repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
clovaai/donut
nlp
241
validation loss does not decrease
Hello, I have been trying to finetune the donut model on my custom dataset. However, I have encountered an issue where the validation loss does not decrease after a few training epochs. Here are the details of my dataset: Total number of images in the training set: 12032 Total number of images in the validation set: 1290 Here are the config details that I have used for training; config = { "max_epochs":30, "val_check_interval":1.0, "check_val_every_n_epoch":1, "gradient_clip_val":1.0, "num_training_samples_per_epoch": 12032, "lr":3e-5, "train_batch_sizes": [1], "val_batch_sizes": [1], # "seed":2022, "num_nodes": 1, "warmup_steps": 36096, "result_path": "./result", "verbose": False, } Here is the training log : Epoch 21: 99% 13160/13320 [51:42<00:37, 4.24it/s, loss=0.0146, v_num=0] Epoch : 0 | Train loss : 0.13534872224594618 | Validation loss : 0.06959894845040267 Epoch : 1 | Train loss : 0.06630147620920149 | Validation loss : 0.06210419170951011 Epoch : 2 | Train loss : 0.05352105059947349 | Validation loss : 0.07186826165058287 Epoch : 3 | Train loss : 0.04720975606560736 | Validation loss : 0.06583545940979477 Epoch : 4 | Train loss : 0.04027246460695355 | Validation loss : 0.07237467494971456 Epoch : 5 | Train loss : 0.03656758802423008 | Validation loss : 0.06615438500516262 Epoch : 6 | Train loss : 0.03334385565814249 | Validation loss : 0.0690448615986076 Epoch : 7 | Train loss : 0.030216083118764458 | Validation loss : 0.06872327175676446 Epoch : 8 | Train loss : 0.028938407997482745 | Validation loss : 0.06971958731054592 Epoch : 9 | Train loss : 0.02591740866504401 | Validation loss : 0.07369288451116424 Epoch : 10 | Train loss : 0.023537077281242467 | Validation loss : 0.09032832324105358 Epoch : 11 | Train loss : 0.023199086009602708 | Validation loss : 0.08460190268222034 Epoch : 12 | Train loss : 0.02142925070562108 | Validation loss : 0.08330771044260839 Epoch : 13 | Train loss : 0.023064635992034854 | Validation loss : 0.08292237208095442 Epoch : 14 | Train loss : 0.019547534460417258 | Validation loss : 0.0834848547896493 Epoch : 15 | Train loss : 0.018710007107520535 | Validation loss : 0.08551564997306298 Epoch : 16 | Train loss : 0.01841766658555733 | Validation loss : 0.08025501600490885 Epoch : 17 | Train loss : 0.017241064160256097 | Validation loss : 0.10344411130643169 Epoch : 18 | Train loss : 0.015813576313222295 | Validation loss : 0.10317703346507855 Epoch : 19 | Train loss : 0.015648367624887447 | Validation loss : 0.09659983590732446 Epoch : 20 | Train loss : 0.01492729377679406 | Validation loss : 0.09451819387128098 The validation loss appears to fluctuate without showing a consistent decreasing trend. I would appreciate any insights or suggestions on how to address this issue and potentially improve the validation loss convergence. Thank you for your assistance.
open
2023-08-24T09:32:12Z
2024-05-27T13:55:38Z
https://github.com/clovaai/donut/issues/241
[]
Mann1904
2
fastapi/sqlmodel
fastapi
281
I get type error if I use __root__ from pydantic while inheriting from SQLModel
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python from sqlmodel import SQLModel from pydantic import BaseModel data = [ { "id": 1, "name": "awesome-product" } ] class ProductBase(SQLModel): name: str class ProductOut(ProductBase): id: int # Here 👋 If I inherit from `SQLModel`` then I get type error. However, If I inherit from `BaseModel` then I don't get error. # UnComment below line and comment the `SQLModel` usage to resolve the type error # class ProductList(BaseModel): class ProductList(SQLModel): __root__: list[ProductOut] class SomeResponse(SQLModel): products: ProductList msg: str product_list_model = ProductList.parse_obj(data) SomeResponse(products=product_list_model, msg="Hello world") ``` ### Description I get a type error if I inherit `ProductList` model from `SQLModel` saying: ``` Argument of type "SQLModel" cannot be assigned to parameter "products" of type "ProductList" in function "__init__" "SQLModel" is incompatible with "ProductList" ``` However, If I use `BaseModel` from pydantic for inheritance error went away. Below line gives type error ```python class ProductList(SQLModel): ``` Below line looks fine ```python class ProductList(BaseModel): ``` ### Operating System Linux ### Operating System Details Ubuntu 21.10 ### SQLModel Version 0.0.6 ### Python Version 3.10.2 ### Additional Context ![image](https://user-images.githubusercontent.com/47495003/159866389-61d5a36e-eada-4a8a-8068-6ac39cdd2bfd.png)
open
2022-03-24T07:40:45Z
2022-03-24T07:40:45Z
https://github.com/fastapi/sqlmodel/issues/281
[ "question" ]
jd-solanki
0
PrefectHQ/prefect
data-science
17,060
Deadlock when spawning tasks from a function and limiting concurrency
### Bug summary I'm getting what seems to be a deadlock when I have Python functions that aren't tasks "spawning" new tasks (and limiting concurrency). At some point Prefect is just waiting on a bunch of futures but no new tasks get started. Here's a simple reproduction of the issue: ```python """ Example flow that demonstrates task nesting patterns in a ThreadPoolTaskRunner context. Each parent task spawns multiple child tasks, which can lead to resource contention. """ from random import random from time import sleep from prefect import flow, task from prefect.task_runners import ThreadPoolTaskRunner @task def dependent_task(n: int) -> int: """Child task that simulates work with a random delay. Returns the input number unchanged.""" sleep_time = random() * 3 print(f"Dependent task {n} sleeping for {sleep_time:.2f}s") sleep(sleep_time) return n def task_spawner(n: int) -> list[int]: """Creates 5 identical child tasks for a given number n. Returns the collected results as a list.""" dependent_futures = dependent_task.map([n] * 5) return dependent_futures.result() @task def initial_task(n: int) -> list[int]: """Parent task that adds its own delay before spawning child tasks. Returns a list of results from child tasks.""" sleep_time = random() * 2 print(f"Initial task {n} sleeping for {sleep_time:.2f}s") sleep(sleep_time) return task_spawner(n) @flow(task_runner=ThreadPoolTaskRunner(max_workers=10)) def deadlock_example_flow() -> None: """ Creates a workflow where 10 parent tasks each spawn 5 child tasks (50 total tasks) using a thread pool limited to 10 workers. Tasks execute concurrently within these constraints. The flow demonstrates how task dependencies and thread pool limitations interact, though "deadlock" is a misnomer as the tasks will eventually complete given sufficient time. """ # Create 10 parent tasks initial_futures = initial_task.map(range(10)) # Collect results from all task chains results = [f.result() for f in initial_futures] print(f"Flow complete with results: {results}") ``` Thanks a bunch! ### Version info ```Text (crosswise-ai) [02/07/2025 04:58:22PM] [thomas:~/crosswise/crosswise_app]$ prefect version Version: 3.1.12 API version: 0.8.4 Python version: 3.12.7 Git commit: e299e5a7 Built: Thu, Jan 9, 2025 10:09 AM OS/Arch: linux/x86_64 Profile: ephemeral Server type: cloud Pydantic version: 2.9.2 Integrations: prefect-aws: 0.5.3 ``` ### Additional context _No response_
open
2025-02-08T01:34:29Z
2025-02-08T01:34:47Z
https://github.com/PrefectHQ/prefect/issues/17060
[ "bug" ]
tboser
0
ydataai/ydata-profiling
pandas
1,706
Bug Report-font in all
### Current Behaviour [0227.txt](https://github.com/user-attachments/files/19007883/0227.txt) ### Expected Behaviour To be finished the task~ ### Data Description <html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:x="urn:schemas-microsoft-com:office:excel" xmlns="http://www.w3.org/TR/REC-html40"> <head> <meta name=ProgId content=Excel.Sheet> <meta name=Generator content="Microsoft Excel 15"> <link id=Main-File rel=Main-File href="file:////Users/panyulong/Library/Group%20Containers/UBF8T346G9.Office/TemporaryItems/msohtmlclip/clip.htm"> <link rel=File-List href="file:////Users/panyulong/Library/Group%20Containers/UBF8T346G9.Office/TemporaryItems/msohtmlclip/clip_filelist.xml"> <style> <!--table {mso-displayed-decimal-separator:"\."; mso-displayed-thousand-separator:"\,";} @page {margin:.75in .7in .75in .7in; mso-header-margin:.3in; mso-footer-margin:.3in;} .font5 {color:windowtext; font-size:9.0pt; font-weight:400; font-style:normal; text-decoration:none; font-family:宋体; mso-generic-font-family:auto; mso-font-charset:134;} tr {mso-height-source:auto; mso-ruby-visibility:none;} col {mso-width-source:auto; mso-ruby-visibility:none;} br {mso-data-placement:same-cell;} td {padding-top:1px; padding-right:1px; padding-left:1px; mso-ignore:padding; color:black; font-size:12.0pt; font-weight:400; font-style:normal; text-decoration:none; font-family:宋体; mso-generic-font-family:auto; mso-font-charset:134; mso-number-format:General; text-align:general; vertical-align:bottom; border:none; mso-background-source:auto; mso-pattern:auto; mso-protection:locked visible; white-space:nowrap; mso-rotate:0;} .xl63 {font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; text-align:center; vertical-align:middle;} .xl64 {font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; mso-number-format:"0_\)\;\[Red\]\\\(0\\\)"; text-align:center; vertical-align:middle;} .xl65 {font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; mso-number-format:"\#\,\#\#0"; text-align:center; vertical-align:middle;} .xl66 {font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; mso-number-format:"Short Date"; text-align:center; vertical-align:middle;} .xl67 {font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; text-align:center; vertical-align:middle; white-space:normal;} .xl68 {font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; mso-number-format:"0\.00_\)\;\[Red\]\\\(0\.00\\\)"; text-align:center; vertical-align:middle;} .xl69 {font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; mso-number-format:"\[$-804\]dddd\;\@"; text-align:center; vertical-align:middle;} .xl70 {font-size:10.0pt; font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; vertical-align:middle; border:.5pt solid #DEE0E3; white-space:normal;} .xl71 {font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; mso-number-format:"h\:mm\:ss"; text-align:center; vertical-align:middle;} .xl72 {font-family:微软雅黑; mso-generic-font-family:auto; mso-font-charset:134; mso-number-format:"\[$-409\]h\:mm\:ss\\ AM\/PM\;\@"; text-align:center; vertical-align:middle;} ruby {ruby-align:left;} rt {color:windowtext; font-size:9.0pt; font-weight:400; font-style:normal; text-decoration:none; font-family:宋体; mso-generic-font-family:auto; mso-font-charset:134; mso-char-type:none; display:none;} --> </style> </head> <body link=blue vlink=purple> 开始日期 | 开始日期 周几 | 结束日期 | 结束日期 周几 | 发布日期 | 发布日期 周几 | 发布时间 | 排名 | 视频 | 创作者 | 视频指数 | 播放量 | 点赞量 | 评论量 | 视频链接 | 视频内容关键词 | 视频时长 | 视频时长(s) | 视频指数/ 每次播放 | 视频指数/ 每次点赞 | 视频指数/ 每次评论 | 视频指数/ 每次播放*点赞 | 视频指数/ 每次播放*评论 | 视频指数/ 每次点赞*评论 | 每日播放量 | 每日点赞量 | 每日评论量 | 发布日期数字 周几 -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 2025/1/21 | 星期一 | 9:17:00 AM | 1 | 这么爽的人生,竟然才过了四年#马斯克 #震惊 #爽剧 #小说 #首富 | 尤可妮妮 | 683,112 | 5670000 | 306000 | 25000 | https://www.douyin.com/video/7462357100434443554 | 马斯克,世界首富,小儿子,名利场,财富,特斯拉,spacex,亿万富翁,叔叔,姑姑,奶奶,四岁 | 0:00:37 | 37 | 0.12 | 2.23 | 27.32 | 36866.36 | 3011.96 | 55809.80 | 810000 | 43714.29 | 3571.429 | 2 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 2025/1/24 | 星期四 | 5:46:00 AM | 2 | 黄金的延展性也太好了 #黄金 #金的延展性 #冷知识 | 毒舌小疯子 | 616,272 | 9320000 | 99000 | 95000000 | https://www.douyin.com/video/7463415028633373967 | 黄金,延展性,冷知识 | 0:00:16 | 16 | 0.07 | 6.22 | 0.01 | 6546.24 | 6281742.49 | 591372121.21 | 1331429 | 14142.86 | 13571429 | 5 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 2025/1/23 | 星期三 | 12:01:00 PM | 3 | 清华大学教授韩秀云:明明通缩,为什么感觉东西没便宜? #农村 #保险 #经济 #师资合作 #韩秀云 韩秀云老师主讲:经济、资本 现在存款利率进入了一时代,现在把钱放到哪里好?最好是保本理财。比如说储蓄/国债。大学毕业后是考研还是考公?这两个各有好处各有风险,你考研的话,面临3年以后还得继续找工作,但考公本身,大家知道现在机构也在改革,发工资也很困难,除非你特别喜欢,否则的话,可能找一份工作比这俩都好。您说现在是通缩,为什么我觉得东西没有便宜?是这样啊,因为你没去买大件,比如房子车子等啊,你买都是生活必需品,它是刚需价格没弹性,鸡蛋蔬菜价格涨了,只占你收入吃才不到30%,所以我们通缩看物价指数,看CPI不是凭你个人的感受。我现在手里有50万现金是存银行好还是买国债好?我建议你呢,30万去存银行,20万可以去买国债,国债比例不能大于银行的储蓄。老师我现在兼职做半职业的炒股,这是抗风险的手段吗?实际就是一边工作,业余时间去炒点股票,是这样啊,练练手可以啊,千万记住不可太多,有人炒股说千拿2万吧,后来好吧10万进去越来越多,结果就发现你是半职炒股,没想到你全职,赚的钱都在半职中赔出去了。药剂师值得考试吗?药剂师值得考试,未来中国的药品一定变得规范化,药剂师在国外是一个很好的职业呢。宅基地您建议卖掉吗?如果不需要钱,一定要保留,因为有人曾经这样问有两套房,城里有一套农村有一套,卖哪套好?我的回答是卖城里这套能卖出价,卖农村那套不需要既卖出价,将来如果一旦在城里混不下去回到农村还有个窝。50岁了什么保险都没买,现在买什么保险合适,50岁的话还能交社保吗?50岁如果能交社保,尽量交哪怕补一点钱也交上啊,如果说不能交了也没有单位,那去买一个商业养老保险。您建议是早退休好还是晚退休好?对刚才我就看到有人提这个问题,说是50退休还是55岁退休好,当你有选择的时候,你一定要问自己,我退了还有个别的事干吗?如果没有,我建议晚退休好,否则的话这5年当中你会无处寄托自己,没退的时候特想退,等退了以后突然发现好失落,社会不需要了,家里找不到乐趣所在,如果是我的话,我想晚退休。 | 奇正师资 | 577,269 | 7730000 | 220000 | 53160000 | https://www.douyin.com/video/7457781386598944054 | 清华大学,韩秀云,通缩,物价,存款利率,保本理财,储蓄,国债,考研,考公,工作选择,50万现金规划,半职业炒股,药剂师考试,宅基地,50岁保险,社保,商业养老保险,早退休,晚退休 | 0:03:18 | 198 | 0.07 | 2.62 | 0.01 | 16429.39 | 3969937.91 | 139489182.00 | 1104286 | 31428.57 | 7594286 | 4 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 2025/1/20 | 星期日 | 10:07:00 AM | 4 | Dollor 崩了,RMB半小时升值600点,收复7.3 太牛掰了吧 | 股市百战 | 557,042 | 11870000 | 168000 | 16000 | https://www.douyin.com/video/7461998966633270586 | 美元,人民币,升值,高开低走 | 0:00:22 | 22 | 0.05 | 3.32 | 34.82 | 7884.00 | 750.86 | 53051.62 | 1695714 | 24000 | 2285.714 | 1 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 2025/1/21 | 星期一 | 6:54:00 AM | 5 | 这就是别人家的老板#老板 #崔培军 #万万没想到 | 毒舌小熊猫 | 497,880 | 8660000 | 93000 | 13000 | https://www.douyin.com/video/7462320233819278650 | 河南矿山集团,崔培军,老板,员工福利,发钱,年会,现金,加班补贴,员工父母,旅游 | 0:00:31 | 31 | 0.06 | 5.35 | 38.30 | 5346.75 | 747.39 | 69596.13 | 1237143 | 13285.71 | 1857.143 | 2 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 2025/1/21 | 星期一 | 8:24:00 AM | 6 | 特朗普宣誓就任美国总统,美元深夜跳水,离岸人民币大涨800点#美国#美元#财经(编辑:杨) | 风口财经 | 480,499 | 15280000 | 64000 | 26490000 | https://www.douyin.com/video/7462156939888184627 | 特朗普,宣誓就任美国总统,美元跳水,离岸人民币大涨,行政令,南部边境,国家紧急状态,非法移民,国家能源紧急状态,传统能源开采,绿色新政,电动车优惠政策,美国传统汽车工业,美股休市,中国资产上涨,在岸人民币 | 0:00:06 | 6 | 0.03 | 7.51 | 0.02 | 2012.56 | 833011.68 | 198881539.22 | 2182857 | 9142.857 | 3784286 | 2 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 链接已删除 | #VALUE! | 链接已删除 | 7 | 实体经济 #资本运作 #揭秘 #实体经济 #企业老板 #资本运作底层逻辑 这样一套运作流程,谁不迷糊呢? | 小太阳爱米粒 | 438,838 | 7980000 | 131000 | 12000 | 链接已删除 | 链接已删除 | 链接已删除 | #VALUE! | 0.05 | 3.35 | 36.57 | 7203.98 | 659.91 | 40198.90 | 1140000 | 18714.29 | 1714.286 | #VALUE! 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 2025/1/23 | 星期三 | 9:38:00 AM | 8 | 证监会主席吴清:引导大型国有保险公司增加A股投资规模和实际比例,其中从2025年起每年新增保费的30%用于投资A股。 | 央视新闻 | 385,342 | 14500000 | 125000 | 37000 | https://www.douyin.com/video/7462918201551228198 | 证监会主席,吴清,大型国有保险公司,A股投资规模,实际比例,2025年,新增保费,30% | 0:00:22 | 22 | 0.03 | 3.08 | 10.41 | 3321.91 | 983.29 | 114061.23 | 2071429 | 17857.14 | 5285.714 | 4 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 2025/1/24 | 星期四 | 12:46:00 PM | 9 | 车厘子大跳水背后的真相 #财经 #车厘子 #经济 #掘金计划2025 | 资本论 | 329,004 | 9270000 | 171000 | 26000 | https://www.douyin.com/video/7463334027441884431 | 车厘子,价格大跳水,大国博弈,南美国家,一带一路,钱凯港,运输成本,种植面积,产量,贸易合作 | 0:06:45 | 405 | 0.04 | 1.92 | 12.65 | 6069.01 | 922.77 | 50024.00 | 1324286 | 24428.57 | 3714.286 | 5 2025/1/20 | 星期一 | 2025/1/26 | 星期日 | 2025/1/20 | 星期日 | 12:49:00 PM | 10 | 量化宽松,疯狂印钞大放水?#买房 #卖房 #财商 #热点 #商业 | 海鸥财商说 | 328,927 | 5950000 | 51000 | 14000 | https://www.douyin.com/video/7461505228777540902 | 量化宽松,印钱,货币贬值,通货膨胀,债务稀释,财富分配,赚钱效应,现金,抵御通胀 | 0:01:39 | 99 | 0.06 | 6.45 | 23.49 | 2819.37 | 773.95 | 90293.69 | 850000 | 7285.714 | 2000 | 1 </body> </html> ### Code that reproduces the bug ```Python import os import pandas as pd from ydata_profiling import ProfileReport # 指定输入文件夹路径 input_folder_path = '/Users/panyulong/Desktop/报告生成/报告' # 指定输出文件夹路径 output_folder_path = '/Users/panyulong/Desktop/报告生成/报告' # 确保输出文件夹存在,如果不存在则创建 if not os.path.exists(output_folder_path): os.makedirs(output_folder_path) # 遍历输入文件夹中的所有文件 for file_name in os.listdir(input_folder_path): # 检查文件扩展名是否为.xlsx if file_name.endswith('.xlsx'): # 构造完整的文件路径 file_path = os.path.join(input_folder_path, file_name) # 读取Excel文件 df = pd.read_excel(file_path) # 根据文件名生成报告标题(去掉扩展名并添加“报告”) report_title = f"{os.path.splitext(file_name)[0]} 报告" # 生成报告 profile = ProfileReport(df, title=report_title, explorative=True) # 构造保存路径(将文件扩展名改为.html,并保存到输出文件夹) save_path = os.path.join(output_folder_path, os.path.splitext(file_name)[0] + '.html') # 保存报告 profile.to_file(save_path) print(f"报告已生成并保存到:{save_path}") ``` ### pandas-profiling version 2.2.3 ### Dependencies ```Text annotated-types 0.6.0 py39hca03da5_0 attrs 24.3.0 py39hca03da5_0 blas 1.0 openblas bottleneck 1.4.2 py39hbda83bc_0 brotli-python 1.0.9 py39h313beb8_9 ca-certificates 2025.2.25 hca03da5_0 certifi 2025.1.31 py39hca03da5_0 charset-normalizer 3.3.2 pyhd3eb1b0_0 contourpy 1.2.1 py39h48ca7d4_1 cycler 0.11.0 pyhd3eb1b0_0 dacite 1.8.1 py39hca03da5_0 et-xmlfile 2.0.0 pypi_0 pypi fonttools 4.55.3 py39h80987f9_0 freetype 2.12.1 h1192e45_0 htmlmin 0.1.12 pyhd3eb1b0_1 idna 3.7 py39hca03da5_0 imagehash 4.3.1 py39hca03da5_0 importlib-metadata 8.5.0 py39hca03da5_0 importlib_metadata 8.5.0 hd3eb1b0_0 importlib_resources 6.4.0 py39hca03da5_0 jinja2 3.1.5 py39hca03da5_0 joblib 1.4.2 py39hca03da5_0 jpeg 9e h80987f9_3 kiwisolver 1.4.4 py39h313beb8_0 lcms2 2.16 he93ba84_0 lerc 4.0.0 h313beb8_0 libcxx 14.0.6 h848a8c0_0 libdeflate 1.22 h80987f9_0 libffi 3.4.4 hca03da5_1 libgfortran 5.0.0 11_3_0_hca03da5_28 libgfortran5 11.3.0 h009349e_28 libllvm14 14.0.6 h19fdd8a_4 libopenblas 0.3.21 h269037a_0 libpng 1.6.39 h80987f9_0 libtiff 4.5.1 hc9ead59_1 libwebp-base 1.3.2 h80987f9_1 llvm-openmp 14.0.6 hc6e5704_0 llvmlite 0.43.0 py39h313beb8_1 lz4-c 1.9.4 h313beb8_1 markupsafe 3.0.2 py39h80987f9_0 matplotlib-base 3.8.4 py39h46d7db6_0 multimethod 1.9.1 py39hca03da5_0 ncurses 6.4 h313beb8_0 networkx 3.2.1 py39hca03da5_0 numba 0.60.0 py39h313beb8_1 numexpr 2.10.1 py39h5d9532f_0 numpy 1.26.4 py39h3b2db8e_0 numpy-base 1.26.4 py39ha9811e2_0 openjpeg 2.5.2 h54b8e55_0 openpyxl 3.1.5 pypi_0 pypi openssl 3.4.1 h81ee809_0 conda-forge packaging 24.2 py39hca03da5_0 pandas 2.2.3 py39hcf29cfe_0 patsy 1.0.1 py39hca03da5_0 phik 0.12.3 py39h48ca7d4_0 pillow 11.1.0 py39h84e58ab_0 pip 25.0 py39hca03da5_0 pybind11-abi 4 hd3eb1b0_1 pydantic 2.10.3 py39hca03da5_0 pydantic-core 2.27.1 py39h2aea54e_0 pyparsing 3.0.9 py39hca03da5_0 pysocks 1.7.1 py39hca03da5_0 python 3.9.21 hb885b13_1 python-dateutil 2.9.0post0 py39hca03da5_2 python-tzdata 2023.3 pyhd3eb1b0_0 pytz 2024.1 py39hca03da5_0 pywavelets 1.5.0 py39hbda83bc_0 pyyaml 6.0.2 py39h80987f9_0 readline 8.2 h1a28f6b_0 requests 2.32.3 py39hca03da5_1 scipy 1.13.1 py39hd336fd7_1 seaborn 0.13.2 py39hca03da5_1 setuptools 75.8.0 py39hca03da5_0 six 1.16.0 pyhd3eb1b0_1 sqlite 3.45.3 h80987f9_0 statsmodels 0.14.4 py39h80987f9_0 tbb 2021.8.0 h48ca7d4_0 tk 8.6.14 h6ba3021_0 tqdm 4.67.1 py39h33ce5c2_0 typeguard 4.2.1 py39hca03da5_0 typing-extensions 4.12.2 py39hca03da5_0 typing_extensions 4.12.2 py39hca03da5_0 tzdata 2025a h04d1e81_0 unicodedata2 15.1.0 py39h80987f9_1 urllib3 2.3.0 py39hca03da5_0 visions 0.7.6 py39hca03da5_0 wheel 0.45.1 py39hca03da5_0 wordcloud 1.9.4 py39h80987f9_0 xz 5.6.4 h80987f9_1 yaml 0.2.5 h1a28f6b_0 ydata-profiling 4.12.2 pypi_0 pypi zipp 3.21.0 py39hca03da5_0 zlib 1.2.13 h18a0788_1 zstd 1.5.6 hfb09047_0 ``` ### OS macOS Ventura 13.5.2 ### Checklist - [x] There is not yet another bug report for this issue in the [issue tracker](https://github.com/ydataai/pandas-profiling/issues) - [x] The problem is reproducible from this bug report. [This guide](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) can help to craft a minimal bug report. - [x] The issue has not been resolved by the entries listed under [Common Issues](https://docs.profiling.ydata.ai/latest/support-contribution/contribution_guidelines/).
open
2025-02-27T11:16:41Z
2025-02-27T14:22:32Z
https://github.com/ydataai/ydata-profiling/issues/1706
[ "needs-triage" ]
patrickstar231
1
pydata/pandas-datareader
pandas
874
get_data_yahoo raise RemoteDataError(msg)!
import pandas_datareader as pdr start=datetime(2019,1,1) nio=pdr.get_data_yahoo('NIO',start=start) error: raise RemoteDataError(msg) pandas_datareader._utils.RemoteDataError: Unable to read URL: https://finance.yahoo.com/quote/NIO/history?period1=1546333200&period2=1625990399&interval=1d&frequency=1d&filter=history Response Text:
closed
2021-07-11T11:40:15Z
2021-07-13T10:24:43Z
https://github.com/pydata/pandas-datareader/issues/874
[]
waynelee123
3
pykaldi/pykaldi
numpy
114
Very low-efficiency dataloader when no explicit matrix2numpy conversion using pykaldi+pytorch
Thanks to pykaldi. Now it is very easy to incorporate kaldi's feature into pytorch to do NN training related to speaker verification with only few lines of codes. However, I found it is very slow to convert pykaldi's submatrix into pytorch's FloatTensor if there is no explicit conversion from submatrix to numpy. This leads the data loading phase become performance bottleneck when incorporating pykaldi into pytorch using its dataloader scheme. The initial problematic part of codes of my dataloader.py looks like this: ```python class Mydataset(object): ... def __getitem__(self, idx): uttid = self.uttids[idx] feat2d = utt2feat2d[uttid] # utt2feat2d is provided by read_utt2feat2d function label = labels[uttid] return torch.FloatTensor(feat2d), torch.LongTensor(label) def read_utt2feat2d(self, iopath2feat2d): # this function provides utt2featd rspec = 'scp:{0}/feat2d.scp'.format(iopath2feat2d) utt2feat2d = {} for key,val in SequentialMatrixReader(rspec): utt2feat2d[key] = val # Replacing it with utt2feat2d[key] = val.numpy() increases data loading speed return utt2feat2d. # It occupies large amount of men, but the aim here is to debug ``` The above codes result a slow dataloader. If the batch-size is 128, #workers 24, it costs **4 mins** to load 150 batches. I checked the gpu (doing model training) consumes about 1mins, and the cpu (data loading) consumes 4 mins. And they are nearly doing in parallel, the bottleneck lies in the data loading part. And If I simply revise the code of function read_utt2feat2d to: **utt2feat2d[key] = val.numpy()**, the total time consumed is **1min**. I don't know the underlying reason and feel interested.
closed
2019-04-28T05:24:57Z
2019-04-30T03:43:08Z
https://github.com/pykaldi/pykaldi/issues/114
[]
JerryPeng21cuhk
2
QingdaoU/OnlineJudge
django
120
Armv7l环境运行错误
设备 树莓派3b 系统 Raspbian 4.x docker镜像 postgres 正常 redis 无限重启,log输出错误 缺失文件 其余两个组件均无法运行 standrad_init_linux.go:195 报错 exec user process caused "exec format error"
closed
2018-01-11T00:52:34Z
2018-01-11T20:22:40Z
https://github.com/QingdaoU/OnlineJudge/issues/120
[]
iamapig120
2
BlinkDL/RWKV-LM
pytorch
85
Add `Model-based Deep Reinforcement Learning` to RWKV-LM?
What about add some `Model-based Deep Reinforcement Learning` to RWKV-LM?
closed
2023-04-15T16:02:59Z
2023-04-17T19:19:40Z
https://github.com/BlinkDL/RWKV-LM/issues/85
[]
linkerlin
2
pyppeteer/pyppeteer
automation
297
I am using. page SetRequestInterception (True), a page doesn't load properly
I want to get all the requests and responses on the page through the interceptor, but it prevents the page from loading properly. It's just a simple demo, and I'm just going to listen with an interceptor, and I'm going to print out everything I hear.  That's it.
open
2021-08-11T03:03:16Z
2021-10-24T03:48:50Z
https://github.com/pyppeteer/pyppeteer/issues/297
[ "waiting for info" ]
ghost
4
tflearn/tflearn
data-science
283
Assertion on input dim in recurrent model
Hi, I'd like to try LSTM with an input size less than 3 but I receive this error: `AssertionError: Input dim should be at least 3.` Does tflearn inherit this from TF? Would the recurrent model still works fine if I remove that assertion?
open
2016-08-15T18:54:29Z
2016-08-16T04:43:50Z
https://github.com/tflearn/tflearn/issues/283
[]
sauberf
1
sktime/sktime
data-science
7,056
[BUG] `sktime` fails if an older version of `polars` is installed
Reported by @wirrywoo on discord. If an older version of `polars` is installed, `sktime` fails due to import chains and module level generation of a test fixture with `DataFrame(strict=False)`, where the `strict` argument is not present in earlier `polars` versions. The solution is to add the fixture only on `polars` versions that have the argument, and a workaround is to avoid older `polars` versions.
closed
2024-08-30T14:27:49Z
2024-08-31T22:09:10Z
https://github.com/sktime/sktime/issues/7056
[ "bug", "module:datatypes" ]
fkiraly
1
aimhubio/aim
data-visualization
3,070
cannot import aimstack without aimos package
## ❓Question I'm trying to setup a Langchain debugger on Windows. Since `aimos` cannot be installed on Windows I installed `aimstack` and have the following code: ``` def get_callbacks() -> list: callbacks = [] aimos_url = os.environ["AIMOS_URL"] if aimos_url: try: from aimstack.langchain_debugger.callback_handlers import \ GenericCallbackHandler callbacks.append(GenericCallbackHandler(aimos_url)) except ImportError: pass return callbacks ``` For some reason I'm getting ImportError. I've checked that correct venv is used and double checked I've installed `aimstack`. Please help
open
2023-12-21T14:47:42Z
2024-01-31T13:25:12Z
https://github.com/aimhubio/aim/issues/3070
[ "type / question" ]
MrZoidberg
1
marcomusy/vedo
numpy
1,148
Vedo only render the change when I move my mouse on the screen
it happens to me that the scene only change when I hover my mouse on the screen which does not make it smooth. Can you help to solve this issue ?
open
2024-06-27T18:48:10Z
2024-06-28T14:34:10Z
https://github.com/marcomusy/vedo/issues/1148
[]
OhmPuchiss
6
horovod/horovod
deep-learning
2,929
Key Error: 'ib0'
**Environment:** 1. Framework: pytorch 2. Framework version:1.8.0 3. Horovod version:0.21.3 4. MPI version: mpich 3.0.4 5. CUDA version: 10.1 6. NCCL version: 7. Python version: 8. Spark / PySpark version: 9. Ray version: 10. OS and version: 11. GCC version: 12. CMake version: when I run `horovodrun -np 1 --start-timeout=180 --min-np 1 --max-np 3 --host-discovery-script ./discover_hosts.sh python -u pytorch_mnist_elastic.py `, I got the following error **Bug report:** Traceback (most recent call last): File "/home/test/dat01/txacs/anaconda3/envs/py36/bin/horovodrun", line 8, in <module> sys.exit(run_commandline()) File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/site-packages/horovod/runner/launch.py", line 768, in run_commandline _run(args) File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/site-packages/horovod/runner/launch.py", line 756, in _run return _run_elastic(args) File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/site-packages/horovod/runner/launch.py", line 666, in _run_elastic gloo_run_elastic(settings, env, args.command) File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/site-packages/horovod/runner/gloo_run.py", line 336, in gloo_run_elastic launch_gloo_elastic(command, exec_command, settings, env, get_common_interfaces, rendezvous) File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/site-packages/horovod/runner/gloo_run.py", line 303, in launch_gloo_elastic server_ip = network.get_driver_ip(nics) File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/site-packages/horovod/runner/util/network.py", line 100, in get_driver_ip for addr in net_if_addrs()[iface]: KeyError: 'ib0' Launching horovod task function was not successful: Exception in thread Thread-10: Traceback (most recent call last): File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/site-packages/horovod/runner/util/threads.py", line 58, in fn_execute res = fn(*arg[:-1]) File "/home/test/dat01/txacs/anaconda3/envs/py36/lib/python3.6/site-packages/horovod/runner/driver/driver_service.py", line 87, in _exec_command os._exit(exit_code) TypeError: an integer is required (got type NoneType) Launching horovod task function was not successful: Please help me, thanks!
closed
2021-05-22T12:58:57Z
2021-05-26T07:01:36Z
https://github.com/horovod/horovod/issues/2929
[ "question" ]
TXacs
3
comfyanonymous/ComfyUI
pytorch
7,323
thanks
delete thanks
closed
2025-03-20T07:25:30Z
2025-03-20T07:55:14Z
https://github.com/comfyanonymous/ComfyUI/issues/7323
[ "Potential Bug" ]
chenfeng6a
0
pykaldi/pykaldi
numpy
294
SingleUtteranceGmmDecoder.feature_pipeline() causes segmentation fault
Kaldi: compiled from master (d366a93aad) PyKaldi: pykaldi-cpu 0.1.3 py37h14c3975_1 pykaldi Python: 3.7.11 OS: Manjaro Linux VM When calling `feature_pipeline()` from a `SingleUtteranceGmmDecoder` object twice, a segmentation fault occurs. I am trying to run online GMM based decoding. I translated a similar c++ example that can be found here: <https://kaldi-asr.org/doc/online_decoding.html#GMM-based>, to PyKaldi. But when I try to feed the `OnlineFeaturePipeline` instance with audio data, it crashes with a segmentation fault. I could enclose the error to being thrown when trying to get the feature pipeline twice and created following minimal working example: ```py #!/usr/bin/env python from kaldi.online2 import ( SingleUtteranceGmmDecoder, OnlineGmmAdaptationState, OnlineFeaturePipelineCommandLineConfig, OnlineGmmDecodingConfig, OnlineFeaturePipelineConfig, OnlineFeaturePipeline, OnlineGmmDecodingModels, ) from kaldi.fstext import read_fst_kaldi import subprocess, sys from os.path import expanduser base_path = expanduser("~/speech/kaldi/asr") kaldi_root = expanduser("~/speech/kaldi/kaldi") subprocess.run( f"{kaldi_root}/src/bin/matrix-sum --binary=false scp:{base_path}/data/train/cmvn.scp - >/tmp/global_cmvn.stats", shell=True ) feature_cmdline_config = OnlineFeaturePipelineCommandLineConfig() feature_cmdline_config.feature_type = "mfcc" feature_cmdline_config.mfcc_config = f"{base_path}/conf/mfcc.conf" feature_cmdline_config.global_cmvn_stats_rxfilename = "/tmp/global_cmvn.stats" feature_config = OnlineFeaturePipelineConfig.from_config(feature_cmdline_config) decode_config = OnlineGmmDecodingConfig() decode_config.faster_decoder_opts.beam = 11.0 decode_config.faster_decoder_opts.max_active = 7000 decode_config.model_rxfilename = f"{base_path}/exp/mono/final.mdl" gmm_models = OnlineGmmDecodingModels(decode_config) pipeline_prototype = OnlineFeaturePipeline(feature_config) decode_fst = read_fst_kaldi(f"{base_path}/exp/mono/graph/HCLG.fst") adaptation_state = OnlineGmmAdaptationState() decoder = SingleUtteranceGmmDecoder( decode_config, gmm_models, pipeline_prototype, decode_fst, adaptation_state ) # this one does not crash, but using pipe.accept_waveform crashed for me pipe = decoder.feature_pipeline() # the next line crashes with "segmentation fault (core dumped)" pipe = decoder.feature_pipeline() ```
closed
2022-01-15T13:52:38Z
2022-02-27T20:57:23Z
https://github.com/pykaldi/pykaldi/issues/294
[]
vb42e
1
christabor/flask_jsondash
flask
47
Add raw log endpoint
Inspired by http://atlasboard.bitbucket.org
closed
2016-09-11T04:49:52Z
2016-11-30T23:02:59Z
https://github.com/christabor/flask_jsondash/issues/47
[ "enhancement", "new feature" ]
christabor
1
python-gino/gino
asyncio
635
Database Connection per Schema
* GINO version: 0.8.6 * Python version: 3.7.0 * asyncpg version: 0.20.1 * aiocontextvars version: 0.2.2 * PostgreSQL version: 11 ### Description We're trying to implement our database logic to be a single connection to a schema in a database, meaning that we use schemas as databases themselves to maintain our connection pool. We need this since we don't want to connect to different databases as this affects our performance, but we still need to separate the information between different schemas as its client specific. Currently we are doing this for each new request (because each request could be related to a different client and we need to set a new client schema): ``` async def adjust_schemas(self): """Adjust schemas on all model tables.""" for table_name, table_dict in self.__db.tables.items(): table_dict.schema = self.__schema ``` but most probably you can already guess that this messes up with requests that have still not finished giving a response, since the schema could change from a different request and data would go into the wrong client schema. We can't find any straightforward solution for this. Do you think we can achieve this with Gino?
closed
2020-03-06T12:06:33Z
2020-10-10T05:17:56Z
https://github.com/python-gino/gino/issues/635
[ "question" ]
shsimeonova
3
ExpDev07/coronavirus-tracker-api
rest-api
172
Hi, I created an interactive map with your API, thanks for the dataset!
You can visit the map in [COVID-19 Map](https://python.robertocideos.com) Thanks for the hardwork and the dataset!
closed
2020-03-25T06:28:38Z
2020-04-19T18:17:23Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/172
[ "user-created" ]
rcideos
0
pytest-dev/pytest-django
pytest
923
`Database access not allowed` when passing function to default foreign key
I am getting the following error when I am setting a function as a `default` value for a foreign key. I have the decorator on many tests, but it doesn't even finish loading the first test with the decorator before exploding. ``` Failed: Database access not allowed, use the "django_db" mark, or the "db" or "transactional_db" fixtures to enable it. ``` Here is what I have: ```python class Score(models.Model): def default_value(): return Sport.objects.get(game='football').id sport = models.ForeignKey( Sport, null=True, blank=True, on_delete=models.SET_NULL, default=default_value ) ``` 1. This works with django since default is either looking for a value or a callable. 2. It works in migrations since it is being called after all of the apps are initialized. 3. It also just works in the normal course of using the project I suspect this is just tripping up the order of something getting loaded.
open
2021-04-20T22:20:59Z
2022-08-04T08:23:08Z
https://github.com/pytest-dev/pytest-django/issues/923
[ "needs-info" ]
buddylindsey
2
Guovin/iptv-api
api
709
[Bug]:
### Don't skip these steps / 不要跳过这些步骤 - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field / 我明白,如果我“故意”删除或跳过任何强制性的\*字段,我将被**封锁** - [X] I have checked through the search that there are no similar issues that already exist / 我已经通过搜索仔细检查过没有存在已经创建的相似问题 - [X] I will not submit any issues that are not related to this project / 我不会提交任何与本项目无关的问题 ### Occurrence environment / 触发环境 - [ ] Workflow / 工作流 - [ ] GUI / 软件 - [X] Docker - [ ] Command line / 命令行 ### Bug description / 具体描述 docket完整版。同步回来的播放源。 地址后面会有汉字~湖北酒店源~。 直接导入到播放器中,无法播放噢 ### Error log / 报错日志 _No response_
closed
2024-12-19T07:05:42Z
2024-12-19T07:30:24Z
https://github.com/Guovin/iptv-api/issues/709
[ "invalid" ]
wudixxqq
2
mars-project/mars
numpy
2,663
Add support for HTTP request rewriter
Sometimes we need to pass through proxies which have authorizations, and we need to rewrite our HTTP requests to meet those needs. A `request_rewriter` argument can be added to session objects to support this.
closed
2022-01-29T14:34:53Z
2022-01-30T07:00:05Z
https://github.com/mars-project/mars/issues/2663
[ "type: enhancement", "mod: web" ]
wjsi
0
deepfakes/faceswap
deep-learning
984
No alignments file found
Hi, when i am doing "convert". it tells me No alignments file found. The command I used is: python3 faceswap.py convert -i ~/faceswap/src/trump/ -o ~/faceswap/converted/ -m ~/faceswap/trump_cage_model/ The console output is : 03/11/2020 10:39:30 ERROR No alignments file found. Please provide an alignments file for your destination video (recommended) or enable on-the-fly conversion (not recommended). I find there is a xx_alignments.fsa file in the input dir. But no alignments.json file. So what should I do then.
closed
2020-03-11T02:43:40Z
2024-02-02T16:16:05Z
https://github.com/deepfakes/faceswap/issues/984
[]
chenbinghui1
13
anselal/antminer-monitor
dash
133
Change warning temp
I changed warning temp in v0.4 from 80 to 90 Now I can not find where it was in v0.5 Can you help me please?
closed
2018-10-05T10:23:41Z
2018-10-05T13:08:27Z
https://github.com/anselal/antminer-monitor/issues/133
[ ":octocat: help wanted" ]
papampi
2
seleniumbase/SeleniumBase
pytest
2,449
Disabling the GPU causes `--enable-3d-apis` to not work
## Disabling the GPU causes `--enable-3d-apis` to not work The fix for this is simple: If using `--enable-3d-apis` / `enable_3d_apis=True`, then don't disable the GPU, which was being set in places to prevent other issues from happening. The GPU was being disabled by the Chromium option: `--disable-gpu`, which is needed under several circumstances. However, once the SeleniumBase option `--enable-3d-apis` is fixed, SeleniumBase will prioritize the 3D stuff over the GPU stuff when using that option. Related SeleniumBase issues: * https://github.com/seleniumbase/SeleniumBase/issues/1384 * https://github.com/seleniumbase/SeleniumBase/issues/1873
closed
2024-01-25T15:14:54Z
2024-01-25T19:13:10Z
https://github.com/seleniumbase/SeleniumBase/issues/2449
[ "bug" ]
mdmintz
1
onnx/onnx
machine-learning
5,922
Intermittent failing of ONNX model
# Bug Report ### Describe the bug I have a script from compiling a `pytorch` model to ONNX that runs inference with the ONNX model, and when running inference on the GPU, it intermittently fails with the error: ```File "/home/ec2-user/anaconda3/envs/onnx/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 220, in run return self._sess.run(output_names, input_feed, run_options) onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Non-zero status code returned while running Expand node. Name:'/Expand_591' Status Message: /Expand_591: left operand cannot broadcast on dim 0 LeftShape: {243}, RightShape: {267}. ``` Some additional notes: 1. In the script (see below), I'm running inference 10x (via a for loop). When it fails, it fails on the first iteration of the for loop and crashes the script. But, if I re-run the script, it sometimes doesn't fail on that first iteration and completes successfully. Thus, the intermittent nature here seems to be between iterations of the script, _not between iterations of the for loop_. 2. Each time it runs into the error, it does have the `Expand_591` node called out, and the `RightShape {267}` remains the same. However, the `LeftShape` (243 in the error example above) changes. ### System information - OS Platform and Distribution (*e.g. Linux Ubuntu 20.04*): <img width="317" alt="image" src="https://github.com/onnx/onnx/assets/124316637/20ccd564-5d0b-4515-a3e1-09fb27b5eb36"> - ONNX version (*e.g. 1.13*): <img width="235" alt="image" src="https://github.com/onnx/onnx/assets/124316637/c1680d8f-17f0-4239-910f-e84c69ac1a2d"> - Python version: 3.10.6 - Torch version <img width="158" alt="image" src="https://github.com/onnx/onnx/assets/124316637/ef625eb7-6ff7-4487-bf61-5a93e3afcd1f"> ### Reproduction instructions Script I'm using to test (with private details removed): ``` import onnx import onnxruntime import torch import numpy as np device = torch.device("cuda") input_tensor = torch.randn(1, 3, 1280, 896) input_tensor = input_tensor.to(device) def to_numpy(tensor): return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() onnx_model = onnx.load("exp_06_aug_stacked_strong_v5_step_50_epoch_69.onnx") onnx.checker.check_model(onnx_model) ort_session = onnxruntime.InferenceSession( "exp_06_aug_stacked_strong_v5_step_50_epoch_69.onnx", providers=['CUDAExecutionProvider'] ) # compute ONNX Runtime output prediction ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(input_tensor)} for idx in range(10): ort_outs = ort_session.run(None, ort_inputs) ``` ### Expected behavior I would expect the model to run successfully each time and not intermittently fail. ### Notes We got several different flavors of warnings when compiling: - TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - TracerWarning: torch. tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. - TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - When we compiled the model on the GPU but ran on the CPU, it ran successfully each time. However, it did not produce the same results as the underlying pytorch model. - When we compiled this same model on CPU and tested using the `CPUExecutionProvider`, we ran into this error 100% of the time: ``` 2024-02-08 22:53:05.966710901 [E:onnxruntime:, sequential_executor.cc:514 ExecuteKernel] Non-zero status code returned while running Gather node. Name:'/Gather_2452' Status Message: indices element out of data bounds, idx=264 must be within the inclusive range [-264,263] Traceback (most recent call last): File "/home/ec2-user/projects/onnx/test_onnx_model.py", line 60, in <module> ort_outs = ort_session.run(None, ort_inputs) File "/home/ec2-user/anaconda3/envs/onnx/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 220, in run return self._sess.run(output_names, input_feed, run_options) ```
closed
2024-02-08T23:51:24Z
2024-02-09T16:06:35Z
https://github.com/onnx/onnx/issues/5922
[ "bug", "topic: runtime" ]
sallamander317
2
vitalik/django-ninja
django
1,321
TestClient request mock HttpRequest is missing SessionStore session attribute
**AttributeError: Mock object has no attribute 'session'** This error is raised when using TestClient to test a login endpoint that uses `django.contrib.auth.login` because the mock request object as defined here https://github.com/vitalik/django-ninja/blob/master/ninja/testing/client.py#L128-L138 is missing a session attribute. **Possible Solution** I was able to solve this issue on my own by monkey patching the test client by defining a function like ``` from django.contrib.sessions.backends.db import SessionStore def _new_build_request(self, *args, **kwargs) -> Mock: """Method to be monkey patched into the TestClient to add session store to the request mock""" mock = self._old_build_request(*args, **kwargs) mock.session = SessionStore() return mock ``` and then using this new function to replace the `_build_request` function in my TestClient instance like ``` client._old_build_request = client._build_request client._build_request = _new_build_request.__get__(client) ``` Maybe a better solution would be to use a SessionStore mock?
open
2024-10-18T13:29:07Z
2024-10-29T08:53:24Z
https://github.com/vitalik/django-ninja/issues/1321
[]
picturedots
1
ageitgey/face_recognition
machine-learning
1,369
Obtain hair outline as landmark
Hi, This is a general question. I am able to get the face landmarks. However, I am also interested in the hair. Any way to extract this as landmarks? Thanks.
open
2021-09-05T19:16:28Z
2021-09-05T19:16:28Z
https://github.com/ageitgey/face_recognition/issues/1369
[]
SridharRamasami
0
dask/dask
numpy
11,610
`dataframe.read_parquet` crashed with DefaultAzureCredential cannot be deterministically hashed
<!-- Please include a self-contained copy-pastable example that generates the issue if possible. Please be concise with code posted. See guidelines below on how to provide a good bug report: - Craft Minimal Bug Reports http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports - Minimal Complete Verifiable Examples https://stackoverflow.com/help/mcve Bug reports that follow these guidelines are easier to diagnose, and so are often handled much more quickly. --> **Describe the issue**: Dask 2024.2.1 version in python 3.9 works as expected. Dask 2024.12.0 version in python 3.12 crashed with ``` File "/home/user/conda-envs/dev-env/lib/python3.12/site-packages/dask/utils.py", line 772, in __call__ return meth(arg, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/conda-envs/dev-env/lib/python3.12/site-packages/dask/tokenize.py", line 159, in normalize_seq return type(seq).__name__, _normalize_seq_func(seq) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/conda-envs/dev-env/lib/python3.12/site-packages/dask/tokenize.py", line 152, in _normalize_seq_func return tuple(map(_inner_normalize_token, seq)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/conda-envs/dev-env/lib/python3.12/site-packages/dask/tokenize.py", line 146, in _inner_normalize_token return normalize_token(item) ^^^^^^^^^^^^^^^^^^^^^ File "/home/user/conda-envs/dev-env/lib/python3.12/site-packages/dask/utils.py", line 772, in __call__ return meth(arg, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/conda-envs/dev-env/lib/python3.12/site-packages/dask/tokenize.py", line 210, in normalize_object _maybe_raise_nondeterministic( File "/home/user/conda-envs/dev-env/lib/python3.12/site-packages/dask/tokenize.py", line 89, in _maybe_raise_nondeterministic raise TokenizationError(msg) dask.tokenize.TokenizationError: Object <azure.identity.aio._credentials.default.DefaultAzureCredential object at 0x7fb2dad44d40> cannot be deterministically hashed. See https://docs.dask.org/en/latest/custom-collections.html#implementing-deterministic-hashing for more information. ``` Note that in the following example if i replace `storage_options` by `filesystem` it works. ```python from adlfs.spec import AzureBlobFileSystem filesystem = AzureBlobFileSystem( **storage_options, ) ``` **Minimal Complete Verifiable Example**: ```python import pyarrow as pa import dask.dataframe as dd from azure.identity.aio import DefaultAzureCredential DEV_PA_SCHEMAS = pa.schema([ ('dev_code', pa.string()), ('dev_value', pa.float64()), ]) storage_options = dict( account_name='my_azure_blob_storage_name', credential=DefaultAzureCredential(), ) d = dd.read_parquet( [ 'az://my-container/2024-12-17/file1.parquet', 'az://my-container/2024-12-17/file2.parquet', ], filters=None, index=False, columns=['dev_code'], engine='pyarrow', storage_options=storage_options, open_file_options=dict(precache_options=dict(method='parquet')), schema=DEV_PA_SCHEMAS, )['dev_code'].unique().compute() ``` **Anything else we need to know?**: **Environment**: Azure Kubernetes pod - Dask version: 2024.12.0 - Python version: 3.12.8 - Operating System: Ubuntu 22.04 - Install method (conda, pip, source): conda - Pandas version: 2.2.3 - Pyarrow version: 18.1.0
open
2024-12-18T01:53:03Z
2025-02-17T02:01:02Z
https://github.com/dask/dask/issues/11610
[ "needs attention", "dask-expr" ]
seanslma
0
deeppavlov/DeepPavlov
tensorflow
1,390
There is no config.json in pre-trained BERT models by DeepPavlov
BERT pre-trained models from http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#bert have `bert_config.json` instead of `config.json`. This leads to errors when these models are used with HuggingFace Transformers: ```python from transformers import AutoTokenizer t = AutoTokenizer.from_pretrained("./conversational_cased_L-12_H-768_A-12_v1") ``` ``` OSError Traceback (most recent call last) <ipython-input-2-1a3f920b5ef3> in <module> ----> 1 t = AutoTokenizer.from_pretrained("/home/yurakuratov/.deeppavlov/downloads/bert_models/conversational_cased_L-12_H-768_A-12_v1") ~/anaconda3/envs/dp_tf1.15/lib/python3.7/site-packages/transformers/tokenization_auto.py in from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs) 184 config = kwargs.pop("config", None) 185 if not isinstance(config, PretrainedConfig): --> 186 config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) 187 188 if "bert-base-japanese" in pretrained_model_name_or_path: ~/anaconda3/envs/dp_tf1.15/lib/python3.7/site-packages/transformers/configuration_auto.py in from_pretrained(cls, pretrained_model_name_or_path, **kwargs) 185 """ 186 config_dict, _ = PretrainedConfig.get_config_dict( --> 187 pretrained_model_name_or_path, pretrained_config_archive_map=ALL_PRETRAINED_CONFIG_ARCHIVE_MAP, **kwargs 188 ) 189 ~/anaconda3/envs/dp_tf1.15/lib/python3.7/site-packages/transformers/configuration_utils.py in get_config_dict(cls, pretrained_model_name_or_path, pretrained_config_archive_map, **kwargs) 268 ) 269 ) --> 270 raise EnvironmentError(msg) 271 272 except json.JSONDecodeError: OSError: Can't load '/home/yurakuratov/.deeppavlov/downloads/bert_models/conversational_cased_L-12_H-768_A-12_v1'. Make sure that: - '/home/yurakuratov/.deeppavlov/downloads/bert_models/conversational_cased_L-12_H-768_A-12_v1' is a correct model identifier listed on 'https://huggingface.co/models' - or '/home/yurakuratov/.deeppavlov/downloads/bert_models/conversational_cased_L-12_H-768_A-12_v1' is the correct path to a directory containing a 'config.json' file ``` Renaming `bert_config.json` to `config.json` should solve the problem.
closed
2021-01-27T15:16:01Z
2022-04-04T13:44:52Z
https://github.com/deeppavlov/DeepPavlov/issues/1390
[]
yurakuratov
1
psf/requests
python
6,793
Cannot close the proxy
<!-- Summary. --> In windows pycharm jupyterlab when i open windows system proxy requests will use the proxy i set on windows system. but cannot close this proxy direct to the internet . I try ```python response = requests.post(url, headers=headers, json=data, proxies=None) response = requests.post(url, headers=headers, json=data, proxies={}) response = requests.post(url, headers=headers, json=data, proxies="") ``` can't work ## Expected Result don't use proxy I set on windows <!-- What you expected. --> ## Actual Result I can check this connection on clash <!-- What happened instead. --> ## Reproduction Steps windows requests 2.31.0 use pycharm and jupyter ```python import requests response = requests.post(url, headers=headers, json=data, proxies=None)# I try None {} "" [] ``` ## System Information $ python -m requests.help ```json { "chardet": { "version": null }, "charset_normalizer": { "version": "2.0.4" }, "cryptography": { "version": "41.0.7" }, "idna": { "version": "3.4" }, "implementation": { "name": "CPython", "version": "3.11.5" }, "platform": { "release": "10", "system": "Windows" }, "pyOpenSSL": { "openssl_version": "300000c0", "version": "23.2.0" }, "requests": { "version": "2.31.0" }, "system_ssl": { "version": "300000c0" }, "urllib3": { "version": "1.26.18" }, "using_charset_normalizer": true, "using_pyopenssl": true } ``` <!-- This command is only available on Requests v2.16.4 and greater. Otherwise, please provide some basic information about your system (Python version, operating system, &c). -->
open
2024-08-27T10:37:43Z
2025-01-27T05:14:09Z
https://github.com/psf/requests/issues/6793
[]
invisifire
1
huggingface/transformers
nlp
36,320
Support for Multi-Modality Models (DeepSeek Janus-Pro-7B)
### Feature request I’m requesting support for multi_modality models in transformers, specifically for models like DeepSeek Janus-Pro-7B. Currently, when attempting to load this model using AutoModel.from_pretrained(), I received the following error: KeyError: 'multi_modality' During handling of the above exception, another exception occurred: ValueError Traceback (most recent call last) [/usr/local/lib/python3.11/dist-packages/transformers/models/auto/configuration_auto.py](https://localhost:8080/#) in from_pretrained(cls, pretrained_model_name_or_path, **kwargs) 1092 config_class = CONFIG_MAPPING[config_dict["model_type"]] 1093 except KeyError: -> 1094 raise ValueError( 1095 f"The checkpoint you are trying to load has model type `{config_dict['model_type']}` " 1096 "but Transformers does not recognize this architecture. This could be because of an " ValueError: The checkpoint you are trying to load has model type `multi_modality` but Transformers does not recognize this architecture. This could be because of an issue with the checkpoint, or because your version of Transformers is out of date. ### Motivation I’d like to use DeepSeek Janus-Pro-7B with transformers, but since it’s labeled as multi_modality, it cannot be loaded. Is there an ETA for support? Are there any workarounds to load the model until official support is added? ### Your contribution At this time, I am unable to submit a PR, but I am happy to help with testing once support for multi_modality models is added. If there are any workarounds or steps to try, I’d be glad to assist in debugging and verifying compatibility.
closed
2025-02-21T06:49:16Z
2025-02-21T08:33:57Z
https://github.com/huggingface/transformers/issues/36320
[ "Feature request" ]
smiling621
3
indico/indico
flask
6,034
Navigation bar vanishes in case of protected event in an otherwise unprotected category for logged in user
**Describe the bug / how to reprocess** Maybe it's a feature, not a bug, but I'll leave it here, as I find it mildly annoying :sweat_smile: I'm logged in to our Indico instance and can see all the categories and events that I have the permissions to see, and in each category I can also see protected events but can't open them, which is OK. When I click on an unprotected event in an unprotected category (=unprotected when logged in, i.e. I have the rights to see it) I see the navigation bar at the top (Figure 1). If I now use the "go to previous event" (Older Event) or "go to next event" (Newer Event) this works fine, until I reach a protected event, where I see the "Access denied" message and all navigation vanishes (Figure 2). The only option is to go back in the history to the previously visited event, go up to the category, select the next unprotected event in the direction Older / Newer that I want to go, and then I can use the shortcuts to navigate again - until I encounter the next protected event in the category. Example (after navigating to category `Sub category Foo`: ``` Home page >> Some Category >> Sub category Foo . . . 8. Event on Topic A 7. Event on Topic C 6. Event on Topic B 5. Conveners meeting (protected) 4. Event on Topic A 3. Event on Topic B . . . ``` In this case if I start at event 7 by clicking on it, and proceed to go to `Older event` I reach event 6 - fine. If I click `Older event` again, I get to the protected event, get the `Access denied` message, and all of the navigation is gone. I can't just go to the category, nor just simply click `Older event` again to get to event 4 which would be the ideal case. The only way to continue is to go back in browser history as described above. Same if I start at event 1, 2, 3 and click `Newer Event`. **Expected behavior** Ideally, the navigation bar would still be present, even if the event is protected and the `Access denied` message is shown, to allow for easy navigation. It's still clear that I'm not supposed to see the content of that meeting, but I know it is there anyway from the category overview, but at least I can easily go to the older or newer event. **Screenshots** ![grafik](https://github.com/indico/indico/assets/10998617/1ba33be9-db1e-4b93-9b59-499725b8deca) Figure 1: Usual navigation bar ![grafik](https://github.com/indico/indico/assets/10998617/9aa29371-9c27-4b9e-9d34-f6c184c6cd1b) Figure 2: For restricted / protected events I don't have the permissions to see I hope the bug description is clear enough. If this is the desired behaviour, I'm happy to learn about the reasons :slightly_smiling_face:
open
2023-11-14T16:39:41Z
2023-11-14T17:32:07Z
https://github.com/indico/indico/issues/6034
[ "bug" ]
chrishanw
0
plotly/dash
dash
2,706
Scattermapbox cluster says “The layer does not exist in the map’s style…”
**Describe your context** ``` dash 2.14.1 dash-auth 2.0.0 dash-bootstrap-components 1.4.1 dash-core-components 2.0.0 dash-extensions 1.0.1 dash-html-components 2.0.0 dash-leaflet 0.1.23 dash-table 5.0.0 plotly 5.18.0 ``` **Describe the bug** Hi, I’m trying to create a webapp which uses the cluster function within scattermapbox. However, every so often, when loading the webapp, I’m presented with the following console error (which prevents any further interaction with the map): ``` Uncaught (in promise) Error: Mapbox error. ``` followed by multiple errors of the type: ``` Error: The layer 'plotly-trace-layer-4f7f6d-circle' does not exist in the map's style and cannot be queried for features. ``` I’ve created the following minimal example which throws up the same errors (they occur once every ~10 times I reload the webapp making the issue hard to track down). The example creates a list of random points around the world and plots them on a map. The example includes a simple callback to print the location of a point when clicking on it. I’ve tracked the issue down to the use of the cluster option in the “map_data” list (i.e. if I disable the cluster option, the errors no longer appear). From other posts/the documentation, I’m aware that the cluster option is not expected to work with OpenStreetMaps tiles hence the example requires a Mapbox access token. ```python from dash import Dash, dcc, html from dash import Input, Output from random import randint, seed # -- Fix the randomness seed(10) # -- Generate random data npoints = 100 latitudes = [randint(-90, 90) for i in range(npoints)] longitudes = [randint(-180, 180) for i in range(npoints)] colors = ["green" for i in range(npoints)] # -- Mapbox styles mapbox_style = "streets" mapbox_accesstoken = open(".mapbox_token").read().strip() # -- Set map data map_data = [ { "type": "scattermapbox", "lat": latitudes, "lon": longitudes, "mode": "markers", "marker": { "size": 15, "color": colors, }, "cluster": { "enabled": True, "color": "green", "type": "circle", "maxzoom": 10, "size": 25, "opacity": 0.7, }, }, ] # -- Set map layout map_layout = { "mapbox": { "style": mapbox_style, "accesstoken": mapbox_accesstoken, }, "clickmode": "event", "margin": {"t": 0, "r": 0, "b": 0, "l": 0}, } # -- Create div with map and a dummy div for the callback layout = html.Div( children=[ dcc.Graph( id="world-map", figure={"data": map_data, "layout": map_layout}, config={"displayModeBar": False, "scrollZoom": True}, style={"height": "100vh"}, ), html.Div(id="dummy"), ], ) # -- Create app app = Dash( __name__, ) app.layout = layout # -- Simple callback to print click data @app.callback( Output("dummy", "children"), Input("world-map", "clickData"), prevent_initial_call=True, ) def print_click( clickData, ): lat = clickData["points"][0]["lat"] lon = clickData["points"][0]["lon"] print("Clicked on point at lat/lon {}/{}".format(lat, lon)) return None if __name__ == "__main__": app.run_server(debug=True, use_reloader=False, host="0.0.0.0", port=8081) ``` I have tested the code on multiple computers with different browsers and they all present the same issue. The full console logs for the errors are: ``` Uncaught (in promise) Error: Mapbox error. r plotly.min.js:8 fire plotly.min.js:8 fire plotly.min.js:8 queryRenderedFeatures plotly.min.js:8 queryRenderedFeatures plotly.min.js:8 hoverPoints plotly.min.js:8 ht plotly.min.js:8 hover plotly.min.js:8 hover plotly.min.js:8 l plotly.min.js:8 throttle plotly.min.js:8 hover plotly.min.js:8 initFx plotly.min.js:8 fire plotly.min.js:8 mousemove plotly.min.js:8 handleEvent plotly.min.js:8 addEventListener plotly.min.js:8 ki plotly.min.js:8 i plotly.min.js:8 createMap plotly.min.js:8 n plotly.min.js:8 plot plotly.min.js:8 plot plotly.min.js:8 drawData plotly.min.js:8 syncOrAsync plotly.min.js:8 _doPlot plotly.min.js:8 newPlot plotly.min.js:8 react plotly.min.js:8 React 3 commitLifeCycles react-dom@16.v2_14_1m1699425702.14.0.js:19949 commitLayoutEffects react-dom@16.v2_14_1m1699425702.14.0.js:22938 callCallback react-dom@16.v2_14_1m1699425702.14.0.js:182 invokeGuardedCallbackDev react-dom@16.v2_14_1m1699425702.14.0.js:231 invokeGuardedCallback react-dom@16.v2_14_1m1699425702.14.0.js:286 commitRootImpl react-dom@16.v2_14_1m1699425702.14.0.js:22676 unstable_runWithPriority react@16.v2_14_1m1699425702.14.0.js:2685 runWithPriority$1 react-dom@16.v2_14_1m1699425702.14.0.js:11174 commitRoot react-dom@16.v2_14_1m1699425702.14.0.js:22516 finishSyncRender react-dom@16.v2_14_1m1699425702.14.0.js:21942 performSyncWorkOnRoot react-dom@16.v2_14_1m1699425702.14.0.js:21928 flushSyncCallbackQueueImpl react-dom@16.v2_14_1m1699425702.14.0.js:11224 unstable_runWithPriority react@16.v2_14_1m1699425702.14.0.js:2685 runWithPriority$1 react-dom@16.v2_14_1m1699425702.14.0.js:11174 flushSyncCallbackQueueImpl react-dom@16.v2_14_1m1699425702.14.0.js:11219 workLoop react@16.v2_14_1m1699425702.14.0.js:2629 flushWork react@16.v2_14_1m1699425702.14.0.js:2584 performWorkUntilDeadline react@16.v2_14_1m1699425702.14.0.js:2196 EventHandlerNonNull* react@16.v2_14_1m1699425702.14.0.js:2219 <anonymous> react@16.v2_14_1m1699425702.14.0.js:15 <anonymous> react@16.v2_14_1m1699425702.14.0.js:16 ``` and ``` Error: The layer 'plotly-trace-layer-4f7f6d-circle' does not exist in the map's style and cannot be queried for features. queryRenderedFeatures plotly.min.js:8 queryRenderedFeatures plotly.min.js:8 hoverPoints plotly.min.js:8 ht plotly.min.js:8 hover plotly.min.js:8 hover plotly.min.js:8 l plotly.min.js:8 throttle plotly.min.js:8 hover plotly.min.js:8 initFx plotly.min.js:8 fire plotly.min.js:8 mousemove plotly.min.js:8 handleEvent plotly.min.js:8 addEventListener plotly.min.js:8 ki plotly.min.js:8 i plotly.min.js:8 createMap plotly.min.js:8 n plotly.min.js:8 plot plotly.min.js:8 plot plotly.min.js:8 drawData plotly.min.js:8 syncOrAsync plotly.min.js:8 _doPlot plotly.min.js:8 newPlot plotly.min.js:8 react plotly.min.js:8 React 3 commitLifeCycles react-dom@16.v2_14_1m1699425702.14.0.js:19949 commitLayoutEffects react-dom@16.v2_14_1m1699425702.14.0.js:22938 callCallback react-dom@16.v2_14_1m1699425702.14.0.js:182 invokeGuardedCallbackDev react-dom@16.v2_14_1m1699425702.14.0.js:231 invokeGuardedCallback react-dom@16.v2_14_1m1699425702.14.0.js:286 commitRootImpl react-dom@16.v2_14_1m1699425702.14.0.js:22676 unstable_runWithPriority react@16.v2_14_1m1699425702.14.0.js:2685 runWithPriority$1 react-dom@16.v2_14_1m1699425702.14.0.js:11174 commitRoot react-dom@16.v2_14_1m1699425702.14.0.js:22516 finishSyncRender react-dom@16.v2_14_1m1699425702.14.0.js:21942 performSyncWorkOnRoot react-dom@16.v2_14_1m1699425702.14.0.js:21928 flushSyncCallbackQueueImpl react-dom@16.v2_14_1m1699425702.14.0.js:11224 unstable_runWithPriority react@16.v2_14_1m1699425702.14.0.js:2685 runWithPriority$1 react-dom@16.v2_14_1m1699425702.14.0.js:11174 flushSyncCallbackQueueImpl react-dom@16.v2_14_1m1699425702.14.0.js:11219 workLoop react@16.v2_14_1m1699425702.14.0.js:2629 flushWork react@16.v2_14_1m1699425702.14.0.js:2584 performWorkUntilDeadline react@16.v2_14_1m1699425702.14.0.js:2196 EventHandlerNonNull* react@16.v2_14_1m1699425702.14.0.js:2219 <anonymous> react@16.v2_14_1m1699425702.14.0.js:15 <anonymous> react@16.v2_14_1m1699425702.14.0.js:16 plotly.min.js:8:2494743 fire plotly.min.js:8 queryRenderedFeatures plotly.min.js:8 queryRenderedFeatures plotly.min.js:8 hoverPoints plotly.min.js:8 ht plotly.min.js:8 hover plotly.min.js:8 hover plotly.min.js:8 l plotly.min.js:8 throttle plotly.min.js:8 hover plotly.min.js:8 initFx plotly.min.js:8 fire plotly.min.js:8 mousemove plotly.min.js:8 handleEvent plotly.min.js:8 (Async: EventListener.handleEvent) addEventListener plotly.min.js:8 ki plotly.min.js:8 i plotly.min.js:8 createMap plotly.min.js:8 n plotly.min.js:8 plot plotly.min.js:8 plot plotly.min.js:8 drawData plotly.min.js:8 syncOrAsync plotly.min.js:8 _doPlot plotly.min.js:8 newPlot plotly.min.js:8 react plotly.min.js:8 React 3 commitLifeCycles react-dom@16.v2_14_1m1699425702.14.0.js:19949 commitLayoutEffects react-dom@16.v2_14_1m1699425702.14.0.js:22938 callCallback react-dom@16.v2_14_1m1699425702.14.0.js:182 invokeGuardedCallbackDev react-dom@16.v2_14_1m1699425702.14.0.js:231 invokeGuardedCallback react-dom@16.v2_14_1m1699425702.14.0.js:286 commitRootImpl react-dom@16.v2_14_1m1699425702.14.0.js:22676 unstable_runWithPriority react@16.v2_14_1m1699425702.14.0.js:2685 runWithPriority$1 react-dom@16.v2_14_1m1699425702.14.0.js:11174 commitRoot react-dom@16.v2_14_1m1699425702.14.0.js:22516 finishSyncRender react-dom@16.v2_14_1m1699425702.14.0.js:21942 performSyncWorkOnRoot react-dom@16.v2_14_1m1699425702.14.0.js:21928 flushSyncCallbackQueueImpl react-dom@16.v2_14_1m1699425702.14.0.js:11224 unstable_runWithPriority react@16.v2_14_1m1699425702.14.0.js:2685 runWithPriority$1 react-dom@16.v2_14_1m1699425702.14.0.js:11174 flushSyncCallbackQueueImpl react-dom@16.v2_14_1m1699425702.14.0.js:11219 workLoop react@16.v2_14_1m1699425702.14.0.js:2629 flushWork react@16.v2_14_1m1699425702.14.0.js:2584 performWorkUntilDeadline react@16.v2_14_1m1699425702.14.0.js:2196 (Async: EventHandlerNonNull) <anonymous> react@16.v2_14_1m1699425702.14.0.js:2219 <anonymous> react@16.v2_14_1m1699425702.14.0.js:15 <anonymous> react@16.v2_14_1m1699425702.14.0.js:16 ``` Any help on understanding the source of the issue and a way to remedy it would be greatly appreciated! [This is a duplicate of [this post](https://community.plotly.com/t/scattermapbox-cluster-bug-the-layer-does-not-exist-in-the-maps-style/80132/1) on the Plotly forum]
open
2023-12-01T09:05:46Z
2024-08-13T19:43:44Z
https://github.com/plotly/dash/issues/2706
[ "bug", "P3" ]
stephenwinn16
7
onnx/onnx
scikit-learn
6,008
[Feature request] checking an input rank is within a specific range
### What is the problem that this feature solves? Please keep in mind I am new to ONNX. I will be missing context on priorities with the code so this might be useless. While looking into extending Microsoft's ORT functionality to accept a 5D input for Grid Sampling, I noticed it might be helpful to have shape inferencing capabilities to check an input's rank is within a range when you know the inputs rank ahead of time. Currently `shape_inference.h` has ``` inline void checkInputRank(InferenceContext& ctx, size_t input_index, int expected_rank) { // We check the rank only if a rank is known for the input: if (hasInputShape(ctx, input_index)) { auto rank = getInputShape(ctx, input_index).dim_size(); if (rank != expected_rank) { fail_shape_inference("Input ", input_index, " expected to have rank ", expected_rank, " but has rank ", rank); } } } ``` which will work for only one rank. But if you want to extend an operators functionality to work within a certain range of ranks I believe it would be helpful to have an overload that will accept a range instead. ### Alternatives considered downstream code can use their own implementation by reusing functions like `hasInputShape`, `getInputShape` and `fail_shape_inference`. ### Describe the feature if it makes sense for the operator to work with different ranks, downstream code will not need to define their own function. ### Will this influence the current api (Y/N)? no ### Feature Area shape_inference ### Are you willing to contribute it (Y/N) Yes ### Notes I understand this is quite small and insignificant. Figured it was a good entry point to get to contributing to ONNX.
closed
2024-03-10T21:47:38Z
2024-03-12T21:06:28Z
https://github.com/onnx/onnx/issues/6008
[ "topic: enhancement", "module: shape inference" ]
ZelboK
6
noirbizarre/flask-restplus
flask
546
400 error in Swagger when using POST/PUT through reqparse
Hey all, While testing out PUT/POST requests using reqparser through Swagger UI (using _**Try it Out!**_), my application will throw a 400 error with the following message: `{ "message": "The browser (or proxy) sent a request that this server could not understand." }` The same call will result in a success when submitted through Postman however. There is no stacktrace for the error. Also note that this issue only arises through passing the reqparse through @api.expect() I can successfully pass a model through without any error calling the api on swagger. However, I need the option to pass things like choices etc for the user. I'm using Flask-restplus v 0.10.0 and Python v 3.6. My SQL is handled through pyodbc 4.0.23. Here is the code I use for setting up the reqparser: ``` parser = reqparse.RequestParser() parser.add_argument("alternateNameId", type=int, required=False) parser.add_argument("alternateName", type=str, required=True) parser.add_argument("isColloquial", type=bool, required=True, default='False') parser.add_argument("isSearchTerm", type=bool, required=True) ``` and then it's called through the @api.expect decorator as follows: ```@api.route('/<int:diseaseId>/AlternateName', methods=['PUT']) class AlternateName(Resource): @api.doc(model=altNameModel, id='put_alternatename', responses={201: 'Success', 400: 'Validation Error'}) @api.expect(parser) @auth.requires_auth def put(self, diseaseId): ``` And here are screenshots of the swagger UI: ![2018-10-29_9-24-14](https://user-images.githubusercontent.com/35080007/47652648-dd3c7080-db5c-11e8-875a-546286a49f51.png) ![2018-10-29_9-23-41](https://user-images.githubusercontent.com/35080007/47652581-aa927800-db5c-11e8-98ba-952888466cc4.png) I have seen similar issues logged but nothing quite addressing the fact that the operation only fails through the swagger UI and a GET request operates as normal. Has anyone seen this behavior before or understand how to mitigate it? My users would be using swagger as their main UI to access the endpoint.
open
2018-10-29T13:36:22Z
2018-10-29T13:36:22Z
https://github.com/noirbizarre/flask-restplus/issues/546
[]
SonyaKaramchandani
0
blacklanternsecurity/bbot
automation
2,171
stats not attributing URLs to discovering modules
As an example - ffuf_shortnames discovers URL_UNVERIFIED events which are not tracked in stats, but are then checked by httpx, and some will become URL events. But despite the face that ffuf_shortnames discovered them, it does not get attributed with the URL. Expected behavior: when HTTPX finds a URL, the stats should get attributed to the module that supplied the URL_UNVERIFIED event not HTTPX itself, falling back to HTTPX if there isn't one. This should apply to ffuf and excavate as well. In the case of excavate, I think it is much more useful to know it came from excavate then just everything being attributed to httpx.
open
2025-01-14T12:58:26Z
2025-01-14T12:58:27Z
https://github.com/blacklanternsecurity/bbot/issues/2171
[ "bug", "low priority" ]
liquidsec
0
keras-team/keras
pytorch
20,314
Keras fails to load TextVectorization layer from .keras file
When downloading a model I trained on Kaggle using the `.keras` format it fails to load on my machine. I believe it is a codec error because the TextVectorization layer uses the `utf-8` format, but the error message appears to be using the `charmap` codec in python. This is all just speculation though. ``` ValueError: A total of 2 objects could not be loaded. Example error message for object <TextVectorization name=text_vectorization, built=True>: 'charmap' codec can't decode byte 0x8d in position 8946: character maps to <undefined> List of objects that could not be loaded: [<TextVectorization name=text_vectorization, built=True>, <StringLookup name=string_lookup, built=False>] ``` In the notebook it was trained on, it loaded perfectly so I don't understand the reason why this failed to work. My Machine: python version 3.10.5 ``` Name Version Build Channel _tflow_select 2.3.0 mkl abseil-cpp 20211102.0 hd77b12b_0 absl-py 2.1.0 py310haa95532_0 aext-assistant 4.0.15 py310haa95532_jl4_0 aext-assistant-server 4.0.15 py310haa95532_0 aext-core 4.0.15 py310haa95532_jl4_0 aext-core-server 4.0.15 py310haa95532_1 aext-panels 4.0.15 py310haa95532_0 aext-panels-server 4.0.15 py310haa95532_0 aext-share-notebook 4.0.15 py310haa95532_0 aext-share-notebook-server 4.0.15 py310haa95532_0 aext-shared 4.0.15 py310haa95532_0 aiohappyeyeballs 2.4.0 py310haa95532_0 aiohttp 3.10.5 py310h827c3e9_0 aiosignal 1.2.0 pyhd3eb1b0_0 anaconda-cloud-auth 0.5.1 py310haa95532_0 anaconda-toolbox 4.0.15 py310haa95532_0 annotated-types 0.6.0 py310haa95532_0 anyio 4.2.0 py310haa95532_0 argon2-cffi 21.3.0 pyhd3eb1b0_0 argon2-cffi-bindings 21.2.0 py310h2bbff1b_0 asttokens 2.0.5 pyhd3eb1b0_0 astunparse 1.6.3 py_0 async-lru 2.0.4 py310haa95532_0 async-timeout 4.0.3 py310haa95532_0 attrs 23.1.0 py310haa95532_0 babel 2.11.0 py310haa95532_0 beautifulsoup4 4.12.3 py310haa95532_0 blas 1.0 mkl bleach 4.1.0 pyhd3eb1b0_0 blinker 1.6.2 py310haa95532_0 brotli-python 1.0.9 py310hd77b12b_8 bzip2 1.0.8 h2bbff1b_6 c-ares 1.19.1 h2bbff1b_0 ca-certificates 2024.9.24 haa95532_0 cachetools 5.3.3 py310haa95532_0 certifi 2024.8.30 py310haa95532_0 cffi 1.17.1 py310h827c3e9_0 charset-normalizer 3.3.2 pyhd3eb1b0_0 click 8.1.7 py310haa95532_0 colorama 0.4.6 py310haa95532_0 comm 0.2.1 py310haa95532_0 cryptography 41.0.3 py310h3438e0d_0 debugpy 1.6.7 py310hd77b12b_0 decorator 5.1.1 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 exceptiongroup 1.2.0 py310haa95532_0 executing 0.8.3 pyhd3eb1b0_0 flatbuffers 2.0.0 h6c2663c_0 frozenlist 1.4.0 py310h2bbff1b_0 gast 0.4.0 pyhd3eb1b0_0 giflib 5.2.1 h8cc25b3_3 google-auth 2.29.0 py310haa95532_0 google-auth-oauthlib 0.4.4 pyhd3eb1b0_0 google-pasta 0.2.0 pyhd3eb1b0_0 grpc-cpp 1.48.2 hf108199_0 grpcio 1.48.2 py310hf108199_0 h11 0.14.0 py310haa95532_0 h5py 3.11.0 py310hed405ee_0 hdf5 1.12.1 h51c971a_3 httpcore 1.0.2 py310haa95532_0 httpx 0.27.0 py310haa95532_0 icc_rt 2022.1.0 h6049295_2 icu 58.2 ha925a31_3 idna 3.7 py310haa95532_0 importlib-metadata 7.0.1 py310haa95532_0 importlib_metadata 7.0.1 hd3eb1b0_0 intel-openmp 2023.1.0 h59b6b97_46320 ipykernel 6.28.0 py310haa95532_0 ipython 8.27.0 py310haa95532_0 jaraco.classes 3.2.1 pyhd3eb1b0_0 jedi 0.19.1 py310haa95532_0 jinja2 3.1.4 py310haa95532_0 jpeg 9e h827c3e9_3 json5 0.9.6 pyhd3eb1b0_0 jsonschema 4.19.2 py310haa95532_0 jsonschema-specifications 2023.7.1 py310haa95532_0 jupyter-lsp 2.2.0 py310haa95532_0 jupyter_client 8.6.0 py310haa95532_0 jupyter_core 5.7.2 py310haa95532_0 jupyter_events 0.10.0 py310haa95532_0 jupyter_server 2.14.1 py310haa95532_0 jupyter_server_terminals 0.4.4 py310haa95532_1 jupyterlab 4.2.5 py310haa95532_0 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.27.3 py310haa95532_0 keras 2.10.0 py310haa95532_0 keras-preprocessing 1.1.2 pyhd3eb1b0_0 keyring 24.3.1 py310haa95532_0 libcurl 8.9.1 h0416ee5_0 libffi 3.4.4 hd77b12b_1 libpng 1.6.39 h8cc25b3_0 libprotobuf 3.20.3 h23ce68f_0 libsodium 1.0.18 h62dcd97_0 libssh2 1.10.0 hcd4344a_2 markdown 3.4.1 py310haa95532_0 markupsafe 2.1.3 py310h2bbff1b_0 matplotlib-inline 0.1.6 py310haa95532_0 mistune 2.0.4 py310haa95532_0 mkl 2023.1.0 h6b88ed4_46358 mkl-service 2.4.0 py310h2bbff1b_1 mkl_fft 1.3.10 py310h827c3e9_0 mkl_random 1.2.7 py310hc64d2fc_0 more-itertools 10.3.0 py310haa95532_0 multidict 6.0.4 py310h2bbff1b_0 nbclient 0.8.0 py310haa95532_0 nbconvert 7.10.0 py310haa95532_0 nbformat 5.9.2 py310haa95532_0 nest-asyncio 1.6.0 py310haa95532_0 notebook 7.2.2 py310haa95532_0 notebook-shim 0.2.3 py310haa95532_0 numpy 1.26.4 py310h055cbcc_0 numpy-base 1.26.4 py310h65a83cf_0 oauthlib 3.2.2 py310haa95532_0 openssl 1.1.1w h2bbff1b_0 opt_einsum 3.3.0 pyhd3eb1b0_1 overrides 7.4.0 py310haa95532_0 packaging 24.1 py310haa95532_0 pandocfilters 1.5.0 pyhd3eb1b0_0 parso 0.8.3 pyhd3eb1b0_0 pip 24.2 py310haa95532_0 pkce 1.0.3 py310haa95532_0 platformdirs 3.10.0 py310haa95532_0 prometheus_client 0.14.1 py310haa95532_0 prompt-toolkit 3.0.43 py310haa95532_0 prompt_toolkit 3.0.43 hd3eb1b0_0 protobuf 3.20.3 py310hd77b12b_0 psutil 5.9.0 py310h2bbff1b_0 pure_eval 0.2.2 pyhd3eb1b0_0 pyasn1 0.4.8 pyhd3eb1b0_0 pyasn1-modules 0.2.8 py_0 pybind11-abi 5 hd3eb1b0_0 pycparser 2.21 pyhd3eb1b0_0 pydantic 2.8.2 py310haa95532_0 pydantic-core 2.20.1 py310hefb1915_0 pygments 2.15.1 py310haa95532_1 pyjwt 2.8.0 py310haa95532_0 pyopenssl 23.2.0 py310haa95532_0 pysocks 1.7.1 py310haa95532_0 python 3.10.13 h966fe2a_0 python-dateutil 2.9.0post0 py310haa95532_2 python-dotenv 0.21.0 py310haa95532_0 python-fastjsonschema 2.16.2 py310haa95532_0 python-flatbuffers 24.3.25 py310haa95532_0 python-json-logger 2.0.7 py310haa95532_0 pytz 2024.1 py310haa95532_0 pywin32 305 py310h2bbff1b_0 pywin32-ctypes 0.2.2 py310haa95532_0 pywinpty 2.0.10 py310h5da7b33_0 pyyaml 6.0.1 py310h2bbff1b_0 pyzmq 25.1.2 py310hd77b12b_0 re2 2022.04.01 hd77b12b_0 referencing 0.30.2 py310haa95532_0 requests 2.32.3 py310haa95532_0 requests-oauthlib 2.0.0 py310haa95532_0 rfc3339-validator 0.1.4 py310haa95532_0 rfc3986-validator 0.1.1 py310haa95532_0 rpds-py 0.10.6 py310h062c2fa_0 rsa 4.7.2 pyhd3eb1b0_1 scipy 1.13.1 py310h8640f81_0 semver 3.0.2 py310haa95532_0 send2trash 1.8.2 py310haa95532_0 setuptools 75.1.0 py310haa95532_0 six 1.16.0 pyhd3eb1b0_1 snappy 1.2.1 hcdb6601_0 sniffio 1.3.0 py310haa95532_0 soupsieve 2.5 py310haa95532_0 sqlite 3.45.3 h2bbff1b_0 stack_data 0.2.0 pyhd3eb1b0_0 tbb 2021.8.0 h59b6b97_0 tensorboard 2.10.0 py310haa95532_0 tensorboard-data-server 0.6.1 py310haa95532_0 tensorboard-plugin-wit 1.8.1 py310haa95532_0 tensorflow 2.10.0 mkl_py310hd99672f_0 tensorflow-base 2.10.0 mkl_py310h6a7f48e_0 tensorflow-estimator 2.10.0 py310haa95532_0 termcolor 2.1.0 py310haa95532_0 terminado 0.17.1 py310haa95532_0 tinycss2 1.2.1 py310haa95532_0 tk 8.6.14 h0416ee5_0 tomli 2.0.1 py310haa95532_0 tornado 6.4.1 py310h827c3e9_0 traitlets 5.14.3 py310haa95532_0 typing-extensions 4.11.0 py310haa95532_0 typing_extensions 4.11.0 py310haa95532_0 tzdata 2024a h04d1e81_0 urllib3 2.2.3 py310haa95532_0 vc 14.40 h2eaa2aa_1 vs2015_runtime 14.40.33807 h98bb1dd_1 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py310haa95532_1 websocket-client 1.8.0 py310haa95532_0 werkzeug 3.0.3 py310haa95532_0 wheel 0.44.0 py310haa95532_0 win_inet_pton 1.1.0 py310haa95532_0 winpty 0.4.3 4 wrapt 1.14.1 py310h2bbff1b_0 xz 5.4.6 h8cc25b3_1 yaml 0.2.5 he774522_0 yarl 1.11.0 py310h827c3e9_0 zeromq 4.3.5 hd77b12b_0 zipp 3.17.0 py310haa95532_0 zlib 1.2.13 h8cc25b3_1 ``` On kaggle I used the 2024-8-21 [docker container ](https://github.com/Kaggle/docker-python/releases/tag/5439620d9e9d1944f6c7ed0711374b2f8a603e27bdda6f44b3a207c225454d7b)
closed
2024-10-01T22:48:18Z
2024-11-14T02:01:56Z
https://github.com/keras-team/keras/issues/20314
[ "stat:awaiting response from contributor", "stale", "type:Bug" ]
harsha7addanki
4
matplotlib/matplotlib
matplotlib
29,047
[ENH]: Registering custom markers
### Problem While working on a library to make styles (with custom colors, etc...) I discovered that there is no easy way to register custom markers, unlike for colors and the like. I found a workaround digging in `markers.py`: ```python from matplotlib.markers import MarkerStyle ... MarkerStyle.markers[marker_name] = marker_name setattr(MarkerStyle, f'_set_{marker_name}', lambda self, path=marker_path: self._set_custom_marker(path)) ``` which seems to work, and allows to use the new maker in other files as ```python plt.plot(x, y, marker = marker_name) ``` However, this code is quite clumsy and inelegant! ### Proposed solution It would be nice to have a way to specify ```python MarkerStyle.register(marker_name, marker_path) ``` similarly to [how it is done for colormaps](https://matplotlib.org/stable/api/cm_api.html). This would be pretty easy because it could leverage internally `MarkerStyle._set_custom_marker`, which already implements most of the necessary functionality! If this is welcome, I would be happy to have a go and submit a PR! I have found that this is quite nice to drive up the engagement of students to be able to easily play with visuals in this way :)
open
2024-10-31T01:01:10Z
2024-10-31T01:01:10Z
https://github.com/matplotlib/matplotlib/issues/29047
[ "New feature" ]
LorenzoPeri17
0
Miserlou/Zappa
django
1,286
Pillow (4.3.0) for manylinux1 is not packaged, instead zappa packages Pillow for Windows 64-bit
This is almost related to #398 / #841 , but instead no Pillow is packaged at all. ## Context Python 3.6 on Windows (Anaconda) ## Expected Behavior Pillow 4.3.0 is packaged. It seems that lambda-packages doesn't have pillow 4.3.0 yet, only 3.4.2 (https://github.com/Miserlou/lambda-packages/tree/master/lambda_packages/Pillow), however there is a [manylinux wheel](https://pypi.python.org/pypi/Pillow/4.3.0): Pillow-4.3.0-cp36-cp36m-manylinux1_x86_64.whl which should be usable, right ? ## Actual Behavior Pillow 4.3.0 is not packaged, and instead zappa uses PIL for Windows 64bit: ![image](https://user-images.githubusercontent.com/24123/33804149-77f8130c-ddd1-11e7-918c-e409d1a77171.png) Pillow-4.3.0.dist-info exists: ![image](https://user-images.githubusercontent.com/24123/33804386-179d3b2c-ddd6-11e7-9092-4c994edb3bc6.png) `WHEEL` contains: ``` Wheel-Version: 1.0 Generator: bdist_wheel (0.30.0) Root-Is-Purelib: false Tag: cp36-cp36m-win_amd64 ``` ## Possible Fix Patch the zip and use the manylinux wheel manually? ## Steps to Reproduce On Windows 64-bit: ``` pip install Pillow ``` ## Your Environment * Zappa version used: zappa==0.45.1 * Operating System and Python version: Windows 10 64-bit, Python 3.6 * The output of `pip freeze`: ``` argcomplete==1.9.2 Babel==2.5.1 base58==0.2.4 boto==2.48.0 boto3==1.4.8 botocore==1.8.11 cachetools==2.0.1 certifi==2017.11.5 cfn-flip==0.2.5 chardet==3.0.4 click==6.7 decorator==4.1.2 Django==2.0 django-appconf==1.0.2 django-imagekit==4.0.2 django-ipware==1.1.6 django-nine==0.1.13 django-phonenumber-field==1.3.0 django-qartez==0.7.1 django-s3-storage==0.12.1 docutils==0.14 durationpy==0.5 future==0.16.0 google-auth==1.2.1 hjson==3.0.1 httplib2==0.10.3 idna==2.6 jmespath==0.9.3 kappa==0.6.0 lambda-packages==0.19.0 oauth2client==4.1.2 olefile==0.44 phonenumberslite==8.8.5 pilkit==2.0 Pillow==4.3.0 placebo==0.8.1 psycopg2==2.7.3.2 pyasn1==0.4.2 pyasn1-modules==0.2.1 python-dateutil==2.6.1 python-slugify==1.2.4 pytz==2017.3 PyYAML==3.12 ratelim==0.1.6 requests==2.18.4 rsa==3.4.2 s3transfer==0.1.12 six==1.11.0 toml==0.9.3 tqdm==4.19.1 troposphere==2.1.2 Unidecode==0.4.21 uritemplate==3.0.0 urllib3==1.22 Werkzeug==0.12 wsgi-request-logger==0.4.6 zappa==0.45.1 ``` * Your `zappa_settings.py`: (Note: this should be `zappa_settings.json`, perhaps you want to change the template?) ``` { "prd": { "aws_region": "us-east-1", "django_settings": "samaraweb.settings", "profile_name": "default", "project_name": "samaraweb", "runtime": "python3.6", "s3_bucket": "samaraedu-code", "domain": "keluargasamara.com", "certificate_arn": "arn:aws:acm:us-east-1:703881650703:certificate/a5683018-90ee-4e47-b59b-bc0d147ed174", "route53_enabled": false, "exclude": ["snapshot"] } } ```
open
2017-12-10T10:44:39Z
2020-05-22T05:11:26Z
https://github.com/Miserlou/Zappa/issues/1286
[]
ceefour
7
graphql-python/graphene-sqlalchemy
graphql
195
Development and Maintance of this package
Hey, it seems to me that this package is lacking People to maintain and develop it. I come to this conclusion because many Issues go unanswered and Pull requests not merged. What can we do about it? Who is willing to actively contribute in any way? Are the current Maintainers willing to give some level of access to those people or should we gather around a fork?
closed
2019-04-01T15:25:24Z
2023-02-25T06:58:22Z
https://github.com/graphql-python/graphene-sqlalchemy/issues/195
[ "question" ]
brasilikum
3
nvbn/thefuck
python
646
No module named 'thefuck'
When I install using the following commands, the terminal say: File "/home/test/.local/bin/fuck", line 7, in <module> from thefuck.not_configured import main ImportError: No module named 'thefuck' I don't know how to do at next, so I create the issue. OS:elementary os 0.4 using bash
open
2017-05-07T07:16:34Z
2023-11-29T08:40:58Z
https://github.com/nvbn/thefuck/issues/646
[]
JamesLiAndroid
6
ghtmtt/DataPlotly
plotly
42
Update selection when already a selection is made
If the plot is made with the `selected features` checkbox, the expression (and the selection) is correct, but it loops in **all** the attribute table and not just in the feature subset. Handling this is quite tricky.
closed
2017-09-04T13:57:08Z
2019-10-22T06:53:55Z
https://github.com/ghtmtt/DataPlotly/issues/42
[ "bug", "enhancement" ]
ghtmtt
0
ageitgey/face_recognition
python
626
Properties of images for the best result
* face_recognition version: * Python version: * Operating System: ### Description Using images to train the Model with face_recognition ### Query What are all the similar properties (i.e : Image size, resolution) all the image should have So, that face_recognition gives the best results.
open
2018-09-21T01:56:55Z
2022-09-19T03:54:50Z
https://github.com/ageitgey/face_recognition/issues/626
[]
akhilgupta0221
6
piskvorky/gensim
machine-learning
3,266
Incorrect CBOW implementation in Gensim leads to inferior performance
#### Problem description According to this article https://aclanthology.org/2021.insights-1.1.pdf: <img width="636" alt="Screen Shot 2021-11-09 at 15 47 21" src="https://user-images.githubusercontent.com/610412/140945923-7d279468-a9e9-41b4-b7c2-919919832bc5.png"> #### Steps/code/corpus to reproduce I haven't tried to verify / reproduce. Gensim's goal is to follow the original C implementation faithfully, which it does. So this is not a bug per se, more a question of "how whether / how much we want to deviate from the reference implementation". I'm in favour if the result is unambiguous better (more accurate, faster, no downsides). #### Versions All versions since the beginning of word2vec in Gensim.
closed
2021-11-09T14:51:57Z
2021-11-15T17:36:33Z
https://github.com/piskvorky/gensim/issues/3266
[ "bug", "difficulty medium", "reach MEDIUM", "impact LOW" ]
piskvorky
3
dsdanielpark/Bard-API
api
100
PaLM API Example
I am android developer, i have tried to find the bard api, after long time i got the Palm api here it is https://makersuite.google.com/app/library
closed
2023-07-13T08:54:59Z
2024-03-05T08:21:54Z
https://github.com/dsdanielpark/Bard-API/issues/100
[]
shakeel143
10
python-gino/gino
asyncio
532
GINO don't released the connection after exception in Starlette extension
* GINO version: 0.8.3 * Python version: 3.7.4 * asyncpg version: 0.18.3 * aiocontextvars version: 0.2.2 * PostgreSQL version: 11.3 * FastAPI version: 0.36.0 * Starlette version: 0.12.7 * uvicorn version: 0.8.6 * uvloop version: 0.12.2 ### Description I'm use GINO with FastAPI + uvicorn. In development mode i use autoreload by uvicorn, it's works well, but if in my endpoint, where i use GINO, raising exception, GINO interferes stopping application. ### What I Did For example i have endpoint like this: ```python @router.get('users/{user_id}', tags=['Users'], response_model=UserSchema) async def retrieve_user(user_id: int): user: User = await User.get(user_id) return UserSchema.from_orm(user) ``` Now going to our server and try to get user with nonexistent ID (http://localhost:8000/users/1818456489489456). Oh no, we got "Internal Server Error". Well, let's fix it: ```python @router.get('users/{user_id}', tags=['Users'], response_model=UserSchema) async def retrieve_user(user_id: int): user: User = await User.get(user_id) if user: return UserSchema.from_orm(user) else: raise HTTPException(status_code=404, detail="User with this ID not found") ``` Let's test it again. But wait, server don't responding. Ok, let's see the logs: ``` WARNING: Detected file change in 'api/v1/users.py'. Reloading... INFO: Shutting down INFO: Waiting for application shutdown. *** minute wait *** WARNING: Pool.close() is taking over 60 seconds to complete. Check if you have any unreleased connections left. Use asyncio.wait_for() to set a timeout for Pool.close(). ``` Only manual "hard" reset of the server helps. ### What i suggest After small research i think i found bug (?). After raising exception in endpoint, Starlette Strategy (i don't checked realizations for anothers frameworks) of GINO don't release the connection. I'm added try-finnaly block in class `_Middleware` in `gino.ext.starlette` (inspired by [this](https://python-gino.readthedocs.io/en/latest/gino.engine.html#gino.engine.GinoEngine.acquire)) this code ```python async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None: if (scope['type'] == 'http' and self.db.config['use_connection_for_request']): scope['connection'] = await self.db.acquire(lazy=True) await self.app(scope, receive, send) conn = scope.pop('connection', None) if conn is not None: await conn.release() return ``` i edited like this: ```python async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None: if (scope['type'] == 'http' and self.db.config['use_connection_for_request']): scope['connection'] = await self.db.acquire(lazy=True) try: await self.app(scope, receive, send) finally: conn = scope.pop('connection', None) if conn is not None: await conn.release() return ``` and after that everything works great. I am just starting to dive into the world of asynchronous python, so I'm not sure if this is a bug and i'm not sure if this that it completely fixes it.
closed
2019-08-27T21:54:27Z
2019-08-28T13:33:17Z
https://github.com/python-gino/gino/issues/532
[ "bug" ]
qulaz
5
tableau/server-client-python
rest-api
1,472
Can we convert this in to ServerResponseError.from_response exception instead of NonXMLResponseError
It would be helpful if ServerResponseError.from_response is implemented on line 173 instead NonXMLResponseError. https://github.com/tableau/server-client-python/blob/4259316ef2e2656531b0c65c71d043708b37b4a9/tableauserverclient/server/endpoint/endpoint.py#L173
closed
2024-09-22T07:31:55Z
2024-10-25T23:35:00Z
https://github.com/tableau/server-client-python/issues/1472
[]
hprasad-tls
7
marcomusy/vedo
numpy
858
Fill in empty space in open mesh
![image](https://user-images.githubusercontent.com/73815944/237020363-fba07136-ff66-4787-8415-8b23208da87a.png) Hi, I have open mesh and want to fill some space. So, I try to create points about empty space. And using reconstruct_surface() to create a mesh filled whit empty space. I want to get points for empty space through plane slicing (intersect_with_plane()) and create spline. The result is similar to the image below. ![image](https://user-images.githubusercontent.com/73815944/237020196-919d403f-6fe8-4aef-a767-dc1be08457a8.png) The line was recognized individually and there was no order for the direction, making it impossible to fill the empty space through the splines. ![image](https://user-images.githubusercontent.com/73815944/237018043-26922bea-222a-420c-8cb2-7222c929a2a9.png) Can we order multiple lines made through intercept_with_plane() ? Like the image above Or Is there any other way to fill in the empty space?
closed
2023-05-09T07:06:58Z
2023-05-10T23:46:07Z
https://github.com/marcomusy/vedo/issues/858
[]
HyungJoo-Kwon
4
wiseodd/generative-models
tensorflow
52
what is h_dim in vanilla VAE implementation
I tried VAE implementation but did not understand the algo. So I searched for implementations on GitHub and found yours. The problem I am facing with your implementation is to understand 2 things, 1st is what exactly is h_dim and how is the value of it decided? Thanks in advance
closed
2018-03-18T18:18:36Z
2018-03-20T07:33:48Z
https://github.com/wiseodd/generative-models/issues/52
[]
R1j1t
1
0xTheProDev/fastapi-clean-example
graphql
3
Ask : Nestjs Architecture
Hi @Progyan1997 , first of all thanks for sharing this Project. 🙏🏻 I am used to Nestjs, and it was mind-blowing to finally found modern Python project that structured in similar way to Nestjs. By the way, is it just me or it is kinda inspired by NestJs project structure ?
closed
2022-06-08T13:22:35Z
2022-07-30T18:29:36Z
https://github.com/0xTheProDev/fastapi-clean-example/issues/3
[]
ejabu
2
nolar/kopf
asyncio
138
Travis CI fails for contributor PRs
> <a href="https://github.com/dlmiddlecote"><img align="left" height="50" src="https://avatars0.githubusercontent.com/u/9053880?v=4"></a> An issue by [dlmiddlecote](https://github.com/dlmiddlecote) at _2019-07-09 23:00:41+00:00_ > Original URL: https://github.com/zalando-incubator/kopf/issues/138 > &nbsp; ## Expected Behavior Build passes if it should, i.e. if all tests pass. ## Actual Behavior Tests pass but build fails because the coveralls command fails, see [here](https://travis-ci.org/dlmiddlecote/kopf/jobs/556541531). ### Side Note Tags also build in forks, which could lead to versions of the library being uploaded to pupils. --- > <a href="https://github.com/dlmiddlecote"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/9053880?v=4"></a> Commented by [dlmiddlecote](https://github.com/dlmiddlecote) at _2019-07-14 14:21:20+00:00_ > &nbsp; Solution to this is to turn on coveralls support for kopf fork repo.
closed
2020-08-18T19:57:11Z
2020-08-23T20:47:17Z
https://github.com/nolar/kopf/issues/138
[ "archive", "automation" ]
kopf-archiver[bot]
0
supabase/supabase-py
fastapi
51
unicode issues
When I follow the example to retrieve data I'm greeted with the following stacktrace: ``` In [4]: supabase.table("countries").select("*").execute() --------------------------------------------------------------------------- UnicodeEncodeError Traceback (most recent call last) <ipython-input-4-91499f52c962> in <module> ----> 1 supabase.table("countries").select("*").execute() /usr/lib/python3.8/site-packages/supabase_py/client.py in table(self, table_name) 72 Alternatively you can use the `._from()` method. 73 """ ---> 74 return self.from_(table_name) 75 76 def from_(self, table_name: str) -> SupabaseQueryBuilder: /usr/lib/python3.8/site-packages/supabase_py/client.py in from_(self, table_name) 79 See the `table` method. 80 """ ---> 81 query_builder = SupabaseQueryBuilder( 82 url=f"{self.rest_url}/{table_name}", 83 headers=self._get_auth_headers(), /usr/lib/python3.8/site-packages/supabase_py/lib/query_builder.py in __init__(self, url, headers, schema, realtime, table) 71 **headers, 72 } ---> 73 self.session = AsyncClient(base_url=url, headers=headers) 74 # self._subscription = SupabaseRealtimeClient(realtime, schema, table) 75 # self._realtime = realtime /usr/lib/python3.8/site-packages/httpx/_client.py in __init__(self, auth, params, headers, cookies, verify, cert, http2, proxies, timeout, limits, pool_limits, max_redirects, event_hooks, base_url, transport, app, trust_env) 1209 trust_env: bool = True, 1210 ): -> 1211 super().__init__( 1212 auth=auth, 1213 params=params, /usr/lib/python3.8/site-packages/httpx/_client.py in __init__(self, auth, params, headers, cookies, timeout, max_redirects, event_hooks, base_url, trust_env) 98 self._auth = self._build_auth(auth) 99 self._params = QueryParams(params) --> 100 self.headers = Headers(headers) 101 self._cookies = Cookies(cookies) 102 self._timeout = Timeout(timeout) /usr/lib/python3.8/site-packages/httpx/_models.py in __init__(self, headers, encoding) 549 self._list = list(headers._list) 550 elif isinstance(headers, dict): --> 551 self._list = [ 552 ( 553 normalize_header_key(k, lower=False, encoding=encoding), /usr/lib/python3.8/site-packages/httpx/_models.py in <listcomp>(.0) 553 normalize_header_key(k, lower=False, encoding=encoding), 554 normalize_header_key(k, lower=True, encoding=encoding), --> 555 normalize_header_value(v, encoding), 556 ) 557 for k, v in headers.items() /usr/lib/python3.8/site-packages/httpx/_utils.py in normalize_header_value(value, encoding) 54 if isinstance(value, bytes): 55 return value ---> 56 return value.encode(encoding or "ascii") 57 58 UnicodeEncodeError: 'ascii' codec can't encode character '\u2026' in position 50: ordinal not in range(128) In [5]: data = supabase.table("countries").select("*").execute() --------------------------------------------------------------------------- UnicodeEncodeError Traceback (most recent call last) <ipython-input-5-a2ce57b52ae2> in <module> ----> 1 data = supabase.table("countries").select("*").execute() /usr/lib/python3.8/site-packages/supabase_py/client.py in table(self, table_name) 72 Alternatively you can use the `._from()` method. 73 """ ---> 74 return self.from_(table_name) 75 76 def from_(self, table_name: str) -> SupabaseQueryBuilder: /usr/lib/python3.8/site-packages/supabase_py/client.py in from_(self, table_name) 79 See the `table` method. 80 """ ---> 81 query_builder = SupabaseQueryBuilder( 82 url=f"{self.rest_url}/{table_name}", 83 headers=self._get_auth_headers(), /usr/lib/python3.8/site-packages/supabase_py/lib/query_builder.py in __init__(self, url, headers, schema, realtime, table) 71 **headers, 72 } ---> 73 self.session = AsyncClient(base_url=url, headers=headers) 74 # self._subscription = SupabaseRealtimeClient(realtime, schema, table) 75 # self._realtime = realtime /usr/lib/python3.8/site-packages/httpx/_client.py in __init__(self, auth, params, headers, cookies, verify, cert, http2, proxies, timeout, limits, pool_limits, max_redirects, event_hooks, base_url, transport, app, trust_env) 1209 trust_env: bool = True, 1210 ): -> 1211 super().__init__( 1212 auth=auth, 1213 params=params, /usr/lib/python3.8/site-packages/httpx/_client.py in __init__(self, auth, params, headers, cookies, timeout, max_redirects, event_hooks, base_url, trust_env) 98 self._auth = self._build_auth(auth) 99 self._params = QueryParams(params) --> 100 self.headers = Headers(headers) 101 self._cookies = Cookies(cookies) 102 self._timeout = Timeout(timeout) /usr/lib/python3.8/site-packages/httpx/_models.py in __init__(self, headers, encoding) 549 self._list = list(headers._list) 550 elif isinstance(headers, dict): --> 551 self._list = [ 552 ( 553 normalize_header_key(k, lower=False, encoding=encoding), /usr/lib/python3.8/site-packages/httpx/_models.py in <listcomp>(.0) 553 normalize_header_key(k, lower=False, encoding=encoding), 554 normalize_header_key(k, lower=True, encoding=encoding), --> 555 normalize_header_value(v, encoding), 556 ) 557 for k, v in headers.items() /usr/lib/python3.8/site-packages/httpx/_utils.py in normalize_header_value(value, encoding) 54 if isinstance(value, bytes): 55 return value ---> 56 return value.encode(encoding or "ascii") 57 58 UnicodeEncodeError: 'ascii' codec can't encode character '\u2026' in position 50: ordinal not in range(128) ``` I've tried this on Python 3.7, 3.8, and 3.9 all with similar results. I've also tried different OSes (OSX, Linux), but both fail in similar fashion.
closed
2021-09-30T00:55:50Z
2021-09-30T01:00:50Z
https://github.com/supabase/supabase-py/issues/51
[]
dkvdm
1
scrapy/scrapy
web-scraping
5,899
Request.from_curl() with $-prefixed string literals
Chrome (and probably other things) sometimes generate curl commands with a [$-prefixed](https://www.gnu.org/software/bash/manual/html_node/ANSI_002dC-Quoting.html) data string, probably when it's easier to represent the string in that way or when it includes non-ASCII characters, e.g. the DiscoverQueryRendererQuery XHR on https://500px.com/popular is copied as ``` curl 'https://api.500px.com/graphql' \ <headers omitted> --data-raw $'{"operationName":"DiscoverQueryRendererQuery",<omitted> "query":"query DiscoverQueryRendererQuery($filters: [PhotoDiscoverSearchFilter\u0021], <the rest omitted>' \ --compressed ``` , most likely because of `\u0021` in this payload. `scrapy.utils.curl.curl_to_request_kwargs()` isn't smart enough to understand this kind of shell escaping, so it puts `$` into the request body which is incorrect. Ideally we should support this, though I don't know if there are existing libraries to unescape this.
closed
2023-04-18T10:21:07Z
2023-04-19T09:35:03Z
https://github.com/scrapy/scrapy/issues/5899
[ "enhancement" ]
wRAR
0
huggingface/transformers
deep-learning
36,506
model from_pretrained bug in 4.50.dev0 in these days
### System Info - `transformers` version: 4.50.dev0 - Platform: Linux-5.10.101-1.el8.ssai.x86_64-x86_64-with-glibc2.31 - Python version: 3.10.16 - Huggingface_hub version: 0.29.1 - Safetensors version: 0.5.3 - Accelerate version: 1.4.0 - Accelerate config: not found - DeepSpeed version: 0.15.4 - PyTorch version (GPU?): 2.5.1+cu124 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using distributed or parallel set-up in script?: <fill in> - Using GPU in script?: <fill in> - GPU type: NVIDIA A800-SXM4-80GB ### Who can help? @amyeroberts, @qubvel ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction code sample ``` from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor model_path = "Qwen/Qwen2.5-VL-7B-Instruct" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) processor = AutoProcessor.from_pretrained(model_path) ``` When I configured the environment and ran the code on a new machine as usual today, I encountered the following error ``` Loading checkpoint shards: 0%| | 0/5 [00:00<?, ?it/s] [rank0]: Traceback (most recent call last): [rank0]: File "/mnt/……/Qwen2.5-VL/…r/script.py", line 14, in <module> [rank0]: model = Qwen2_5_VLForConditionalGeneration.from_pretrained( [rank0]: File "/opt/conda/envs/…/lib/python3.10/site-packages/transformers/modeling_utils.py", line 269, in _wrapper [rank0]: return func(*args, **kwargs) [rank0]: File "/opt/conda/envs/…/lib/python3.10/site-packages/transformers/modeling_utils.py", line 4417, in from_pretrained [rank0]: ) = cls._load_pretrained_model( [rank0]: File "/opt/conda/envs/…/lib/python3.10/site-packages/transformers/modeling_utils.py", line 4985, in _load_pretrained_model [rank0]: new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model( [rank0]: File "/opt/conda/envs/…/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context [rank0]: return func(*args, **kwargs) [rank0]: File "/opt/conda/envs/…/lib/python3.10/site-packages/transformers/modeling_utils.py", line 795, in _load_state_dict_into_meta_model [rank0]: full_tp_plan.update(getattr(submodule, "_tp_plan", {})) [rank0]: TypeError: 'NoneType' object is not iterable [rank0]:[W303 15:32:35.530123370 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the applicati on should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress o f another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) ``` The version of transformers I use is 4.50.dev0, downloaded from github. This environment will not report errors when running the same code on the machine I configured a few days ago, but today's new environment reports errors. I solved the problem by downgrading the transformers version from 4.50.dev0 to 4.49.0. ### Expected behavior I want to load model
closed
2025-03-03T07:51:04Z
2025-03-19T09:37:54Z
https://github.com/huggingface/transformers/issues/36506
[ "bug" ]
M3Dade
7
CorentinJ/Real-Time-Voice-Cloning
tensorflow
794
Trying to Find Bottleneck When Using Nvidia Jetson Nano
Hi, Great work on this! It's amazing to see this working! I am testing this software out on a [4 GB NVIDIA Jetson Nano Developer Kit](https://developer.nvidia.com/embedded/jetson-nano-developer-kit), and am seeing ~1 minute needed to synthesize a waveform, and am trying to figure out what the bottleneck could be. I originally tried this code on my Windows machine (Ryzen 7 2700X) and saw about 10 seconds for the waveform to be synthesized. This testing used the CPU for inference. On the Jetson, it's using the GPU: `"Found 1 GPUs available. Using GPU 0 (NVIDIA Tegra X1) of compute capability 5.3 with 4.1Gb total memory."` It did seem to be RAM-limited at first, but created a swap file to file the gap and did not see the RAM changing much during synthesis. I can see it being read during synthesis and the read time of disk slowing everything down, but it looked like one of the four CPU cores was also taking a 100% load to process, making me think that I'm CPU bottlenecked. I figured that since this project uses PyTorch, using a 128 CUDA core GPU would be faster than an 8 core CPU, but I may be missing some fundamentals, especially when seeing that one of my CPU cores is at 100% usage. Is synthesis CPU and GPU constrained or would it rely mostly on GPU? Here are images of the program just before it finished synthesizing and just after with jtop monitoring GPU, CPU, and RAM. **Before:** - 5.5GB of memory used. 3.4 is RAM, 2.089 is swap file on disk - CPU1 at 100% - CPU 2 at 25% - GPU at 40% ![beforeSynthDone](https://user-images.githubusercontent.com/36523934/125171231-0b353800-e181-11eb-8a0f-e2f9325726b6.png) **After:** - 5.5GB of memory used. 3.4 is RAM, 2.089 is swap file on disk - CPU1 at 12% - CPU 2 at 98% - GPU at 0% ![afterSynthDone](https://user-images.githubusercontent.com/36523934/125171232-0bcdce80-e181-11eb-8c90-7c019d48fad2.png) Thank you! voloved
closed
2021-07-10T17:31:49Z
2021-09-08T13:53:25Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/794
[]
voloved
2
piskvorky/gensim
machine-learning
2,850
AttributeError: 'Doc2VecTrainables' object has no attribute 'vectors_lockf'
Python version 3.7.5 gensim version 3.6.0 apache-beam[gcp] 2.20.0 tensorflow==1.14 #### Problem description Trying to create tf records using gensim Doc2Vec. Expected result is to create tf records with the given parameters. In Directrunner tf record creation is happening when used with gensim 3.6.0 but AttributeError is raised when ran with 3.8.0 version of gensim (AttributeError: 'Doc2VecTrainables' object has no attribute 'vectors_lockf') While running a dataflow job even with gensim 3.6.0 Attribute error is raised #### Steps/code/corpus to reproduce pretrained_emb = 'glove.6B.100d.txt' vector_size = 300 window_size = 15 min_count = 1 sampling_threshold = 1e-5 negative_size = 5 train_epoch = 100 dm = 0 #0 = dbow; 1 = dmpv worker_count = 1 #number of parallel processes print('max_seq_len which is being passed above Doc2Vec', self.max_seq_len) self.model = g.Doc2Vec(documents=None,size=vector_size, window=window_size, min_count=min_count, sample=sampling_threshold, workers=worker_count, hs=0, dm=dm, negative=negative_size, dbow_words=1, dm_concat=1, pretrained_emb=pretrained_emb, iter=100) print("Loaded Model") plot class type is 'string' embedding_vector = self.model.infer_vector([plot]) It is raising an attribute error when ran in dataflow runner. In Directrunner issue is raised when gensim version is 3.8.0 Error log: I have pasted the entire error log. textPayload: "Error message from worker: Traceback (most recent call last): File "apache_beam/runners/common.py", line 950, in apache_beam.runners.common.DoFnRunner.process File "apache_beam/runners/common.py", line 547, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam/runners/common.py", line 1078, in apache_beam.runners.common._OutputProcessor.process_outputs File "tfrecord_util/csv2tfrecord_train_valid.py", line 310, in process x = self.preprocess(x) File "tfrecord_util/csv2tfrecord_train_valid.py", line 233, in preprocess embedding_vector = self._embedding(plot) File "tfrecord_util/csv2tfrecord_train_valid.py", line 300, in _embedding embedding_vector = self.model.infer_vector([plot]) File "/usr/local/lib/python3.7/site-packages/gensim/models/doc2vec.py", line 915, in infer_vector learn_words=False, learn_hidden=False, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks File "gensim/models/doc2vec_inner.pyx", line 332, in gensim.models.doc2vec_inner.train_document_dbow File "gensim/models/doc2vec_inner.pyx", line 254, in gensim.models.doc2vec_inner.init_d2v_config AttributeError: 'Doc2VecTrainables' object has no attribute 'vectors_lockf' I hope you understand the issue from the above details. Please let me know if you still need any additional information. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.7/site-packages/dataflow_worker/batchworker.py", line 647, in do_work work_executor.execute() File "/usr/local/lib/python3.7/site-packages/dataflow_worker/executor.py", line 176, in execute op.start() File "dataflow_worker/native_operations.py", line 38, in dataflow_worker.native_operations.NativeReadOperation.start File "dataflow_worker/native_operations.py", line 39, in dataflow_worker.native_operations.NativeReadOperation.start File "dataflow_worker/native_operations.py", line 44, in dataflow_worker.native_operations.NativeReadOperation.start File "dataflow_worker/native_operations.py", line 54, in dataflow_worker.native_operations.NativeReadOperation.start File "apache_beam/runners/worker/operations.py", line 329, in apache_beam.runners.worker.operations.Operation.output File "apache_beam/runners/worker/operations.py", line 192, in apache_beam.runners.worker.operations.SingletonConsumerSet.receive File "apache_beam/runners/worker/operations.py", line 682, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam/runners/worker/operations.py", line 683, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam/runners/common.py", line 952, in apache_beam.runners.common.DoFnRunner.process File "apache_beam/runners/common.py", line 1013, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam/runners/common.py", line 950, in apache_beam.runners.common.DoFnRunner.process File "apache_beam/runners/common.py", line 547, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam/runners/common.py", line 1105, in apache_beam.runners.common._OutputProcessor.process_outputs File "apache_beam/runners/worker/operations.py", line 192, in apache_beam.runners.worker.operations.SingletonConsumerSet.receive File "apache_beam/runners/worker/operations.py", line 682, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam/runners/worker/operations.py", line 683, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam/runners/common.py", line 952, in apache_beam.runners.common.DoFnRunner.process File "apache_beam/runners/common.py", line 1028, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "/usr/local/lib/python3.7/site-packages/future/utils/__init__.py", line 421, in raise_with_traceback raise exc.with_traceback(traceback) File "apache_beam/runners/common.py", line 950, in apache_beam.runners.common.DoFnRunner.process File "apache_beam/runners/common.py", line 547, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam/runners/common.py", line 1078, in apache_beam.runners.common._OutputProcessor.process_outputs File "tfrecord_util/csv2tfrecord_train_valid.py", line 310, in process x = self.preprocess(x) File "tfrecord_util/csv2tfrecord_train_valid.py", line 233, in preprocess embedding_vector = self._embedding(plot) File "tfrecord_util/csv2tfrecord_train_valid.py", line 300, in _embedding embedding_vector = self.model.infer_vector([plot]) File "/usr/local/lib/python3.7/site-packages/gensim/models/doc2vec.py", line 915, in infer_vector learn_words=False, learn_hidden=False, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks File "gensim/models/doc2vec_inner.pyx", line 332, in gensim.models.doc2vec_inner.train_document_dbow File "gensim/models/doc2vec_inner.pyx", line 254, in gensim.models.doc2vec_inner.init_d2v_config AttributeError: 'Doc2VecTrainables' object has no attribute 'vectors_lockf' [while running 'PreprocessData'] ```
closed
2020-06-04T11:27:03Z
2020-06-05T04:05:14Z
https://github.com/piskvorky/gensim/issues/2850
[]
rohithsiddhartha
1
pydata/xarray
numpy
10,085
set encoding parameters in addition to the original encoding
### Is your feature request related to a problem? When writing to disk with `to_netcdf`, the `encoding` argument causes existing encoding to be dropped. This is described in the [docs](https://docs.xarray.dev/en/latest/generated/xarray.Dataset.to_netcdf.html). What is a good approach to add encoding parameters in addition to the original encoding? e.g. ```python import rioxarray import xarray as xr import numpy as np # make some random dummy netcdf file data = np.random.rand(4, 4) lat = np.linspace(10, 20, 4) lon = np.linspace(10, 20, 4) ds = xr.Dataset({"dummy": (["lat", "lon"], data)}, coords={"lat": lat, "lon": lon}) ds.rio.set_spatial_dims("lon", "lat", inplace=True) ds.rio.write_crs("EPSG:4326", inplace=True) # note the spatial_ref coordinate print(ds.dummy) ``` ``` <xarray.DataArray 'dummy' (lat: 4, lon: 4)> Size: 128B ... Coordinates: * lat (lat) float64 32B 10.0 13.33 16.67 20.0 * lon (lon) float64 32B 10.0 13.33 16.67 20.0 spatial_ref int64 8B 0 ``` ```python ds.to_netcdf("test.nc", mode="w") # read it back in - ok ds2 = xr.open_dataset("test.nc", decode_coords="all") print(ds2.dummy) ``` ``` <xarray.DataArray 'dummy' (lat: 4, lon: 4)> Size: 128B ... Coordinates: * lat (lat) float64 32B 10.0 13.33 16.67 20.0 * lon (lon) float64 32B 10.0 13.33 16.67 20.0 spatial_ref int64 8B ... ``` ```python # now compress ds2.to_netcdf("test_compressed.nc", mode="w", encoding={"dummy": {"compression": "zstd"}}) # read it back in - drops the spatial_ref ds3 = xr.open_dataset("test_compressed.nc", decode_coords="all") print(ds3.dummy) ``` ``` <xarray.DataArray 'dummy' (lat: 4, lon: 4)> Size: 128B ... Coordinates: * lat (lat) float64 32B 10.0 13.33 16.67 20.0 * lon (lon) float64 32B 10.0 13.33 16.67 20.0 ``` this is because rioxarray stores "grid_mapping" in the encoding. so what is a nice generic way to specify encoding in addition to the original encoding? ```python encoding = ds2.dummy.encoding.copy() encoding["compression"] = "zstd" ds2.to_netcdf("test_compressed_2.nc", mode="w", encoding={"dummy": encoding}) ``` ``` ValueError: unexpected encoding parameters for 'netCDF4' backend: ['szip', 'zstd', 'bzip2', 'blosc']. Valid encodings are: ... ``` It seems not possible to pass the original encoding back in (even unmodified) due to [additional checks](https://github.com/pydata/xarray/blob/5ea1e81f6ae7728dd9add2e97807f4357287fa6e/xarray/backends/api.py#L1968C1-L1969C1) ### Describe the solution you'd like in `to_netcdf()` be able to specify `encoding` in addition to the original encoding ### Describe alternatives you've considered _No response_ ### Additional context _No response_
open
2025-02-28T13:24:11Z
2025-02-28T13:24:15Z
https://github.com/pydata/xarray/issues/10085
[ "enhancement" ]
samdoolin
1
Yorko/mlcourse.ai
pandas
659
Issue related to Lasso and Ridge regression notebook file - mlcourse.ai/jupyter_english/topic06_features_regression/lesson6_lasso_ridge.ipynb /
While plotting Ridge coefficient vs weights, the alphas used are different from Ridge_alphas. And while fitting the the model and calculating the ridge_cv.alpha_ we're using ridge_alphas. So,in below code its taking alpha values from alpha defined for **Lasso**. if we plot using ridge alphas plot is quite different. Please suggest if this is correct plot. n_alphas=200 ridge_alphas=np.logspace(-2,6,n_alphas) coefs = [] for a in alphas: # alphas = np.linspace(0.1,10,200) it's from Lasso model.set_params(alpha=a) model.fit(X, y) coefs.append(model.coef_)
closed
2020-03-24T11:08:45Z
2020-03-24T11:21:44Z
https://github.com/Yorko/mlcourse.ai/issues/659
[ "minor_fix" ]
sonuksh
1
fugue-project/fugue
pandas
337
[FEATURE] Fix index warning in fugue_dask
**Is your feature request related to a problem? Please describe.** ![image](https://user-images.githubusercontent.com/21092479/178210861-36a01095-89c9-4b8d-867a-cc17336fa47a.png) **Describe the solution you'd like** For newer version of pandas we need to do something similar to [this](https://github.com/fugue-project/triad/blob/4998449e8a714de2e4c02d51d841650fe2c068c5/triad/utils/pandas_like.py#L240)
closed
2022-07-11T07:28:07Z
2022-07-11T16:22:12Z
https://github.com/fugue-project/fugue/issues/337
[ "enhancement", "pandas", "dask" ]
goodwanghan
0
google-research/bert
nlp
907
How do you get the training time on each epoch using TPUEstimator?
I am able to see INFO:tensorflow:loss = 134.62343, step = 97 but not the time.
open
2019-11-10T07:09:03Z
2019-11-10T07:09:03Z
https://github.com/google-research/bert/issues/907
[]
elvinjgalarza
0
microsoft/unilm
nlp
1,140
DiT Licence?
What is the Licence for using DiT? I am seeing the whole repository is under MIT Licence, but some of the projects contains difference licensing. As there's no info mentioned for DiT, can you update it?
open
2023-06-14T06:02:06Z
2023-08-16T04:32:26Z
https://github.com/microsoft/unilm/issues/1140
[]
KananVyas
2
sanic-org/sanic
asyncio
2,474
Different ways of websocket disconnection effects in task pending
**Describe the bug** Hi I am actually seeking for help. I was following this gist https://gist.github.com/ahopkins/5b6d380560d8e9d49e25281ff964ed81 building up a chat server. Now that we have a frontend, I am strucked by a task pending problem. From the perspective of a user, the most common practise of leaving a web conversation is by closing the tab directly. So I tried the movement, and the error occurs at server shutdown. ```bash Task was destroyed but it is pending! source_traceback: Object created at (most recent call last): File "/home/yuzixin/workspace/sanicserver/server.py", line 30, in <module> app.run(host="0.0.0.0", port=4017, debug=app.config.DEBUG, workers=1) File "/home/yuzixin/workspace/sanicserver/venv/lib/python3.10/site-packages/sanic/mixins/runner.py", line 145, in run self.__class__.serve(primary=self) # type: ignore File "/home/yuzixin/workspace/sanicserver/venv/lib/python3.10/site-packages/sanic/mixins/runner.py", line 578, in serve serve_single(primary_server_info.settings) File "/home/yuzixin/workspace/sanicserver/venv/lib/python3.10/site-packages/sanic/server/runners.py", line 206, in serve_single serve(**server_settings) File "/home/yuzixin/workspace/sanicserver/venv/lib/python3.10/site-packages/sanic/server/runners.py", line 155, in serve loop.run_forever() File "/home/yuzixin/workspace/sanicserver/utils/decorators.py", line 34, in decorated_function response = await f(request, *args, **kwargs) File "/home/yuzixin/workspace/sanicserver/filesystem/blueprint.py", line 30, in feed await client.receiver() File "/home/yuzixin/workspace/sanicserver/filesystem/client.py", line 52, in receiver message_str = await self.protocol.recv() File "/home/yuzixin/workspace/sanicserver/venv/lib/python3.10/site-packages/sanic/server/websockets/impl.py", line 523, in recv asyncio.ensure_future(self.assembler.get(timeout)), File "/home/yuzixin/usr/lib/python3.10/asyncio/tasks.py", line 619, in ensure_future return _ensure_future(coro_or_future, loop=loop) File "/home/yuzixin/usr/lib/python3.10/asyncio/tasks.py", line 638, in _ensure_future return loop.create_task(coro_or_future) task: <Task pending name='Task-28' coro=<WebsocketFrameAssembler.get() done, defined at /home/yuzixin/workspace/sanicserver/venv/lib/python3.10/site-packages/sanic/server/websockets/frame.py:91> wait_for=<Future pending cb=[Task.task_wakeup()] created at /home/yuzixin/usr/lib/python3.10/asyncio/locks.py:210> created at /home/yuzixin/usr/lib/python3.10/asyncio/tasks.py:638> ``` Curiously, this does not happen when testing with postman. I catched the asyncio.CanceledError at client.py for a stack printing, turned out the cancelled error were raised by different lines in impl.py: The stack at postman close ```bash Traceback (most recent call last): File "/home/yuzixin/workspace/sanicserver/filesystem/client.py", line 52, in receiver message_str = await self.protocol.recv() File "/home/yuzixin/workspace/sanicserver/venv/lib/python3.10/site-packages/sanic/server/websockets/impl.py", line 534, in recv raise asyncio.CancelledError() asyncio.exceptions.CancelledError ``` The stack at tab close ``` Traceback (most recent call last): File "/home/yuzixin/workspace/sanicserver/filesystem/client.py", line 52, in receiver message_str = await self.protocol.recv() File "/home/yuzixin/workspace/sanicserver/venv/lib/python3.10/site-packages/sanic/server/websockets/impl.py", line 525, in recv done, pending = await asyncio.wait( File "/home/yuzixin/usr/lib/python3.10/asyncio/tasks.py", line 384, in wait return await _wait(fs, timeout, return_when, loop) File "/home/yuzixin/usr/lib/python3.10/asyncio/tasks.py", line 495, in _wait await waiter asyncio.exceptions.CancelledError ``` Codes between lineno 525 and lineno 534 are ```python done, pending = await asyncio.wait( tasks, return_when=asyncio.FIRST_COMPLETED, ) done_task = next(iter(done)) if done_task is self.recv_cancel: # recv was cancelled for p in pending: p.cancel() raise asyncio.CancelledError() ``` I am not quite familiar with async scripting, but if anything, this looks like some tasks were successfully created but not cancelled when asyncio wait was raising a cancelled error. This is by far not effecting the server function, but I am a bit worried that this might indicate some tasks are constantly executing during the whole process on a server that could continue to run for months, and thus dragging down the whole performance. Perhaps theres something I could do to manually close the protocol.recv task when catching the error? **Code snippet** https://gist.github.com/ahopkins/5b6d380560d8e9d49e25281ff964ed81 **Expected behavior** A clean server shutdown with no errors reporting. **Environment (please complete the following information):** - OS: Debian - Version buster - python version: 3.10
closed
2022-06-01T17:34:56Z
2022-06-01T17:57:03Z
https://github.com/sanic-org/sanic/issues/2474
[]
jrayu
1
aleju/imgaug
machine-learning
820
Assigning Probability in imgaug OneOf
can we have a different probability for selecting augmentations in OneOf? Its use case is for example when you want to select one of the 3 augmentations but with prob = [0.5. 0.25, 0.25] instead of 1/3 for all of them.
open
2022-06-09T07:26:08Z
2022-10-22T22:23:59Z
https://github.com/aleju/imgaug/issues/820
[]
g-jindal2001
1
falconry/falcon
api
1,857
Docs recipe: stream media with range request
Hello, i'm tryning to stream mp4 video, with range request support.but i cannot manage to make it work with resp.stream. This code work : ``` def on_get(self, req, resp): media = 'test.mp4' resp.set_header('Content-Type', 'video/mp4') resp.accept_ranges = 'bytes' stream = open(media,'rb') size = os.path.getsize(media) if req.range : end = req.range[1] if end < 0 : end = size + end stream.seek(req.range[0]) resp.content_range = (req.range[0],end,size) size = end - req.range[0] + 1 resp.status = falcon.HTTP_206 resp.content_length = size resp.body = stream.read(size) ``` but this will load all file in memory, which is not an option. if i change the 2 last line with `resp.set_stream(stream,size)`, i've got an error ``` SIGPIPE: writing to a closed pipe/socket/fd (probably the client disconnected) on request /api/stream/557 (ip 10.0.0.136) !!! uwsgi_response_sendfile_do(): Broken pipe [core/writer.c line 645] during GET /api/stream/557 (10.0.0.136) IOError: write error ``` i'm using uwsgi with nginx as reverse proxy. Not sure it's related to falcon, but i don't have any clue where to look at. Any idea? Thanks Johan Ps : i know it's not optimal to use falcon for this, but i cannot expose real video path to client (in real in come from a db). and performance are not really a problem in my case. Edit : Here's the chrome requests when it don't work. | Name | Url | Method | Status | Protocol |type | initiator | size | time |--|--|--|--|--|--|--|--|--| 557 | http://10.1.12.2/api/stream/557 | GET | 206 | http/1.1 | media | Other | 32.6 kB | 5.24 s | 50883753 557 | http://10.1.12.2/api/stream/557 | GET | 206 | http/1.1 | media | Other | 28.1 kB | 365 ms | 27817 557 | http://10.1.12.2/api/stream/557 | GET | (canceled) | | media | Other | 0 B | 1 ms
closed
2021-02-05T12:11:34Z
2022-01-05T21:32:24Z
https://github.com/falconry/falcon/issues/1857
[ "documentation", "question" ]
belese
11
albumentations-team/albumentations
deep-learning
2,021
import RandomOrder
## Describe the bug RandomOrder is not in [ composition.\_\_all\_\_](https://github.com/albumentations-team/albumentations/blob/526187b98bb8f66b77601e9cb32e2aa24d8a76a3/albumentations/core/composition.py#L27) therefore it is not possible to import it like any other transform ### To Reproduce Steps to reproduce the behavior: 1. Try this sample: ``` import albumentations as A t = A.SomeOf(...) # this works t = A.RandomOrder(...) # doesn't work ``` ### Expected behavior RandomOrder is available when importing albumentations. ### Actual behavior RandomOrder is not available when importing albumentations.
closed
2024-10-24T10:54:10Z
2024-10-24T19:51:54Z
https://github.com/albumentations-team/albumentations/issues/2021
[ "bug" ]
nrudakov
2
deepfakes/faceswap
deep-learning
1,144
when support 3060ti?
**Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
closed
2021-04-03T07:58:46Z
2021-04-03T10:46:36Z
https://github.com/deepfakes/faceswap/issues/1144
[]
soufunlab
1
taverntesting/tavern
pytest
703
skipif mark can't utilize global python variables or vars returned by fixtures
Hi, I believe this is a feature request for the `skipif` mark. ### **Issue** I'm trying out the `skipif` mark (see three code examples below), but the `eval()` function is only able to access vars stored in tavern.util.dict_util (ie. system environment variables and perhaps variables included in `!include` .yaml files). I tried `skipif: "global_python_var is True"` which uses a global var created in the conftest.py (also tried `skipif: "global_python_var in globals()"`). Additionally, I tried accessing variables returned from fixtures (also defined in the conftest.py) using the `skipif: '{var_name}'` format, but get the following error: **ERROR:tavern.util.dict_util:Key(s) not found in format: url**, with this output (I set all env_values to None): ``` {'tavern': {'env_vars': {'NVM_INC': None, 'LDFLAGS': None, 'TERM_PROGRAM': None, 'PYENV_ROOT': None, 'NVM_CD_FLAGS': None, 'TERM': None, 'SHELL': None, 'CPPFLAGS': None, 'TMPDIR': None, 'GOOGLE_APPLICATION_CREDENTIALS': None, 'VAULT_ADDR': None, 'TERM_PROGRAM_VERSION': None, 'TERM_SESSION_ID': None, 'PYENV_VERSION': None, 'NVM_DIR': None, 'USER': None, 'SSH_AUTH_SOCK': None, 'PYENV_DIR': None, 'VIRTUAL_ENV': None, 'PATH': None, 'LaunchInstanceID': None, 'PWD': None, 'LANG': None, 'PYENV_HOOK_PATH': None, 'XPC_FLAGS': None, 'XPC_SERVICE_NAME': None, 'HOME': None, 'SHLVL': None, 'PYTHONPATH': None, 'LOGNAME': None, 'NVM_BIN': None, 'SECURITYSESSIONID': None, '__CF_USER_TEXT_ENCODING': None } } } ``` ### **Request** Could the eval function called by `skipif` access information just like the test that it is marking **and** the python global namespace? Additionally, utilizing skipif with external functions (ie. getting a function to return either "True" or "False", would also be a good alternative). My overall goal is to skip all tests if my basic health-check test failed following these steps: ### _My intended usage and test examples_ 1. run healthcheck/base test 2. verify response with external function which will either create a global, or change an existing global created in conftest.py (returns True or False based on response) 3. Other tests are skipped if the `skipif eval()` finds that the global var == False. (Alternatively, skips if external function called in eval() returns `"False"`) Here are the example code snippets I tried (located in test_name.tavern.yaml file): ``` marks: - skipif: "'healthcheck_failed' in globals()" ``` ``` marks: - skipif: "'{autouse_session_fixture_returned_from_conftest}' is True" ``` ``` marks: - skipif: - $ext: - function: "utils:return_true" ```
closed
2021-07-12T18:35:16Z
2021-10-31T15:52:42Z
https://github.com/taverntesting/tavern/issues/703
[]
JattMones
2
kaliiiiiiiiii/Selenium-Driverless
web-scraping
67
Weird window size
Even with the example code, the window is small. If I make it fullscreen, the rest of the window is blank
closed
2023-09-27T14:11:01Z
2023-12-24T20:39:16Z
https://github.com/kaliiiiiiiiii/Selenium-Driverless/issues/67
[]
Fragaile
1
polakowo/vectorbt
data-visualization
621
Getting a KeyError when using IndicatorFactory.run()
Hello, I am trying to play around with some simple strategies to learn about the library, so I started with this : ```import vectorbt as vbt import numpy as np import pandas as pd import pytz import talib data = vbt.BinanceData.download('ETHUSDT', start = datetime.datetime(2017, 1, 2,tzinfo=pytz.timezone('UTC')), end = datetime.datetime(2018, 1, 1, tzinfo=pytz.timezone('UTC'))).get(['Close']) def dummy_strat(Close, fast_ema, slow_ema): ema1 = vbt.talib('EMA').run(Close, fast_ema).real.to_numpy() ema2 = vbt.talib('EMA').run(Close, slow_ema).real.to_numpy() stoch_rsi = vbt.talib('STOCHRSI').run(Close).fastk.to_numpy() entries = (ema1 >ema2) & (stoch_rsi <80) exits = (ema1 <ema2) & (stoch_rsi > 20) #print(help(ema1)) return entries, exits DummyStrat = vbt.IndicatorFactory( class_name= 'TrueStrat', short_name = 'TS', input_names = ["Close"] , param_names = ["fast_ema", "slow_ema"], output_names= ["entries", _"exits"] ).from_apply_func(dummy_strat ) ``` When I run ``` fast_ema = 10 slow_ema = 20 entries, exits = true_strat(data, fast_ema, slow_ema) pf = vbt.Portfolio.from_signals(data, entries, exits, freq = '1H') returns = pf.total_return() ``` it works as expected. But when I try this : `entries, exits = TrueStrat.run(data, fast_ema = np.arange(10, 50), slow_ema = np.arange(30, 100), param_product = True)` I get a `KeyError: 0` Can someone please help me and explain to me what I'm doing wrong? Thanks
closed
2023-07-11T10:19:18Z
2024-03-16T10:47:55Z
https://github.com/polakowo/vectorbt/issues/621
[]
myiroslav
1
sktime/pytorch-forecasting
pandas
1,006
Hello everyone, please after training my model how can I fit it to accept a dataset without target column when I want to predict new values. The fact is that in Real life we do not know yet the value we seeking by prediction process
open
2022-05-28T00:21:38Z
2022-06-10T11:05:01Z
https://github.com/sktime/pytorch-forecasting/issues/1006
[]
daniwxcode
6
opengeos/leafmap
jupyter
492
leafmap add_raster function can't work in windows
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information - leafmap version:0.22.0 - Python version:3.9 - Operating System:windows 10 ### Description error: 1019 1020 if http_error_msg: -> 1021 raise HTTPError(http_error_msg, response=self) 1022 1023 def close(self): HTTPError: 400 Client Error: BAD REQUEST for url: http://localhost:62933/api/metadata?&filename=D%3A%5Ccode%5Cpy%5Cimages%5CImage10.tif ### What I Did ``` m = leafmap.Map(center=[30.33049401, 104.10887847], zoom=18, height="800px") m.add_basemap("SATELLITE") m image = "D:\\code\\py\\images\\Image10.tif" tms_to_geotiff(output=image, bbox=bbox, zoom=19, source="Satellite", overwrite=True) m.layers[-1].visible = False m.add_raster(image, layer_name="Image") m ```
closed
2023-07-14T02:26:33Z
2023-07-17T01:30:11Z
https://github.com/opengeos/leafmap/issues/492
[ "bug" ]
mrpan
2
allenai/allennlp
pytorch
4,850
Have new multi-process data loader put batches directly on the target device from workers
closed
2020-12-07T20:45:31Z
2021-02-12T00:47:02Z
https://github.com/allenai/allennlp/issues/4850
[]
epwalsh
2
yinkaisheng/Python-UIAutomation-for-Windows
automation
184
方法 GetChildren() 的可靠性存疑
GetChildren() 实现中用到了 IUIAutomationTreeWalker::GetNextSiblingElement() 这个win32 API 。看microsoft的官网文档( 链接 https://docs.microsoft.com/en-us/windows/win32/api/uiautomationclient/nf-uiautomationclient-iuiautomationtreewalker-getnextsiblingelement )说,“ The structure of the Microsoft UI Automation tree changes as the visible UI elements on the desktop change. It is not guaranteed that an element returned as the next sibling element will be returned as the next sibling on subsequent passes.”我的理解是这个API并不保证第2次遍历控件树会得到相同结果。 这个问题的背景是在使用uiautomation 过程中,发现有个别控件用下标访问时访问失败,原因是下标变了。 不知道我的理解对不对,请问有谁可以帮忙解释一下吗?
open
2021-11-23T04:04:51Z
2022-10-18T05:20:30Z
https://github.com/yinkaisheng/Python-UIAutomation-for-Windows/issues/184
[]
ludeen007
1
pydantic/FastUI
fastapi
285
demo loading failed
<img width="1063" alt="image" src="https://github.com/pydantic/FastUI/assets/4550421/8c4fdabf-0dd2-494b-a904-88322f0c4e29">
closed
2024-04-26T05:30:58Z
2024-04-26T13:40:32Z
https://github.com/pydantic/FastUI/issues/285
[ "documentation", "duplicate" ]
HakunamatataLeo
2
graphql-python/graphene-sqlalchemy
sqlalchemy
24
How to solve 'utf8' can't decode,because of string:högskolan
if there is a string: högskolan in database,then there well be a error: { "errors": [ { "message": "'utf8' codec can't decode byte 0xf6 in position 34: invalid start byte", "locations": [ { "column": 3, "line": 2 } ] } ], "data": { "allDegreess": null } }
closed
2016-11-29T06:25:41Z
2023-02-26T00:53:20Z
https://github.com/graphql-python/graphene-sqlalchemy/issues/24
[]
chyroc
3
aminalaee/sqladmin
sqlalchemy
410
Support SQLAlchemy v2
### Checklist - [X] There are no similar issues or pull requests for this yet. ### Is your feature related to a problem? Please describe. A few days ago I started using SQLAlchemy for the first time - specifically, v2.0.0rc2 (released 2023-Jan-9). Today I decided to try setting up an admin UI, and after determining the Flask-Admin is broken and unmaintained, I decided to try `sqladmin` - but couldn't install it because your `pyproject.toml` specifies version `<1.5`. ### Describe the solution you would like. Given that SQLAlchemy v2 is expected to come out in the next few weeks, now seems like the time to make sure sqladmin works with it, and then loosen the version specifier. ### Describe alternatives you considered I don't see an alternative. I want to stay with SQLAlchemy v2, and sqladmin directly interacts with the models, so the backend and admin have to at least share the model code, which means they might as well be in the same project - which means they have to share the same list of package dependencies. ### Additional context _No response_
closed
2023-01-12T17:01:04Z
2023-01-29T17:34:26Z
https://github.com/aminalaee/sqladmin/issues/410
[]
odigity
3
ploomber/ploomber
jupyter
353
Request for a Binder example that combines Ploomber and Mlflow
I'm using Mlflow, but Mlflow doesn't have pipeline functionality. Therefore, I would like to use a combination of Mlflow and Ploomber. Can I ask you to create the simple notebook example (with Mlflow+Ploomber) that can be reproduced in Binder?
closed
2021-10-08T20:23:09Z
2021-12-02T03:12:52Z
https://github.com/ploomber/ploomber/issues/353
[]
kozo2
6
Zeyi-Lin/HivisionIDPhotos
fastapi
175
马斯克看腻了,加个选项是否显示example吧。或者自定example
马斯克看腻了,加个选项是否显示example吧。或者自定example
open
2024-09-27T11:08:23Z
2024-10-18T01:12:56Z
https://github.com/Zeyi-Lin/HivisionIDPhotos/issues/175
[]
Jio0oiJ
2
MilesCranmer/PySR
scikit-learn
725
Timeout in seconds not applying
### Discussed in https://github.com/MilesCranmer/PySR/discussions/724 <div type='discussions-op-text'> <sup>Originally posted by **usebi** September 25, 2024</sup> I tried the timeout_in_seconds function of pysr regressor and set the timeout to 12 hours but after many hours from the limit the program is still working because I see the resources used but it seems stopped because it no longer writes anything new</div>
open
2024-09-25T14:05:56Z
2024-09-26T16:01:10Z
https://github.com/MilesCranmer/PySR/issues/725
[ "bug" ]
MilesCranmer
2
pandas-dev/pandas
data-science
60,301
API: return value of `.values` for Series with the future string dtype (numpy array vs extension array)
Historically, the `.values` attribute returned a numpy array (except for categoricals). When we added more ExtensionArrays, for certain dtypes (e.g. tz-aware timestamps, or periods, ..) the EA could more faithfully represent the underlying values instead of the lossy conversion to numpy (e.g for tz-aware timestamps we decided to return a numpy object dtype array instead of "datetime64[ns]" to not lose the timezone information). At that point, instead of "breaking" the behaviour of `.values`, we decided to add an `.array` attribute that then always returns the EA. But for generic ExtensionArrays (external, or non-default EAs like the masked ones or the Arrow ones), the `.values` has always already directly returned the EA as well. So in those cases, there is no difference between `.values` and `.array`. Now to the point: with the new default `StringDtype`, the current behaviour is indeed to also always return the EA for both `.values` and `.array`. This means this is one of the breaking changes for users when upgrading to pandas 3.0, that for a column which is inferred as string data, the `.values` no longer returns a numpy array. **Are we OK with this breaking change now?** Or, we could also decide to keep `.values` return the numpy array with `.array` returning the EA. Of course, when we would move to use EAs for all dtypes (which is being considered in the logical dtypes and missing values PDEP discussions), then we would have this breaking change as well (or at least need to make a decision about it). But, that could also be a reason to not yet do it for the string dtype now, if we would change it for all dtypes later. cc @pandas-dev/pandas-core
open
2024-11-13T14:36:21Z
2024-11-14T00:14:04Z
https://github.com/pandas-dev/pandas/issues/60301
[ "API Design", "Strings" ]
jorisvandenbossche
10
Kanaries/pygwalker
pandas
519
How to switch the language pack to Chinese
How to switch the language pack to Chinese
closed
2024-04-12T06:10:00Z
2024-04-13T01:46:27Z
https://github.com/Kanaries/pygwalker/issues/519
[ "good first issue" ]
zxdmrg
2
cvat-ai/cvat
tensorflow
8,674
Interaction error when working with SAM-2
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce 1. Set-up CVAT with serverless functions. 2. Host SAM-2 model. ### Expected Behavior _No response_ ### Possible Solution _No response_ ### Context When using SAM-2 model, the interface indicates its waiting for SAM processing but immediately gives an error : Interaction error occured Error: Request failed with status code 503. "HTTPConnectionPool(host='host.docker.internal', port=34361): Max retries exceeded with url: / (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7fb7905337c0>: Failed to establish a new connection: [Errno 111] Connection refused'))". ![image](https://github.com/user-attachments/assets/6acaa165-518b-49b9-8136-ac1f1069ae6c) The logs from SAM2 container looks like : ![image](https://github.com/user-attachments/assets/23c40ab3-6618-48b6-aa40-461d416e0398) The logs from cvat_server is giving the error : 2024-11-11 07:02:14,648 DEBG 'runserver' stderr output: [Mon Nov 11 07:02:14.648184 2024] [wsgi:error] [pid 141:tid 140427000612608] [remote 172.18.0.3:37396] [2024-11-11 07:02:14,648] ERROR django.request: Service Unavailable: /api/lambda/functions/pth-facebookresearch-sam2-vit-h 2024-11-11 07:02:14,648 DEBG 'runserver' stderr output: [Mon Nov 11 07:02:14.648325 2024] [wsgi:error] [pid 141:tid 140427000612608] [remote 172.18.0.3:37396] ERROR:django.request:Service Unavailable: /api/lambda/functions/pth-facebookresearch-sam2-vit-h ![image](https://github.com/user-attachments/assets/d869916d-0957-4337-a26a-ef40b60e574e) ### Environment ```Markdown - Operating System and version (e.g. Linux, Windows, MacOS) --> Ubuntu 20.04.6 - Are you using Docker Swarm or Kubernetes? --> Docker ```
closed
2024-11-11T08:44:33Z
2024-11-11T11:19:33Z
https://github.com/cvat-ai/cvat/issues/8674
[ "bug" ]
amrithkrish
1
taverntesting/tavern
pytest
946
Python function not callable from tavern script for saving
Hi, I am calling a save function after getting response from my api, now in the response received i need to format string and save only few elements present, ``` response: status_code: 200 save: headers: res_key: $ext: function: testing_utils:extract_sessid extra_kwargs: head: headers ``` however, my tavern yaml is unable to call extract_string method in testing_utils file, But other functions written in testing_utils are working fine with following syntax ``` verify_response_with: - function: testing_utils:check_jsonpath_value ``` Please help, basically in above way mentioned, the testing_utils file is not accessible ( inside save function) but in same tavern script existing test cases are able to access the same ( with verify_response_with).
open
2024-11-13T05:47:48Z
2025-03-08T14:41:49Z
https://github.com/taverntesting/tavern/issues/946
[]
ShreyanshAyanger-Nykaa
1
widgetti/solara
jupyter
145
TypeError: set_parent() takes 3 positional arguments but 4 were given
When trying the First script example on the Quickstart of the docs, it works correctly when executed on Jupyter notebook, but it won't work as a script directly executed via solara executable. When doing: **solara run .\first_script.py** the server starts but then it keeps logging the following error: ERROR: Exception in ASGI application Traceback (most recent call last): File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\uvicorn\protocols\websockets\websockets_impl.py", line 254, in run_asgi result = await self.app(self.scope, self.asgi_receive, self.asgi_send) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\uvicorn\middleware\proxy_headers.py", line 78, in __call__ return await self.app(scope, receive, send) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\starlette\applications.py", line 122, in __call__ await self.middleware_stack(scope, receive, send) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\starlette\middleware\errors.py", line 149, in __call__ await self.app(scope, receive, send) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\starlette\middleware\gzip.py", line 26, in __call__ await self.app(scope, receive, send) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\starlette\middleware\exceptions.py", line 79, in __call__ raise exc File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\starlette\middleware\exceptions.py", line 68, in __call__ await self.app(scope, receive, sender) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\starlette\routing.py", line 718, in __call__ await route.handle(scope, receive, send) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\starlette\routing.py", line 341, in handle await self.app(scope, receive, send) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\starlette\routing.py", line 82, in app await func(session) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\solara\server\starlette.py", line 197, in kernel_connection await thread_return File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\anyio\to_thread.py", line 34, in run_sync func, *args, cancellable=cancellable, limiter=limiter File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread return await future File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run result = context.run(func, *args) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\solara\server\starlette.py", line 190, in websocket_thread_runner anyio.run(run) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\anyio\_core\_eventloop.py", line 68, in run return asynclib.run(func, *args, **backend_options) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\anyio\_backends\_asyncio.py", line 204, in run return native_run(wrapper(), debug=debug) File "c:\users\jicas\anaconda3\envs\ml\lib\asyncio\runners.py", line 43, in run return loop.run_until_complete(main) File "c:\users\jicas\anaconda3\envs\ml\lib\asyncio\base_events.py", line 587, in run_until_complete return future.result() File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\anyio\_backends\_asyncio.py", line 199, in wrapper return await func(*args) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\solara\server\starlette.py", line 182, in run await server.app_loop(ws_wrapper, session_id, connection_id, user) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\solara\server\server.py", line 148, in app_loop process_kernel_messages(kernel, msg) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\solara\server\server.py", line 179, in process_kernel_messages kernel.set_parent(None, msg) File "c:\users\jicas\anaconda3\envs\ml\lib\site-packages\solara\server\kernel.py", line 294, in set_parent super().set_parent(ident, parent, channel) TypeError: set_parent() takes 3 positional arguments but 4 were given Is there anything I can do to avoid this error? Thanks in advance.
closed
2023-06-06T10:05:14Z
2023-07-28T09:55:25Z
https://github.com/widgetti/solara/issues/145
[ "bug" ]
jicastillow
5
healthchecks/healthchecks
django
1,004
Unexpected "down" after sending ping
I have a test check setup on healthchecks.io, configured with Cron Expression | `* 9 * * *` -- | -- Time Zone | America/Los_Angeles Grace Time | 30 minutes This triggers at 9:30AM local time (as expected), and I send a ping to put it back the "up" state. ~30 minutes after the ping, the check goes back to "down". Here's a screenshot of the details page, with the unexpected transitions highlighted: ![image](https://github.com/healthchecks/healthchecks/assets/6877802/49526580-53ce-4a06-b947-e1e4cda60a0c) Chronologically (with my comments): ``` May 21 | 09:30 | Status: up ➔ down. # expected, that's 30 minutes after the cron time. May 21 | 09:34 | OK | HTTPS POST from x.x.x.x - python-requests/2.31.0 # manual ping May 21 | 09:34 | Status: down ➔ up. # expected after ping May 21 | 10:05 | Status: up ➔ down. # unexpected! suspiciously at "grace time" after the last ping. May 21 | 10:21 | OK | HTTPS POST from x.x.x.x - python-requests/2.31.0 # manual ping to shut it up May 21 | 10:21 | Status: down ➔ up. # expected after ping ``` ``` May 22 | 09:30 | Status: up ➔ down. # expected, that's 30 minutes after the cron time. May 22 | 09:41 | OK | HTTPS POST from x.x.x.x - Mozilla/5.0 ... # manual ping from UI May 22 | 09:41 | Status: down ➔ up. # expected after ping May 22 | 10:12 | Status: up ➔ down. # unexpected! May 22 | 10:13 | OK | HTTPS POST from x.x.x.x - Mozilla/5.0 … # manual ping to shut it up May 22 | 10:13 | Status: down ➔ up. # expected after ping ``` Is my expectation of how this should work incorrect? Could there be something funny going on due to the non-UTC timezone?
closed
2024-05-22T20:16:07Z
2024-05-23T17:22:16Z
https://github.com/healthchecks/healthchecks/issues/1004
[]
chriselion
2
coqui-ai/TTS
pytorch
3,996
[Bug] AttributeError: 'int' object has no attribute 'device'
### Describe the bug example code gives error when saving. ### To Reproduce ``` import os import time import torch import torchaudio from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts print("Loading model...") config = XttsConfig() config.load_json("/path/to/xtts/config.json") model = Xtts.init_from_config(config) model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", use_deepspeed=True) model.cuda() print("Computing speaker latents...") gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=["reference.wav"]) print("Inference...") t0 = time.time() chunks = model.inference_stream( "It took me quite a long time to develop a voice and now that I have it I am not going to be silent.", "en", gpt_cond_latent, speaker_embedding ) wav_chuncks = [] for i, chunk in enumerate(chunks): if i == 0: print(f"Time to first chunck: {time.time() - t0}") print(f"Received chunk {i} of audio length {chunk.shape[-1]}") wav_chuncks.append(chunk) wav = torch.cat(wav_chuncks, dim=0) torchaudio.save("xtts_streaming.wav", wav.squeeze().unsqueeze(0).cpu(), 24000) ``` ### Expected behavior expect it to save a wav file ### Logs Traceback (most recent call last): ``` if elements.device.type == "mps" and not is_torch_greater_or_equal_than_2_4: AttributeError: 'int' object has no attribute 'device' ``` ### Environment ```shell { "CUDA": { "GPU": [ "NVIDIA GeForce RTX 3080", "NVIDIA GeForce RTX 3080" ], "available": true, "version": "12.4" }, "Packages": { "PyTorch_debug": false, "PyTorch_version": "2.4.1+cu124", "TTS": "0.22.0", "numpy": "1.22.0" }, "System": { "OS": "Linux", "architecture": [ "64bit", "ELF" ], "processor": "x86_64", "python": "3.10.14", "version": "#1 SMP Thu Jan 11 04:09:03 UTC 2024" } } ``` ### Additional context AttributeError: 'int' object has no attribute 'device'
closed
2024-09-11T17:34:17Z
2025-01-04T12:21:07Z
https://github.com/coqui-ai/TTS/issues/3996
[ "bug", "wontfix" ]
CrackerHax
4
2noise/ChatTTS
python
567
decoder.yaml sha256 hash mismatch
修改webui代码parser = argparse.ArgumentParser(description="ChatTTS demo Launch") parser.add_argument( "--server_name", type=str, default="0.0.0.0", help="server name" ) parser.add_argument("--server_port", type=int, default=8080, help="server port") parser.add_argument("--root_path", type=str, default=None, help="root path") parser.add_argument( "--custom_path", type=str, default="D:\ChatTTS-Model", help="custom model path" ) parser.add_argument( "--coef", type=str, default=None, help="custom dvae coefficient" ) args = parser.parse_args() 后执行报错[+0800 20240713 10:03:04] [INFO] ChatTTS | core | try to load from local: D:\liu\ChatTTS-Model [+0800 20240713 10:03:04] [INFO] ChatTTS | dl | checking assets... [+0800 20240713 10:03:30] [INFO] ChatTTS | dl | checking configs... [+0800 20240713 10:03:30] [WARN] ChatTTS | dl | D:\ChatTTS-Model\config\decoder.yaml sha256 hash mismatch. [+0800 20240713 10:03:30] [INFO] ChatTTS | dl | expected: 0890ab719716b0ad8abcb9eba0a9bf52c59c2e45ddedbbbb5ed514ff87bff369 [+0800 20240713 10:03:30] [INFO] ChatTTS | dl | real val: 952d65eed43fa126e4ae257d4d7868163b0b1af23ccbe120288c3b28d091dae1 [+0800 20240713 10:03:30] [ERRO] ChatTTS | core | check models in custom path D:\ChatTTS-Model failed. [+0800 20240713 10:03:30] [ERRO] WebUI | webui | Models load failed.
closed
2024-07-13T02:09:27Z
2024-07-15T05:00:19Z
https://github.com/2noise/ChatTTS/issues/567
[ "documentation", "question" ]
viviliuwqhduhnwqihwqwudceygysjiwuwnn
3
pydantic/pydantic-core
pydantic
1,476
Missing pre-build of the pydantic-core python package for musl lib on armv7.
Would be good to have an pre-build of the pydantic-core python package for musl lib on armv7. https://github.com/pydantic/pydantic-core/blob/e3eff5cb8a6dae8914e3831b00c690d9dee4b740/.github/workflows/ci.yml#L430-L436 Related, docker build for [alpine linux on armv7](https://github.com/searxng/searxng/issues/3887#issuecomment-2394990168): - https://github.com/searxng/searxng/issues/3887
closed
2024-10-07T10:42:39Z
2024-10-09T14:40:04Z
https://github.com/pydantic/pydantic-core/issues/1476
[]
return42
0
iperov/DeepFaceLab
machine-learning
5,450
CPU use only efficiency core
Hello, I recently upgrade my computer from i5 9400f to i9 12900k before I upgrade(i5 9400f) deepfacelab using my cpu around 100% and after I upgrade to i9 deep face use efficiency core and not use performance core. ![Screen Shot 2564-12-28 at 21 18 23](https://user-images.githubusercontent.com/43716227/147590995-67cab221-3d37-496c-87ac-20afcff226f1.png) I tried to update the version of deep face and issue found again. Window 10 Pro
open
2021-12-28T17:23:19Z
2023-06-09T07:44:05Z
https://github.com/iperov/DeepFaceLab/issues/5450
[]
VASAPOL
3
pydantic/FastUI
pydantic
21
`fastui-bootstrap` allow more customisation
`fastui-bootstrap` should take functions matching `CustomRender` and `ClassNameGenerator` to those functions respectively, so you can use `fastui-bootstrap` while still overriding some components.
open
2023-12-01T17:59:51Z
2023-12-01T18:56:37Z
https://github.com/pydantic/FastUI/issues/21
[ "enhancement" ]
samuelcolvin
0
pallets-eco/flask-sqlalchemy
flask
386
Is it possible to use classic mapping?
SqlAlchemy allows the user to use classic mapping - http://docs.sqlalchemy.org/en/rel_1_0/orm/mapping_styles.html#classical-mappings But how can I use classic mapping when using flask-sqlalchemy?
closed
2016-03-28T02:44:56Z
2020-12-05T21:31:04Z
https://github.com/pallets-eco/flask-sqlalchemy/issues/386
[]
johnnncodes
1
twopirllc/pandas-ta
pandas
612
Range Filter 5min indicator request
According to my experience its great indicator for scalping traders, i tried to convert it to python but my values are wrong. ``` //@version=4 //Original Script > @DonovanWall // Actual Version > @guikroth ////////////////////////////////////////////////////////////////////////// // Settings for 5min chart, BTCUSDC. For Other coin, change the paremeters ////////////////////////////////////////////////////////////////////////// study(title="Range Filter 5min", overlay=true) // Source src = input(defval=close, title="Source") // Sampling Period // Settings for 5min chart, BTCUSDC. For Other coin, change the paremeters per = input(defval=100, minval=1, title="Sampling Period") // Range Multiplier mult = input(defval=3.0, minval=0.1, title="Range Multiplier") // Smooth Average Range smoothrng(x, t, m) => wper = t * 2 - 1 avrng = ema(abs(x - x[1]), t) smoothrng = ema(avrng, wper) * m smoothrng smrng = smoothrng(src, per, mult) // Range Filter rngfilt(x, r) => rngfilt = x rngfilt := x > nz(rngfilt[1]) ? x - r < nz(rngfilt[1]) ? nz(rngfilt[1]) : x - r : x + r > nz(rngfilt[1]) ? nz(rngfilt[1]) : x + r rngfilt filt = rngfilt(src, smrng) // Filter Direction upward = 0.0 upward := filt > filt[1] ? nz(upward[1]) + 1 : filt < filt[1] ? 0 : nz(upward[1]) downward = 0.0 downward := filt < filt[1] ? nz(downward[1]) + 1 : filt > filt[1] ? 0 : nz(downward[1]) // Target Bands hband = filt + smrng lband = filt - smrng // Colors filtcolor = upward > 0 ? color.lime : downward > 0 ? color.red : color.orange barcolor = src > filt and src > src[1] and upward > 0 ? color.lime : src > filt and src < src[1] and upward > 0 ? color.green : src < filt and src < src[1] and downward > 0 ? color.red : src < filt and src > src[1] and downward > 0 ? color.maroon : color.orange filtplot = plot(filt, color=filtcolor, linewidth=3, title="Range Filter") // Target hbandplot = plot(hband, color=color.aqua, transp=100, title="High Target") lbandplot = plot(lband, color=color.fuchsia, transp=100, title="Low Target") // Fills fill(hbandplot, filtplot, color=color.aqua, title="High Target Range") fill(lbandplot, filtplot, color=color.fuchsia, title="Low Target Range") // Bar Color barcolor(barcolor) // Break Outs longCond = bool(na) shortCond = bool(na) longCond := src > filt and src > src[1] and upward > 0 or src > filt and src < src[1] and upward > 0 shortCond := src < filt and src < src[1] and downward > 0 or src < filt and src > src[1] and downward > 0 CondIni = 0 CondIni := longCond ? 1 : shortCond ? -1 : CondIni[1] longCondition = longCond and CondIni[1] == -1 shortCondition = shortCond and CondIni[1] == 1 //Alerts plotshape(longCondition, title="Buy Signal", text="BUY", textcolor=color.white, style=shape.labelup, size=size.normal, location=location.belowbar, color=color.green, transp=0) plotshape(shortCondition, title="Sell Signal", text="SELL", textcolor=color.white, style=shape.labeldown, size=size.normal, location=location.abovebar, color=color.red, transp=0) alertcondition(longCondition, title="Buy Alert", message="BUY") alertcondition(shortCondition, title="Sell Alert", message="SELL") //For use like Strategy, //1. Change the word "study" for "strategy" at the top //2. Remove the "//" below //strategy.entry( id = "Long", long = true, when = longCondition ) //strategy.close( id = "Long", when = shortCondition ) ``` Can you translate this to python or we can do this conversion with my code: My code below : ```python src = dfLB["close"] per = 100 mult = 3 def smoothrng(x, t, m) : wper = t * 2 - 1 avrng = ta.ema((np.absolute(x - x.shift())), t) smoothrng = ta.ema(avrng, wper) * m return smoothrng smrng = smoothrng(src, 100, 3) def rngfilt(x, r): rngfilt = x rngfilt = np.where(x > rngfilt.shift(),np.where((x-r) < rngfilt.shift(),rngfilt.shift(),x-r),np.where((x+r) > rngfilt.shift(),rngfilt.shift(),x+r)) return rngfilt dfLB["filt"] = rngfilt(src, smrng) dfLB["upward"] = 0.0 dfLB["upward"] = np.where((dfLB["filt"] > dfLB["filt"].shift()), dfLB["upward"].shift() + 1,np.where(dfLB["filt"] < dfLB["filt"].shift(), 0, dfLB["upward"].shift())) dfLB["downward"] = 0.0 dfLB["downward"] = np.where((dfLB["filt"] < dfLB["filt"].shift()), dfLB["downward"].shift() + 1,np.where(dfLB["filt"] > dfLB["filt"].shift(), 0, dfLB["downward"].shift())) hband = dfLB["filt"] + smrng lband = dfLB["filt"] - smrng longCond = np.where((((src > dfLB["filt"]) & (src > src.shift()) & (dfLB["upward"] > 0)) | ((src > dfLB["filt"]) & (src < src.shift()) & (dfLB["upward"] > 0))),1,0) shortCond = np.where((((src < dfLB["filt"]) & (src < src.shift()) & (dfLB["downward"] > 0)) | ((src < dfLB["filt"]) & (src > src.shift()) & (dfLB["downward"] > 0))),1,0) dfLB["CondIni"] = 0 dfLB["CondIni"] = np.where((longCond == 1), 1 , np.where((shortCond==1), -1 , dfLB["CondIni"].shift())) longCondition = np.where(((longCond==1) & (dfLB["CondIni"].shift() == -1)),1,0) shortCondition = np.where(((shortCond==1) & (dfLB["CondIni"].shift()== 1)),1,0) ``` you can check hband and lband values in tradingview ( https://tr.tradingview.com/chart/mLWdxhy9/?symbol=BITSTAMP%3AXRPUSD) hband = blue values lband = purple values If you can translate this code to python I would be really grateful. Thank you.
open
2022-10-24T13:06:09Z
2023-09-02T15:19:05Z
https://github.com/twopirllc/pandas-ta/issues/612
[ "enhancement", "help wanted", "good first issue" ]
kaanguven
3
suitenumerique/docs
django
203
🧑‍💻Add conf ngnix for upload in dev mode
## Feature Request Add conf ngnix for upload with local dev mode working with docker-compose. We have 2 ways to develop in local mode, with `Tilt` (k8s stack) and with `docker-compose` (docker-compose stack), the upload image process works with Tilt but not with the docker-compose stack. ## Code On Tilt dev: https://github.com/numerique-gouv/impress/blob/67a20f249e33ffbea326f2be825e085847c34331/src/helm/env.d/dev/values.impress.yaml.gotmpl#L107-L119 Adapt this file to use the same conf: https://github.com/numerique-gouv/impress/blob/main/docker/files/etc/nginx/conf.d/default.conf ---- See: #118
closed
2024-08-29T09:54:20Z
2024-08-29T16:31:27Z
https://github.com/suitenumerique/docs/issues/203
[ "enhancement", "docker" ]
AntoLC
0
ray-project/ray
data-science
51,056
CI test darwin://python/ray/tests:test_placement_group_3 is consistently_failing
CI test **darwin://python/ray/tests:test_placement_group_3** is consistently_failing. Recent failures: - https://buildkite.com/ray-project/postmerge-macos/builds/4657#01955f62-ed51-458c-8bfb-a4a96b5b7134 - https://buildkite.com/ray-project/postmerge-macos/builds/4657#01955dd4-ae7a-4bd0-ab9d-14abaf0cdd17 DataCaseName-darwin://python/ray/tests:test_placement_group_3-END Managed by OSS Test Policy
closed
2025-03-04T06:17:38Z
2025-03-04T13:06:58Z
https://github.com/ray-project/ray/issues/51056
[ "bug", "triage", "core", "flaky-tracker", "ray-test-bot", "ci-test", "weekly-release-blocker", "stability" ]
can-anyscale
2
deezer/spleeter
deep-learning
660
Many errors
Hi I am on imac Osx El Capitan. When i apply in the terminal : [(base) iMac-de-mar:~ mar$ conda activate myenv [(myenv) iMac-de-mar:~ mar$ cd /Applications/SpleeterGui [(myenv) iMac-de-mar:SpleeterGui mar$ spleeter separate -i spleeter/cancion.mp3 -p spleeter:2stems -o output get these errors. Please how can i solve them? Traceback (most recent call last): File "/Users/mar/opt/anaconda3/envs/myenv/bin/spleeter", line 11, in <module> sys.exit(entrypoint()) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/__main__.py", line 54, in entrypoint main(sys.argv) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/__main__.py", line 46, in main entrypoint(arguments, params) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/commands/separate.py", line 45, in entrypoint synchronous=False File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/separator.py", line 228, in separate_to_file sources = self.separate(waveform, audio_descriptor) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/separator.py", line 195, in separate return self._separate_librosa(waveform, audio_descriptor) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/separator.py", line 173, in _separate_librosa outputs = self._get_builder().outputs File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/model/__init__.py", line 301, in outputs self._build_outputs() File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/model/__init__.py", line 476, in _build_outputs self._outputs = self.masked_stfts File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/model/__init__.py", line 325, in masked_stfts self._build_masked_stfts() File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/model/__init__.py", line 440, in _build_masked_stfts for instrument, mask in self.masks.items(): File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/model/__init__.py", line 319, in masks self._build_masks() File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/model/__init__.py", line 423, in _build_masks instrument_mask = self._extend_mask(instrument_mask) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/spleeter/model/__init__.py", line 397, in _extend_mask mask_shape[-1])) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/tensorflow_core/python/ops/array_ops.py", line 2338, in zeros output = _constant_if_small(zero, shape, dtype, name) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/tensorflow_core/python/ops/array_ops.py", line 2295, in _constant_if_small if np.prod(shape) < 1000: File "<__array_function__ internals>", line 6, in prod File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/numpy/core/fromnumeric.py", line 3052, in prod keepdims=keepdims, initial=initial, where=where) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/numpy/core/fromnumeric.py", line 86, in _wrapreduction return ufunc.reduce(obj, axis, dtype, out, **passkwargs) File "/Users/mar/opt/anaconda3/envs/myenv/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 736, in __array__ " array.".format(self.name)) NotImplementedError: Cannot convert a symbolic Tensor (strided_slice_4:0) to a numpy array. (myenv
open
2021-09-10T18:46:17Z
2021-09-10T18:46:17Z
https://github.com/deezer/spleeter/issues/660
[ "bug", "invalid" ]
lunatico67
0
deeppavlov/DeepPavlov
tensorflow
1,430
Multi class emotion classification for text in russian
Как использовать BERT Classifier для multi class классификаций текста? У меня есть свой датасет, нужно тренировать модель на этом датасете. Пример Input: Я сегодня чувствую себя не очень хорошо Output: Sadness Классов должно быть 5 или 6 Знаю что есть rusentiment_bert.json. Это как я понимаю pretrained и здесь только Positive neutral negative speech skip, а мне надо чтобы были эмоций типа (радость, печаль итп) Мне получается нужно быть изменить конфиг rusentiment_bert.json? Если да – то как и что надо изменить для настройки данной модели? Прошу помочь c гайденсом как работает весь процесс.
closed
2021-04-14T22:16:44Z
2021-04-19T13:17:03Z
https://github.com/deeppavlov/DeepPavlov/issues/1430
[ "enhancement" ]
MuhammedTech
1
vaexio/vaex
data-science
2,022
[BUG-REPORT] Group By memory Issue
Hello, I have a project running on vaex v4.0.0, I also have it wrapped around flask to have API's running off it. I was hopping to get some help related to memory. I do face memory leak issues while using group by here's an example. df.groupby(['rooms_count'], agg={vx.agg.mean('price_per_meter'),vx.agg.min('price_per_meter'),vx.agg.max('price_per_meter'),vx.agg.count('price_per_meter')}) My issue is not with the amount of memory being used. But after the API call is executed the memory used is not released back to the OS. Scale it to multiple API requests and soon I am out of memory on server. I have tried using garbage collection but still the memory isn't released back to the OS. I was asked to help replicate the issue. You can find the code and steps to replicate over there [https://github.com/MHK107/vaex-groupby-memory-issue/tree/main](Link to the repo) Please let me know if I can help in any way possible to replicate and resolve this
open
2022-04-18T07:25:11Z
2022-05-16T06:52:04Z
https://github.com/vaexio/vaex/issues/2022
[]
MHK107
4
litestar-org/polyfactory
pydantic
534
Bug(CI): Updated lockfile changes type checking CI causing failures
### Description https://github.com/litestar-org/polyfactory/actions/runs/8928572773/job/24524431663 ``` mypy.....................................................................Failed - hook id: mypy - exit code: 1 polyfactory/value_generators/constrained_dates.py:41: error: Redundant cast to "date" [redundant-cast] polyfactory/factories/base.py:508: error: Argument 1 to "UUID" has incompatible type "bytes | str | UUID"; expected "str | None" [arg-type] tests/test_random_configuration.py:68: error: Redundant cast to "int" [redundant-cast] polyfactory/factories/pydantic_factory.py:546: error: Incompatible return value type (got "dict[Any, object]", expected "dict[Any, Callable[[], Any]]") [return-value] tests/test_recursive_models.py:56: error: Non-overlapping identity check (left operand type: "PydanticNode", right operand type: "type[_Sentinel]") [comparison-overlap] docs/examples/decorators/test_example_1.py:19: error: Returning Any from function declared to return "datetime" [no-any-return] docs/examples/decorators/test_example_1.py:19: error: Redundant cast to "timedelta" [redundant-cast] polyfactory/factories/beanie_odm_factory.py:32: error: Unused "type: ignore" comment [unused-ignore] Found 8 errors in 7 files (checked 129 source files) ``` ### URL to code causing the issue _No response_ ### MCVE _No response_ ### Steps to reproduce _No response_ ### Screenshots _No response_ ### Logs _No response_ ### Release Version CI ### Platform - [ ] Linux - [ ] Mac - [ ] Windows - [X] Other (Please specify in the description above)
closed
2024-05-02T18:29:18Z
2025-03-20T15:53:16Z
https://github.com/litestar-org/polyfactory/issues/534
[ "bug", "ci" ]
JacobCoffee
0
PaddlePaddle/PaddleHub
nlp
1,817
高层封装的predict函数请问如何把所有的类别概率输出
还有未经过siftmax层输出的数值,非概率的数值可以输出吗
open
2022-03-23T11:22:35Z
2022-03-29T12:25:51Z
https://github.com/PaddlePaddle/PaddleHub/issues/1817
[]
tangkai521
4