogu/pytest-0/test_respx_mock_fixture0/test_respx_mock_fixture.py:8 ``` I have created a patch to address this error, ```patch --- a/tests/test_plugin.py +++ b/tests/test_plugin.py @@ -3,6 +3,7 @@ def test_respx_mock_fixture(testdir): """ import httpx import pytest + from respx.plugin import respx_mock @pytest.fixture def some_fixture(): ``` There is a deprecated warning too, ``` .pybuild/cpython3_3.12_respx/build/tests/test_mock.py::test_proxies /usr/lib/python3/dist-packages/httpx/_client.py:671: DeprecationWarning: The 'proxies' argument is now deprecated. Use 'proxy' or 'mounts' instead. warnings.warn(message, DeprecationWarning) ``` Fix for the warning below, ```patch --- a/tests/test_mock.py +++ b/tests/test_mock.py @@ -476,14 +476,14 @@ def test_add_remove_targets(): async def test_proxies(): with respx.mock: respx.get("https://foo.bar/") % dict(json={"foo": "bar"}) - with httpx.Client(proxies={"https://": "https://1.1.1.1:1"}) as client: + with httpx.Client(proxy={"https://": "https://1.1.1.1:1"}) as client: response = client.get("https://foo.bar/") assert response.json() == {"foo": "bar"} async with respx.mock: respx.get("https://foo.bar/") % dict(json={"foo": "bar"}) async with httpx.AsyncClient( - proxies={"https://": "https://1.1.1.1:1"} + proxy={"https://": "https://1.1.1.1:1"} ) as client: response = await client.get("https://foo.bar/") assert response.json() == {"foo": "bar"} ```
closed
2024-08-17T23:02:34Z
2024-12-19T10:58:53Z
https://github.com/lundberg/respx/issues/274
[]
NGC2023
1
dask/dask
scikit-learn
10,997
Dumb code error in the Example code in Dask-SQL Homepage
Easy to fix. On https://dask-sql.readthedocs.io/en/latest/ in the Example code the last line is ``` # ...or use it for another computation result.sum.mean().compute() ``` this throws an error because 'sum' was accidentally left in. the code should be: ``` # ...or use it for another computation result.mean().compute() ```
closed
2024-03-12T14:44:08Z
2024-03-15T16:21:13Z
https://github.com/dask/dask/issues/10997
[ "needs triage" ]
tiraldj
3
eriklindernoren/ML-From-Scratch
data-science
12
Apriori - Subset name error
Name subset missing s (subsets) at line 158? NameError Traceback (most recent call last) <ipython-input-117-5dfcb657789c> in <module>() 17 18 # Get and print the rules ---> 19 rules = apriori.generate_rules(transactions) 20 print ("Rules:") 21 for rule in rules: <ipython-input-116-c89fd55eb61b> in generate_rules(self, transactions) 167 rules = [] 168 for itemset in frequent_itemsets: --> 169 rules += self._rules_from_itemset(itemset, itemset) 170 return rules <ipython-input-116-c89fd55eb61b> in _rules_from_itemset(self, initial_itemset, itemset) 156 # recursively add rules from subsets 157 if k - 1 > 1: --> 158 rules.append(self._rules_from_itemset(initial_itemset, subset)) 159 return rules 160 NameError: name 'subset' is not defined
closed
2017-03-05T21:21:57Z
2017-03-06T09:43:27Z
https://github.com/eriklindernoren/ML-From-Scratch/issues/12
[]
zpencerguy
2
pyqtgraph/pyqtgraph
numpy
2,367
ExportDialog Drawn Off Screen
Depending on the size of the scene the export dialog box can be drawn off or partially off screen. This is due to an implementation of the `show` command that allows moving the box to negative pixel indices. Problem Code: https://github.com/pyqtgraph/pyqtgraph/blob/a5f48ec5b58a10260195f1424309f7374a85ece7/pyqtgraph/GraphicsScene/exportDialog.py#L57-L62 To fix this, the position calculation can be clipped using `max`, and the `setGeometry` command can be changed to `move` to account for the size of the window's frame. Potential Fix: ```python if not self.shown: self.shown = True vcenter = self.scene.getViewWidget().geometry().center() x = max(0, int(vcenter.x() - self.width() / 2)) y = max(0, int(vcenter.y() - self.height() / 2)) self.move(x, y) ``` I can't say I understand the motivation for moving the dialog box in the first place, but atleast with this modification the dialog box is always accessible with the mouse.
closed
2022-07-19T14:09:36Z
2022-10-28T16:53:02Z
https://github.com/pyqtgraph/pyqtgraph/issues/2367
[ "good first issue", "exporters", "hacktoberfest" ]
cdfredrick
5
OFA-Sys/Chinese-CLIP
computer-vision
72
训练模型时,他是输入一个图片对应多个query,还是随机输入不同的query和图片,如果是前者的话,我保持图片数量不变,增加query应该不会增加太多训练时间
closed
2023-03-21T02:55:18Z
2023-04-27T15:45:02Z
https://github.com/OFA-Sys/Chinese-CLIP/issues/72
[]
shenghuangxu
1
manbearwiz/youtube-dl-server
rest-api
45
Request: Error handling on download thread
Queue downloading does not recover after any error occurs on the download thread. This is the same issue as: https://github.com/manbearwiz/youtube-dl-server/issues/43
closed
2019-10-14T06:46:12Z
2020-12-04T21:37:22Z
https://github.com/manbearwiz/youtube-dl-server/issues/45
[]
GeorgeHahn
3
pywinauto/pywinauto
automation
813
pywinauto crashes with tkinter on Python 3.7 on exit
Simply importing `pywinauto` and `tkinter` together will crash Python 3.7 post execution ## Expected Behavior Not get any "Python has stopped working" crash message after Python script has executed. ## Actual Behavior After execution, Python should be able to exit gracefully without a crash message. ## Steps to Reproduce the Problem 1. import tkinter 2. import pywinauto 3. create a `Tk()` instance 4. quit `Tk` instance 5. Python script will exit but a crash message will be shown ## Short Example of Code to Demonstrate the Problem ``` import tkinter as tk import pywinauto as pyw root = tk.Tk() ``` ## Specifications - Pywinauto version: 0.6.7 - Python version and bitness: 3.7-32 - Platform and OS: Windows 10 64 bit
open
2019-09-06T13:50:16Z
2021-09-02T09:51:40Z
https://github.com/pywinauto/pywinauto/issues/813
[ "3rd-party issue" ]
r-ook
9
lexiforest/curl_cffi
web-scraping
336
[BUG] 中文网站乱码 Chinese website messy code
- curl_cffi version 0.6.4 请问中文网站乱码,有什么通用的解决办法吗?(即不通过手动指定编码) Can you tell me if there is any general solution for Chinese websites with messy codes? (i.e. not by specifying the encoding manually)
closed
2024-07-03T06:46:56Z
2024-07-04T03:32:20Z
https://github.com/lexiforest/curl_cffi/issues/336
[ "bug" ]
zyoung1212
6
tensorflow/tensor2tensor
machine-learning
1,486
The variable is in the checkpoints, But the model cannot be loaded correctly.
### Description Hi, I want to reproduce the CNN translation model. But I encounter the model load problem. When I use the tensorflow 1.8, the model seems to be loaded correctly. But when I use the tensorflow 1.12, the model can not be loaded. And the message is ``` NotFoundError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a Variable name or other graph key that is missing from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error: 837.train | [2019-03-13T08:58:51Z] 837.train | [2019-03-13T08:58:51Z] Key while/cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_0/conv1d/conv1d_7/kernel not found in checkpoint 837.train | [2019-03-13T08:58:51Z] [[node save/RestoreV2_1 (defined at /code/tensor2tensor/tensor2tensor/utils/decoding.py:368) = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2_1/tensor_names, save/RestoreV2_1/shape_and_slices)]] ``` But I print the checkpoint variables, I found the variable was in the model. ``` ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_2/dense_8/kernel/Adam_1') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_5/dense_14/kernel/Adam_1') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_0/conv1d/conv1d_7/kernel/Adam') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_6/dense_16/kernel/Adam_1') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_3/dense_10/bias/Adam') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/encoder/dense/kernel/Adam') ('tensor_name: ', 'losses_avg/problem_0/extra_loss') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_5/conv1d/conv1d_12/kernel') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_3/conv1d/conv1d_10/kernel/Adam') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/encoder/cnn_1/conv1d/conv1d_1/kernel/Adam_1') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_3/dense_9/kernel/Adam') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_5/dense_14/bias') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_1/conv1d/conv1d_8/kernel/Adam') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_6/dense_16/bias/Adam_1') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_1/dense_5/kernel') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/cnn_0/conv1d/conv1d_7/kernel') ('tensor_name: ', 'cnn_translate/parallel_0_5/cnn_translate/cnn_translate/body/cnn_decoder/dense_17/bias/Adam_1') ``` So I was very confused with this problem. Can someone can help me ?
open
2019-03-13T09:35:01Z
2019-08-08T20:48:30Z
https://github.com/tensorflow/tensor2tensor/issues/1486
[]
chuanHN
3
mage-ai/mage-ai
data-science
5,363
[BUG] Transformer Block randomly stuck in
### Mage version 0.9.70 ### Describe the bug 1. the block in question is a simple block that returns a string 2. the parent block returns a data frame 3. the pipeline has been scheduled and working fine for at least 2 months 4. all of a sudden, the block stuck on the running state without being executed for 2 days so I need to cancel it manually ![image](https://github.com/user-attachments/assets/f63c8497-ee74-4e83-a1d5-39bed69f163e) the log of the stuck block ![image](https://github.com/user-attachments/assets/da62116e-b0bb-4f8c-adce-ceb0a77f130e) 5. after canceling it manually the scheduled pipeline seems to work normally ### To reproduce 1. the bug seems to happen randomly without any cause ### Expected behavior the block should not be stuck ### Screenshots _No response_ ### Operating system -OS : windows 11 -Mage : 0.9.70 -Browser : Latest Ms Edge ### Additional context _No response_
open
2024-08-26T03:52:20Z
2024-08-26T18:49:42Z
https://github.com/mage-ai/mage-ai/issues/5363
[ "bug" ]
JethroJethro
1
yeongpin/cursor-free-vip
automation
124
no sign in [mac]
i logged out my account , closed the cursor, use cursor-free-vip sign a new account like this: <img width="1200" alt="Image" src="https://github.com/user-attachments/assets/f60798d1-1b91-4b6e-bcb8-2c2ea427bc3d" /> but, when i reopen my cursor, nothing happened <img width="649" alt="Image" src="https://github.com/user-attachments/assets/8c339b30-b804-486c-843a-fd0145bcf9f7" /> i wonder if this is due to the brower is in private mode? thank u
closed
2025-03-01T11:58:15Z
2025-03-06T04:26:04Z
https://github.com/yeongpin/cursor-free-vip/issues/124
[]
guox18
7
facebookresearch/fairseq
pytorch
5,097
Pretrain Hubert base second iteration
I'm training a Hubert model from scratch on 8k Hz audio speech data same as described on the paper, first iteration succeeded. I've started the second iteration where first iteration features were used to learns kmeans clusters. why the follow warning printed for all the training data. should I be concerned ? `[2023-05-02 16:53:22,434][fairseq.data.audio.hubert_dataset][WARNING] - audio and label duration differ too much `
open
2023-05-03T10:12:37Z
2024-11-12T07:44:19Z
https://github.com/facebookresearch/fairseq/issues/5097
[ "question", "needs triage" ]
renadnasser1
3
graphdeco-inria/gaussian-splatting
computer-vision
996
Extract data of ellipsoids
I want to get the mean and covariance of all ellipsoids of the fitting structure, is this achievable?
open
2024-09-26T03:00:03Z
2024-12-02T02:00:46Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/996
[]
3406212002
2
PeterL1n/BackgroundMattingV2
computer-vision
176
train_refine
Hi, first thanks for your great work! I'm trying to train the refine part, but I get some weird error. I tried everything but nothing helps. Maybe You guys have some ideas! ``` File "~/.venv/lib/python3.6/site-packages/torch/utils/data/dataset.py", line 272, in __getitem__ return self.dataset[self.indices[idx]] File "~/BMV2_/dataset/zip.py", line 17, in __getitem__ x = tuple(d[(idx % len(d))+1] for d in self.datasets) ZeroDivisionError: integer division or modulo by zero File "/usr/lib/python3.6/multiprocessing/spawn.py", line 115, in _main self = reduction.pickle.load(from_parent) ```
closed
2022-03-25T10:11:15Z
2024-06-14T02:13:08Z
https://github.com/PeterL1n/BackgroundMattingV2/issues/176
[]
grewanhassan
6
horovod/horovod
pytorch
4,050
How to set timeout status when Missing Rank?
How to set TIMEOUT for horovod? When retry time exceeds the TIMEOUT the program should shutdown If there is a TIMEOUT environment, I think it should be set by default
closed
2024-06-20T01:41:32Z
2025-01-21T05:34:19Z
https://github.com/horovod/horovod/issues/4050
[ "enhancement" ]
fuhailin
0
pywinauto/pywinauto
automation
651
wait Operation error
Hi Vasily, I am trying to access outlook. Based on docs and examples, I am trying below code with wait operation and getting timeout error before application open and visible. What might be best way to use wait operation? ```python from pywinauto.application import Application app = Application().start(r'C:\Program Files (x86)\Microsoft Office\root\Office16\OUTLOOK.EXE') app.rctrl_renwnd32.wait('enabled', timeout = 20) Traceback (most recent call last): File "C:/Users/rrmamidi/Desktop/old Desktop/compress_1/python/basic python scripts/attache_mail.py", line 9, in <module> app.rctrl_renwnd32.wait('enabled', timeout = 20) File "C:\Users\rrmamidi\AppData\Local\Programs\Python\Python36\lib\site-packages\pywinauto-0.6.5-py3.6.egg\pywinauto\application.py", line 502, in wait lambda: self.__check_all_conditions(check_method_names, retry_interval)) File "C:\Users\rrmamidi\AppData\Local\Programs\Python\Python36\lib\site-packages\pywinauto-0.6.5-py3.6.egg\pywinauto\timings.py", line 370, in wait_until raise err pywinauto.timings.TimeoutError: timed out ``` Thanks, Raja
closed
2019-01-08T04:22:09Z
2023-03-18T06:11:14Z
https://github.com/pywinauto/pywinauto/issues/651
[ "question" ]
rajarameshmamidi
16
Asabeneh/30-Days-Of-Python
matplotlib
222
30 days python
closed
2022-05-19T06:50:12Z
2022-05-19T06:50:24Z
https://github.com/Asabeneh/30-Days-Of-Python/issues/222
[]
CYPHERTIGER
0
pytorch/pytorch
machine-learning
149,495
DISABLED AotInductorTest.FreeInactiveConstantBufferCuda (build.bin.test_aoti_inference)
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=AotInductorTest.FreeInactiveConstantBufferCuda&suite=build.bin.test_aoti_inference&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39012167561). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `AotInductorTest.FreeInactiveConstantBufferCuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Expected equality of these values: initMemory - DATASIZE Which is: 22508863488 updateMemory2 Which is: 22508797952 /var/lib/jenkins/workspace/test/cpp/aoti_inference/test.cpp:383: C++ failure ``` </details> Test file path: `` or `test/run_test` Error: Error retrieving : 400, test/run_test: 404 cc @clee2000 @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @chenyang78 @yushangdi @benjaminglass1
open
2025-03-19T09:43:10Z
2025-03-21T09:41:37Z
https://github.com/pytorch/pytorch/issues/149495
[ "module: flaky-tests", "skipped", "oncall: pt2", "oncall: export", "module: aotinductor" ]
pytorch-bot[bot]
11
onnx/onnxmltools
scikit-learn
526
CoreML to ONNX conversion error
I am trying to convert CoreML model - [MobileNetV2](https://developer.apple.com/machine-learning/models/) to ONNX. The conversion is successful but on loading the saved onnx file, the following error is thrown: [ONNXRuntimeError] : 1 : FAIL : Load model from mobilenetv2.onnx failed:Type Error: Type parameter (T) of Optype (Clip) bound to different types (tensor(float) and tensor(double) in node (unary). I would appreciate any help with this.
open
2022-02-16T01:58:03Z
2022-02-16T01:58:03Z
https://github.com/onnx/onnxmltools/issues/526
[]
Diksha-G
0
iperov/DeepFaceLive
machine-learning
123
Huge Delay
Everything is setup, works great. Only issue, huge delay even with audio offset sync, and fiddling with settings...I can't seem to find solution. Could it be an issue with my paging file allocation? I mean I changed it to 32gb as suggested, but for some reason I am only getting like 10fps on the source feed from my cam and its set to auto..I tried changing it to 30fps and others but it's stuck on 10fps. All the info I really have atm, but great app so far! Please advise of any suggestions. Thanks, B. Justice
closed
2023-01-23T00:27:09Z
2023-01-23T15:29:39Z
https://github.com/iperov/DeepFaceLive/issues/123
[]
vintaclectic
2
TencentARC/GFPGAN
deep-learning
3
where is the pretrained model FFHQ_eye_mouth_landmarks_512.pth &arcface.....
nice work , i want to train the model , but where is pretrained model FFHQ_eye_mouth_landmarks_512.pth &arcface.....
closed
2021-06-16T08:08:45Z
2021-06-18T02:09:42Z
https://github.com/TencentARC/GFPGAN/issues/3
[]
zhangyunming
3
streamlit/streamlit
data-visualization
10,067
`st.server_state` with endpoint access (like `st.session_state`, but for global values; different from pickled user sessions)
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [X] I added a descriptive title and summary to this issue. ### Summary Currently, we can use `st.cache_data` and `st.cache_resource` to "save" values that can be accessed between sessions. What if there was an API similar to `st.session_state` that was shared between sessions? I suggest `st.server_state`. Additionally, a Streamlit app could include an endpoint for accessing and updating server state. ### Why? A common pattern is for a Streamlit app to reach out and collect data from a remote location, typically saving it with `st.cache_data`. If there was some server state combined with an endpoint, a remote source could be able to ping the app and initiate an update of data. This prevents needing to schedule an app to run to update data or making a random user wait if they are the first to connect beyond a cached values TTL. This would also be useful for IoT use cases where a smart device can send an alert to the app. Another feature request to send a global message to all sessions (#7312) could also be accommodated with this. ### How? Add a new API `st.server_state` which is global with all sessions having read/write access. Add an (authenticated) enpoint for remote sources to connect to and update values in `st.server_state`. ### Additional Context This is related to requests for app state (#8609), but I'm suggesting something narrower.
open
2024-12-22T10:09:44Z
2025-02-01T05:19:22Z
https://github.com/streamlit/streamlit/issues/10067
[ "type:enhancement", "feature:state" ]
sfc-gh-dmatthews
2
lukas-blecher/LaTeX-OCR
pytorch
229
`pip install pix2tex[gui]` does not work
Running `pip install pix2tex[gui]` in the terminal gives me `no matches found: pix2tex[gui]`. What am I doing wrong?
closed
2023-01-03T17:51:44Z
2023-01-04T13:48:06Z
https://github.com/lukas-blecher/LaTeX-OCR/issues/229
[]
rschmidtner
2
keras-team/autokeras
tensorflow
1,680
KeyError: 'classification_head_1/spatial_reduction_1/reduction_type' with 'overwrite=True' & AK 1.0.17
### Bug Description Similar issue to #1183 even with `overwrite=True` and Autokeras 1.0.17 ### Bug Reproduction A simple image classification as given in the tutorials. Data used by the code: Normal jpg images. ### Expected Behavior The training continues to the maximal max_trials, then stops. ### Setup Details Include the details about the versions of: - OS type and version: Ubuntu 20.04.3 LTS - Python: 3.9.10 - autokeras: 1.0.17 - keras-tuner: 1.1.0 - scikit-learn: 0.24.1 - numpy: 1.22.2 - pandas: 1.2.3 - tensorflow: 2.8.0 ### Additional context, here is the full stack trace: ``` Trial 3 Complete [10h 14m 30s] val_loss: 0.29048436880111694 Best val_loss So Far: 0.29048436880111694 Total elapsed time: 12h 58m 04s --------------------------------------------------------------------------- KeyError Traceback (most recent call last) Input In [7], in <module> 1 tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1) 3 model = ak.ImageClassifier(overwrite=True, max_trials=30) ----> 4 history = model.fit(train_data, epochs=10, callbacks=[tensorboard_callback]) File ~/Git/ipig/venv/lib/python3.9/site-packages/autokeras/tasks/image.py:164, in ImageClassifier.fit(self, x, y, epochs, callbacks, validation_split, validation_data, **kwargs) 107 def fit( 108 self, 109 x: Optional[types.DatasetType] = None, (...) 117 **kwargs 118 ): 119 """Search for the best model and hyperparameters for the AutoModel. 120 121 It will search for the best model based on the performances on (...) 162 validation loss values and validation metrics values (if applicable). 163 """ --> 164 history = super().fit( 165 x=x, 166 y=y, 167 epochs=epochs, 168 callbacks=callbacks, 169 validation_split=validation_split, 170 validation_data=validation_data, 171 **kwargs 172 ) 173 return history File ~/Git/ipig/venv/lib/python3.9/site-packages/autokeras/auto_model.py:288, in AutoModel.fit(self, x, y, batch_size, epochs, callbacks, validation_split, validation_data, verbose, **kwargs) 283 if validation_data is None and validation_split: 284 dataset, validation_data = data_utils.split_dataset( 285 dataset, validation_split 286 ) --> 288 history = self.tuner.search( 289 x=dataset, 290 epochs=epochs, 291 callbacks=callbacks, 292 validation_data=validation_data, 293 validation_split=validation_split, 294 verbose=verbose, 295 **kwargs 296 ) 298 return history File ~/Git/ipig/venv/lib/python3.9/site-packages/autokeras/engine/tuner.py:193, in AutoTuner.search(self, epochs, callbacks, validation_split, verbose, **fit_kwargs) 191 self.hypermodel.build(hp) 192 self.oracle.update_space(hp) --> 193 super().search( 194 epochs=epochs, callbacks=new_callbacks, verbose=verbose, **fit_kwargs 195 ) 197 # Train the best model use validation data. 198 # Train the best model with enough number of epochs. 199 if validation_split > 0 or early_stopping_inserted: File ~/Git/ipig/venv/lib/python3.9/site-packages/keras_tuner/engine/base_tuner.py:169, in BaseTuner.search(self, *fit_args, **fit_kwargs) 167 self.on_search_begin() 168 while True: --> 169 trial = self.oracle.create_trial(self.tuner_id) 170 if trial.status == trial_module.TrialStatus.STOPPED: 171 # Oracle triggered exit. 172 tf.get_logger().info("Oracle triggered exit") File ~/Git/ipig/venv/lib/python3.9/site-packages/keras_tuner/engine/oracle.py:189, in Oracle.create_trial(self, tuner_id) 187 values = None 188 else: --> 189 response = self.populate_space(trial_id) 190 status = response["status"] 191 values = response["values"] if "values" in response else None File ~/Git/ipig/venv/lib/python3.9/site-packages/autokeras/tuners/greedy.py:153, in GreedyOracle.populate_space(self, trial_id) 151 for _ in range(self._max_collisions): 152 hp_names = self._select_hps() --> 153 values = self._generate_hp_values(hp_names) 154 # Reached max collisions. 155 if values is None: File ~/Git/ipig/venv/lib/python3.9/site-packages/autokeras/tuners/greedy.py:189, in GreedyOracle._generate_hp_values(self, hp_names) 186 if hps.is_active(hp): 187 # if was active and not selected, do nothing. 188 if best_hps.is_active(hp.name) and hp.name not in hp_names: --> 189 hps.values[hp.name] = best_hps.values[hp.name] 190 continue 191 # if was not active or selected, sample. KeyError: 'classification_head_1/spatial_reduction_2/reduction_type' ```
open
2022-02-10T09:44:14Z
2022-02-10T09:45:14Z
https://github.com/keras-team/autokeras/issues/1680
[]
mmortazavi
0
automl/auto-sklearn
scikit-learn
784
Does output with R2 below simple multiple regression indicate error or tuning need?
This was the script that resulted in an unusually low R2 -- the expected result was higher than multiple regression (.55) instead of R2 of .12. The question is whether this indicates a poor use case for auto-SKLearn, a need for parameter or hyperparameter adjustments, or some other error in use? 15:11:48 PRIVATE python3 eluellen-sklearn.py /usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.metrics.classification module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.metrics. Anything that cannot be imported from sklearn.metrics is now part of the private API. warnings.warn(message, FutureWarning) Samples = 2619, Features = 40 X_train = [[4.96200e+04 1.71090e+04 3.44800e-01 ... 1.70000e+04 3.26200e+04 6.57400e-01] [5.95000e+04 0.00000e+00 0.00000e+00 ... 5.95000e+04 0.00000e+00 0.00000e+00] [4.65400e+04 4.65400e+04 1.00000e+00 ... 1.15400e+04 3.50000e+04 7.52000e-01] ... [5.25800e+04 3.14100e+04 5.97400e-01 ... 2.25800e+04 3.00000e+04 5.70600e-01] [6.46150e+04 6.27120e+04 9.70500e-01 ... 9.61500e+03 5.50000e+04 8.51200e-01] [5.25800e+04 2.90390e+04 5.52300e-01 ... 2.22230e+04 3.03575e+04 5.77400e-01]], y_train = [1. 0. 1. ... 1. 1. 1.] /usr/local/lib/python3.6/dist-packages/sklearn/base.py:197: FutureWarning: From version 0.24, get_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None. FutureWarning) [WARNING] [2020-02-18 15:11:58,185:AutoMLSMBO(1)::cb28bbd020a0a08a3c17168f19c8aaae] Could not find meta-data directory /usr/local/lib/python3.6/dist-packages/autosklearn/metalearning/files/r2_regression_dense [WARNING] [2020-02-18 15:11:58,212:EnsembleBuilder(1):cb28bbd020a0a08a3c17168f19c8aaae] No models better than random - using Dummy Score! [WARNING] [2020-02-18 15:11:58,224:EnsembleBuilder(1):cb28bbd020a0a08a3c17168f19c8aaae] No models better than random - using Dummy Score! [WARNING] [2020-02-18 15:12:00,228:EnsembleBuilder(1):cb28bbd020a0a08a3c17168f19c8aaae] No models better than random - using Dummy Score! [(0.340000, SimpleRegressionPipeline({'categorical_encoding:__choice__': 'one_hot_encoding', 'imputation:strategy': 'median', 'preprocessor:__choice__': 'extra_trees_preproc_for_regression', 'regressor:__choice__': 'ridge_regression', 'rescaling:__choice__': 'quantile_transformer', 'categorical_encoding:one_hot_encoding:use_minimum_fraction': 'True', 'preprocessor:extra_trees_preproc_for_regression:bootstrap': 'True', 'preprocessor:extra_trees_preproc_for_regression:criterion': 'mae', 'preprocessor:extra_trees_preproc_for_regression:max_depth': 'None', 'preprocessor:extra_trees_preproc_for_regression:max_features': 0.8215479502881777, 'preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes': 'None', 'preprocessor:extra_trees_preproc_for_regression:min_samples_leaf': 11, 'preprocessor:extra_trees_preproc_for_regression:min_samples_split': 9, 'preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf': 0.0, 'preprocessor:extra_trees_preproc_for_regression:n_estimators': 100, 'regressor:ridge_regression:alpha': 4.563743442447699, 'regressor:ridge_regression:fit_intercept': 'True', 'regressor:ridge_regression:tol': 4.8339309027613326e-05, 'rescaling:quantile_transformer:n_quantiles': 572, 'rescaling:quantile_transformer:output_distribution': 'uniform', 'categorical_encoding:one_hot_encoding:minimum_fraction': 0.022216999044307732}, dataset_properties={ 'task': 4, 'sparse': False, 'multilabel': False, 'multiclass': False, 'target_type': 'regression', 'signed': False})), (0.340000, SimpleRegressionPipeline({'categorical_encoding:__choice__': 'one_hot_encoding', 'imputation:strategy': 'most_frequent', 'preprocessor:__choice__': 'fast_ica', 'regressor:__choice__': 'extra_trees', 'rescaling:__choice__': 'minmax', 'categorical_encoding:one_hot_encoding:use_minimum_fraction': 'False', 'preprocessor:fast_ica:algorithm': 'parallel', 'preprocessor:fast_ica:fun': 'logcosh', 'preprocessor:fast_ica:whiten': 'False', 'regressor:extra_trees:bootstrap': 'False', 'regressor:extra_trees:criterion': 'friedman_mse', 'regressor:extra_trees:max_depth': 'None', 'regressor:extra_trees:max_features': 0.343851332296278, 'regressor:extra_trees:max_leaf_nodes': 'None', 'regressor:extra_trees:min_impurity_decrease': 0.0, 'regressor:extra_trees:min_samples_leaf': 14, 'regressor:extra_trees:min_samples_split': 5, 'regressor:extra_trees:n_estimators': 100}, dataset_properties={ 'task': 4, 'sparse': False, 'multilabel': False, 'multiclass': False, 'target_type': 'regression', 'signed': False})), (0.260000, SimpleRegressionPipeline({'categorical_encoding:__choice__': 'one_hot_encoding', 'imputation:strategy': 'mean', 'preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'random_forest', 'rescaling:__choice__': 'standardize', 'categorical_encoding:one_hot_encoding:use_minimum_fraction': 'True', 'regressor:random_forest:bootstrap': 'True', 'regressor:random_forest:criterion': 'mse', 'regressor:random_forest:max_depth': 'None', 'regressor:random_forest:max_features': 1.0, 'regressor:random_forest:max_leaf_nodes': 'None', 'regressor:random_forest:min_impurity_decrease': 0.0, 'regressor:random_forest:min_samples_leaf': 1, 'regressor:random_forest:min_samples_split': 2, 'regressor:random_forest:min_weight_fraction_leaf': 0.0, 'regressor:random_forest:n_estimators': 100, 'categorical_encoding:one_hot_encoding:minimum_fraction': 0.01}, dataset_properties={ 'task': 4, 'sparse': False, 'multilabel': False, 'multiclass': False, 'target_type': 'regression', 'signed': False})), (0.040000, SimpleRegressionPipeline({'categorical_encoding:__choice__': 'one_hot_encoding', 'imputation:strategy': 'most_frequent', 'preprocessor:__choice__': 'fast_ica', 'regressor:__choice__': 'ridge_regression', 'rescaling:__choice__': 'standardize', 'categorical_encoding:one_hot_encoding:use_minimum_fraction': 'True', 'preprocessor:fast_ica:algorithm': 'deflation', 'preprocessor:fast_ica:fun': 'exp', 'preprocessor:fast_ica:whiten': 'True', 'regressor:ridge_regression:alpha': 1.3608642297867532e-05, 'regressor:ridge_regression:fit_intercept': 'True', 'regressor:ridge_regression:tol': 0.002596874543719601, 'categorical_encoding:one_hot_encoding:minimum_fraction': 0.00017348437847697216, 'preprocessor:fast_ica:n_components': 1058}, dataset_properties={ 'task': 4, 'sparse': False, 'multilabel': False, 'multiclass': False, 'target_type': 'regression', 'signed': False})), (0.020000, SimpleRegressionPipeline({'categorical_encoding:__choice__': 'no_encoding', 'imputation:strategy': 'median', 'preprocessor:__choice__': 'select_percentile_regression', 'regressor:__choice__': 'ridge_regression', 'rescaling:__choice__': 'quantile_transformer', 'preprocessor:select_percentile_regression:percentile': 82.56436225708288, 'preprocessor:select_percentile_regression:score_func': 'mutual_info', 'regressor:ridge_regression:alpha': 1.6259354959848533, 'regressor:ridge_regression:fit_intercept': 'True', 'regressor:ridge_regression:tol': 0.005858793476627702, 'rescaling:quantile_transformer:n_quantiles': 431, 'rescaling:quantile_transformer:output_distribution': 'normal'}, dataset_properties={ 'task': 4, 'sparse': False, 'multilabel': False, 'multiclass': False, 'target_type': 'regression', 'signed': False})), ] R2 score: 0.12086525801756198 real 1m58.008s user 2m17.253s sys 0m12.919s
closed
2020-02-18T15:44:50Z
2020-06-19T08:56:56Z
https://github.com/automl/auto-sklearn/issues/784
[]
EricLuellen
2
iperov/DeepFaceLab
machine-learning
778
Windows Error 1450 with Xseg and train SAE
Made everything step by step from the tutorial from YT, and with the last step (train SAE), I`ve got an error. `Running trainer. [new] No saved models found. Enter a name of a new model : hindu_SAE hindu_SAE Model first run. Choose one or several GPU idxs (separated by comma). [CPU] : CPU [0] : GeForce GTX 1080 Ti [0] Which GPU indexes to choose? : 0 [0] Autobackup every N hour ( 0..24 ?:help ) : 0 0 [n] Write preview history ( y/n ?:help ) : n [0] Target iteration : 0 [y] Flip faces randomly ( y/n ?:help ) : y [8] Batch_size ( ?:help ) : 8 [128] Resolution ( 64-512 ?:help ) : 128 [wf] Face type ( h/mf/f/wf/head ?:help ) : wf wf [dfuhd] AE architecture ( df/liae/dfhd/liaehd/dfuhd/liaeuhd ?:help ) : df df [688] AutoEncoder dimensions ( 32-1024 ?:help ) : 688 [64] Encoder dimensions ( 16-256 ?:help ) : 64 [64] Decoder dimensions ( 16-256 ?:help ) : 64 [22] Decoder mask dimensions ( 16-256 ?:help ) : 22 [y] Masked training ( y/n ?:help ) : y [n] Eyes priority ( y/n ?:help ) : n [y] Place models and optimizer on GPU ( y/n ?:help ) : y [n] Use learning rate dropout ( n/y/cpu ?:help ) : ? When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. n - disabled. y - enabled cpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration. [n] Use learning rate dropout ( n/y/cpu ?:help ) : n [y] Enable random warp of samples ( y/n ?:help ) : y [0.0] GAN power ( 0.0 .. 10.0 ?:help ) : 0.0 [0.0] 'True face' power. ( 0.0000 .. 1.0 ?:help ) : 0.0 [0.0] Face style power ( 0.0..100.0 ?:help ) : 0.0 [0.0] Background style power ( 0.0..100.0 ?:help ) : 0.0 [none] Color transfer for src faceset ( none/rct/lct/mkl/idt/sot ?:help ) : none [n] Enable gradient clipping ( y/n ?:help ) : n [n] Enable pretraining mode ( y/n ?:help ) : n Initializing models: 100%|############################| 5/5 [00:34<00:00, 6.98s/it] Loading samples: 100%|#######################| 48929/48929 [02:29<00:00, 328.19it/s] Loading samples: 100%|#######################| 38226/38226 [02:14<00:00, 284.53it/s] Traceback (most recent call last): File "<string>", line 1, in <module> File "multiprocessing\spawn.py", line 105, in spawn_main File "multiprocessing\spawn.py", line 115, in _main File "multiprocessing\heap.py", line 55, in __setstate__ OSError: [WinError 1450] Zasoby systemowe nie wystarczają do ukończenia żądanej usługi ` OSError: [WinError 1450] **System resources are not sufficient to complete the requested service** My configuration: Ryzen 5 1600X, 32GB DDR4, 11GB GTX 1080Ti, 64GB Virtual Memory on Win 10 x64BIT The DF Master is current from today. Please help
open
2020-06-09T21:22:40Z
2023-06-08T20:11:21Z
https://github.com/iperov/DeepFaceLab/issues/778
[]
wasyleque
1
Yorko/mlcourse.ai
pandas
747
Update the Docker image to use Poetry
The current Docker image ([Dockerfile](https://github.com/Yorko/mlcourse.ai/blob/main/docker_files/Dockerfile), [DockerHub](https://hub.docker.com/layers/festline/mlcourse_ai/latest/images/sha256-a736f95d84cb934331d5c58f408dbfcb897a725adb36a5963d9656f4199f4abb?context=explore)) uses Anaconda and is thus very heavy. Also, package versions in the [Dockerfile](https://github.com/Yorko/mlcourse.ai/blob/main/docker_files/Dockerfile) and [instructions](https://mlcourse.ai/book/prereqs/docker.html) on Docker usage have not been updated since 2021 or even 2019. It'd help to replace the image with another one that uses Poetry and the provided [poetry.lock](https://github.com/Yorko/mlcourse.ai/blob/main/poetry.lock) file. So essentially, what's needed, is no install poetry in the Docker image and run `poetry install` to install all dependencies.
closed
2023-05-17T09:24:57Z
2024-08-25T07:46:26Z
https://github.com/Yorko/mlcourse.ai/issues/747
[ "help wanted", "wontfix" ]
Yorko
0
gevent/gevent
asyncio
1,952
testFDPassSeparate fails on OpenIndiana (sunos5)
* gevent version: 22.10.2, installed from sdist during packaging `gevent` for OpenIndiana * Python version: 3.9.16, part of OpenIndiana * Operating System: OpenIndiana Hipster (latest) ### Description: I'm packaging `gevent` for OpenIndiana and I found that following four tests fails due to an OSError: ``` ====================================================================== ERROR: testFDPassSeparate (__main__.RecvmsgSCMRightsStreamTest) ---------------------------------------------------------------------- Traceback (most recent call last): File "/tmp/test_socketogqslxst.py", line 372, in _tearDown raise exc File "/tmp/test_socketogqslxst.py", line 390, in clientRun test_func() File "/tmp/test_socketogqslxst.py", line 3527, in _testFDPassSeparate self.sendmsgToServer([MSG], [(socket.SOL_SOCKET, File "/tmp/test_socketogqslxst.py", line 2664, in sendmsgToServer return self.cli_sock.sendmsg( File "/usr/lib/python3.9/vendor-packages/gevent/_socket3.py", line 399, in sendmsg return self._sock.sendmsg(buffers, ancdata, flags, address) OSError: [Errno 22] Invalid argument ====================================================================== ERROR: testFDPassSeparateMinSpace (__main__.RecvmsgSCMRightsStreamTest) ---------------------------------------------------------------------- Traceback (most recent call last): File "/tmp/test_socketogqslxst.py", line 372, in _tearDown raise exc File "/tmp/test_socketogqslxst.py", line 390, in clientRun test_func() File "/tmp/test_socketogqslxst.py", line 3554, in _testFDPassSeparateMinSpace self.sendmsgToServer([MSG], [(socket.SOL_SOCKET, File "/tmp/test_socketogqslxst.py", line 2664, in sendmsgToServer return self.cli_sock.sendmsg( File "/usr/lib/python3.9/vendor-packages/gevent/_socket3.py", line 399, in sendmsg return self._sock.sendmsg(buffers, ancdata, flags, address) OSError: [Errno 22] Invalid argument ====================================================================== ERROR: testFDPassSeparate (__main__.RecvmsgIntoSCMRightsStreamTest) ---------------------------------------------------------------------- Traceback (most recent call last): File "/tmp/test_socketogqslxst.py", line 372, in _tearDown raise exc File "/tmp/test_socketogqslxst.py", line 390, in clientRun test_func() File "/tmp/test_socketogqslxst.py", line 3527, in _testFDPassSeparate self.sendmsgToServer([MSG], [(socket.SOL_SOCKET, File "/tmp/test_socketogqslxst.py", line 2664, in sendmsgToServer return self.cli_sock.sendmsg( File "/usr/lib/python3.9/vendor-packages/gevent/_socket3.py", line 399, in sendmsg return self._sock.sendmsg(buffers, ancdata, flags, address) OSError: [Errno 22] Invalid argument ====================================================================== ERROR: testFDPassSeparateMinSpace (__main__.RecvmsgIntoSCMRightsStreamTest) ---------------------------------------------------------------------- Traceback (most recent call last): File "/tmp/test_socketogqslxst.py", line 372, in _tearDown raise exc File "/tmp/test_socketogqslxst.py", line 390, in clientRun test_func() File "/tmp/test_socketogqslxst.py", line 3554, in _testFDPassSeparateMinSpace self.sendmsgToServer([MSG], [(socket.SOL_SOCKET, File "/tmp/test_socketogqslxst.py", line 2664, in sendmsgToServer return self.cli_sock.sendmsg( File "/usr/lib/python3.9/vendor-packages/gevent/_socket3.py", line 399, in sendmsg return self._sock.sendmsg(buffers, ancdata, flags, address) OSError: [Errno 22] Invalid argument ``` All other `test_socket.py` tests either pass or are skipped. ### What I've run: Tests
closed
2023-05-08T13:03:22Z
2023-07-10T21:02:33Z
https://github.com/gevent/gevent/issues/1952
[ "Status: not gevent", "Platform: Unsupported environment" ]
mtelka
2
mckinsey/vizro
pydantic
732
[POC] Investigate whether we can get rid of outer container with className to use vizro-bootstrap
Currently, if someone creates a pure Dash app and wants to use the vizro-bootstrap CSS file, they have to wrap their Dash app content inside an outer div with the className=vizro_light or vizro_dark. If not provided, it does not take on the styling of our Vizro bootstrap stylesheet. Take this minimal example: https://github.com/mckinsey/vizro/blob/poc/add-example-bootstrap/vizro-core/examples/scratch_dev/app.py#L54-L55 @pruthvip15 - could you investigate the following? - **Why do we need to provide this outer container with className vizro_dark/vizro_light?** I have a rough understanding here, but would be great if we could get to the bottom of it. I assume that this is how the theme switch in bootstrap works e.g. if you take a look at [this example](https://getbootstrap.com/docs/5.3/customize/color-modes/) from the bootstrap docs, they also always wrap it inside an outer container called "light" or "dark". Otherwise it cannot find the variables and relevant scss files. - **Is there any way how we could remove the requirement to define an outer container with classname?** So basically the goal is to be able to remove L54-L55 if possible and optimally, everything should work as expected. @pruthvip15 - you can take the branch and dev example from above :) I think because we define this in our bootstrap theme, we need this outer container, so I am not sure if there is any way how this can be read in without having to specify this out container ``` .vizro_dark, [data-bs-theme="dark"] { ... } ```
closed
2024-09-23T11:43:23Z
2024-10-15T11:54:43Z
https://github.com/mckinsey/vizro/issues/732
[]
huong-li-nguyen
7
bmoscon/cryptofeed
asyncio
360
Bitfinex: failing pair normalization strategy
**Describe the bug** `BCHN` & `BCHABC` are not distinguished by Cryptofeed/Bitfinex. `LINK` is not recognized by Cryptofeed/Bitfinex. Current code in `pairs.py` assumes only 3 letters allow identifying a coin. ```python normalized = pair[1:-3] + PAIR_SEP + pair[-3:] ``` - Which does not allow distinguishing `BCHN` and `BCHABC`. "tBCHABC:USD" "tBCHN:USD" (to be noticed within the normalization effort: Binance, Kraken, Huobi, OKEX, FTX... keep `BCH` for `BCHN`: I would propose to do the same within cryptofeed) - Which also do not allow to find `LINK. "tLINK:USD" "tLINK:UST" **To Reproduce** Trying to query following coins do not work. ```yaml BITFINEX: trades: ['BCH-USDT', 'LINK-USD'] ``` PS: link to retrieve Bitfinex pairs: https://api.bitfinex.com/v2/tickers?symbols=ALL
closed
2020-12-20T20:04:33Z
2020-12-23T14:23:58Z
https://github.com/bmoscon/cryptofeed/issues/360
[ "bug" ]
yohplala
1
vaexio/vaex
data-science
1,951
[BUG-REPORT] install error for vaex on python=3.10 in vaex-core with vaexfast.cpp
Thank you for reaching out and helping us improve Vaex! Before you submit a new Issue, please read through the [documentation](https://docs.vaex.io/en/latest/). Also, make sure you search through the Open and Closed Issues - your problem may already be discussed or addressed. **Description** Please provide a clear and concise description of the problem. This should contain all the steps needed to reproduce the problem. A minimal code example that exposes the problem is very appreciated. **Software information** - Vaex version (`import vaex; vaex.__version__)`: ``` not available - install error ``` - Vaex was installed via: pip / conda-forge / from source ` pip` - OS: ``` windows OS Name Microsoft Windows 10 Enterprise Version 10.0.19044 Build 19044 ``` **Additional information** Please state any supplementary information or provide additional context for the problem (e.g. screenshots, data, etc..). To replicate: using python 3.10 & cmd.exe ``` python -m venv c:\Data\venv\github-pages c:\Data\venv\github-pages\Scripts\activate.bat (github-pages) C:\Data\venv>pip install jupyter vaex==4.8.0 ``` Traceback: ``` (github-pages) C:\Data\venv>pip install jupyter vaex==4.8.0 Collecting jupyter Using cached jupyter-1.0.0-py2.py3-none-any.whl (2.7 kB) Collecting vaex==4.8.0 Using cached vaex-4.8.0-py3-none-any.whl (4.7 kB) Collecting vaex-server<0.9,>=0.8.1 Using cached vaex_server-0.8.1-py3-none-any.whl (23 kB) Collecting vaex-core<4.9,>=4.8.0 Using cached vaex-core-4.8.0.tar.gz (2.2 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing wheel metadata ... done Collecting vaex-ml<0.18,>=0.17.0 Using cached vaex_ml-0.17.0-py3-none-any.whl (56 kB) Collecting vaex-viz<0.6,>=0.5.1 Using cached vaex_viz-0.5.1-py3-none-any.whl (19 kB) Collecting vaex-hdf5<0.13,>=0.12.0 Using cached vaex_hdf5-0.12.0-py3-none-any.whl (16 kB) Collecting vaex-astro<0.10,>=0.9.0 Using cached vaex_astro-0.9.0-py3-none-any.whl (20 kB) Collecting vaex-jupyter<0.8,>=0.7.0 Using cached vaex_jupyter-0.7.0-py3-none-any.whl (43 kB) Collecting notebook Using cached notebook-6.4.8-py3-none-any.whl (9.9 MB) Collecting qtconsole Using cached qtconsole-5.2.2-py3-none-any.whl (120 kB) Collecting ipywidgets Using cached ipywidgets-7.6.5-py2.py3-none-any.whl (121 kB) Collecting jupyter-console Using cached jupyter_console-6.4.0-py3-none-any.whl (22 kB) Collecting ipykernel Using cached ipykernel-6.9.1-py3-none-any.whl (128 kB) Collecting nbconvert Using cached nbconvert-6.4.2-py3-none-any.whl (558 kB) Collecting astropy Using cached astropy-5.0.1-cp310-cp310-win_amd64.whl (6.4 MB) Collecting pyarrow>=3.0 Using cached pyarrow-7.0.0-cp310-cp310-win_amd64.whl (16.1 MB) Collecting rich Using cached rich-11.2.0-py3-none-any.whl (217 kB) Collecting progressbar2 Using cached progressbar2-4.0.0-py2.py3-none-any.whl (26 kB) Collecting future>=0.15.2 Using cached future-0.18.2.tar.gz (829 kB) Collecting frozendict!=2.2.0 Using cached frozendict-2.3.0-cp310-cp310-win_amd64.whl (34 kB) Collecting pandas Using cached pandas-1.4.1-cp310-cp310-win_amd64.whl (10.6 MB) Collecting filelock Using cached filelock-3.6.0-py3-none-any.whl (10.0 kB) Collecting requests Using cached requests-2.27.1-py2.py3-none-any.whl (63 kB) Collecting dask Using cached dask-2022.2.1-py3-none-any.whl (1.1 MB) Collecting nest-asyncio>=1.3.3 Using cached nest_asyncio-1.5.4-py3-none-any.whl (5.1 kB) Collecting blake3 Using cached blake3-0.3.1-cp310-none-win_amd64.whl (193 kB) Collecting tabulate>=0.8.3 Using cached tabulate-0.8.9-py3-none-any.whl (25 kB) Collecting aplus Using cached aplus-0.11.0.tar.gz (3.7 kB) Collecting numpy>=1.16 Using cached numpy-1.22.2-cp310-cp310-win_amd64.whl (14.7 MB) Collecting pydantic>=1.8.0 Using cached pydantic-1.9.0-cp310-cp310-win_amd64.whl (2.1 MB) Collecting six Using cached six-1.16.0-py2.py3-none-any.whl (11 kB) Collecting cloudpickle Using cached cloudpickle-2.0.0-py3-none-any.whl (25 kB) Collecting pyyaml Using cached PyYAML-6.0-cp310-cp310-win_amd64.whl (151 kB) Collecting typing-extensions>=3.7.4.3 Using cached typing_extensions-4.1.1-py3-none-any.whl (26 kB) Collecting h5py>=2.9 Using cached h5py-3.6.0-cp310-cp310-win_amd64.whl (2.8 MB) Collecting xarray Using cached xarray-0.21.1-py3-none-any.whl (865 kB) Collecting bqplot>=0.10.1 Using cached bqplot-0.12.33-py2.py3-none-any.whl (1.2 MB) Collecting ipyvolume>=0.4 Using cached ipyvolume-0.5.2-py2.py3-none-any.whl (2.9 MB) Collecting ipyleaflet Using cached ipyleaflet-0.15.0-py2.py3-none-any.whl (3.3 MB) Collecting ipympl Using cached ipympl-0.8.8-py2.py3-none-any.whl (507 kB) Collecting ipyvuetify<2,>=1.2.2 Using cached ipyvuetify-1.8.2-1-py2.py3-none-any.whl (11.7 MB) Collecting traitlets>=4.3.0 Using cached traitlets-5.1.1-py3-none-any.whl (102 kB) Collecting traittypes>=0.0.6 Using cached traittypes-0.2.1-py2.py3-none-any.whl (8.6 kB) Collecting ipywebrtc Using cached ipywebrtc-0.6.0-py2.py3-none-any.whl (260 kB) Collecting Pillow Using cached Pillow-9.0.1-cp310-cp310-win_amd64.whl (3.2 MB) Collecting pythreejs>=1.0.0 Using cached pythreejs-2.3.0-py2.py3-none-any.whl (3.4 MB) Collecting ipyvue<2,>=1.5 Using cached ipyvue-1.7.0-py2.py3-none-any.whl (2.7 MB) Collecting jupyterlab-widgets>=1.0.0 Using cached jupyterlab_widgets-1.0.2-py3-none-any.whl (243 kB) Collecting ipython>=4.0.0 Using cached ipython-8.1.0-py3-none-any.whl (750 kB) Collecting nbformat>=4.2.0 Using cached nbformat-5.1.3-py3-none-any.whl (178 kB) Collecting ipython-genutils~=0.2.0 Using cached ipython_genutils-0.2.0-py2.py3-none-any.whl (26 kB) Collecting widgetsnbextension~=3.5.0 Using cached widgetsnbextension-3.5.2-py2.py3-none-any.whl (1.6 MB) Collecting debugpy<2.0,>=1.0.0 Using cached debugpy-1.5.1-cp310-cp310-win_amd64.whl (4.4 MB) Collecting jupyter-client<8.0 Using cached jupyter_client-7.1.2-py3-none-any.whl (130 kB) Collecting matplotlib-inline<0.2.0,>=0.1.0 Using cached matplotlib_inline-0.1.3-py3-none-any.whl (8.2 kB) Collecting tornado<7.0,>=4.2 Using cached tornado-6.1.tar.gz (497 kB) Collecting stack-data Using cached stack_data-0.2.0-py3-none-any.whl (21 kB) Collecting prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 Using cached prompt_toolkit-3.0.28-py3-none-any.whl (380 kB) Collecting backcall Using cached backcall-0.2.0-py2.py3-none-any.whl (11 kB) Requirement already satisfied: setuptools>=18.5 in c:\data\venv\github-pages\lib\site-packages (from ipython>=4.0.0->ipywidgets->jupyter) (58.1.0) Collecting pygments>=2.4.0 Using cached Pygments-2.11.2-py3-none-any.whl (1.1 MB) Collecting colorama Using cached colorama-0.4.4-py2.py3-none-any.whl (16 kB) Collecting pickleshare Using cached pickleshare-0.7.5-py2.py3-none-any.whl (6.9 kB) Collecting jedi>=0.16 Using cached jedi-0.18.1-py2.py3-none-any.whl (1.6 MB) Collecting decorator Using cached decorator-5.1.1-py3-none-any.whl (9.1 kB) Collecting parso<0.9.0,>=0.8.0 Using cached parso-0.8.3-py2.py3-none-any.whl (100 kB) Collecting jupyter-core>=4.6.0 Using cached jupyter_core-4.9.2-py3-none-any.whl (86 kB) Collecting python-dateutil>=2.1 Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) Collecting entrypoints Using cached entrypoints-0.4-py3-none-any.whl (5.3 kB) Collecting pyzmq>=13 Using cached pyzmq-22.3.0-cp310-cp310-win_amd64.whl (1.1 MB) Collecting pywin32>=1.0 Using cached pywin32-303-cp310-cp310-win_amd64.whl (9.2 MB) Collecting jsonschema!=2.5.0,>=2.4 Using cached jsonschema-4.4.0-py3-none-any.whl (72 kB) Collecting pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 Using cached pyrsistent-0.18.1-cp310-cp310-win_amd64.whl (61 kB) Collecting attrs>=17.4.0 Using cached attrs-21.4.0-py2.py3-none-any.whl (60 kB) Collecting pytz>=2020.1 Using cached pytz-2021.3-py2.py3-none-any.whl (503 kB) Collecting wcwidth Using cached wcwidth-0.2.5-py2.py3-none-any.whl (30 kB) Collecting ipydatawidgets>=1.1.1 Using cached ipydatawidgets-4.2.0-py2.py3-none-any.whl (275 kB) Collecting numba Using cached numba-0.55.1-cp310-cp310-win_amd64.whl (2.4 MB) Collecting jinja2 Using cached Jinja2-3.0.3-py3-none-any.whl (133 kB) Collecting cachetools Using cached cachetools-5.0.0-py3-none-any.whl (9.1 kB) Collecting fastapi Using cached fastapi-0.74.1-py3-none-any.whl (53 kB) Collecting uvicorn[standard] Using cached uvicorn-0.17.5-py3-none-any.whl (53 kB) Collecting matplotlib>=1.3.1 Using cached matplotlib-3.5.1-cp310-cp310-win_amd64.whl (7.2 MB) Collecting kiwisolver>=1.0.1 Using cached kiwisolver-1.3.2-cp310-cp310-win_amd64.whl (52 kB) Collecting pyparsing>=2.2.1 Using cached pyparsing-3.0.7-py3-none-any.whl (98 kB) Collecting fonttools>=4.22.0 Using cached fonttools-4.29.1-py3-none-any.whl (895 kB) Collecting cycler>=0.10 Using cached cycler-0.11.0-py3-none-any.whl (6.4 kB) Collecting packaging>=20.0 Using cached packaging-21.3-py3-none-any.whl (40 kB) Collecting Send2Trash>=1.8.0 Using cached Send2Trash-1.8.0-py3-none-any.whl (18 kB) Collecting argon2-cffi Using cached argon2_cffi-21.3.0-py3-none-any.whl (14 kB) Collecting prometheus-client Using cached prometheus_client-0.13.1-py3-none-any.whl (57 kB) Collecting terminado>=0.8.3 Using cached terminado-0.13.1-py3-none-any.whl (14 kB) Collecting pywinpty>=1.1.0 Using cached pywinpty-2.0.2-cp310-none-win_amd64.whl (1.4 MB) Collecting argon2-cffi-bindings Using cached argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl (30 kB) Collecting cffi>=1.0.1 Using cached cffi-1.15.0-cp310-cp310-win_amd64.whl (180 kB) Collecting pycparser Using cached pycparser-2.21-py2.py3-none-any.whl (118 kB) Collecting pyerfa>=2.0 Using cached pyerfa-2.0.0.1-cp310-cp310-win_amd64.whl (366 kB) Collecting toolz>=0.8.2 Using cached toolz-0.11.2-py3-none-any.whl (55 kB) Collecting partd>=0.3.10 Using cached partd-1.2.0-py3-none-any.whl (19 kB) Collecting fsspec>=0.6.0 Using cached fsspec-2022.2.0-py3-none-any.whl (134 kB) Collecting locket Using cached locket-0.2.1-py2.py3-none-any.whl (4.1 kB) Collecting starlette==0.17.1 Using cached starlette-0.17.1-py3-none-any.whl (58 kB) Collecting anyio<4,>=3.0.0 Using cached anyio-3.5.0-py3-none-any.whl (79 kB) Collecting sniffio>=1.1 Using cached sniffio-1.2.0-py3-none-any.whl (10 kB) Collecting idna>=2.8 Using cached idna-3.3-py3-none-any.whl (61 kB) Collecting xyzservices>=2021.8.1 Using cached xyzservices-2022.2.0-py3-none-any.whl (35 kB) Collecting MarkupSafe>=2.0 Using cached MarkupSafe-2.1.0-cp310-cp310-win_amd64.whl (16 kB) Collecting testpath Using cached testpath-0.6.0-py3-none-any.whl (83 kB) Collecting pandocfilters>=1.4.1 Using cached pandocfilters-1.5.0-py2.py3-none-any.whl (8.7 kB) Collecting nbclient<0.6.0,>=0.5.0 Using cached nbclient-0.5.11-py3-none-any.whl (71 kB) Collecting defusedxml Using cached defusedxml-0.7.1-py2.py3-none-any.whl (25 kB) Collecting mistune<2,>=0.8.1 Using cached mistune-0.8.4-py2.py3-none-any.whl (16 kB) Collecting bleach Using cached bleach-4.1.0-py2.py3-none-any.whl (157 kB) Collecting jupyterlab-pygments Using cached jupyterlab_pygments-0.1.2-py2.py3-none-any.whl (4.6 kB) Collecting webencodings Using cached webencodings-0.5.1-py2.py3-none-any.whl (11 kB) Collecting numpy>=1.16 Using cached numpy-1.21.5-cp310-cp310-win_amd64.whl (14.0 MB) Collecting llvmlite<0.39,>=0.38.0rc1 Using cached llvmlite-0.38.0-cp310-cp310-win_amd64.whl (23.2 MB) Collecting python-utils>=3.0.0 Using cached python_utils-3.1.0-py2.py3-none-any.whl (19 kB) Collecting qtpy Using cached QtPy-2.0.1-py3-none-any.whl (65 kB) Collecting certifi>=2017.4.17 Using cached certifi-2021.10.8-py2.py3-none-any.whl (149 kB) Collecting urllib3<1.27,>=1.21.1 Using cached urllib3-1.26.8-py2.py3-none-any.whl (138 kB) Collecting charset-normalizer~=2.0.0 Using cached charset_normalizer-2.0.12-py3-none-any.whl (39 kB) Collecting commonmark<0.10.0,>=0.9.0 Using cached commonmark-0.9.1-py2.py3-none-any.whl (51 kB) Collecting executing Using cached executing-0.8.3-py2.py3-none-any.whl (16 kB) Collecting pure-eval Using cached pure_eval-0.2.2-py3-none-any.whl (11 kB) Collecting asttokens Using cached asttokens-2.0.5-py2.py3-none-any.whl (20 kB) Collecting asgiref>=3.4.0 Using cached asgiref-3.5.0-py3-none-any.whl (22 kB) Collecting click>=7.0 Using cached click-8.0.4-py3-none-any.whl (97 kB) Collecting h11>=0.8 Using cached h11-0.13.0-py3-none-any.whl (58 kB) Collecting websockets>=10.0 Using cached websockets-10.2-cp310-cp310-win_amd64.whl (97 kB) Collecting watchgod>=0.6 Using cached watchgod-0.7-py3-none-any.whl (11 kB) Collecting httptools<0.4.0,>=0.2.0 Using cached httptools-0.3.0-cp310-cp310-win_amd64.whl (141 kB) Collecting python-dotenv>=0.13 Using cached python_dotenv-0.19.2-py2.py3-none-any.whl (17 kB) Using legacy 'setup.py install' for future, since package 'wheel' is not installed. Using legacy 'setup.py install' for tornado, since package 'wheel' is not installed. Using legacy 'setup.py install' for aplus, since package 'wheel' is not installed. Building wheels for collected packages: vaex-core Building wheel for vaex-core (PEP 517) ... error ERROR: Command errored out with exit status 1: command: 'c:\Data\venv\github-pages\Scripts\python.exe' 'c:\Data\venv\github-pages\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py' build_wheel 'C:\Users\madsenbj\AppData\Local\Temp\tmpfkcd33uh' cwd: C:\Users\madsenbj\AppData\Local\Temp\pip-install-pmndbbpw\vaex-core_43eb4a13698048478681800aa74049df Complete output (260 lines): setup.py:4: DeprecationWarning: the imp module is deprecated in favour of importlib and slated for removal in Python 3.12; see the module's documentation for alternative uses import imp running bdist_wheel running build running build_py creating build creating build\lib.win-amd64-3.10 creating build\lib.win-amd64-3.10\vaex copying vaex\agg.py -> build\lib.win-amd64-3.10\vaex copying vaex\array_types.py -> build\lib.win-amd64-3.10\vaex copying vaex\asyncio.py -> build\lib.win-amd64-3.10\vaex copying vaex\benchmark.py -> build\lib.win-amd64-3.10\vaex copying vaex\cache.py -> build\lib.win-amd64-3.10\vaex copying vaex\column.py -> build\lib.win-amd64-3.10\vaex copying vaex\config.py -> build\lib.win-amd64-3.10\vaex copying vaex\convert.py -> build\lib.win-amd64-3.10\vaex copying vaex\cpu.py -> build\lib.win-amd64-3.10\vaex copying vaex\dataframe.py -> build\lib.win-amd64-3.10\vaex copying vaex\dataframe_protocol.py -> build\lib.win-amd64-3.10\vaex copying vaex\dataset.py -> build\lib.win-amd64-3.10\vaex copying vaex\dataset_misc.py -> build\lib.win-amd64-3.10\vaex copying vaex\dataset_mmap.py -> build\lib.win-amd64-3.10\vaex copying vaex\dataset_utils.py -> build\lib.win-amd64-3.10\vaex copying vaex\datatype.py -> build\lib.win-amd64-3.10\vaex copying vaex\datatype_test.py -> build\lib.win-amd64-3.10\vaex copying vaex\delayed.py -> build\lib.win-amd64-3.10\vaex copying vaex\docstrings.py -> build\lib.win-amd64-3.10\vaex copying vaex\encoding.py -> build\lib.win-amd64-3.10\vaex copying vaex\events.py -> build\lib.win-amd64-3.10\vaex copying vaex\execution.py -> build\lib.win-amd64-3.10\vaex copying vaex\export.py -> build\lib.win-amd64-3.10\vaex copying vaex\expression.py -> build\lib.win-amd64-3.10\vaex copying vaex\expresso.py -> build\lib.win-amd64-3.10\vaex copying vaex\formatting.py -> build\lib.win-amd64-3.10\vaex copying vaex\functions.py -> build\lib.win-amd64-3.10\vaex copying vaex\geo.py -> build\lib.win-amd64-3.10\vaex copying vaex\grids.py -> build\lib.win-amd64-3.10\vaex copying vaex\groupby.py -> build\lib.win-amd64-3.10\vaex copying vaex\hash.py -> build\lib.win-amd64-3.10\vaex copying vaex\image.py -> build\lib.win-amd64-3.10\vaex copying vaex\itertools.py -> build\lib.win-amd64-3.10\vaex copying vaex\join.py -> build\lib.win-amd64-3.10\vaex copying vaex\json.py -> build\lib.win-amd64-3.10\vaex copying vaex\kld.py -> build\lib.win-amd64-3.10\vaex copying vaex\legacy.py -> build\lib.win-amd64-3.10\vaex copying vaex\logging.py -> build\lib.win-amd64-3.10\vaex copying vaex\memory.py -> build\lib.win-amd64-3.10\vaex copying vaex\meta.py -> build\lib.win-amd64-3.10\vaex copying vaex\metal.py -> build\lib.win-amd64-3.10\vaex copying vaex\misc_cmdline.py -> build\lib.win-amd64-3.10\vaex copying vaex\multiprocessing.py -> build\lib.win-amd64-3.10\vaex copying vaex\multithreading.py -> build\lib.win-amd64-3.10\vaex copying vaex\parallelize.py -> build\lib.win-amd64-3.10\vaex copying vaex\progress.py -> build\lib.win-amd64-3.10\vaex copying vaex\promise.py -> build\lib.win-amd64-3.10\vaex copying vaex\registry.py -> build\lib.win-amd64-3.10\vaex copying vaex\rolling.py -> build\lib.win-amd64-3.10\vaex copying vaex\samp.py -> build\lib.win-amd64-3.10\vaex copying vaex\schema.py -> build\lib.win-amd64-3.10\vaex copying vaex\scopes.py -> build\lib.win-amd64-3.10\vaex copying vaex\selections.py -> build\lib.win-amd64-3.10\vaex copying vaex\serialize.py -> build\lib.win-amd64-3.10\vaex copying vaex\settings.py -> build\lib.win-amd64-3.10\vaex copying vaex\shift.py -> build\lib.win-amd64-3.10\vaex copying vaex\stat.py -> build\lib.win-amd64-3.10\vaex copying vaex\strings.py -> build\lib.win-amd64-3.10\vaex copying vaex\struct.py -> build\lib.win-amd64-3.10\vaex copying vaex\tasks.py -> build\lib.win-amd64-3.10\vaex copying vaex\utils.py -> build\lib.win-amd64-3.10\vaex copying vaex\version.py -> build\lib.win-amd64-3.10\vaex copying vaex\_version.py -> build\lib.win-amd64-3.10\vaex copying vaex\__init__.py -> build\lib.win-amd64-3.10\vaex copying vaex\__main__.py -> build\lib.win-amd64-3.10\vaex package init file 'vaex\arrow\__init__.py' not found (or not a regular file) creating build\lib.win-amd64-3.10\vaex\arrow copying vaex\arrow\convert.py -> build\lib.win-amd64-3.10\vaex\arrow copying vaex\arrow\dataset.py -> build\lib.win-amd64-3.10\vaex\arrow copying vaex\arrow\numpy_dispatch.py -> build\lib.win-amd64-3.10\vaex\arrow copying vaex\arrow\opener.py -> build\lib.win-amd64-3.10\vaex\arrow copying vaex\arrow\utils.py -> build\lib.win-amd64-3.10\vaex\arrow copying vaex\arrow\utils_test.py -> build\lib.win-amd64-3.10\vaex\arrow copying vaex\arrow\_version.py -> build\lib.win-amd64-3.10\vaex\arrow creating build\lib.win-amd64-3.10\vaex\core copying vaex\core\_version.py -> build\lib.win-amd64-3.10\vaex\core copying vaex\core\__init__.py -> build\lib.win-amd64-3.10\vaex\core creating build\lib.win-amd64-3.10\vaex\file copying vaex\file\asyncio.py -> build\lib.win-amd64-3.10\vaex\file copying vaex\file\cache.py -> build\lib.win-amd64-3.10\vaex\file copying vaex\file\column.py -> build\lib.win-amd64-3.10\vaex\file copying vaex\file\gcs.py -> build\lib.win-amd64-3.10\vaex\file copying vaex\file\s3.py -> build\lib.win-amd64-3.10\vaex\file copying vaex\file\s3arrow.py -> build\lib.win-amd64-3.10\vaex\file copying vaex\file\s3fs.py -> build\lib.win-amd64-3.10\vaex\file copying vaex\file\s3_test.py -> build\lib.win-amd64-3.10\vaex\file copying vaex\file\__init__.py -> build\lib.win-amd64-3.10\vaex\file creating build\lib.win-amd64-3.10\vaex\test copying vaex\test\all.py -> build\lib.win-amd64-3.10\vaex\test copying vaex\test\cmodule.py -> build\lib.win-amd64-3.10\vaex\test copying vaex\test\dataset.py -> build\lib.win-amd64-3.10\vaex\test copying vaex\test\expresso.py -> build\lib.win-amd64-3.10\vaex\test copying vaex\test\misc.py -> build\lib.win-amd64-3.10\vaex\test copying vaex\test\plot.py -> build\lib.win-amd64-3.10\vaex\test copying vaex\test\ui.py -> build\lib.win-amd64-3.10\vaex\test copying vaex\test\__init__.py -> build\lib.win-amd64-3.10\vaex\test copying vaex\test\__main__.py -> build\lib.win-amd64-3.10\vaex\test creating build\lib.win-amd64-3.10\vaex\ext copying vaex\ext\bokeh.py -> build\lib.win-amd64-3.10\vaex\ext copying vaex\ext\common.py -> build\lib.win-amd64-3.10\vaex\ext copying vaex\ext\ipyvolume.py -> build\lib.win-amd64-3.10\vaex\ext copying vaex\ext\jprops.py -> build\lib.win-amd64-3.10\vaex\ext copying vaex\ext\readcol.py -> build\lib.win-amd64-3.10\vaex\ext copying vaex\ext\__init__.py -> build\lib.win-amd64-3.10\vaex\ext creating build\lib.win-amd64-3.10\vaex\misc copying vaex\misc\expressions.py -> build\lib.win-amd64-3.10\vaex\misc copying vaex\misc\ordereddict.py -> build\lib.win-amd64-3.10\vaex\misc copying vaex\misc\pandawrap.py -> build\lib.win-amd64-3.10\vaex\misc copying vaex\misc\parallelize.py -> build\lib.win-amd64-3.10\vaex\misc copying vaex\misc\progressbar.py -> build\lib.win-amd64-3.10\vaex\misc copying vaex\misc\samp.py -> build\lib.win-amd64-3.10\vaex\misc copying vaex\misc\__init__.py -> build\lib.win-amd64-3.10\vaex\misc creating build\lib.win-amd64-3.10\vaex\datasets copying vaex\datasets\__init__.py -> build\lib.win-amd64-3.10\vaex\datasets running egg_info writing vaex_core.egg-info\PKG-INFO writing dependency_links to vaex_core.egg-info\dependency_links.txt writing entry points to vaex_core.egg-info\entry_points.txt writing requirements to vaex_core.egg-info\requires.txt writing top-level names to vaex_core.egg-info\top_level.txt reading manifest file 'vaex_core.egg-info\SOURCES.txt' reading manifest template 'MANIFEST.in' warning: no files found matching '*.c' under directory 'vendor' warning: no files found matching '*.h' under directory 'src' warning: no files found matching '*.c' under directory 'src' adding license file 'LICENSE.txt' writing manifest file 'vaex_core.egg-info\SOURCES.txt' copying vaex\datasets\iris.hdf5 -> build\lib.win-amd64-3.10\vaex\datasets copying vaex\datasets\titanic.hdf5 -> build\lib.win-amd64-3.10\vaex\datasets running build_ext building 'vaex.vaexfast' extension creating build\temp.win-amd64-3.10 creating build\temp.win-amd64-3.10\Release creating build\temp.win-amd64-3.10\Release\src "C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30037\bin\HostX86\x64\cl.exe" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -IC:\Users\madsenbj\AppData\Local\Temp\pip-build-env-it205hpj\overlay\Lib\site-packages\numpy\core\include -Ic:\Data\venv\github-pages\include -IC:\Users\madsenbj\AppData\Local\Programs\Python\Python310\include -IC:\Users\madsenbj\AppData\Local\Programs\Python\Python310\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30037\include" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\ucrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\shared" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\um" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\winrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\cppwinrt" /EHsc /Tpsrc\vaexfast.cpp /Fobuild\temp.win-amd64-3.10\Release\src\vaexfast.obj /EHsc vaexfast.cpp src\vaexfast.cpp(18): warning C4005: 'INFINITY': macro redefinition C:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\ucrt\corecrt_math.h(88): note: see previous definition of 'INFINITY' C:\Users\madsenbj\AppData\Local\Temp\pip-build-env-it205hpj\overlay\Lib\site-packages\numpy\core\include\numpy\npy_1_7_deprecated_api.h(14) : Warning Msg: Using deprecated NumPy API, disable it with #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION src\vaexfast.cpp(201): warning C4244: 'argument': conversion from '__int64' to 'int', possible loss of data src\vaexfast.cpp(532): warning C4244: 'argument': conversion from '__int64' to 'const int', possible loss of data src\vaexfast.cpp(956): warning C4244: '=': conversion from 'Py_ssize_t' to 'int', possible loss of data src\vaexfast.cpp(1798): warning C4244: 'argument': conversion from '__int64' to 'int', possible loss of data src\vaexfast.cpp(1798): warning C4244: 'argument': conversion from '__int64' to 'int', possible loss of data src\vaexfast.cpp(64): warning C4244: '=': conversion from 'npy_intp' to 'int', possible loss of data src\vaexfast.cpp(198): note: see reference to function template instantiation 'void object_to_numpy1d_nocopy<double>(T *&,PyObject *,__int64 &,int &,int)' being compiled with [ T=double ] src\vaexfast.cpp(88): warning C4244: '=': conversion from 'npy_intp' to 'int', possible loss of data src\vaexfast.cpp(280): note: see reference to function template instantiation 'void object_to_numpy1d_nocopy_endian<double>(T *&,PyObject *,__int64 &,bool &,int &,int)' being compiled with [ T=double ] src\vaexfast.cpp(105): warning C4244: 'initializing': conversion from 'npy_intp' to 'int', possible loss of data src\vaexfast.cpp(644): note: see reference to function template instantiation 'void object_to_numpy2d_nocopy<double>(T *&,PyObject *,int &,int &,int)' being compiled with [ T=double ] src\vaexfast.cpp(108): warning C4244: 'initializing': conversion from 'npy_intp' to 'int', possible loss of data src\vaexfast.cpp(667): warning C4244: 'initializing': conversion from 'const double' to 'float', possible loss of data src\vaexfast.cpp(775): note: see reference to function template instantiation 'void histogram2d_f4<__int64>(const float *__restrict const ,const float *__restrict const ,const float *const ,const __int64,bool,bool,bool,Tout *__restrict const ,const int,const int,const double,const double,const double,const double,const __int64,const __int64)' being compiled with [ Tout=__int64 ] src\vaexfast.cpp(667): warning C4244: 'initializing': conversion from 'const double' to 'const float', possible loss of data src\vaexfast.cpp(668): warning C4244: 'initializing': conversion from 'const double' to 'float', possible loss of data src\vaexfast.cpp(668): warning C4244: 'initializing': conversion from 'const double' to 'const float', possible loss of data src\vaexfast.cpp(669): warning C4244: 'initializing': conversion from 'const double' to 'float', possible loss of data src\vaexfast.cpp(669): warning C4244: 'initializing': conversion from 'const double' to 'const float', possible loss of data src\vaexfast.cpp(670): warning C4244: 'initializing': conversion from 'const double' to 'float', possible loss of data src\vaexfast.cpp(670): warning C4244: 'initializing': conversion from 'const double' to 'const float', possible loss of data src\vaexfast.cpp(671): warning C4244: 'initializing': conversion from 'double' to 'float', possible loss of data src\vaexfast.cpp(671): warning C4244: 'initializing': conversion from 'double' to 'const float', possible loss of data src\vaexfast.cpp(672): warning C4244: 'initializing': conversion from 'double' to 'float', possible loss of data src\vaexfast.cpp(672): warning C4244: 'initializing': conversion from 'double' to 'const float', possible loss of data src\vaexfast.cpp(133): warning C4244: 'initializing': conversion from 'npy_intp' to 'int', possible loss of data src\vaexfast.cpp(887): note: see reference to function template instantiation 'void object_to_numpy3d_nocopy<double>(T *&,PyObject *,int &,int &,int &,int)' being compiled with [ T=double ] src\vaexfast.cpp(136): warning C4244: 'initializing': conversion from 'npy_intp' to 'int', possible loss of data src\vaexfast.cpp(139): warning C4244: 'initializing': conversion from 'npy_intp' to 'int', possible loss of data src\vaexfast.cpp(174): warning C4244: '=': conversion from 'npy_intp' to 'int', possible loss of data src\vaexfast.cpp(983): note: see reference to function template instantiation 'void object_to_numpyNd_nocopy<double>(T *&,PyObject *,int,int &,int *,__int64 *,int)' being compiled with [ T=double ] src\vaexfast.cpp(1335): warning C4244: '=': conversion from 'Py_ssize_t' to 'int', possible loss of data src\vaexfast.cpp(2072): note: see reference to function template instantiation 'PyObject *statisticNd_<double,NPY_DOUBLE>(PyObject *,PyObject *)' being compiled src\vaexfast.cpp(1338): warning C4244: '=': conversion from 'Py_ssize_t' to 'int', possible loss of data src\vaexfast.cpp(1149): warning C4244: 'initializing': conversion from 'double' to 'T', possible loss of data with [ T=float ] src\vaexfast.cpp(1271): note: see reference to function template instantiation 'void statisticNd<T,op_add1<T,double,endian>,endian>(const T *__restrict const [],const T *__restrict const [],__int64,const int,const int,double *__restrict const ,const __int64 *__restrict const ,const int *__restrict const ,const T *__restrict const ,const T *__restrict const ,int)' being compiled with [ T=float, endian=functor_double_to_native ] src\vaexfast.cpp(1308): note: see reference to function template instantiation 'void statisticNd_wrap_template_endian<T,functor_double_to_native>(const T *const [],const T *const [],__int64,int,int,double *,__int64 [],int [],T [],T [],int,int)' being compiled with [ T=float ] src\vaexfast.cpp(1402): note: see reference to function template instantiation 'void statisticNd_wrap_template<T>(const T *const [],const T *const [],__int64,int,int,double *,__int64 [],int [],T [],T [],bool,int,int)' being compiled with [ T=float ] src\vaexfast.cpp(2073): note: see reference to function template instantiation 'PyObject *statisticNd_<float,NPY_FLOAT>(PyObject *,PyObject *)' being compiled src\vaexfast.cpp(1178): warning C4244: 'initializing': conversion from 'double' to 'T', possible loss of data with [ T=float ] src\vaexfast.cpp(1198): warning C4244: 'initializing': conversion from 'double' to 'T', possible loss of data with [ T=float ] src\vaexfast.cpp(1216): warning C4244: 'initializing': conversion from 'double' to 'T', possible loss of data with [ T=float ] "C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30037\bin\HostX86\x64\link.exe" /nologo /INCREMENTAL:NO /LTCG /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:c:\Data\venv\github-pages\libs /LIBPATH:C:\Users\madsenbj\AppData\Local\Programs\Python\Python310\libs /LIBPATH:C:\Users\madsenbj\AppData\Local\Programs\Python\Python310 /LIBPATH:c:\Data\venv\github-pages\PCbuild\amd64 "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30037\lib\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.19041.0\ucrt\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.19041.0\um\x64" /EXPORT:PyInit_vaexfast build\temp.win-amd64-3.10\Release\src\vaexfast.obj /OUT:build\lib.win-amd64-3.10\vaex\vaexfast.cp310-win_amd64.pyd /IMPLIB:build\temp.win-amd64-3.10\Release\src\vaexfast.cp310-win_amd64.lib Creating library build\temp.win-amd64-3.10\Release\src\vaexfast.cp310-win_amd64.lib and object build\temp.win-amd64-3.10\Release\src\vaexfast.cp310-win_amd64.exp Generating code Finished generating code building 'vaex.superstrings' extension "C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30037\bin\HostX86\x64\cl.exe" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -IC:\Users\madsenbj\AppData\Local\Temp\pip-build-env-it205hpj\overlay\Lib\site-packages\numpy\core\include -Ivendor/pybind11/include -Ivendor/pybind11/include -Ivendor/string-view-lite/include -Ivendor/boost -Ic:\Data\venv\github-pages\include -Ic:\Data\venv\github-pages\Library\include -Ivendor\pcre\Library\include -Ic:\Data\venv\github-pages\include -IC:\Users\madsenbj\AppData\Local\Programs\Python\Python310\include -IC:\Users\madsenbj\AppData\Local\Programs\Python\Python310\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30037\include" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\ucrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\shared" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\um" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\winrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\cppwinrt" /EHsc /Tpsrc\string_utils.cpp /Fobuild\temp.win-amd64-3.10\Release\src\string_utils.obj /EHsc string_utils.cpp C:\Users\madsenbj\AppData\Local\Temp\pip-install-pmndbbpw\vaex-core_43eb4a13698048478681800aa74049df\src\string_utils.hpp(208): warning C4244: '=': conversion from 'char32_t' to 'char', possible loss of data "C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30037\bin\HostX86\x64\cl.exe" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -IC:\Users\madsenbj\AppData\Local\Temp\pip-build-env-it205hpj\overlay\Lib\site-packages\numpy\core\include -Ivendor/pybind11/include -Ivendor/pybind11/include -Ivendor/string-view-lite/include -Ivendor/boost -Ic:\Data\venv\github-pages\include -Ic:\Data\venv\github-pages\Library\include -Ivendor\pcre\Library\include -Ic:\Data\venv\github-pages\include -IC:\Users\madsenbj\AppData\Local\Programs\Python\Python310\include -IC:\Users\madsenbj\AppData\Local\Programs\Python\Python310\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30037\include" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\ucrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\shared" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\um" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\winrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\cppwinrt" /EHsc /Tpsrc\strings.cpp /Fobuild\temp.win-amd64-3.10\Release\src\strings.obj /EHsc strings.cpp vendor/pybind11/include\pybind11/numpy.h(35): error C2065: 'ssize_t': undeclared identifier vendor/pybind11/include\pybind11/numpy.h(35): error C2338: ssize_t != Py_intptr_t C:\Users\madsenbj\AppData\Local\Temp\pip-install-pmndbbpw\vaex-core_43eb4a13698048478681800aa74049df\src\string_utils.hpp(208): warning C4244: '=': conversion from 'char32_t' to 'char', possible loss of data vendor\pcre\Library\include\pcrecpp.h(701): warning C4251: 'pcrecpp::RE::pattern_': class 'std::basic_string<char,std::char_traits<char>,std::allocator<char>>' needs to have dll-interface to be used by clients of class 'pcrecpp::RE' C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30037\include\xstring(4905): note: see declaration of 'std::basic_string<char,std::char_traits<char>,std::allocator<char>>' src\strings.cpp(273): warning C4018: '>': signed/unsigned mismatch src\strings.cpp(282): warning C4018: '>': signed/unsigned mismatch error: command 'C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\BuildTools\\VC\\Tools\\MSVC\\14.29.30037\\bin\\HostX86\\x64\\cl.exe' failed with exit code 2 ---------------------------------------- ERROR: Failed building wheel for vaex-core Failed to build vaex-core ERROR: Could not build wheels for vaex-core which use PEP 517 and cannot be installed directly WARNING: You are using pip version 21.2.4; however, version 22.0.3 is available. You should consider upgrading via the 'c:\Data\venv\github-pages\Scripts\python.exe -m pip install --upgrade pip' command. ```
closed
2022-02-28T17:50:42Z
2024-06-14T00:59:51Z
https://github.com/vaexio/vaex/issues/1951
[]
root-11
13
Miserlou/Zappa
flask
1,389
can't make 2 events in same s3 bucket
## Expected Behavior Created s3:ObjectCreated:* event schedule for {name}! ## Actual Behavior s3:ObjectCreated:* event schedule for {name} already exists - Nothing to do here. ## Possible Fix to make multiple event in s3 ## Your Environment setting file is like below { "service1": { "events": [ { "function": "name", "event_source": { "arn": "arn:aws:s3:::bucket", "key_filters": [ { "type": "prefix", "value": "service1/" } ], "events": [ "s3:ObjectCreated:*" ] } } ] }, "service2": { "events": [ { "function": "name", "event_source": { "arn": "arn:aws:s3:::bucket", "key_filters": [ { "type": "prefix", "value": "service2/" } ], "events": [ "s3:ObjectCreated:*" ] } } ] } }
closed
2018-02-12T06:55:49Z
2018-02-12T17:03:35Z
https://github.com/Miserlou/Zappa/issues/1389
[]
sshkim
1
microsoft/qlib
deep-learning
1,115
backtest error using gru
here is the problem, i am using GRU for prediction, here is my backtest config ` ################################### # prediction, backtest & analysis ################################### port_analysis_config = { "executor": { "class": "SimulatorExecutor", "module_path": "qlib.backtest.executor", "kwargs": { "time_per_step": "day", "generate_portfolio_metrics": True, }, }, "strategy": { "class": "TopkDropoutStrategy", "module_path": "qlib.contrib.strategy.signal_strategy", "kwargs": { "model": model, "dataset": dataset, "topk":50, "n_drop": 5, }, }, "backtest": { "start_time": "2022-01-01", "end_time": '2022-05-20', "account": 100000000, "benchmark": benchmark, "exchange_kwargs": { "freq": "day", "limit_threshold": 0.0, "deal_price": "close", "open_cost": 0.0005, "close_cost": 0.0015, "min_cost": 5, }, }, } # backtest and analysis with R.start(experiment_name="backtest_analysis"): recorder = R.get_recorder(recorder_id=rid, experiment_name="GRU") model = recorder.load_object("trained_model") # prediction recorder = R.get_recorder() ba_rid = recorder.id sr = SignalRecord(model, dataset, recorder) sr.generate() # backtest & analysis par = PortAnaRecord(recorder, port_analysis_config, "day") par.generate() ` then, the ffr report nan which is very strange ` 'The following are analysis results of benchmark return(1day).' risk mean -0.000600 std 0.011434 annualized_return -0.142707 information_ratio -0.809016 max_drawdown -0.140281 'The following are analysis results of the excess return without cost(1day).' risk mean 0.000600 std 0.011434 annualized_return 0.142707 information_ratio 0.809016 max_drawdown -0.069261 'The following are analysis results of the excess return with cost(1day).' risk mean 0.000600 std 0.011434 annualized_return 0.142707 information_ratio 0.809016 max_drawdown -0.069261 'The following are analysis results of indicators(1day).' value ffr NaN pa NaN pos NaN ` can someone answer this question?
closed
2022-05-28T12:26:06Z
2024-07-09T14:47:37Z
https://github.com/microsoft/qlib/issues/1115
[ "question" ]
LiuHao-THU
2
strawberry-graphql/strawberry
fastapi
3,081
Missing `starlite` docs
`starlite` integration was added in https://github.com/strawberry-graphql/strawberry/pull/2391 in which docs were added. The doc file does exist - https://github.com/strawberry-graphql/strawberry/blob/main/docs/integrations/starlite.md ...but on the website there is no mention of it under Integrations: ![image](https://github.com/strawberry-graphql/strawberry/assets/141107424/2ab0f850-89c5-4e07-b0bb-be3f53d622a7) ...and searching for `starlite` in the docs also brings up no results.
closed
2023-09-07T22:34:23Z
2025-03-20T15:56:21Z
https://github.com/strawberry-graphql/strawberry/issues/3081
[]
dhirschfeld
5
miguelgrinberg/flasky
flask
416
ch
closed
2019-03-29T14:08:54Z
2019-03-29T14:09:15Z
https://github.com/miguelgrinberg/flasky/issues/416
[]
lyhanburger
1
marshmallow-code/apispec
rest-api
444
What to do about multiple nested schemas warning?
Originally reported here: https://github.com/Nobatek/flask-rest-api/issues/57 - see there for more input -- I'm using marshmallow v3-rc5 and using [two-way nesting](https://marshmallow.readthedocs.io/en/latest/nesting.html#two-way-nesting) Using this technique I get the following error if I attempt to use something like `@blp.response(CreatorSchema(many=True, exclude=('follower_count',)))`: ``` /Users/cyber/.virtualenvs/luve-pim5aQIP/lib/python3.7/site-packages/apispec/ext/marshmallow/common.py:143: UserWarning: Multiple schemas resolved to the name Creator. The name has been modified. Either manually add each of the schemas with a different name or provide a custom schema_name_resolver. ``` and see multiple versions of the schema in swagger (Creator, Creator1). If I remove the `exclude` arg to my schemas and make new schemas then everything works perfectly. Something about `exclude` causes it to think there are multiple versions of the schema and it all explodes.
open
2019-05-03T14:29:42Z
2020-07-20T09:43:38Z
https://github.com/marshmallow-code/apispec/issues/444
[ "question" ]
revmischa
9
ufoym/deepo
jupyter
116
[WARNING]: Empty continuation lines will become errors in a future release.
I'm building an edited version of the tensorflow-py36-cuda90 dockerfile where I pip install some more packages ``` # ================================================================== # module list # ------------------------------------------------------------------ # python 3.6 (apt) # tensorflow latest (pip) # ================================================================== FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04 ENV LANG C.UTF-8 RUN APT_INSTALL="apt-get install -y --no-install-recommends" && \ PIP_INSTALL="python -m pip --no-cache-dir install --upgrade" && \ GIT_CLONE="git clone --depth 10" && \ rm -rf /var/lib/apt/lists/* \ /etc/apt/sources.list.d/cuda.list \ /etc/apt/sources.list.d/nvidia-ml.list && \ apt-get update && \ # ================================================================== # tools # ------------------------------------------------------------------ DEBIAN_FRONTEND=noninteractive $APT_INSTALL \ build-essential \ apt-utils \ ca-certificates \ wget \ git \ vim \ libssl-dev \ curl \ unzip \ unrar \ && \ $GIT_CLONE https://github.com/Kitware/CMake ~/cmake && \ cd ~/cmake && \ ./bootstrap && \ make -j"$(nproc)" install && \ # ================================================================== # python # ------------------------------------------------------------------ DEBIAN_FRONTEND=noninteractive $APT_INSTALL \ software-properties-common \ && \ add-apt-repository ppa:deadsnakes/ppa && \ apt-get update && \ DEBIAN_FRONTEND=noninteractive $APT_INSTALL \ python3.6 \ python3.6-dev \ python3-distutils-extra \ && \ wget -O ~/get-pip.py \ https://bootstrap.pypa.io/get-pip.py && \ python3.6 ~/get-pip.py && \ ln -s /usr/bin/python3.6 /usr/local/bin/python3 && \ ln -s /usr/bin/python3.6 /usr/local/bin/python && \ $PIP_INSTALL \ setuptools \ && \ $PIP_INSTALL \ numpy \ matplotlib \ pyqt \ seaborn \ xlrd \ scipy \ scikit-learn \ scikit-image \ xarray \ dask \ pandas \ cloudpickle \ Cython \ Pillow \ opencv \ IPython[all] \ rasterstats \ geopy \ cartopy \ geopandas \ rasterio \ contextily \ pysal \ pyproj \ folium \ gdal \ libgdal \ kealib \ geojson \ yaml \ "git+https://github.com/ecohydro/lsru@master#egg=lsru" \ imgaug \ rioxarray \ && \ # ================================================================== # tensorflow # ------------------------------------------------------------------ $PIP_INSTALL \ tf-nightly-gpu-2.0-preview \ && \ # ================================================================== # config & cleanup # ------------------------------------------------------------------ ldconfig && \ apt-get clean && \ apt-get autoremove && \ rm -rf /var/lib/apt/lists/* /tmp/* ~/* EXPOSE 6006 ``` I get the following with both my modified dockerfile and the original docker file. Doesn't seem to affect the build but looks like it will in the future. ``` # rave at rave-thinkpad in ~/CropMask_RCNN on git:azureml-refactor ✖︎ [17:05:27] → docker build . -t tensorflow-py36-cu90:2 Sending build context to Docker daemon 219.8MB [WARNING]: Empty continuation line found in: RUN APT_INSTALL="apt-get install -y --no-install-recommends" && PIP_INSTALL="python -m pip --no-cache-dir install --upgrade" && GIT_CLONE="git clone --depth 10" && rm -rf /var/lib/apt/lists/* /etc/apt/sources.list.d/cuda.list /etc/apt/sources.list.d/nvidia-ml.list && apt-get update && DEBIAN_FRONTEND=noninteractive $APT_INSTALL build-essential apt-utils ca-certificates wget git vim libssl-dev curl unzip unrar && $GIT_CLONE https://github.com/Kitware/CMake ~/cmake && cd ~/cmake && ./bootstrap && make -j"$(nproc)" install && DEBIAN_FRONTEND=noninteractive $APT_INSTALL software-properties-common && add-apt-repository ppa:deadsnakes/ppa && apt-get update && DEBIAN_FRONTEND=noninteractive $APT_INSTALL python3.6 python3.6-dev python3-distutils-extra && wget -O ~/get-pip.py https://bootstrap.pypa.io/get-pip.py && python3.6 ~/get-pip.py && ln -s /usr/bin/python3.6 /usr/local/bin/python3 && ln -s /usr/bin/python3.6 /usr/local/bin/python && $PIP_INSTALL setuptools && $PIP_INSTALL numpy matplotlib pyqt seaborn xlrd scipy scikit-learn scikit-image xarray dask pandas cloudpickle Cython Pillow opencv IPython[all] rasterstats geopy cartopy geopandas rasterio contextily pysal pyproj folium gdal libgdal kealib geojson yaml "git+https://github.com/ecohydro/lsru@master#egg=lsru" imgaug rioxarray && $PIP_INSTALL tf-nightly-gpu-2.0-preview && ldconfig && apt-get clean && apt-get autoremove && rm -rf /var/lib/apt/lists/* /tmp/* ~/* [WARNING]: Empty continuation lines will become errors in a future release. ```
closed
2019-08-14T00:16:42Z
2020-01-24T19:17:25Z
https://github.com/ufoym/deepo/issues/116
[]
rbavery
0
sinaptik-ai/pandas-ai
data-visualization
912
Cache related issue
### System Info OS version: Windows 10 Python version: 3.11 The current version of pandasai being used: 1.5.18 ### 🐛 Describe the bug I tried to run the code from example: ------------- from pandasai import SmartDataframe df = pd.DataFrame({ "country": [ "United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"], "gdp": [ 19294482071552, 2891615567872, 2411255037952, 3435817336832, 1745433788416, 1181205135360, 1607402389504, 1490967855104, 4380756541440, 14631844184064 ], }) df = SmartDataframe(df) df.chat('Which are the countries with GDP greater than 3000000000000?') ------------------- And got the following error: IOException Traceback (most recent call last) Cell In[11], [line 11](vscode-notebook-cell:?execution_count=11&line=11) [1](vscode-notebook-cell:?execution_count=11&line=1) from pandasai import SmartDataframe [3](vscode-notebook-cell:?execution_count=11&line=3) df = pd.DataFrame({ [4](vscode-notebook-cell:?execution_count=11&line=4) "country": [ [5](vscode-notebook-cell:?execution_count=11&line=5) "United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"], (...) [8](vscode-notebook-cell:?execution_count=11&line=8) ], [9](vscode-notebook-cell:?execution_count=11&line=9) }) ---> [11](vscode-notebook-cell:?execution_count=11&line=11) df = SmartDataframe(df) [12](vscode-notebook-cell:?execution_count=11&line=12) df.chat('Which are the countries with GDP greater than 3000000000000?') File [c:\Program](file:///C:/Program) Files\Python311\Lib\site-packages\pandasai\smart_dataframe\__init__.py:279, in SmartDataframe.__init__(self, df, name, description, custom_head, config, logger) [277](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_dataframe/__init__.py:277) self._table_description = description [278](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_dataframe/__init__.py:278) self._table_name = name --> [279](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_dataframe/__init__.py:279) self._lake = SmartDatalake([self], config, logger) [281](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_dataframe/__init__.py:281) # set instance type in SmartDataLake [282](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_dataframe/__init__.py:282) self._lake.set_instance_type(self.__class__.__name__) File [c:\Program](file:///C:/Program) Files\Python311\Lib\site-packages\pandasai\smart_datalake\__init__.py:113, in SmartDatalake.__init__(self, dfs, config, logger, memory, cache) [111](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_datalake/__init__.py:111) self._cache = cache [112](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_datalake/__init__.py:112) elif self._config.enable_cache: --> [113](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_datalake/__init__.py:113) self._cache = Cache() [115](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_datalake/__init__.py:115) context = Context(self._config, self.logger, self.engine) [117](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/smart_datalake/__init__.py:117) if self._config.response_parser: File [c:\Program](file:///C:/Program) Files\Python311\Lib\site-packages\pandasai\helpers\cache.py:32, in Cache.__init__(self, filename, abs_path) [29](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/helpers/cache.py:29) os.makedirs(cache_dir, mode=DEFAULT_FILE_PERMISSIONS, exist_ok=True) [31](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/helpers/cache.py:31) self.filepath = os.path.join(cache_dir, f"{filename}.db") ---> [32](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/helpers/cache.py:32) self.connection = duckdb.connect(self.filepath) [33](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/helpers/cache.py:33) self.connection.execute( [34](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/helpers/cache.py:34) "CREATE TABLE IF NOT EXISTS cache (key STRING, value STRING)" [35](file:///C:/Program%20Files/Python311/Lib/site-packages/pandasai/helpers/cache.py:35) ) IOException: IO Error: Cannot open file "\\server\home\userXXX\...\documents\...\...\\\server\home\userXXX\...\documents\...\cache\cache_db_0.9.db": The system cannot find the path specified. Any ideas on how to resolve an issue are appreciated.
closed
2024-01-31T00:30:51Z
2024-07-22T14:30:16Z
https://github.com/sinaptik-ai/pandas-ai/issues/912
[]
staceymir
8
ultralytics/ultralytics
deep-learning
19,811
Some questions about how to modify YAML files after improving the network
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question I have been conducting experiments using YOLOv3 recently. After replacing the Darknet53 backbone network with Mobilenetv3, I modified the number of channels in each layer of the head layer, but it always got wrong and the code kept reporting errors. However, if I made the modifications on YOLOv5, it could run normally. I want to know how to determine the number of channels? After modifying the backbone, do we only need to change the number of channels for the head modification, and do we need to change anything else? ### Additional # Parameters nc: 80 # number of classes depth_multiple: 1.0 # model depth multiple width_multiple: 1.0 # layer channel multiple # darknet53 backbone backbone: # [from, number, module, args] - [-1, 1, Conv, [32, 3, 1]] # 0 - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2 - [-1, 1, Bottleneck, [64]] - [-1, 1, Conv, [128, 3, 2]] # 3-P2/4 - [-1, 2, Bottleneck, [128]] - [-1, 1, Conv, [256, 3, 2]] # 5-P3/8 - [-1, 8, Bottleneck, [256]] - [-1, 1, Conv, [512, 3, 2]] # 7-P4/16 - [-1, 8, Bottleneck, [512]] - [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32 - [-1, 4, Bottleneck, [1024]] # 10 # YOLOv3 head head: - [-1, 1, Bottleneck, [1024, False]] - [-1, 1, Conv, [512, 1, 1]] - [-1, 1, Conv, [1024, 3, 1]] - [-1, 1, Conv, [512, 1, 1]] - [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large) - [-2, 1, Conv, [256, 1, 1]] - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 8], 1, Concat, [1]] # cat backbone P4 - [-1, 1, Bottleneck, [512, False]] - [-1, 1, Bottleneck, [512, False]] - [-1, 1, Conv, [256, 1, 1]] - [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium) - [-2, 1, Conv, [128, 1, 1]] - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 6], 1, Concat, [1]] # cat backbone P3 - [-1, 1, Bottleneck, [256, False]] - [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small) - [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5) Replace the backbone with MobileNetV3 [[-1, 1, conv_bn_hswish, [16, 2]], # 0-p1/2 [-1, 1, MobileNetV3, [ 16, 16, 3, 1, 0, 0]], # 1-p1/2 [-1, 1, MobileNetV3, [ 24, 64, 3, 2, 0, 0]], # 2-p2/4 [-1, 1, MobileNetV3, [ 24, 72, 3, 1, 0, 0]], # 3-p2/4 [-1, 1, MobileNetV3, [ 40, 72, 5, 2, 1, 0]], # 4-p3/8 [-1, 1, MobileNetV3, [ 40, 120, 5, 1, 1, 0]], # 5-p3/8 [-1, 1, MobileNetV3, [ 40, 120, 5, 1, 1, 0]], # 6-p3/8 [-1, 1, MobileNetV3, [ 80, 240, 3, 2, 0, 1]], # 7-p4/16 [-1, 1, MobileNetV3, [ 80, 200, 3, 1, 0, 1]], # 8-p4/16 [-1, 1, MobileNetV3, [ 80, 184, 3, 1, 0, 1]], # 9-p4/16 [-1, 1, MobileNetV3, [ 80, 184, 3, 1, 0, 1]], # 10-p4/16 [-1, 1, MobileNetV3, [112, 480, 3, 1, 1, 1]], # 11-p4/16 [-1, 1, MobileNetV3, [112, 672, 3, 1, 1, 1]], # 12-p4/16 [-1, 1, MobileNetV3, [160, 672, 5, 1, 1, 1]], # 13-p4/16 [-1, 1, MobileNetV3, [160, 960, 5, 2, 1, 1]], # 14-p5/32 原672改为原算法960 [-1, 1, MobileNetV3, [160, 960, 5, 1, 1, 1]], # 15-p5/32 ]
open
2025-03-21T06:53:38Z
2025-03-22T07:26:26Z
https://github.com/ultralytics/ultralytics/issues/19811
[ "question", "detect" ]
Meaccy
2
reloadware/reloadium
pandas
20
Reloadium on pycharm won't load Flask templates
**Describe the bug** I tried the reloadium plugin for PyCharm for my Flask project. The problem is reloadium cannot found the index.html template used in my project. Here is the error : ``` C:\Users\tom52\Desktop\projet>reloadium run app.py ■■■■■■■■■■■■■■■ Reloadium 0.8.8 ■■■■■■■■■■■■■■■ If you like this project consider becoming a sponsor or giving a start at https://github.com/reloadware/reloadium * Serving Flask app '__main__' (lazy loading) * Environment: production WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. * Debug mode: off INFO:werkzeug: * Running on http://127.0.0.1:5000 (Press CTRL+C to quit) Loaded 3 watched modules so far from paths: - \C:\Users\tom52\Desktop\projet\**\*.html - \C:\Users\tom52\Desktop\projet\**\*.py ERROR:__main__:Exception on / [GET] Traceback (most recent call last): File "C:\Python310\lib\site-packages\flask\app.py", line 2077, in wsgi_app response = self.full_dispatch_request() File "C:\Python310\lib\site-packages\flask\app.py", line 1525, in full_dispatch_request rv = self.handle_user_exception(e) File "C:\Python310\lib\site-packages\flask\app.py", line 1523, in full_dispatch_request rv = self.dispatch_request() File "C:\Python310\lib\site-packages\reloadium\reloader\llll11l1l1l1l1llIl1l1\llllll1l1ll111l1Il1l1.py", line 165, in ll11ll1ll11ll111Il1l1 File "C:\Python310\lib\site-packages\flask\app.py", line 1509, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args) File "C:\Users\tom52\Desktop\projet\app.py", line 28, in index return render_template('index.html', history=history) File "C:\Python310\lib\site-packages\flask\templating.py", line 149, in render_template ctx.app.jinja_env.get_or_select_template(template_name_or_list), File "C:\Python310\lib\site-packages\jinja2\environment.py", line 1081, in get_or_select_template return self.get_template(template_name_or_list, parent, globals) File "C:\Python310\lib\site-packages\jinja2\environment.py", line 1010, in get_template return self._load_template(name, globals) File "C:\Python310\lib\site-packages\jinja2\environment.py", line 969, in _load_template template = self.loader.load(self, name, self.make_globals(globals)) File "C:\Python310\lib\site-packages\jinja2\loaders.py", line 126, in load source, filename, uptodate = self.get_source(environment, name) File "C:\Python310\lib\site-packages\flask\templating.py", line 59, in get_source return self._get_source_fast(environment, template) File "C:\Python310\lib\site-packages\flask\templating.py", line 95, in _get_source_fast raise TemplateNotFound(template) jinja2.exceptions.TemplateNotFound: index.html INFO:werkzeug:127.0.0.1 - - [06/Jun/2022 22:24:08] "GET / HTTP/1.1" 500 - ``` **To Reproduce** Steps to reproduce the behavior: 1. Create a python flask project with the following files tree: ``` project/ | app.py | templates/ | index.html ``` 3. Create a templates directory and add index.html 4. create the app in python with `app = Flask(__name__, template_folder='templates')` and `app.run()` 5. run `reloadium run app.py` **Expected behavior** As the Flask constructor specifies the template folder, the flask app should run correctly **Screenshots** - Running the code by python app.py or PyCharm (same result) ![image](https://user-images.githubusercontent.com/28791624/172242269-b56f39f0-e201-480a-9add-db4dc92f94cd.png) - Running the code with console reloadium or pycharm reloadium (same result) ![image](https://user-images.githubusercontent.com/28791624/172242563-201f9367-d8db-4f7a-ba89-0b415358c378.png) **Desktop (please complete the following information):** - OS: Windows - OS version: Windows 11 Professional - Version 21H2 - build 22000.675 - Reloadium package version: 0.8.8 - PyCharm plugin version: 0.8.2 - Editor: PyCharm - Run mode: Run & Debug **Additional context** Add any other context about the problem here.
closed
2022-06-06T20:27:50Z
2022-06-16T10:19:12Z
https://github.com/reloadware/reloadium/issues/20
[]
pommepommee
2
freqtrade/freqtrade
python
10,648
Implementing Unified Trading Account (UTA) Feature (Bybit & Binance)
<!-- Have you searched for similar issues before posting it? Did you have a VERY good look at the [documentation](https://www.freqtrade.io/en/latest/) and are sure that the question is not explained there Please do not use the question template to report bugs or to request new features. --> ## Describe your environment * Operating system: ubuntu 24.04 * Freqtrade Version: 2024.8 ## Your question Hi! You probably have noticed than Binance stopped offering crypto futures and derivatives trading in EU, you can only trade them through a Unified Trading Account (UTA). https://www.reddit.com/r/3Commas_io/comments/1dndnng/important_notice_for_binance_futures_traders_in/ https://en.cryptonomist.ch/2024/06/19/crypto-regulation-mica-arriving-on-june-30-what-does-it-mean-for-stablecoin-in-europe/ https://announcements.bybit.com/en/article/migration-of-usdc-derivatives-trading-to-unified-trading-accounts-uta--bltfa0f4defd805a6d3/ https://www.binance.com/en/square/post/9012660554761 Recently, Bybit is also rushing users to switch from Standard to Unified Trading Account (UTA) due to the need to comply with new EU regulations. They also stopped allowing user to create Standard Trading Accounts in EU area. They are now supporting inverse derivatives trading through UTA as well and unfortunately none of these futures can be used with freqtrade atm. https://announcements.bybit.com/en/article/product-updates-introducing-inverse-derivatives-trading-to-unified-trading-account-uta--blte3dc1e58c8aefd04/ ![photo_2024-09-12_11-43-42](https://github.com/user-attachments/assets/dd200f57-d275-4257-9452-31d21e3e580d) ![photo_2024-09-12_10-08-35](https://github.com/user-attachments/assets/980ffb54-d1cd-4727-b332-432e2a58d81e) A lot of users may be affected, so I would kindly like to ask you when this Unified Trading Account (UTA) feature will be available with freqtrade for Binance and Bybit. Thank you.
closed
2024-09-12T09:04:08Z
2024-09-12T09:28:23Z
https://github.com/freqtrade/freqtrade/issues/10648
[ "Question", "Non-spot" ]
aliengofx
1
microsoft/nni
tensorflow
5,555
TypeError: Invalid shape (64, 64, 1, 1) for image data
**Environment**: VScode - NNI version: 2.10 - Training service:remote - Client OS: MacOS - Server OS (for remote mode only): Ubuntu - Python version:3.9 - PyTorch version: 1.12 - Is conda/virtualenv/venv used?: conda - Is running in Docker?: No Hi, I am trying to prune a Face detector with this architecture: ``` EXTD( (base): ModuleList( (0): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): PReLU(num_parameters=1) ) (1): InvertedResidual_dwc( (conv): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): PReLU(num_parameters=1) (3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (2): InvertedResidual_dwc( (conv): Sequential( (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): PReLU(num_parameters=1) (3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128) (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): PReLU(num_parameters=1) (6): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (3): InvertedResidual_dwc( (conv): Sequential( (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): PReLU(num_parameters=1) (3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128) (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): PReLU(num_parameters=1) (6): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (4): InvertedResidual_dwc( (conv): Sequential( (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): PReLU(num_parameters=1) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): PReLU(num_parameters=1) (6): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (5): InvertedResidual_dwc( (conv): Sequential( (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): PReLU(num_parameters=1) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=256) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): PReLU(num_parameters=1) (6): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (upfeat): ModuleList( (0): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) (1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU() ) (1): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) (1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU() ) (2): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) (1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU() ) (3): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) (1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU() ) (4): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) (1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU() ) ) (loc): ModuleList( (0): Conv2d(64, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): Conv2d(64, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): Conv2d(64, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): Conv2d(64, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): Conv2d(64, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (5): Conv2d(64, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (conf): ModuleList( (0): Conv2d(64, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): Conv2d(64, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): Conv2d(64, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): Conv2d(64, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): Conv2d(64, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (5): Conv2d(64, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (softmax): Softmax(dim=-1) ) ``` I am using this config_list : ``` config_list = [{ 'sparsity_per_layer' : 0.2, 'op_types' : ['Conv2d'], }, { 'exclude' : True, 'op_names' : ['loc.0', 'loc.1', 'loc.2', 'loc.3', 'loc.4', 'loc.5', 'conf.0', 'conf.1', 'conf.2', 'conf.3', 'conf.4', 'conf.5', ] }] ``` and when I apply the pruner and try to visualize the mask I get the follownig error: ``` sparsity: 0.8125 Output exceeds the [size limit](command:workbench.action.openSettings?%5B%22notebook.output.textLineLimit%22%5D). Open the full output data [in a text editor](command:workbench.action.openLargeOutput?29929b28-b222-4e75-80f2-fefedb0d1d62) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[5], line 7 4 mask = mask['weight'].detach().cpu().numpy() 6 print("sparsity: {}".format(mask.sum() [/](https://vscode-remote+ssh-002dremote-002b160-002e40-002e53-002e84.vscode-resource.vscode-cdn.net/) mask.size)) ----> 7 plt.imshow(mask) File [~/anaconda3/envs/gpu/lib/python3.9/site-packages/matplotlib/pyplot.py:2695](https://vscode-remote+ssh-002dremote-002b160-002e40-002e53-002e84.vscode-resource.vscode-cdn.net/m2/gkrispanis/Projects/EXTD_Pytorch-master2/~/anaconda3/envs/gpu/lib/python3.9/site-packages/matplotlib/pyplot.py:2695), in imshow(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, interpolation_stage, filternorm, filterrad, resample, url, data, **kwargs) 2689 @_copy_docstring_and_deprecators(Axes.imshow) 2690 def imshow( 2691 X, cmap=None, norm=None, *, aspect=None, interpolation=None, 2692 alpha=None, vmin=None, vmax=None, origin=None, extent=None, 2693 interpolation_stage=None, filternorm=True, filterrad=4.0, 2694 resample=None, url=None, data=None, **kwargs): -> 2695 __ret = gca().imshow( 2696 X, cmap=cmap, norm=norm, aspect=aspect, 2697 interpolation=interpolation, alpha=alpha, vmin=vmin, 2698 vmax=vmax, origin=origin, extent=extent, 2699 interpolation_stage=interpolation_stage, 2700 filternorm=filternorm, filterrad=filterrad, resample=resample, 2701 url=url, **({"data": data} if data is not None else {}), 2702 **kwargs) 2703 sci(__ret) 2704 return __ret ... 716 # - otherwise casting wraps extreme values, hiding outliers and 717 # making reliable interpretation impossible. 718 high = 255 if np.issubdtype(self._A.dtype, np.integer) else 1 TypeError: Invalid shape (64, 64, 1, 1) for image data ``` The code I used is this: ``` from nni.compression.pytorch.pruning import L1NormPruner pruner = L1NormPruner(model, config_list) import matplotlib.pyplot as plt for _, mask in masks.items(): mask = mask['weight'].detach().cpu().numpy() print("sparsity: {}".format(mask.sum() / mask.size)) plt.imshow(mask) ``` It is also worth noting that even though I set `'sparsity_per_layer' : 0.2,` when I try to visualize the masks as you see it prints `sparsity: 0.8125` . Do you know why and how I can fix this issue ?
closed
2023-05-10T12:30:29Z
2023-05-27T12:28:55Z
https://github.com/microsoft/nni/issues/5555
[]
gkrisp98
6
JoeanAmier/TikTokDownloader
api
342
请问device_id 怎么设置
正在进行第 2 次重试 响应码异常: Client error '403 Forbidden' for url 'https://v16-webapp-prime.tiktok.com/video/tos/useast2a/tos-useast2a-ve-0068-euttp/oo8nyeeGLEjTgeNLI5xY7AgqEG0JeSIgYrQc17/?a=1988&bti=ODszNWYuMDE6&ch=0&cr=3&dr=0&lr=all&cd=0%7C0 %7C0%7C&cv=1&br=1006&bt=503&cs=0&ds=6&ft=Fx9KL6BMyq8jV1tiE12if3EYztGxRf&mime_type=video_mp4&qs=0&rc=aGY1Nzw8NWg1M2VnaGlnNEBpanJuPG45cnlmcDMzZjgzM0A2X19fMTNgNl8xMDNfLi5iYSM0M2VxM mRjNmZgLS1kL2Nzcw%3D%3D&btag=e000b8000&expire=1733155398&l=202412021003016A460738DFF0AC05BB6B&ply_type=2&policy=2&signature=ac8daaabc699cdc55648b8344769cb49&tk=tt_chain_token' For more information check: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/403 如果 TikTok 平台作品下载功能异常,请检查配置文件中 browser_info_tiktok 的 device_id 参数!
open
2024-12-02T10:11:34Z
2025-01-06T16:15:14Z
https://github.com/JoeanAmier/TikTokDownloader/issues/342
[]
sean0157
3
zappa/Zappa
flask
1,232
How we can set up web acl (WAF) with api gateway stage?
How we can set up web acl (WAF) with api gateway stage?
closed
2023-04-20T03:19:15Z
2023-05-22T00:24:45Z
https://github.com/zappa/Zappa/issues/1232
[]
jitesh-prajapati123
2
keras-team/keras
data-science
21,027
Use JAX's AbstractMesh in distribution lib
In the JAX [distribution lib](https://github.com/keras-team/keras/blob/master/keras/src/backend/jax/distribution_lib.py#L246), use [AbstractMesh](https://github.com/jax-ml/jax/blob/main/jax/_src/mesh.py#L434) instead of Mesh since it doesn't result in a JIT cache misses when the devices change. It may also simplify the distribution API.
open
2025-03-13T20:26:13Z
2025-03-17T19:06:38Z
https://github.com/keras-team/keras/issues/21027
[ "type:performance", "backend:jax" ]
hertschuh
6
indico/indico
sqlalchemy
5,919
Room booking link from agenda
**Is your feature request related to a problem? Please describe.** It's a bit cumbersome to verify the details of a room booking. I can think of a few situations where these details would be useful: - People clone agenda and forget to check if the room booking is still valid - The room has a subsequent booking that means the meeting must end promptly and the booked end time **Describe the solution you'd like** It would be nice if the pop up box here had a link to the booking details <img width="149" alt="image" src="https://github.com/indico/indico/assets/1979581/f364773f-db2e-445f-b86c-5ef1f8fdc505"> in this case it would point to https://indico.cern.ch/rooms/rooms?text=2%2FR-030&modal=room-details%3A114 It seems like it _might_ be easy given that the URL already exists and is straightforward to build from the room name (at least at CERN). **Describe alternatives you've considered** I can copy and paste the room name into the room booking page. It involves a few clicks so it's just a bit annoying.
open
2023-09-06T07:17:55Z
2025-03-21T15:33:13Z
https://github.com/indico/indico/issues/5919
[ "enhancement" ]
dguest
1
vitalik/django-ninja
django
1,279
Mypy complaining about PatchDict
Please describe what you are trying to achieve Please include code examples (like models code, schemes code, view function) to help understand the issue I'm using PatchDict to extend a Schema so it can be used for partial update. The code functions fine, but I'm not sure how to get around the mypy complaints: ![image](https://github.com/user-attachments/assets/9525bf27-11bb-4bbd-95c1-610f1c5c3c1e) I'm currently using mypy 1.10.1 with Django-ninja 1.3.0 Here is how I set up this API: ```python class CreateFacilityPayload(Schema): name: str ... PartialUpdateFacilityPayload = PatchDict[CreateFacilityPayload] @facility_router.patch("/{guid}") def update_facility(request: HttpRequest, guid: UUID4, payload: PartialUpdateFacilityPayload) -> dict: facility = get_object_or_404(Facility, guid=guid) for key, value in payload.items(): setattr(facility, key, value) facility.save() return {"guid": facility.guid} ``` Any suggestion is much appreciated.
closed
2024-08-25T18:15:19Z
2024-08-26T07:57:32Z
https://github.com/vitalik/django-ninja/issues/1279
[]
oscarychen
1
pydata/xarray
pandas
9,346
datatree: Tree-aware dataset handling/selection
### What is your issue? > I'm looking for a good way to apply a function to a subset of nodes that share some common characteristics encoded in the subtree path. > > Imagine the following data tree > > ```python > import xarray as xr > import datatree > from datatree import map_over_subtree > > dt = datatree.DataTree.from_dict({ > 'control/lowRes' : xr.Dataset({'z':(('x'),[0,1,2])}), > 'control/highRes' : xr.Dataset({'z':(('x'),[0,1,2,3,4,5])}), > 'plus4K/lowRes' : xr.Dataset({'z':(('x'),[0,1,2])}), > 'plus4K/highRes' : xr.Dataset({'z':(('x'),[0,1,2,3,4,5])}) > }) > ``` > > To apply a function to all `control` or all `plus4K` nodes is straight forward by just selecting the specific subtree, e.g. `dt['control']`. However, in case all `lowRes` dataset should be manipulated this becomes more elaborative and I wonder what the best approach would be. > > * `dt['control/lowRes','plus4K/lowRes']` is not yet implemented and would also be complex for large data trees > > * `dt['*/lowRes']` could be one idea to make the subtree selection more straight forward, where `*` is a wildcard > > * `dt.search(regex)` could make this even more general > > > Currently, I use the @map_over_subtree decorator, which also has some limitations as the function does not know its tree origin ([as noted in the code](https://github.com/xarray-contrib/datatree/blob/696cec9e6288ba9e8c473cd1ba527122edef2b1c/datatree/datatree.py#L1219C38-L1219C38)) and it needs to be inferred from the dataset itself, which is sometimes possible (here the length of the dataset) but does not need to be always the case. > > ```python > @map_over_subtree > def resolution_specific_func(ds): > if len(ds.x) == 3: > ds = ds.z*2 > elif len(ds.x) == 6: > ds = ds.z*4 > return ds > > z= resolution_specific_func(dt) > ``` > > I do not know how the tree information could be passed through the decorator, but maybe it is okay if the `DatasetView` class has an additional property (e.g. `_path`) that could be filled with `dt.path` during the call of DatasetView._from_node()?. This would lead to > > ```python > @map_over_subtree > def resolution_specific_func(ds): > if 'lowRes' in ds._path: > ds = ds.z*2 > if 'highRes' in ds._path: > ds = ds.z*4 > return ds > ``` > > and would allow for tree-aware manipulation of the datasets. > > What do you think? Happy to open a PR if this makes sense. _Originally posted by @observingClouds in https://github.com/xarray-contrib/datatree/issues/254#issue-1835784457_
open
2024-08-13T16:20:31Z
2024-08-13T16:22:19Z
https://github.com/pydata/xarray/issues/9346
[ "topic-DataTree" ]
keewis
0
dnouri/nolearn
scikit-learn
31
PendingDeprecationWarning: object.__format__ with a non-empty format string is deprecated
I am getting: ``` /home/ubuntu/git/nolearn/nolearn/lasagne.py:408: PendingDeprecationWarning: object.__format__ with a non-empty format string is deprecated ``` which I believe is coming from: ``` print(" {:<18}\t{:<20}\tproduces {:>7} outputs".format( layer.__class__.__name__, output_shape, reduce(operator.mul, output_shape[1:]), )) ```
closed
2015-01-29T05:50:48Z
2015-02-08T22:59:30Z
https://github.com/dnouri/nolearn/issues/31
[]
cancan101
1
tortoise/tortoise-orm
asyncio
1,533
Group by for many to many table problem
Hi, I am encountering an issue with how Tortoise ORM handles grouping in queries involving many-to-many tables. Specifically, when I attempt to group by a single field in a many-to-many intermediary table, the SQL query produced by Tortoise ORM includes additional fields in the GROUP BY clause, leading to incorrect aggregation results. this is the model class ```python class Recipe2Ingredient(Model): class Meta: app = "recipes" table = "recipes_recipe2ingredient" id = fields.UUIDField(pk=True) recipe = fields.ForeignKeyField( 'recipes.Recipe', related_name='ingredients' ) ingredient = fields.ForeignKeyField( 'recipes.Ingredient', related_name='recipes' ) ``` this is the query ```python query = models.Recipe2Ingredient.annotate( count=Count("ingredient_id") ).group_by("ingredient_id").order_by("-count").limit(5).prefetch_related("ingredient") ``` I expected this query to produce raw sql query: ``` SELECT "ingredient_id", COUNT("ingredient_id") AS "count" FROM "recipes_recipe2ingredient" GROUP BY "ingredient_id" ORDER BY "count" DESC LIMIT 5 ``` but I got ``` 'SELECT "recipe_id","id","ingredient_id",COUNT("ingredient_id") "count" FROM "recipes_recipe2ingredient" GROUP BY "recipe_id","id","ingredient_id" ORDER BY COUNT("ingredient_id") DESC LIMIT 5' ``` My main problem is with the grouping part because instead of getting GROUP BY "ingredient_id" I got GROUP BY "recipe_id","id","ingredient_id" and this is totally incorrect. Is there something I was doing wrong or is this is a tortoise bug? If so, can you please fix this bug. Thanks
open
2024-01-02T10:23:50Z
2024-01-02T10:36:35Z
https://github.com/tortoise/tortoise-orm/issues/1533
[]
acast83
0
wandb/wandb
data-science
9,580
[Bug]: Login error `Object has no attribute 'disabled'`
### Describe the bug I just `pip install wandb` (version `0.19.8`) and got an error when running `wandb login <API-KEY>`. ``` Traceback (most recent call last): File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/bin/wandb", line 8, in <module> sys.exit(cli()) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/click/core.py", line 1161, in __call__ return self.main(*args, **kwargs) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/click/core.py", line 1082, in main rv = self.invoke(ctx) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/click/core.py", line 1697, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/click/core.py", line 1443, in invoke return ctx.invoke(self.callback, **ctx.params) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/click/core.py", line 788, in invoke return __callback(*args, **kwargs) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/wandb/cli/cli.py", line 104, in wrapper return func(*args, **kwargs) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/wandb/cli/cli.py", line 246, in login wandb.setup( File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/wandb/sdk/wandb_setup.py", line 382, in setup return _setup(settings=settings) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/wandb/sdk/wandb_setup.py", line 318, in _setup _singleton = _WandbSetup(settings=settings, pid=pid) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/wandb/sdk/wandb_setup.py", line 96, in __init__ self._settings = self._settings_setup(settings) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/wandb/sdk/wandb_setup.py", line 123, in _settings_setup s.update_from_workspace_config_file() File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/wandb/sdk/wandb_settings.py", line 1290, in update_from_workspace_config_file setattr(self, key, value) File "/home/GRAMES.POLYMTL.CA/p118739/.conda/envs/ply_env/lib/python3.10/site-packages/pydantic/main.py", line 922, in __setattr__ self.__pydantic_validator__.validate_assignment(self, name, value) pydantic_core._pydantic_core.ValidationError: 1 validation error for Settings disabled Object has no attribute 'disabled' [type=no_such_attribute, input_value='true', input_type=str] For further information visit https://errors.pydantic.dev/2.10/v/no_such_attribute ``` It looks like there is an error with the package `pydantic_core`.
closed
2025-03-13T14:29:39Z
2025-03-24T14:54:11Z
https://github.com/wandb/wandb/issues/9580
[ "ty:bug", "a:sdk" ]
NathanMolinier
8
gunthercox/ChatterBot
machine-learning
1,801
Best Match Behaviour
Hi, I'm getting some unusual results with the BestMatch logic adaptor. For example, I trained my bot with the following two questions: "Who wrote The Odyssey?" "Who wrote The Lord of the Rings?" If I ask the bot "Who wrote The Lord of the Rings?", I get a confidence of 1 and the correct answer. If I drop the first "the" from the question, "Who wrote Lord of the Rings?" I get the answer to "Who wrote The Odyssey?". Looking at the logging I can see that the confidence with of "Who wrote Lord of the Rings?" compared to "Who wrote The Odyssey?" is 0.45 and "Who wrote The Lord of the Rings?" is 0.87. Shouldn't the BestMatch be returning the answer with the highest confidence? Looking at the best_match.py script, I think I can locate where this is happening: ``` # Use the input statement as the closest match if no other results are found closest_match = next(search_results, input_statement) # Search for the closest match to the input statement for result in search_results: # Stop searching if a match that is close enough is found if result.confidence >= self.maximum_similarity_threshold: closest_match = result break ``` The maximum_similarity_threshold is set to 0.95 so anything with a confidence above that gets put as the answer. But it looks to me as if the script is keeping the whatever it found first (in my case "Who wrote The Odyssey?") as the closest_match variable, and not updating it if it finds something with a higher confidence. Is there some other setting that I need to apply to get this to work to find the closest match if the maximum_similarity_threshold isn't reached? I found if I added the following lines of code as seen below, the script worked as intended: ``` # Use the input statement as the closest match if no other results are found closest_match = next(search_results, input_statement) # Search for the closest match to the input statement for result in search_results: #set closest_match to result if it has a higher confidence if result.confidence > closest_match.confidence: closest_match = result # Stop searching if a match that is close enough is found if result.confidence >= self.maximum_similarity_threshold: closest_match = result break ``` I'm using chatterbot version 1.0.5 on Python 3.7. Thanks in advance for your help.
open
2019-08-22T16:29:29Z
2021-02-03T14:55:51Z
https://github.com/gunthercox/ChatterBot/issues/1801
[]
dcasserly001
3
youfou/wxpy
api
205
收消息时会有并发的问题
应当如何解决,python较差,因为看了这个项目才算入门~
open
2017-09-29T05:49:29Z
2017-09-29T05:49:29Z
https://github.com/youfou/wxpy/issues/205
[]
bestfc
0
plotly/dash-core-components
dash
795
Range slider update is slow when draging but fast when clicking despite 'mouseup' property
I'm aware the range-slider with "drag" option can be slow, however if I put updatemode="mouseup", I expect to be able to drag the range slider and get fast results, since the intermediate positions of the slider won't be evaluated in this case. However I observe that clicking the range slider is fast, while draging the range slider to do exactly the same thing is slow. Is this an expected behaviour? ``` import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import pandas as pd import plotly.express as px from flask_caching import Cache import gunicorn external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = "Epidemics over time" # server = app.server timeout = 1e20 cache = Cache(app.server, config={ # try 'filesystem' if you don't want to setup redis 'CACHE_TYPE': 'filesystem', 'CACHE_DIR': './cache/' }) app.config.suppress_callback_exceptions = True df = pd.read_csv('data/epidemics.csv', sep=';', encoding='latin1') df.dropna(inplace=True) df['Death toll'] = df['Death toll'].astype("int32") app.layout = html.Div([ dcc.Graph( id='graph-with-slider'#, # figure=fig ), dcc.RangeSlider( id='year-slider', min=df['Date'].min(), max=df['Date'].max(), value=[df['Date'].min(),df['Date'].max()], marks={str(year): str(year) for year in df['Date'].unique() if year%3==0}, step=2, updatemode='mouseup' ) ])#, style={'columnCount': 2}) @cache.memoize(timeout=timeout) # in seconds @app.callback( Output('graph-with-slider', 'figure'), [Input('year-slider', 'value')]) def update_figure(range): min = range[0] max = range[1] filtered_df = df[(df.Date >= min) & (df.Date <= max)] fig = px.treemap(filtered_df, path=['Event'], values='Death toll', color='Disease', title="Epidemic diseases landscape from {} to {}".format(min, max)) return fig if __name__ == '__main__': app.run_server() ```
open
2020-04-19T17:25:21Z
2020-04-20T07:10:40Z
https://github.com/plotly/dash-core-components/issues/795
[]
P-mir
0
stanford-oval/storm
nlp
265
[BUG] ImportError: cannot import name 'AzureAISearch' from 'knowledge_storm.rm'
**Describe the bug** ImportError: cannot import name 'AzureAISearch' from 'knowledge_storm.rm' **To Reproduce** pip install knowledge-storm pip install knolwledge-storm-upgrade python examples/storm_examples/run_storm_wiki_gpt.py --output-dir . --retriever you --do-research --do-generate-outline --do-generate-article --do-polish-article **Environment:** - OS: MacOS (Intel)
closed
2024-12-09T15:44:50Z
2024-12-11T07:31:03Z
https://github.com/stanford-oval/storm/issues/265
[]
Elusv
1
microsoft/nni
deep-learning
5,342
nni webportal doesn't show
**Describe the issue**: webportal doesn't appear after executing nnictl create --config config_detailed.yml **Environment**: Google Cloud VM - NNI version: 2.10 - Training service (local|remote|pai|aml|etc): - Client OS: Ubuntu 20 - Server OS (for remote mode only): - Python version: - PyTorch/TensorFlow version: - Is conda/virtualenv/venv used?: Yes - Is running in Docker?: No **Configuration**: - Experiment config (remember to remove secrets!): - Search space: **Log message**: - nnimanager.log: - dispatcher.log: - nnictl stdout and stderr: <!-- Where can you find the log files: LOG: https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/HowToDebug.md#experiment-root-director STDOUT/STDERR: https://nni.readthedocs.io/en/stable/reference/nnictl.html#nnictl-log-stdout --> **How to reproduce it?**:
closed
2023-02-08T22:07:06Z
2023-02-17T02:50:52Z
https://github.com/microsoft/nni/issues/5342
[]
yiqiaoc11
5
pyg-team/pytorch_geometric
deep-learning
10,010
Cuda 12.6/8 support?
### 😵 Describe the installation problem Very brief: - Is cuda 12.6/8 supported? - If they are, can we please get a downloadable whl alongside the existing ones for cuda 12.4? Thank you!
closed
2025-02-10T16:53:06Z
2025-03-20T20:57:03Z
https://github.com/pyg-team/pytorch_geometric/issues/10010
[ "installation" ]
Nathaniel-Bubis
2
slackapi/python-slack-sdk
asyncio
1,189
How to use blocks in attachments using the model classes
Currently only legacy fields are supported in the Attachments object (`from slack_sdk.models.attachments import Attachment`). The API now supports passing in Blocks (https://api.slack.com/reference/messaging/attachments#fields). Please can support be added to include this. ### Category (place an `x` in each of the `[ ]`) - [ ] **slack_sdk.web.WebClient (sync/async)** (Web API client) - [ ] **slack_sdk.webhook.WebhookClient (sync/async)** (Incoming Webhook, response_url sender) - [X] **slack_sdk.models** (UI component builders) - [ ] **slack_sdk.oauth** (OAuth Flow Utilities) - [ ] **slack_sdk.socket_mode** (Socket Mode client) - [ ] **slack_sdk.audit_logs** (Audit Logs API client) - [ ] **slack_sdk.scim** (SCIM API client) - [ ] **slack_sdk.rtm** (RTM client) - [ ] **slack_sdk.signature** (Request Signature Verifier) ### Requirements Please read the [Contributing guidelines](https://github.com/slackapi/python-slack-sdk/blob/main/.github/contributing.md) and [Code of Conduct](https://slackhq.github.io/code-of-conduct) before creating this issue or pull request. By submitting, you are agreeing to those rules.
closed
2022-03-09T17:06:51Z
2022-03-10T01:48:11Z
https://github.com/slackapi/python-slack-sdk/issues/1189
[ "question", "web-client", "Version: 3x" ]
alextriaca
1
ionelmc/pytest-benchmark
pytest
79
Add a "quick and dirty" way to get execution times for test cases
I would like some way to quickly (i.e. without having to modify the test suite) get timing data for test cases, as well as a sum total for the whole test suite. Something like `--durations` but with an optional (or automatically determined, like with `timeit`) number of repetitions. Would this be a fit for this plugin?
open
2017-07-03T19:16:02Z
2019-01-07T11:02:45Z
https://github.com/ionelmc/pytest-benchmark/issues/79
[ "documentation" ]
hop
8
qubvel-org/segmentation_models.pytorch
computer-vision
157
Qustions: Softmax for Multi-Class
Hi! Thank you for your work! I have a question: Is it necessary to have a background class when using softmax activation? So that every pixel belongs to a label. And what is the difference between 'softmax' and 'softmax2d'? Thank U!
closed
2020-03-04T16:54:22Z
2022-02-10T01:50:55Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/157
[ "Stale" ]
gjbit
10
slackapi/python-slack-sdk
asyncio
1,144
SlackConnectionError: Handshake status 404 - Bot broken since 12/3/21
I have a bot that was working until 12/3/21. I was thinking it was due to rtm.start being deprecated on 11/30, but your message said it would only affect new apps. So not sure what the issue may be. Please assist I get the following error: ``` Traceback (most recent call last): File "/lib/python2.7/site-packages/slackclient/client.py", line 53, in rtm_connect self.server.rtm_connect(use_rtm_start=with_team_state, **kwargs) File "/lib/python2.7/site-packages/slackclient/server.py", line 84, in rtm_connect self.connect_slack_websocket(self.ws_url) File "/lib/python2.7/site-packages/slackclient/server.py", line 122, in connect_slack_websocket raise SlackConnectionError(message=str(e)) SlackConnectionError: Handshake status 404 ``` I am running python 2.7.5 OpenSSL version 1.1.1
closed
2021-12-06T19:32:57Z
2022-01-24T00:02:29Z
https://github.com/slackapi/python-slack-sdk/issues/1144
[ "Version: 1x", "needs info", "rtm-client", "web-client", "auto-triage-stale" ]
syun54
11
holoviz/panel
jupyter
7,073
Several stylings do not load when disconnected from the internet (i.e. behind a corporate firewall)
#### ALL software version info Panel 1.4.5 Panel is loaded with `pn.serve` from a Uvicorn FastAPI server. Uvicorn 0.30.5 Panel Server on Ubuntu 22.04 Browser is MS Edge on Windows 11 #### Description of expected behavior and the observed behavior Please try disconnecting from the internet and connecting (locally) to a Panel server. This simulates the environment behind a corporate firewall, where both the server and the user are in the same network, but no access is available to the web. Numerous stylings will not work, including: + button icons from the "tablers" icons + progress bars as used in the Progress widget + stylings look a bit different + Image widgets do not load properly + adding the Code Editor widget to an app will cause the entire app to break (won't come up) The screenshots below are informative: they show (in MS Edge) the CDN URLs that are not being loaded. Please note there is more than one. I have not tried out all Panel features, so there may be more. #### Extensions loaded ``` pn.extension('floatpanel', 'tabulator', 'codeeditor', nthreads=n_concurrent_threads) hv.extension('bokeh') ``` #### Screenshots or screencasts of the bug in action <img width="412" alt="image" src="https://github.com/user-attachments/assets/c4537d9b-20ef-4edb-8049-ef551d05cb31"> ![image](https://github.com/user-attachments/assets/2007e121-7ed6-40b8-9c8a-717bbeb664a6)
open
2024-08-04T10:36:23Z
2024-10-25T19:37:37Z
https://github.com/holoviz/panel/issues/7073
[]
giladpn
13
wkentaro/labelme
deep-learning
317
color assignments
in json_to_dataset.py, i can manipulate the output colors for the labels by changing the values of label_value. however i need to get a specific color given a rgb value. do you have a masterlist of the rgb equivalents of the colors assigned to the values in label_value?
closed
2019-02-12T07:23:14Z
2019-02-13T01:48:23Z
https://github.com/wkentaro/labelme/issues/317
[]
digracesion
7
matterport/Mask_RCNN
tensorflow
2,170
[ Data Set Recommendation]: Multi-Class Object Detection Data Set?
Hi, For some experiment purposes, I require the following format open-source data set which is for the **multi-class** problem. ``` Annotation: - 1.xml - 2.xml - 3.xml ... Images: 1.jpg 2.jpg 3.jpg ... ``` The `XML` annotation should only contain bounding box information (like in PASCAL VOC). And `n times class` images are in a single folder (like annotation). The data set should neither too big nor too small and even some reputation. Any suggestions would be appreciated. :)
closed
2020-05-09T07:39:03Z
2020-05-14T21:59:38Z
https://github.com/matterport/Mask_RCNN/issues/2170
[]
innat
0
clovaai/donut
computer-vision
158
Training Donut for a new language
@josianem @gwkrsrch thank you for a great work! Could you please help me with donut pretaining for a new language? I am trying to train donut model for ukrainian text. What advice could you give me in terms of tokeneizer and data amount?
open
2023-03-05T17:14:43Z
2023-03-05T17:14:43Z
https://github.com/clovaai/donut/issues/158
[]
Invalid-coder
0
mlfoundations/open_clip
computer-vision
647
LAION-400M Citation
Not sure if this is the best spot, but I was looking for a Bibtex citation for LAION-400M's [Neurips 2021 version](https://datacentricai.org/neurips21/papers/159_CameraReady_Workshop_Submission_LAION_400M__Public_Dataset_with_CLIP_Filtered_400M_Image_Text_Pairs.pdf), and had to manually type it out. I thought it could be added to the README to make it easier for future people. ``` @inproceedings{schuhmann2021laion400m, author={Schuhmann, Cristoph and Vencu, Richard and Beaumont, Romain and Kaczmarczyk, Robert and Mullis, Clayton and Jitsev, Jenia and Komatsuzaki, Aran}, title={{LAION-400M}: Open Dataset of {CLIP}-Filtered 400 Million Image-Text Pairs}, booktitle={Proceedings of Neurips Data-Centric AI Workshop}, year={2021} } ```
closed
2023-09-28T21:01:09Z
2023-10-24T02:11:25Z
https://github.com/mlfoundations/open_clip/issues/647
[]
samuelstevens
0
cvat-ai/cvat
computer-vision
9,113
(Help) How to use nginx as a reverse proxy for cvat instead of traefik?
I recently installed CVAT on a local VM. CVAT uses docker and installs a local Traefik container within the VM. The docs give instructions on how to run it on domain with free SSL by LetsEncrypt, but these docs assume that SSL termination happens on Traefik reverse proxy. But in my case, I already have a reverse proxy in charge of public facing IP, the SSL termination happens there. I do not have any idea how to remove traefik as a reverse proxy from cvat and use my nginx reverse proxy. Any help will be appreciated.
closed
2025-02-17T13:22:54Z
2025-02-21T13:34:16Z
https://github.com/cvat-ai/cvat/issues/9113
[ "question" ]
osman-goni-cse
1
huggingface/datasets
computer-vision
6,476
CI on windows is broken: PermissionError
See: https://github.com/huggingface/datasets/actions/runs/7104781624/job/19340572394 ``` FAILED tests/test_load.py::test_loading_from_the_datasets_hub - NotADirectoryError: [WinError 267] The directory name is invalid: 'C:\\Users\\RUNNER~1\\AppData\\Local\\Temp\\tmpfcnps56i\\hf-internal-testing___dataset_with_script\\default\\0.0.0\\c240e2be3370bdbd\\dataset_with_script-train.arrow' ```
closed
2023-12-06T08:32:53Z
2023-12-06T09:17:53Z
https://github.com/huggingface/datasets/issues/6476
[ "bug" ]
albertvillanova
0
xonsh/xonsh
data-science
5,450
Refactoring: operators
This is metaissue In the future we need to solve these points: * Confusion around `.output` and `.out`. * Show good cases when `!()` non-blocking is doing perfect work to people. * Use this advice https://github.com/xonsh/xonsh/pull/4445#pullrequestreview-757072815 ## For community ⬇️ **Please click the 👍 reaction instead of leaving a `+1` or 👍 comment**
open
2024-05-27T21:27:37Z
2024-06-22T20:22:07Z
https://github.com/xonsh/xonsh/issues/5450
[ "metaissue", "commandlining", "refactoring" ]
anki-code
0
erdewit/ib_insync
asyncio
327
reqHistoricalDataAsync() takes more time with "endDateTime" param
This is weird bug I have found during last months, because in summer 2020 everything worked fine. So, if I add date to `endDateTime` param in `reqHistoricalDataAsync()`, script executes in 30 times more than if I leave `endDateTime=""` param empty. Script with empty `endDateTime` executes in ~1.4 seconds for 50 stocks and semaphore=50: ``` 19:45:49 start time 19:45:49 started NIO 19:45:49 started AAL 19:45:49 started CCL 19:45:49 started BLNK 19:45:49 started JMIA 19:45:49 started NCLH 19:45:49 started SNAP 19:45:49 started DKNG 19:45:49 started PLUG 19:45:49 started WKHS 19:45:49 started SONO 19:45:49 started FE 19:45:49 started OXY 19:45:49 started WORK 19:45:49 started NKLA 19:45:49 started FEYE 19:45:49 started PCG 19:45:49 started UBER 19:45:49 started UAL 19:45:49 started INO 19:45:49 started MRNA 19:45:49 started SBE 19:45:49 started LYFT 19:45:49 started TWTR 19:45:49 started IQ 19:45:49 started JWN 19:45:49 started DVN 19:45:49 started BILI 19:45:49 started CIIC 19:45:49 started MGM 19:45:49 started SPWR 19:45:49 started GME 19:45:49 started KSS 19:45:49 started NUAN 19:45:49 started VIPS 19:45:49 started BLDP 19:45:49 started HST 19:45:49 started DISCA 19:45:49 started LVS 19:45:49 started HAL 19:45:49 started LB 19:45:49 started FTCH 19:45:49 started SAVE 19:45:49 started CNK 19:45:49 started SPG 19:45:49 started HUYA 19:45:49 started NOV 19:45:49 started SDC 19:45:49 started NET 19:45:49 started EQT 19:45:50 ended NIO, len=136 19:45:50 ended CCL, len=136 19:45:50 ended AAL, len=136 19:45:50 ended JMIA, len=136 19:45:50 ended BLNK, len=136 19:45:50 ended NCLH, len=136 19:45:50 ended DKNG, len=136 19:45:50 ended SNAP, len=136 19:45:50 ended PLUG, len=136 19:45:50 ended FE, len=136 19:45:50 ended WKHS, len=136 19:45:50 ended OXY, len=136 19:45:50 ended SONO, len=136 19:45:50 ended WORK, len=136 19:45:50 ended NKLA, len=136 19:45:50 ended PCG, len=136 19:45:50 ended FEYE, len=136 19:45:50 ended UAL, len=136 19:45:50 ended UBER, len=136 19:45:50 ended SBE, len=136 19:45:50 ended INO, len=136 19:45:50 ended MRNA, len=136 19:45:50 ended TWTR, len=136 19:45:50 ended JWN, len=136 19:45:50 ended LYFT, len=136 19:45:50 ended IQ, len=136 19:45:50 ended DVN, len=136 19:45:50 ended BILI, len=136 19:45:50 ended CIIC, len=136 19:45:50 ended SPWR, len=136 19:45:50 ended MGM, len=136 19:45:50 ended GME, len=136 19:45:50 ended NUAN, len=136 19:45:50 ended BLDP, len=136 19:45:50 ended KSS, len=136 19:45:50 ended VIPS, len=136 19:45:50 ended HST, len=136 19:45:50 ended DISCA, len=136 19:45:50 ended LVS, len=136 19:45:51 ended HAL, len=136 19:45:51 ended LB, len=136 19:45:51 ended FTCH, len=136 19:45:51 ended SAVE, len=136 19:45:51 ended CNK, len=136 19:45:51 ended SDC, len=136 19:45:51 ended SPG, len=136 19:45:51 ended HUYA, len=136 19:45:51 ended NOV, len=136 19:45:51 ended NET, len=136 19:45:51 ended EQT, len=136 1.41 execution seconds ``` If I add `endDateTime='20210106 23:59:59'`, it will take more than 30 seconds and print some errors with `errorEvent`. Full code: ``` from ib_insync import * import asyncio import pandas as pd import threading import time from datetime import datetime, timedelta, timezone import nest_asyncio nest_asyncio.apply() # 50 stocks tickers = 'NIO AAL CCL BLNK JMIA NCLH SNAP DKNG PLUG WKHS SONO FE OXY WORK NKLA FEYE PCG UBER UAL INO MRNA SBE LYFT TWTR IQ JWN DVN BILI CIIC MGM SPWR GME KSS NUAN VIPS BLDP HST DISCA LVS HAL LB FTCH SAVE CNK SPG HUYA NOV SDC NET EQT' class Trader: def __init__(self, ticker): self.ticker = ticker ib.errorEvent += self.onError def onError(self, reqId, errorCode, errorString, contract): print({'ticker': self.ticker, 'errorCode': errorCode, 'reqId': reqId, 'errorString': errorString, 'contract': contract}) pass async def _init(self): print('{} started {}'.format(datetime.now().strftime('%H:%M:%S'), self.ticker)) c = 0 while 1: c += 1 df = util.df(await ib.reqHistoricalDataAsync( Stock(self.ticker, 'SMART', 'USD'), endDateTime='20210106 23:59:59', #endDateTime='', durationStr='1 D', #durationStr='86400 S', barSizeSetting='1 min', whatToShow='TRADES', useRTH=True, #timeout=10, formatDate=1)) try: x = df.empty df.index = pd.to_datetime(df['date']) df.index.name = 'date' print('{} ended {}, len={}'.format(datetime.now().strftime('%H:%M:%S'), self.ticker, len(df))) break except (AttributeError): print('{} {} AttributeError'.format(datetime.now().strftime('%H:%M:%S'), self.ticker)) except Exception as e: print('{} {} error: {}'.format(datetime.now().strftime('%H:%M:%S'), self.ticker, e)) if c == 5: return None await asyncio.sleep(1) except: print('{} {} error'.format(datetime.now().strftime('%H:%M:%S'), self.ticker)) async def fetch_tickers(): return await asyncio.gather(*(asyncio.ensure_future(safe_trader(ticker)) for ticker in tickers.split(' '))) async def safe_trader(ticker): async with sem: t = Trader(ticker) return await t._init() if __name__ == '__main__': ib = IB() ib.connect('127.0.0.1', 7497, clientId=1) # 7496, 7497, 4001, 4002 try: start_time = time.time() print('{} start time'.format(datetime.now().strftime('%H:%M:%S'))) sem = asyncio.Semaphore(50) loop = asyncio.get_event_loop() results = loop.run_until_complete(fetch_tickers()) print("%.2f execution seconds" % (time.time() - start_time)) ib.disconnect() except (KeyboardInterrupt, SystemExit): ib.disconnect() ``` Any ideas? Thank you for help anyway.
closed
2021-01-08T17:00:48Z
2021-03-07T21:32:41Z
https://github.com/erdewit/ib_insync/issues/327
[]
fridary
3
davidteather/TikTok-Api
api
571
[FEATURE_REQUEST] - Adding "verify" as a parameter in the requests.
When using proxy servers some require to pass a "verify=False" into the request.get() statement. Currently verify is not passed into the requests statement, this does not allow me to use a proxy. Let me know if there another way around this.
closed
2021-04-21T22:36:43Z
2021-05-15T01:31:21Z
https://github.com/davidteather/TikTok-Api/issues/571
[ "feature_request" ]
bmader12
2
PaddlePaddle/ERNIE
nlp
122
ELMo中LAC_Demo的network.py中ipdb不适合暴露给用户
network.py 第12行import ipdb ipdb是一种调试工具,不适合暴露给用户,否则可能报错,如下: <img width="864" alt="3a20b5a8c0e34fe9e15d5df2999d1d8c" src="https://user-images.githubusercontent.com/48793257/57214900-f0555f00-701d-11e9-9cdb-0cd059958f98.png">
closed
2019-05-06T08:42:42Z
2019-06-11T06:49:49Z
https://github.com/PaddlePaddle/ERNIE/issues/122
[]
Steffy-zxf
0
TencentARC/GFPGAN
pytorch
390
not working
not working
open
2023-06-10T14:41:52Z
2023-06-10T14:41:52Z
https://github.com/TencentARC/GFPGAN/issues/390
[]
Vigprint
0
docarray/docarray
fastapi
1,780
Release Note
# Release Note This release contains 3 bug fixes and 4 documentation improvements, including 1 breaking change. ## 💥 Breaking Changes ### Changes to the return type of `DocList.to_json()` and `DocVec.to_json()` In order to make the `to_json` method consistent across different classes, we changed its return type in `DocList` and `DocVec` to `str`. This means that, if you use this method in your application, make sure to update your codebase to expect `str` instead of `bytes`. ## 🐞 Bug Fixes ### Make DocList.to_json() and DocVec.to_json() return str instead of bytes (#1769) This release changes the return type of the methods `DocList.to_json()` and `DocVec.to_json()` in order to be consistent with `BaseDoc .to_json()` and other pydantic models. After this release, these methods will return `str ` type data instead of `bytes`. 💥 Since the return type is changed, this is considered a breaking change. ### Casting in reduce before appending (#1758) This release introduces type casting internally in the `reduce `helper function, casting its inputs before appending them to the final result. This will make it possible to reduce documents whose schemas are compatible but not exactly the same. ### Skip doc attributes in `__annotations__` but not in `__fields__` (#1777) This release fixes an issue in the create_pure_python_type_model helper function. Starting with this release, only attributes in the class `__fields__` will be considered during type creation. The previous behavior broke applications when users introduced a ClassVar in an input class: ```python class MyDoc(BaseDoc): endpoint: ClassVar[str] = "my_endpoint" input_test: str = "" ``` ```text field_info = model.__fields__[field_name].field_info KeyError: 'endpoint' ``` Kudos to @NarekA for raising the issue and contributing a fix in the Jina project, which was ported in DocArray. ## 📗 Documentation Improvements - Explain how to set Document config (#1773) - Add workaround for torch compile (#1754) - Add note about pickling dynamically created Doc class (#1763) - Improve the docstring of `filter_docs` (#1762) ## 🤟 Contributors We would like to thank all contributors to this release: - Sami Jaghouar (@samsja ) - Johannes Messner (@JohannesMessner ) - AlaeddineAbdessalem (@alaeddine-13 ) - Joan Fontanals (@JoanFM )
closed
2023-09-07T07:09:57Z
2023-09-07T13:50:39Z
https://github.com/docarray/docarray/issues/1780
[]
JoanFM
5
holoviz/panel
jupyter
7,169
Overlap in icons with new ChatMessage Layout
ChatMesssage(Tabs(Tabulator())) <img width="925" alt="image" src="https://github.com/user-attachments/assets/e671c158-3cbb-4096-bac9-8619d2273f6f">
closed
2024-08-19T20:43:21Z
2024-08-19T23:18:15Z
https://github.com/holoviz/panel/issues/7169
[]
ahuang11
1
pydata/xarray
numpy
9,343
datatree: Collapsible items in `groups` DataTree
### What is your issue? _Originally posted by @agrouaze in https://github.com/xarray-contrib/datatree/issues/145_ _Attempted implementation in [this PR](https://github.com/xarray-contrib/datatree/pull/155)_ Having collapsible items (like `xarray.Datasets`) in `groups` repr_html_ would help to have user friendly overview of Python objects. I am wondering whether this feature is already available or not. ![image](https://github.com/user-attachments/assets/cae6fac8-2d36-4821-b2be-8986079e4645) Clarification: The ask here is to make individual groups collapsible in the HTML rendering, so it is possible to see all the child groups, without having to see the full contents of a group.
open
2024-08-13T16:14:40Z
2024-08-13T18:16:02Z
https://github.com/pydata/xarray/issues/9343
[ "enhancement", "topic-html-repr", "topic-DataTree" ]
owenlittlejohns
1
AutoGPTQ/AutoGPTQ
nlp
159
[BUG] Error running quantized tiiuae/falcon-7b-instruct model
Hi, I was able to quantize the model using the following code: ```python pretrained_model_dir = 'tiiuae/falcon-7b-instruct' quantized_model_dir = 'tiiuae/falcon-7b-instruct-4bit-128g' quantize_config = BaseQuantizeConfig( bits=4, # quantize model to 4-bit group_size=128, # it is recommended to set the value to 128 desc_act=False ) max_memory = {} tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) # load un-quantized model, by default, the model will always be loaded into CPU memory model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config, max_memory=max_memory, trust_remote_code=True) # quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask" model.quantize(examples, use_triton=False, use_cuda_fp16=True) # save quantized model model.save_quantized(quantized_model_dir) ``` Then, when I try to run the model: ```python model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, use_safetensors=True, use_strict=False, use_triton=False, quantize_config=quantize_config, use_cuda_fp16=False, trust_remote_code=True) model.to(device) model.eval() inputs = tokenizer("Write a letter to OpenAI CEO Sam Altman as to why GPT3 model should be open-sourced. ", return_tensors="pt").to(model.device) # inputs.pop('token_type_ids') outputs = model.generate(**inputs, num_beams=5, no_repeat_ngram_size=4, max_length=512) print(f"Output: {tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]}") ``` I get the following error: ``` ValueError: The following `model_kwargs` are not used by the model: ['token_type_ids'] (note: typos in the generate arguments will also show up in this list) ``` If I remove the key `token_type_ids` from `inputs`, I get the following error: ``` RuntimeError: shape '[-1, 128, 4672]' is invalid for input of size 21229568 ``` How can I solve this?
closed
2023-06-15T08:43:01Z
2023-06-19T16:49:15Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/159
[ "bug" ]
abhinavkulkarni
8
davidsandberg/facenet
computer-vision
1,245
Unable to convert onnx model to TRT model
I have converted this model "20180402-114759" for face recognition to onnx format with onnx==1.14.1. and When I want to convert the onnx model to TRT I get these errors: "[E] Error[4]: [graphShapeAnalyzer.cpp::processCheck::862] Error Code 4: Internal Error (StatefulPartitionedCall/inception_resnet_v1/Conv2d_2a_3x3/Conv2D: spatial dimension of convolution/deconvolution output cannot be negative (build-time output dimension of axis 2 is -2)) [12/16/2023-15:52:45] [E] Engine could not be created from network [12/16/2023-15:52:45] [E] Building engine failed [12/16/2023-15:52:45] [E] Failed to create engine from model or file. [12/16/2023-15:52:45] [E] Engine set up failed &&&& FAILED TensorRT.trtexec [TensorRT v8601] # ...." I use TensorRT 8.6 for CUDA 12.1. This [doc ](https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html)said that for tensorrt 8.6 the onnxruntime should be 1.15 or higher. but I am not able to convert the tensorflow model to onnx model with onnx==1.15.0. and I face some errors. How can I fix this problem to successfully convert the tensorflow model to onnx and then TRT model. Best Regards!
open
2023-12-16T14:08:14Z
2024-08-07T13:31:18Z
https://github.com/davidsandberg/facenet/issues/1245
[]
k-khosravi
1
davidteather/TikTok-Api
api
579
[BUG] - Cannot download videos from by_hashtag with playwright because of EmptyResponseError
**Describe the bug** Because of the #434 issue i chosed to use playwright (Selenium seems detected when using by_hashtag). My goal was to download videos from by_hashtag method. I have no problem with getting tiktoks by_trending method and download them. But i cannot download data from api.get_Video_By_TikTok() when using by_hashtag. The weird thing is that i cannot get video when using by_hastag because of a TikTokApi.exceptions.EmptyResponseError: Empty response from Tiktok ... when using custom_did. But i can get them without custom_did but obvisouly the tiktoks retrieved cannot be downloaded with api.get_Video_By_TikTok() because of an Access Denied. **The buggy code** Please insert the code that is throwing errors or is giving you weird unexpected results. ``` verifyFp = 'verify_XXX' did = str(random.randint(10000, 999999999)) api = TikTokApi.get_instance(custom_verifyFp=verifyFp, use_test_endpoints=True) tiktoks = api.byHashtag("funny", count = 3, custom_verifyFp=verifyFp, custom_did = did) data = api.get_Video_By_TikTok(tiktoks[0], custom_verifyFp=verifyFp, custom_did = did)# bytes of the video with open("0.mp4", 'wb') as output: output.write(data) # saves data to the mp4 file ``` **Expected behavior** Retrieve and download videos from by_hashtag method **Error Trace** ``` ERROR:root:TikTok response: Traceback (most recent call last): File "AVM_TikTok_2.py", line 545, in <module> tiktoks = api.byHashtag("funny", count = 3, custom_verifyFp=verifyFp, custom_did = did) File "C:\Users\X\Anaconda3\lib\site-packages\TikTokApi\tiktok.py", line 915, in by_hashtag res = self.getData(url=api_url, **kwargs) File "C:\Users\X\Anaconda3\lib\site-packages\TikTokApi\tiktok.py", line 283, in get_data ) from None TikTokApi.exceptions.EmptyResponseError: Empty response from Tiktok to https://m.tiktok.com/api/challenge/item_list/?aid=1988&app_name=tiktok_web&device_platform=web&referer=&root_referer=&user_agent=Mozilla%252F5.0%2B%28iPhone%253B%2BCPU%2BiPhone%2BOS%2B12_2%2Blike%2BMac%2BOS%2BX%29%2BAppleWebKit%252F605.1.15%2B%28KHTML%2C%2Blike%2BGecko%29%2BVersion%252F13.0%2BMobile%252F15E148%2BSafari%252F604.1&cookie_enabled=true&screen_width=1029&screen_height=1115&browser_language=&browser_platform=&browser_name=&browser_version=&browser_online=true&ac=4g&timezone_name=&appId=1233&appType=m&isAndroid=False&isMobile=False&isIOS=False&OS=windows&count=3&challengeID=5424&type=3&secUid=&cursor=0&priority_region=&verifyFp=verify_kobqsdpl_QSXJKxZh_pg9u_4Iyr_8Blt_xMoTx3w5ry3y&did=107654595&_signature=_02B4Z6wo00f01rODarAAAIBDqO373H0xHFazkm4AAMx-68 ``` **Desktop (please complete the following information):** - OS: [e.g. Windows 10] - TikTokApi Version [e.g. 3.9.5] **Additional context** In summary : by_trending() => no problem for retrieve and download by_hashtag() + no custom_did => can retrieve but not download because of Access Denied by_hashtag() + custom_did => cannot retrieve with by_hashtag at all because of an TikTokApi.exceptions.EmptyResponseError: Empty response from Tiktok to ... i test all the combinaison of with or without custom_did in each methode (by_hashtag, api.get_Video_By_TikTok or get_instance) and nothing worked.
closed
2021-05-05T18:40:15Z
2021-08-07T00:28:02Z
https://github.com/davidteather/TikTok-Api/issues/579
[ "bug" ]
Goldrest
3
ydataai/ydata-profiling
data-science
1,194
bug: variables list is causing a misconfiguration in the UI variables section
### Current Behaviour ![图片](https://user-images.githubusercontent.com/6300910/205256319-ec83eae5-4f03-4798-805a-16401939e692.png) ### Expected Behaviour It would be easier on eyes if we make it as pill buttons instead, just like the one in "Overview" ![图片](https://user-images.githubusercontent.com/6300910/205256854-ffd12ab0-a561-45d8-972a-88391ac9278f.png) **Example:** ![图片](https://user-images.githubusercontent.com/6300910/205261794-cce91873-78e1-495d-af5d-6f0573f17a42.png) ### Data Description https://pandas-profiling.ydata.ai/examples/master/features/united_report.html ### pandas-profiling version vdev ### Checklist - [X] There is not yet another bug report for this issue in the [issue tracker](https://github.com/ydataai/pandas-profiling/issues) - [X] The problem is reproducible from this bug report. [This guide](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) can help to craft a minimal bug report. - [X] The issue has not been resolved by the entries listed under [Common Issues](https://pandas-profiling.ydata.ai/docs/master/pages/support_contrib/common_issues.html).
closed
2022-12-02T09:24:21Z
2023-03-08T16:58:50Z
https://github.com/ydataai/ydata-profiling/issues/1194
[ "bug 🐛" ]
stormbeforesunsetbee
9
jessevig/bertviz
nlp
71
TypeError: new(): invalid data type 'str' when i using neuron_view_bert.py with my own model
Hi, it show the error code : TypeError: new(): invalid data type 'str' when i using neuron_view_bert.py with my own fine-tune model is there any solution for this condition? here is my code: ``` import sys get_ipython().system('test -d bertviz_repo && echo "FYI: bertviz_repo directory already exists, to pull latest version uncomment this line: !rm -r bertviz_repo"') # !rm -r bertviz_repo # Uncomment if you need a clean pull from repo get_ipython().system('test -d bertviz_repo || git clone https://github.com/jessevig/bertviz bertviz_repo') if not 'bertviz_repo' in sys.path: sys.path += ['bertviz_repo'] get_ipython().system('pip install regex') from bertviz.transformers_neuron_view import BertModel, BertTokenizer from bertviz.neuron_view import show from transformers import BertTokenizer, BertModel from transformers import BertConfig, BertForSequenceClassification, BertTokenizer, AdamW get_ipython().run_cell_magic('javascript', '', "require.config({\n paths: {\n d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min',\n jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min',\n }\n});") from IPython.display import clear_output # 在 jupyter notebook 裡頭顯示 visualzation 的 helper def call_html(): import IPython display(IPython.core.display.HTML(''' <script src="/static/components/requirejs/require.js"></script> <script> requirejs.config({ paths: { base: '/static/base', "d3": "https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.8/d3.min", jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min', }, }); </script> ''')) clear_output() tokenizer = BertTokenizer(vocab_file='C:\\Users\\e7789520\\Desktop\\HO TSUNG TSE\\TaipeiCityFood\\bert-base-chinese-vocab.txt') bert_config, bert_class, bert_tokenizer = (BertConfig, BertForSequenceClassification, BertTokenizer) config = bert_config.from_pretrained('C:\\Users\\e7789520\\Desktop\\HO TSUNG TSE\\TaipeiCityFood\\trained_model\\config.json',output_attentions=True) model = bert_class.from_pretrained('C:\\Users\\e7789520\\Desktop\\HO TSUNG TSE\\TaipeiCityFood\\trained_model\\pytorch_model.bin', from_tf=bool('.ckpt' in 'bert-base-chinese'), config=config) sentence_a = "大麥克" sentence_b = "我想要牛肉堡" # 得到 tokens 後丟入 BERT 取得 attention model_type = "bert" display_mode ="dark" layer=2 head=0 inputs = tokenizer.encode_plus(sentence_a, sentence_b, return_tensors='pt', add_special_tokens=True) token_type_ids = inputs['token_type_ids'] input_ids = inputs['input_ids'] attention = model(input_ids, token_type_ids)[-1] sentence_b_start = token_type_ids[0].tolist().index(1) input_id_list = input_ids[0].tolist() # Batch index 0 tokens = tokenizer.convert_ids_to_tokens(input_id_list) call_html() ```
closed
2021-04-13T10:11:38Z
2021-05-08T14:29:08Z
https://github.com/jessevig/bertviz/issues/71
[]
leo88359
2
horovod/horovod
pytorch
3,968
Distributed Models guide with Gloo has disappeared
Hi, Looks like spell.ml no longer has a web presence? If there's a copy on how to run distributed models using Gloo (listed here: https://horovod.readthedocs.io/en/latest/summary_include.html#gloo under Guides) that would be great to see. Thanks!
closed
2023-07-27T14:39:06Z
2023-08-31T10:39:47Z
https://github.com/horovod/horovod/issues/3968
[]
jthiels
0
tflearn/tflearn
data-science
1,067
How to deploy TFlearn deep learning model to Google cloud ML or AWS machine learning service?
I have created a Tflearn deep learning model for QA. I want to use cloud deployment for that model. Did anyone know about Google cloud ML engine or AWS machine learning? Which one is good for Deep learning model deployment. Does Google cloud ML engine supports Tflearn Deep learning model?
open
2018-06-16T11:56:44Z
2018-07-21T14:16:44Z
https://github.com/tflearn/tflearn/issues/1067
[]
abhijitdalavi
1
ets-labs/python-dependency-injector
asyncio
70
Improve Providers extending
At the moment, every extended provider have to implement override logic: ``` python class Extended(Provider): def __call__(self, *args, **kwargs): """Return provided instance.""" if self.overridden: return self.last_overriding(*args, **kwargs) ``` Need to improve provider extending process.
closed
2015-05-24T23:36:52Z
2015-05-25T07:46:17Z
https://github.com/ets-labs/python-dependency-injector/issues/70
[ "refactoring" ]
rmk135
0
miguelgrinberg/python-socketio
asyncio
273
Starvation
Hi, I would like to send data from server to client on connection event. Is it possible? Why does it seem the server is blocked if it emits an event on own connection event? **latency_client.py**: ```python import asyncio import time import socketio loop = asyncio.get_event_loop() sio = socketio.AsyncClient() start_timer = None async def send_ping(): global start_timer start_timer = time.time() await sio.emit('ping_from_client') @sio.on('connect') async def on_connect(): print('connected to server') # await send_ping() @sio.on('my_test') async def on_my_test(data): print('my_test') await send_ping() @sio.on('pong_from_server') async def on_pong(data): global start_timer latency = time.time() - start_timer print('latency is {0:.2f} ms'.format(latency * 1000)) await sio.sleep(1) await send_ping() async def start_server(): await sio.connect('http://localhost:5000') await sio.wait() if __name__ == '__main__': loop.run_until_complete(start_server()) ``` **latency_server.py**: ```python from aiohttp import web import socketio sio = socketio.AsyncServer(async_mode='aiohttp') app = web.Application() sio.attach(app) @sio.on('connect') async def on_connect(sid, environ): await sio.emit('my_test', room=sid) @sio.on('ping_from_client') async def ping(sid): await sio.emit('pong_from_server', room=sid) if __name__ == '__main__': web.run_app(app, port=5000) ``` The server never calls ping function. What's wrong in my code? Thank you.
closed
2019-03-16T18:54:16Z
2019-03-16T19:48:01Z
https://github.com/miguelgrinberg/python-socketio/issues/273
[ "bug" ]
voidloop
2
healthchecks/healthchecks
django
348
Notification emails: include more details about the check
Consider including: * check's tags * check's schedule * last ping, total pings * log of received pings * request body of the last '/fail` request (#308) Consider changing the summary table to a table of totals: * 3 checks are down * 17 checks are up This would make the notification emails more search-friendly, also there would be less items competing for recipient's attention.
closed
2020-03-25T16:55:37Z
2021-03-08T16:54:30Z
https://github.com/healthchecks/healthchecks/issues/348
[]
cuu508
6