repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
ymcui/Chinese-BERT-wwm
nlp
192
如何获得词向量?
请问是简单的词语中的字向量相加取平均还是简单相加得到的?
closed
2021-07-30T08:32:28Z
2021-08-07T10:51:16Z
https://github.com/ymcui/Chinese-BERT-wwm/issues/192
[ "stale" ]
c9412600
2
taverntesting/tavern
pytest
631
AttributeError: module 'pykwalify.core' has no attribute 'yaml'
Hello, it looks like pykwalify has had a new release (1.8) which is breaking my tavern build with the following error: ``` ve/lib/python3.8/site-packages/tavern/schemas/files.py:16: in <module> core.yaml.safe_load = functools.partial(yaml.load, Loader=IncludeLoader) E AttributeError: module 'pykwalify.core' has no attribute 'yaml' ``` It looks like pykwalify has dropped/changed their default yaml parser which may be the culprit? Could we maybe get tavern pinned to pykwalify 1.7 until it's fixed? https://github.com/Grokzen/pykwalify/releases https://github.com/taverntesting/tavern/blob/master/setup.cfg#L34
closed
2020-12-31T03:54:13Z
2022-08-17T07:00:42Z
https://github.com/taverntesting/tavern/issues/631
[]
erichaus
6
feature-engine/feature_engine
scikit-learn
693
future warnings
List of future pandas warnings ``` c:\users\sole\documents\repositories\feature_engine\feature_engine\creation\math_features.py:212: FutureWarning: The provided callable <function sum at 0x0000016E1CA6D090> is currently using Series.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass 'sum' instead. ```
closed
2023-09-12T10:58:44Z
2024-07-16T06:02:11Z
https://github.com/feature-engine/feature_engine/issues/693
[]
solegalli
5
mwaskom/seaborn
matplotlib
2,908
Unexpected behaviour of ticks in next gen Seaborn
Hello, Just found a potential bug in the next gen version of **seaborn**. Expected behaviour: create a histogram with y-axis limits that go from 0 to 50. Actual behaviour: limits of y-axis do not change. Other possible reasons for this: I may be confused between the syntax for ticks and for axes limits here, but the ticks do not appear to change either. Reprex: ```python import pandas as pd import seaborn.objects as so diamonds = pd.read_csv( "https://github.com/mwaskom/seaborn-data/raw/master/diamonds.csv" ) ( so.Plot(diamonds, x="y") .add(so.Bar(), so.Hist(binwidth=0.5)) .scale(y=so.Continuous(trans=None).tick(at=[0, 50])) ) ``` System info: Python implementation: CPython Python version : 3.9.12 IPython version : 8.3.0 Compiler : Clang 12.0.1 OS : Darwin Release : 19.6.0 Machine : x86_64 Processor : i386 CPU cores : 4 Architecture: 64bit seaborn : 0.12.0b1 matplotlib : 3.5.2 matplotlib_inline: 0.1.3 sys : 3.9.12 | packaged by conda-forge | (main, Mar 24 2022, 23:23:20) [Clang 12.0.1 ] pandas : 1.4.2 Thanks for all the work on this amazing package!
closed
2022-07-14T13:17:42Z
2022-07-24T00:25:25Z
https://github.com/mwaskom/seaborn/issues/2908
[ "bug", "objects-plot" ]
aeturrell
1
jpadilla/django-rest-framework-jwt
django
461
Unable to log in with the authentication information provided
when i post data, i always get this msg: Unable to log in with the authentication information provided ``` class CustomBackend(ModelBackend): def authenticate(self, username=None, password=None, **kwargs): try: user = User.objects.get(Q(username=username)|Q(mobile=username)) if user.check_password(password): return user except Exception as e: return None ``` ![xshot-0005](https://user-images.githubusercontent.com/15871933/49490467-2e8dfd00-f88b-11e8-96b7-22652ed3ddab.png) i'm follow offical website config, but don't know why not post data to API?
open
2018-12-05T04:42:21Z
2018-12-05T04:44:37Z
https://github.com/jpadilla/django-rest-framework-jwt/issues/461
[]
labike
0
anselal/antminer-monitor
dash
191
Request to add graphs
great product. add graphics, please.
open
2021-12-23T12:11:02Z
2021-12-23T12:11:02Z
https://github.com/anselal/antminer-monitor/issues/191
[]
iacsvrn
0
automl/auto-sklearn
scikit-learn
1,324
I have confusion with final ensemble model.
My constractor: `automl = autosklearn.classification.AutoSklearnClassifier( time_left_for_this_task=3600, memory_limit=3072, ensemble_size=10, ensemble_nbest=10, max_models_on_disc=10, delete_tmp_folder_after_terminate=False, )` Below is my model's sprint_statistics Number of target algorithm runs: 17\n Number of successful target algorithm runs: 4\n Number of crashed target algorithm runs: 2\n Number of target algorithms that exceeded the time limit: 9\n Number of target algorithms that exceeded the memory limit: 2\n' output of `show_model()` : `"[(1.000000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.23832696118792362, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 16, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.035949803138524174, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7356350569414665, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.2902106911441806, 'feature_preprocessor:select_rates_classification:alpha': 0.3610975428987517, 'feature_preprocessor:select_rates_classification:score_func': 'mutual_info_classif'},\ndataset_properties={\n 'task': 2,\n 'sparse': False,\n 'multilabel': False,\n 'multiclass': True,\n 'target_type': 'classification',\n 'signed': False})),\n]"` My question is why I got only one algorithm/configuration in final ensemble model if my successful target algorithms are 4 and ensemble size are 10? My final model should be ensemble of 4 configurations, right?
closed
2021-11-26T12:48:35Z
2021-11-29T12:49:41Z
https://github.com/automl/auto-sklearn/issues/1324
[]
shabir1
2
gunthercox/ChatterBot
machine-learning
1,904
ImportError: cannot import name 'StatementMixin'
![2020-01-30_172622](https://user-images.githubusercontent.com/35451392/73436584-c3a05f00-4385-11ea-94b6-690ec5d52878.png) ![2020-01-30_172638](https://user-images.githubusercontent.com/35451392/73436586-c438f580-4385-11ea-8a2f-0c83fd034871.png)
closed
2020-01-30T09:27:39Z
2025-02-23T23:38:53Z
https://github.com/gunthercox/ChatterBot/issues/1904
[]
JoinChang
1
ClimbsRocks/auto_ml
scikit-learn
270
eventually, train on the entire dataset even when warm_starting, or early_stopping
right now we're losing 10-15% of our data for our validation stuff, to find the best number of rounds/iterations/estimators/etc. eventually, it would be ideal to train with early stopping to find the ideal number of iterations, then use that (plus some small amount, say 5% of however many num_iteration we have to account for the fact that we'll have a slightly larger dataset now) to train a new model with all the data. so, we'd end up training the model twice: once to find the ideal num_iteration, once with the full dataset using the ideal num_iteration. make this a param to .train(). not sure of the name yet.
open
2017-07-05T16:26:36Z
2017-07-05T16:26:36Z
https://github.com/ClimbsRocks/auto_ml/issues/270
[]
ClimbsRocks
0
twopirllc/pandas-ta
pandas
764
Indicators using moving averages variable does not pass kwargs to ma(mamode, close, length=length)
**Which version are you running? The lastest version is on Github. Pip is for major releases.** ```python 3.11 import pandas_ta as ta print(ta.version) 2.1.4 ``` **Do you have _TA Lib_ also installed in your environment?** ```sh $ pip list ``` Yes **Have you tried the _development_ version? Did it resolve the issue?** ```sh $ pip install -U git+https://github.com/twopirllc/pandas-ta.git@development ``` No **Describe the bug** Many indicators e.g. Keltner Channel is using internally ma(mamode, close, length) but it should have ma(mamode, close, length, kwargs) Many moving averages e.g linreg have extra kwargs that are not passed further So for example passing kwargs to kc Class is not passing those kwargs to be used when calculating moving average. **To Reproduce** Provide sample code. ```python if mamode == 'linreg': kwargs={'degrees': True, 'slope': True, 'tsf': True} print(kwargs) kc_var = kc(close=df['close'], high=df['high'], low=df['low'], length=p_length, mamode=mamode, scalar=p_scalar, kwargs=kwargs) ``` **Expected behavior** A clear and concise description of what you expected to happen. When calling should have kwargs passed into it e.g. ma(mamode, close, length, kwargs) Inside kc ```python # Calculate Result use_tr = kwargs.pop("tr", True) if use_tr: range_ = true_range(high, low, close) else: range_ = high_low_range(high, low) #SHOULD BE BELOW basis = ma(mamode, close, length=length, kwargs) band = ma(mamode, range_, length=length, kwargs) ``` **Screenshots** If applicable, add screenshots to help explain your problem. **Additional context** Add any other context about the problem here. Thanks for using Pandas TA!
open
2024-02-11T22:15:15Z
2024-02-19T01:35:43Z
https://github.com/twopirllc/pandas-ta/issues/764
[ "enhancement", "help wanted", "good first issue" ]
PiotrJuzwiak
1
wkentaro/labelme
computer-vision
659
[BUG] label with angle brackets <> causes display errors
**Describe the bug** When the label contains **<>**, the label list will show, for example `<NONCAR><font color="#c8c8c8"> 〇 </font>`. Meanwhile, in the _polygon labels_ panel, only the color circle shows but not the name <NONCAR>. **To Reproduce** Steps to reproduce the behavior: 1. create a polygon and label it as **<text>** **Expected behavior** like other normal labels **Desktop:** - OS: MacOS 10.15.4 - Labelme Version 4.2.10
closed
2020-05-18T02:24:03Z
2022-06-25T16:05:38Z
https://github.com/wkentaro/labelme/issues/659
[ "issue::bug" ]
wxupjack
0
JaidedAI/EasyOCR
pytorch
1,103
Japanese Kanji character
I found that the Japanese character "絆" is missing in the file "ja_char.txt".And I cannot recognize this Japanese Kanji character using the Japanese model.
open
2023-08-02T15:20:34Z
2023-08-02T15:20:34Z
https://github.com/JaidedAI/EasyOCR/issues/1103
[]
98andpeople
0
autogluon/autogluon
computer-vision
4,328
Using custom model.hf_text.checkpoint_name
## Description In Autogluon multimodal, you can specify a text model on Huggingface (say for the sake of the example roberta-base). If I fine-tuned roberta-base using the Transformers library but did not publish to Huggingface, can I still train on that backbone by specifying the path in the model.hf_text.checkpoint_name hyperparameter?
open
2024-07-18T00:47:39Z
2024-07-18T00:47:39Z
https://github.com/autogluon/autogluon/issues/4328
[ "enhancement" ]
zkalson
0
Kinto/kinto
api
2,984
Either don't send email notification or only selectively notify about changes to nimbus-desktop-experiments
Every change to `main-workspace/nimbus-desktop-experiments` is currently notified to each reviewer by email. These don't seem to carry much value, as they are generated as part of the process of actually releasing an experiment - the reviewer will go and approve them straight away, and they shouldn't need to know that they've approved them. Whilst reviewers could use email filters to filter these out, I think the fact that we're adding lots of reviewers means we should consider if it is really necessary to send these notifications out in the first place - or maybe, only a subset of reviewers need them.
closed
2022-04-19T15:57:24Z
2022-04-19T16:05:23Z
https://github.com/Kinto/kinto/issues/2984
[]
Standard8
0
matplotlib/matplotlib
data-visualization
29,004
Decide how to document SecondaryAxes
### Documentation Link _No response_ ### Problem A reminder/placeholder/replacement for #28953 . ### Suggested improvement _No response_
open
2024-10-21T18:05:04Z
2024-10-21T18:05:04Z
https://github.com/matplotlib/matplotlib/issues/29004
[]
timhoffm
0
recommenders-team/recommenders
deep-learning
2,205
[FEATURE] Add embeding ranker in PyTorch
### Description <!--- Describe your expected feature in detail --> https://www.tensorflow.org/recommenders/examples/basic_ranking, but using PyTorch instead of TF ### Expected behavior with the suggested feature <!--- For example: --> <!--- *Adding algorithm xxx will help people understand more about xxx use case scenarios. --> ### Willingness to contribute <!--- Go over all the following points, and put an `x` in the box that apply. --> - [ ] Yes, I can contribute for this issue independently. - [ ] Yes, I can contribute for this issue with guidance from Recommenders community. - [ ] No, I cannot contribute at this time. ### Other Comments
open
2025-01-16T09:17:38Z
2025-01-24T22:04:07Z
https://github.com/recommenders-team/recommenders/issues/2205
[ "enhancement" ]
miguelgfierro
7
3b1b/manim
python
1,714
The animation window didn't show up
I typed 'manimgl' and pressed the key 'Enter', this is what happened to my terminal. My terminal just waiting, with the cursor flashing continously. ![2022-01-25 20-00-53屏幕截图](https://user-images.githubusercontent.com/84609589/150973385-6b7d3dbe-6771-4da8-afb6-a40147bc6fdb.png) 'Maybe it is loading now, I just to wait for some time', I thought, but through an hour (or longer), nothing happened, and the terminal just waiting, waiting for me to type some string, like a text edit software. ![2022-01-25 20-32-34屏幕截图](https://user-images.githubusercontent.com/84609589/150977651-4fa0afec-2047-40da-926d-d6ad8693d60f.png) ===Environment Config======== System: Ubuntu 21.10, x64 Python: 3.9.7 Manim: 1.3.0 ===Problem Description======== It should pop up the animation window and the terminal should enter interactive mode, but in this case the animation window didn't show up. ===What I have done========== I have installed the manimgl (using the command '`pip install manimgl`'), and other softwares (like TeXLive, FFmpeg) also have been installed.
closed
2022-01-25T12:36:58Z
2022-01-26T17:18:54Z
https://github.com/3b1b/manim/issues/1714
[]
Acpear
0
psf/black
python
4,594
long string: black miscalculates line lengths (without string_processing)
**Describe the bug** In some cases the current black version (25.1.0) reformats a string that is too long. It seems to miscalculate the resulting line length. **To Reproduce** ```python class A: def foo(self): return ( "This is a very loooooooooooooooooooooooooooooooooooooooooooooong string" ) ``` Note: The long line is exactly 86 chars wide. The bug does not occur when I add one character. ```sh $ black file.py ``` reformats to: ```python class A: def foo(self): return "This is a very loooooooooooooooooooooooooooooooooooooooooooooong string" ``` With the long line being 89 chars long. I would expect it to leave the code as is in this case. **Environment** - Black's version: 25.1.0 - OS and Python version: Gentoo, Python 3.11.11 **Additional context** The problem occurred first with in a project using `black -l100` producing a line of length 105.
closed
2025-02-28T11:37:29Z
2025-02-28T16:42:25Z
https://github.com/psf/black/issues/4594
[ "T: bug" ]
torotil
1
django-import-export/django-import-export
django
1,155
How to raise message when import file # format file action import?
<!--- Welcome to django-import-export --> <!--- Your issue may already be reported! Please search on the [issue tracker](../) before creating one. --> <!--- Additionally, you can either search or ask you question on [Stack Overflow tagged with `django-import-export`](https://stackoverflow.com/questions/tagged/django-import-export) --> <!--- If you would still like to create a question on github, please do so and remember that the more details you give, the more likely your question will be answered. -->
closed
2020-06-16T03:51:11Z
2021-06-22T09:21:40Z
https://github.com/django-import-export/django-import-export/issues/1155
[ "question" ]
sa-thangbn
4
tensorflow/tensor2tensor
deep-learning
1,683
ValueError: The passed save_path is not a valid checkpoint
Hello. I'm having problems resuming training from a checkpoint on Google Colab. The only way I've found is to delete all checkpoints and start again, which of course isn't a good idea after training for hours. I'm using TF and t2t version 1.14.0 and Ubuntu 18.04 on normal runtime because of a problem using Colab's GPU I've reported [here](https://github.com/tensorflow/tensorflow/issues/32017). This is the code : ``` !t2t-trainer \ --tmp_dir='/content/gdrive/My Drive/TCC/T2T LibriSpeech/tmp/' \ --problem='librispeech_clean_small' \ --model='transformer' \ --eval_steps=3 \ --hparams_set='transformer_librispeech' \ --data_dir='/content/gdrive/My Drive/TCC/T2T LibriSpeech/data/' \ --output_dir='/content/gdrive/My Drive/TCC/T2T LibriSpeech/output/' ``` And this is the prompt output: ``` WARNING: Logging before flag parsing goes to stderr. W0828 15:46:33.243587 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/expert_utils.py:68: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead. W0828 15:46:34.237717 139684777486208 lazy_loader.py:50] The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons * https://github.com/tensorflow/io (for I/O related ops) If you depend on functionality not listed there, please file an issue. W0828 15:46:36.218165 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/adafactor.py:27: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead. W0828 15:46:36.218689 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/multistep_optimizer.py:32: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead. W0828 15:46:36.231890 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/mesh_tensorflow/ops.py:4237: The name tf.train.CheckpointSaverListener is deprecated. Please use tf.estimator.CheckpointSaverListener instead. W0828 15:46:36.232139 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/mesh_tensorflow/ops.py:4260: The name tf.train.SessionRunHook is deprecated. Please use tf.estimator.SessionRunHook instead. W0828 15:46:36.251127 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/models/research/neural_stack.py:38: The name tf.nn.rnn_cell.RNNCell is deprecated. Please use tf.compat.v1.nn.rnn_cell.RNNCell instead. W0828 15:46:36.288087 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/rl/gym_utils.py:235: The name tf.logging.info is deprecated. Please use tf.compat.v1.logging.info instead. W0828 15:46:36.311170 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/trainer_lib.py:111: The name tf.OptimizerOptions is deprecated. Please use tf.compat.v1.OptimizerOptions instead. W0828 15:46:36.326797 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensorflow_gan/python/contrib_utils.py:305: The name tf.estimator.tpu.TPUEstimator is deprecated. Please use tf.compat.v1.estimator.tpu.TPUEstimator instead. W0828 15:46:36.327040 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensorflow_gan/python/contrib_utils.py:310: The name tf.estimator.tpu.TPUEstimatorSpec is deprecated. Please use tf.compat.v1.estimator.tpu.TPUEstimatorSpec instead. W0828 15:46:37.165019 139684777486208 deprecation_wrapper.py:119] From /usr/local/bin/t2t-trainer:32: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead. W0828 15:46:37.165243 139684777486208 deprecation_wrapper.py:119] From /usr/local/bin/t2t-trainer:32: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead. W0828 15:46:37.165358 139684777486208 deprecation_wrapper.py:119] From /usr/local/bin/t2t-trainer:33: The name tf.app.run is deprecated. Please use tf.compat.v1.app.run instead. W0828 15:46:37.166135 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/hparams_lib.py:49: The name tf.gfile.Exists is deprecated. Please use tf.io.gfile.exists instead. I0828 15:46:37.167073 139684777486208 hparams_lib.py:64] Loading hparams from existing json /content/gdrive/My Drive/TCC/T2T LibriSpeech/output/hparams.json W0828 15:46:37.167232 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/hparams_lib.py:65: The name tf.gfile.Open is deprecated. Please use tf.io.gfile.GFile instead. W0828 15:46:37.169995 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/trainer_lib.py:839: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. W0828 15:46:37.170993 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/trainer_lib.py:123: The name tf.GraphOptions is deprecated. Please use tf.compat.v1.GraphOptions instead. W0828 15:46:37.171175 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/trainer_lib.py:129: The name tf.GPUOptions is deprecated. Please use tf.compat.v1.GPUOptions instead. W0828 15:46:37.171345 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/trainer_lib.py:242: RunConfig.__init__ (from tensorflow.contrib.learn.python.learn.estimators.run_config) is deprecated and will be removed in a future version. Instructions for updating: When switching to tf.estimator.Estimator, use tf.estimator.RunConfig instead. I0828 15:46:37.171534 139684777486208 trainer_lib.py:265] Configuring DataParallelism to replicate the model. I0828 15:46:37.171617 139684777486208 devices.py:76] schedule=continuous_train_and_eval I0828 15:46:37.171699 139684777486208 devices.py:77] worker_gpu=1 I0828 15:46:37.171761 139684777486208 devices.py:78] sync=False W0828 15:46:37.171855 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/devices.py:139: The name tf.logging.warn is deprecated. Please use tf.compat.v1.logging.warn instead. W0828 15:46:37.171929 139684777486208 devices.py:141] Schedule=continuous_train_and_eval. Assuming that training is running on a single machine. I0828 15:46:37.172624 139684777486208 devices.py:170] datashard_devices: ['gpu:0'] I0828 15:46:37.172721 139684777486208 devices.py:171] caching_devices: None I0828 15:46:37.173149 139684777486208 devices.py:172] ps_devices: ['gpu:0'] I0828 15:46:37.173902 139684777486208 estimator.py:209] Using config: {'_task_type': None, '_task_id': 0, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f0aa908abe0>, '_master': '', '_num_ps_replicas': 0, '_num_worker_replicas': 0, '_environment': 'local', '_is_chief': True, '_evaluation_master': '', '_train_distribute': None, '_eval_distribute': None, '_experimental_max_worker_delay_secs': None, '_device_fn': None, '_tf_config': gpu_options { per_process_gpu_memory_fraction: 1.0 } , '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_secs': None, '_log_step_count_steps': 100, '_protocol': None, '_session_config': gpu_options { per_process_gpu_memory_fraction: 0.95 } allow_soft_placement: true graph_options { optimizer_options { global_jit_level: OFF } } isolate_session_state: true , '_save_checkpoints_steps': 1000, '_keep_checkpoint_max': 20, '_keep_checkpoint_every_n_hours': 10000, '_model_dir': '/content/gdrive/My Drive/TCC/T2T LibriSpeech/output/', 'use_tpu': False, 't2t_device_info': {'num_async_replicas': 1}, 'data_parallelism': <tensor2tensor.utils.expert_utils.Parallelism object at 0x7f0aa908af28>} W0828 15:46:37.174193 139684777486208 model_fn.py:630] Estimator's model_fn (<function T2TModel.make_estimator_model_fn.<locals>.wrapping_model_fn at 0x7f0aa9087ae8>) includes params argument, but params are not passed to Estimator. W0828 15:46:37.174434 139684777486208 trainer_lib.py:783] ValidationMonitor only works with --schedule=train_and_evaluate I0828 15:46:37.185815 139684777486208 estimator_training.py:186] Not using Distribute Coordinator. I0828 15:46:37.186260 139684777486208 training.py:612] Running training and evaluation locally (non-distributed). I0828 15:46:37.186565 139684777486208 training.py:700] Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 1000 or save_checkpoints_secs None. E0828 15:46:37.192399 139684777486208 checkpoint_management.py:348] Couldn't match files for checkpoint /content/gdrive/My Drive/TCC/T2T LibriSpeech/output/model.ckpt-13000 W0828 15:46:37.197599 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. I0828 15:46:37.208258 139684777486208 problem.py:644] Reading data files from /content/gdrive/My Drive/TCC/T2T LibriSpeech/data/librispeech_clean_small-train* I0828 15:46:37.229276 139684777486208 problem.py:670] partition: 0 num_data_files: 100 W0828 15:46:37.232276 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/data_generators/problem.py:680: parallel_interleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experimental.AUTOTUNE)` instead. If sloppy execution is desired, use `tf.data.Options.experimental_determinstic`. W0828 15:46:37.275019 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/layers/common_audio.py:92: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.cast` instead. W0828 15:46:37.562360 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/layers/common_audio.py:115: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.cast` instead. W0828 15:46:37.750620 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/data_reader.py:275: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` W0828 15:46:38.267626 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/data_reader.py:395: DatasetV1.output_shapes (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.compat.v1.data.get_output_shapes(dataset)`. W0828 15:46:38.267972 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/data_reader.py:398: The name tf.logging.warning is deprecated. Please use tf.compat.v1.logging.warning instead. W0828 15:46:38.268058 139684777486208 data_reader.py:399] Shapes are not fully defined. Assuming batch_size means tokens. W0828 15:46:38.323740 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/data/experimental/ops/grouping.py:193: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where W0828 15:46:38.372743 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/data_reader.py:231: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead. I0828 15:46:38.437698 139684777486208 estimator.py:1145] Calling model_fn. I0828 15:46:38.450161 139684777486208 t2t_model.py:2248] Setting T2TModel mode to 'train' W0828 15:46:38.529374 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/t2t_model.py:244: The name tf.summary.text is deprecated. Please use tf.compat.v1.summary.text instead. I0828 15:46:39.269068 139684777486208 api.py:255] Using variable initializer: uniform_unit_scaling I0828 15:46:39.718456 139684777486208 t2t_model.py:2248] Transforming feature 'inputs' with speech_recognition_modality.bottom W0828 15:46:39.720613 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/layers/modalities.py:439: conv2d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.keras.layers.Conv2D` instead. I0828 15:46:40.186799 139684777486208 t2t_model.py:2248] Transforming feature 'targets' with symbol_modality_256_384.targets_bottom I0828 15:46:40.323158 139684777486208 t2t_model.py:2248] Building model body W0828 15:46:40.388057 139684777486208 deprecation.py:506] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/models/transformer.py:96: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating: Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`. W0828 15:46:40.435504 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/layers/common_layers.py:3077: The name tf.layers.Dense is deprecated. Please use tf.compat.v1.layers.Dense instead. W0828 15:46:40.844527 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/layers/common_attention.py:1249: The name tf.summary.image is deprecated. Please use tf.compat.v1.summary.image instead. I0828 15:46:48.565067 139684777486208 t2t_model.py:2248] Transforming body output with symbol_modality_256_384.top W0828 15:46:48.689695 139684777486208 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/learning_rate.py:120: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead. I0828 15:46:48.691083 139684777486208 learning_rate.py:29] Base learning rate: 2.000000 I0828 15:46:48.704310 139684777486208 optimize.py:338] Trainable Variables Total size: 70343552 I0828 15:46:48.704722 139684777486208 optimize.py:338] Non-trainable variables Total size: 5 I0828 15:46:48.705073 139684777486208 optimize.py:193] Using optimizer adam I0828 15:47:00.715373 139684777486208 estimator.py:1147] Done calling model_fn. I0828 15:47:00.717198 139684777486208 basic_session_run_hooks.py:541] Create CheckpointSaverHook. I0828 15:47:05.476253 139684777486208 monitored_session.py:240] Graph was finalized. 2019-08-28 15:47:05.480538: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2200000000 Hz 2019-08-28 15:47:05.480819: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x22a5640 executing computations on platform Host. Devices: 2019-08-28 15:47:05.480857: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): <undefined>, <undefined> W0828 15:47:05.483572 139684777486208 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/saver.py:1276: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. Traceback (most recent call last): File "/usr/local/bin/t2t-trainer", line 33, in <module> tf.app.run() File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/platform/app.py", line 40, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/usr/local/lib/python3.6/dist-packages/absl/app.py", line 300, in run _run_main(main, args) File "/usr/local/lib/python3.6/dist-packages/absl/app.py", line 251, in _run_main sys.exit(main(argv)) File "/usr/local/bin/t2t-trainer", line 28, in main t2t_trainer.main(argv) File "/usr/local/lib/python3.6/dist-packages/tensor2tensor/bin/t2t_trainer.py", line 412, in main execute_schedule(exp) File "/usr/local/lib/python3.6/dist-packages/tensor2tensor/bin/t2t_trainer.py", line 367, in execute_schedule getattr(exp, FLAGS.schedule)() File "/usr/local/lib/python3.6/dist-packages/tensor2tensor/utils/trainer_lib.py", line 456, in continuous_train_and_eval self._eval_spec) File "/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/training.py", line 473, in train_and_evaluate return executor.run() File "/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/training.py", line 613, in run return self.run_local() File "/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/training.py", line 714, in run_local saving_listeners=saving_listeners) File "/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 367, in train loss = self._train_model(input_fn, hooks, saving_listeners) File "/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1158, in _train_model return self._train_model_default(input_fn, hooks, saving_listeners) File "/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1192, in _train_model_default saving_listeners) File "/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1480, in _train_with_estimator_spec log_step_count_steps=log_step_count_steps) as mon_sess: File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/monitored_session.py", line 584, in MonitoredTrainingSession stop_grace_period_secs=stop_grace_period_secs) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/monitored_session.py", line 1007, in __init__ stop_grace_period_secs=stop_grace_period_secs) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/monitored_session.py", line 725, in __init__ self._sess = _RecoverableSession(self._coordinated_creator) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/monitored_session.py", line 1200, in __init__ _WrappedSession.__init__(self, self._create_session()) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/monitored_session.py", line 1205, in _create_session return self._sess_creator.create_session() File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/monitored_session.py", line 871, in create_session self.tf_sess = self._session_creator.create_session() File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/monitored_session.py", line 647, in create_session init_fn=self._scaffold.init_fn) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/session_manager.py", line 290, in prepare_session config=config) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/session_manager.py", line 220, in _restore_checkpoint saver.restore(sess, ckpt.model_checkpoint_path) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/saver.py", line 1278, in restore compat.as_text(save_path)) ValueError: The passed save_path is not a valid checkpoint: /content/gdrive/My Drive/TCC/T2T LibriSpeech/output/model.ckpt-13000 ```
open
2019-08-28T15:55:05Z
2019-09-20T09:56:14Z
https://github.com/tensorflow/tensor2tensor/issues/1683
[]
Victor-Almeida
1
Kanaries/pygwalker
pandas
538
[BUG] pygwalker bug report
Error Message Failed to load model class 'BoxModel' from module '@jupyter-widgets/controls' ChunkLoadError: Loading chunk 345 failed. Difficult to decode such an error message.
closed
2024-05-03T15:46:43Z
2024-05-17T15:50:18Z
https://github.com/Kanaries/pygwalker/issues/538
[ "bug" ]
updiversity
1
jmcnamara/XlsxWriter
pandas
942
how to set the glow effect to the line
### Question hello, I have searched this question in docs and issues, but, I can't find how to set. Is this function is available? thanks.
closed
2023-01-16T02:05:46Z
2023-01-16T11:02:38Z
https://github.com/jmcnamara/XlsxWriter/issues/942
[ "question" ]
youth54
3
CorentinJ/Real-Time-Voice-Cloning
python
1,285
Failed to build webrtcvad when installing a package
Hi, sorry for bothering but I had and an issue trying to install a package with pip, I don't know if maybe it's an error I'm making but I haven't been able to solve it. This is what I was trying to install and the error that appeared ``` pip install ffsubsync Defaulting to user installation because normal site-packages is not writeable Collecting ffsubsync Using cached ffsubsync-0.4.25-py2.py3-none-any.whl (36 kB) Collecting auditok==0.1.5 (from ffsubsync) Using cached auditok-0.1.5-py3-none-any.whl Requirement already satisfied: charset-normalizer in /usr/lib/python3.12/site-packages (from ffsubsync) (3.2.0) Collecting faust-cchardet (from ffsubsync) Obtaining dependency information for faust-cchardet from https://files.pythonhosted.org/packages/81/33/a705c39e89b7ca7564b90c1a4ab4d4c2c0534cde911191d87a89b87b6c60/faust_cchardet-2.1.19-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata Using cached faust_cchardet-2.1.19-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (8.3 kB) Collecting ffmpeg-python (from ffsubsync) Using cached ffmpeg_python-0.2.0-py3-none-any.whl (25 kB) Collecting future>=0.18.2 (from ffsubsync) Using cached future-0.18.3-py3-none-any.whl Collecting numpy>=1.12.0 (from ffsubsync) Obtaining dependency information for numpy>=1.12.0 from https://files.pythonhosted.org/packages/c4/c6/f971d43a272e574c21707c64f12730c390f2bfa6426185fbdf0265a63cbd/numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata Using cached numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) Collecting rich (from ffsubsync) Obtaining dependency information for rich from https://files.pythonhosted.org/packages/be/be/1520178fa01eabe014b16e72a952b9f900631142ccd03dc36cf93e30c1ce/rich-13.7.0-py3-none-any.whl.metadata Using cached rich-13.7.0-py3-none-any.whl.metadata (18 kB) Requirement already satisfied: six in /usr/lib/python3.12/site-packages (from ffsubsync) (1.16.0) Collecting srt>=3.0.0 (from ffsubsync) Using cached srt-3.5.3-py3-none-any.whl Collecting tqdm (from ffsubsync) Obtaining dependency information for tqdm from https://files.pythonhosted.org/packages/00/e5/f12a80907d0884e6dff9c16d0c0114d81b8cd07dc3ae54c5e962cc83037e/tqdm-4.66.1-py3-none-any.whl.metadata Using cached tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) Collecting typing-extensions (from ffsubsync) Obtaining dependency information for typing-extensions from https://files.pythonhosted.org/packages/b7/f4/6a90020cd2d93349b442bfcb657d0dc91eee65491600b2cb1d388bc98e6b/typing_extensions-4.9.0-py3-none-any.whl.metadata Using cached typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB) Collecting webrtcvad (from ffsubsync) Using cached webrtcvad-2.0.10.tar.gz (66 kB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... done Collecting chardet (from ffsubsync) Obtaining dependency information for chardet from https://files.pythonhosted.org/packages/38/6f/f5fbc992a329ee4e0f288c1fe0e2ad9485ed064cac731ed2fe47dcc38cbf/chardet-5.2.0-py3-none-any.whl.metadata Using cached chardet-5.2.0-py3-none-any.whl.metadata (3.4 kB) Collecting pysubs2>=1.2.0 (from ffsubsync) Using cached pysubs2-1.6.1-py3-none-any.whl (35 kB) Collecting markdown-it-py>=2.2.0 (from rich->ffsubsync) Obtaining dependency information for markdown-it-py>=2.2.0 from https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl.metadata Using cached markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) Collecting pygments<3.0.0,>=2.13.0 (from rich->ffsubsync) Obtaining dependency information for pygments<3.0.0,>=2.13.0 from https://files.pythonhosted.org/packages/97/9c/372fef8377a6e340b1704768d20daaded98bf13282b5327beb2e2fe2c7ef/pygments-2.17.2-py3-none-any.whl.metadata Using cached pygments-2.17.2-py3-none-any.whl.metadata (2.6 kB) Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich->ffsubsync) Using cached mdurl-0.1.2-py3-none-any.whl (10.0 kB) Using cached numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB) Using cached chardet-5.2.0-py3-none-any.whl (199 kB) Using cached faust_cchardet-2.1.19-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (317 kB) Using cached rich-13.7.0-py3-none-any.whl (240 kB) Using cached tqdm-4.66.1-py3-none-any.whl (78 kB) Using cached typing_extensions-4.9.0-py3-none-any.whl (32 kB) Using cached markdown_it_py-3.0.0-py3-none-any.whl (87 kB) Using cached pygments-2.17.2-py3-none-any.whl (1.2 MB) Building wheels for collected packages: webrtcvad Building wheel for webrtcvad (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for webrtcvad (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [20 lines of output] running bdist_wheel running build running build_py creating build creating build/lib.linux-x86_64-cpython-312 copying webrtcvad.py -> build/lib.linux-x86_64-cpython-312 running build_ext building '_webrtcvad' extension creating build/temp.linux-x86_64-cpython-312 creating build/temp.linux-x86_64-cpython-312/cbits creating build/temp.linux-x86_64-cpython-312/cbits/webrtc creating build/temp.linux-x86_64-cpython-312/cbits/webrtc/common_audio creating build/temp.linux-x86_64-cpython-312/cbits/webrtc/common_audio/signal_processing creating build/temp.linux-x86_64-cpython-312/cbits/webrtc/common_audio/vad gcc -fno-strict-overflow -Wsign-compare -DDYNAMIC_ANNOTATIONS_ENABLED=1 -DNDEBUG -fexceptions -fcf-protection -fexceptions -fcf-protection -fexceptions -fcf-protection -fPIC -DWEBRTC_POSIX -Icbits -I/usr/include/python3.12 -c cbits/pywebrtcvad.c -o build/temp.linux-x86_64-cpython-312/cbits/pywebrtcvad.o cbits/pywebrtcvad.c:1:10: fatal error: Python.h: No such file or directory 1 | #include <Python.h> | ^~~~~~~~~~ compilation terminated. error: command '/usr/bin/gcc' failed with exit code 1 [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for webrtcvad Failed to build webrtcvad ERROR: Could not build wheels for webrtcvad, which is required to install pyproject.toml-based projects ``` OS: Fedora Linux (KDE Desktop environment)
closed
2024-01-15T01:51:04Z
2024-02-07T19:13:26Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1285
[]
emanuelps2708
3
graphql-python/graphene-django
graphql
533
How to use Django models which have no "name" attribute?
**Do my Django model has to have "name" attribute??? Can I override is somehow?** I have some Django models which don't have "name" attribute. The don't work :( Only those which has "name" attribute work and I can query them with GraphiQL.:/ > ImportError at /graphql > Could not import 'myproject.schema.schema' for Graphene setting 'SCHEMA'. AttributeError: type object 'MyModel' has no attribute 'name'.
closed
2018-10-12T14:47:38Z
2018-10-12T15:14:26Z
https://github.com/graphql-python/graphene-django/issues/533
[]
ghost
1
coqui-ai/TTS
pytorch
4,007
[ I have Vietnamese voice data] Please provide support for Vietnamese
## Support for Vietnamese Language - Hi, I found 100 hours of voice data from VinBigdata - https://institute.vinbigdata.org/events/vinbigdata-chia-se-100-gio-du-lieu-tieng-noi-cho-cong-dong/ - Here is the download link https://drive.google.com/file/d/1vUSxdORDxk-ePUt-bUVDahpoXiqKchMx/view?usp=sharing - Also there are also about 200 hours of data from Mozzila - https://commonvoice.mozilla.org/en/datasets (choose Vietnamese then download) Hope this will help. Thanks for your work.
closed
2024-10-05T17:41:54Z
2025-01-03T08:48:49Z
https://github.com/coqui-ai/TTS/issues/4007
[ "wontfix", "feature request" ]
tuanpham09
2
coqui-ai/TTS
pytorch
2,879
doesn't work...no way. please help, windows11, miniconda[Bug]
### Describe the bug after many problems to install it, finally it installed...but can't use it. why so many problems using it on windows? I saw people installing it in 2 min on linux. I need it for work, it is making me crazy. Please help me to make it works. I must create batch file to make it tts many files, but actually I am unable to make it tts one file. I am wasting weeks trying to solve all conflicts about this software. I need help. ### To Reproduce (TTS) C:\Users\Administrator>tts --text "Text for TTS" --out_path output/path/speech.wav > tts_models/en/ljspeech/tacotron2-DDC is already downloaded. > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded. > Using model: Tacotron2 > Setting up Audio Processor... | > sample_rate:22050 | > resample:False | > num_mels:80 | > log_func:np.log | > min_level_db:-100 | > frame_shift_ms:None | > frame_length_ms:None | > ref_level_db:20 | > fft_size:1024 | > power:1.5 | > preemphasis:0.0 | > griffin_lim_iters:60 | > signal_norm:False | > symmetric_norm:True | > mel_fmin:0 | > mel_fmax:8000.0 | > pitch_fmin:1.0 | > pitch_fmax:640.0 | > spec_gain:1.0 | > stft_pad_mode:reflect | > max_norm:4.0 | > clip_norm:True | > do_trim_silence:True | > trim_db:60 | > do_sound_norm:False | > do_amp_to_db_linear:True | > do_amp_to_db_mel:True | > do_rms_norm:False | > db_level:None | > stats_path:None | > base:2.718281828459045 | > hop_length:256 | > win_length:1024 > Model's reduction rate `r` is set to: 1 > Vocoder Model: hifigan > Setting up Audio Processor... | > sample_rate:22050 | > resample:False | > num_mels:80 | > log_func:np.log | > min_level_db:-100 | > frame_shift_ms:None | > frame_length_ms:None | > ref_level_db:20 | > fft_size:1024 | > power:1.5 | > preemphasis:0.0 | > griffin_lim_iters:60 | > signal_norm:False | > symmetric_norm:True | > mel_fmin:0 | > mel_fmax:8000.0 | > pitch_fmin:1.0 | > pitch_fmax:640.0 | > spec_gain:1.0 | > stft_pad_mode:reflect | > max_norm:4.0 | > clip_norm:True | > do_trim_silence:False | > trim_db:60 | > do_sound_norm:False | > do_amp_to_db_linear:True | > do_amp_to_db_mel:True | > do_rms_norm:False | > db_level:None | > stats_path:None | > base:2.718281828459045 | > hop_length:256 | > win_length:1024 > Generator Model: hifigan_generator > Discriminator Model: hifigan_discriminator Removing weight norm... > Text: Text for TTS > Text splitted to sentences. ['Text for TTS'] > Processing time: 0.4076573848724365 > Real-time factor: 0.23714767139186432 > Saving output to output/path/speech.wav Traceback (most recent call last): File "C:\Users\shula\miniconda3\envs\TTS\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\shula\miniconda3\envs\TTS\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "C:\Users\shula\miniconda3\envs\TTS\Scripts\tts.exe\__main__.py", line 7, in <module> File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\TTS\bin\synthesize.py", line 451, in main synthesizer.save_wav(wav, args.out_path) File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\TTS\utils\synthesizer.py", line 244, in save_wav save_wav(wav=wav, path=path, sample_rate=self.output_sample_rate) File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\TTS\utils\audio\numpy_transforms.py", line 439, in save_wav scipy.io.wavfile.write(path, sample_rate, wav_norm.astype(np.int16)) File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\scipy\io\wavfile.py", line 767, in write fid = open(filename, 'wb') FileNotFoundError: [Errno 2] No such file or directory: 'output/path/speech.wav' ### Expected behavior i made the most simple test, it failed ### Logs _No response_ ### Environment ```shell (TTS) C:\Users\Administrator>conda list # packages in environment at C:\Users\shula\miniconda3\envs\TTS: # # Name Version Build Channel absl-py 1.4.0 pypi_0 pypi accelerate 0.21.0 pypi_0 pypi aiohttp 3.8.5 pypi_0 pypi aiosignal 1.3.1 pypi_0 pypi anyascii 0.3.2 pypi_0 pypi appdirs 1.4.4 pypi_0 pypi async-timeout 4.0.3 pypi_0 pypi attrs 23.1.0 pypi_0 pypi audioread 3.0.0 pypi_0 pypi babel 2.12.1 pypi_0 pypi bangla 0.0.2 pypi_0 pypi blinker 1.6.2 pypi_0 pypi bnnumerizer 0.0.2 pypi_0 pypi bnunicodenormalizer 0.1.1 pypi_0 pypi boltons 23.0.0 pypi_0 pypi bzip2 1.0.8 he774522_0 ca-certificates 2023.05.30 haa95532_0 cachetools 5.3.1 pypi_0 pypi certifi 2023.7.22 pypi_0 pypi cffi 1.15.1 pypi_0 pypi charset-normalizer 3.2.0 pypi_0 pypi clean-fid 0.1.35 pypi_0 pypi click 8.1.6 pypi_0 pypi clip-anytorch 2.5.2 pypi_0 pypi colorama 0.4.6 pypi_0 pypi contourpy 1.1.0 pypi_0 pypi coqpit 0.0.17 pypi_0 pypi cycler 0.11.0 pypi_0 pypi cython 0.29.30 pypi_0 pypi dateparser 1.1.8 pypi_0 pypi decorator 5.1.1 pypi_0 pypi docker-pycreds 0.4.0 pypi_0 pypi docopt 0.6.2 pypi_0 pypi einops 0.6.1 pypi_0 pypi encodec 0.1.1 pypi_0 pypi filelock 3.12.2 pypi_0 pypi flask 2.3.2 pypi_0 pypi fonttools 4.42.0 pypi_0 pypi frozenlist 1.4.0 pypi_0 pypi fsspec 2023.6.0 pypi_0 pypi ftfy 6.1.1 pypi_0 pypi g2pkk 0.1.2 pypi_0 pypi gitdb 4.0.10 pypi_0 pypi gitpython 3.1.32 pypi_0 pypi google-auth 2.22.0 pypi_0 pypi google-auth-oauthlib 1.0.0 pypi_0 pypi grpcio 1.57.0 pypi_0 pypi gruut 2.2.3 pypi_0 pypi gruut-ipa 0.13.0 pypi_0 pypi gruut-lang-de 2.0.0 pypi_0 pypi gruut-lang-en 2.0.0 pypi_0 pypi gruut-lang-es 2.0.0 pypi_0 pypi gruut-lang-fr 2.0.2 pypi_0 pypi huggingface-hub 0.16.4 pypi_0 pypi idna 3.4 pypi_0 pypi imageio 2.31.1 pypi_0 pypi inflect 5.6.0 pypi_0 pypi itsdangerous 2.1.2 pypi_0 pypi jamo 0.4.1 pypi_0 pypi jieba 0.42.1 pypi_0 pypi jinja2 3.1.2 pypi_0 pypi joblib 1.3.2 pypi_0 pypi jsonlines 1.2.0 pypi_0 pypi jsonmerge 1.9.2 pypi_0 pypi jsonschema 4.19.0 pypi_0 pypi jsonschema-specifications 2023.7.1 pypi_0 pypi k-diffusion 0.0.15 pypi_0 pypi kiwisolver 1.4.4 pypi_0 pypi kornia 0.7.0 pypi_0 pypi lazy-loader 0.3 pypi_0 pypi libffi 3.4.4 hd77b12b_0 librosa 0.10.0 pypi_0 pypi llvmlite 0.40.1 pypi_0 pypi markdown 3.4.4 pypi_0 pypi markupsafe 2.1.3 pypi_0 pypi matplotlib 3.7.2 pypi_0 pypi mpmath 1.3.0 pypi_0 pypi msgpack 1.0.5 pypi_0 pypi multidict 6.0.4 pypi_0 pypi networkx 2.8.8 pypi_0 pypi nltk 3.8.1 pypi_0 pypi num2words 0.5.12 pypi_0 pypi numba 0.57.0 pypi_0 pypi numpy 1.23.0 pypi_0 pypi oauthlib 3.2.2 pypi_0 pypi openssl 3.0.10 h2bbff1b_0 packaging 23.1 pypi_0 pypi pandas 2.0.3 pypi_0 pypi pathtools 0.1.2 pypi_0 pypi pillow 10.0.0 pypi_0 pypi pip 23.2.1 py310haa95532_0 platformdirs 3.10.0 pypi_0 pypi pooch 1.7.0 pypi_0 pypi protobuf 4.24.0 pypi_0 pypi psutil 5.9.5 pypi_0 pypi pyasn1 0.5.0 pypi_0 pypi pyasn1-modules 0.3.0 pypi_0 pypi pycparser 2.21 pypi_0 pypi pynndescent 0.5.10 pypi_0 pypi pyparsing 3.0.9 pypi_0 pypi pypinyin 0.49.0 pypi_0 pypi pysbd 0.3.4 pypi_0 pypi python 3.10.12 he1021f5_0 python-crfsuite 0.9.9 pypi_0 pypi python-dateutil 2.8.2 pypi_0 pypi pytz 2023.3 pypi_0 pypi pywavelets 1.4.1 pypi_0 pypi pyyaml 6.0.1 pypi_0 pypi referencing 0.30.2 pypi_0 pypi regex 2023.8.8 pypi_0 pypi requests 2.31.0 pypi_0 pypi requests-oauthlib 1.3.1 pypi_0 pypi resize-right 0.0.2 pypi_0 pypi rpds-py 0.9.2 pypi_0 pypi rsa 4.9 pypi_0 pypi safetensors 0.3.2 pypi_0 pypi scikit-image 0.21.0 pypi_0 pypi scikit-learn 1.3.0 pypi_0 pypi scipy 1.11.1 pypi_0 pypi sentry-sdk 1.29.2 pypi_0 pypi setproctitle 1.3.2 pypi_0 pypi setuptools 68.0.0 py310haa95532_0 six 1.16.0 pypi_0 pypi smmap 5.0.0 pypi_0 pypi soundfile 0.12.1 pypi_0 pypi soxr 0.3.5 pypi_0 pypi sqlite 3.41.2 h2bbff1b_0 sympy 1.12 pypi_0 pypi tensorboard 2.14.0 pypi_0 pypi tensorboard-data-server 0.7.1 pypi_0 pypi threadpoolctl 3.2.0 pypi_0 pypi tifffile 2023.7.18 pypi_0 pypi tk 8.6.12 h2bbff1b_0 tokenizers 0.13.3 pypi_0 pypi torch 2.0.1 pypi_0 pypi torchaudio 2.0.2 pypi_0 pypi torchdiffeq 0.2.3 pypi_0 pypi torchsde 0.2.5 pypi_0 pypi torchvision 0.15.2 pypi_0 pypi tqdm 4.66.1 pypi_0 pypi trainer 0.0.30 pypi_0 pypi trampoline 0.1.2 pypi_0 pypi transformers 4.31.0 pypi_0 pypi tts 0.16.1 pypi_0 pypi typing-extensions 4.7.1 pypi_0 pypi tzdata 2023.3 pypi_0 pypi tzlocal 5.0.1 pypi_0 pypi umap-learn 0.5.1 pypi_0 pypi urllib3 1.26.16 pypi_0 pypi vc 14.2 h21ff451_1 vs2015_runtime 14.27.29016 h5e58377_2 wandb 0.15.8 pypi_0 pypi wcwidth 0.2.6 pypi_0 pypi werkzeug 2.3.6 pypi_0 pypi wheel 0.38.4 py310haa95532_0 xz 5.4.2 h8cc25b3_0 yarl 1.9.2 pypi_0 pypi zlib 1.2.13 h8cc25b3_0 ``` ### Additional context DEPRECATION: torchsde 0.2.5 has a non-standard dependency specifier numpy>=1.19.*; python_version >= "3.7". pip 23.3 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of torchsde or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063 Installing collected packages: mecab-python3 Successfully installed mecab-python3-1.0.6 (TTS) C:\Users\Administrator>pip install unidic-lite Collecting unidic-lite Using cached unidic-lite-1.0.8.tar.gz (47.4 MB) Preparing metadata (setup.py) ... done Building wheels for collected packages: unidic-lite Building wheel for unidic-lite (setup.py) ... done Created wheel for unidic-lite: filename=unidic_lite-1.0.8-py3-none-any.whl size=47658833 sha256=57d389c236768b40af598139cab9147bb1ceca437eac9c206ed9a8c85b85811f Stored in directory: c:\users\administrator\appdata\local\pip\cache\wheels\89\e8\68\f9ac36b8cc6c8b3c96888cd57434abed96595d444f42243853 Successfully built unidic-lite DEPRECATION: torchsde 0.2.5 has a non-standard dependency specifier numpy>=1.19.*; python_version >= "3.7". pip 23.3 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of torchsde or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063 Installing collected packages: unidic-lite Successfully installed unidic-lite-1.0.8 (TTS) C:\Users\Administrator>tts --text "Text for TTS" --out_path output/path/speech.wav > Downloading model to C:\Users\Administrator\AppData\Local\tts\tts_models--en--ljspeech--tacotron2-DDC 100%|██████████████████████████████████████████████████████████████████████████████| 113M/113M [01:25<00:00, 1.31MiB/s] > Model's license - apache 2.0 > Check https://choosealicense.com/licenses/apache-2.0/ for more info. > Downloading model to C:\Users\Administrator\AppData\Local\tts\vocoder_models--en--ljspeech--hifigan_v2 100%|█████████████████████████████████████████████████████████████████████████████| 3.80M/3.80M [00:05<00:00, 712kiB/s] > Model's license - apache 2.0 > Check https://choosealicense.com/licenses/apache-2.0/ for more info. > Using model: Tacotron2 > Setting up Audio Processor... | > sample_rate:22050 | > resample:False | > num_mels:80 | > log_func:np.log | > min_level_db:-100 | > frame_shift_ms:None | > frame_length_ms:None | > ref_level_db:20 | > fft_size:1024 | > power:1.5 | > preemphasis:0.0 | > griffin_lim_iters:60 | > signal_norm:False | > symmetric_norm:True | > mel_fmin:0 | > mel_fmax:8000.0 | > pitch_fmin:1.0 | > pitch_fmax:640.0 | > spec_gain:1.0 | > stft_pad_mode:reflect | > max_norm:4.0 | > clip_norm:True | > do_trim_silence:True | > trim_db:60 | > do_sound_norm:False | > do_amp_to_db_linear:True | > do_amp_to_db_mel:True | > do_rms_norm:False | > db_level:None | > stats_path:None | > base:2.718281828459045 | > hop_length:256 | > win_length:1024 > Model's reduction rate `r` is set to: 1 > Vocoder Model: hifigan > Setting up Audio Processor... | > sample_rate:22050 | > resample:False | > num_mels:80 | > log_func:np.log | > min_level_db:-100 | > frame_shift_ms:None | > frame_length_ms:None | > ref_level_db:20 | > fft_size:1024 | > power:1.5 | > preemphasis:0.0 | > griffin_lim_iters:60 | > signal_norm:False | > symmetric_norm:True | > mel_fmin:0 | > mel_fmax:8000.0 | > pitch_fmin:1.0 | > pitch_fmax:640.0 | > spec_gain:1.0 | > stft_pad_mode:reflect | > max_norm:4.0 | > clip_norm:True | > do_trim_silence:False | > trim_db:60 | > do_sound_norm:False | > do_amp_to_db_linear:True | > do_amp_to_db_mel:True | > do_rms_norm:False | > db_level:None | > stats_path:None | > base:2.718281828459045 | > hop_length:256 | > win_length:1024 > Generator Model: hifigan_generator > Discriminator Model: hifigan_discriminator Removing weight norm... > Text: Text for TTS > Text splitted to sentences. ['Text for TTS'] > Processing time: 0.5023317337036133 > Real-time factor: 0.298266230293103 > Saving output to output/path/speech.wav Traceback (most recent call last): File "C:\Users\shula\miniconda3\envs\TTS\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\shula\miniconda3\envs\TTS\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "C:\Users\shula\miniconda3\envs\TTS\Scripts\tts.exe\__main__.py", line 7, in <module> File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\TTS\bin\synthesize.py", line 451, in main synthesizer.save_wav(wav, args.out_path) File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\TTS\utils\synthesizer.py", line 244, in save_wav save_wav(wav=wav, path=path, sample_rate=self.output_sample_rate) File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\TTS\utils\audio\numpy_transforms.py", line 439, in save_wav scipy.io.wavfile.write(path, sample_rate, wav_norm.astype(np.int16)) File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\scipy\io\wavfile.py", line 767, in write fid = open(filename, 'wb') FileNotFoundError: [Errno 2] No such file or directory: 'output/path/speech.wav' (TTS) C:\Users\Administrator>tts --text "Text for TTS" --out_path output/path/speech.wav > tts_models/en/ljspeech/tacotron2-DDC is already downloaded. > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded. > Using model: Tacotron2 > Setting up Audio Processor... | > sample_rate:22050 | > resample:False | > num_mels:80 | > log_func:np.log | > min_level_db:-100 | > frame_shift_ms:None | > frame_length_ms:None | > ref_level_db:20 | > fft_size:1024 | > power:1.5 | > preemphasis:0.0 | > griffin_lim_iters:60 | > signal_norm:False | > symmetric_norm:True | > mel_fmin:0 | > mel_fmax:8000.0 | > pitch_fmin:1.0 | > pitch_fmax:640.0 | > spec_gain:1.0 | > stft_pad_mode:reflect | > max_norm:4.0 | > clip_norm:True | > do_trim_silence:True | > trim_db:60 | > do_sound_norm:False | > do_amp_to_db_linear:True | > do_amp_to_db_mel:True | > do_rms_norm:False | > db_level:None | > stats_path:None | > base:2.718281828459045 | > hop_length:256 | > win_length:1024 > Model's reduction rate `r` is set to: 1 > Vocoder Model: hifigan > Setting up Audio Processor... | > sample_rate:22050 | > resample:False | > num_mels:80 | > log_func:np.log | > min_level_db:-100 | > frame_shift_ms:None | > frame_length_ms:None | > ref_level_db:20 | > fft_size:1024 | > power:1.5 | > preemphasis:0.0 | > griffin_lim_iters:60 | > signal_norm:False | > symmetric_norm:True | > mel_fmin:0 | > mel_fmax:8000.0 | > pitch_fmin:1.0 | > pitch_fmax:640.0 | > spec_gain:1.0 | > stft_pad_mode:reflect | > max_norm:4.0 | > clip_norm:True | > do_trim_silence:False | > trim_db:60 | > do_sound_norm:False | > do_amp_to_db_linear:True | > do_amp_to_db_mel:True | > do_rms_norm:False | > db_level:None | > stats_path:None | > base:2.718281828459045 | > hop_length:256 | > win_length:1024 > Generator Model: hifigan_generator > Discriminator Model: hifigan_discriminator Removing weight norm... > Text: Text for TTS > Text splitted to sentences. ['Text for TTS'] > Processing time: 0.4537527561187744 > Real-time factor: 0.2712919813562629 > Saving output to output/path/speech.wav Traceback (most recent call last): File "C:\Users\shula\miniconda3\envs\TTS\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\shula\miniconda3\envs\TTS\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "C:\Users\shula\miniconda3\envs\TTS\Scripts\tts.exe\__main__.py", line 7, in <module> File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\TTS\bin\synthesize.py", line 451, in main synthesizer.save_wav(wav, args.out_path) File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\TTS\utils\synthesizer.py", line 244, in save_wav save_wav(wav=wav, path=path, sample_rate=self.output_sample_rate) File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\TTS\utils\audio\numpy_transforms.py", line 439, in save_wav scipy.io.wavfile.write(path, sample_rate, wav_norm.astype(np.int16)) File "C:\Users\shula\miniconda3\envs\TTS\lib\site-packages\scipy\io\wavfile.py", line 767, in write fid = open(filename, 'wb') FileNotFoundError: [Errno 2] No such file or directory: 'output/path/speech.wav'
closed
2023-08-20T14:00:05Z
2023-08-21T08:19:56Z
https://github.com/coqui-ai/TTS/issues/2879
[ "bug" ]
Zerthura
0
gradio-app/gradio
machine-learning
10,177
New event to trigger when a tab is in view, not necessarily explicitly selected by the user
- [x] I have searched to see if a similar issue already exists. **Is your feature request related to a problem? Please describe.** While `gr.Tab` as the `select` event, it is only triggered when a user explicitly _selects_ the tab. What if the tab is selected by default and the user only has to select that tab in order to return to that tab after navigating away from it? Another event, such as `focus` or `default_selected` will be a good idea. **Describe the solution you'd like** Support a new event for tabs that is triggered when the tab is in view, not necessarily because the user selected it. **Additional context** To see what I mean, select the "Pydantic entity profiles" tab https://huggingface.co/spaces/anirbanbasu/gradio-experiments. By default, a sub-tab called "View (decorative)" is selected. However, this automatic selection does not trigger the `select` event on that tab. Thus the user will see something like this. <img width="1975" alt="Screenshot 2024-12-11 at 16 27 26" src="https://github.com/user-attachments/assets/28ee7b8a-78a0-4a3b-ae65-1a7876ae8240"> Yet, if the user selects another sub-tab, e.g., "View (JSON)" and then selects "View (decorative)", the `select` event is triggered and the user gets to see something like the following. <img width="1975" alt="Screenshot 2024-12-11 at 16 27 40" src="https://github.com/user-attachments/assets/f73fca00-fb11-452a-8334-f85c127110fa">
closed
2024-12-11T07:35:57Z
2024-12-12T15:51:46Z
https://github.com/gradio-app/gradio/issues/10177
[]
anirbanbasu
4
plotly/dash
flask
2,725
Allow background callback tasks to programmatically retry later.
**Is your feature request related to a problem? Please describe.** Background callbacks running in a distributed environment (Openshift or Kubernetes) can fail for reasons that are recoverable via application logic. e.g. a data resource isn't available at a point in time, but will be available in the future. A bad solution is to have the background callback task check for a resource and `sleep` for some amount of time, then check again later, and repeat. This consumes the `Celery Worker` thread for no reason, and in our app, leads to worker pool exhaustion. **Describe the solution you'd like** It'd make sense for a background callback task to: 1. check whether it can execute given the current state, 2. proceed if it can, 3. re-enqueue itself if it can't, yielding the worker thread to be used by another task. Since background callbacks are Celery tasks, the features to enable programatic retries are already available with the `bind` argument: a task receives a `self` parameter that can be instructed to retry. This might look like the following pseudocode: ```python @dash.callback( ... # Inputs and Outputs background=True, celery_bind=True, # first param to func must be for 'self' retry_on_exceptions=[DBNotAvailableRetry], ) def func(self, conn): val = conn.get_value() # raises DBNotAvailableRetry exception if not val: self.retry(after="5s", exponential_backoff=True, jitter=True) return val ``` **Describe alternatives you've considered** Since Dash controls the context of the executing tasks when it's enqueued in Celery, the functionality of pushing the `self` parameter into the background callback arguments could be avoided if Dash instead implemented exception handling that would trigger retries when caught. ```python @celery_app.task( bind=True ) def dash_bg_callback_wrapper(self, user_func, args): try: results = user_func(*args) return results except dash.BG_RETRY_EXCEPTION as e: self.retry( after=e.args["after"] # user could set this, knowing their app- would default to 0 time before retry. ) ```
open
2024-01-12T17:30:21Z
2024-08-13T19:44:46Z
https://github.com/plotly/dash/issues/2725
[ "feature", "P3" ]
JamesKunstle
10
huggingface/text-generation-inference
nlp
2,994
Request failed during generation: Server error: Value out of range: -29146814772
### System Info text-generation-launcher 3.1.1-dev0 Single RTX 4070 S GPU NVIDIA-SMI 572.16 Driver Version: 572.16 CUDA Version: 12.8 Models Used : meta-llama/Llama-3.1-8B-Instruct, Yujivus/DeepSeek-R1-Distill-Llama-8B-AWQ, Yujivus/Phi-4-Health-CoT-1.1-AWQ Docker Command: docker run --name tgi-server --gpus all -p 80:81 --network tgi -v volume:/data --env HUGGING_FACE_HUB_TOKEN=... ghcr.io/huggingface/text-generation-inference:latest --model-id Yujivus/Phi-4-Health-CoT-1.1-AWQ --quantize awq (Quantize awq is used for only Yujivus/DeepSeek-R1-Distill-Llama-8B-AWQ and Yujivus/Phi-4-Health-CoT-1.1-AWQ models. For meta-llama/Llama-3.1-8B-Instruct, I tried eetq, bitsandbytes-nf4 and bitsandbytes-fp4. None of them worked.) ### Information - [x] Docker - [ ] The CLI directly ### Tasks - [x] An officially supported command - [ ] My own modifications ### Reproduction I am running simple function for inference : async def get_response(query): """Send a single request to the TGI server.""" try: async with AsyncInferenceClient(base_url="http://tgi-server:80") as client: output = await client.chat.completions.create( model="tgi", messages=[ { "role": "system", "content": "You are a helpful assistant\n\n", }, { "role": "user", "content": query, }, ], stream=False, max_tokens=3000, ) return output.choices[0].message.content except Exception as e: print(f"Error: {e}") return None Error : 2025-02-05 16:11:02 2025-02-05T13:11:02.646154Z ERROR text_generation_launcher: Method Decode encountered an error. 2025-02-05 16:11:02 Traceback (most recent call last): 2025-02-05 16:11:02 File "/opt/conda/bin/text-generation-server", line 10, in <module> 2025-02-05 16:11:02 sys.exit(app()) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/typer/main.py", line 323, in __call__ 2025-02-05 16:11:02 return get_command(self)(*args, **kwargs) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/click/core.py", line 1161, in __call__ 2025-02-05 16:11:02 return self.main(*args, **kwargs) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/typer/core.py", line 743, in main 2025-02-05 16:11:02 return _main( 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/typer/core.py", line 198, in _main 2025-02-05 16:11:02 rv = self.invoke(ctx) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/click/core.py", line 1697, in invoke 2025-02-05 16:11:02 return _process_result(sub_ctx.command.invoke(sub_ctx)) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/click/core.py", line 1443, in invoke 2025-02-05 16:11:02 return ctx.invoke(self.callback, **ctx.params) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/click/core.py", line 788, in invoke 2025-02-05 16:11:02 return __callback(*args, **kwargs) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/typer/main.py", line 698, in wrapper 2025-02-05 16:11:02 return callback(**use_params) 2025-02-05 16:11:02 File "/usr/src/server/text_generation_server/cli.py", line 119, in serve 2025-02-05 16:11:02 server.serve( 2025-02-05 16:11:02 File "/usr/src/server/text_generation_server/server.py", line 315, in serve 2025-02-05 16:11:02 asyncio.run( 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/asyncio/runners.py", line 190, in run 2025-02-05 16:11:02 return runner.run(main) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/asyncio/runners.py", line 118, in run 2025-02-05 16:11:02 return self._loop.run_until_complete(task) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 641, in run_until_complete 2025-02-05 16:11:02 self.run_forever() 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 608, in run_forever 2025-02-05 16:11:02 self._run_once() 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 1936, in _run_once 2025-02-05 16:11:02 handle._run() 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/asyncio/events.py", line 84, in _run 2025-02-05 16:11:02 self._context.run(self._callback, *self._args) 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/grpc_interceptor/server.py", line 165, in invoke_intercept_method 2025-02-05 16:11:02 return await self.intercept( 2025-02-05 16:11:02 > File "/usr/src/server/text_generation_server/interceptor.py", line 24, in intercept 2025-02-05 16:11:02 return await response 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/opentelemetry/instrumentation/grpc/_aio_server.py", line 120, in _unary_interceptor 2025-02-05 16:11:02 raise error 2025-02-05 16:11:02 File "/opt/conda/lib/python3.11/site-packages/opentelemetry/instrumentation/grpc/_aio_server.py", line 111, in _unary_interceptor 2025-02-05 16:11:02 return await behavior(request_or_iterator, context) 2025-02-05 16:11:02 File "/usr/src/server/text_generation_server/server.py", line 221, in Decode 2025-02-05 16:11:02 return generate_pb2.DecodeResponse( 2025-02-05 16:11:02 ValueError: Value out of range: -29146814772 2025-02-05 16:11:02 2025-02-05T13:11:02.646395Z ERROR batch{batch_size=1}:decode:decode{size=1}:decode{size=1}: text_generation_router_v3::client: backends/v3/src/client/mod.rs:45: Server error: Value out of range: -29146814772 2025-02-05 16:11:02 2025-02-05T13:11:02.647196Z ERROR chat_completions:generate:generate_stream:schedule:infer:send_error: text_generation_router_v3::backend: backends/v3/src/backend.rs:546: Request failed during generation: Server error: Value out of range: -29146814772 Only 40-50% of the requests to TGI return a successful response (for Yujivus/Phi-4-Health-CoT-1.1-AWQ), while the rest fail. I tried with several models but I encountered same error for all of them except smaller llama 3.2 1b and 3b models. I observed the highest success rate was when using the EETQ quantization method with the LLaMA 3.1 8B model. But still, I encountered this error oftenly. The Phi-4 model is fine tuned with FreedomIntelligence/medical-o1-reasoning-SFT dataset. Since this dataset is CoT dataset, the model is talking too much. And I get more errors. If response takes longer tokens, I get more errors. Probably because for every token, there is a change for getting value of range error. It is maybe because of quantization, but to test this, I tried Llama 3.2 1b model with and without quantization and I didn't encounter this error. But still, maybe the error occurs for larger models, which perform much more computation, during the decode phase because quantization causes the values to exceed the expected range. I tried with smaller max_tokens but probability of getting error did not change. Error occurs roughly for 1/2000 tokens. If there is a way to fix, it would be good to know. Thanks. ### Expected behavior 2025-02-05 16:49:39 2025-02-05T13:49:39.259073Z INFO text_generation_router_v3::radix: backends/v3/src/radix.rs:108: Prefix 0 - Suffix 1045 2025-02-05 16:49:54 2025-02-05T13:49:54.901547Z INFO chat_completions{total_time="15.645054793s" validation_time="2.504013ms" queue_time="550.086µs" inference_time="15.642000896s" time_per_token="21.876924ms" seed="Some(15551805739611344766)"}: text_generation_router::server: router/src/server.rs:625: Success
open
2025-02-05T14:09:44Z
2025-02-05T14:09:44Z
https://github.com/huggingface/text-generation-inference/issues/2994
[]
AlperYildirim1
0
Nemo2011/bilibili-api
api
305
函数使用
![image](https://github.com/Nemo2011/bilibili-api/assets/122085240/01d72496-a6b3-46e8-b516-3d6389878992) 我想获取某个人主页的所有视频信息,我翻了文档,应该是用这个函数,async def get_videos() ,(https://nemo2011.github.io/bilibili-api/#/modules/user?id=async-def-get_videos),但是我不知道具体该怎么用,请问有详细的示例介绍吗,谢谢兄弟!
closed
2023-05-27T02:34:16Z
2023-05-27T15:31:11Z
https://github.com/Nemo2011/bilibili-api/issues/305
[ "need" ]
pengchengKong
5
pytorch/vision
computer-vision
8,359
About uint16 support
Pytorch 2.3 is introducing unsigned integer dtypes like `uint16`, `uint32` and `uint64` in https://github.com/pytorch/pytorch/pull/116594. Quoting Ed: > The dtypes are very useless right now (not even fill works), but it makes torch.uint16, uint32 and uint64 available as a dtype. I tried `uint16` on some of the transforms and the following would work: ```py x = torch.randint(0, 256, size=(1, 3, 10, 10), dtype=torch.uint16) transforms = T.Compose( [ T.Pad(2), T.Resize(5), T.CenterCrop(3), # T.RandomHorizontalFlip(p=1), # T.ColorJitter(2, 2, 2, .1), T.ToDtype(torch.float32, scale=True), ] ) transforms(x) ``` but stuff like flip or colorjitter won't work. In general, it's safe to assume that uint16 doesn't really work on eager. -------- ### What to do about `F.to_tensor()` and `F.pil_to_tensor()`. Up until 2.3, passing a unit16 PIL image (mode = "I;16") to those would produce: - `to_tensor()`: an `int16` tensor as ouput for. This is completely wrong and a bug: the range of `int16` is smaller than `uint16`, so the resulting tensor is incorrect and has tons of negative value (coming from overflow). - `pil_to_tensor()`: an error - this is OK. Now with 2.3 (or more precisely with the nightlies/RC): - `to_tensor()`: still outputs an int16 tensor which is still incorrect - `pil_to_tensor()` outputs a uint16 tensor which is correct - but that tensor won't work with a lot of the transforms. **Proposed fix** - Keep `pil_to_tensor()` as-is, just write a few additional tests w.r.t. uint16 support - Make `to_tensor()` return uint16 tensor instead of int16. This is a bug fix. Users may get loud errors down the line when they're using that uint16 on transforms (because uint16 is generally not well supported), but a loud error is much better than a silent error, which is what users were currently getting - Document in https://pytorch.org/vision/main/transforms.html#supported-input-types-and-conventions that uint16, uint32 and uint64 aren't officially supported by the torchvision transforms - most users should stick to uint8 or float. -------- Dirty notebook to play with: <details> ```py % %load_ext autoreload %autoreload 2 import numpy as np import torchvision.transforms.v2 as T import torchvision.transforms.v2.functional as F from PIL import Image import torch torch.__version__ #%% x = torch.randint(100, (512, 512), dtype=torch.int16) #%% x_pil = F.to_pil_image(x) x_pil.mode # I;16 #%% F.pil_to_tensor(x_pil).dtype # torch.uint16 # %% F.to_tensor(x_pil).dtype # torch.int16 # %% x = np.random.randint(0, np.iinfo(np.uint16).max, (10, 10), dtype=np.uint16) x_pil = Image.fromarray(x, mode="I;16") x_pil.mode # I;16 # %% F.pil_to_tensor(x_pil).dtype # torch.uint16 # %% torch.testing.assert_close(torch.from_numpy(x)[None], F.pil_to_tensor(x_pil)) # %% F.to_tensor(x_pil).dtype # torch.int16 # %% torch.testing.assert_close(torch.from_numpy(x)[None].float(), F.to_tensor(x_pil).float()) # %% x = torch.randint(0, 256, size=(1, 3, 10, 10), dtype=torch.uint16) transforms = T.Compose( [ T.Pad(2), T.Resize(5), T.CenterCrop(3), # T.RandomHorizontalFlip(p=1), # T.ColorJitter(2, 2, 2, .1), T.ToDtype(torch.float32, scale=True), ] ) transforms(x) # ``` </details>
open
2024-03-28T12:53:19Z
2024-11-07T09:48:20Z
https://github.com/pytorch/vision/issues/8359
[]
NicolasHug
1
graphistry/pygraphistry
pandas
71
Color API use is not discoverable
cc @thibaudh We have received repeated questions about how to use color bindings and where the palettes are. I'm thinking: make more prominent in the homepage docs links, cross-link in the ReadTheDocs bind call docs, and cross-link in the relevant tutorials.
closed
2016-07-22T16:33:31Z
2020-06-10T06:47:31Z
https://github.com/graphistry/pygraphistry/issues/71
[ "enhancement", "p4" ]
lmeyerov
0
tfranzel/drf-spectacular
rest-api
984
Standard headers properties to all endpoints in one project
Hi, We have a custom header for our project that should be on all endpoints, Is there a way to configure it in one place (Not on every "extend_scheme")? I tried looking for a configuration that adds headers by default to all endpoints but failed to find one.
closed
2023-05-08T08:44:15Z
2023-07-14T16:29:38Z
https://github.com/tfranzel/drf-spectacular/issues/984
[]
barak-payem
2
huggingface/datasets
numpy
7,051
How to set_epoch with interleave_datasets?
Let's say I have dataset A which has 100k examples, and dataset B which has 100m examples. I want to train on an interleaved dataset of A+B, with stopping_strategy='all_exhausted' so dataset B doesn't repeat any examples. But every time A is exhausted I want it to be reshuffled (eg. calling set_epoch) Of course I want to interleave as IterableDatasets / streaming mode so B doesn't have to get tokenized completely at the start. How could I achieve this? I was thinking something like, if I wrap dataset A in some new IterableDataset with from_generator() and manually call set_epoch before interleaving it? But I'm not sure how to keep the number of shards in that dataset... Something like ``` dataset_a = load_dataset(...) dataset_b = load_dataset(...) def epoch_shuffled_dataset(ds): # How to make this maintain the number of shards in ds?? for epoch in itertools.count(): ds.set_epoch(epoch) yield from iter(ds) shuffled_dataset_a = IterableDataset.from_generator(epoch_shuffled_dataset, gen_kwargs={'ds': dataset_a}) interleaved = interleave_datasets([shuffled_dataset_a, dataset_b], probs, stopping_strategy='all_exhausted') ```
closed
2024-07-15T18:24:52Z
2024-08-05T20:58:04Z
https://github.com/huggingface/datasets/issues/7051
[]
jonathanasdf
7
deepset-ai/haystack
nlp
8,329
API key should be made optional in `LLMEvaluator` and co
Now that we support using the evaluator(s) with locally hosted models (thorough the `api_base_url` API parameter), the `api_key` init parameter should be made optional.
closed
2024-09-05T08:42:57Z
2024-09-20T08:47:14Z
https://github.com/deepset-ai/haystack/issues/8329
[]
shadeMe
1
deepspeedai/DeepSpeed
pytorch
7,165
Install DeepSpeed fail with setuptools-77.0.3
```bash root@csi67c88jasm4-0:/workspace/LLaMA-Factory# pip list Package Version Editable project location --------------------------------- ------------- --------------------------------- accelerate 1.2.1 aiofiles 23.2.1 aiohappyeyeballs 2.6.1 aiohttp 3.11.14 aiosignal 1.3.2 airportsdata 20250224 annotated-types 0.7.0 anyio 4.9.0 astor 0.8.1 async-timeout 5.0.1 attrs 25.3.0 audioread 3.0.1 av 14.2.0 blake3 1.0.4 cachetools 5.5.2 certifi 2025.1.31 cffi 1.17.1 charset-normalizer 3.4.1 click 8.1.8 cloudpickle 3.1.1 compressed-tensors 0.9.2 contourpy 1.3.1 cupy-cuda12x 13.4.1 cycler 0.12.1 datasets 3.2.0 dbus-python 1.2.18 decorator 5.2.1 depyf 0.18.0 dill 0.3.8 diskcache 5.6.3 distro 1.7.0 dnspython 2.7.0 docstring_parser 0.16 einops 0.8.1 email_validator 2.2.0 exceptiongroup 1.2.2 fastapi 0.115.11 fastapi-cli 0.0.7 fastrlock 0.8.3 ffmpy 0.5.0 filelock 3.18.0 fire 0.7.0 fonttools 4.56.0 frozenlist 1.5.0 fsspec 2024.9.0 gguf 0.10.0 gradio 5.21.0 gradio_client 1.7.2 groovy 0.1.2 h11 0.14.0 httpcore 1.0.7 httptools 0.6.4 httpx 0.28.1 huggingface-hub 0.29.3 idna 3.10 importlib_metadata 8.6.1 interegular 0.3.3 jieba 0.42.1 Jinja2 3.1.6 jiter 0.9.0 joblib 1.4.2 jsonschema 4.23.0 jsonschema-specifications 2024.10.1 kiwisolver 1.4.8 lark 1.2.2 lazy_loader 0.4 librosa 0.11.0 llamafactory 0.9.2 /workspace/LLM_test/LLaMA-Factory llvmlite 0.43.0 lm-format-enforcer 0.10.11 markdown-it-py 3.0.0 MarkupSafe 2.1.5 matplotlib 3.10.1 mdurl 0.1.2 mistral_common 1.5.4 mpmath 1.3.0 msgpack 1.1.0 msgspec 0.19.0 multidict 6.2.0 multiprocess 0.70.16 nest-asyncio 1.6.0 networkx 3.4.2 ninja 1.11.1.3 nltk 3.9.1 numba 0.60.0 numpy 1.26.4 nvidia-cublas-cu12 12.4.5.8 nvidia-cuda-cupti-cu12 12.4.127 nvidia-cuda-nvrtc-cu12 12.4.127 nvidia-cuda-runtime-cu12 12.4.127 nvidia-cudnn-cu12 9.1.0.70 nvidia-cufft-cu12 11.2.1.3 nvidia-curand-cu12 10.3.5.147 nvidia-cusolver-cu12 11.6.1.9 nvidia-cusparse-cu12 12.3.1.170 nvidia-cusparselt-cu12 0.6.2 nvidia-nccl-cu12 2.21.5 nvidia-nvjitlink-cu12 12.4.127 nvidia-nvtx-cu12 12.4.127 openai 1.67.0 opencv-python-headless 4.11.0.86 orjson 3.10.15 outlines 0.1.11 outlines_core 0.1.26 packaging 24.2 pandas 2.2.3 partial-json-parser 0.2.1.1.post5 peft 0.12.0 pillow 11.1.0 pip 25.0.1 platformdirs 4.3.7 pooch 1.8.2 prometheus_client 0.21.1 prometheus-fastapi-instrumentator 7.1.0 propcache 0.3.0 protobuf 6.30.1 psutil 7.0.0 py-cpuinfo 9.0.0 pyarrow 19.0.1 pycountry 24.6.1 pycparser 2.22 pydantic 2.10.6 pydantic_core 2.27.2 pydub 0.25.1 Pygments 2.19.1 PyGObject 3.42.1 pyparsing 3.2.1 python-dateutil 2.9.0.post0 python-dotenv 1.0.1 python-json-logger 3.3.0 python-multipart 0.0.20 pytz 2025.1 PyYAML 6.0.2 pyzmq 26.3.0 ray 2.44.0 referencing 0.36.2 regex 2024.11.6 requests 2.32.3 rich 13.9.4 rich-toolkit 0.13.2 rouge-chinese 1.0.3 rpds-py 0.23.1 ruff 0.11.1 safehttpx 0.1.6 safetensors 0.5.3 scikit-learn 1.6.1 scipy 1.15.2 semantic-version 2.10.0 sentencepiece 0.2.0 setuptools 77.0.3 shellingham 1.5.4 shtab 1.7.1 six 1.17.0 sniffio 1.3.1 soundfile 0.13.1 soxr 0.5.0.post1 sse-starlette 2.2.1 ssh-import-id 5.11 starlette 0.46.1 sympy 1.13.1 termcolor 2.5.0 threadpoolctl 3.6.0 tiktoken 0.9.0 tokenizers 0.21.0 tomlkit 0.13.2 torch 2.6.0 torchaudio 2.6.0 torchvision 0.21.0 tqdm 4.67.1 transformers 4.49.0 triton 3.2.0 trl 0.9.6 typer 0.15.2 typing_extensions 4.12.2 tyro 0.8.14 tzdata 2025.1 urllib3 2.3.0 uvicorn 0.34.0 uvloop 0.21.0 vllm 0.8.1 watchfiles 1.0.4 websockets 15.0.1 wheel 0.45.1 xformers 0.0.29.post2 xgrammar 0.1.16 xxhash 3.5.0 yarl 1.18.3 zipp 3.21.0 ``` When I install deepspeed with `pip install deepspeed` I got this: ```error report TypeError: Command.__init__() got an unexpected keyword argument 'use_ninja' [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for deepspeed Running setup.py clean for deepspeed Failed to build deepspeed ``` Then I downgrade setuptools with `pip install setuptools==58.0.4` and succeed to install deepspeed. I will check if it works as well in practice as it seems.
open
2025-03-21T09:01:13Z
2025-03-24T18:56:19Z
https://github.com/deepspeedai/DeepSpeed/issues/7165
[]
kuailehaha
6
kornia/kornia
computer-vision
2,246
Improve speed for box blur (mean filter)
## 🚀 Feature <!-- A clear and concise description of the feature proposal --> Originally from this: https://github.com/kornia/kornia/issues/720#issuecomment-881859300 In theory box blur (mean filter) can be implemented in O(n) time. Two solutions - Use 2 separable 1D kernels (like `gaussian_blur2d()`) -> O(nk) time, should be simple. Only launch 2 pytorch calls. - Use intergral image (like [here](https://github.com/wuhuikai/DeepGuidedFilter/blob/master/GuidedFilteringLayer/GuidedFilter_PyTorch/guided_filter_pytorch/box_filter.py)) -> O(n) time. It seems like there will be quite a lot of overhead for small kernels ## Motivation <!-- A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too --> ## Pitch <!-- A clear and concise description of what you want to happen. --> ## Alternatives <!-- A clear and concise description of any alternative solutions or features you've considered, if any. --> ## Additional context <!-- Add any other context or screenshots about the feature request here. --> ______________________________________________________________________ #### Consider also to contribute to Kornia universe projects :) <sub> - [**Tutorials**](https://github.com/kornia/tutorials): our repository containing the tutorials. </sub>
closed
2023-03-02T02:02:03Z
2023-04-19T09:07:52Z
https://github.com/kornia/kornia/issues/2246
[ "help wanted" ]
gau-nernst
0
unionai-oss/pandera
pandas
946
pandera 0.12.0 does not support Python 3.7
When trying to import pandera 0.12.0 in python 3.7, I get the following error message: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...\lib\site-packages\pandera\__init__.py", line 50, in <module> from . import errors, pandas_accessor, typing File "...\lib\site-packages\pandera\pandas_accessor.py", line 7, in <module> from . import schemas File "...\lib\site-packages\pandera\schemas.py", line 13, in <module> from typing import ( ImportError: cannot import name 'Literal' from 'typing' (...\lib\typing.py) A quick search shows that Literal does not exist in typing in python 3.7 (https://stackoverflow.com/questions/61206437/importerror-cannot-import-name-literal-from-typing) A clear and concise description of what the bug is. - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the latest version of pandera. - [ ] (optional) I have confirmed this bug exists on the master branch of pandera. **Note**: Please read [this guide](https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) detailing how to provide the necessary information for us to reproduce your bug. #### Code Sample, a copy-pastable example ```python import pandera ``` #### Expected behavior A clear and concise description of what you expected to happen. No error. #### Desktop (please complete the following information): - OS: Windows 10 - Browser [e.g. chrome, safari] N/A - Version: pandera 0.12.0, python 3.7 #### Screenshots If applicable, add screenshots to help explain your problem. #### Additional context Add any other context about the problem here.
closed
2022-09-19T22:30:28Z
2022-10-18T18:34:40Z
https://github.com/unionai-oss/pandera/issues/946
[ "bug" ]
DManowitz
2
zwczou/weixin-python
flask
91
希望能在WeixinMP构造方法中增加proxies代理设置参数
希望能在WeixinMP构造方法中增加proxies代理设置参数 ```python def __init__(self, app_id, app_secret, ac_path=None, jt_path=None, ac_callback=None, jt_callback=None, proxies=None): """ :param :app_id 微信app id :param :app_secret 微信app secret :param :ac_path access token 保存路径 :param :jt_path js ticket 保存路径 :param :ac_callback ac_callback :param :jt_callback jt_callback """ self.app_id = app_id self.app_secret = app_secret self.session = requests.Session() self.session.proxies = proxies # 为requests设置代理 if ac_path is None: ac_path = os.path.join(DEFAULT_DIR, ".access_token") if jt_path is None: jt_path = os.path.join(DEFAULT_DIR, ".jsapi_ticket") self.ac_path = ac_path self.jt_path = jt_path self.ac_callback = ac_callback self.jt_callback = jt_callback ```
closed
2023-01-05T02:23:07Z
2023-02-11T05:02:29Z
https://github.com/zwczou/weixin-python/issues/91
[]
lo106258
1
jschneier/django-storages
django
748
S3 custom domain should be based on bucket name
I override the class `S3Boto3Storage` to create my own custom storage like below ```python class MediaStorage(S3Boto3Storage): bucket_name = 'my-media-bucket' ``` I was expecting the file url generated by my custom storage `MediaStorage` will honor the bucket name and give the correct file url when I do the following: ```python media_storage = MediaStorage() media_storage.save(additional_path, file_obj) file_url = media_storage.url(additional_path) ``` However, the generated `file_url` gives me a 404. When I look into the url, it did not use the bucket name of `MediaStorage` in domain name. After I looked at the implementation of the class `S3Boto3Storage`, the url is indeed not using `bucket_name` to generate url, and instead it always uses `settings.AWS_S3_CUSTOM_DOMAIN`, which I already set for my static file storage. I can see that the file is uploaded on S3, and the url S3 generated for the file is like `https://my-media-bucket.s3.amazonaws.com/path/to/the/file/`. I was expecting when I override `bucket_name`, the storage should use the bucket name to generate the url. I'm wondering is there any reason not to use bucket name to generate the url, or set the custom domain? I'm thinking of in class `S3Boto3Storage`, `def __init__`, let `custom_domain` honor `bucket_name` during the initialization. There're two ways I can think of: 1. Set `custom_domain` to `self.custom_domain = '{}.s3.amazonaws.com'.format(self.bucket_name)` 2. Replace the lowest level subdomain of `custom_domain` by `bucket_name`, if custom_domain is set. If any of these sounds good, I can create a PR, but just want to make sure if there's any consideration for the current behavior or concern about the change beforehand. Thank you!
closed
2019-09-08T09:36:59Z
2020-02-03T07:46:50Z
https://github.com/jschneier/django-storages/issues/748
[ "s3boto" ]
rivernews
3
developmentseed/lonboard
data-visualization
302
H3 support
How difficult would adding h3 cell support be given that deck.gl already supports it? Would it be possible to quickly list the steps that are required to add another feature layer type?
open
2023-12-20T16:48:03Z
2024-01-02T18:59:57Z
https://github.com/developmentseed/lonboard/issues/302
[]
jakebolewski
1
hankcs/HanLP
nlp
1,196
每个用户使用单独的词典
<!-- 注意事项和版本号必填,否则不回复。若希望尽快得到回复,请按模板认真填写,谢谢合作。 --> ## 注意事项 请确认下列注意事项: * 我已仔细阅读下列文档,都没有找到答案: - [首页文档](https://github.com/hankcs/HanLP) - [wiki](https://github.com/hankcs/HanLP/wiki) - [常见问题](https://github.com/hankcs/HanLP/wiki/FAQ) * 我已经通过[Google](https://www.google.com/#newwindow=1&q=HanLP)和[issue区检索功能](https://github.com/hankcs/HanLP/issues)搜索了我的问题,也没有找到答案。 * 我明白开源社区是出于兴趣爱好聚集起来的自由社区,不承担任何责任或义务。我会礼貌发言,向每一个帮助我的人表示感谢。 * [ ] 我在此括号内输入x打钩,代表上述事项确认完毕。 ## 版本号 <!-- 发行版请注明jar文件名去掉拓展名的部分;GitHub仓库版请注明master还是portable分支 --> 当前最新版本号是: 我使用的版本是: <!--以上属于必填项,以下可自由发挥--> ## 我的问题 <!-- 请详细描述问题,越详细越可能得到解决 --> ## 复现问题 <!-- 你是如何操作导致产生问题的?比如修改了代码?修改了词典或模型?--> ### 步骤 1. 首先…… 2. 然后…… 3. 接着…… ### 触发代码 ``` public void testIssue1234() throws Exception { CustomDictionary.add("用户词语"); System.out.println(StandardTokenizer.segment("触发问题的句子")); } ``` ### 期望输出 <!-- 你希望输出什么样的正确结果?--> ``` 期望输出 ``` ### 实际输出 <!-- HanLP实际输出了什么?产生了什么效果?错在哪里?--> ``` 实际输出 ``` ## 其他信息 <!-- 任何可能有用的信息,包括截图、日志、配置文件、相关issue等等。-->
closed
2019-06-10T04:02:35Z
2019-06-10T04:04:40Z
https://github.com/hankcs/HanLP/issues/1196
[]
hualiang9602
0
betodealmeida/shillelagh
sqlalchemy
445
Running query in superset sqllab with shillelagh driver returns Unsupported table error
**Describe the bug** Using shillelagh with superset. Running query on internal hosted json api url returns error. `shillelagh error: Unsupported table: https://server.com/app/api/v1.0/storage/list` Running the query on public API works. For example: "https://date.nager.at/api/v3/publicholidays/2023/US". So that gives me the confident that shillelagh is configured correctly on superset. Both internal and public api shows header content-type: application/json; charset=utf-8 **To Reproduce** Steps to reproduce the behavior: 1. from superset sqllab, run: `SELECT * FROM "https://server.com/app/api/v1.0/storage/list"; ` <-- does not work 2. from superset sqllab, run: `SELECT * FROM "https://date.nager.at/api/v3/publicholidays/2023/US"; ` <-- works **Expected behavior** Expect query from internal API url works by showing the table **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: Server OS is CentOS, client is Windows OS with Chrome browser - Browser [e.g. chrome, safari]: Google Chrome - Version [e.g. 22]: **Additional context** The internal API return content like below: ``` [ { "id": "656d951ca902d21d40bdf0f8", "path": "\\\\10.11.10.101\\datavol\\raw_file\\OX02C10\\P8P456\\OX02C10ABA_SS_60C_EM0508_JTT\\10A4\\CP0", "remarks": "For _NC algorithm updates", "creationDate": "2023-12-04T09:00:12.473Z", "obsoleteDate": "0001-01-01T00:00:00Z", "creator": "a.gong", "creatorId": null }, { "id": "656e97c58c3d9373cb8eb15c", "path": "\\\\10.11.10.101\\datavol\\raw_file\\OV50K40\\P8P672\\OV50K40AAA_FS_60C_EM0101\\03G6\\CP0", "remarks": "migrated retention", "creationDate": "2023-12-05T03:23:49.26Z", "obsoleteDate": "0001-01-01T00:00:00Z", "creator": "m.zou", "creatorId": null }, { "id": "656eb0eaa902d21d40bdf0f9", "path": "\\\\172.33.10.210\\oscStorage\\datavolOsc\\raw_file_eng\\OV50H40\\PL9155\\OV50H40ABA_FS_60C_EM1306\\04C6\\CP0", "remarks": "pattern detection analysis", "creationDate": "2023-12-05T05:11:06.979Z", "obsoleteDate": "0001-01-01T00:00:00Z", "creator": "k.mao", "creatorId": null } ] ```
closed
2024-04-03T19:32:35Z
2024-08-17T05:49:20Z
https://github.com/betodealmeida/shillelagh/issues/445
[ "waiting" ]
smetis
7
Ehco1996/django-sspanel
django
131
同,后台添加节点报500,附上debug
找了一圈,发现就那一个和我一样,,但是没有看到解决方法,所以自己再发一下, 希望大佬看一下,还有上次我忘记在哪个群见到你了,,,唉,要不然直接QQ给你讲好了 Request Method: | POST -- | -- http://myss.co/admin/ssserver/node/add/ 2.0.5 IntegrityError (1048, "Column 'password' cannot be null") /root/.pyenv/versions/3.6.3/envs/venv-sspanel/lib/python3.6/site-packages/django/db/backends/mysql/base.py in execute, line 76 /root/.pyenv/versions/3.6.3/envs/venv-sspanel/bin/uwsgi 3.6.3 ['.', '', '/root/.pyenv/versions/3.6.3/lib/python36.zip', '/root/.pyenv/versions/3.6.3/lib/python3.6', '/root/.pyenv/versions/3.6.3/lib/python3.6/lib-dynload', '/root/.pyenv/versions/3.6.3/envs/venv-sspanel/lib/python3.6/site-packages'] 星期二, 5 六月 2018 12:57:36 +0800 Variable | Value -- | -- args | [1, None, None, 'CN', 0, 1, 0, '1', None, '1', 'aes-128-ctr', 1.0, 'auth_chain_a', None, 'http_simple', None, 0, 1073741824, '1.0GB', 0, '0B', 1, '谜之屋'] query | ('INSERT INTO `ss_node` (`node_id`, `port`, `password`, `country`, ' '`custom_method`, `show`, `node_type`, `name`, `info`, `server`, `method`, ' '`traffic_rate`, `protocol`, `protocol_param`, `obfs`, `obfs_param`, `level`, ' '`total_traffic`, `human_total_traffic`, `used_traffic`, ' '`human_used_traffic`, `order`, `group`) VALUES (%s, %s, %s, %s, %s, %s, %s, ' '%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)') self | <django.db.backends.mysql.base.CursorWrapper object at 0x7ff530e41048> 等等..... 我也不晓得该截那些,,,笑哭,,小白一枚。。。
closed
2018-06-05T04:59:30Z
2018-07-30T03:19:32Z
https://github.com/Ehco1996/django-sspanel/issues/131
[]
AndyNull
3
supabase/supabase-py
flask
72
Can't upload anything to bucket
I read the doc and after connected, I can't upload anything in the storage bucket. ```` url= "XXXXX" key = "XXXXXXXXX supabase: Client = create_client(url, key) my_file = os.path.dirname(os.path.abspath("__file__")) + "/file.jpg" storage.upload(path=supabase.storage_url, file=my_file) ```` It doesn't work and don't print any error.
closed
2021-10-22T11:11:29Z
2021-11-08T10:05:15Z
https://github.com/supabase/supabase-py/issues/72
[]
kebsont
12
Farama-Foundation/PettingZoo
api
815
[Proposal] docs: gym -> gymnasium
### Proposal A clear and concise description of the proposal. ### Motivation Please outline the motivation for the proposal. Is your feature request related to a problem? e.g.,"I'm always frustrated when [...]". If this is related to another GitHub issue, please link here too. ### Pitch A clear and concise description of what you want to happen. ### Alternatives A clear and concise description of any alternative solutions or features you've considered, if any. ### Additional context Add any other context or screenshots about the feature request here. ### Checklist - [ ] I have checked that there is no similar [issue](https://github.com/Farama-Foundation/PettingZoo/issues) in the repo (**required**)
closed
2022-10-07T15:21:14Z
2022-10-08T00:00:50Z
https://github.com/Farama-Foundation/PettingZoo/issues/815
[]
WillDudley
0
babysor/MockingBird
deep-learning
324
运行toolbox后进行录音,随后卡死
运行toolbox,使用https://github.com/babysor/MockingBird/wiki/Quick-Start-(Newbie) 中提到的模型,录音后程序卡死, ![image](https://user-images.githubusercontent.com/73403611/148560358-ca26640d-3e2b-427b-9304-b4df3c14aa86.png) 尝试选择不同的vocoder,程序也卡死 ![image](https://user-images.githubusercontent.com/73403611/148560083-a48f4940-bdfc-46a5-a616-b180ffc0bf61.png)
closed
2022-01-07T14:45:52Z
2022-01-13T10:25:01Z
https://github.com/babysor/MockingBird/issues/324
[]
Starkxim
6
wkentaro/labelme
deep-learning
1,003
Install on Macbook m1 chip
conda install pyqt conda install matplotlib pip install labelme **That works for me!**
closed
2022-03-15T07:01:56Z
2022-06-25T04:27:01Z
https://github.com/wkentaro/labelme/issues/1003
[]
XinBow99
1
pytorch/pytorch
machine-learning
149,097
Aten arange behavior when dtype is int64 and step size is greater than range
### 🐛 Describe the bug While testing corner cases on torch.arange, i see the following behavior when dtype is int64 and step size is greater than range. On CPU, i get the following behavior for arange. >> a = torch.arange(0, 0.5, 1, dtype=torch.int64) >> a tensor([], dtype=torch.int64) >> a = torch.arange(0, 0.5, 1, dtype=torch.int32) >>a tensor([0], dtype=torch.int32) Why is it that size of ‘a’ is 0 when dtype is int64 where as it is 1 for int32? Logically speaking the first element is anyways 0 and size should have been 1 even for int64 type, isn’t it? ### Versions 2025-03-13 05:10:24 (2.62 MB/s) - ‘collect_env.py’ saved [24353/24353] Collecting environment information... PyTorch version: 2.6.0+hpu_1.21.0-202.git603340c Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.5 (ssh://git@github.com/habana-internal/tpc_llvm10 6423f90703886aa37631daf63eaf24f24df9ba3d) CMake version: version 3.29.5 Libc version: glibc-2.35 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-131-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz CPU family: 6 Model: 85 Thread(s) per core: 1 Core(s) per socket: 6 Socket(s): 2 Stepping: 0 BogoMIPS: 5187.81 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xsaves arat pku ospke md_clear flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: VMware Virtualization type: full L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 12 MiB (12 instances) L3 cache: 38.5 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX flush not necessary, SMT disabled Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==7.0.0 [pip3] habana-torch-dataloader==1.21.0+git9d09025dd [pip3] habana-torch-plugin==1.21.0+git9d09025dd [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] torch==2.6.0+hpu.1.21.0.202.git603340c [pip3] torch_tb_profiler==0.4.0 [pip3] torchaudio==2.5.1a0+1661daf [pip3] torchdata==0.9.0+d4bb3e6 [pip3] torchmetrics==1.2.1 [pip3] torchtext==0.18.0a0+9bed85d [pip3] torchvision==0.20.1a0+3ac97aa [conda] Could not collect cc @albanD
open
2025-03-13T03:11:13Z
2025-03-17T04:22:59Z
https://github.com/pytorch/pytorch/issues/149097
[ "triaged", "module: python frontend" ]
satheeshhab
1
graphql-python/graphene
graphql
1,045
Date argument is returned as String type in info.field_asts
```python import graphene import datetime class Patron(graphene.ObjectType): id = graphene.ID() name = graphene.String() age = graphene.Int() dob = graphene.types.datetime.Date() class Query(graphene.ObjectType): patron = graphene.Field(Patron, birth=graphene.types.datetime.Date()) def resolve_patron(self, info, birth): print(info.field_asts[0]) return Patron(id=1, name="Syrus", age=27, dob=datetime.date(2018, 1, 1)) schema = graphene.Schema(query=Query) query = """ query something{ patron(birth: "2018-01-01") { id name age dob } } """ if __name__ == "__main__": result = schema.execute(query) print(result.errors) print(result.data["patron"])` ``` Running this python code prints following `info.field_asts` ```bash $ python3.7 simple_example.py Field(alias=None, name=Name(value='patron'), arguments=[Argument(name=Name(value='birth'), value=StringValue(value='2018-01-01'))], directives=[], selection_set=SelectionSet(selections=[Field(alias=None, name=Name(value='id'), arguments=[], directives=[], selection_set=None), Field(alias=None, name=Name(value='name'), arguments=[], directives=[], selection_set=None), Field(alias=None, name=Name(value='age'), arguments=[], directives=[], selection_set=None), Field(alias=None, name=Name(value='dob'), arguments=[], directives=[], selection_set=None)])) ``` **`Argument(name=Name(value='birth'), value=StringValue(value='2018-01-01'))`** If you see closely, the argument birth comes back as `StringValue` but I expected a `DateValue`. Is this a bug or am I missing something?
closed
2019-08-02T17:26:48Z
2019-08-27T19:59:30Z
https://github.com/graphql-python/graphene/issues/1045
[]
namanjain236
4
LibreTranslate/LibreTranslate
api
576
Web UI language not changing
Hi, I have installed LibreTranslate with docker image `libretranslate/libretranslate:latest`, but when I change the web ui language with icon on top-right, the language of the web ui does not change. I think this is a bug.
closed
2024-01-23T22:27:09Z
2024-04-22T17:46:26Z
https://github.com/LibreTranslate/LibreTranslate/issues/576
[ "possible bug" ]
loviuz
2
JaidedAI/EasyOCR
deep-learning
601
Downloading detection model too slow
Hi, I when I run a code in Windows, it display "Downloading detection model, please wait. This may take several minutes depending upon your network connection." Then it keep downloading for a long time. even though I plug a VPN , its progress is very slow I just use "pip install easyocr" to install And the code is here: # import easyocr # reader = easyocr.Reader(['en']) # result = reader.readtext('1.jpg') # result
closed
2021-11-27T07:12:11Z
2022-08-07T05:01:23Z
https://github.com/JaidedAI/EasyOCR/issues/601
[]
LiHangBing
2
bigscience-workshop/petals
nlp
279
cpufeature fails to be installed on some non-x86 CPUs
We use the [cpufeature](https://github.com/robbmcleod/cpufeature) module to detect if a CPU supports AVX512, however, cpufeature fails to be installed on some non-x86 CPUs (e.g., ARMs). We need to remove this dependency and use code like this to detect if the CPU supports AVX512: ```python def is_fast_bfloat16_supported() -> bool: if os.name != "posix" or platform.processor() != "x86_64": return False try: eax = _run_x86_assembler( b"\xB8\x07\x00\x00\x00" # mov eax, 7 b"\xB9\x01\x00\x00\x00" # mov ecx, 1 b"\x0f\xa2" # cpuid b"\xC3" # ret ) avx512_bf16 = bool(eax & (1 << 5)) return amx_bf16 or avx512_bf16 except: logger.warning("Failed to check for the CPU's native bfloat16 support:", exc_info=True) return False def _run_x86_assembler(machine_code: bytes) -> int: memory = mmap.mmap( -1, len(machine_code), flags=mmap.MAP_PRIVATE | mmap.MAP_ANONYMOUS, prot=mmap.PROT_WRITE | mmap.PROT_READ | mmap.PROT_EXEC, ) try: memory.write(machine_code) address = ctypes.addressof(ctypes.c_int.from_buffer(memory)) functype = ctypes.CFUNCTYPE(ctypes.c_uint32) func = functype(address) return func() finally: memory.close() ``` Note that the code above checks for the presence of AVX512_BF16 instruction set, but actually pure AVX512 is enough. This needs to be changed before integrating this code, see https://en.wikichip.org/wiki/x86/avx-512 for the relevant instruction params. Before merging, it's necessary to test on **(a)** x86-64 CPUs without AVX512, **(b)** x86-64 CPUs with AVX512, **(c)** ARM CPUs (e.g. available on Oracle free-tier cloud or other places).
open
2023-03-01T17:29:14Z
2023-04-12T10:11:14Z
https://github.com/bigscience-workshop/petals/issues/279
[ "bug", "good first issue", "help wanted", "1day" ]
borzunov
6
wandb/wandb
data-science
8,807
[Bug]: Cannot change the run name through UI
### Describe the bug I tried changing the name of my run through the UI. ![Image](https://github.com/user-attachments/assets/00e8eb7e-2ea9-498d-b707-bb75effecfb5) But the figure does not change accordingly, still showing the original name ![Image](https://github.com/user-attachments/assets/a4c17ed5-df16-4efd-b11f-6c64a8834766) And the name on the left panel is back ![Image](https://github.com/user-attachments/assets/ecff8276-ef90-411b-9ec8-ee28fe8c0360) when I reload the webpage
closed
2024-11-07T22:34:35Z
2024-11-14T22:20:29Z
https://github.com/wandb/wandb/issues/8807
[ "ty:bug", "a:app" ]
Boltzmachine
4
microsoft/qlib
machine-learning
925
ERROR - qlib.workflow - [utils.py:38] - An exception has been raised[ValueError: can't find a freq from [Freq(day)] that can resample to 1min!].
## To Reproduce df = D.features([code], ['$high', '$low', '$close', '$open','$volume','$money'], start_time='%s 09:31:00'%str(start_time)[:10], end_time='%s 15:00:00'%str(end_time)[:10], freq='1min', disk_cache=0) ## Screenshot <img width="1062" alt="image" src="https://user-images.githubusercontent.com/41324537/155052775-e0cb1ca4-ba25-4b97-9e5a-dfba5ccc4da7.png"> ## Environment **Note**: User could run `cd scripts && python collect_info.py all` under project directory to get system information and paste them here directly. - Qlib version:Newest - Python version:3.7.9 - OS (`Windows`, `Linux`, `MacOS`):MacOS - Commit number (optional, please provide it if you are using the dev version):
closed
2022-02-22T02:36:55Z
2024-10-23T14:36:41Z
https://github.com/microsoft/qlib/issues/925
[ "bug" ]
marcuswang6
6
plotly/dash
data-visualization
2,594
[BUG] App restarts without error message.
![image](https://github.com/plotly/dash/assets/3391614/6902cccf-fc83-42c2-99e1-eabc241367b3) Recently my app restarts when certain callbacks are called without any error message. I am running the same code that runs in successfully in production, but I updated dependencies. Any one else observing this behavior? It's hard to debug this without info about what goes wrong. ``` dependencies: - _libgcc_mutex=0.1 - _openmp_mutex=4.5 - blas=1.0 - bottleneck=1.3.5 - bzip2=1.0.8 - ca-certificates=2023.5.7 - click=8.1.3 - colorama=0.4.6 - ghp-import=2.1.0 - importlib-metadata=6.6.0 - jinja2=3.1.2 - ld_impl_linux-64=2.40 - libblas=3.9.0 - libcblas=3.9.0 - libexpat=2.5.0 - libffi=3.4.2 - libgcc-ng=12.2.0 - libgfortran-ng=12.2.0 - libgfortran5=12.2.0 - libgomp=12.2.0 - liblapack=3.9.0 - libnsl=2.0.0 - libopenblas=0.3.21 - libsqlite=3.40.0 - libstdcxx-ng=12.2.0 - libuuid=2.38.1 - libzlib=1.2.13 - markdown=3.3.7 - mergedeep=1.3.4 - mkdocs=1.4.3 - ncurses=6.3 - numexpr=2.8.4 - numpy=1.24.2 - openssl=3.1.1 - pip=23.0.1 - python=3.11.3 - python-dateutil=2.8.2 - python-tzdata=2023.3 - python_abi=3.11 - pytz=2023.3 - pyyaml=6.0 - pyyaml-env-tag=0.1 - readline=8.2 - setuptools=67.6.1 - six=1.16.0 - tk=8.6.12 - typing_extensions=4.6.3 - tzdata=2023c - watchdog=3.0.0 - wheel=0.40.0 - xz=5.2.6 - yaml=0.2.5 - zipp=3.15.0 - pip: - adjusttext==0.8 - aiohttp==3.8.4 - aiosignal==1.3.1 - alabaster==0.7.13 - alembic==1.10.3 - ansi2html==1.8.0 - asttokens==2.2.1 - async-timeout==4.0.2 - attrs==22.2.0 - babel==2.12.1 - backcall==0.2.0 - beautifulsoup4==4.12.2 - black==23.3.0 - blosc2==2.0.0 - brotlipy==0.7.0 - cachelib==0.9.0 - certifi==2022.12.7 - cffi==1.15.1 - charset-normalizer==3.1.0 - cloudpickle==2.2.1 - cmaes==0.9.1 - colorlog==6.7.0 - colorlover==0.3.0 - comm==0.1.3 - contourpy==1.0.7 - coverage==7.2.3 - coverage-badge==1.1.0 - cycler==0.11.0 - cython==0.29.34 - dash==2.11.1 - dash-bootstrap-components==1.4.1 - dash-core-components==2.0.0 - dash-extensions==0.1.3 - dash-html-components==2.0.0 - dash-table==5.0.0 - dash-tabulator==0.4.2 - dash-uploader==0.7.0a1 - dask==2023.7.0 - debugpy==1.6.7 - decorator==5.1.1 - dill==0.3.6 - diskcache==5.6.1 - dnspython==2.3.0 - docutils==0.18.1 - editorconfig==0.12.3 - email-validator==2.0.0.post2 - entrypoints==0.4 - et-xmlfile==1.1.0 - executing==1.2.0 - fastjsonschema==2.16.3 - flask==2.2.5 - flask-caching==1.10.1 - flask-login==0.6.2 - flask-migrate==4.0.4 - flask-sqlalchemy==3.0.5 - flask-wtf==1.1.1 - fonttools==4.39.3 - frozenlist==1.3.3 - fsspec==2023.6.0 - greenlet==2.0.2 - h5py==3.9.0 - hdf5plugin==4.1.3 - idna==3.4 - imagesize==1.4.1 - iniconfig==2.0.0 - ipyfilechooser==0.6.0 - ipykernel==6.22.0 - ipython==8.12.0 - ipywidgets==8.0.7 - itsdangerous==2.1.2 - jedi==0.17.2 - joblib==1.2.0 - jsbeautifier==1.14.8 - jsonschema==4.18.0 - jsonschema-specifications==2023.6.1 - jupyter-client==8.1.0 - jupyter-core==5.3.0 - jupyterlab-widgets==3.0.7 - kiwisolver==1.4.4 - locket==1.0.0 - lxml==4.9.3 - mako==1.2.4 - markdown-it-py==3.0.0 - markupsafe==2.1.2 - matplotlib==3.7.2 - matplotlib-inline==0.1.6 - matplotlib-venn==0.11.9 - mdit-py-plugins==0.4.0 - mdurl==0.1.2 - missingno==0.5.2 - mizani==0.9.0 - mkdocs-material==9.1.15 - mkdocs-material-extensions==1.1.1 - molmass==2023.4.10 - more-itertools==8.14.0 - ms-mint==0.2.3 - msgpack==1.0.5 - multidict==6.0.4 - multiprocess==0.70.14 - mypy-extensions==1.0.0 - myst-parser==2.0.0 - nbformat==5.9.1 - nest-asyncio==1.5.6 - openpyxl==3.1.2 - optuna==3.1.1 - packaging==21.3 - pandas==2.0.3 - parso==0.7.1 - partd==1.4.0 - pathspec==0.11.1 - patsy==0.5.3 - pexpect==4.8.0 - pickleshare==0.7.5 - pillow==10.0.0 - platformdirs==3.2.0 - plotly==5.15.0 - plotnine==0.10.1 - pluggy==1.0.0 - prompt-toolkit==3.0.38 - psims==1.2.5 - psutil==5.9.4 - psycopg2-binary==2.9.6 - ptyprocess==0.7.0 - pure-eval==0.2.2 - py-cpuinfo==9.0.0 - pyarrow==12.0.1 - pycparser==2.21 - pygments==2.15.1 - pymdown-extensions==10.0.1 - pymzml==2.5.2 - pyparsing==3.0.9 - pyrsistent==0.19.3 - pyteomics==4.6 - pytest==7.4.0 - pytest-cov==4.0.0 - pyzmq==25.0.2 - referencing==0.29.1 - regex==2023.3.23 - requests==2.28.2 - retrying==1.3.4 - rpds-py==0.8.10 - scikit-learn==1.3.0 - scipy==1.10.1 - seaborn==0.12.2 - sklearn==0.0.post4 - snowballstemmer==2.2.0 - soupsieve==2.4.1 - sphinx==6.2.1 - sphinx-rtd-theme==1.2.2 - sphinxcontrib-applehelp==1.0.4 - sphinxcontrib-devhelp==1.0.2 - sphinxcontrib-htmlhelp==2.0.1 - sphinxcontrib-jquery==4.1 - sphinxcontrib-jsmath==1.0.1 - sphinxcontrib-qthelp==1.0.3 - sphinxcontrib-serializinghtml==1.1.5 - sqlalchemy==2.0.9 - stack-data==0.6.2 - statsmodels==0.13.5 - tables==3.8.0 - tabulate==0.9.0 - tenacity==8.2.2 - threadpoolctl==3.1.0 - toolz==0.12.0 - tornado==6.2 - tqdm==4.65.0 - traitlets==5.9.0 - typing-extensions==4.5.0 - urllib3==1.26.16 - waitress==2.1.2 - wcwidth==0.2.6 - werkzeug==2.2.3 - wget==3.2 - widgetsnbextension==4.0.7 - wtforms==3.0.1 - xlsxwriter==3.1.2 - yarl==1.9.1 ``` The app also takes notably more time to start.
closed
2023-07-11T00:52:01Z
2024-05-23T10:15:14Z
https://github.com/plotly/dash/issues/2594
[]
sorenwacker
3
jupyter-widgets-contrib/ipycanvas
jupyter
89
Use Github actions for the CI
closed
2020-05-01T07:10:05Z
2020-05-01T07:46:44Z
https://github.com/jupyter-widgets-contrib/ipycanvas/issues/89
[]
martinRenou
1
WZMIAOMIAO/deep-learning-for-image-processing
deep-learning
633
绘制PR曲线
作者您好,我想借鉴您的ssd代码,现在有个难题就是您的论文中好像没有绘制P曲线或R曲线或者PR曲线,请问我该在validation.py中操作还是在plot_curve.py中操作呢? 或者不绘制曲线,单纯得到Recall和Precision的值也可以,我该怎么改呢? 感谢感谢
closed
2022-08-31T08:26:51Z
2022-08-31T13:27:01Z
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/issues/633
[]
lunaWU628
2
deeppavlov/DeepPavlov
tensorflow
1,222
Train using GPU, predict using CPU
Hi everyone! I'm new in deep learning, so sorry I ask a lot of questions. I opened this issue: https://github.com/deepmipt/DeepPavlov/issues/1212 and now I can use GPU to train BERT models. I'm building chatbot system and for this reason I have to load 4 trained models: intent classification, two ner models, and bert embedder. But I have several problems with it: 1) I want to train models one by one, but after first training, training process is still exist (nvidia-smi shows this). I trained 3 models this way: train model, then restart Jupyter's kernel (this clear training process from GPU) and then train another models the same way. But it is not flexible solution. I want to use .py file where all models will be trained. (when I use .py file also this problem) 2) Loading trained models using GPU to Jupyter Notebook make Jupyter's kernel dead. I try to load them using .py file, also have error. I think, that may be not enough memory, but It's strange. When I use CPU to train, there is no problem with memory, I can load all this models and use them. May be good way is to train model using GPU, and then make predictions using CPU, is it possible? I feel that smth wrong with memory usage of GPU, but lack of experience in deep learning doesn't afford me to solve this by myself. (p.s. возможно будет эффективней общаться на русском:) )
closed
2020-05-19T09:13:16Z
2020-06-02T05:51:01Z
https://github.com/deeppavlov/DeepPavlov/issues/1222
[]
ostreech1997
3
pydata/bottleneck
numpy
132
consider splitting memory allocation and computation functions in the c_rewrite branch
e.g. see: https://github.com/kwgoodman/bottleneck/blob/6a4a315f7c5426b8071903697e5e65e27d0c905d/bottleneck/src/move2_template.c#L27 If the split happens now, it will make it easy to parallelize these functions later. Also, it makes it easy to benchmark the computation part only, as you can avoid repeated memory allocation.
closed
2016-07-25T15:55:44Z
2016-09-26T18:30:43Z
https://github.com/pydata/bottleneck/issues/132
[]
jennolsen84
7
keras-team/keras
python
20,857
Several Problems when using Keras Image Augmentation Layers to Augment Images and Masks for a Semantic Segmentation Dataset
In the following, I will try to tell you a bit of my “story” about how I read through the various layers and (partly outdated) tutorials on image augmentation for semantic segmentation, what problems and bugs I encountered and how I was able to solve them, at least for my use case. I hope that I am reporting these issue(s) in the right place and that I can help the developers responsible with my “story”. I am currently using the latest versions of Keras (3.8) and Tensorflow (2.18.0) on an Ubuntu 23.10 machine, but have also observed the issues with other setups. My goal was to use some of the Image Augmentation Layers from Keras to augment the images AND masks in my semantic segmentation dataset. To do this I followed the [segmentation tutorial from Tensarflow](https://www.tensorflow.org/tutorials/images/segmentation) where a custom `Augment` class is used for augmentation. This code works fine because the `Augment` class uses only a single augmentation layer. But, for my custom code I wanted to use more augmentations. Therefore, I "combined" several of the augmentation layers trying both the normal [Pipeline layer](https://keras.io/api/layers/preprocessing_layers/image_augmentation/pipeline/) but also my preferred [RandomAugmentationPipeline layer from keras_cv](https://github.com/keras-team/keras-cv/blob/master/keras_cv/src/layers/preprocessing/random_augmentation_pipeline.py). I provide an example implementation in [this gist](https://colab.research.google.com/gist/RabJon/9f27d600301dcf6a734e8b663c802c7f/modification_of_segmentation.ipynb). The gist is a modification of the aforementioned [image segmentation tutorial from Tensorflow](https://www.tensorflow.org/tutorials/images/segmentation) where I intended to only change the `Augment` class slightly to fit my use case and to remove all the unnecessary parts. Unfortunately, I also had to touch the code that loads the dataset, because the dataset version used in the notebook was no longer supported. But, this is another issue. Anyway, at the bottom of the notebook you can see some example images and masks from the data pipeline and if you inspect the in more detail you can see that for some examples images and masks do not match because they were augmented differently, which is obviously not the expected behaviour. You can also see that these mismatches already happen from the first epoch on. On my system with my custom use case (where I was using the RandomAugmentationPipeline layer) it happend only from the second epoch onward, which made debugging much more difficult. I first assumed that it was one specific augmentation layer that caused the problems, but after trying them one-by-one I found out that it is the combination of layers that makes the problems. So, I started to think about possible solutions and I also tried to use the Sequential model from keras to combine the layers instead of the Pipeline layer, but the result remained the same. I found that the random seed is the only parameter which can be used to "control and sync" the augmentation of the images and masks, but I already had ensured that I always used the same seed. So, I started digging into the source code of the different augmentation layers and I found that most of the ones that I was using implement a `transform_segmentation_masks()` method which is however not used if the layers are called as described in the tutorial. This is because, in order to enforce the call of this method, images and masks must be passed to the same augmentation layer object as a dictionary with the keys “images” and “segmentation_masks” instead of using two different augmentation layer objects for images and masks. However, I had not seen this type of call using a dictionary in any tutorial, neither for Tensorflow nor for Keras. Nevertheless, I decided to change my code to make use of the `transform_segmentation_masks()` method, as I hoped that if such a method already existed, it would also process the images and masks correctly and thus avoid the mismatches. Unfortunately, this was not directly the case, because some of the augmentation layers changed the masks to float32 data types although the input was uint8. Even with layers such as “RandomFlip”, which should not change or interpolate the data at all, but only shift it. So, I had to wrap all layers again in a custom layer, which castes the data back to the input data type before returning it: ```python class ApplyAndCastAugmenter(BaseImageAugmentationLayer): def __init__(self, other_augmenter, **kwargs): super().__init__(**kwargs) self.other_augmenter = other_augmenter def call(self, inputs): output_dtypes = {} is_dict = isinstance(inputs, dict) if is_dict: for key, value in inputs.items(): output_dtypes[key] = value.dtype else: output_dtypes = inputs.dtype outputs = self.other_augmenter(inputs) if is_dict: for key in outputs.keys(): outputs[key] = keras.ops.cast(outputs[key], output_dtypes[key]) else: outputs = keras.ops.cast(outputs, output_dtypes) return outputs ``` With this (admittedly unpleasant) work-around, I was able to fix all the remaining problems. Images and masks finally matched perfectly after augmentation and this was immediately noticeable in a significant performance improvement in the training of my segmentation model. For the future I would now like to see that wrapping with my custom `ApplyAndCastAugmenter` is no longer necessary but is handled directly by the `transform_segmentation_masks()` method and it would also be good to have a proper tutorial on image augmentation for semantic segmentation or to update the old tutorials.
open
2025-02-04T11:08:42Z
2025-03-12T08:32:24Z
https://github.com/keras-team/keras/issues/20857
[ "type:Bug" ]
RabJon
3
dunossauro/fastapi-do-zero
pydantic
292
poetry - PEP 735
Aguardando novidades sobre a implementação da PEP 735. Isso alterará todos os diretórios (pyproject.toml) de código além do projeto principal. Monitorar PR: https://github.com/python-poetry/poetry/pull/10130
open
2025-02-04T03:51:59Z
2025-02-24T20:58:21Z
https://github.com/dunossauro/fastapi-do-zero/issues/292
[]
dunossauro
4
unionai-oss/pandera
pandas
1,284
Should `pa.check_types` always do schema validation?
#### Question about pandera The behavior of `pa.check_types` is a little counter-intuitive because of this check: ``` if ( arg_value.pandera.schema is None # don't re-validate a dataframe that contains the same exact # schema or arg_value.pandera.schema != schema # <<<<<<< not sure about this ): try: arg_value = schema.validate( arg_value, head, tail, sample, random_state, lazy, inplace, ) ``` https://github.com/unionai-oss/pandera/blob/57d826956b88f89c18e794c728b7f5547ab4ecf8/pandera/decorators.py#L652 This allows errors like: ```python def test_check_types_example_case(): class Schema(pa.DataFrameModel): bid: pa.Int64 ask: pa.Int64 @pa.check_types def calc_spread(df: DataFrame[Schema]) -> DataFrame[Schema]: df["spread"] = df["ask"] - df["bid"] return df n = 42 rng = np.random.default_rng() bids = rng.integers(0, 100, size=n, dtype=np.int64) # This will call Schema.validate(): df = DataFrame[Schema](data={ "bid": bids, "ask": bids + rng.integers(0, 500, size=n, dtype=np.int64), }) # everything is as it should be... print(df.dtypes) # oops! schema silently violated df["ask"] = df["ask"].astype(np.float64) # oops! # scheme validation now fails: with pytest.raises(pa.errors.SchemaError): Schema.validate(df) print(df.dtypes) # I was expecting pa.check_types to catch the schema error df = calc_spread(df) print(df.dtypes) ``` I can resolve this by adding: ``` @pa.check_input(Schema.to_schema()) # check_output would also catch it in this case @pa.check_types def calc_spread(df: DataFrame[Schema]) -> DataFrame[Schema]: # ... ``` Is this behavior intended? Or maybe the cached `arg_value.pandera.schema` should be getting invalidated when a column changes?
closed
2023-08-01T21:53:36Z
2023-08-02T01:28:04Z
https://github.com/unionai-oss/pandera/issues/1284
[ "question" ]
selavy
1
neuml/txtai
nlp
611
Add llama.cpp support to LLM
Create a llama.cpp subclass for the LLM interface. When a GGUF extension is detected, it should automatically download the file from the HF hub and load it. The experience should be as seamless as other LLM models loaded through transformers.
closed
2023-12-07T12:25:22Z
2023-12-09T16:59:43Z
https://github.com/neuml/txtai/issues/611
[]
davidmezzetti
0
tortoise/tortoise-orm
asyncio
1,732
Unittest failed after upgraded pydantic to 2.9.2
**Describe the bug** After upgraded pydantic to the latest version, unittest failed with the following message: ``` FAILED tests/contrib/test_pydantic.py::TestPydantic::test_address_schema - AssertionError: {'$de[312 chars]': {'$ref': '#/$defs/tortoise__contrib__pydant[2748 chars]ect'} != {'$de[312 chars]': {'allOf... FAILED tests/contrib/test_pydantic.py::TestPydantic::test_event_schema - AssertionError: {'$de[2178 chars]': {'$ref': '#/$defs/tortoise__contrib__pydant[1071 chars]ect'} != {'$de[2178 chars]': {'all... FAILED tests/contrib/test_pydantic.py::TestPydantic::test_eventlist_schema - AssertionError: {'$de[312 chars]': {'$ref': '#/$defs/tortoise__contrib__pydant[3079 chars]ray'} != {'$de[312 chars]': {'allOf... FAILED tests/contrib/test_pydantic.py::TestPydantic::test_team_schema - AssertionError: {'$de[312 chars]': {'$ref': '#/$defs/tortoise__contrib__pydant[2809 chars]ect'} != {'$de[312 chars]': {'allOf... 4 failed, 1120 passed, 67 skipped, 4 xfailed, 1187 warnings in 113.37s (0:01:53) make: *** [Makefile:44: test] Error 1 ``` **To Reproduce** ```bash git clone git@github.com:tortoise/tortoise-orm cd tortoise-orm poetry shell make deps pip install --upgrade pydantic make test_sqlite ``` **Expected behavior** Support pydantic2.9
closed
2024-10-11T07:55:24Z
2024-10-13T07:18:05Z
https://github.com/tortoise/tortoise-orm/issues/1732
[]
waketzheng
0
pydantic/FastUI
pydantic
231
filterform still queries for last field of Basemodel
``` class FilterForm(pydantic.BaseModel): city: str | None = Field(json_schema_extra={'search_url': '/api/forms/search', 'placeholder': 'Filter by City...'}) country: str | None = Field(json_schema_extra={'search_url': '/api/forms/search', 'placeholder': 'Filter by Country...'}) @router.get('/cities', response_model=FastUI, response_model_exclude_none=True) def cities_view(page: int = 1, country: str | None = None, city: str | None = None) -> list[AnyComponent]: print(city,country) ``` If I change this section of the demo , annotating city and country as optional. Then the selection in webserver queries for country still when clearing the form. Shouldn't go back to http://127.0.0.1:8000/table/cities instead ? <img width="1355" alt="Screenshot 2024-03-01 at 11 10 54 PM" src="https://github.com/pydantic/FastUI/assets/30285349/50901223-60e2-4b02-af8d-36061e476aab"> <img width="1353" alt="Screenshot 2024-03-01 at 11 11 42 PM" src="https://github.com/pydantic/FastUI/assets/30285349/7e058395-5b6f-43eb-a8da-2d15f469616e">
open
2024-03-01T15:12:26Z
2024-03-01T15:15:42Z
https://github.com/pydantic/FastUI/issues/231
[]
alexmondaini
0
phalt/django-api-domains
graphql
8
[FEEDBACK] Change "All data returned from APIs must be JSON serializable."
Sometimes in russian Telegram chats I read "Django was sexy in 2008-2012, but it looks legacy and outdated in 2019 now...". Thank you for share your opinion, I completely agree with your suggestions. This is the best way to answer them "No, Django is modern framework for modern web. And there is the Guide how to cook Django. How to make Django Great Again". Okay... About APIs. Check this project. https://github.com/gluk-w/django-grpc/tree/master/tests Author tried to implement gRPC server with django project. Also https://github.com/grpc/grpc-web is stable now... So in my opinion line "All data returned from APIs must be JSON serializable." is incorrect. It's depends on API types...
closed
2019-04-13T04:23:55Z
2019-06-10T13:26:29Z
https://github.com/phalt/django-api-domains/issues/8
[]
lorddaedra
2
KaiyangZhou/deep-person-reid
computer-vision
170
Incredibly high map, are there potential bugs in evaluation codes?
I have trained a video-based model which has a outstanding performance: My training script is: ```shell python main.py --app video\ -s dukemtmcvidreid\ -t dukemtmcvidreid\ -j 8 \ --height 256 \ --width 128 \ --optim amsgrad \ --label-smooth \ --lr 0.0003 \ --max-epoch 60 \ --stepsize 20 40 \ --fixbase-epoch 10 \ --open-layers classifier \ --save-dir log/pcb-Duke-Video-combined-freeze\ --root ../../dataset/DukeMTMC-VideoReID\ --batch-size 16\ --gpu-devices 0,1\ -a pcb_p6\ --train-sampler RandomIdentitySampler\ --loss triplet ``` And the performance imformation logged : ``` ##### Evaluating dukemtmcvidreid (source) ##### Extracting features from query set ... Done, obtained 702-by-12288 matrix Extracting features from gallery set ... Done, obtained 2636-by-12288 matrix Speed: 0.0620 sec/batch Computing CMC and mAP ... ** Results ** mAP: 90.0% CMC curve Rank-1 : 89.3% Rank-5 : 97.4% Rank-10 : 98.9% Rank-20 : 99.3% ``` It's almost **SOTA**, I'm wondering whether there could be some bugs in evaluation. Also, is it regular that mAP is higher than rank-1?
closed
2019-05-07T11:49:46Z
2019-05-09T22:55:38Z
https://github.com/KaiyangZhou/deep-person-reid/issues/170
[]
yang-jin-hai
1
paperless-ngx/paperless-ngx
django
8,820
[BUG] Dashboard link on 404 page not working
### Description The link back to the dashboard on the 404 page does not work. This happens since version 2.14.0, 2.13.5 was still fine. ### Steps to reproduce 1. Go to the 404 page /404 2. Click on the link that is supossed to take you back to the dashboard 3. Nothing happens ### Webserver logs ```bash No related logs. ``` ### Browser logs ```bash ``` ### Paperless-ngx version 2.14.4 ### Host OS various ### Installation method Docker - official image ### System status ```json ``` ### Browser Firefox / Google Chrome ### Configuration changes _No response_ ### Please confirm the following - [x] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [x] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [x] I have already searched for relevant existing issues and discussions before opening this report. - [x] I have updated the title field above with a concise description.
closed
2025-01-19T18:28:32Z
2025-02-19T03:07:44Z
https://github.com/paperless-ngx/paperless-ngx/issues/8820
[ "bug", "frontend" ]
patheticpat
1
ghtmtt/DataPlotly
plotly
25
Axis enhancements
* revert axis checkbox * some axis transformation (log, ln, exp...) * `dx` and `dy` axis start and stop (like ranges) boxes? * double axis in the same plot?
closed
2017-05-31T15:06:26Z
2017-06-26T13:43:17Z
https://github.com/ghtmtt/DataPlotly/issues/25
[ "enhancement" ]
ghtmtt
0
ydataai/ydata-profiling
data-science
1,033
Generating ProfileReport from pickle files does not work (methods ProfileReport.dumps() and ProfileReport.loads())
### Current Behaviour - Used all defaut values - Generating ProfileReport from pd.DataFrame (Works) with ProfileReport(df) (**Works**) - Saving ProfileReport locally as pickle file (Works) with ProfileReport.dumps() (**Works**) - Loading ProfileReport from local pickle file with ProfileReport.loads() (**Works**) - Getting the error when calling ProfileReport.to_file('report.html') function: ValueError: Can not describe a `lazy` ProfileReport without a DataFrame. ### Expected Behaviour Expected a ProfileReport to be generated from loaded pickle file when invoking profile.to_file('report.html'). I expecte it to be possible to generate the ProfileReport from the loaded pickle file report without the original pd.DataFrame. ### Data Description df = pd.DataFrame([['a', 'b'], ['c', 'd']], index=['row 1', 'row 2'], columns=['col 1', 'col 2']) ### Code that reproduces the bug ```Python import pandas as pd from pandas_profiling import ProfileReport import pickle # create dummy data as pd.DataFrame df = pd.DataFrame([['a', 'b'], ['c', 'd']], index=['row 1', 'row 2'], columns=['col 1', 'col 2']) # generate report from pd.DataFrame profile = ProfileReport(df) # save report locally as pickle file _bytes = profile.dumps() with open('report.pickle', 'wb') as f: pickle.dump(_bytes, f, pickle.HIGHEST_PROTOCOL) # create empty report object profile = ProfileReport() # load report pickle file from local data = pickle.load(open('report.pickle', "rb")) profile.loads(data) #! generate report from loaded pickle file profile.to_file('report.html') ``` ### pandas-profiling version v3.2.0 ### Dependencies ```Text pandas==1.3.5 pandas-profiling==3.2.0 ``` ### OS Windows 10 ### Checklist - [X] There is not yet another bug report for this issue in the [issue tracker](https://github.com/ydataai/pandas-profiling/issues) - [X] The problem is reproducible from this bug report. [This guide](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) can help to craft a minimal bug report. - [X] The issue has not been resolved by the entries listed under [Common Issues](https://pandas-profiling.ydata.ai/docs/master/pages/support_contrib/common_issues.html).
open
2022-09-01T06:48:42Z
2023-02-01T06:09:18Z
https://github.com/ydataai/ydata-profiling/issues/1033
[ "question/discussion ❓" ]
Tuxedo94
1
supabase/supabase-py
fastapi
463
Functions not working due invalid URL formatting
Hi all, Calling functions using supabase-py for me allways results in the following response: `{'data': b'Function not found', 'error': None}` I believe this is due to the improper URL format in the `FunctionClient`: https://github.com/supabase-community/supabase-py/blob/5c752443277de0a4a8dfd7d0d113f0d177efc81f/supabase/client.py#LL74C64-L74C64 Overwriting the `functions_url` in the following format seems to work for me: `"{}/rest/v1/rpc".format(url)`
closed
2023-06-14T09:21:58Z
2023-06-15T03:43:48Z
https://github.com/supabase/supabase-py/issues/463
[ "duplicate" ]
tobias-scheepers
2
pallets/flask
python
5,388
jinja_loader type bug
I have ```Python from jinja2 import ChoiceLoader, FileSystemLoader app.jinja_loader = ChoiceLoader([ FileSystemLoader(project_dir / 'templates/'), app.jinja_loader, ]) ``` There is a mypy error ``` error: Incompatible types in assignment (expression has type "ChoiceLoader", variable has type "FileSystemLoader | None") [assignment] error: List item 1 has incompatible type "FileSystemLoader | None"; expected "BaseLoader" [list-item] ``` There shouldn't be an error. Environment: - Python version: 3.12.1 - Flask version: 3.0.1
closed
2024-01-23T16:34:25Z
2024-02-18T00:06:19Z
https://github.com/pallets/flask/issues/5388
[]
Siecje
0
holoviz/panel
matplotlib
7,361
Tabulator with row_content : not toggling (collapse/expand) properly
<!-- Thanks for contacting us! Please read and follow these instructions carefully, then you can delete this introductory text. Note that the issue tracker is NOT the place for usage questions and technical assistance; post those at [Discourse](https://discourse.holoviz.org) instead. Issues without the required information below may be closed immediately. --> ### ALL software version info ```plaintext Panel: 1.5.1 Python: 3.12.6 Quarto: 1.5.57 Jupyter: 5.7.2 ``` </details> ### Description of expected behavior and the observed behavior **Desired behaviors** * Row contents - BUG - the row contents are not redrawn after first collapse, for example when toggled. * Row contents - prefer that they be collapsed on start. Current default is expanded. **Observed behaviors** * row contents are expanded on start ( row contents are not displayed when triangle is toggled. Here is a larger example of the issue in the wild. Here is a tabulator with row_content: - [https://vcu-ssg.github.io/ssg-quarto-soc-analysis/31_explore.html](https://vcu-ssg.github.io/ssg-quarto-soc-analysis/31_explore.html) I’d like the row_content to be collapsed on loading. An older version of panel had this default. Since upgrading the code my row_content is expanded on loading. ### Complete, minimal, self-contained example code that reproduces the issue ```python import pandas as pd import panel as pn pn.extension('tabulator') # sample dataframe data = {'name': ['Alice', 'Bob', 'Charlie'], 'Value1': [10, 20, 30], 'Value2': [3, 2, 5], } df = pd.DataFrame(data) # function to return row contents def content_fn( row ): return pn.pane.Markdown( f'# Row contents\n name: {row["name"]}', sizing_mode='stretch_width' ) # tabulator object with row_contents sample_table = pn.widgets.Tabulator( df, height=350, layout='fit_columns', sizing_mode='stretch_width', row_content=content_fn, embed_content=True, expanded = [] ) sample_table ```
closed
2024-10-05T13:39:13Z
2024-10-15T12:40:04Z
https://github.com/holoviz/panel/issues/7361
[]
jleonard99
1
pywinauto/pywinauto
automation
1,216
Focus changes from the control to the entire browser when working with Google Chrome, Yandex Browser.
## Problem I'm trying to get information about a control by mouse click. In Mozilla Firefox I get full information about the cotrol, but in Google Chrome and Yandex Browser I get only information about the window. When using inspect.exe, the cursor can't point to the control either, but the tree structure has this control. Adding the flag --force-renderer-accessibility to Сhrome doesn't change anything. ## Short Example of Code to Demonstrate the Problem ``` from ctypes.wintypes import tagPOINT import pywinauto x, y = 100, 100 # cursor coordinates elem = pywinauto.uia_defines.IUIA().iuia.ElementFromPoint(tagPOINT(x, y)) element = pywinauto.uia_element_info.UIAElementInfo(elem) wrapper = pywinauto.controls.uiawrapper.UIAWrapper(element) ``` ## Expected Behavior The wrapper variable stores the wrapper of the control, located at specific coordinates. If you hover the cursor over a control in inspect.exe, the control is highlighted. ## Actual Behavior The wrapper variable stores the control's wrapper, located at specific coordinates for Mozilla Firefox. The wrapper variable stores the dialog window control wrapper for Google Chrome and Yandex Browser. If you put the cursor on the control in inspect.exe, the control is highlighted in Mozilla Firefox. If you hover your cursor over a control in inspect.exe, the dialog window in Google Chrome and Yandex Browser is highlighted. ## Steps to Reproduce the Problem 1. Open Google Chrome, Mozilla Firefox 2. Open in browsers google.com 3. Open inspect.exe, and place the cursor on the Google icon in browsers. 4. Different areas will be highlighted and different data will be in inspect.exe in different browsers. Move the cursor around the screen and hover over the Google icon again several times. In this case, the behavior will be different. ## Specifications - Pywinauto version: 0.6.8 - Python version and bitness: 3.8.5 and 64 - Platform and OS: Windows10
open
2022-06-01T15:22:34Z
2022-06-02T11:57:08Z
https://github.com/pywinauto/pywinauto/issues/1216
[]
ArchieAlexArkhipov
0
microsoft/nni
machine-learning
4,788
HPO: gpu_metrics file does not exist!
**Describe the issue**: I run`nnictl create --config exp.yaml --port 9090` and cheak `nvidia-smi`, find its running without using GPU. So I run`nnictl create --config exp.yaml --port 9090 - f` and get error below: ![image](https://user-images.githubusercontent.com/19604387/164359111-4e2dd2ac-33ae-466f-b21d-774ff51977af.png) I have followed tips in https://github.com/microsoft/nni/issues/4226 `METRIC_OUTPUT_DIR=${scriptFolder} python3 -m nni.tools.gpu_tool.gpu_metrics_collector` works under my path. **Environment**: - NNI version: 2.6 - Training service (local|remote|pai|aml|etc): local - Client OS: Ubuntu 18.04 - Server OS (for remote mode only): \ - Python version: py3.7 - PyTorch/TensorFlow version: pytorch 1.10.2 - Is conda/virtualenv/venv used?: Y - Is running in Docker?: N **Configuration**: - Experiment config (remember to remove secrets!): - Search space: ![image](https://user-images.githubusercontent.com/19604387/164230399-10b95038-ce0d-4e3b-b6d5-1f118a78e76f.png) **Log message**: - nnimanager.log: Dont exist - dispatcher.log: [2022-04-20 20:12:10] INFO (nni.experiment/MainThread) Creating experiment, Experiment ID: 30pecn7s [2022-04-20 20:12:10] INFO (nni.experiment/MainThread) Starting web server... [2022-04-20 20:12:11] WARNING (nni.experiment/MainThread) Timeout, retry... [2022-04-20 20:12:12] INFO (nni.experiment/MainThread) Setting up... [2022-04-20 20:12:12] INFO (nni.experiment/MainThread) Web UI URLs: http://127.0.0.1:9090 http://172.17.7.99:9090 http://172.18.0.1:9090 http://172.19.0.1:9090 http://172.20.0.1:9090 [2022-04-20 20:12:12] INFO (nni.tools.nnictl.launcher/MainThread) To stop experiment run "nnictl stop 30pecn7s" or "nnictl stop --all" [2022-04-20 20:12:12] INFO (nni.tools.nnictl.launcher/MainThread) Reference: https://nni.readthedocs.io/en/stable/Tutorial/Nnictl.html [2022-04-20 20:12:12] INFO (nni.experiment/MainThread) Stopping experiment, please wait... [2022-04-20 20:12:12] INFO (nni.tuner.tpe/MainThread) Using random seed 1504156515 [2022-04-20 20:12:12] INFO (nni.runtime.msg_dispatcher_base/MainThread) Dispatcher started [2022-04-20 20:12:12] INFO (nni.runtime.msg_dispatcher_base/MainThread) Dispatcher exiting... [2022-04-20 20:12:15] INFO (nni.runtime.msg_dispatcher_base/MainThread) Dispatcher terminiated - nnictl stdout and stderr: Dont exist **How to reproduce it?**: nnictl create --config exp.yaml --port 9090 - f
open
2022-04-21T02:32:35Z
2022-04-26T07:29:11Z
https://github.com/microsoft/nni/issues/4788
[]
MinYounZhang
6
flaskbb/flaskbb
flask
41
Moderator Panel
It would be nice to have an Moderator Panel. We could just rename the current "Admin Settings" to something like "Management" and display the settings depending on the permissions --> If a user has Admin permissions he can see everything but if he only has Moderator permissions he can only see the Moderation Settings/Dashboard/whatever
closed
2014-06-15T10:05:01Z
2018-04-15T07:47:31Z
https://github.com/flaskbb/flaskbb/issues/41
[]
sh4nks
0
tensorpack/tensorpack
tensorflow
996
[Q] MultiThreadMapData and AugmentImageComponents?
I read the tutorial "Efficient DataFlow", which was very helpful. I have a question. The tutorial includes two cases. **multiprocess** ``` ds0 = dataset.ILSVRC12('/path/to/ILSVRC12', 'train', shuffle=True) ds1 = AugmentImageComponent(ds0, lots_of_augmentors) ds = PrefetchDataZMQ(ds1, nr_proc=25) ds = BatchData(ds, 256) ``` **multithread** ``` ds0 = dataset.ILSVRC12('/path/to/ILSVRC12', 'train', shuffle=True) augmentor = AugmentorList(lots_of_augmentors) ds1 = MultiThreadMapData(ds0, nr_thread=25, map_func=lambda dp: [augmentor.augment(dp[0]), dp[1]], buffer_size=1000) # ds1 = PrefetchDataZMQ(ds1, nr_proc=1) ds = BatchData(ds1, 256) ``` {`AugmentImageComponent`, `PrefetchDataZMQ`} vs. {`AugmentorList`, `MultiThreadMapData`}. So, if I have to use `AugmentImageComponents` (because it has `index=(0, 1)` argument so I can apply same augmentations to images and labels equally), then is there no way to use `MultiThreadMapData`? An example I can think of is something like `map_func=[augmentor.augment(dp[0]), augmentor.augment(dp[1])]`, but then, I imagine two different augment will apply to dp[0] and dp[1] respectively (due to random factors). I'm curious if one can use a `multithread` way when using `AugmentImageComponent(ds, augmentors, (0, 1))`.
closed
2018-12-02T12:26:21Z
2018-12-10T08:43:39Z
https://github.com/tensorpack/tensorpack/issues/996
[ "usage" ]
ywpkwon
1
darrenburns/posting
rest-api
232
Autocomplete path portion in URL bar
Currently, URL bar supports autocomplete for base URLs (https://domain.io) and variables. Please support path segments also. For example, I'm playing with [Gmail API](https://developers.google.com/gmail/api/reference/rest), which has a URL like this: ``` https://gmail.googleapis.com/gmail/v1/users/{userId}/messages ``` I want that after I type "https://gmail.googleapis.com/", Posting suggests "gmail", after I accept this suggestion and type "/", Posting continue to suggest "v1" and so on. The path portions are from the collection.
open
2025-03-18T09:36:25Z
2025-03-18T09:51:53Z
https://github.com/darrenburns/posting/issues/232
[ "planned" ]
hongquan
1
piskvorky/gensim
nlp
2,969
Load full native fastText Facebook model is partial
#### Problem description Hidden vectors are bad. I'm using the gensim.models.fasttext.load_facebook_model function to load the .bin file, but the syn1 fails loading. Also trainables.syn1neg is full of zeros. 'FastTextTrainables' object has no attribute 'syn1' #### Steps/code/corpus to reproduce Simply using `ft = gensim.models.fasttext.load_facebook_model(fname)` on Facebook's model. Then `ft.syn1` or `ft.trainables.syn1neg` which returns the zero array. #### Versions Please provide the output of: Windows-2012ServerR2-6.3.9600-SP0 Python 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)] Bits 64 NumPy 1.18.3 SciPy 1.4.1 gensim 3.8.3 FAST_VERSION 0
open
2020-09-30T21:04:09Z
2021-03-15T23:01:33Z
https://github.com/piskvorky/gensim/issues/2969
[ "bug", "reach MEDIUM", "impact MEDIUM" ]
aviclu
16
modin-project/modin
data-science
7,058
Update exception message for `insert` function
closed
2024-03-12T11:26:56Z
2024-03-12T13:33:35Z
https://github.com/modin-project/modin/issues/7058
[ "Code Quality 💯" ]
anmyachev
0
postmanlabs/httpbin
api
596
Support for HTTP 308
Currently, support for HTTP 308 Permanent Redirect is missing. From https://httpstatuses.com/308 : > The target resource has been assigned a new permanent URI and any future references to this resource ought to use one of the enclosed URIs. > > Clients with link editing capabilities ought to automatically re-link references to the effective request URI to one or more of the new references sent by the server, where possible. > > The server SHOULD generate a Location header field2 in the response containing a preferred URI reference for the new permanent URI. The user agent MAY use the Location field value for automatic redirection. The server's response payload usually contains a short hypertext note with a hyperlink to the new URI(s). > > A 308 response is cacheable by default; i.e., unless otherwise indicated by the method definition or explicit cache controls3. > > Note: This status code is similar to 301 Moved Permanently, except that it does not allow changing the request method from POST to GET. Relevant RFC: https://tools.ietf.org/html/rfc7538#section-3
closed
2020-01-28T16:28:27Z
2022-01-03T22:27:52Z
https://github.com/postmanlabs/httpbin/issues/596
[]
duckinator
2
fbdesignpro/sweetviz
pandas
113
compare_intra() keeps giving 'index X is out of bounds for axis 0 with size Y' error
Tried `compare_intra()` on a road accident data set to compare urban vs rural samples. However, it keeps giving the above error. `report = sv.compare_intra(df, df["UrbanRural"] == 1, ["Urban", "Rural"], 'Is Fatal')` Removed from `df` up to four fields that the error is reported on, but then the next field throws the error. Unfortunately, the data set is private so can't share, but could this be an issue with the code itself?
open
2022-03-13T14:16:47Z
2023-10-04T16:35:45Z
https://github.com/fbdesignpro/sweetviz/issues/113
[ "bug" ]
ishandesilva2
0
nvbn/thefuck
python
1,232
fuck takes about 10s to show corrected commands, annoying. why fuck so slow? ubuntu18, pip3 install
<!-- If you have any issue with The Fuck, sorry about that, but we will do what we can to fix that. Actually, maybe we already have, so first thing to do is to update The Fuck and see if the bug is still there. --> <!-- If it is (sorry again), check if the problem has not already been reported and if not, just open an issue on [GitHub](https://github.com/nvbn/thefuck) with the following basic information: --> The output of `thefuck --version` (something like `The Fuck 3.1 using Python 3.5.0 and Bash 4.4.12(1)-release`): FILL THIS IN Your system (Debian 7, ArchLinux, Windows, etc.): FILL THIS IN How to reproduce the bug: FILL THIS IN The output of The Fuck with `THEFUCK_DEBUG=true` exported (typically execute `export THEFUCK_DEBUG=true` in your shell before The Fuck): FILL THIS IN If the bug only appears with a specific application, the output of that application and its version: FILL THIS IN Anything else you think is relevant: FILL THIS IN <!-- It's only with enough information that we can do something to fix the problem. -->
open
2021-09-05T01:49:44Z
2021-12-20T15:21:59Z
https://github.com/nvbn/thefuck/issues/1232
[]
AstroShen
4
wagtail/wagtail
django
12,080
Concurrent editing notifications - backend additions to identify concurrent edits
Part of [RFC 95 - concurrent editing notifications](https://github.com/wagtail/rfcs/pull/95) As per the RFC section 'Notifying users on changes', add support to the 'ping' endpoint for passing a revision ID so that any users who have created revisions newer than that one are annotated as part of the response, including users who do not have an active editing session open. (TBC: does this backend code need to know about the list of dismissed revision IDs, or is this entirely a front-end detail? If the former, that should be covered as part of this issue.) ### Working on this To be implemented by the Wagtail product team at Torchbox - we are not seeking external contributors for this.
closed
2024-06-21T15:55:38Z
2024-07-12T08:45:28Z
https://github.com/wagtail/wagtail/issues/12080
[ "type:Enhancement" ]
gasman
0
Kanaries/pygwalker
matplotlib
348
[Question]How to set width & height parameter when you use pygwalker on flask app?
hello.I use pygwalker on flask app. but display size is a little big, so I would like to resize it. Though I tried width & height parameter to pyg.walk function, it didn't work. Is there any way to resize it? Code) df = pd.read_sql(sql,engine) # Get Pygwalker as html html_str = pyg.walk(df, return_html=True, show_cloud_tool=False, dark='dark', width=800,height=400,scrolling=True) return templates.TemplateResponse("pygwalker.html",{"request": request, "html_str": html_str})
closed
2023-12-10T05:21:33Z
2023-12-12T15:51:54Z
https://github.com/Kanaries/pygwalker/issues/348
[]
relakuman
4
albumentations-team/albumentations
machine-learning
2,174
Unexpected Negative Coordinates in YOLOv8 Annotations after Transformations
**Description:** I am encountering an issue while applying transformations to YOLOv8 annotations (object detection format) using albumentations. Below is a minimal reproducible example ``` import cv2 import albumentations as A image = cv2.imread("....") image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) bboxes = [[0.231627, 0.014903, 0.047738, 0.029807]] category_ids = [0] category_id_to_name = {0: 'part'} transform = A.Compose( [A.HorizontalFlip(p=0.5)], # Horizontal flip transformation bbox_params=A.BboxParams(format='yolo', label_fields=['category_ids']) ) transformed = transform(image=image, bboxes=bboxes, category_ids=category_ids) ``` **Error:** When applying different transformations (even an empty one), I consistently receive the following error ``` ValueError: Expected y_min for bbox [ 2.0775801e-01 -5.0012022e-07 2.5549600e-01 2.9806498e-02 0.0000000e+00] to be in the range [0.0, 1.0], got -5.00120222568512e-07. ``` **Observations:** Input image shape (672, 504, 3) The original bounding box coordinates are well within the valid range [0.0, 1.0]. Drawing the bounding boxes on the original image using a custom function shows correct placement and dimensions. The error consistently produces the same invalid numbers: ``` [2.0775801e-01, -5.0012022e-07, 2.5549600e-01, 2.9806498e-02, 0.0000000e+00] ``` **Custom Function for Verification:** Below is the custom function I used to verify the correctness of the bounding boxes by visualizing them on the image: ``` import cv2 def draw_bboxes(image_path, annotations_path): image = cv2.imread(image_path) height, width, _ = image.shape with open(annotations_path, 'r') as f: annotations = f.readlines() _, x_center, y_center, bbox_width, bbox_height = map(float, annotation.strip().split()) x_center = int(x_center * width) y_center = int(y_center * height) bbox_width = int(bbox_width * width) bbox_height = int(bbox_height * height) x1 = int(x_center - bbox_width / 2) y1 = int(y_center - bbox_height / 2) x2 = int(x_center + bbox_width / 2) y2 = int(y_center + bbox_height / 2) cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) # Green, line thickness = 2 # Save the result cv2.imwrite('output_image.jpg', image) ``` **Notes:** The bounding boxes drawn using this function align correctly with the objects in the image. The issue seems to be related to how albumentations processes the YOLO format during transformations. **Questions:** Where do the negative y_min values originate, given that the original annotations are valid? Is this a bug in the library, or is there a mistake in the way I define or pass the annotations? Any help in resolving this would be greatly appreciated! ![output_image](https://github.com/user-attachments/assets/00b175ad-1651-4517-81dd-35170696e9e0)
closed
2024-12-04T15:13:57Z
2024-12-05T18:39:51Z
https://github.com/albumentations-team/albumentations/issues/2174
[ "question" ]
qweqweq1222
2
sherlock-project/sherlock
python
1,962
Make requests over Tor. Following error. OSError: 'tor' isn't available on your system. Maybe it's not in your PATH?
<!-- ###################################################################### WARNING! IGNORING THE FOLLOWING TEMPLATE WILL RESULT IN ISSUE CLOSED AS INCOMPLETE. ###################################################################### --> ## Checklist <!-- Put x into all boxes (like this [x]) once you have completed what they say. Make sure complete everything in the checklist. --> - [x] I'm asking a question regarding Sherlock - [x] My question is not a tech support question. **We are not your tech support**. If you have questions related to `pip`, `git`, or something that is not related to Sherlock, please ask them on [Stack Overflow](https://stackoverflow.com/) or [r/learnpython](https://www.reddit.com/r/learnpython/) ## Question Hi, I've started to use Sherlock and I encounter the following message while trying to make requests over Tor with the argument --tor: raise OSError("'%s' isn't available on your system. Maybe it's not in your PATH?" % tor_cmd) OSError: 'tor' isn't available on your system. Maybe it's not in your PATH? I'm running Sherlock on Windows 11 and the Python version used is 3.12.
closed
2023-12-24T12:38:19Z
2023-12-25T07:44:56Z
https://github.com/sherlock-project/sherlock/issues/1962
[ "question" ]
PiShindo0
1
matterport/Mask_RCNN
tensorflow
2,642
Test on multiple GPu
I have been digging through the issues and could not find the answer. Does this code work for multiple GPUs when testing? specifically the video code in the sample folder. I am trying to see how to increase the speed of that.
open
2021-07-22T02:16:47Z
2021-07-22T02:16:47Z
https://github.com/matterport/Mask_RCNN/issues/2642
[]
arashtavakoli
0
pallets/flask
python
4,986
Tutorial Documentation Issue with --debug
# Recap [Run Application](https://flask.palletsprojects.com/en/2.2.x/tutorial/factory/#run-the-application) section says you should run: `flask --app flaskr run --debug` This provides this error: ``` (Discord) C:\Users\gradu\code\flask-tutorial>flask --app flaskr run --debug Usage: flask run [OPTIONS] Try 'flask run --help' for help. Error: No such option: --debug (Possible options: --debugger, --no-debugger) ``` # Replication Follow the tutorial. # Resolution The following should be run for it to work since `--debug` should be before `run`: `flask --app flaskr --debug run` Environment: - Python version: 3.10 - Flask version: 2.2.2
closed
2023-02-16T21:35:52Z
2023-03-03T01:47:16Z
https://github.com/pallets/flask/issues/4986
[]
ProsperousHeart
2
python-visualization/folium
data-visualization
1,387
Is it possible to add multiple images in a folium popup?
I tried to add an image to the marker popup in folium and was successful. Following is the code snippet: ``` encoded = base64.b64encode(open('test.png', 'rb').read()) html = ''' <img src="data:image/png;base64,{}">'''.format iframe = IFrame(html(encoded.decode('UTF-8')), width=400, height=350) popup = folium.Popup(iframe, max_width=400) folium.Marker(location,tooltip=html1, popup=popup,icon=folium.Icon(color='red'')).add_to(feature_group) ``` Is there a way to add multiple images in the popup like this??
closed
2020-09-15T11:06:52Z
2022-11-22T16:03:15Z
https://github.com/python-visualization/folium/issues/1387
[]
gmehta1996
1
pydata/pandas-datareader
pandas
932
Key Error (trying to fetch out of range data)
File ~/jupyter_dir/lib/python3.9/site-packages/pandas/core/indexes/base.py:3623, in Index.get_loc(self, key, method, tolerance) 3621 return self._engine.get_loc(casted_key) 3622 except KeyError as err: -> 3623 raise KeyError(key) from err 3624 except TypeError: 3625 # If we have a listlike key, _check_indexing_error will raise 3626 # InvalidIndexError. Otherwise we fall through and re-raise 3627 # the TypeError. 3628 self._check_indexing_error(key) KeyError: 'Date' INTC 1900-01-01 through 1980-03-16, for example. There is no data for that period. We should get an empty string and catch the error on a try-except routine. Pandas try to read nonexistent data and crashes. Not a big issue but when trying to release the internet from unnecessary traffic it should count. In my case, I keep some data for research and only try to fetch whatever data is not in the range already on file. Best, Laurentino
open
2022-05-11T15:50:12Z
2022-05-26T19:23:46Z
https://github.com/pydata/pandas-datareader/issues/932
[]
jlaurentino
1
vvbbnn00/WARP-Clash-API
flask
69
获取帐号太频繁了,可以调整拉取时间吗?
<img width="1265" alt="image" src="https://github.com/vvbbnn00/WARP-Clash-API/assets/19187969/f888f5ce-56e7-4379-aee4-bf678d059c14">
closed
2024-02-27T02:57:06Z
2024-02-27T04:13:16Z
https://github.com/vvbbnn00/WARP-Clash-API/issues/69
[ "enhancement" ]
summerKK
0
dask/dask
numpy
11,011
value_counts with NaN sometimes raises ValueError: No objects to concatenate
<!-- Please include a self-contained copy-pastable example that generates the issue if possible. Please be concise with code posted. See guidelines below on how to provide a good bug report: - Craft Minimal Bug Reports http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports - Minimal Complete Verifiable Examples https://stackoverflow.com/help/mcve Bug reports that follow these guidelines are easier to diagnose, and so are often handled much more quickly. --> **Describe the issue**: Context: We rely on Dask for processing large amounts of time series data collected at our production machines in a proprietary file format. Thanks for making this possible due to the flexibility of Dask! We do a first selection of data by a time range. If a channel/signal is not available for the whole time period, part of the time range is filled with NaNs. Since version 2024.3.0 an error is raised if we try to calculate `value_counts` of such a data structure. See the MCVE below. **Minimal Complete Verifiable Example**: ```python import dask.dataframe as dd import numpy as np import pandas as pd size = 500_000 na_size = 400_000 npartitions = 10 df = pd.DataFrame( { 'A': np.random.randint(0, 2, size=size, dtype=bool), 'B': np.append(np.nan * np.zeros(na_size), np.random.randn(size - na_size)), } ) ddf = dd.from_pandas(df, npartitions=npartitions) ddf.groupby('A')['B'].value_counts().compute() ``` raises the following error ```python --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[3], line 12 5 df = pd.DataFrame( 6 { 7 'A': np.random.randint(0, 2, size=size, dtype=bool), 8 'B': np.append(np.nan * np.zeros(na_size), np.random.randn(size - na_size)), 9 } 10 ) 11 ddf = dd.from_pandas(df, npartitions=npartitions) ---> 12 ddf.groupby('A')['B'].value_counts().compute() File ~\Python\Lib\site-packages\dask_expr\_collection.py:453, in FrameBase.compute(self, fuse, **kwargs) 451 out = out.repartition(npartitions=1) 452 out = out.optimize(fuse=fuse) --> 453 return DaskMethodsMixin.compute(out, **kwargs) File ~\Python\Lib\site-packages\dask\base.py:375, in DaskMethodsMixin.compute(self, **kwargs) 351 def compute(self, **kwargs): 352 """Compute this dask collection 353 354 This turns a lazy Dask collection into its in-memory equivalent. (...) 373 dask.compute 374 """ --> 375 (result,) = compute(self, traverse=False, **kwargs) 376 return result File ~\Python\Lib\site-packages\dask\base.py:661, in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs) 658 postcomputes.append(x.__dask_postcompute__()) 660 with shorten_traceback(): --> 661 results = schedule(dsk, keys, **kwargs) 663 return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)]) File ~\Python\Lib\site-packages\dask_expr\_groupby.py:292, in SingleAggregation.aggregate(cls, inputs, **kwargs) 290 @classmethod 291 def aggregate(cls, inputs, **kwargs): --> 292 return _groupby_aggregate(_concat(inputs), **kwargs) File ~\Python\Lib\site-packages\dask\dataframe\groupby.py:436, in _groupby_aggregate(df, aggfunc, levels, dropna, sort, observed, **kwargs) 433 # we emit a warning earlier in stack about default numeric_only being deprecated, 434 # so there's no need to propagate the warning that pandas emits as well 435 with check_numeric_only_deprecation(): --> 436 return aggfunc(grouped, **kwargs) File ~\Python\Lib\site-packages\dask\dataframe\groupby.py:3219, in _value_counts_aggregate(series_gb) 3217 def _value_counts_aggregate(series_gb): 3218 data = {k: v.groupby(level=-1).sum() for k, v in series_gb} -> 3219 res = pd.concat(data, names=series_gb.obj.index.names) 3220 typed_levels = { 3221 i: res.index.levels[i].astype(series_gb.obj.index.levels[i].dtype) 3222 for i in range(len(res.index.levels)) 3223 } 3224 res.index = res.index.set_levels( 3225 typed_levels.values(), level=typed_levels.keys(), verify_integrity=False 3226 ) File ~\Python\Lib\site-packages\pandas\core\reshape\concat.py:507, in _Concatenator._clean_keys_and_objs(self, objs, keys) 504 objs_list = list(objs) 506 if len(objs_list) == 0: --> 507 raise ValueError("No objects to concatenate") 509 if keys is None: 510 objs_list = list(com.not_none(*objs_list)) ValueError: No objects to concatenate ``` Now comes the fun part, if you adjust `size`, `na_size` and `npartitions` you may get working code (for example `size = 500_000`, `na_size = 400_000` and `npartitions = 9`). **Anything else we need to know?**: At I first I thought it may be related to the new default of [query-planning](https://docs.dask.org/en/stable/changelog.html#query-planning), however setting ```python import dask dask.config.set({'dataframe.query-planning': False}) ``` leads to the same error with a different stacktrace. **Environment**: - Dask version: 2024.3.1 (dask-expr 1.0.4) - Python version: 3.11.8 - Operating System: Windows 10 (22H2) - Install method (conda, pip, source): conda
closed
2024-03-19T13:10:22Z
2024-03-26T07:12:54Z
https://github.com/dask/dask/issues/11011
[ "needs triage" ]
m-rossi
2
tensorflow/tensor2tensor
machine-learning
1,218
Best way to decode (translate) a hundred thousand files?
I'm currently looping through each text file and running `t2t-decoder` to translate into my target language. It appears loading my model per each file is taking a lot more time than necessary. What is the best way to go about this? I have considered batching all my text files into one big text file for inference, but it doesn't seem to be a good idea as some of the text files need to fail appropriately as they contain errors from pre-processing (long story, don't ask me why.)
closed
2018-11-13T00:37:47Z
2018-11-13T19:21:27Z
https://github.com/tensorflow/tensor2tensor/issues/1218
[]
echan00
1
piskvorky/gensim
data-science
2,938
Fix deprecations in SoftCosineSimilarity
When running our CI test suite, I see an array of deprecation warnings: https://dev.azure.com/rare-technologies/gensim-ci/_build/results?buildId=287&view=logs&jobId=f9575ddc-dec8-54e6-9d26-abb8bdd9bed7&j=f9575ddc-dec8-54e6-9d26-abb8bdd9bed7&t=180156a9-2bf9-537d-c84a-ef9e808c0367 Some are from gensim, some from scipy: <img width="1440" alt="Screen Shot 2020-09-09 at 09 16 00" src="https://user-images.githubusercontent.com/610412/92567026-635b8f00-f27d-11ea-9d5f-c56f3ba7c08b.png"> @Witiko could you please have a look? Is it something your existing PR already addresses? If not, can you please fix those? Thanks.
closed
2020-09-09T07:20:19Z
2020-09-16T07:32:48Z
https://github.com/piskvorky/gensim/issues/2938
[ "bug", "reach HIGH", "impact MEDIUM", "housekeeping" ]
piskvorky
6
davidsandberg/facenet
tensorflow
336
Regarding training images
Hi, Please let me the format of the training images. can we have the training images in .jpg format? Thanks
closed
2017-06-20T11:48:43Z
2017-07-15T16:14:23Z
https://github.com/davidsandberg/facenet/issues/336
[]
saravanan0206
2
allenai/allennlp
data-science
5,710
error message occuied “zipfile.BadZipFile: File is not a zip file”
## Description error message occuied “zipfile.BadZipFile: File is not a zip file” When applied the code: from transformers import PreTrainedTokenizerBase, AutoTokenizer from allennlp.predictors.predictor import Predictor from allennlp.common import Params from allennlp.common.model_card import ModelCard import tarfile from pathlib import Path from typing import List, Union, Dict, Iterable, Sequence from allennlp.common.plugins import import_plugins predictor = Predictor.from_path('./elmo-constituency-parser-2020.02.10.tar.gz') <details> elmo-constituency-parser-2020.02.10.tar.gz has already been downloaded about 678M ## Environment OS: Linux <!-- Provide the Python version you were using (e.g. 3.7.1) --> Python version: 3.8 ``` absl-py 1.0.0 aiohttp 3.8.1 aiosignal 1.2.0 allennlp 2.9.1 allennlp-models 2.9.0 argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0 asttokens 2.0.8 astunparse 1.6.3 async-timeout 4.0.2 attrs 22.1.0 autocommand 2.2.1 backcall 0.2.0 backports.csv 1.0.7 base58 2.1.1 beautifulsoup4 4.11.1 bleach 5.0.1 blis 0.7.8 boto3 1.24.69 botocore 1.27.69 cached-path 1.1.5 cachetools 5.0.0 catalogue 2.0.8 certifi 2022.6.15 cffi 1.15.1 charset-normalizer 2.1.0 checklist 0.0.11 cheroot 8.6.0 CherryPy 18.8.0 click 8.0.4 clip 1.0 commonmark 0.9.1 conllu 4.4.1 cryptography 38.0.1 cycler 0.11.0 cymem 2.0.6 datasets 1.18.4 debugpy 1.6.3 decorator 5.1.1 defusedxml 0.7.1 dill 0.3.5.1 docker-pycreds 0.4.0 easydict 1.9 EasyProcess 1.1 entrypoints 0.4 et-xmlfile 1.1.0 executing 0.10.0 fairscale 0.4.5 fastjsonschema 2.16.1 feedparser 6.0.10 filelock 3.6.0 flatbuffers 2.0 fonttools 4.34.4 frozenlist 1.3.1 fsspec 2022.8.2 ftfy 6.1.1 future 0.18.2 gitdb 4.0.9 GitPython 3.1.27 google-api-core 2.10.0 google-auth 2.6.5 google-auth-oauthlib 0.4.6 google-cloud-core 2.3.2 google-cloud-storage 2.5.0 google-crc32c 1.5.0 google-pasta 0.2.0 google-resumable-media 2.3.3 googleapis-common-protos 1.56.4 grpcio 1.44.0 gym 0.10.9 h5py 2.10.0 huggingface-hub 0.8.1 idna 3.3 importlib-metadata 4.11.3 importlib-resources 5.9.0 inflect 6.0.0 iniconfig 1.1.1 ipykernel 6.15.1 ipython 8.4.0 ipython-genutils 0.2.0 ipywidgets 8.0.2 iso-639 0.4.5 jaraco.classes 3.2.2 jaraco.collections 3.5.2 jaraco.context 4.1.2 jaraco.functools 3.5.1 jaraco.text 3.9.1 jedi 0.18.1 Jinja2 3.1.2 jmespath 1.0.1 joblib 1.1.0 json5 0.9.10 jsonlines 2.0.0 jsonnet 0.18.0 jsonschema 4.15.0 jupyter 1.0.0 jupyter-client 7.3.4 jupyter-console 6.4.4 jupyter-core 4.11.1 jupyterlab-pygments 0.2.2 jupyterlab-widgets 3.0.3 keras 2.8.0 Keras-Preprocessing 1.1.2 kiwisolver 1.4.2 langcodes 3.3.0 libclang 13.0.0 lmdb 1.3.0 lxml 4.9.1 Markdown 3.3.6 MarkupSafe 2.1.1 matplotlib 3.5.2 matplotlib-inline 0.1.6 mistune 2.0.4 more-itertools 8.14.0 multidict 6.0.2 multiprocess 0.70.13 munch 2.5.0 murmurhash 1.0.8 nbclient 0.6.7 nbconvert 7.0.0 nbformat 5.4.0 nest-asyncio 1.5.5 networkx 2.5.1 nltk 3.6.7 nn-builder 1.0.5 notebook 6.4.12 numpy 1.20.3 oauthlib 3.2.0 openai 0.20.0 opencv-python 4.6.0.66 openpyxl 3.0.10 opt-einsum 3.3.0 packaging 21.3 pandas 1.4.3 pandas-stubs 1.4.3.220704 pandocfilters 1.5.0 parso 0.8.3 path 16.4.0 pathtools 0.1.2 pathy 0.6.2 patternfork-nosql 3.6 pdfminer.six 20220524 pexpect 4.8.0 pickleshare 0.7.5 Pillow 9.1.1 pip 21.2.4 pkgutil_resolve_name 1.3.10 pluggy 1.0.0 portend 3.1.0 preshed 3.0.7 prometheus-client 0.14.1 promise 2.3 prompt-toolkit 3.0.20 protobuf 3.20.1 psutil 5.9.2 ptyprocess 0.7.0 pure-eval 0.2.2 py 1.11.0 py-rouge 1.1 pyarrow 9.0.0 pyasn1 0.4.8 pyasn1-modules 0.2.8 pycparser 2.21 pydantic 1.8.2 pyglet 1.5.23 Pygments 2.13.0 pyparsing 3.0.9 pyrsistent 0.18.1 pytest 7.1.3 python-dateutil 2.8.2 python-docx 0.8.11 pytz 2022.1 PyVirtualDisplay 0.2.1 PyYAML 6.0 pyzmq 23.2.1 qtconsole 5.3.2 QtPy 2.2.0 regex 2022.6.2 requests 2.28.1 requests-oauthlib 1.3.1 responses 0.18.0 rich 12.5.1 rsa 4.8 s3transfer 0.6.0 sacremoses 0.0.53 scikit-learn 1.1.2 scipy 1.8.0 Send2Trash 1.8.0 sentencepiece 0.1.97 sentry-sdk 1.9.8 setproctitle 1.3.2 setuptools 63.4.1 sgmllib3k 1.0.0 Shapely 1.7.1 shortuuid 1.0.9 six 1.16.0 smart-open 5.2.1 smmap 5.0.0 soupsieve 2.3.2.post1 spacy 3.2.4 spacy-legacy 3.0.10 spacy-loggers 1.0.3 sqlitedict 2.0.0 srsly 2.4.4 stack-data 0.4.0 stanfordcorenlp 3.9.1.1 tempora 5.0.2 tensorboard 2.8.0 tensorboard-data-server 0.6.1 tensorboard-plugin-wit 1.8.1 tensorboardX 2.4.1 tensorflow-io-gcs-filesystem 0.24.0 termcolor 1.1.0 terminado 0.15.0 tf-estimator-nightly 2.8.0.dev2021122109 thinc 8.0.17 threadpoolctl 3.1.0 tinycss2 1.1.1 tokenizers 0.10.3 tomli 2.0.1 torch 1.8.1+cu101 torchaudio 0.8.1 torchvision 0.9.1+cu101 tornado 6.2 tqdm 4.64.1 traitlets 5.3.0 transformers 4.12.5 typer 0.4.2 typing_extensions 4.1.1 urllib3 1.26.12 wandb 0.12.21 wasabi 0.10.1 wcwidth 0.2.5 webencodings 0.5.1 Werkzeug 2.1.1 wheel 0.37.1 widgetsnbextension 4.0.3 word2number 1.1 wrapt 1.14.0 xxhash 3.0.0 yarl 1.8.1 zc.lockfile 2.0 zipp 3.8.0 ```
closed
2022-09-12T12:36:27Z
2022-10-03T16:11:32Z
https://github.com/allenai/allennlp/issues/5710
[ "bug", "stale" ]
Hoyyyaard
3
saulpw/visidata
pandas
2,283
Avoid Status Spam/Visual Noise
Regardless of how anyone may feel about the subjectivity of this "feature", previously, setting an empty motd URL kept this sort of status spam from appearing during startup. However, at some point after updating to a newer version of visidata, this status message is now very pronounced and distracting, and disabling the MOTD doesn't disable the status display either. This, coupled with the default help status overlay (which also was not a default behavior previously), leads to a very distracting user experience. Thankfully, it's possible to disable the help overlay at least with config overrides, but there doesn't seem to be a way to disable the default status upon startup. I suggest removing this line, or add a "quiet" option to skip this status display: https://github.com/saulpw/visidata/blob/develop/visidata/main.py#L180 <img width="1040" alt="Screenshot 2024-01-31 at 14 43 52" src="https://github.com/saulpw/visidata/assets/108159757/a9379613-5b2f-4998-b869-49e93e9d118c"> I would like for visidata to "stay out of my way" as it did in previous versions.
closed
2024-01-31T22:49:39Z
2024-02-01T21:58:51Z
https://github.com/saulpw/visidata/issues/2283
[ "wishlist", "duplicate" ]
gordo-veda
4
jwkvam/bowtie
jupyter
263
Proposing a PR to fix a few small typos
# Issue Type [x] Bug (Typo) # Steps to Replicate and Expected Behaviour - Examine bowtie/tests/test_components.py and observe `instatiation`, however expect to see `instantiation`. - Examine bowtie/tests/test_tags.py and observe `instantation`, however expect to see `instantiation`. # Notes Semi-automated issue generated by https://github.com/timgates42/meticulous/blob/master/docs/NOTE.md To avoid wasting CI processing resources a branch with the fix has been prepared but a pull request has not yet been created. A pull request fixing the issue can be prepared from the link below, feel free to create it or request @timgates42 create the PR. Alternatively if the fix is undesired please close the issue with a small comment about the reasoning. https://github.com/timgates42/bowtie/pull/new/bugfix_typos Thanks.
open
2021-06-03T12:59:35Z
2021-06-03T12:59:35Z
https://github.com/jwkvam/bowtie/issues/263
[]
timgates42
0