repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
PablocFonseca/streamlit-aggrid
streamlit
14
Getting AggGrid's state
Hey @PablocFonseca, thank you for such an amazing job on integrating AggGrid in Streamlit, I highly appreciate the efforts and happy to contribute if there are any known issues that need help from python side of things. One task I am having hard time to wrap my head around is getting AggGrid state after a user interacts with it. I.e., I have a multi-select to keep grouping consistent between page reloads or new data push. ``` # let user pick cols from dataframe she want to group by if st.sidebar.checkbox("Enable default grouping"): default_group_col = st.sidebar.selectbox("Default group by: ", cols, 1) # if any of columns are selected, apply it to aggrid and persist on page reload, # as default_group_col state is persisted under the hood by streamlit try: gb.configure_column(default_group_col, rowGroup=True) except: pass ``` Now say a user groups by an additional column using AggGrid groupby feature, collapses some of the resulting groups and keeps the others expanded. I would assume AggGrid itself stores this state somewhere in client side JS. Is there a potential way to get stat state back to python in order to save it somewhere in a dict and persist between page reloads when AggGrid component is being redrawn or populated with new data? Thanks!
closed
2021-03-04T10:07:40Z
2022-06-21T09:36:26Z
https://github.com/PablocFonseca/streamlit-aggrid/issues/14
[]
adamlansky
5
zappa/Zappa
flask
467
[Migrated] Package custom modules
Originally from: https://github.com/Miserlou/Zappa/issues/1242 by [tista3](https://github.com/tista3) ## Description new setting: list of module names that will be packaged into zip ## Motivation I have many flask apps in my repository that shares common module. This module is available in the PYTHONPATH env variable which points into directory where my common module directory is. I had to copy the common module before every `zappa update` into the flask app directory to be packed into distribution zip. But with this feature I just list the common modules and they are packaged into zip automatically if they can be imported in my environment. Now I use my custom pypi package `timo-zappa`, but I will be happy If it could be in official zappa package. I tested it on Linux, py2.7, py3.6 and as 3.6 lambda. This is my first pull request, be gentle :)
closed
2021-02-20T08:35:15Z
2022-07-16T07:30:12Z
https://github.com/zappa/Zappa/issues/467
[ "needs-user-testing" ]
jneves
1
harry0703/MoneyPrinterTurbo
automation
245
在合成 长视频 的时候,能否新增pycuda ,用GPU加速合成,效率会快很多
我测试了14分钟的视频。花了20多分钟,而且是内存基本吃满的情况下,,,,
closed
2024-04-12T03:49:51Z
2024-04-12T14:27:50Z
https://github.com/harry0703/MoneyPrinterTurbo/issues/245
[]
Test-Jim
1
django-oscar/django-oscar
django
3,822
Add SECURITY.md
Hey there! I belong to an open source security research community, and a member (@ktg9) has found an issue, but doesn’t know the best way to disclose it. If not a hassle, might you kindly add a `SECURITY.md` file with an email, or another contact method? GitHub [recommends](https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository) this best practice to ensure security issues are responsibly disclosed, and it would serve as a simple instruction for security researchers in the future. Thank you for your consideration, and I look forward to hearing from you! (cc @huntr-helper)
closed
2021-12-03T00:18:27Z
2022-10-20T21:32:23Z
https://github.com/django-oscar/django-oscar/issues/3822
[]
JamieSlome
6
SCIR-HI/Huatuo-Llama-Med-Chinese
nlp
75
NotImplementedError: Cannot copy out of meta tensor; no data!
│ │ │ 403 │ │ │ │ device_map = infer_auto_device_map( │ │ 404 │ │ │ │ │ self, max_memory=max_memory, no_split_module_classes=no_split_module │ │ 405 │ │ │ │ ) │ │ ❱ 406 │ │ │ dispatch_model( │ │ 407 │ │ │ │ self, │ │ 408 │ │ │ │ device_map=device_map, │ │ 409 │ │ │ │ offload_dir=offload_dir, │ │ │ │ C:\Users\zhaoxianghui\AppData\Local\Programs\Python\Python310\lib\site-packages\accelerate\big_m │ │ odeling.py:355 in dispatch_model │ │ │ │ 352 │ │ and (not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_d │ │ 353 │ ): │ │ 354 │ │ disk_state_dict = extract_submodules_state_dict(model.state_dict(), disk_modules │ │ ❱ 355 │ │ offload_state_dict(offload_dir, disk_state_dict) │ │ 356 │ │ │ 357 │ execution_device = { │ │ 358 │ │ name: main_device if device in ["cpu", "disk"] else device for name, device in d │ │ │ │ C:\Users\zhaoxianghui\AppData\Local\Programs\Python\Python310\lib\site-packages\accelerate\utils │ │ \offload.py:103 in offload_state_dict │ │ │ │ 100 │ os.makedirs(save_dir, exist_ok=True) │ │ 101 │ index = {} │ │ 102 │ for name, parameter in state_dict.items(): │ │ │ │ 34 │ │ # Need to reinterpret the underlined data as int16 since NumPy does not handle b │ │ 35 │ │ weight = weight.view(torch.int16) │ │ 36 │ │ dtype = "bfloat16" │ │ ❱ 37 │ array = weight.cpu().numpy() │ │ 38 │ tensor_file = os.path.join(offload_folder, f"{weight_name}.dat") │ │ 39 │ if index is not None: │ │ 40 │ │ if dtype is None: │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ NotImplementedError: Cannot copy out of meta tensor; no data!
open
2023-07-13T13:24:19Z
2023-07-13T13:24:50Z
https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/issues/75
[]
sjtuzhaoxh
1
sinaptik-ai/pandas-ai
data-visualization
1,126
Encountered Bug After Using PandasAI (Agent) Inside My App and Standalone with PyInstaller
### System Info OS version: MacBook Pro, M1 Interpreter: 3.11.4 pandas-ai version: 2.0.32 ### 🐛 Describe the bug I'm implementing an app using PyQt5. To analyze my data, I integrated PandasAI. While running the program directly, everything works fine. However, upon standalone packaging with PyInstaller, I encounter the following error: ``` Traceback (most recent call last): File "pandasai/pipelines/chat/generate_chat_pipeline.py", line 283, in run output = (self.code_generation_pipeline | self.code_execution_pipeline).run( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pandasai/pipelines/pipeline.py", line 137, in run raise e File "pandasai/pipelines/pipeline.py", line 101, in run step_output = logic.execute( ^^^^^^^^^^^^^^ File "pandasai/pipelines/chat/code_execution.py", line 126, in execute code_to_run = self._retry_run_code( ^^^^^^^^^^^^^^^^^^^^^ File "pandasai/pipelines/chat/code_execution.py", line 346, in _retry_run_code return self.on_retry(code, e) ^^^^^^^^^^^^^^^^^^^^^^ File "pandasai/pipelines/chat/generate_chat_pipeline.py", line 128, in on_code_retry return self.code_exec_error_pipeline.run(correction_input) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pandasai/pipelines/chat/error_correction_pipeline/error_correction_pipeline.py", line 47, in run return self.pipeline.run(input) ^^^^^^^^^^^^^^^^^^^^^^^^ File "pandasai/pipelines/pipeline.py", line 137, in run raise e File "pandasai/pipelines/pipeline.py", line 101, in run step_output = logic.execute( ^^^^^^^^^^^^^^ File "pandasai/pipelines/chat/code_cleaning.py", line 91, in execute code_to_run = self.get_code_to_run(input, code_context) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pandasai/pipelines/chat/code_cleaning.py", line 137, in get_code_to_run code_to_run = self._clean_code(code, context) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pandasai/pipelines/chat/code_cleaning.py", line 481, in _clean_code self._extract_fix_dataframe_redeclarations(node, clean_code_lines) File "pandasai/pipelines/chat/code_cleaning.py", line 384, in _extract_fix_dataframe_redeclarations env = get_environment(self._additional_dependencies) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pandasai/helpers/optional.py", line 68, in get_environment **{builtin: __builtins__[builtin] for builtin in WHITELISTED_BUILTINS}, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pandasai/helpers/optional.py", line 68, in <dictcomp> **{builtin: __builtins__[builtin] for builtin in WHITELISTED_BUILTINS}, ~~~~~~~~~~~~^^^^^^^^^ KeyError: 'help' ``` I'm utilizing the following code to package my program standalone: `pyinstaller --collect-all pandasai --noconsole --copy-metadata pandasai --add-data "resources:resources" --add-data "finance-db.db:." --icon="./resources/icons/logo.png" --name money-management --pat /opt/homebrew/bin/python3.11 money-management.py `
closed
2024-04-21T09:11:15Z
2024-07-28T16:05:54Z
https://github.com/sinaptik-ai/pandas-ai/issues/1126
[]
PVZMF
0
pyro-ppl/numpyro
numpy
1,100
Checkpointing during MCMC
Hi devs, thanks for your contributions to this tool! Is it possible to save the MCMC chains while the chains are running? I'm using numpyro on multiple GPUs in an HPC environment and would like to checkpoint my jobs in case of preemption.
closed
2021-07-17T05:17:31Z
2021-07-18T09:21:42Z
https://github.com/pyro-ppl/numpyro/issues/1100
[ "question" ]
bmorris3
2
unit8co/darts
data-science
2,731
Investigate allowing `predict_likelihood_parameters` for auto-regression with quantile likelihoods
Check whether we could allow `predict_likelihood_parameters=True` for auto-regression with quantile likelihoods. Would be interesting to see how the quantiles compare if we just feed the model with the last predicted quantiles, compared to feeding it with the samples If the results are similar, this could speed up things quite a bit especially for torch models since we wouldn’t have to call the forward with all samples
closed
2025-03-13T08:16:42Z
2025-03-21T08:44:39Z
https://github.com/unit8co/darts/issues/2731
[ "feature request", "improvement" ]
dennisbader
1
home-assistant/core
python
141,166
Reopen Shelly Ble Problem
### The problem Is the same like https://github.com/home-assistant/core/issues/140889 ### What version of Home Assistant Core has the issue? 2025.3.x ### What was the last working version of Home Assistant Core? 2024.x ### What type of installation are you running? Home Assistant OS ### Integration causing the issue 15.0 ### Link to integration documentation on our website _No response_ ### Diagnostics information Logger: habluetooth.base_scanner Quelle: runner.py:154 Erstmals aufgetreten: 22. März 2025 um 10:02:14 (4 Vorkommnisse) Zuletzt protokolliert: 22. März 2025 um 18:31:45 shellyplus1pm-keller (08:3A:F2:02:2D:A0): Bluetooth scanner has gone quiet for 99.69573211669922s, check logs on the scanner device for more information shellyplus1pm-keller (08:3A:F2:02:2D:A0): Bluetooth scanner has gone quiet for 100.61075592041016s, check logs on the scanner device for more information shellyplus1pm-keller (08:3A:F2:02:2D:A0): Bluetooth scanner has gone quiet for 119.21070861816406s, check logs on the scanner device for more information shellyplus1pm-keller (08:3A:F2:02:2D:A0): Bluetooth scanner has gone quiet for 94.63068389892578s, check logs on the scanner device for more information ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information _No response_
closed
2025-03-23T05:55:31Z
2025-03-23T09:03:53Z
https://github.com/home-assistant/core/issues/141166
[ "integration: shelly" ]
CrazyUs3r
5
MaartenGr/BERTopic
nlp
1,406
'BERTopic' object has no attribute 'reduce_outliers'
i am not able to use reduce_outliers as it is showing a error as shown below ![Screenshot 2023-07-12 152526](https://github.com/MaartenGr/BERTopic/assets/73096699/ea67cc9b-9399-49a3-aa08-4397b0fb93bf) Can you guide me on how do i solve this?
open
2023-07-12T19:25:59Z
2023-07-12T20:29:31Z
https://github.com/MaartenGr/BERTopic/issues/1406
[]
dhruvilm28
3
aws/aws-sdk-pandas
pandas
2,383
[Support Us]: LogicalCube
Thank you for letting us use your organization's name on the repository read.me page and letting other customers know that you support the project! If you would like us to also display your organization's logo. please raise a pull request to provide an image file for the logo. Please add any files to *docs/source/_static/* Organization Name: LogicalCube (https://www.logicalcube.com) Your Name: Bryan Kelly Your Position: Manager I have included a logo: n *By raising a Support Us issue (and related pull request), you are granting AWS permission to use your company’s name (and logo) for the limited purpose described here and you are confirming that you have authority to grant such permission.*
closed
2023-07-06T00:37:59Z
2023-07-06T08:31:25Z
https://github.com/aws/aws-sdk-pandas/issues/2383
[]
zolabud
1
Lightning-AI/pytorch-lightning
machine-learning
20,033
Can't save models via the ModelCheckpoint() when using custom optimizer
### Bug description Dear all, I want to use a [Hessian-Free LM optimizer](https://github.com/ltatzel/PyTorchHessianFree) replace the pytorch L-BFGS optimizer. However, the model can't be saved normally if I use the ModelCheckpoint(), while the torch.save() and Trainer.save_checkpoint() are still working. You can find my test python file in the following. Could you give me some suggestions to handle this problem? Thanks! ### What version are you seeing the problem on? v2.2 ### How to reproduce the bug ```python import numpy as np import pandas as pd import time import torch from torch import nn from torch.utils.data import DataLoader,TensorDataset import matplotlib.pyplot as plt import lightning as L from lightning.pytorch import LightningModule from lightning.pytorch.loggers import CSVLogger from lightning.pytorch.callbacks.model_checkpoint import ModelCheckpoint from lightning.pytorch import Trainer from lightning.pytorch.callbacks.early_stopping import EarlyStopping from hessianfree.optimizer import HessianFree class LitModel(LightningModule): def __init__(self,loss): super().__init__() self.tanh_linear= nn.Sequential( nn.Linear(1,20), nn.Tanh(), nn.Linear(20,20), nn.Tanh(), nn.Linear(20,1), ) self.loss_fn = nn.MSELoss() self.automatic_optimization = False return def forward(self, x): out = self.tanh_linear(x) return out def configure_optimizers(self): optimizer = HessianFree( self.parameters(), cg_tol=1e-6, cg_max_iter=1000, lr=1e0, LS_max_iter=1000, LS_c=1e-3 ) return optimizer def training_step(self, batch, batch_idx): x, y = batch opt = self.optimizers() def forward_fn(): y_pred = self(x) loss=self.loss_fn(y_pred,y) return loss,y_pred opt.optimizer.step( forward=forward_fn) loss,y_pred=forward_fn() self.log("train_loss", loss, on_epoch=True, on_step=False) return loss def validation_step(self, batch, batch_idx): x, y = batch y_hat = self(x) val_loss = self.loss_fn(y_hat, y) # passing to early_stoping self.log("val_loss", val_loss, on_epoch=True, on_step=False) return val_loss def test_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = self.loss_fn(y_hat, y) return loss def main(): input_size = 20000 train_size = int(input_size*0.9) test_size = input_size-train_size batch_size = 1000 x_total = np.linspace(-1.0, 1.0, input_size, dtype=np.float32) x_total = np.random.choice(x_total,size=input_size,replace=False) #random sampling x_train = x_total[0:train_size] x_train= x_train.reshape((train_size,1)) x_test = x_total[train_size:input_size] x_test= x_test.reshape((test_size,1)) x_train=torch.from_numpy(x_train) x_test=torch.from_numpy(x_test) y_train = torch.from_numpy(np.sinc(10.0 * x_train)) y_test = torch.from_numpy(np.sinc(10.0 * x_test)) training_data = TensorDataset(x_train,y_train) test_data = TensorDataset(x_test,y_test) # Create data loaders. train_dataloader = DataLoader(training_data, batch_size=batch_size #,num_workers=2 ) test_dataloader = DataLoader(test_data, batch_size=batch_size #,num_workers=2 ) for X, y in test_dataloader: print("Shape of X: ", X.shape) print("Shape of y: ", y.shape, y.dtype) break for X, y in train_dataloader: print("Shape of X: ", X.shape) print("Shape of y: ", y.shape, y.dtype) break loss_fn = nn.MSELoss() model=LitModel(loss_fn) # prepare trainer opt_label=f'lm_HF_t20' logger = CSVLogger(f"./{opt_label}", name=f"test-{opt_label}",flush_logs_every_n_steps=1) epochs = 1e1 print(f"test for {opt_label}") early_stop_callback = EarlyStopping( monitor="val_loss" , min_delta=1e-9 , patience=10 , verbose=False, mode="min" , stopping_threshold = 1e-8 #stop if reaching accuracy ) modelck=ModelCheckpoint( dirpath = f"./{opt_label}" , monitor="val_loss" ,save_last = True #, save_top_k = 2 #, mode ='min' #, every_n_epochs = 1 #, save_on_train_epoch_end=True #,save_weights_only=True, ) Train_model=Trainer( accelerator="cpu" , max_epochs = int(epochs) , enable_progress_bar = True #using progress bar #, callbacks=[modelck,early_stop_callback] # using earlystopping , callbacks=[modelck] #do not using earlystopping , logger=logger #, num_processes = 16 ) t1=time.time() Train_model.fit(model,train_dataloaders=train_dataloader, val_dataloaders=test_dataloader) t2=time.time() print('total time') print(t2-t1) # torch.save() and Trainer.save_checkpoint() can save the model, but ModelCheckpoint() can't. #torch.save(model.state_dict(), f"model{opt_label}.pth") #print(f"Saved PyTorch Model State to model{opt_label}.pth") #Train_model.save_checkpoint(f"model{opt_label}.ckpt") #print(f"Saved PL Model State to model{opt_label}.ckpt") exit() return if __name__=='__main__': main() ``` ``` ### Error messages and logs ``` # Error messages and logs here please ``` The program do not report error, but the ModelCheckpoint() can't save models when I use a custom optimizer. ### Environment <details> <summary>Current environment</summary> * CUDA: - GPU: None - available: False - version: 12.1 * Lightning: - backpack-for-pytorch: 1.6.0 - lightning: 2.2.0 - lightning-utilities: 0.11.3.post0 - pytorch-lightning: 2.2.3 - torch: 2.2.0 - torchaudio: 2.0.1 - torchmetrics: 0.11.4 - torchvision: 0.15.1 * Packages: - aiohttp: 3.9.1 - aiosignal: 1.3.1 - async-timeout: 4.0.3 - attrs: 23.2.0 - backpack-for-pytorch: 1.6.0 - bottleneck: 1.3.5 - certifi: 2022.12.7 - charset-normalizer: 3.1.0 - cmake: 3.26.0 - colorama: 0.4.6 - contourpy: 1.2.1 - cycler: 0.12.1 - einops: 0.8.0 - filelock: 3.10.0 - fonttools: 4.51.0 - frozenlist: 1.4.1 - fsspec: 2023.3.0 - hessianfree: 0.1 - idna: 3.4 - jinja2: 3.1.2 - kiwisolver: 1.4.5 - lightning: 2.2.0 - lightning-utilities: 0.11.3.post0 - lit: 15.0.7 - markupsafe: 2.1.2 - matplotlib: 3.8.4 - mpmath: 1.3.0 - multidict: 6.0.4 - networkx: 3.0 - numexpr: 2.8.4 - numpy: 1.24.2 - nvidia-cublas-cu11: 11.10.3.66 - nvidia-cublas-cu12: 12.1.3.1 - nvidia-cuda-cupti-cu11: 11.7.101 - nvidia-cuda-cupti-cu12: 12.1.105 - nvidia-cuda-nvrtc-cu11: 11.7.99 - nvidia-cuda-nvrtc-cu12: 12.1.105 - nvidia-cuda-runtime-cu11: 11.7.99 - nvidia-cuda-runtime-cu12: 12.1.105 - nvidia-cudnn-cu11: 8.5.0.96 - nvidia-cudnn-cu12: 8.9.2.26 - nvidia-cufft-cu11: 10.9.0.58 - nvidia-cufft-cu12: 11.0.2.54 - nvidia-curand-cu11: 10.2.10.91 - nvidia-curand-cu12: 10.3.2.106 - nvidia-cusolver-cu11: 11.4.0.1 - nvidia-cusolver-cu12: 11.4.5.107 - nvidia-cusparse-cu11: 11.7.4.91 - nvidia-cusparse-cu12: 12.1.0.106 - nvidia-nccl-cu11: 2.14.3 - nvidia-nccl-cu12: 2.19.3 - nvidia-nvjitlink-cu12: 12.3.101 - nvidia-nvtx-cu11: 11.7.91 - nvidia-nvtx-cu12: 12.1.105 - packaging: 23.0 - pandas: 1.5.3 - pillow: 9.4.0 - pip: 24.1.1 - pyparsing: 3.1.2 - python-dateutil: 2.8.2 - pytorch-lightning: 2.2.3 - pytz: 2022.7 - pyyaml: 6.0 - requests: 2.28.2 - setuptools: 67.6.0 - six: 1.16.0 - sympy: 1.11.1 - torch: 2.2.0 - torchaudio: 2.0.1 - torchmetrics: 0.11.4 - torchvision: 0.15.1 - tqdm: 4.65.0 - triton: 2.2.0 - typing-extensions: 4.11.0 - unfoldnd: 0.2.1 - urllib3: 1.26.15 - wheel: 0.40.0 - yarl: 1.9.4 * System: - OS: Linux - architecture: - 64bit - ELF - processor: x86_64 - python: 3.10.9 - release: 3.10.0-862.el7.x86_64 - version: #1 SMP Fri Apr 20 16:44:24 UTC 2018 </details> ### More info _No response_
open
2024-07-01T08:54:11Z
2024-07-01T08:54:11Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20033
[ "bug", "needs triage" ]
youli-jlu
0
scrapy/scrapy
web-scraping
6,481
Allow passing parameters to signal receiver
## Summary Allow passing parameters to a signal receiver (when self is not available) I.e. ``` crawler.signals.connect(receiver=cls.engine_stopped, signal=signals.engine_stopped, cb_kwargs={"lazy": True}) @classmethod def engine_stopped(cls, lazy: bool) -> None: ... ``` ## Motivation Pass of parameters to the receiver method would allow more dependent logic/behavior in it
closed
2024-09-26T09:08:35Z
2024-10-16T09:07:31Z
https://github.com/scrapy/scrapy/issues/6481
[]
genismoreno
4
huggingface/pytorch-image-models
pytorch
1,344
[BUG] ViT models can't load pretrained weights from models with different `cls_token`/`no_embed_class` settings
**Describe the bug** The title says it all. ViT models currently support changing some hyperparameters when loading pretrained weights (such as `img_size`). This is useful, when the loaded weights are intended to be used for further fine-tuning with different hyperparameters. However, `_load_weights` currently assumes that the default config was used. **To Reproduce** ```python timm.create_model("vit_large_patch16_384", pretrained=True, class_token=False, global_pool="avg") # AttributeError: 'NoneType' object has no attribute 'copy_' ``` ```python timm.create_model("vit_large_patch16_384", pretrained=True, no_embed_class=True) # RuntimeError: The size of tensor a (576) must match the size of tensor b (577) at non-singleton dimension 1 ``` **Expected behavior** Return ViT models with `class_token=False` and `no_embed_class=True`. I don't have the time to fill out a proper PR, but the short version is that `_load_weights` should check if `model.cls_token` is `None` before attempting to copy it from the pretrained weights and `resize_pos_embed` should just drop the extra prefix tokens from the embeddings before doing the interpolation.
closed
2022-07-11T20:02:54Z
2022-07-13T07:15:46Z
https://github.com/huggingface/pytorch-image-models/issues/1344
[ "bug" ]
ruro
4
gradio-app/gradio
machine-learning
10,502
gradio demo don't work in huggingface space
### Describe the bug when deploying demo code of doc on huggingface space, it will produce a bug "gradio.exceptions.error: 'data incompatible with the messages format'". Because the version of gradio is 5.0.1 when deploying and can not change, I can not fix it by updating the version. After trying, find if I change the code 【chatbot=gr.Chatbot(height=300)】 -> 【chatbot=gr.Chatbot(height=300, type="messages")], the bug will be fixed. ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import gradio as gr def slow_echo(message, history): for i in range(len(message)): time.sleep(0.3) yield "You typed: " + message[: i+1] gr.ChatInterface( slow_echo, type="messages", chatbot=gr.Chatbot(height=300), textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=7), title="Yes Man", description="Ask Yes Man any question", theme="ocean", examples=["Hello", "Am I cool?", "Are tomatoes vegetables?"], cache_examples=True, ).launch() ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell gradio==5.0.1 ``` ### Severity I can work around it
closed
2025-02-05T02:49:16Z
2025-02-05T05:54:37Z
https://github.com/gradio-app/gradio/issues/10502
[ "bug" ]
Shuryne
1
tqdm/tqdm
pandas
1,322
UnicodeDecodeError when using subprocess.getstatusoutput
I've made this script for finding corrupt images using Imagemagick. Full code: ``` from pathlib import Path import time import subprocess import concurrent.futures from tqdm import tqdm _err_set = set() def _imgerr(_img): global _err_set output = subprocess.getstatusoutput("magick identify -regard-warnings \"" + str(_img) + "\"") if(int(output[0]) == 1): _err_set.add(str(_img)) _root = input("Input directory path: ") file_set = set(Path(_root).rglob("*.jpg")) print("Scanning...") start1 = time.perf_counter() with concurrent.futures.ThreadPoolExecutor() as executor: list(tqdm(executor.map(_imgerr, file_set),total=int(len(file_set)))) finish1 = time.perf_counter() with open('bad_img.txt', 'w', encoding="utf-8") as f: for item in sorted(_err_set): f.write('"' + item + '"' + "\n") f.close() print(f'Total execution time [mt] = {round(finish1 - start1, 3)}s') print(f'Average time per image = {round((finish1 - start1)/len(file_set), 10)}s') print(f'Corrupt images = {len(_err_set)}') ``` I'm using tqdm for progress tracking. The problem is with this line: ``` list(tqdm(executor.map(_imgerr, file_set),total=int(len(file_set)))) ``` If there are no non ascii characters in the image path then everything works fine, but if any unicode character appears I get >Exception has occurred: UnicodeDecodeError 'charmap' codec can't decode byte 0x81 in position 37: character maps to /<undefined/> If I instead just use ``` executor.map(_imgerr, file_set) ``` everyting works just fine, regardless if there are unicode characters present or not. Been scratching my head for couple of hours now but still can't figure out what causes the error. Any suggestions are welcome! Btw maybe it's relevant but when debugging the error pops out in the function at the following line: ``` output = subprocess.getstatusoutput("magick identify -regard-warnings \"" + str(_img) + "\"") ```
closed
2022-04-25T19:23:04Z
2022-04-25T21:07:32Z
https://github.com/tqdm/tqdm/issues/1322
[]
gotr3k
1
scikit-learn/scikit-learn
data-science
30,180
DOC grammar issue in the governance page
### Describe the issue linked to the documentation In the governance page at line: https://github.com/scikit-learn/scikit-learn/blob/59dd128d4d26fff2ff197b8c1e801647a22e0158/doc/governance.rst?plain=1#L161 there is a reference attached to "Enhancement proposals (SLEPs)." However, after compiling, it is displayed as "a Enhancement proposals (SLEPs)" which is grammatically incorrect. Page at: https://scikit-learn.org/stable/governance.html ### Suggest a potential alternative/fix Fix it by updating the line with ``` an :ref:`slep` ```
closed
2024-10-30T19:49:04Z
2024-11-05T07:31:05Z
https://github.com/scikit-learn/scikit-learn/issues/30180
[ "Documentation" ]
AdityaInnovates
2
qubvel-org/segmentation_models.pytorch
computer-vision
220
Image preprocessing parameters
The function `preprocess_input()`, in encoders/_preprocessing.py, takes 'mean' and 'std' as parameters and apply the normalization on the data in the following way: ``` if mean is not None: mean = np.array(mean) x = x - mean if std is not None: std = np.array(std) x = x / std ``` In my opinion, the mean/std here should be the statistics for the training dataset (data-specific). However, according to `get_preprocessing_params()`, in encoders/\_\_init\_\_.py, the mean/std are determined by the pretrained model, which depends on the training data used in the pretrained model. Just wonder, is there any reason why we do it based on the pretrained model?
closed
2020-06-03T20:54:49Z
2020-06-13T18:43:14Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/220
[]
lkforward
2
collerek/ormar
pydantic
983
select_related with ManyToMany through
**Describe the bug** Trying to query a ManyToMany through relationship and getting this error: ```bash ormar.exceptions.RelationshipInstanceError: Relationship error - ForeignKey EffortResource is of type <class 'int'> while <class 'weakref.ProxyType'> passed as a parameter. ``` after running `await EffortStep.objects.select_related("users").all()`. Models: ```python class User(PublicIdMixin, ormar.Model): id = ormar.Integer(primary_key=True) class Meta(BaseMeta): tablename = "users" class EffortStepUser(ormar.Model): id = ormar.Integer(primary_key=True) class Meta(BaseMeta): tablename = "effort_step_x_user" class EffortStep(PublicIdMixin, DateFieldsMixin, TenantAwareModel, ormar.Model): id = ormar.Integer(primary_key=True) users = ormar.ManyToMany( User, through=EffortStepUser, through_relation_name="step_id", through_reverse_relation_name="user_id", ) class Meta(BaseMeta): tablename = "effort_step" class EffortResource(DateFieldsMixin, TenantAwareModel, ormar.Model): id = ormar.Integer(primary_key=True) step: EffortStep = ormar.ForeignKey(EffortStep, name="step_id", nullable=False) class Meta(BaseMeta): tablename = "effort_resource" ``` ### Full traceback ```bash Traceback (most recent call last): File "/.venvs/core/lib/python3.11/site-packages/uvicorn/protocols/http/httptools_impl.py", line 419, in run_asgi result = await app( # type: ignore[func-returns-value] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/uvicorn/middleware/proxy_headers.py", line 78, in __call__ return await self.app(scope, receive, send) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/fastapi/applications.py", line 270, in __call__ await super().__call__(scope, receive, send) File "/venvs/core/lib/python3.11/site-packages/starlette/applications.py", line 124, in __call__ await self.middleware_stack(scope, receive, send) File "/.venvs/core/lib/python3.11/site-packages/starlette/middleware/errors.py", line 184, in __call__ raise exc File "/.venvs/core/lib/python3.11/site-packages/starlette/middleware/errors.py", line 162, in __call__ await self.app(scope, receive, _send) File "/.venvs/core/lib/python3.11/site-packages/starlette/middleware/cors.py", line 92, in __call__ await self.simple_response(scope, receive, send, request_headers=headers) File "/.venvs/core/lib/python3.11/site-packages/starlette/middleware/cors.py", line 147, in simple_response await self.app(scope, receive, send) File "/.venvs/core/lib/python3.11/site-packages/starlette/middleware/exceptions.py", line 79, in __call__ raise exc File "/.venvs/core/lib/python3.11/site-packages/starlette/middleware/exceptions.py", line 68, in __call__ await self.app(scope, receive, sender) File "/.venvs/core/lib/python3.11/site-packages/fastapi/middleware/asyncexitstack.py", line 21, in __call__ raise e File "/.venvs/core/lib/python3.11/site-packages/fastapi/middleware/asyncexitstack.py", line 18, in __call__ await self.app(scope, receive, send) File "/.venvs/core/lib/python3.11/site-packages/starlette/routing.py", line 706, in __call__ await route.handle(scope, receive, send) File "/.venvs/core/lib/python3.11/site-packages/starlette/routing.py", line 276, in handle await self.app(scope, receive, send) File "/.venvs/core/lib/python3.11/site-packages/starlette/routing.py", line 66, in app response = await func(request) ^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/fastapi/routing.py", line 235, in app raw_response = await run_endpoint_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/fastapi/routing.py", line 161, in run_endpoint_function return await dependant.call(**values) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/src/efforts/router.py", line 95, in add_effort_collaborators return await service.add_step_zero_collaborators( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/src/efforts/service.py", line 165, in add_step_zero_collaborators await EffortStep.objects.select_related("users") File "/.venvs/core/lib/python3.11/site-packages/ormar/queryset/queryset.py", line 982, in get processed_rows = self._process_query_result_rows(rows) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/ormar/queryset/queryset.py", line 196, in _process_query_result_rows return self.model.merge_instances_list(result_rows) # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/ormar/models/mixins/merge_mixin.py", line 43, in merge_instances_list model = cls.merge_two_instances(next_model, model) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/ormar/models/mixins/merge_mixin.py", line 91, in merge_two_instances cls.merge_two_instances( File "/.venvs/core/lib/python3.11/site-packages/ormar/models/mixins/merge_mixin.py", line 91, in merge_two_instances cls.merge_two_instances( File "/.venvs/core/lib/python3.11/site-packages/ormar/models/mixins/merge_mixin.py", line 82, in merge_two_instances setattr(other, field_name, value_to_set) File "/.venvs/core/lib/python3.11/site-packages/ormar/models/newbasemodel.py", line 175, in __setattr__ object.__setattr__(self, name, value) File "/.venvs/core/lib/python3.11/site-packages/ormar/models/descriptors/descriptors.py", line 110, in __set__ model = instance.Meta.model_fields[self.name].expand_relationship( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/ormar/fields/foreign_key.py", line 541, in expand_relationship model = constructors.get( # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/ormar/fields/foreign_key.py", line 399, in _extract_model_from_sequence return [ ^ File "/.venvs/core/lib/python3.11/site-packages/ormar/fields/foreign_key.py", line 400, in <listcomp> self.expand_relationship( # type: ignore File "/.venvs/core/lib/python3.11/site-packages/ormar/fields/foreign_key.py", line 541, in expand_relationship model = constructors.get( # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.venvs/core/lib/python3.11/site-packages/ormar/fields/foreign_key.py", line 475, in _construct_model_from_pk raise RelationshipInstanceError( ormar.exceptions.RelationshipInstanceError: Relationship error - ForeignKey EffortResource is of type <class 'int'> while <class 'weakref.ProxyType'> passed as a parameter. ``` **Versions (please complete the following information):** - Database backend used (mysql/sqlite/postgress): **postgres 14.1** - Python version: 3.11 - `ormar` version: 0.12.0 - if applicable `fastapi` version 0.88 Thanks!
open
2023-01-10T17:49:25Z
2023-04-10T09:32:26Z
https://github.com/collerek/ormar/issues/983
[ "bug" ]
AdamGold
1
dpgaspar/Flask-AppBuilder
rest-api
1,913
Incorrect(?) use of db.session in flask_appbuilder.AppBuilder
### Environment Flask-Appbuilder version: 4.1.3 ### Describe the expected results We have an Azure SQL database that we use with flask-appbuilder. This database requires that we request a new token every hour or so (expiry on the token is 3600 seconds). To do this, we use an event listener of the form: `@event.listens_for(engine, "do_connect")`, that requests a new token and sets this in the connection parameters for the engine when creating a new connection. The expected behaviour would be that once the token has expired, and it needs to create a new connection to the database, it runs the event from above and acquires a new token that can be used for connections. ### Describe the actual results We're facing an issue where after an hour (when the token expires) if you perform a request to the application you'll get an Internal Server Error with an error like this: `sqlalchemy.exc.OperationalError: (pyodbc.OperationalError) ('08S01', '[08S01] [Microsoft][ODBC Driver 17 for SQL Server]TCP Provider: Error code 0x20 (32) (SQLExecDirectW)')`. Subsequent requests after this will be fine, until the token expires again at which point it'll happen again. My suspicion is that there is a problem with the use of the `db.session` when initializing the appbuilder object: `flask_appbuilder.AppBuilder(app, db.session, ...)` because the `db.session` in my understanding is not meant to be long-lived, it's meant to be a short-lived object that you use for a transaction and then close afterwards: see [here](https://docs.sqlalchemy.org/en/14/orm/session_basics.html#when-do-i-construct-a-session-when-do-i-commit-it-and-when-do-i-close-it). I further don't know if engine events are triggered for sessions at all (and that this may be the cause of the token expiry -> connection failure issue that I'm seeing). ```pytb app|ERROR|Exception on / [GET] Traceback (most recent call last): File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1819, in _execute_context self.dialect.do_execute( File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 732, in do_execute cursor.execute(statement, parameters) pyodbc.OperationalError: ('08S01', '[08S01] [Microsoft][ODBC Driver 17 for SQL Server]TCP Provider: Error code 0x20 (32) (SQLExecDirectW)') The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/app/.venv/lib/python3.9/site-packages/flask/app.py", line 2073, in wsgi_app response = self.full_dispatch_request() File "/app/.venv/lib/python3.9/site-packages/flask/app.py", line 1519, in full_dispatch_request rv = self.handle_user_exception(e) File "/app/.venv/lib/python3.9/site-packages/flask/app.py", line 1517, in full_dispatch_request rv = self.dispatch_request() File "/app/.venv/lib/python3.9/site-packages/flask/app.py", line 1503, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args) File "/app/app.py", line 72, in index return self.render_template(index, appbuilder=self.appbuilder) File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/baseviews.py", line 322, in render_template return render_template( File "/app/.venv/lib/python3.9/site-packages/flask/templating.py", line 154, in render_template return _render( File "/app/.venv/lib/python3.9/site-packages/flask/templating.py", line 128, in _render rv = template.render(context) File "/app/.venv/lib/python3.9/site-packages/jinja2/environment.py", line 1301, in render self.environment.handle_exception() File "/app/.venv/lib/python3.9/site-packages/jinja2/environment.py", line 936, in handle_exception raise rewrite_traceback_stack(source=source) File "/app/webapp/templates/index_not_auth.html", line 1, in top-level template code {% extends "appbuilder/base.html" %} File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/templates/appbuilder/base.html", line 1, in top-level template code {% extends base_template %} File "/app/webapp/templates/custom_base.html", line 1, in top-level template code {% extends 'appbuilder/baselayout.html' %} File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/templates/appbuilder/baselayout.html", line 2, in top-level template code {% import 'appbuilder/baselib.html' as baselib %} File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/templates/appbuilder/init.html", line 37, in top-level template code {% block body %} File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/templates/appbuilder/baselayout.html", line 8, in block 'body' {% block navbar %} File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/templates/appbuilder/baselayout.html", line 10, in block 'navbar' {% include 'appbuilder/navbar.html' %} File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/templates/appbuilder/navbar.html", line 29, in top-level template code {% include 'appbuilder/navbar_menu.html' %} File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/templates/appbuilder/navbar_menu.html", line 11, in top-level template code {% if item1 | is_menu_visible %} File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/filters.py", line 136, in is_menu_visible return self.security_manager.has_access("menu_access", item.name) File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/security/manager.py", line 1526, in has_access return self.is_item_public(permission_name, view_name) File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/security/manager.py", line 1406, in is_item_public permissions = self.get_public_permissions() File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/security/sqla/manager.py", line 322, in get_public_permissions role = self.get_public_role() File "/app/.venv/lib/python3.9/site-packages/flask_appbuilder/security/sqla/manager.py", line 316, in get_public_role self.get_session.query(self.role_model) File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/orm/query.py", line 2845, in one_or_none return self._iter().one_or_none() File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/orm/query.py", line 2903, in _iter result = self.session.execute( File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 1696, in execute result = conn._execute_20(statement, params or {}, execution_options) File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1631, in _execute_20 return meth(self, args_10style, kwargs_10style, execution_options) File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/sql/elements.py", line 325, in _execute_on_connection return connection._execute_clauseelement( File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1498, in _execute_clauseelement ret = self._execute_context( File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1862, in _execute_context self._handle_dbapi_exception( File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 2043, in _handle_dbapi_exception util.raise_( File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 207, in raise_ raise exception File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1819, in _execute_context self.dialect.do_execute( File "/app/.venv/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 732, in do_execute cursor.execute(statement, parameters) sqlalchemy.exc.OperationalError: (pyodbc.OperationalError) ('08S01', '[08S01] [Microsoft][ODBC Driver 17 for SQL Server]TCP Provider: Error code 0x20 (32) (SQLExecDirectW)') ... (Background on this error at: https://sqlalche.me/e/14/e3q8) ``` ### Steps to reproduce Unclear.
open
2022-08-19T11:09:31Z
2022-09-05T09:35:02Z
https://github.com/dpgaspar/Flask-AppBuilder/issues/1913
[ "pending" ]
Atheuz
3
kizniche/Mycodo
automation
1,011
API not capturing conversion_id property update
### Describe the problem/bug When converting an input measurement the 'conversion_id' prop of "device measurement settings" in the API stays null while the db reflects the update ### Versions: - Mycodo Version: 8.10.1 - Raspberry Pi Version: 3B+ - Raspbian OS Version: Raspberry Pi OS Lite ### Reproducibility Convert an input measurement via UI GET api/settings/device_measurements/by_device_id/[unique_id] Bug: DB has conversion_id ref but API does not thank you
closed
2021-05-25T12:37:08Z
2021-11-01T01:25:01Z
https://github.com/kizniche/Mycodo/issues/1011
[ "bug", "Fixed and Committed" ]
tilersmyth
9
skypilot-org/skypilot
data-science
4,021
[Storage] Bump GCSFuse to 2.4.0+
[GCSFuse 2.4.0](https://github.com/GoogleCloudPlatform/gcsfuse/releases/tag/v2.4.0) introduces parallel downloads which helps with loading large files (e.g., model checkpoints). We should bump GCSFuse version + investigate the tradeoffs of enabling parallel downloads (by setting `file-cache:enable-parallel-downloads:true` in the gcsfuse config file).
open
2024-09-30T17:49:32Z
2024-12-19T23:08:59Z
https://github.com/skypilot-org/skypilot/issues/4021
[]
romilbhardwaj
0
custom-components/pyscript
jupyter
74
Feature Request: Automatic reloading for existing scripts?
While jupyter notebook is a great place for doing the initial development, at some point you want to move your automations out from it. It would be great if (at least the existing scripts) would be automatically reloaded on change, i.e., by using inotify listeners on the existing script files and calling the `reload()` when a modification is detected. My personal development setup looks like this: I'm using notebooks to do the initial development, and as soon as I'm confident that things are mostly working, I'll move the code over into a new script. For development, I'm using pycharm which I have configured to do an auto-deployment on the production instance whenever a file gets saved. In such cases, the ability to avoid doing a manual reload service call would simplify the workflow.
closed
2020-11-02T23:14:55Z
2021-01-01T00:59:06Z
https://github.com/custom-components/pyscript/issues/74
[]
rytilahti
25
plotly/plotly.py
plotly
5,109
Plotly min.js import missing .js suffix
When running this cell in a JupyterLab instance: ```python import plotly.io as pio pio.renderers.default = "notebook_connected" import plotly.graph_objects as go go.Figure() ``` The first time Plotly is loaded, the figure is blank and the following errors appear in the dev console: ``` GET https://cdn.plot.ly/plotly-3.0.1.min net::ERR_ABORTED 403 (Forbidden) Uncaught ReferenceError: Plotly is not defined at <anonymous>:1:179 at P.attachWidget (jlab_core.a4c5e1f5bac9ba5dc7f6.js?v=a4c5e1f5bac9ba5dc7f6:1:1859455) at P.insertWidget (jlab_core.a4c5e1f5bac9ba5dc7f6.js?v=a4c5e1f5bac9ba5dc7f6:1:1858919) at M._insertOutput (jlab_core.a4c5e1f5bac9ba5dc7f6.js?v=a4c5e1f5bac9ba5dc7f6:1:1282454) at M.onModelChanged (jlab_core.a4c5e1f5bac9ba5dc7f6.js?v=a4c5e1f5bac9ba5dc7f6:1:1278810) at m (jlab_core.a4c5e1f5bac9ba5dc7f6.js?v=a4c5e1f5bac9ba5dc7f6:1:1832098) at Object.l [as emit] (jlab_core.a4c5e1f5bac9ba5dc7f6.js?v=a4c5e1f5bac9ba5dc7f6:1:1831774) at a.emit (jlab_core.a4c5e1f5bac9ba5dc7f6.js?v=a4c5e1f5bac9ba5dc7f6:1:1829611) at d._onListChanged (jlab_core.a4c5e1f5bac9ba5dc7f6.js?v=a4c5e1f5bac9ba5dc7f6:1:1273587) at m (jlab_core.a4c5e1f5bac9ba5dc7f6.js?v=a4c5e1f5bac9ba5dc7f6:1:1832098) ``` When running the cell for a second time, the figure appears. If the page is refreshed, the figure disappears again. It looks like the issue can be traced back to this line, where `.js` is removed from the CDN path: https://github.com/plotly/plotly.py/blob/ae0fbedce7ba3be6450aba350f12c1fb043e8eb8/plotly/io/_base_renderers.py#L286 This is with Python 3.11.11, Plotly 6.0.1 and Jupyterlab 4.3.6, and occurs in both Chrome and Edge. ``` anyio==4.9.0 argon2-cffi==23.1.0 argon2-cffi-bindings==21.2.0 arrow==1.3.0 asttokens==3.0.0 async-lru==2.0.5 attrs==25.3.0 babel==2.17.0 beautifulsoup4==4.13.3 bleach==6.2.0 certifi==2025.1.31 cffi==1.17.1 charset-normalizer==3.4.1 comm==0.2.2 debugpy==1.8.13 decorator==5.2.1 defusedxml==0.7.1 executing==2.2.0 fastjsonschema==2.21.1 fqdn==1.5.1 h11==0.14.0 httpcore==1.0.7 httpx==0.28.1 idna==3.10 ipykernel==6.29.5 ipython==9.0.2 ipython_pygments_lexers==1.1.1 isoduration==20.11.0 jedi==0.19.2 Jinja2==3.1.6 json5==0.10.0 jsonpointer==3.0.0 jsonschema==4.23.0 jsonschema-specifications==2024.10.1 jupyter-events==0.12.0 jupyter-lsp==2.2.5 jupyter_client==8.6.3 jupyter_core==5.7.2 jupyter_server==2.15.0 jupyter_server_terminals==0.5.3 jupyterlab==4.3.6 jupyterlab_pygments==0.3.0 jupyterlab_server==2.27.3 MarkupSafe==3.0.2 matplotlib-inline==0.1.7 mistune==3.1.3 narwhals==1.31.0 nbclient==0.10.2 nbconvert==7.16.6 nbformat==5.10.4 nest-asyncio==1.6.0 notebook_shim==0.2.4 overrides==7.7.0 packaging==24.2 pandocfilters==1.5.1 parso==0.8.4 pexpect==4.9.0 platformdirs==4.3.7 plotly==6.0.1 prometheus_client==0.21.1 prompt_toolkit==3.0.50 psutil==7.0.0 ptyprocess==0.7.0 pure_eval==0.2.3 pycparser==2.22 Pygments==2.19.1 python-dateutil==2.9.0.post0 python-json-logger==3.3.0 PyYAML==6.0.2 pyzmq==26.3.0 referencing==0.36.2 requests==2.32.3 rfc3339-validator==0.1.4 rfc3986-validator==0.1.1 rpds-py==0.23.1 Send2Trash==1.8.3 six==1.17.0 sniffio==1.3.1 soupsieve==2.6 stack-data==0.6.3 terminado==0.18.1 tinycss2==1.4.0 tornado==6.4.2 traitlets==5.14.3 types-python-dateutil==2.9.0.20241206 typing_extensions==4.12.2 uri-template==1.3.0 urllib3==2.3.0 wcwidth==0.2.13 webcolors==24.11.1 webencodings==0.5.1 websocket-client==1.8.0 ``` It still doesn't work when downgrading to Plotly 5.24.1, although the console error is slightly different: ``` Uncaught ReferenceError: require is not defined at <anonymous>:1:17 at P.attachWidget (jlab_core.a4c5e1f5ba…9ba5dc7f6:1:1859455) at P.insertWidget (jlab_core.a4c5e1f5ba…9ba5dc7f6:1:1858919) at M._insertOutput (jlab_core.a4c5e1f5ba…9ba5dc7f6:1:1282454) at M.onModelChanged (jlab_core.a4c5e1f5ba…9ba5dc7f6:1:1278810) at m (jlab_core.a4c5e1f5ba…9ba5dc7f6:1:1832098) at Object.l [as emit] (jlab_core.a4c5e1f5ba…9ba5dc7f6:1:1831774) at a.emit (jlab_core.a4c5e1f5ba…9ba5dc7f6:1:1829611) at d._onListChanged (jlab_core.a4c5e1f5ba…9ba5dc7f6:1:1273587) at m (jlab_core.a4c5e1f5ba…9ba5dc7f6:1:1832098) ``` When exporting to html with `nbconvert`, the 403 error still appears but the plot displays. Changing line 7568 of the attached html file to `<script type="module">import "https://cdn.plot.ly/plotly-3.0.1.min.js"</script>` removes the error from the console. [Plotly min.js issue.zip](https://github.com/user-attachments/files/19428204/Plotly.min.js.issue.zip)
closed
2025-03-24T10:51:15Z
2025-03-24T15:06:10Z
https://github.com/plotly/plotly.py/issues/5109
[]
slishak-PX
2
ivy-llc/ivy
pytorch
28,557
Fix Frontend Failing Test: paddle - creation.paddle.assign
To-do List: https://github.com/unifyai/ivy/issues/27500
closed
2024-03-12T11:52:24Z
2024-03-21T12:04:07Z
https://github.com/ivy-llc/ivy/issues/28557
[ "Sub Task" ]
ZJay07
0
AirtestProject/Airtest
automation
852
swipe滑动操作不够平滑 #884
我在用airtest测试自动滑动解锁验证码,但很多页面的滑动解锁会通过js判断滑动操作是人为还是机器,比较生硬的滑动操作会被判定为机器。 目前使用的是基于windows页面识别的swipe操作,具体滑动代码如下: swipe({图片},vector=[0.1776,0.0056],duration=0.2,steps=randint(2,5)) 无论怎么调用参数,swipe的滑动操作其实都是针对指定距离向量进行分段滑动操作,滑动过程都比较生硬容易被识别。 能否提供比较拟人的滑动解决方案?
closed
2021-01-14T11:50:25Z
2021-01-15T09:18:44Z
https://github.com/AirtestProject/Airtest/issues/852
[]
tiexinyang
1
errbotio/errbot
automation
1,103
Errbot 4.2.2 python 2.7. Error with command errbot.
In order to let us help you better, please fill out the following fields as best you can: ### I am... * [ ] Reporting a bug * [ ] Suggesting a new feature * [x ] Requesting help with running my bot * [ ] Requesting help writing plugins * [ ] Here about something else ### I am running... * Errbot version: 4.2.2 * OS version: ubuntu 16.04 lts * Python version: 2.7 * Using a virtual environment: yes ### Issue description Please describe your bug/feature/problem here. The more information you can provide, the better. I can only use python 2.7. I'm trying to install errbot version 4.2.2. I installed it. I got error running errbot command. Can you help me implement errbot without using python 3 > 17:42:12 DEBUG errbot.specific_plugin_ma Load the one remaining... 17:42:12 ERROR yapsy Unable to import plugin: /home/thienloc/working/errbot/.venv/local/lib/python2.7/site-packages/errbot/backends/text Traceback (most recent call last): File "/home/thienloc/working/errbot/.venv/local/lib/python2.7/site-packages/yapsy/PluginManager.py", line 488, in loadPlugins candidate_module = imp.load_module(plugin_module_name,plugin_file,candidate_filepath+".py",("py","r",imp.PY_SOURCE)) File "/home/thienloc/working/errbot/.venv/local/lib/python2.7/site-packages/errbot/backends/text.py", line 14, in <module> from errbot.rendering import ansi, text, xhtml, imtext File "/home/thienloc/working/errbot/.venv/local/lib/python2.7/site-packages/errbot/rendering/__init__.py", line 10, in <module> MD_ESCAPE_RE = re.compile(u'|'.join(re.escape(c) for c in Markdown.ESCAPED_CHARS)) AttributeError: type object 'Markdown' has no attribute 'ESCAPED_CHARS' 17:42:12 ERROR errbot.bootstrap Unable to load or configure the backend. Traceback (most recent call last): File "/home/thienloc/working/errbot/.venv/local/lib/python2.7/site-packages/errbot/bootstrap.py", line 126, in setup_bot bot = backendpm.get_plugin_by_name(backend_name) File "/home/thienloc/working/errbot/.venv/local/lib/python2.7/site-packages/errbot/specific_plugin_manager.py", line 87, in get_plugin_by_name raise Exception(u'Error loading plugin %s:\nError:\n%s\n' % (name, formatted_error)) Exception: Error loading plugin Text: Error: <type 'exceptions.AttributeError'>: File "/home/thienloc/working/errbot/.venv/local/lib/python2.7/site-packages/yapsy/PluginManager.py", line 488, in loadPlugins candidate_module = imp.load_module(plugin_module_name,plugin_file,candidate_filepath+".py",("py","r",imp.PY_SOURCE)) File "/home/thienloc/working/errbot/.venv/local/lib/python2.7/site-packages/errbot/backends/text.py", line 14, in <module> from errbot.rendering import ansi, text, xhtml, imtext File "/home/thienloc/working/errbot/.venv/local/lib/python2.7/site-packages/errbot/rendering/__init__.py", line 10, in <module> MD_ESCAPE_RE = re.compile(u'|'.join(re.escape(c) for c in Markdown.ESCAPED_CHARS)) ### Steps to reproduce I create a folder, virtual environment. I downloaded errbot 4.2.2 here: https://pypi.python.org/pypi/errbot/4.2.2 I installed python-telegram-bot I created a requirements.txt file I installed it by pip install errbot and I also clicked installation suggestion in pycharm. When I check errbot --version, it's 4.2.2 Then I click errbot, I got error. In case of a bug, please describe the steps we need to take in order to reproduce your issue. If you cannot easily reproduce the issue please let us know and provide as much information as you can which might help us pinpoint the problem. ### Additional info If you have any more information, please specify it here.
closed
2017-09-20T11:00:22Z
2017-10-07T08:16:42Z
https://github.com/errbotio/errbot/issues/1103
[]
locdoan12121997
3
sczhou/CodeFormer
pytorch
40
Background upscale isn't working / Real-ESRGAN ignored?
Hello, Thank you for this great project! 💙 I'm running this on Windows 10 and Anaconda, Installation was very easy and simple to follow thanks to your step-by-step instructions, I appreciate it. ### Problem Description: I've added the argument: --bg_upsampler realesrgan But it seems to ignore it and just upscale the face without the background, I get this warning: ``` inference_codeformer.py:22: RuntimeWarning: The unoptimized RealESRGAN is slow on CPU. We do not use it. If you really want to use it, please modify the corresponding codes. warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. ' Face detection model: retinaface_resnet50 Background upsampling: False, Face upsampling: False Processing: 5a.png detect 1 faces All results are saved in results/_SOURCE__0.7 ``` Since I'm not a programmer I don't know how to fix or mess with code in general, Can you please tell me how to make it work? Thanks ahead!
open
2022-10-04T17:38:28Z
2024-04-06T15:39:48Z
https://github.com/sczhou/CodeFormer/issues/40
[]
AlonDan
6
ading2210/poe-api
graphql
70
Cannot send message? Object of type Message is not JSON serializable
Whenever i try to send a message using this function: ```py async def generate_response(message): with open("message.txt", "w") as f: for chunk in client.send_message("capybara", message): f.write(chunk["text_new"], end="", flush=True) with open("message.txt", "r+") as f: return f.read() ``` I just get this error: ``` Ignoring exception in on_message Traceback (most recent call last): File "/home/runner/Bowkii/venv/lib/python3.9/site-packages/nextcord/client.py", line 512, in _run_event await coro(*args, **kwargs) File "main.py", line 370, in on_message response = await generate_response(message) File "main.py", line 14, in generate_response for chunk in client.send_message("capybara", message): File "/home/runner/Bowkii/venv/lib/python3.9/site-packages/poe.py", line 329, in send_message message_data = self.send_query("SendMessageMutation", { File "/home/runner/Bowkii/venv/lib/python3.9/site-packages/poe.py", line 202, in send_query payload = json.dumps(json_data, separators=(",", ":")) File "/nix/store/p21fdyxqb3yqflpim7g8s1mymgpnqiv7-python3-3.8.12/lib/python3.8/json/__init__.py", line 234, in dumps return cls( File "/nix/store/p21fdyxqb3yqflpim7g8s1mymgpnqiv7-python3-3.8.12/lib/python3.8/json/encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "/nix/store/p21fdyxqb3yqflpim7g8s1mymgpnqiv7-python3-3.8.12/lib/python3.8/json/encoder.py", line 257, in iterencode return _iterencode(o, 0) File "/nix/store/p21fdyxqb3yqflpim7g8s1mymgpnqiv7-python3-3.8.12/lib/python3.8/json/encoder.py", line 179, in default raise TypeError(f'Object of type {o.__class__.__name__} ' TypeError: Object of type Message is not JSON serializable ``` I'm pretty sure I did everything correctly and I have not seen anybody else with this error
closed
2023-05-16T18:43:02Z
2023-05-17T13:57:07Z
https://github.com/ading2210/poe-api/issues/70
[ "invalid" ]
BingusCoOfficial
2
pyro-ppl/numpyro
numpy
1,238
Cannot install numpyro for GPU
Hi, Not sure if this is a numpyro issue or an operators error: I installed numpyro with the following statement, in a clean miniconda environment: 1) pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_releases.html .... Successfully built jax Installing collected packages: six, numpy, typing-extensions, scipy, opt-einsum, flatbuffers, absl-py, jaxlib, jax Successfully installed absl-py-1.0.0 flatbuffers-2.0 jax-0.2.25 jaxlib-0.1.73+cuda11.cudnn82 numpy-1.21.4 opt-einsum-3.3.0 scipy-1.7.3 six-1.16.0 typing-extensions-4.0.0 2) I tried to install numpyro for cuda pip install numpyro[cuda] Collecting numpyro[cuda] Downloading numpyro-0.8.0-py3-none-any.whl (264 kB) |████████████████████████████████| 264 kB 1.5 MB/s **WARNING: numpyro 0.8.0 does not provide the extra 'cuda'** Requirement already satisfied: jax>=0.2.13 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from numpyro[cuda]) (0.2.25) Requirement already satisfied: jaxlib>=0.1.65 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from numpyro[cuda]) (0.1.73+cuda11.cudnn82) Collecting tqdm Using cached tqdm-4.62.3-py2.py3-none-any.whl (76 kB) Requirement already satisfied: numpy>=1.18 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (1.21.4) Requirement already satisfied: opt-einsum in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (3.3.0) Requirement already satisfied: typing-extensions in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (4.0.0) Requirement already satisfied: absl-py in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (1.0.0) Requirement already satisfied: scipy>=1.2.1 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (1.7.3) Requirement already satisfied: flatbuffers<3.0,>=1.12 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jaxlib>=0.1.65->numpyro[cuda]) (2.0) Requirement already satisfied: six in ./miniconda3/envs/jax/lib/python3.9/site-packages (from absl-py->jax>=0.2.13->numpyro[cuda]) (1.16.0) Installing collected packages: tqdm, numpyro Successfully installed numpyro-0.8.0 tqdm-4.62.3 3) I uninstalled it, so I could install numpyro cuda in a different way (see step 4) $ pip uninstall numpyro Found existing installation: numpyro 0.8.0 Uninstalling numpyro-0.8.0: Would remove: /home/roger/miniconda3/envs/jax/lib/python3.9/site-packages/numpyro-0.8.0.dist-info/* /home/roger/miniconda3/envs/jax/lib/python3.9/site-packages/numpyro/* Proceed (Y/n)? y Successfully uninstalled numpyro-0.8.0 4) pip install numpyro[cuda] -f https://storage.googleapis.com/jax-releases/jax_releases.html Looking in links: https://storage.googleapis.com/jax-releases/jax_releases.html Collecting numpyro[cuda] Using cached numpyro-0.8.0-py3-none-any.whl (264 kB) ****WARNING: numpyro 0.8.0 does not provide the extra 'cuda'**** Requirement already satisfied: jax>=0.2.13 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from numpyro[cuda]) (0.2.25) Requirement already satisfied: jaxlib>=0.1.65 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from numpyro[cuda]) (0.1.73+cuda11.cudnn82) Collecting tqdm Using cached tqdm-4.62.3-py2.py3-none-any.whl (76 kB) Requirement already satisfied: numpy>=1.18 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (1.21.4) Requirement already satisfied: opt-einsum in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (3.3.0) Requirement already satisfied: typing-extensions in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (4.0.0) Requirement already satisfied: absl-py in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (1.0.0) Requirement already satisfied: scipy>=1.2.1 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jax>=0.2.13->numpyro[cuda]) (1.7.3) Requirement already satisfied: flatbuffers<3.0,>=1.12 in ./miniconda3/envs/jax/lib/python3.9/site-packages (from jaxlib>=0.1.65->numpyro[cuda]) (2.0) Requirement already satisfied: six in ./miniconda3/envs/jax/lib/python3.9/site-packages (from absl-py->jax>=0.2.13->numpyro[cuda]) (1.16.0) Installing collected packages: tqdm, numpyro Successfully installed numpyro-0.8.0 tqdm-4.62.3 My queston is numpyro installed to work with cuda? If not is how do I install a numpyro version that uses cuda. Thanks, Petrarca
closed
2021-11-25T01:56:25Z
2021-11-27T04:30:15Z
https://github.com/pyro-ppl/numpyro/issues/1238
[]
PetrarcaBruto
2
huggingface/datasets
machine-learning
6,585
losing DatasetInfo in Dataset.map when num_proc > 1
### Describe the bug Hello and thanks for developing this package! When I process a Dataset with the map function using multiple processors some set attributes of the DatasetInfo get lost and are None in the resulting Dataset. ### Steps to reproduce the bug ```python from datasets import Dataset, DatasetInfo def run_map(num_proc): dataset = Dataset.from_dict( {"col1": [0, 1], "col2": [3, 4]}, info=DatasetInfo( dataset_name="my_dataset", ), ) ds = dataset.map(lambda x: x, num_proc=num_proc) print(ds.info.dataset_name) run_map(1) run_map(2) ``` This puts out: ```bash Map: 100%|██████████| 2/2 [00:00<00:00, 724.66 examples/s] my_dataset Map (num_proc=2): 100%|██████████| 2/2 [00:00<00:00, 18.25 examples/s] None ``` ### Expected behavior I expect the DatasetInfo to be kept as it was and there should be no difference in the output of running map with num_proc=1 and num_proc=2. Expected output: ```bash Map: 100%|██████████| 2/2 [00:00<00:00, 724.66 examples/s] my_dataset Map (num_proc=2): 100%|██████████| 2/2 [00:00<00:00, 18.25 examples/s] my_dataset ``` ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.17 - Python version: 3.8.18 - `huggingface_hub` version: 0.20.2 - PyArrow version: 12.0.1 - Pandas version: 2.0.3 - `fsspec` version: 2023.9.2
open
2024-01-12T13:39:19Z
2024-01-12T14:08:24Z
https://github.com/huggingface/datasets/issues/6585
[]
JochenSiegWork
2
pydata/xarray
pandas
10,115
DataArray.rolling fails with chunk size of 1 or 2 (reemergence of issue #9862)
### What happened? The problem is exactly as written in closed issue #9862, but I'm using: - xarray: 2025.1.2 - dask: 2025.2.0 Since everything is the same (including traceback and behavior when pasted into console or binder), please refer to original issue for complete description. I didn't click "new issue" since it's an old issue that was closed, but is not fixed. ### What did you expect to happen? We would expect the rolling mean to calculate correctly. ### Minimal Complete Verifiable Example ```Python import dask.array as da import xarray as xr import numpy as np # Dimensions and sizes nx, ny, nt = 100, 200, 50 # size of x, y, and time dimensions x = np.linspace(0, 10, nx) # x-coordinates y = np.linspace(0, 20, ny) # y-coordinates time = np.linspace(0, 1, nt) # time coordinates # Generate a random Dask array with lazy computation data = da.random.random(size=(nx, ny, nt), chunks=(100, 200, 1)) # Create an xarray DataArray with coordinates and attributes data_array = xr.DataArray( data, dims=["x", "y", "time"], coords={"x": x, "y": y, "time": time}, name="dummy_data", attrs={"units": "arbitrary", "description": "Dummy 3D dataset"} ) d_rolling = data_array.rolling(time=5).mean() d_rolling.compute() ``` ### MVCE confirmation - [x] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray. - [x] Complete example — the example is self-contained, including all data and the text of any traceback. - [x] Verifiable example — the example copy & pastes into an IPython prompt or [Binder notebook](https://mybinder.org/v2/gh/pydata/xarray/main?urlpath=lab/tree/doc/examples/blank_template.ipynb), returning the result. - [ ] New issue — a search of GitHub Issues suggests this is not a duplicate. - [x] Recent environment — the issue occurs with the latest version of xarray and its dependencies. ### Relevant log output ```Python Traceback (most recent call last): Cell In[6], line 24 d_rolling.compute() File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/dataarray.py:1206 in compute return new.load(**kwargs) File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/dataarray.py:1174 in load ds = self._to_temp_dataset().load(**kwargs) File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/dataset.py:900 in load evaluated_data: tuple[np.ndarray[Any, Any], ...] = chunkmanager.compute( File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/namedarray/daskmanager.py:85 in compute return compute(*data, **kwargs) # type: ignore[no-untyped-call, no-any-return] File /srv/conda/envs/notebook/lib/python3.10/site-packages/dask/base.py:662 in compute results = schedule(dsk, keys, **kwargs) File /srv/conda/envs/notebook/lib/python3.10/site-packages/dask/_task_spec.py:740 in __call__ return self.func(*new_argspec, **kwargs) ValueError: Moving window (=5) must between 1 and 4, inclusive ``` ### Anything else we need to know? _No response_ ### Environment <details> INSTALLED VERSIONS ------------------ commit: None python: 3.10.16 | packaged by conda-forge | (main, Dec 5 2024, 14:16:10) [GCC 13.3.0] python-bits: 64 OS: Linux OS-release: 6.8.0-52-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.14.3 libnetcdf: 4.9.2 xarray: 2025.1.2 pandas: 2.2.3 numpy: 2.1.3 scipy: 1.15.2 netCDF4: 1.7.2 pydap: 3.5.3 h5netcdf: 1.5.0 h5py: 3.13.0 zarr: 2.18.3 cftime: 1.6.4 nc_time_axis: 1.4.1 iris: 3.11.0 bottleneck: 1.4.2 dask: 2025.2.0 distributed: 2025.2.0 matplotlib: 3.10.1 cartopy: 0.24.0 seaborn: 0.13.2 numbagg: 0.9.0 fsspec: 2025.2.0 cupy: None pint: 0.24.4 sparse: 0.15.5 flox: None numpy_groupies: None setuptools: 75.8.0 pip: 25.0 conda: None pytest: None mypy: None IPython: 8.32.0 sphinx: None </details>
open
2025-03-11T20:16:13Z
2025-03-11T20:16:17Z
https://github.com/pydata/xarray/issues/10115
[ "bug", "needs triage" ]
pittwolfe
1
profusion/sgqlc
graphql
72
Union + __fields__() has misleading error message
While the error is misleading (I should fix that), in GraphQL you can't select fields of an union type directly, you must use fragments to select depending on each type you want to handle. In your case, could you try: ```py import sgqlc from sgqlc.operation import Operation from sgqlc.types import String, Type, Union, Field, non_null class TypeA(Type): i = int class TypeB(Type): s = str class TypeU(Union): __types__ = (TypeA, TypeB) class Query(sgqlc.types.Type): some_query = Field(non_null(TypeU), graphql_name='someQuery') op = Operation(Query, name="op_name") q = op.some_query() q.__fields__() # this line throws 'AttributeError: TypeA has no field name' # correct behavior would be to: q.__as__(TypeA).i() ``` _Originally posted by @barbieri in https://github.com/profusion/sgqlc/issues/71#issuecomment-555237354_
open
2019-11-19T16:03:12Z
2019-11-19T16:03:55Z
https://github.com/profusion/sgqlc/issues/72
[ "bug" ]
barbieri
0
dask/dask
pandas
10,979
dask-expr is now a hard dependency
dask-expr is now a hard dependency of dask[dataframe]. We still need to update - `distributed/continuous_integration/recipes` (see conda build workflow on distributed, currently failing) - https://github.com/conda-forge/dask-feedstock - distributed gpuci failing - other? CC @phofl @jrbourbeau XREFs - dask/dask#10967 - dask/dask#10976 - dask/distributed#8552
closed
2024-03-05T13:11:22Z
2024-03-12T10:20:17Z
https://github.com/dask/dask/issues/10979
[ "needs triage" ]
crusaderky
3
slackapi/bolt-python
fastapi
492
"Add to Slack" Button throws OAuth error
The "Add to Slack" button here https://api.slack.com/docs/slack-button fails with the error Oops, Something Went Wrong! Please try again from here or contact the app owner (reason: invalid_browser: This can occur due to page reload, not beginning the OAuth flow from the valid starting URL, or the /slack/install URL not using https://) This is repeatable on Firefox & Chrome. The https://XXX.com/slack/install button works. I can also get the "Add to Slack" button to temporarily work if I first go to the https://XXX.com/slack/install page even if I do not click anything there. Is there a function that https://XXX.com/slack/install is calling when it loads or a setting I am missing to get this to work? I am using the URL https://slack.com/oauth/v2/authorize?client_id={{ client_id }}&scope={{ scopes }}&state={{ unique_user_code }} for the button
closed
2021-10-09T08:40:57Z
2023-08-22T03:29:08Z
https://github.com/slackapi/bolt-python/issues/492
[ "question" ]
DareFail
9
kizniche/Mycodo
automation
653
Display Addition: Generic 20x4 LCD
Hi Kyle, Can you add support for generic 20x4 LCD displays? I was able to set one up and get it to display data using the 16x4 option, but it’s limited to 16 characters wide. ![2673A1FF-FA58-4B77-8A0A-5E319AF771D8](https://user-images.githubusercontent.com/10717552/56874635-dc4ba500-6a00-11e9-8a8e-fe7c63de23a2.jpeg)
closed
2019-04-29T03:01:09Z
2019-05-07T01:59:57Z
https://github.com/kizniche/Mycodo/issues/653
[]
Magnum-Pl
9
pennersr/django-allauth
django
4,133
the issue with next parameter not accessible anywhere, in the custom adapter
# 🛑 Stop The issue tracker has been moved to https://codeberg.org/allauth/django-allauth/issues. Please submit your issue there. NEXT after google/login/callback is empty or none, no proven way to target or access next_url and other url parameters in url before social login Dumb enough this is a persistent bug i suppose on this project, yet the long nosed creature is yet to fix it Fix it
closed
2024-10-28T16:56:13Z
2024-10-28T17:16:38Z
https://github.com/pennersr/django-allauth/issues/4133
[]
iamunadike
1
piskvorky/gensim
machine-learning
3,495
How to open doc2vec trained on an older version of gensim?
I have a large number of models trained on older gensim ? I recently updated my python library, and gensim was bumped to the latest version. The problem is the Doc2Vec.load is refusing to load the older versions. Is there a compatibility mode available ? Or what's the cleanest way to load old models and save them in the new format. I am getting the following error: attributeError Traceback (most recent call last) Cell In[3], line 1 ----> 1 model = Doc2Vec.load(r'Z:\process\edgar\business_doc2vec\20230731.model') File C:\Anaconda3\envs\base_small\lib\site-packages\gensim\models\doc2vec.py:815, in Doc2Vec.load(cls, *args, **kwargs) 810 except AttributeError as ae: 811 logger.error( 812 "Model load error. Was model saved using code from an older Gensim version? " 813 "Try loading older model using gensim-3.8.3, then re-saving, to restore " 814 "compatibility with current code.") --> 815 raise ae File C:\Anaconda3\envs\base_small\lib\site-packages\gensim\models\doc2vec.py:809, in Doc2Vec.load(cls, *args, **kwargs) 786 """Load a previously saved :class:`~gensim.models.doc2vec.Doc2Vec` model. 787 788 Parameters (...) 806 807 """ 808 try: --> 809 return super(Doc2Vec, cls).load(*args, rethrow=True, **kwargs) 810 except AttributeError as ae: 811 logger.error( 812 "Model load error. Was model saved using code from an older Gensim version? " 813 "Try loading older model using gensim-3.8.3, then re-saving, to restore " 814 "compatibility with current code.") File C:\Anaconda3\envs\base_small\lib\site-packages\gensim\models\word2vec.py:1949, in Word2Vec.load(cls, rethrow, *args, **kwargs) 1947 except AttributeError as ae: 1948 if rethrow: -> 1949 raise ae 1950 logger.error( 1951 "Model load error. Was model saved using code from an older Gensim Version? " 1952 "Try loading older model using gensim-3.8.3, then re-saving, to restore " 1953 "compatibility with current code.") 1954 raise ae File C:\Anaconda3\envs\base_small\lib\site-packages\gensim\models\word2vec.py:1942, in Word2Vec.load(cls, rethrow, *args, **kwargs) 1923 """Load a previously saved :class:`~gensim.models.word2vec.Word2Vec` model. 1924 1925 See Also (...) 1939 1940 """ 1941 try: -> 1942 model = super(Word2Vec, cls).load(*args, **kwargs) 1943 if not isinstance(model, Word2Vec): 1944 rethrow = True File C:\Anaconda3\envs\base_small\lib\site-packages\gensim\utils.py:487, in SaveLoad.load(cls, fname, mmap) 484 compress, subname = SaveLoad._adapt_by_suffix(fname) 486 obj = unpickle(fname) --> 487 obj._load_specials(fname, mmap, compress, subname) 488 obj.add_lifecycle_event("loaded", fname=fname) 489 return obj File C:\Anaconda3\envs\base_small\lib\site-packages\gensim\models\word2vec.py:1958, in Word2Vec._load_specials(self, *args, **kwargs) 1956 def _load_specials(self, *args, **kwargs): 1957 """Handle special requirements of `.load()` protocol, usually up-converting older versions.""" -> 1958 super(Word2Vec, self)._load_specials(*args, **kwargs) 1959 # for backward compatibility, add/rearrange properties from prior versions 1960 if not hasattr(self, 'ns_exponent'): File C:\Anaconda3\envs\base_small\lib\site-packages\gensim\utils.py:518, in SaveLoad._load_specials(self, fname, mmap, compress, subname) 516 logger.info("loading %s recursively from %s.* with mmap=%s", attrib, cfname, mmap) 517 with ignore_deprecation_warning(): --> 518 getattr(self, attrib)._load_specials(cfname, mmap, compress, subname) 520 for attrib in getattr(self, '__numpys', []): 521 logger.info("loading %s from %s with mmap=%s", attrib, subname(fname, attrib), mmap) File C:\Anaconda3\envs\base_small\lib\site-packages\gensim\utils.py:1522, in deprecated.<locals>.decorator.<locals>.new_func1(*args, **kwargs) 1515 @wraps(func) 1516 def new_func1(*args, **kwargs): 1517 warnings.warn( 1518 fmt.format(name=func.__name__, reason=reason), 1519 category=DeprecationWarning, 1520 stacklevel=2 1521 ) -> 1522 return func(*args, **kwargs) File C:\Anaconda3\envs\base_small\lib\site-packages\gensim\models\doc2vec.py:328, in Doc2Vec.docvecs(self) 325 @property 326 @deprecated("The `docvecs` property has been renamed `dv`.") 327 def docvecs(self): --> 328 return self.dv AttributeError: 'Doc2Vec' object has no attribute 'dv'
closed
2023-09-07T13:37:28Z
2023-09-17T18:56:41Z
https://github.com/piskvorky/gensim/issues/3495
[]
Nirvana2211
3
ExpDev07/coronavirus-tracker-api
fastapi
129
See country total instead of province.
I don't know if I'm just missing it, but I can't seem to find a query parameter that returns the latest cases per country, instead of per province, as is currently the case. Is the only possibility at the moment to go through each province belonging to a country and to add the total cases together? Thanks
closed
2020-03-21T17:52:03Z
2020-03-21T22:01:37Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/129
[ "question" ]
lburch02
10
browser-use/browser-use
python
1,118
Sitting with "about:blank" in Chrome Ubuntu 24.10
### Bug Description Fails to run with Ubuntu 24.10 on x86_64 Code: `from langchain_ollama import ChatOllama` `from browser_use import Agent, Browser, BrowserConfig` `from pydantic import SecretStr` `import asyncio` `from dotenv import load_dotenv` `load_dotenv()` `async def main():` ` llm=ChatOllama(model="qwen2.5", num_ctx=32000)` ` agent = Agent(` ` task="Compare deepseek and open ai pricing",` ` llm=llm,` ` )` ` await agent.run()` `asyncio.run(main())` The about:blank never gets updated. Playwright works fine ![Image](https://github.com/user-attachments/assets/bdb3eaf8-a46c-4226-9867-6c5dfe7dd47f) ### Reproduction Steps Standard install. Just run the code above. Seems it's due to python not being able to control playwright working with local ollama ### Code Sample ```python from langchain_ollama import ChatOllama from browser_use import Agent, Browser, BrowserConfig from pydantic import SecretStr import asyncio from dotenv import load_dotenv load_dotenv() async def main(): # Initialize the model llm=ChatOllama(model="qwen2.5", num_ctx=32000) agent = Agent( task="Compare deepseek and open ai pricing", llm=llm, ) await agent.run() asyncio.run(main()) ``` ### Version 0.1.40 ### LLM Model Local Model (Specify model in description) ### Operating System Ubuntu 24.10 ### Relevant Log Output ```shell ```
open
2025-03-24T01:23:57Z
2025-03-24T05:41:14Z
https://github.com/browser-use/browser-use/issues/1118
[ "bug" ]
4EverBuilder
3
johnthagen/python-blueprint
pytest
242
Enable Ruff format implicit string concatenation
When this is stable, revisit `ISC001` disable lints. - https://github.com/astral-sh/ruff/issues/9457#issuecomment-2437519130
closed
2024-10-28T13:47:50Z
2025-01-09T19:26:42Z
https://github.com/johnthagen/python-blueprint/issues/242
[ "enhancement" ]
johnthagen
1
robotframework/robotframework
automation
5,003
Set Library Search Order not working in child suites when used in __init__ file
There is a bug in Robotframework that when I set the `Set Library Search Order`, it is not honored anymore in the child suites, when I initially set it in a `__init__.robot` I use this Search Order with the python remote server: ``` Import Library Remote htttp://xxxxx:yyyy WITH NAME RemoteLib Set Library Search Order RemoteLib ``` Folder structure ``` my_project ├── __init__.robot => "Set Library Search Order " in the `Suite Setup` ├── test.robot => "Library Search Order not set anymore" ├── ... │ ```
open
2024-01-05T09:20:40Z
2024-02-21T06:05:16Z
https://github.com/robotframework/robotframework/issues/5003
[]
derived-coder
1
ydataai/ydata-profiling
pandas
1,523
Unexpected error of type DispatchError raised while running data exploratory profiler from function spark_get_series_descriptions
### Current Behaviour # converts the data types of the columns in the DataFrame to more appropriate types, # useful for improving the performance of calculations. # Selects the columns in the DataFrame that are of type object or category, # which are the types that are typically considered to be categorical data_to_analyze = dataframe_to_analyze.toPandas() <html> <body> <!--StartFragment--> ERROR:data_quality_job.scheduler.data_quality_glue_job:Run data exploratory analysis fails for datasource master_wip in data domain stock_wip: Unexpected error of type DispatchError was raised while data exploratory profiler: Function <code object spark_get_series_descriptions at 0x7fb135521370, file "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/spark/summary_spark.py", line 67>Traceback (most recent call last): File "/home/spark/.local/lib/python3.10/site-packages/multimethod/__init__.py", line 328, in __call__ return func(*args, **kwargs) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/spark/describe_date_spark.py", line 50, in describe_date_1d_spark bin_edges, hist = df.select(col_name).rdd.flatMap(lambda x: x).histogram(bins_arg) File "/opt/amazon/spark/python/lib/pyspark.zip/pyspark/rdd.py", line 1652, in histogram raise TypeError("buckets should be a list or tuple or number(int or long)")TypeError: buckets should be a list or tuple -- or number(int or long)The above exception was the direct cause of the following exception:Traceback (most recent call last): File "/home/spark/.local/lib/python3.10/site-packages/multimethod/__init__.py", line 328, in __call__ return func(*args, **kwargs) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/spark/summary_spark.py", line 64, in spark_describe_1d return summarizer.summarize(config, series, dtype=vtype) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/summarizer.py", line 42, in summarize _, _, summary = self.handle(str(dtype), config, series, {"type": str(dtype)}) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/handler.py", line 62, in handle return op(*args) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/handler.py", line 21, in func2 return f(*res) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/handler.py", line 21, in func2 return f(*res) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/handler.py", line 21, in func2 return f(*res) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/handler.py", line 17, in func2 res = g(*x) File "/home/spark/.local/lib/python3.10/site-packages/multimethod/__init__.py", line 330, in __call__ raise DispatchError(f"Function {func.__code__}") from exmultimethod.DispatchError: Function <code object describe_date_1d_spark at 0x7fb135546ce0, file "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/spark/describe_date_spark.py", line 22>The above exception was the direct cause of the following exception:Traceback (most recent call last): File "/home/spark/.local/lib/python3.10/site-packages/multimethod/__init__.py", line 328, in __call__ return func(*args, **kwargs) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/spark/summary_spark.py", line 92, in spark_get_series_descriptions for i, (column, description) in enumerate( File "/usr/local/lib/python3.10/multiprocessing/pool.py", line 870, in next raise value File "/usr/local/lib/python3.10/multiprocessing/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/spark/summary_spark.py", line 88, in multiprocess_1d return column, describe_1d(config, df.select(column), summarizer, typeset) File "/home/spark/.local/lib/python3.10/site-packages/multimethod/__init__.py", line 330, in __call__ raise DispatchError(f"Function {func.__code__}") from exmultimethod.DispatchError: Function <code object spark_describe_1d at 0x7fb1355210b0, file "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/spark/summary_spark.py", line 16>The above exception was the direct cause of the following exception:Traceback (most recent call last): File "/tmp/sls_data_quality_library-0.3.0-py3-none-any.whl/data_quality_job/scheduler/data_quality_glue_job.py", line 1074, in run_data_exploratory_analysis self.dq_file_system_metrics_repository_manager.persist_profile_json_report( File "/tmp/sls_data_quality_library-0.3.0-py3-none-any.whl/data_quality_job/services/data_quality_file_system_metrics_repository.py", line 974, in persist_profile_json_report generated_profile.to_file(output_file=f"{local_json_report}") File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/profile_report.py", line 347, in to_file data = self.to_json() File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/profile_report.py", line 479, in to_json return self.json File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/profile_report.py", line 283, in json self._json = self._render_json() File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/profile_report.py", line 449, in _render_json description = self.description_set File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/profile_report.py", line 253, in description_set self._description_set = describe_df( File "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/describe.py", line 74, in describe series_description = get_series_descriptions( File "/home/spark/.local/lib/python3.10/site-packages/multimethod/__init__.py", line 330, in __call__ raise DispatchError(f"Function {func.__code__}") from exmultimethod.DispatchError: Function <code object spark_get_series_descriptions at 0x7fb135521370, file "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/spark/summary_spark.py", line 67>INFO:py4j.clientserver:Closing down clientserver connectionINFO:py4j.clientserver:Closing down clientserver connectionINFO:py4j.clientserver:Closing down clientserver connectionWARNING:data_quality_job.scheduler.data_quality_glue_job:Processing dataset fails to provide an exploratory data analysis report : Unexpected error of type DispatchError was raised while data exploratory profiler: Function <code object spark_get_series_descriptions at 0x7fb135521370, file "/home/spark/.local/lib/python3.10/site-packages/ydata_profiling/model/spark/summary_spark.py", line 67> <!--EndFragment--> </body> </html> ### Expected Behaviour While converting my spark dataframe to pandas, the report should be generated properly for the dataset The dataframe should not be considered as spark dataframe No error should be raised ### Data Description <html> <body> <!--StartFragment--> INFO:data_quality_job.services.data_quality_operations:Data profiler dataset data types to analyze: storage_location categorystock_in_transit float32unrestricted_use_stock float32stock_at_vendor float32stock_in_transfer float32stock_in_quality_inspection float32valuation_class float32block_stock_returns float32material_part_number objectstock_in_transfer_plant_to_plant float32stock_value float32material_type categoryblocked_stock float32account_description categoryplant categoryall_restricted_stock float32valuated_stock_quantities float32gl_account float32record -- _timestamp datetime64[ns]non_valuated_stock_quantities float32dtype: object <!--EndFragment--> </body> </html> ### Code that reproduces the bug ```Python def determine_run_minimal_mode(self, nb_columns, nb_records): """ Determine if the function should run in minimal mode. Args: nb_columns (int): The number of columns in the dataset. nb_records (int): The number of records in the dataset. Returns: bool: True if the function should run in minimal mode, False otherwise. """ return True if (len(nb_columns) >= EDA_PROFILING_MODE_NB_COLUMNS_LIMIT or nb_records >= EDA_PROFILING_MODE_NB_RECORDS_LIMIT) else False def create_profile_report(self, dataset_to_analyze: pd.DataFrame, report_name: str, dataset_description_url: str) -> ProfileReport: """ Creates a profile report for a given dataset. Args: dataset_to_analyze (pd.DataFrame): The dataset to analyze and generate a profile report for. report_name (str): The name of the report. dataset_description_url (str): The URL of the dataset description. Returns: ProfileReport: The generated profile report. """ # Perform data quality operations and generate a profile report # ... # variables preferred characterization settings variables_settings = { "num": {"low_categorical_threshold": 5, "chi_squared_threshold": 0.999, "histogram_largest": 10}, "cat": {"length": True, "characters": False, "words": False, "cardinality_threshold": 20, "imbalance_threshold": 0.5, "n_obs": 5, "chi_squared_threshold": 0.999}, "bool": {"n_obs": 3, "imbalance_threshold": 0.5} } missing_diagrams_settings = { "heatmap": False, "matrix": True, "bar": False } # Plot rendering option, way how to pass arguments to the underlying matplotlib visualization engine plot_rendering_settings = { "histogram": {"x_axis_labels": True, "bins": 0, "max_bins": 10}, "dpi": 200, "image_format": "png", "missing": {"cmap": "RdBu_r", "force_labels": True}, "pie": {"max_unique": 10, "colors": ["gold", "b", "#FF796C"]}, "correlation": {"cmap": "RdBu_r", "bad": "#000000"} } # Correlation matrices through description_set correlations_settings = { "auto": {"calculate": True, "warn_high_correlations": True, "threshold": 0.9}, "pearson": {"calculate": False, "warn_high_correlations": False, "threshold": 0.9}, "spearman": {"calculate": False, "warn_high_correlations": False, "threshold": 0.9}, "kendall": {"calculate": False, "warn_high_correlations": False, "threshold": 0.9}, "phi_k": {"calculate": False, "warn_high_correlations": True, "threshold": 0.9}, "cramers": {"calculate": False, "warn_high_correlations": False, "threshold": 0.9}, } categorical_maximum_correlation_distinct = 20 report_rendering_settings = { "precision": 10, } interactions_settings = { "continuous": False, "targets": [] } # Customizing the report's theme html_report_styling = { "style": { "theme": "flatly", "full_width": True, "primary_colors": {"#66cc00", "#ff9933", "#ff0099"} } } current_datetime = datetime.now() current_date = current_datetime.date() current_year = current_date.strftime("%Y") # compute amount of data used for profiling samples_percent_size = (min(len(dataset_to_analyze.columns.tolist()), 20) * min(dataset_to_analyze.shape[0], 100000)) / (len(dataset_to_analyze.columns.tolist()) * dataset_to_analyze.shape[0]) samples = { "head": 0, "tail": 0, "random": 0 } dataset_description = { "description": f"This profiling report was generated using a sample of {samples_percent_size}% of the filtered original dataset.", "copyright_year": current_year, "url": dataset_description_url } # Identify time series variables if any # Enable tsmode to True to automatically identify time-series variables # and provide the column name that provides the chronological order of your time-series # time_series_type_schema = {} time_series_mode = False # time_series_sortby = None # for column_name in dataset_to_analyze.columns.tolist(): # if any(keyword in column_name.lower() for keyword in ["date", "timestamp"]): # self.logger.info("candidate column_name as timeseries %s", column_name) # time_series_type_schema[column_name] = "timeseries" # if len(time_series_type_schema) > 0: # time_series_mode = True # time_series_sortby = "Date Local" # is_run_minimal_mode = self.determine_run_minimal_mode(dataset_to_analyze.columns.tolist(), dataset_to_analyze.shape[0]) # Convert the Pandas DataFrame to a Spark DataFrame # Configure pandas-profiling to handle Spark DataFrames # while preserving the categorical encoding # Enable Arrow-based columnar data transfers self.spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", "true") pd.DataFrame.iteritems = pd.DataFrame.items # psdf = ps.from_pandas(dataset_to_analyze) # data_to_analyze = psdf.to_spark() data_to_analyze = self.spark.createDataFrame(dataset_to_analyze) ydata_profiling_instance_config = Settings() ydata_profiling_instance_config.infer_dtypes = True # ydata_profiling_instance_config.Config.set_option("profilers", {"Spark": {"verbose": True}}) return ProfileReport( # dataset_to_analyze, data_to_analyze, title=report_name, dataset=dataset_description, sort=None, progress_bar=False, vars=variables_settings, explorative=True, plot=plot_rendering_settings, report=report_rendering_settings, correlations=correlations_settings, categorical_maximum_correlation_distinct=categorical_maximum_correlation_distinct, missing_diagrams=missing_diagrams_settings, samples=samples, # correlations=None, interactions=interactions_settings, html=html_report_styling, # minimal=is_run_minimal_mode, minimal=True, tsmode=time_series_mode, # tsmode=False, # sortby=time_series_sortby, # type_schema=time_series_type_schema ) def is_categorical_column(self, df, column_name, n_unique_threshold=20, ratio_unique_values=0.05, exclude_patterns=[]): """ Determines whether a column in a pandas DataFrame is categorical. Args: df (pandas.DataFrame): The DataFrame to check. column_name (str): The name of the column to check. n_unique_threshold (int): The threshold for the number of unique values. ratio_unique_values (float): The threshold for the ratio of unique values to total values. exclude_patterns (list): A list of patterns to exclude from consideration. Returns: bool: True if the column is categorical, False otherwise. """ if df[column_name].dtype in [object, str]: # Check if the column name matches any of the exclusion patterns if any(pattern in column_name for pattern in exclude_patterns): return False # Check if the number of unique values is less than a threshold if df[column_name].nunique() < n_unique_threshold: return True # Check if the ratio of unique values to total values is less than a threshold if 1. * df[column_name].nunique() / df[column_name].count() < ratio_unique_values: print(df[column_name], "ratio is", 1. * df[column_name].nunique() / df[column_name].count()) return True # Check if any of the other conditions are true return False def get_categorical_columns(self, df, n_unique_threshold=10, ratio_threshold=0.05, exclude_patterns=[]): """ Determines which columns in a pandas DataFrame are categorical. Args: df (pandas.DataFrame): The DataFrame to check. n_unique_threshold (int): The threshold for the number of unique values. ratio_threshold (float): The threshold for the ratio of unique values to total values. exclude_patterns (list): A list of patterns to exclude from consideration. Returns: list: A list of the names of the categorical columns. """ categorical_cols = [] for column_name in df.columns: if self.is_categorical_column(df, column_name, n_unique_threshold, ratio_threshold, exclude_patterns): categorical_cols.append(column_name) return categorical_cols def perform_exploratory_data_analysis(self, report_name: str, dataframe_to_analyze: SparkDataFrame, columns_list: list, description_url: str, json_file_path: str) -> None: """ Performs exploratory data analysis on a given DataFrame. Args: dataframe_to_analyze (DataFrame): The DataFrame to perform exploratory data analysis on. columns_list (list): A list of dictionaries containing column information. """ try: # Cast the columns in the data DataFrame to match the Glue table column types self.logger.info("Performs exploratory data analysis on a given DataFrame with columns list: %s", columns_list) for analyze_column in columns_list: dataframe_to_analyze = dataframe_to_analyze.withColumn( analyze_column["Name"], dataframe_to_analyze[analyze_column["Name"]].cast(analyze_column["Type"]), ) # Verify the updated column types self.logger.info("Dataframe column type casted from data catalog: %s", dataframe_to_analyze.printSchema()) # converts the data types of the columns in the DataFrame to more appropriate types, # useful for improving the performance of calculations. # Selects the columns in the DataFrame that are of type object or category, # which are the types that are typically considered to be categorical data_to_analyze = dataframe_to_analyze.toPandas() data_to_analyze = data_to_analyze.infer_objects() data_to_analyze.convert_dtypes().dtypes categorical_cols = self.get_categorical_columns(data_to_analyze, n_unique_threshold=10, ratio_threshold=0.05, exclude_patterns=['date', 'timestamp', 'time', 'year', 'month', 'day', 'hour', 'minute', 'second', 'part_number']) # categorical_cols = data_to_analyze.select_dtypes(include=["object", "category"]).columns.tolist() self.logger.info("Data profiler dataset detected potential categorical columns %s and its type %s", categorical_cols, data_to_analyze.dtypes) for column_name in data_to_analyze.columns.tolist(): if column_name in categorical_cols: data_to_analyze[column_name] = data_to_analyze[column_name].astype("category") else: # search for undetected categorical columns if any(term in str.lower(column_name) for term in ["plant", "program"]): self.logger.info("Undetected potential categorical column %s", column_name) # for column_name in data_to_analyze.columns.tolist(): # # search for non categorical columns # # if any(term in str.lower(column_name) for term in ["partnumber", "part_number", "_item", "_number", "plant", "program"]): # if any(term in str.lower(column_name) for term in ["plant", "program"]): # if column_name in categorical_cols: # self.logger.info("Data profiler dataset proposed categorical column %s", column_name) # data_to_analyze[column_name] = data_to_analyze[column_name].astype("category") # if any(term in str.lower(column_name) for term in ["partnumber", "part_number", "_item", "_number", "_timestamp", "_date"]): # self.logger.info("Data profiler dataset detected non categorical column %s", column_name) # data_to_analyze[column_name] = data_to_analyze[column_name].astype("str") if any(term in str.lower(column_name) for term in ["timestamp"]): self.logger.info("Data profiler dataset detected datetime column %s", column_name) try: if pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%d', errors='coerce').notnull().all(): data_to_analyze[column_name] = data_to_analyze[column_name].apply(pd.to_datetime) # data_to_analyze[column_name] = data_to_analyze[column_name].astype(np.datetime64) elif pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%d %H:%M:%S', errors='coerce').notnull().all(): data_to_analyze[column_name] = pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%d %H:%M:%S') elif data_to_analyze[column_name].dtypes in ['numpy.int64', 'int64']: data_to_analyze[column_name] = data_to_analyze[column_name].apply(lambda x: datetime.fromtimestamp(int(x) / 1000)) elif data_to_analyze[column_name].dtypes == 'datetime64[ms]': data_to_analyze[column_name] = pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%dT%H:%M:%SZ') data_to_analyze[column_name] = data_to_analyze[column_name].values.astype(dtype='datetime64[ns]') else: data_to_analyze[column_name] = data_to_analyze[column_name].astype('str') # if not isinstance(data_to_analyze[column_name].dtype, np.datetime64): # data_to_analyze[column_name] = pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%d %H:%M:%S') # # if not np.issubdtype(data_to_analyze[column_name].dtype, np.datetime64): # # data_to_analyze[column_name] = pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%d %H:%M:%S', errors="coerce") # # elif is_datetime64_any_dtype(data_to_analyze[column_name]): # # data_to_analyze[column_name] = data_to_analyze[column_name].astype(np.datetime64) # data_to_analyze[column_name] = data_to_analyze[column_name].values.astype(dtype='datetime64[ns]') # # elif data_to_analyze[column_name].dtype == 'datetime64[ns]': # # data_to_analyze[column_name] = pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%dT%H:%M:%SZ') # # data_to_analyze[column_name] = data_to_analyze[column_name].values.astype(dtype='datetime64[ns]') # # else: # # data_to_analyze[column_name] = data_to_analyze[column_name].astype('datetime64') # except ValueError: # try: # data_to_analyze[column_name] = data_to_analyze[column_name].astype(np.date_time) # except ValueError: # try: # if (data_to_analyze[column_name].dtypes in ["numpy.int64", "int64"]): # data_to_analyze[column_name] = data_to_analyze[column_name].apply( # lambda x: datetime.fromtimestamp(int(x) / 1000)) except ValueError: data_to_analyze[column_name] = data_to_analyze[column_name].astype('str') elif any(term in str.lower(column_name) for term in ["date"]): self.logger.info("Data profiler dataset detected date column %s", column_name) try: if pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%d', errors='coerce').notnull().all(): data_to_analyze[column_name] = data_to_analyze[column_name].dt.date elif pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%d %H:%M:%S', errors='coerce').notnull().all(): data_to_analyze[column_name] = pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%d %H:%M:%S') elif data_to_analyze[column_name].dtypes in ['numpy.int64', 'int64']: data_to_analyze[column_name] = data_to_analyze[column_name].apply(lambda x: datetime.fromtimestamp(int(x) / 1000)) elif data_to_analyze[column_name].dtypes == 'datetime64[ms]': data_to_analyze[column_name] = pd.to_datetime(data_to_analyze[column_name], format='%Y-%m-%dT%H:%M:%SZ') data_to_analyze[column_name] = data_to_analyze[column_name].values.astype(dtype='datetime64[ns]') else: data_to_analyze[column_name] = data_to_analyze[column_name].astype('str') # data_to_analyze[column_name] = pd.to_datetime(data_to_analyze[column_name]).dt.date # except ValueError: # try: # data_to_analyze[column_name] = pd.to_datetime(data_to_analyze[column_name], # format="%Y-%m-%d", errors="coerce") # except ValueError: # try: # if (data_to_analyze[column_name].dtypes in ["numpy.int64", "int64"]): # data_to_analyze[column_name] = data_to_analyze[column_name].apply( # lambda x: datetime.fromtimestamp(int(x) / 1000)) except ValueError: pass self.logger.info("Data profiler changed dtypes %s", data_to_analyze.dtypes) # Downcast data types: If the precision of your data doesn't require float64, # consider downcasting to a lower precision data type like float32 or even int64. # This can significantly reduce memory usage and improve computational efficiency. try: float64_cols = list(data_to_analyze.select_dtypes(include="float64")) self.logger.info("Data profiler dataset detected float64 column %s", column_name) data_to_analyze[float64_cols] = data_to_analyze[float64_cols].astype("float32") # data_to_analyze[ # data_to_analyze.select_dtypes(np.float64).columns # ] = data_to_analyze.select_dtypes(np.float64).astype(np.float32) except ValueError: pass data_to_analyze.reset_index(drop=True, inplace=True) self.logger.info("Data profiler dataset data types to analyze: %s", data_to_analyze.dtypes) # If dealing with large datasets, consider using sampling techniques # to reduce the amount of data processed is useful for exploratory # data analysis or initial profiling. # Sample 10.000 rows # if data_to_analyze.count() >= EDA_PROFILING_MODE_NB_RECORDS_LIMIT: # data_to_analyze = data_to_analyze.sample(EDA_PROFILING_MODE_NB_RECORDS_LIMIT) # Generates a profile report, providing for time-series data, # an overview of the behaviour of time dependent variables # regarding behaviours such as time plots, seasonality, trends, # stationary and data gaps, and identifying gaps in the time series, # caused either by missing values or by entries missing in the time index profile = self.create_profile_report(dataset_to_analyze=data_to_analyze, report_name=report_name, dataset_description_url=description_url) return profile except Exception as exc: error_message = f"Unexpected error of type {type(exc).__name__} was raised while data exploratory profiler: {str(exc)}" self.logger.exception( "Run data exploratory analysis fails to generate report %s: %s", report_name, error_message, ) raise RuntimeError(error_message) from exc ``` ### pandas-profiling version v.4.6.3 ### Dependencies ```Text Ipython-8.19.0 MarkupSafe-2.1.3 PyAthena-3.0.10 PyWavelets-1.5.0 SQLAlchemy-1.4.50 altair-4.2.2 annotated-types-0.6.0 anyio-4.2.0 argon2-cffi-23.1.0 argon2-cffi-bindings-21.2.0 arrow-1.3.0 asn1crypto-1.5.1 asttokens-2.4.1 async-lru-2.0.4 asyncio-3.4.3 awswrangler-3.4.2 babel-2.14.0 beautifulsoup4-4.12.2 bleach-6.1.0 boto-session-manager-1.7.1 boto3-1.34.9 boto3-helpers-1.4.0 botocore-1.34.9 cffi-1.16.0 colorama-0.4.6 comm-0.2.0 cryptography-41.0.7 dacite-1.8.1 debugpy-1.8.0 decorator-5.1.1 defusedxml-0.7.1 delta-spark-2.3.0 deltalake-0.14.0 editorconfig-0.12.3 entrypoints-0.4 exceptiongroup-1.2.0 executing-2.0.1 fastjsonschema-2.19.1 flatten_dict-0.4.2 fqdn-1.5.1 fsspec-2023.12.2 func-args-0.1.1 great-expectations-0.18.7 greenlet-3.0.3 htmlmin-0.1.12 imagehash-4.3.1 ipykernel-6.28.0 ipywidgets-8.1.1 isoduration-20.11.0 iterproxy-0.3.1 jedi-0.19.1 jinja2-3.1.2 jsbeautifier-1.14.11 json2html-1.3.0 json5-0.9.14 jsonpatch-1.33 jsonpath-ng-aerospike-1.5.3 jsonpointer-2.4 jsonschema-4.20.0 jsonschema-specifications-2023.12.1 jupyter-client-8.6.0 jupyter-core-5.6.0 jupyter-events-0.9.0 jupyter-lsp-2.2.1 jupyter-server-2.12.1 jupyter-server-terminals-0.5.1 jupyterlab-4.0.9 jupyterlab-pygments-0.3.0 jupyterlab-server-2.25.2 jupyterlab-widgets-3.0.9 llvmlite-0.41.1 lxml-4.9.4 makefun-1.15.2 markdown-it-py-3.0.0 marshmallow-3.20.1 matplotlib-inline-0.1.6 mdurl-0.1.2 mistune-3.0.2 mmhash3-3.0.1 multimethod-1.10 nbclient-0.9.0 nbconvert-7.13.1 nbformat-5.9.2 nest-asyncio-1.5.8 networkx-3.2.1 notebook-7.0.6 notebook-shim-0.2.3 numba-0.58.1 overrides-7.4.0 pandas-2.0.3 pandocfilters-1.5.0 parso-0.8.3 pathlib-mate-1.3.1 pathlib2-2.3.7.post1 patsy-0.5.5 pexpect-4.9.0 phik-0.12.3 platformdirs-4.1.0 ply-3.11 prometheus-client-0.19.0 prompt-toolkit-3.0.43 psutil-5.9.7 ptyprocess-0.7.0 pure-eval-0.2.2 py4j-0.10.9.5 pyarrow-12.0.1 pycparser-2.21 pydantic-2.5.3 pydantic-core-2.14.6 pydeequ-1.2.0 pygments-2.17.2 pyiceberg-0.5.1 pyparsing-3.1.1 pyspark-3.3.4 python-json-logger-2.0.7 pytz-2023.3.post1 pyzmq-25.1.2 redshift_connector-2.0.918 referencing-0.32.0 requests-2.31.0 rfc3339-validator-0.1.4 rfc3986-validator-0.1.1 rich-13.7.0 rpds-py-0.16.2 ruamel.yaml-0.17.17 s3path-0.4.2 s3pathlib-2.0.1 s3transfer-0.10.0 scramp-1.4.4 send2trash-1.8.2 smart-open-6.4.0 sniffio-1.3.0 sortedcontainers-2.4.0 soupsieve-2.5 sqlalchemy-redshift-0.8.14 sqlalchemy_utils-0.41.1 stack-data-0.6.3 strictyaml-1.7.3 tabulate-0.9.0 tangled-up-in-unicode-0.2.0 terminado-0.18.0 tinycss2-1.2.1 tomli-2.0.1 toolz-0.12.0 tornado-6.4 traitlets-5.14.0 typeguard-4.1.5 types-python-dateutil-2.8.19.14 typing-extensions-4.9.0 tzlocal-5.2 uri-template-1.3.0 urllib3-2.0.7 uuid7-0.1.0 visions-0.7.5 wcwidth-0.2.12 webcolors-1.13 webencodings-0.5.1 websocket-client-1.7.0 widgetsnbextension-4.0.9 wordcloud-1.9.3 ``` ### OS linux ### Checklist - [X] There is not yet another bug report for this issue in the [issue tracker](https://github.com/ydataai/pandas-profiling/issues) - [X] The problem is reproducible from this bug report. [This guide](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) can help to craft a minimal bug report. - [X] The issue has not been resolved by the entries listed under [Common Issues](https://pandas-profiling.ydata.ai/docs/master/pages/support_contrib/common_issues.html).
open
2023-12-29T22:52:16Z
2023-12-29T23:10:28Z
https://github.com/ydataai/ydata-profiling/issues/1523
[ "needs-triage" ]
tboz38
1
scikit-optimize/scikit-optimize
scikit-learn
417
`test_expected_minimum` failure
One test for the expected minimum function fails somewhere deep in scipy. Any ideas on how to track this down? ``` $ pytest --pdb -x -m 'not slow_test' skopt/tests/test_utils.py (skopt) ============================= test session starts ============================== platform darwin -- Python 3.5.2, pytest-3.0.7, py-1.4.31, pluggy-0.4.0 rootdir: /Users/thead/git/scikit-optimize, inifile: collected 3 items skopt/tests/test_utils.py ..F >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> traceback >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> @pytest.mark.fast_test def test_expected_minimum(): res = gp_minimize(bench3, [(-2.0, 2.0)], x0=[0.], noise=0.0, n_calls=20, > random_state=1) skopt/tests/test_utils.py:81: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ skopt/optimizer/gp.py:238: in gp_minimize callback=callback, n_jobs=n_jobs) skopt/optimizer/base.py:249: in base_minimize result = optimizer.tell(next_x, next_y, fit=fit_model) skopt/optimizer/optimizer.py:407: in tell est.fit(self.space.transform(self.Xi), self.yi) skopt/learning/gaussian_process/gpr.py:194: in fit super(GaussianProcessRegressor, self).fit(X, y) ../../anaconda/envs/skopt/lib/python3.5/site-packages/sklearn/gaussian_process/gpr.py:217: in fit bounds)) ../../anaconda/envs/skopt/lib/python3.5/site-packages/sklearn/gaussian_process/gpr.py:424: in _constrained_optimization fmin_l_bfgs_b(obj_func, initial_theta, bounds=bounds) ../../anaconda/envs/skopt/lib/python3.5/site-packages/scipy/optimize/lbfgsb.py:193: in fmin_l_bfgs_b **opts) ../../anaconda/envs/skopt/lib/python3.5/site-packages/scipy/optimize/lbfgsb.py:330: in _minimize_lbfgsb f, g = func_and_grad(x) ../../anaconda/envs/skopt/lib/python3.5/site-packages/scipy/optimize/lbfgsb.py:278: in func_and_grad f = fun(x, *args) ../../anaconda/envs/skopt/lib/python3.5/site-packages/scipy/optimize/optimize.py:289: in function_wrapper return function(*(wrapper_args + args)) ../../anaconda/envs/skopt/lib/python3.5/site-packages/scipy/optimize/optimize.py:63: in __call__ fg = self.fun(x, *args) ../../anaconda/envs/skopt/lib/python3.5/site-packages/sklearn/gaussian_process/gpr.py:194: in obj_func theta, eval_gradient=True) ../../anaconda/envs/skopt/lib/python3.5/site-packages/sklearn/gaussian_process/gpr.py:388: in log_marginal_likelihood L = cholesky(K, lower=True) # Line 2 ../../anaconda/envs/skopt/lib/python3.5/site-packages/scipy/linalg/decomp_cholesky.py:81: in cholesky check_finite=check_finite) ../../anaconda/envs/skopt/lib/python3.5/site-packages/scipy/linalg/decomp_cholesky.py:20: in _cholesky a1 = asarray_chkfinite(a) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ a = array([[ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, na...nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) dtype = None, order = None def asarray_chkfinite(a, dtype=None, order=None): """Convert the input to an array, checking for NaNs or Infs. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to 'C'. Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray. If `a` is a subclass of ndarray, a base class ndarray is returned. Raises ------ ValueError Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). See Also -------- asarray : Create and array. asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions. Examples -------- Convert a list into an array. If all elements are finite ``asarray_chkfinite`` is identical to ``asarray``. >>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=float) array([1., 2.]) Raises ValueError if array_like contains Nans or Infs. >>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print('ValueError') ... ValueError """ a = asarray(a, dtype=dtype, order=order) if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): raise ValueError( > "array must not contain infs or NaNs") E ValueError: array must not contain infs or NaNs ../../anaconda/envs/skopt/lib/python3.5/site-packages/numpy/lib/function_base.py:1022: ValueError >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> entering PDB >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> > /Users/thead/anaconda/envs/skopt/lib/python3.5/site-packages/numpy/lib/function_base.py(1022)asarray_chkfinite() -> "array must not contain infs or NaNs") ```
closed
2017-06-29T06:58:10Z
2018-01-10T22:50:13Z
https://github.com/scikit-optimize/scikit-optimize/issues/417
[]
betatim
2
lanpa/tensorboardX
numpy
42
wrong histograms
Hi, I am having problems plotting histograms. I think there is a very good chance that it is not because of a bug in tensorboard-pytorch, but I'm not sure what I could be doing wrong, and I'm not sure where to ask, so if someone could help I would appreciate it. I am trying to plot histograms of the gradients like this: ``` loss.backward() for n, p in filter(lambda np: np[1].grad is not None, spectral_model.named_parameters()): print(n, p.grad.data.min(), p.grad.data.max()) summary_writer.add_histogram(n, p.grad.data.cpu().numpy(), global_step=step) ``` The mins and maxes show that the values are all between -.15 and .15 (and in fact most values are much closer to zero than that). But the histograms seem to show that all the values are located at one extremely high value, like 3.01e+18: ![image](https://user-images.githubusercontent.com/8763901/31584773-71fc0df4-b1bd-11e7-9fde-8ad45eafee71.png)
closed
2017-10-15T12:30:24Z
2017-10-17T06:23:52Z
https://github.com/lanpa/tensorboardX/issues/42
[]
greaber
6
Anjok07/ultimatevocalremovergui
pytorch
779
Value Error
Last Error Received: Process: MDX-Net If this error persists, please contact the developers with the error details. Raw Error Details: ValueError: "zero-size array to reduction operation maximum which has no identity" Traceback Error: " File "UVR.py", line 6059, in process_start File "separate.py", line 369, in seperate File "lib_v5\spec_utils.py", line 125, in normalize File "numpy\core\_methods.py", line 40, in _amax " Error Time Stamp [2023-09-06 18:57:06] Full Application Settings: vr_model: Choose Model aggression_setting: 10 window_size: 512 mdx_segment_size: 256 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: UVR-MDX-NET Voc FT chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic is_save_align: True is_mdx_c_seg_def: True is_invert_spec: False is_deverb_vocals: False is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: False is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: MP3 wav_type_set: PCM_16 help_hints_var: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: All Stems
closed
2023-09-06T15:58:12Z
2023-09-27T23:27:44Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/779
[]
DealPotato
1
chaos-genius/chaos_genius
data-visualization
575
[BUG] DQ Anomaly Metrics should not be displayed when we do count aggregation on a categorical column
## Describe the bug If we create a KPI with metric column type categorical and count as aggregation, DQ mean and Max graphs are displayed empty and DQ count graph is only displayed. ## Explain the environment - **Chaos Genius version**: v0.3.0 ## Expected behavior DQ Graphs should not be displayed. We can't take mean/max for categorical values and DQ Count graph will be the same as the overall KPI graph. ## Screenshots ![Screenshot from 2022-01-05 17-01-18](https://user-images.githubusercontent.com/22439823/148242173-ef2e6296-cdb8-4b1c-8cf9-c9de56267426.png)
closed
2022-01-05T15:21:42Z
2022-01-21T06:03:01Z
https://github.com/chaos-genius/chaos_genius/issues/575
[ "🐛 bug", "🛠️ backend" ]
Amatullah
0
NullArray/AutoSploit
automation
1,222
Unhandled Exception (26a2b144c)
Autosploit version: `4.0` OS information: `Linux-5.2.0-2parrot1-amd64-x86_64-with-Parrot-4.7-stable` Running context: `autosploit.py` Error mesage: ``hosts.txt` and `/home/arc/AutoSploit/hosts.txt` are the same file` Error traceback: ``` Traceback (most recent call): File "/home/arc/AutoSploit/lib/term/terminal.py", line 644, in terminal_main_display self.do_load_custom_hosts(choice_data_list[-1]) File "/home/arc/AutoSploit/lib/term/terminal.py", line 456, in do_load_custom_hosts shutil.copy(file_path, lib.settings.HOST_FILE) File "/usr/lib/python2.7/shutil.py", line 139, in copy copyfile(src, dst) File "/usr/lib/python2.7/shutil.py", line 83, in copyfile raise Error("`%s` and `%s` are the same file" % (src, dst)) Error: `hosts.txt` and `/home/arc/AutoSploit/hosts.txt` are the same file ``` Metasploit launched: `False`
closed
2019-12-14T21:25:40Z
2019-12-15T01:03:03Z
https://github.com/NullArray/AutoSploit/issues/1222
[]
AutosploitReporter
0
QuivrHQ/quivr
api
2,639
[Bug]: failed to fetch;failed to connect 54323,but 5050 report status ok
### What happened? A bug happened! http://localhost:3000/login,After I entered my account and password,web report "failed to fetch". And I checked the [5050](http://localhost:5050/), it said"{"status":"OK"}".but i failed to connect the http://localhost:54323/,it said "Unable to access this website. Localhost refused our connection request." ![image](https://github.com/QuivrHQ/quivr/assets/171697801/315074b3-e3f0-427b-81f5-d654b0d1def4) ### Relevant log output ```bash worker | File "/usr/local/lib/python3.11/site-packages/httpx/_transports/default.py", line 86, in map_httpcore_exceptions worker | raise mapped_exc(message) from exc worker | httpx.ConnectError: [Errno 111] Connection refused backend-core | INFO: 172.26.0.1:45280 - "GET /user HTTP/1.1" 403 Forbidden backend-core | INFO: 172.26.0.1:45282 - "GET /user/identity HTTP/1.1" 403 Forbidden backend-core | INFO: 172.26.0.1:45282 - "GET /user HTTP/1.1" 403 Forbidden backend-core | INFO: 172.26.0.1:45280 - "GET /user/identity HTTP/1.1" 403 Forbidden backend-core | INFO: 172.26.0.1:45280 - "GET /user HTTP/1.1" 403 Forbidden backend-core | INFO: 172.26.0.1:45282 - "GET /user/identity HTTP/1.1" 403 Forbidden backend-core | INFO: 172.26.0.1:45282 - "GET /user HTTP/1.1" 403 Forbidden backend-core | INFO: 172.26.0.1:45280 - "GET /user/identity HTTP/1.1" 403 Forbidden backend-core | INFO: 127.0.0.1:57488 - "GET /healthz HTTP/1.1" 200 OK backend-core | INFO: 127.0.0.1:41430 - "GET /healthz HTTP/1.1" 200 OK ``` ### Twitter / LinkedIn details _No response_
closed
2024-06-07T10:46:09Z
2024-09-11T12:08:49Z
https://github.com/QuivrHQ/quivr/issues/2639
[ "bug", "Stale", "area: backend" ]
HarrietW221b
6
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
3,685
Wrong hompage in package description
### What version of GlobaLeaks are you using? 4.13.12 ### What browser(s) are you seeing the problem on? Other ### What operating system(s) are you seeing the problem on? macOS ### Describe the issue Due to the shell command 'dpkg -s globaleaks' the information of the installed package is presented. Actually it shows like this on Ubuntu 22.04: Package: globaleaks Status: install ok installed Priority: optional Section: web Installed-Size: 87176 Maintainer: Giovanni Pellerano <giovanni.pellerano@globaleaks.org> Architecture: all Version: 4.13.12 Depends: python3:any, adduser, apparmor, apparmor-utils, gnupg, iptables, lsb-base, python3-acme, python3-debian, python3-cryptography, python3-h2, python3-nacl, python3-openssl, python3-gnupg, python3-priority, python3-pyotp, python3-sqlalchemy, python3-twisted, python3-txtorcon, tor Conffiles: /etc/apparmor.d/usr.bin.globaleaks 42cc8bb81a4ff0706a6e7635b8cd5e56 /etc/default/globaleaks 753092d375c0453441385ff18f364856 /etc/init.d/globaleaks 436f0388680721cfe13dbfd069ce9f41 Description: Free and open-source whistleblowing software GlobaLeaks is free, open source software enabling anyone to easily set up and maintain a secure whistleblowing platform Homepage: **https://www.globleaks.org/** ### Proposed solution As a minor issue I like to recommend to correct the Homepage from www.globleaks.org to www.globaleaks.org
closed
2023-10-08T14:59:37Z
2023-10-09T22:25:14Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/3685
[ "T: Bug", "C: Packaging" ]
flashlight4
2
recommenders-team/recommenders
data-science
1,376
[FEATURE] Add Microsoft markdown files
### Description Add updated code of conduct and security markdown files ### Expected behavior with the suggested feature CODE_OF_CONDUCT.md matching: https://github.com/microsoft/repo-templates/blob/main/shared/CODE_OF_CONDUCT.md SECURITY.md matching https://github.com/microsoft/repo-templates/blob/main/shared/SECURITY.md ### Other Comments
closed
2021-04-14T18:18:53Z
2021-04-15T18:37:03Z
https://github.com/recommenders-team/recommenders/issues/1376
[ "enhancement" ]
gramhagen
1
hankcs/HanLP
nlp
1,171
自定义词 添加到 CustomDictionary 里面就可以被识别,自己加载词典就不被识别
<!-- 注意事项和版本号必填,否则不回复。若希望尽快得到回复,请按模板认真填写,谢谢合作。 --> ## 注意事项 请确认下列注意事项: * 我已仔细阅读下列文档,都没有找到答案: - [首页文档](https://github.com/hankcs/HanLP) - [wiki](https://github.com/hankcs/HanLP/wiki) - [常见问题](https://github.com/hankcs/HanLP/wiki/FAQ) * 我已经通过[Google](https://www.google.com/#newwindow=1&q=HanLP)和[issue区检索功能](https://github.com/hankcs/HanLP/issues)搜索了我的问题,也没有找到答案。 * 我明白开源社区是出于兴趣爱好聚集起来的自由社区,不承担任何责任或义务。我会礼貌发言,向每一个帮助我的人表示感谢。 * [x] 我在此括号内输入x打钩,代表上述事项确认完毕。 ## 版本号 <!-- 发行版请注明jar文件名去掉拓展名的部分;GitHub仓库版请注明master还是portable分支 --> 当前最新版本号是: 我使用的版本是: <!--以上属于必填项,以下可自由发挥--> ## 我的问题 <!-- 请详细描述问题,越详细越可能得到解决 --> ## 复现问题 <!-- 你是如何操作导致产生问题的?比如修改了代码?修改了词典或模型?--> ### 步骤 1. 首先…… 2. 然后…… 3. 接着…… ### 触发代码 ``` public void testIssue1234() throws Exception { CustomDictionary.add("用户词语"); System.out.println(StandardTokenizer.segment("触发问题的句子")); } ``` ### 期望输出 <!-- 你希望输出什么样的正确结果?--> ``` 期望输出 ``` ### 实际输出 <!-- HanLP实际输出了什么?产生了什么效果?错在哪里?--> ``` 实际输出 ``` ## 其他信息 <!-- 任何可能有用的信息,包括截图、日志、配置文件、相关issue等等。-->
closed
2019-05-06T02:41:51Z
2020-01-01T10:49:50Z
https://github.com/hankcs/HanLP/issues/1171
[ "ignored" ]
99sun99
15
JaidedAI/EasyOCR
pytorch
1,011
Train my own recognition model
i want to use english_g2.pth to train my own recognition model,is there any Tutorial? The deep-text-recognition-benchmark model looks like 200MB,It's a little big for me,thanks
open
2023-05-09T06:43:29Z
2024-01-25T18:32:46Z
https://github.com/JaidedAI/EasyOCR/issues/1011
[]
stealth0414
3
ageitgey/face_recognition
machine-learning
643
Train model with more than 1 image per person
* face_recognition version: 1.2.3 * Python version: 2.7.15 * Operating System: Windows 10 ### Description I Would like to train the model with more than 1 image per each person to achieve better recognition results. Is it possible? One more question is what does [0] mean here: ``` known_face_encoding_user = face_recognition.face_encodings('image.jpg')[0] ``` If I put [1] here I receive "IndexError: list index out of range" error.
closed
2018-10-09T10:59:15Z
2018-10-09T11:37:34Z
https://github.com/ageitgey/face_recognition/issues/643
[]
cepxuo
1
drivendataorg/cookiecutter-data-science
data-science
181
Link to "Edit in Github" still broken on project homepage
This is a continuation of issue #146. The link seems to still be broken. # Steps to Repro: - Go to the project homepage http://drivendata.github.io/cookiecutter-data-science/ - In the top right there is a button "Edit on Github" that links to this page: https://github.com/drivendata/cookiecutter-data-science/edit/master/docs/index.md - Click on that link # What I got The link sends me to a 404 "not found" error page on github. # What I wanted What I expected was it would send me to some page on GitHub. # Possible fix I imagine maybe the docs is built from the gh-pages branch and not the master branch - if that's the case we would need to edit [this line spefically](https://github.com/drivendata/cookiecutter-data-science/blob/9e01bf8d09c6dd65f435acc50444971b771ebfe4/index.html#L74) on the gh-pages branch.
closed
2019-09-02T18:18:56Z
2020-01-23T01:52:35Z
https://github.com/drivendataorg/cookiecutter-data-science/issues/181
[]
BrunoGomesCoelho
1
litestar-org/litestar
asyncio
3,464
Bug: SerializationException when running modeling-and-features demo from docs
### Description Hi, First of all thanks for developing Litestar, it proves to be a very useful piece of software here. Unfortunately I ran into an issue. I ran into an `msgspec_error` when requesting a page backed by sqlalchemy models which are connected via relationships. It seems that the database is correctly queried, a list of objects are returned, but then an exception is thrown when converting the objects to JSON. I ran into this issue on my production code but when isolating an MCVE I noticed that the provided example in the documentation also shows the same unexpected behaviour on tested on two different machines. One crucial change to the code is however adding an author to the database. Since this is quite a show-stopper for me: Thanks in advance for having a look at this! ### URL to code causing the issue https://docs.litestar.dev/2/tutorials/repository-tutorial/01-modeling-and-features.html ### MCVE ```python from datetime import date from typing import TYPE_CHECKING from uuid import UUID from sqlalchemy import ForeignKey, select from sqlalchemy.orm import Mapped, mapped_column, relationship from litestar import Litestar, get from litestar.contrib.sqlalchemy.base import UUIDAuditBase, UUIDBase from litestar.contrib.sqlalchemy.plugins import AsyncSessionConfig, SQLAlchemyAsyncConfig, SQLAlchemyInitPlugin if TYPE_CHECKING: from sqlalchemy.ext.asyncio import AsyncEngine, AsyncSession # the SQLAlchemy base includes a declarative model for you to use in your models. # The `Base` class includes a `UUID` based primary key (`id`) class Author(UUIDBase): name: Mapped[str] dob: Mapped[date] books: Mapped[list["Book"]] = relationship(back_populates="author", lazy="selectin") # The `AuditBase` class includes the same UUID` based primary key (`id`) and 2 # additional columns: `created_at` and `updated_at`. `created_at` is a timestamp of when the # record created, and `updated_at` is the last time the record was modified. class Book(UUIDAuditBase): title: Mapped[str] author_id: Mapped[UUID] = mapped_column(ForeignKey("author.id")) author: Mapped[Author] = relationship(lazy="joined", innerjoin=True, viewonly=True) session_config = AsyncSessionConfig(expire_on_commit=False) sqlalchemy_config = SQLAlchemyAsyncConfig( connection_string="sqlite+aiosqlite:///test.sqlite", session_config=session_config ) # Create 'async_session' dependency. sqlalchemy_plugin = SQLAlchemyInitPlugin(config=sqlalchemy_config) async def on_startup() -> None: """Initializes the database.""" async with sqlalchemy_config.get_engine().begin() as conn: await conn.run_sync(UUIDBase.metadata.create_all) #crucially there needs to be an author in the table for the error to appear await conn.execute(Author.__table__.insert().values(name="F. Scott Fitzgerald")) @get(path="/authors") async def get_authors(db_session: "AsyncSession", db_engine: "AsyncEngine") -> list[Author]: """Interact with SQLAlchemy engine and session.""" return list(await db_session.scalars(select(Author))) app = Litestar( route_handlers=[get_authors], on_startup=[on_startup], plugins=[SQLAlchemyInitPlugin(config=sqlalchemy_config)], debug=True ) ``` ### Steps to reproduce ```bash 1. Go to the https://docs.litestar.dev/2/tutorials/repository-tutorial/01-modeling-and-features.html page 2. Download the code 3. Run the demo with minimal requirements installed and go to http://localhost:8000/authors 4. See the error ``` ### Screenshots _No response_ ### Logs ```bash File "/usr/local/lib/python3.12/site-packages/litestar/serialization/msgspec_hooks.py", line 143, in encode_json raise SerializationException(str(msgspec_error)) from msgspec_error litestar.exceptions.base_exceptions.SerializationException: Unsupported type: <class '__main__.Author'> Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/litestar/serialization/msgspec_hooks.py", line 141, in encode_json return msgspec.json.encode(value, enc_hook=serializer) if serializer else _msgspec_json_encoder.encode(value) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/litestar/serialization/msgspec_hooks.py", line 88, in default_serializer raise TypeError(f"Unsupported type: {type(value)!r}") TypeError: Unsupported type: <class '__main__.Author'> The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/litestar/middleware/exceptions/middleware.py", line 219, in __call__ await self.app(scope, receive, send) File "/usr/local/lib/python3.12/site-packages/litestar/routes/http.py", line 82, in handle response = await self._get_response_for_request( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/litestar/routes/http.py", line 134, in _get_response_for_request return await self._call_handler_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/litestar/routes/http.py", line 158, in _call_handler_function response: ASGIApp = await route_handler.to_response(app=scope["app"], data=response_data, request=request) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/litestar/handlers/http_handlers/base.py", line 557, in to_response return await response_handler(app=app, data=data, request=request) # type: ignore[call-arg] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/litestar/handlers/http_handlers/_utils.py", line 79, in handler return response.to_asgi_response(app=None, request=request, headers=normalize_headers(headers), cookies=cookies) # pyright: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/litestar/response/base.py", line 451, in to_asgi_response body=self.render(self.content, media_type, get_serializer(type_encoders)), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/litestar/response/base.py", line 392, in render return encode_json(content, enc_hook) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/litestar/serialization/msgspec_hooks.py", line 143, in encode_json raise SerializationException(str(msgspec_error)) from msgspec_error litestar.exceptions.base_exceptions.SerializationException: Unsupported type: <class '__main__.Author'> INFO: 127.0.0.1:44906 - "GET /authors HTTP/1.1" 500 Internal Server Error ``` ### Litestar Version 2.8.2 ### Platform - [X] Linux - [X] Mac - [ ] Windows - [ ] Other (Please specify in the description above)
closed
2024-05-03T13:33:38Z
2025-03-20T15:54:40Z
https://github.com/litestar-org/litestar/issues/3464
[ "Bug :bug:", "Documentation :books:", "Good First Issue" ]
JorenSix
3
mars-project/mars
scikit-learn
2,750
[BUG] NameError: name 'pq' is not defined if pyarrow is not installed
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Describe the bug** ```python mars/services/lifecycle/api/oscar.py:19: in <module> from ..supervisor.tracker import LifecycleTrackerActor mars/services/lifecycle/supervisor/__init__.py:15: in <module> from .service import LifecycleSupervisorService mars/services/lifecycle/supervisor/service.py:17: in <module> from .tracker import LifecycleTrackerActor mars/services/lifecycle/supervisor/tracker.py:21: in <module> from ...meta.api import MetaAPI mars/services/meta/__init__.py:15: in <module> from .api import AbstractMetaAPI, MetaAPI, MockMetaAPI, WebMetaAPI mars/services/meta/api/__init__.py:16: in <module> from .oscar import MetaAPI, MockMetaAPI mars/services/meta/api/oscar.py:21: in <module> from ....dataframe.core import ( mars/dataframe/__init__.py:33: in <module> from .datasource.read_parquet import read_parquet mars/dataframe/datasource/read_parquet.py:98: in <module> class ParquetEngine: mars/dataframe/datasource/read_parquet.py:122: in ParquetEngine use_arrow_dtype=None, E NameError: name 'pq' is not defined ``` **To Reproduce** To help us reproducing this bug, please provide information below: 1. Your Python version 3.7.7 2. The version of Mars you use latest master 3. Versions of crucial packages, such as numpy, scipy and pandas 4. Full stack of the error. 5. Minimized code to reproduce the error. **Expected behavior** A clear and concise description of what you expected to happen. **Additional context** Add any other context about the problem here.
closed
2022-02-25T03:23:35Z
2022-02-25T03:24:55Z
https://github.com/mars-project/mars/issues/2750
[ "reso: duplicate" ]
fyrestone
1
alteryx/featuretools
scikit-learn
2,453
fix dfs warnings in get_recommended_primitives
in `_recommend_non_numeric_primitives` we make a call to dfs to generate features for all valid primitives. That list of valid primitives usually includes many numeric primitives that don't get used and cause an UnusedPrimitive warning.
open
2023-01-18T18:49:35Z
2023-06-26T19:16:12Z
https://github.com/alteryx/featuretools/issues/2453
[]
ozzieD
0
lanpa/tensorboardX
numpy
293
Can not add graph for dataparallel model
Hi there, I get a `KeyError: '322'` when I try to `add_graph` for data parallel model on multiple GPU. Here is a mini-example which can reproduce the error: So what should I do for this error? ``` import torch import torchvision.models as models from tensorboardX import SummaryWriter device = 'cuda' net = torch.nn.DataParallel(models.__dict__['resnet50']().to(device)) dump_input = torch.rand((10, 3, 224, 224), device=device) SummaryWriter('./tmp').add_graph(net, dump_input, verbose=False) ```
closed
2018-12-04T02:31:40Z
2018-12-10T03:51:06Z
https://github.com/lanpa/tensorboardX/issues/293
[ "seems fixed" ]
bl0
6
huggingface/transformers
deep-learning
36,295
[Bugs] RuntimeError: No CUDA GPUs are available in transformers v4.48.0 or above when running Ray RLHF example
### System Info - `transformers` version: 4.48.0 - Platform: Linux-3.10.0-1127.el7.x86_64-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.27.1 - Safetensors version: 0.5.2 - Accelerate version: 1.0.1 - Accelerate config: not found - PyTorch version (GPU?): 2.5.1+cu124 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using distributed or parallel set-up in script?: Yes - Using GPU in script?: Yes - GPU type: NVIDIA A800-SXM4-80GB ### Who can help? @ArthurZucker ### Information - [x] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [x] My own task or dataset (give details below) ### Reproduction Hi for all! I failed to run the vLLM project RLHF example script. The code is exactly same as the vLLM docs page: https://docs.vllm.ai/en/latest/getting_started/examples/rlhf.html The error messages are: ``` (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] Error executing method 'init_device'. This might cause deadlock in distributed execution. (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] Traceback (most recent call last): (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 566, in execute_method (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] return run_method(target, method, args, kwargs) (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/utils.py", line 2220, in run_method (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] return func(*args, **kwargs) (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker.py", line 155, in init_device (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] torch.cuda.set_device(self.device) (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/torch/cuda/__init__.py", line 478, in set_device (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] torch._C._cuda_setDevice(device) (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/torch/cuda/__init__.py", line 319, in _lazy_init (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] torch._C._cuda_init() (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] RuntimeError: No CUDA GPUs are available (MyLLM pid=70946) Exception raised in creation task: The actor died because of an error raised in its creation task, ray::MyLLM.__init__() (pid=70946, ip=11.163.37.230, actor_id=202b48118215566c51057a0101000000, repr=<test_ray_vllm_rlhf.MyLLM object at 0x7fb7453669b0>) (MyLLM pid=70946) File "/data/cfs/workspace/test_ray_vllm_rlhf.py", line 96, in __init__ (MyLLM pid=70946) super().__init__(*args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/utils.py", line 1051, in inner (MyLLM pid=70946) return fn(*args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/entrypoints/llm.py", line 242, in __init__ (MyLLM pid=70946) self.llm_engine = self.engine_class.from_engine_args( (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 484, in from_engine_args (MyLLM pid=70946) engine = cls( (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 273, in __init__ (MyLLM pid=70946) self.model_executor = executor_class(vllm_config=vllm_config, ) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 262, in __init__ (MyLLM pid=70946) super().__init__(*args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 51, in __init__ (MyLLM pid=70946) self._init_executor() (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/ray_distributed_executor.py", line 90, in _init_executor (MyLLM pid=70946) self._init_workers_ray(placement_group) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/ray_distributed_executor.py", line 355, in _init_workers_ray (MyLLM pid=70946) self._run_workers("init_device") (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/ray_distributed_executor.py", line 476, in _run_workers (MyLLM pid=70946) self.driver_worker.execute_method(sent_method, *args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 575, in execute_method (MyLLM pid=70946) raise e (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 566, in execute_method (MyLLM pid=70946) return run_method(target, method, args, kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/utils.py", line 2220, in run_method (MyLLM pid=70946) return func(*args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker.py", line 155, in init_device (MyLLM pid=70946) torch.cuda.set_device(self.device) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/torch/cuda/__init__.py", line 478, in set_device (MyLLM pid=70946) torch._C._cuda_setDevice(device) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/torch/cuda/__init__.py", line 319, in _lazy_init (MyLLM pid=70946) torch._C._cuda_init() (MyLLM pid=70946) RuntimeError: No CUDA GPUs are available ``` I found in transformers==4.47.1 the script could run normally. However when I tried transformers==4.48.0, 4.48.1 and 4.49.0 I got the error messages above. Then I checked pip envs with `pip list` and found only transformers versions are different. I've tried to change vllm version between 0.7.0 and 0.7.2, the behavior is the same. Related Ray issues: * https://github.com/vllm-project/vllm/issues/13597 * https://github.com/vllm-project/vllm/issues/13230 ### Expected behavior The script runs normally.
open
2025-02-20T07:58:49Z
2025-03-22T08:03:03Z
https://github.com/huggingface/transformers/issues/36295
[ "bug" ]
ArthurinRUC
3
huggingface/datasets
computer-vision
6,881
AttributeError: module 'PIL.Image' has no attribute 'ExifTags'
When trying to load an image dataset in an old Python environment (with Pillow-8.4.0), an error is raised: ```Python traceback AttributeError: module 'PIL.Image' has no attribute 'ExifTags' ``` The error traceback: ```Python traceback ~/huggingface/datasets/src/datasets/iterable_dataset.py in __iter__(self) 1391 # `IterableDataset` automatically fills missing columns with None. 1392 # This is done with `_apply_feature_types_on_example`. -> 1393 example = _apply_feature_types_on_example( 1394 example, self.features, token_per_repo_id=self._token_per_repo_id 1395 ) ~/huggingface/datasets/src/datasets/iterable_dataset.py in _apply_feature_types_on_example(example, features, token_per_repo_id) 1080 encoded_example = features.encode_example(example) 1081 # Decode example for Audio feature, e.g. -> 1082 decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id) 1083 return decoded_example 1084 ~/huggingface/datasets/src/datasets/features/features.py in decode_example(self, example, token_per_repo_id) 1974 -> 1975 return { 1976 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) 1977 if self._column_requires_decoding[column_name] ~/huggingface/datasets/src/datasets/features/features.py in <dictcomp>(.0) 1974 1975 return { -> 1976 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) 1977 if self._column_requires_decoding[column_name] 1978 else value ~/huggingface/datasets/src/datasets/features/features.py in decode_nested_example(schema, obj, token_per_repo_id) 1339 # we pass the token to read and decode files from private repositories in streaming mode 1340 if obj is not None and schema.decode: -> 1341 return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) 1342 return obj 1343 ~/huggingface/datasets/src/datasets/features/image.py in decode_example(self, value, token_per_repo_id) 187 image = PIL.Image.open(BytesIO(bytes_)) 188 image.load() # to avoid "Too many open files" errors --> 189 if image.getexif().get(PIL.Image.ExifTags.Base.Orientation) is not None: 190 image = PIL.ImageOps.exif_transpose(image) 191 if self.mode and self.mode != image.mode: ~/huggingface/datasets/venv/lib/python3.9/site-packages/PIL/Image.py in __getattr__(name) 75 ) 76 return categories[name] ---> 77 raise AttributeError(f"module '{__name__}' has no attribute '{name}'") 78 79 AttributeError: module 'PIL.Image' has no attribute 'ExifTags' ``` ### Environment info Since datasets 2.19.0
closed
2024-05-08T06:33:57Z
2024-07-18T06:49:30Z
https://github.com/huggingface/datasets/issues/6881
[ "bug" ]
albertvillanova
3
InstaPy/InstaPy
automation
6,232
unable to like
i get the unable to load media error( for like 4.5 posts ) and after that it gets a media post and After getting the post when is time to click the like button the app stops Traceback (most recent call last): File "C:\Users\ribei\Downloads\Reddit\insta.py", line 32, in session.like_by_tags(["cats"], amount=10) File "C:\Users\ribei\AppData\Local\Programs\Python\Python39\lib\site-packages\instapy\instapy.py", line 1957, in like_by_tags inappropriate, user_name, is_video, reason, scope = check_link( File "C:\Users\ribei\AppData\Local\Programs\Python\Python39\lib\site-packages\instapy\like_util.py", line 633, in check_link media = post_page[0]["shortcode_media"] KeyError: 0 [Finished in 207.3s] #6230
closed
2021-06-14T16:41:42Z
2023-01-01T11:34:55Z
https://github.com/InstaPy/InstaPy/issues/6232
[]
diogoribeirodev
4
explosion/spaCy
data-science
13,620
A question about document tokenization
Hi, I found a very interesting result to tokenize a document. The example code is: ``` import spacy nlp = spacy.load("en_core_web_sm") # doc = nlp("Apple is looking at. startup for $1 billion.") # for token in doc: # print(token.text, token.pos_, token.dep_) # Example text text = '''Panel C: Gene Associations in LUAD and NATs In LUAD tumors, ZNF71 is associated with JUN, SAMHD1, RNASEL, IFNGR1, IKKB, and EIF2A. In non-cancerous adjacent tissues (NATs), the associated genes are OAS1, MP3K7, and IFNAR2.''' # Process the text doc = nlp(text) out_sen = [] # Iterate over the sentences for sent in doc.sents: if len(sent) != 0: print(sent.text) out_sen.append(sent) ``` The result out_sen's length is 1, and it is treated as a whole sentence. Is this a bug or sth by default? Thanks. The spacy version is 3.7.6
open
2024-09-07T13:23:34Z
2024-11-10T07:07:11Z
https://github.com/explosion/spaCy/issues/13620
[]
HelloWorldLTY
1
wiseodd/generative-models
tensorflow
40
KL Loss.
Hi, I just noticed that the KL Loss in the VAE paper would look like this: 0.5 * torch.sum(torch.exp(logVar) + mean ** 2 - 1. - logVar) And here, the KL Loss is: torch.mean(0.5 * torch.sum(torch.exp(logVar) + mean ** 2 - 1. - logVar, 1)) What's your thought in this?
closed
2017-10-29T02:08:32Z
2017-10-30T13:37:13Z
https://github.com/wiseodd/generative-models/issues/40
[]
Prasanna1991
2
datapane/datapane
data-visualization
142
UTF-8 – CP1252 encoding issue in exported HTML report
<!-- **NOTE** Please use this template to open issues, bugs, etc., only. See our [GitHub Discussions Board](https://github.com/datapane/datapane/discussions) to discuss feature requests, general support, ideas, and to chat with the community. --> ### System Information <!-- Please fill this out to help us understand the bug/issue --> - OS: Windows 10 - Python version: 3.8.10 - Python environment: conda - Using jupyter: true - Datapane version: 0.11.11 ### Bug / Issue When displaying a pandas dataframe in DataPane as a Table (not DataTable, which does work correctly), euro sign characters (€) display as €: ![image](https://user-images.githubusercontent.com/20395965/128697082-a1808d55-a01a-4a0a-9653-381284db7f7b.png) This doesn't happen inside JupyterLab, or when exporting the original dataframe to html using `df.to_html()`. I am calling `report.save()` rather than `upload` as I want to generate local html reports. In #9 you mention it could be an issue with Windows' default encoding not being UTF-8, are there any steps I should take to fix this? Thank you!
closed
2021-08-09T11:11:20Z
2021-08-18T18:10:20Z
https://github.com/datapane/datapane/issues/142
[ "triage" ]
inigohidalgo
6
iMerica/dj-rest-auth
rest-api
328
Is it possible to implement custom email validation in AccountAdapter instead of overriding RegisterSerializer.validate_email?
Hi, I'm writing a multitenant app and wanted to use AllAuth. However, it [does not have an option to replace `EmailAddress`](https://github.com/pennersr/django-allauth/issues/2450) I also found this issue pennersr/django-allauth/issues/976 that allows implementing custom logic to validate email uniqueness in `AccountAdapter`, merged in pennersr/django-allauth/pull/1407. The change in PR updates `BaseSignupForm.clean_email` method. If I understand correctly `dj-rest-auth` `RegisterSerializer` is modelled after `BaseSignupForm`. Would it be possible to do the same in `RegisterSerializer` so I do not have to provide my own and can keep the changes only in AccountAdapter?
open
2021-11-12T07:30:25Z
2021-11-12T07:42:55Z
https://github.com/iMerica/dj-rest-auth/issues/328
[]
1oglop1
0
Miserlou/Zappa
django
1,927
Package Error: python-dateutil
Would you please support the newest version of python-dateutil? ``` ERROR: zappa 0.48.2 has requirement python-dateutil<2.7.0,>=2.6.1, but you'll have python-dateutil 2.8.0 which is incompatible. ```
open
2019-09-13T23:53:24Z
2021-05-08T16:28:33Z
https://github.com/Miserlou/Zappa/issues/1927
[]
weasteam
18
benbusby/whoogle-search
flask
780
[BUG] Some parts of the UI are light in dark theme
**Describe the bug** Some parts of the UI are light in dark theme. Some of those parts are not readable because the text and the background are white. **To Reproduce** Some searches ![image](https://user-images.githubusercontent.com/10577978/173236358-3e04c839-97d8-4c50-a856-180d94508986.png) ![image](https://user-images.githubusercontent.com/10577978/173236368-d6c9dda5-a1b5-4cab-ba31-358b98780541.png) ![image](https://user-images.githubusercontent.com/10577978/173236382-2a3dba74-31de-42dd-8e88-f10340515004.png) **Deployment Method** - [ ] Heroku (one-click deploy) - [x] Docker - [ ] `run` executable - [ ] pip/pipx - [ ] Other: [describe setup] **Version of Whoogle Search** - 0.7.3
closed
2022-06-12T13:48:57Z
2022-06-13T17:08:31Z
https://github.com/benbusby/whoogle-search/issues/780
[ "bug" ]
ngosang
5
graphistry/pygraphistry
jupyter
218
[ENH] Error propagation in files mode
```python df = pd.DataFrame({'s': ['a', 'b', 'c'], 'd': ['b', 'c', 'a']}) graphistry.edges(df, 'WRONG', 'd').plot(as_files=True, render=False) ``` Will not hint at the binding error, while `as_files=False` will. Both should -- unclear if PyGraphistry inspecting validity on viz create response, or validity not being set.
open
2021-02-15T00:38:52Z
2021-02-15T00:44:21Z
https://github.com/graphistry/pygraphistry/issues/218
[ "enhancement", "good-first-issue" ]
lmeyerov
0
microsoft/Bringing-Old-Photos-Back-to-Life
pytorch
243
Running locally almost halts the computer
The first time I ran this locally, my computer slowed to a crawl after Python used up 100% of my RAM and CPU. I waited 20 minutes, and ended the task. Is there some setting to ensure it doesn't consume so many resources? My PC is a year old, and pretty decent: **Operating System** Windows 10 Pro 64-bit Version 21H2 (OS Build 19044.1706) **CPU** Intel Core i9 10900K @ 3.70GHz, 3696 Mhz, 10 Core(s), 20 Logical Processor(s) **RAM** Corsair Vengeance RGB Pro 64 GB (2 x 32 GB) DDR4-3200 CL16 **Motherboard** Gigabyte Z590 AORUS MASTER (U3E1) **Graphics** LG ULTRAWIDE (3840x1600@60Hz) Intel UHD Graphics 630 (Gigabyte) 2047MB NVIDIA GeForce RTX 3080
open
2022-09-25T21:29:14Z
2022-11-21T09:03:11Z
https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/issues/243
[]
zvit
1
jschneier/django-storages
django
1,443
S3 credentials in links missing for private buckets after upgrade to Django 5.1
Hi @jschneier! I found an issue with Django 5.1. After the upgrade (using django-storages 1.14.4), all GET-parameter credentials for private S3 buckets are not being added to the links in my templates anymore. This means that I don't have access to the files. I have no idea and since I have little knowledge on how this amazing package works, I can't really contribute any suggestions. 😔 I just verified that it's really Django 5.1. Here's my setup, it might help in reconstructing the case. ```python from django.conf import settings from storages.backends.s3boto3 import S3Boto3Storage class PrivateMediaStorage(S3Boto3Storage): location = settings.AWS_PRIVATE_MEDIA_LOCATION querystring_expire = 3600 # seconds until the generated link expires default_acl = "bucket-owner-full-control" file_overwrite = False custom_domain = False ``` Thanks so much for looking into this! Ronny PS: It seens unrelated to https://github.com/jschneier/django-storages/issues/1437 since there, Django 4.2 was used.
closed
2024-08-15T07:04:05Z
2025-02-09T01:07:47Z
https://github.com/jschneier/django-storages/issues/1443
[]
GitRon
12
aminalaee/sqladmin
sqlalchemy
524
Show Enum values in detail page
### Checklist - [X] The bug is reproducible against the latest release or `master`. - [X] There are no similar issues or pull requests to fix it yet. ### Describe the bug In the Create page the Enums are shown properly, in the details page also it should show the Enum values. ### Steps to reproduce the bug _No response_ ### Expected behavior _No response_ ### Actual behavior _No response_ ### Debugging material _No response_ ### Environment All ### Additional context _No response_
closed
2023-06-26T12:05:53Z
2023-06-28T10:02:11Z
https://github.com/aminalaee/sqladmin/issues/524
[ "good first issue" ]
aminalaee
0
plotly/dash
jupyter
2,391
Navigation Button with tooltip error when clicking it
**Describe your context** Please provide us your environment, so we can easily reproduce the issue. ``` dash 2.7.1 dash-auth 1.4.1 dash-bootstrap-components 1.3.0 dash-core-components 2.0.0 dash-daq 0.5.0 dash-extensions 0.1.8 dash-html-components 2.0.0 dash-table 5.0.0 python-dash 0.0.1 ``` - if frontend related, tell us your Browser, Version and OS - OS: Mac OS 12.3.1 - Safari, Chrome **Describe the bug** MWE: ``` import dash from dash import dcc from dash import html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output app = dash.Dash(__name__, suppress_callback_exceptions=True) app.layout = html.Div([ dcc.Location(id='url', refresh=False), html.Div(id='page-content'), ]) def get_overview_page(): page = html.Div([ dcc.Link( html.Button('Neu', id='new_button', style={'margin-left': '10px', 'width': '100px', 'height': '27px', 'fontSize': '16px'}), href='/new-entry' ), dbc.Tooltip( "A.", target="new_button", placement="top" ) ], style={'width': '30%', 'margin-top': '10px', 'display': 'inline-block', 'text-align': 'left'}) return page # Update the index @app.callback(Output('page-content', 'children'), [Input('url', 'pathname')]) def display_page(pathname): if pathname == '/new-entry': return html.Div() else: return get_overview_page() if __name__ == '__main__': #app.run_server(debug=True, port=8080, host='0.0.0.0') app.run_server(debug=True, port=8086, host='127.0.0.1') ``` When you press the button and move the mouse you receive: `An object was provided as children instead of a component, string, or number (or list of those). Check the children property that looks something like: { "1": { "props": { "is_open": false } } }` When you remove the tooltip. It is working, so it has to do something with it. **Expected behavior** No error.
open
2023-01-19T17:42:54Z
2024-08-13T19:25:10Z
https://github.com/plotly/dash/issues/2391
[ "bug", "P3" ]
Birdy3000
0
miguelgrinberg/Flask-SocketIO
flask
1,050
400 Error?
Hi, I'm trying to spin up a simple socket connection w/ React + Flask... I'm unfortunately getting a 400 error... any thoughts around why this is? Happy to answer any questions around configs. <img width="498" alt="Screen Shot 2019-08-27 at 2 44 14 PM" src="https://user-images.githubusercontent.com/11385142/63776473-620d2d80-c8d9-11e9-8c77-3e3f09791028.png"> <img width="448" alt="Screen Shot 2019-08-27 at 2 44 27 PM" src="https://user-images.githubusercontent.com/11385142/63776475-620d2d80-c8d9-11e9-8e7a-8f45cfd7410b.png"> <img width="784" alt="Screen Shot 2019-08-27 at 2 44 32 PM" src="https://user-images.githubusercontent.com/11385142/63776476-62a5c400-c8d9-11e9-8168-e4bb9b4b3b39.png"> <img width="791" alt="Screen Shot 2019-08-27 at 2 44 38 PM" src="https://user-images.githubusercontent.com/11385142/63776477-62a5c400-c8d9-11e9-8adb-63e0b445aaa8.png"> <img width="596" alt="Screen Shot 2019-08-27 at 2 44 45 PM" src="https://user-images.githubusercontent.com/11385142/63776479-62a5c400-c8d9-11e9-8d97-2ab361c1acd9.png">
closed
2019-08-27T13:46:20Z
2020-01-02T03:49:33Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1050
[ "question" ]
leehol
2
waditu/tushare
pandas
1,725
import tushare后logging打不出来日志
Python 3.8.16,下面这样是可以打出日志的 ``` import logging # import tushare logging.basicConfig(level=logging.INFO) logging.info("a info log") ``` 只要把import tushare的注释去掉,logging就打不出来日志了 求助一下要如何解决
open
2024-01-05T16:54:43Z
2024-01-05T16:55:16Z
https://github.com/waditu/tushare/issues/1725
[]
CurryGaifan
0
FactoryBoy/factory_boy
sqlalchemy
936
How to access Params from Post-Create Hook?
#### Description I am using this package with SQLAlchemy models. My goal is to use a factory to create a model instance, along with a number of associated model instances. Both specific and generic associations, like these two use cases: ```py # use two new gyms: UserFactory(gyms_count=2) # use specified gym(s) gym = GymFactory() UserFactory(gyms=[gym]) ``` I am able to use a `post_generation` hook to create the related objects, but I'm having issues accessing one of the params when doing so. Or maybe I'm misunderstanding how the params work. #### To Reproduce ##### Model / Factory code Models (many to many association: user has many gyms, and vice versa): ```python class Gym(db.Model): __tablename__ = "gyms" id = db.Column(db.Integer, primary_key=True, index=True) title = db.Column(db.String, nullable=False) #> "My Gym" memberships = db.relationship("Membership", back_populates="gym") class User(db.Model): __tablename__ = "users" id = db.Column(db.Integer, primary_key=True, index=True) email = db.Column(db.String, index=True, nullable=False, unique=True) memberships = db.relationship("Membership", back_populates="user") class Membership(db.Model, MyModel): __tablename__ = "memberships" id = db.Column(db.Integer, primary_key=True, index=True) gym_id = db.Column(db.Integer, db.ForeignKey("gyms.id"), nullable=False, index=True) user_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False, index=True) gym = db.relationship("Gym", back_populates="memberships", uselist=False) user = db.relationship("User", back_populates="memberships", uselist=False) ``` Factories: ```python class BaseFactory(SQLAlchemyModelFactory): class Meta(object): sqlalchemy_session = db.session class UserFactory(BaseFactory): class Meta: model = User id = Sequence(lambda n: n+1) email = Sequence(lambda n: f"u{n+1}@example.com") class Params: gyms_count = 0 @post_generation def gyms(obj, create, extracted, **kwargs): if not create: # Simple build, do nothing. return if extracted: for gym in extracted: Membership.find_or_create(gym_id=gym.id, user_id=obj.id) gyms_count = kwargs.get("gyms_count") or 0 #gyms_count = obj.gyms_count # I tried `kwargs.get("gyms_count")` and `obj.gyms_count` but neither was successful. # how to get the gyms count param here? for _ in range(0, gyms_count): gym = GymFactory() Membership.find_or_create(gym_id=gym.id, user_id=obj.id) ``` ##### The issue How to access the `gyms_count` param from within the post_generation hook?
open
2022-05-30T02:39:14Z
2023-06-19T11:27:07Z
https://github.com/FactoryBoy/factory_boy/issues/936
[]
s2t2
3
CatchTheTornado/text-extract-api
api
33
Challenges with LLMs Not Respecting Provided Fields in JSON Outputs
When utilizing Large Language Models to extract data from documents such as invoices and generate structured outputs like JSON files, a common issue arises: the LLM does not always adhere strictly to the provided fields and sometimes invents new ones. This behavior poses significant challenges for applications that require exact data formats for database integration and other automated processes.
closed
2024-11-13T01:22:29Z
2024-11-25T12:18:22Z
https://github.com/CatchTheTornado/text-extract-api/issues/33
[ "question" ]
kreativitat
4
aleju/imgaug
deep-learning
130
Batch generator hangs with multithread
When using alongside the keras `ImageDataGenerator` with `multithreading=True`, the process hangs on `recv()`. Switching the number of workers to 0 (i.e. no multithread) works as expected. > Versions: imgaug: 0.2.5 (from master 13May18) python: 3.5 keras: 2.1.3 I saw the last merged PR #126 tacking in the same direction, and have confirmed that the installed version has it, but problem persists.
open
2018-05-01T13:04:38Z
2018-05-29T10:41:28Z
https://github.com/aleju/imgaug/issues/130
[]
23pointsNorth
3
pydata/pandas-datareader
pandas
733
Stooq: futures, indices, cash, currency, bond yield tickers don't feed
Hello, I'm trying to scrape multiple historical quotes from Stooq. Equities and indicies work well, while futures, indices, cash, currency, bond yield don't feed. Shall I type the tickers somehow differently? Below is the code example with the tickers that don't work for me. ```py now = datetime.now().date() stooq_tickers = ['PLN_I', 'DX.F', 'FX.C', 'U4.F', 'USDAUD', '10CNY.B', 'UKOUSD6M'] stooqdf = dr.get_data_stooq(stooq_tickers, start='2016-01-01', end=now) ``` Also is there a way to feed economic data, for example 'PMMNCN.M' or 'IMPRCN.M'? Thank you in advance for any help!
open
2019-11-30T06:02:16Z
2019-12-02T12:50:03Z
https://github.com/pydata/pandas-datareader/issues/733
[]
An-naili
2
pydantic/pydantic-core
pydantic
1,147
ImportError: dynamic module does not define module export function (PyInit__pydantic_core)
Hello, I am trying to import openai in my visual studio code and face with "ImportError: dynamic module does not define module export function (PyInit__pydantic_core)" error, I really dont have any idea of how resolving it, my pydantic version is 2.5.3 and my pydantic_core version is 2.15.0, my python code is 3.11.7, I appreciate any help. <img width="532" alt="Capture" src="https://github.com/pydantic/pydantic-core/assets/156265022/2d8c7f12-3897-433f-9cb1-b2892db3e0b9">
closed
2024-01-11T01:25:38Z
2024-01-17T16:30:38Z
https://github.com/pydantic/pydantic-core/issues/1147
[ "unconfirmed" ]
ResearcherSara
3
AntonOsika/gpt-engineer
python
237
openai key
how do i manually edit my api key?
closed
2023-06-20T03:59:11Z
2023-06-21T12:36:38Z
https://github.com/AntonOsika/gpt-engineer/issues/237
[]
ether8unny
5
polakowo/vectorbt
data-visualization
71
example rand_exit_choice_nb can not run
Hi, I find an example can not run: https://github.com/polakowo/vectorbt/blob/master/vectorbt/signals/factory.py#L316 ```python File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\vectorbt\signals\factory.py", line 61, in __init__ IndicatorFactory.__init__( TypeError: __init__() got an unexpected keyword argument 'in_output_settings' ``` ```python File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\vectorbt\signals\factory.py", line 61, in __init__ IndicatorFactory.__init__( TypeError: __init__() got an unexpected keyword argument 'param_settings' ``` ```python Traceback (most recent call last): File "D:/test_vectorbt/demo_stop3.py", line 66, in <module> my_sig.rand_type_readable File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\vectorbt\indicators\factory.py", line 1181, in attr_readable return getattr(_self, attr_name).applymap(lambda x: '' if x == -1 else enum._fields[x]) File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\pandas\core\frame.py", line 6944, in applymap return self.apply(infer) File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\pandas\core\frame.py", line 6878, in apply return op.get_result() File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\pandas\core\apply.py", line 186, in get_result return self.apply_standard() File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\pandas\core\apply.py", line 313, in apply_standard results, res_index = self.apply_series_generator() File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\pandas\core\apply.py", line 341, in apply_series_generator results[i] = self.f(v) File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\pandas\core\frame.py", line 6942, in infer return lib.map_infer(x.astype(object).values, func) File "pandas\_libs\lib.pyx", line 2329, in pandas._libs.lib.map_infer File "D:\Users\Kan\miniconda3\envs\py38_vectorbt\lib\site-packages\vectorbt\indicators\factory.py", line 1181, in <lambda> return getattr(_self, attr_name).applymap(lambda x: '' if x == -1 else enum._fields[x]) TypeError: tuple indices must be integers or slices, not float ```
closed
2020-12-25T02:39:40Z
2020-12-25T22:01:41Z
https://github.com/polakowo/vectorbt/issues/71
[]
wukan1986
0
davidsandberg/facenet
computer-vision
1,087
why the time for encoding face embedding is so long?
I rewrite the compare.py to check the time for facenet's face embedding encoding, but to my surprise,the time is above 60ms on my Geforce RTX2070 card,I also check the time for ArcFace,it only use 10 ms; I also found when my check program was running, the GPU load report by GPU-Z is only about 25%,it was clear the GPU's power is not fully utilized, so why the time for facenet's embedding encoding is so long? why GPU's power can not be fully utilized? below is my code to check the time rewrite in compare.py: def main(args): images = load_and_align_data(args.image_files, args.image_size, args.margin, args.gpu_memory_fraction) with tf.Graph().as_default(): with tf.Session() as sess: # Load the model facenet.load_model(args.model) # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") # Run forward pass to calculate embeddings feed_dict = { images_placeholder: images, phase_train_placeholder:False } emb = sess.run(embeddings, feed_dict=feed_dict) # Check embedding encode time testTimes = 100 tCount = 0 for t in range(1,testTimes+1): t0 = time.time() sess.run(embeddings,feed_dict=feed_dict) t1 = time.time() print("Test",t," time=",(t1-t0)*1000.0,"ms") tCount += t1-t0 avgTime = tCount/testTimes * 1000.0 print("AvgRefTime=",avgTime, "ms")
closed
2019-09-20T07:09:10Z
2019-09-22T11:38:41Z
https://github.com/davidsandberg/facenet/issues/1087
[]
pango99
1
HumanSignal/labelImg
deep-learning
801
unhandled exception in script -- when run py to exc in windows
Traceback (most recent call last): File "labelImg.py", line 18, in <module> ModuleNotFoundError: No module named 'PyQt5' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "labelImg.py", line 27, in <module> ModuleNotFoundError: No module named 'sip'
closed
2021-10-11T11:44:56Z
2021-10-11T20:06:56Z
https://github.com/HumanSignal/labelImg/issues/801
[]
saiful6575
1
Kanaries/pygwalker
matplotlib
658
Support Narwhals DataFrames including DuckDB relation and Dask.
In https://github.com/panel-extensions/panel-graphic-walker/pull/22 I will add more support for more data sources to `panel-graphic-walker`. I add general DataFrame support via [Narwhals](https://github.com/narwhals-dev/narwhals) because its what we are going to do for param, panel and rest of HoloViz ecosystem I believe. With the PR above we will end up supporting ![image](https://github.com/user-attachments/assets/9c36c8cd-820f-468d-ba6d-123613efe0e1) It would be very nice with - DuckDB Relation and Dask support in pygwalker. - General support for any Narwhals DataFrame type - The pygwalker database `Connector` being a support Narwhals DataFrame type. [Context](https://github.com/narwhals-dev/narwhals/issues/1289).
open
2024-11-09T14:59:12Z
2025-02-08T01:31:52Z
https://github.com/Kanaries/pygwalker/issues/658
[ "enhancement" ]
MarcSkovMadsen
1
coleifer/sqlite-web
flask
112
Docker image - arm64 please?
Hi - longtime user of this project on a raspi. Recently jumped to using docker and am reinstalling everything in containers. Discovered tonight that while the repository works well on raspbian, some of the dependent libraries have platform specificity. Since the image on docker hub is tagged as amd64, it pulls the wrong dependencies for arm64... Any chance you could publish another tag for arm64 please?
closed
2023-03-25T01:12:35Z
2023-04-18T15:32:20Z
https://github.com/coleifer/sqlite-web/issues/112
[]
barbequesauce
3
fastapi/sqlmodel
pydantic
127
Simple instructions for a self referential table
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python class Node(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) text: str parent_id: Optional[int] = Field(foreign_key="node.id") # parent: Optional["Node"] not sure what to put here # children: List[Node] not sure what to put here either :) ``` ### Description I am trying to create a simple self referential model - using the SQL model equivalent of the adjacency list pattern described here: https://docs.sqlalchemy.org/en/14/orm/self_referential.html I am only a litte familiar with SQL alchemy but was unable to translate their example into one that would work with SQLmodel. In your docs you said: "Based on SQLAlchemy [...] SQLModel is designed to satisfy the most common use cases and to be as simple and convenient as possible for those cases, providing the best developer experience". I was assuming that a self referential model would be a fairly common use case but totally appreciate that I could be wrong on this :) I see that there is an `sa_relationship` param that you can pass 'complicated stuff' too but I was not sure whether I should be using that (or how I would do so if I was meant to) - sorry just a bit too new to this. Crossing my fingers that it is straight forward to complete the commented lines in my example. ### Operating System Linux ### Operating System Details _No response_ ### SQLModel Version 0.0.4 ### Python Version 3.9.7 ### Additional Context _No response_
open
2021-10-11T22:03:46Z
2022-11-30T18:58:21Z
https://github.com/fastapi/sqlmodel/issues/127
[ "question" ]
michaelmcandrew
12
explosion/spaCy
data-science
13,205
DocBin.to_bytes fails with a "ValueError: bytes object is too large" Spacy v 3.7.2
<!-- NOTE: For questions or install related issues, please open a Discussion instead. --> ## How to reproduce the behaviour I am trying to train a model from scratch (NER) on a corpus which has around 8 million sentences, after added data in DocBin() then unable to save it getting error ## Your Environment <!-- Include details of your environment. You can also type `python -m spacy info --markdown` and copy-paste the result here.--> * Operating System: WIN 10 (64bit) * Python Version Used: 3.9.0 * spaCy Version Used: 3.7.2 * Environment Information: I have tried to make chunk of DocBin then murge and save single file but same issue ``` import os import spacy from spacy.tokens import DocBin from tqdm import tqdm from spacy.util import filter_spans merged_doc_bin = DocBin() fiels = [ "G:\\success-demo\\product_ner\\test\\train3.spacy",# 3000000 tokens here "G:\\success-demo\\product_ner\\test\\train1.spacy", # 3000000 tokens here "G:\\success-demo\\product_ner\\test\\train2.spacy", # 2000000 tokens here ] for filename in fiels: doc_bin = DocBin().from_disk(filename) merged_doc_bin.merge(doc_bin) merged_doc_bin.to_disk("G:\\success-demo\\product_ner\\test\\final\\murge.spacy") ``` ![image](https://github.com/explosion/spaCy/assets/35251001/eb40c475-08de-4ba2-858d-e3caa4ae86f4) ![image](https://github.com/explosion/spaCy/assets/35251001/bb466b76-c4ea-47c1-89af-db9e482fd043)
closed
2023-12-20T06:17:51Z
2023-12-20T13:12:54Z
https://github.com/explosion/spaCy/issues/13205
[ "feat / serialize" ]
rajesh-smartwebtech
0
litestar-org/polyfactory
pydantic
318
Bug: factories inside a nested pydantic model with custom types do not inherit the provider map
Hello all, I really like the project, saves me tons of time when writing tests :). I encountered a problem with nested pydantic models that have custom types. The following example with a nested pydantic model only works if you override `_get_or_create_factory` by replacing the `get_provider_map` of the created factory with the one of the class. If you do not override this method you will get a `ParameterException` ``` from polyfactory.factories.pydantic_factory import ModelFactory from pydantic import BaseModel class MyClass: def __init__(self, value: int) -> None: self.value = value class B(BaseModel): my_class: MyClass class Config: arbitrary_types_allowed = True class ANested(BaseModel): b: B class A(BaseModel): my_class: MyClass class Config: arbitrary_types_allowed = True class AFactory(ModelFactory): __model__ = A @classmethod def get_provider_map(cls) -> dict[type, Any]: providers_map = super().get_provider_map() return { **providers_map, MyClass: lambda: MyClass(value=1), } class ANestedFactory(ModelFactory): __model__ = ANested @classmethod def get_provider_map(cls) -> dict[type, Any]: providers_map = super().get_provider_map() return { **providers_map, MyClass: lambda: MyClass(value=1), } @classmethod def _get_or_create_factory(cls, model: type) -> type[BaseFactory[Any]]: """Get a factory from registered factories or generate a factory dynamically. :param model: A model type. :returns: A Factory sub-class. """ if factory := BaseFactory._factory_type_mapping.get(model): return factory if cls.__base_factory_overrides__: for model_ancestor in model.mro(): if factory := cls.__base_factory_overrides__.get(model_ancestor): return factory.create_factory(model) for factory in reversed(BaseFactory._base_factories): if factory.is_supported_type(model): # what is was originally return factory.create_factory(model) # --- CHANGE START --- this makes it work created_factory = factory.create_factory(model) created_factory.get_provider_map = cls.get_provider_map return created_factory # --- CHANGE END --- raise ParameterException(f"unsupported model type {model.__name__}") # pragma: no cover ```
closed
2023-08-01T20:21:06Z
2025-03-20T15:53:05Z
https://github.com/litestar-org/polyfactory/issues/318
[ "bug", "help wanted", "good first issue" ]
potatoUnicornDev
1
shibing624/text2vec
nlp
41
预训练的模型会被下载到那个文件下
### Describe the Question 我跑了一下demo,会下载一些预先训练的模型,请问下这些模型被下载后放到哪个文件下了 ### Describe your attempts - [ ] I walked through the tutorials - [ ] I checked the documentation - [ ] I checked to make sure that this is not a duplicate question You may also provide a [Minimal, Complete, and Verifiable example](https://stackoverflow.com/help/mcve) you tried as a workaround, or StackOverflow solution that you have walked through. (e.g. cosmic radiation). In addition, figure out your version by running `import text2vec; text2vec.__version__`.
closed
2022-05-18T07:37:37Z
2022-05-18T08:03:10Z
https://github.com/shibing624/text2vec/issues/41
[ "question" ]
melowYX
1
apachecn/ailearning
python
440
为何录制教学版视频 - ApacheCN
http://ailearning.apachecn.org/why-to-record-study-ml-video/ ApacheCN 专注于优秀项目维护的开源组织
closed
2018-08-24T07:11:10Z
2021-09-07T17:44:35Z
https://github.com/apachecn/ailearning/issues/440
[ "Gitalk", "7de09eb183e1224f3bcc26a0b7225773" ]
jiangzhonglian
0
modelscope/modelscope
nlp
1,276
导入AutoencoderKLWan, WanPipeline的问题
from diffusers import AutoencoderKLWan, WanPipeline提示 from diffusers import AutoencoderKLWan, WanPipeline ImportError: cannot import name 'AutoencoderKLWan' from 'diffusers' (E:\PyCharm2023.3.2\python\pythonProject\.venv\Lib\site-packages\diffusers\__init__.py). Did you mean: 'AutoencoderKL'? 再modelscope.cn问了说是要从源码安装diffusers ,我从源码安装到diffusers-0.33.0版本 还是提示找不到AutoencoderKLWan, WanPipeline这两个模块,这个是什么问题呢@tastelikefeet @wangxingjun778
open
2025-03-20T04:30:56Z
2025-03-20T04:30:56Z
https://github.com/modelscope/modelscope/issues/1276
[]
swh2026
0
ageitgey/face_recognition
machine-learning
854
Error during face_encodings - code: 7, reason: A call to cuDNN failed
* face_recognition version: v1.2.2 * Python version: 3.6.7 * Operating System: Ubuntu 18.04 (Jetson Nano) ### Description Following the JetsonNano instructions and incorporating ZED Camera feed by replaced cv2.VideoCapture with cam.retrieve_image (https://www.stereolabs.com/docs/opencv-python/#capturing-video), I get a crash during face_encoding. I've verified that the image is converted to RGB and scaled down to 1/4 original size, yet still get this crash every time. When I try the original example using the ZED camera as a Universal Video Camera (UVC) [https://www.stereolabs.com/docs/opencv-python/#uvc-capture] there are no issues. ### Error: `Traceback (most recent call last): File "facedetect.py", line 251, in <module> main_loop() File "facedetect.py", line 163, in main_loop face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) File "/usr/local/lib/python3.6/dist-packages/face_recognition/api.py", line 210, in face_encodings return [np.array(face_encoder.compute_face_descriptor(face_image, raw_landmark_set, num_jitters)) for raw_landmark_set in raw_landmarks] File "/usr/local/lib/python3.6/dist-packages/face_recognition/api.py", line 210, in <listcomp> return [np.array(face_encoder.compute_face_descriptor(face_image, raw_landmark_set, num_jitters)) for raw_landmark_set in raw_landmarks] RuntimeError: Error while calling cudnnConvolutionForward( context(), &alpha, descriptor(data), data.device(), (const cudnnFilterDescriptor_t)filter_handle, filters.device(), (const cudnnConvolutionDescriptor_t)conv_handle, (cudnnConvolutionFwdAlgo_t)forward_algo, forward_workspace, forward_workspace_size_in_bytes, &beta, descriptor(output), output.device()) in file /tmp/pip-build-do6wa1sv/dlib/dlib/cuda/cudnn_dlibapi.cpp:1007. code: 7, reason: A call to cuDNN failed` ### What I Did (main_loop) `def main_loop(): #conifgure ZED camera init = sl.InitParameters() cam = sl.Camera() if not cam.is_opened(): print("Opening ZED Camera...") status = cam.open(init) if status != sl.ERROR_CODE.SUCCESS: print(repr(status)) exit() runtime = sl.RuntimeParameters() mat = sl.Mat() print_camera_information(cam) # ZED # Get image size image_size = cam.get_resolution() width = image_size.width height = image_size.height left_image_rgba = np.zeros((height, width, 4), dtype=np.uint8) # Prepare single image containers left_image = sl.Mat() # Track how long since we last saved a copy of our known faces to disk as a backup. number_of_faces_since_save = 0 while True: # Grab a single frame of video (ZED) err = cam.grab(runtime) if err == sl.ERROR_CODE.SUCCESS: cam.retrieve_image(left_image, sl.VIEW.VIEW_LEFT) ## TODO: Look at what type the images are here. ******* # Copy the left image to the left side of SBS image left_image_rgba[0:height, 0:width, :] = left_image.get_data() # Convert SVO image from RGBA to RGB left_image_rgb = cv2.cvtColor(left_image_rgba, cv2.COLOR_RGBA2RGB) # Resize frame of video to 1/4 size for faster face recognition processing small_frame = cv2.resize(left_image_rgb, (0, 0), fx=0.175, fy=0.175) #(ZED) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame # Find all the face locations and face encodings in the current frame of video face_locations = face_recognition.face_locations(rgb_small_frame) print("Number of faces detected: ", len(face_locations)) print(face_locations) print(rgb_small_frame.shape) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) # Loop through each detected face and see if it is one we have seen before # If so, we'll give it a label that we'll draw on top of the video. face_labels = [] for face_location, face_encoding in zip(face_locations, face_encodings): # See if this face is in our list of known faces. metadata = lookup_known_face(face_encoding) # If we found the face, label the face with some useful information. if metadata is not None: time_at_door = datetime.now() - metadata['first_seen_this_interaction'] face_label = f"At door {int(time_at_door.total_seconds())}s" # If this is a brand new face, add it to our list of known faces else: face_label = "New visitor!" # Grab the image of the the face from the current frame of video top, right, bottom, left = face_location face_image = small_frame[top:bottom, left:right] face_image = cv2.resize(face_image, (150, 150)) # Add the new face to our known face data register_new_face(face_encoding, face_image) face_labels.append(face_label) # Draw a box around each face and label each face for (top, right, bottom, left), face_label in zip(face_locations, face_labels): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) cv2.putText(frame, face_label, (left + 6, bottom - 6), cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255, 255), 1) # Display recent visitor images number_of_recent_visitors = 0 for metadata in known_face_metadata: # If we have seen this person in the last minute, draw their image if datetime.now() - metadata["last_seen"] < timedelta(seconds=10) and metadata["seen_frames"] > 5: # Draw the known face image x_position = number_of_recent_visitors * 150 frame[30:180, x_position:x_position + 150] = metadata["face_image"] number_of_recent_visitors += 1 # Label the image with how many times they have visited visits = metadata['seen_count'] visit_label = f"{visits} visits" if visits == 1: visit_label = "First visit" cv2.putText(frame, visit_label, (x_position + 10, 170), cv2.FONT_HERSHEY_DUPLEX, 0.6, (255, 255, 255), 1) if number_of_recent_visitors > 0: cv2.putText(frame, "Visitors at Door", (5, 18), cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255, 255), 1) # Display the final frame of video with boxes drawn around each detected fames # cv2.imshow('Video', frame) cv2.imshow("ZED", rgb_small_frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): save_known_faces() break # We need to save our known faces back to disk every so often in case something crashes. if len(face_locations) > 0 and number_of_faces_since_save > 100: save_known_faces() number_of_faces_since_save = 0 else: number_of_faces_since_save += 1 # Release handle to the webcam #video_capture.release() cv2.destroyAllWindows() # Close (ZED) cam.close() `
open
2019-06-12T04:43:40Z
2020-08-24T12:10:29Z
https://github.com/ageitgey/face_recognition/issues/854
[]
suprnrdy
2
mljar/mercury
jupyter
331
Can't display an ipydatagrid in mercury
Hello, the below code is not rendering the grid as it should: df = pd.DataFrame(data=np.random.randn(5,10)) datagrid=DataGrid(df) datagrid Mercury is not displaying the grid with the below output: ![image](https://github.com/mljar/mercury/assets/80507466/7dd36c14-fe84-4154-a4c6-e4c501fbe456)
open
2023-07-06T07:22:49Z
2023-07-06T09:12:04Z
https://github.com/mljar/mercury/issues/331
[]
gmouawad
2
postmanlabs/httpbin
api
423
Add "raw" endpoint to return raw, unparsed request data?
If possible, please consider adding a `/raw` or `/echo` endpoint that returns the raw HTTP request that the server received. This feature can be used to help diagnose misbehaving applications (e.g. sending duplicate headers with different values or using incorrect line endings) or debug applications using niche HTTP features (e.g. sub-headers for `multipart/form-data` sections).
closed
2018-01-26T17:52:18Z
2018-04-26T17:51:17Z
https://github.com/postmanlabs/httpbin/issues/423
[]
llamasoft
2
marimo-team/marimo
data-visualization
4,064
Local to cell __name__
### Documentation is - [x] Missing - [ ] Outdated - [ ] Confusing - [ ] Not sure? ### Explain in Detail I've been trying to use smolagents library in marimo and was investigating why one of the functions `push_to_hub` not works as expected. There were several reasons that it doesn't work and I tried to monkey patch them here: https://github.com/kazemihabib/Huggingface-Agents-Course-Marimo-Edition/blob/marimo/patches/smolagents_patches.py that you could check for further details. There was a specific undocumented behavior that breaks the library and it's the focus of this issue. ``` def _test(): pass print(_test.__name__) ``` marimo adds prefixes to cell local name and prints: `_cell_AJWG_test` `push_to_hub` function relies on this name: 1) It fetches the source code 2) Replaces the function name with 'forward' (This one breaks as __name__ returns prefixed name) 3) Append the `forward` function to some other code ### Your Suggestion for Changes IMHO this behavior of prefixing local to cell names with `_cell_{cell_id}` can be documented.
open
2025-03-11T19:04:32Z
2025-03-16T16:55:15Z
https://github.com/marimo-team/marimo/issues/4064
[ "documentation" ]
kazemihabib
7
keras-team/keras
tensorflow
20,184
fix: Densenet Documentation
This is code for DenseNet121 in Keras ``` keras.applications.DenseNet121( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", name="densenet121", ) ``` And the documentation for the keras is not much specify about the `classes` argument Earlier Documentation : classes: optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified. Updated Documentation : classes: optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified. **Defaults to 1000**
closed
2024-08-29T11:07:12Z
2024-08-30T10:57:50Z
https://github.com/keras-team/keras/issues/20184
[ "type:support" ]
dwgily
1
PokemonGoF/PokemonGo-Bot
automation
5,817
Crash on new install launch
Press any button or wait 20 seconds to continue. 2016-11-15 12:11:05,838 [ cli] [INFO] PokemonGO Bot v1.0 2016-11-15 12:11:05,846 [ cli] [INFO] commit: 30dbcc0d 2016-11-15 12:11:05,849 [ cli] [INFO] Configuration initialized 2016-11-15 12:11:05,850 [pokemongo_bot.health_record.bot_event] [INFO] Health check is enabled. For more information: 2016-11-15 12:11:05,850 [pokemongo_bot.health_record.bot_event] [INFO] https://github.com/PokemonGoF/PokemonGo-Bot/tree/dev#analytics 2016-11-15 12:11:05,858 [requests.packages.urllib3.connectionpool] [INFO] Starting new HTTP connection (1): www.google-analytics.com (23653) wsgi starting up on http://127.0.0.1:4000 [2016-11-15 12:11:05] [SleepSchedule] [INFO] Next sleep at 12:26:41, for a duration of 05:54:05 [2016-11-15 12:11:05] [PokemonGoBot] [INFO] Setting start location. [2016-11-15 12:11:05] [PokemonGoBot] [INFO] [x] Coordinates found in passed in location, not geocoding. [2016-11-15 12:11:05] [PokemonGoBot] [INFO] Location found: 37.809295714,-122.410976772 (37.809295714, -122.410976772, 8.0) [2016-11-15 12:11:05] [PokemonGoBot] [INFO] Now at (37.809295714, -122.410976772, 8.0) [2016-11-15 12:11:05] [PokemonGoBot] [INFO] Login procedure started. [2016-11-15 12:11:07] [PokemonGoBot] [INFO] Login successful. [2016-11-15 12:11:07] [PokemonGoBot] [INFO] [2016-11-15 12:11:07] [PokemonGoBot] [INFO] [x] Error while opening cached forts: [Errno 2] No such file or directory: u'/Users/moquette/Bot/pokemongo_bot/../data/recent-forts-Evolver1K.json' [2016-11-15 12:11:08] [PokemonGoBot] [INFO] Level: 3 (Next Level: 2860 XP) (Total: 3140 XP) [2016-11-15 12:11:08] [PokemonGoBot] [INFO] Pokemon Captured: 5 | Pokestops Visited: 0 [2016-11-15 12:11:08] [PokemonGoBot] [INFO] [2016-11-15 12:11:08] [PokemonGoBot] [INFO] --- Evolver1K --- [2016-11-15 12:11:10] [PokemonGoBot] [INFO] Pokemon Bag: 5/250 [2016-11-15 12:11:10] [PokemonGoBot] [INFO] Items: 74/350 [2016-11-15 12:11:10] [PokemonGoBot] [INFO] Stardust: 1100 | Pokecoins: 0 [2016-11-15 12:11:10] [PokemonGoBot] [INFO] PokeBalls: 70 | GreatBalls: 0 | UltraBalls: 0 | MasterBalls: 0 [2016-11-15 12:11:10] [PokemonGoBot] [INFO] RazzBerries: 0 | BlukBerries: 0 | NanabBerries: 0 [2016-11-15 12:11:10] [PokemonGoBot] [INFO] LuckyEgg: 0 | Incubator: 0 | TroyDisk: 0 [2016-11-15 12:11:10] [PokemonGoBot] [INFO] Potion: 0 | SuperPotion: 0 | HyperPotion: 0 | MaxPotion: 0 [2016-11-15 12:11:10] [PokemonGoBot] [INFO] Incense: 2 | IncenseSpicy: 0 | IncenseCool: 0 [2016-11-15 12:11:10] [PokemonGoBot] [INFO] Revive: 0 | MaxRevive: 0 [2016-11-15 12:11:10] [PokemonGoBot] [INFO] [2016-11-15 12:11:10] [PokemonGoBot] [INFO] Pokemon: [2016-11-15 12:11:10] [PokemonGoBot] [INFO] #4 Charmander: (CP 12, IV 0.67) [2016-11-15 12:11:10] [PokemonGoBot] [INFO] #72 Tentacool: (CP 36, IV 0.67) | (CP 11, IV 0.69) [2016-11-15 12:11:10] [PokemonGoBot] [INFO] #118 Goldeen: (CP 11, IV 0.36) [2016-11-15 12:11:10] [PokemonGoBot] [INFO] #147 Dratini: (CP 37, IV 0.47) [2016-11-15 12:11:10] [PokemonGoBot] [INFO] [2016-11-15 12:11:10] [RandomAlivePause] [INFO] Next random alive pause at 13:21:15, for a duration of 0:01:28 [2016-11-15 12:11:10] [RandomPause] [INFO] Next random pause at 12:41:42, for a duration of 0:00:53 [2016-11-15 12:11:10] [RecycleItems] [INFO] Next forced item recycle at 12:15:55 [2016-11-15 12:11:10] [pokemongo_bot.health_record.bot_event] [INFO] Health check is enabled. For more information: [2016-11-15 12:11:10] [pokemongo_bot.health_record.bot_event] [INFO] https://github.com/PokemonGoF/PokemonGo-Bot/tree/dev#analytics [2016-11-15 12:11:10] [PokemonGoBot] [INFO] Starting bot... [2016-11-15 12:11:10] [CollectLevelUpReward] [INFO] Received level up reward: [2016-11-15 12:11:11] [ cli] [INFO] [2016-11-15 12:11:11] [ cli] [INFO] Ran for 0:00:06 [2016-11-15 12:11:11] [ cli] [INFO] Total XP Earned: 0 Average: 0.00/h [2016-11-15 12:11:11] [ cli] [INFO] Travelled 0.00km [2016-11-15 12:11:11] [ cli] [INFO] Visited 0 stops [2016-11-15 12:11:11] [ cli] [INFO] Encountered 0 pokemon, 0 caught, 0 released, 0 evolved, 0 never seen before () [2016-11-15 12:11:11] [ cli] [INFO] Threw 0 pokeballs [2016-11-15 12:11:11] [ cli] [INFO] Earned 0 Stardust [2016-11-15 12:11:11] [ cli] [INFO] Hatched eggs 0 [2016-11-15 12:11:11] [ cli] [INFO] [2016-11-15 12:11:11] [ cli] [INFO] Highest CP Pokemon: [2016-11-15 12:11:11] [ cli] [INFO] Most Perfect Pokemon: Traceback (most recent call last): File "pokecli.py", line 846, in <module> main() File "pokecli.py", line 205, in main bot.tick() File "/Users/moquette/Bot/pokemongo_bot/__init__.py", line 770, in tick if worker.work() == WorkerResult.RUNNING: File "/Users/moquette/Bot/pokemongo_bot/cell_workers/buddy_pokemon.py", line 135, in work if self._km_walked() - self.buddy['last_km_awarded'] >= self.buddy_distance_needed: KeyError: 'last_km_awarded' [2016-11-15 12:11:11] [sentry.errors] [ERROR] Sentry responded with an error: 'ascii' codec can't decode byte 0x9c in position 1: ordinal not in range(128) (url: https://app.getsentry.com/api/90254/store/) Traceback (most recent call last): File "/Users/moquette/Bot/lib/python2.7/site-packages/raven/transport/threaded.py", line 174, in send_sync super(ThreadedHTTPTransport, self).send(data, headers) File "/Users/moquette/Bot/lib/python2.7/site-packages/raven/transport/http.py", line 47, in send ca_certs=self.ca_certs, File "/Users/moquette/Bot/lib/python2.7/site-packages/raven/utils/http.py", line 66, in urlopen return opener.open(url, data, timeout) File "/Users/moquette/Bot/lib/python2.7/site-packages/future/backports/urllib/request.py", line 494, in open response = self._open(req, data) File "/Users/moquette/Bot/lib/python2.7/site-packages/future/backports/urllib/request.py", line 512, in _open '_open', req) File "/Users/moquette/Bot/lib/python2.7/site-packages/future/backports/urllib/request.py", line 466, in _call_chain result = func(*args) File "/Users/moquette/Bot/lib/python2.7/site-packages/raven/utils/http.py", line 46, in https_open return self.do_open(ValidHTTPSConnection, req) File "/Users/moquette/Bot/lib/python2.7/site-packages/future/backports/urllib/request.py", line 1284, in do_open h.request(req.get_method(), req.selector, req.data, headers) File "/usr/local/Cellar/python/2.7.12_2/Frameworks/Python.framework/Versions/2.7/lib/python2.7/httplib.py", line 1057, in request self._send_request(method, url, body, headers) File "/usr/local/Cellar/python/2.7.12_2/Frameworks/Python.framework/Versions/2.7/lib/python2.7/httplib.py", line 1097, in _send_request self.endheaders(body) File "/usr/local/Cellar/python/2.7.12_2/Frameworks/Python.framework/Versions/2.7/lib/python2.7/httplib.py", line 1053, in endheaders self._send_output(message_body) File "/usr/local/Cellar/python/2.7.12_2/Frameworks/Python.framework/Versions/2.7/lib/python2.7/httplib.py", line 895, in _send_output msg += message_body UnicodeDecodeError: 'ascii' codec can't decode byte 0x9c in position 1: ordinal not in range(128) [2016-11-15 12:11:11] [sentry.errors.uncaught] [ERROR] [u"KeyError: 'last_km_awarded'", u' File "pokecli.py", line 846, in <module>', u' File "pokecli.py", line 205, in main', u' File "pokemongo_bot/__init__.py", line 770, in tick', u' File "pokemongo_bot/cell_workers/buddy_pokemon.py", line 135, in work'] Tue Nov 15 12:11:11 PST 2016 Pokebot Stopped.
closed
2016-11-15T20:13:21Z
2020-03-17T19:14:27Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/5817
[]
moquette
3
Josh-XT/AGiXT
automation
763
after importing agent with .json KeyError 'chat_history'
### Description ![image](https://github.com/Josh-XT/AGiXT/assets/34012548/515b67c3-72b0-4168-84dd-178ed8f84451) ### Steps to Reproduce the Bug 1.Go import agent with .json format from export 2.go to chat error will show ### Expected Behavior no error ### Operating System - [X] Linux - [ ] Microsoft Windows - [ ] Apple MacOS - [ ] Android - [ ] iOS - [ ] Other ### Python Version - [ ] Python <= 3.9 - [X] Python 3.10 - [ ] Python 3.11 ### Environment Type - Connection - [X] Local - You run AGiXT in your home network - [ ] Remote - You access AGiXT through the internet ### Runtime environment - [ ] Using docker compose - [X] Using local - [ ] Custom setup (please describe above!) ### Acknowledgements - [X] I have searched the existing issues to make sure this bug has not been reported yet. - [X] I am using the latest version of AGiXT. - [X] I have provided enough information for the maintainers to reproduce and diagnose the issue.
closed
2023-06-20T02:29:30Z
2023-06-20T03:38:37Z
https://github.com/Josh-XT/AGiXT/issues/763
[ "type | report | bug", "needs triage" ]
birdup000
1
KaiyangZhou/deep-person-reid
computer-vision
148
how to make loss visualization
如何使训练损失loss通过图的形式呈现
closed
2019-04-12T05:56:06Z
2019-05-09T22:57:25Z
https://github.com/KaiyangZhou/deep-person-reid/issues/148
[]
18842505953
3