function
stringlengths
18
3.86k
intent_category
stringlengths
5
24
def _is_unbound(self, index): return bool(0.0 < self.alphas[index] < self._c)
machine_learning
def _is_support(self, index): return bool(self.alphas[index] > 0)
machine_learning
def unbound(self): return self._unbound
machine_learning
def support(self): return [i for i in range(self.length) if self._is_support(i)]
machine_learning
def length(self): return self.samples.shape[0]
machine_learning
def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0): self.degree = np.float64(degree) self.coef0 = np.float64(coef0) self.gamma = np.float64(gamma) self._kernel_name = kernel self._kernel = self._get_kernel(kernel_name=kernel) self._check()
machine_learning
def _polynomial(self, v1, v2): return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree
machine_learning
def _linear(self, v1, v2): return np.inner(v1, v2) + self.coef0
machine_learning
def _rbf(self, v1, v2): return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))
machine_learning
def _check(self): if self._kernel == self._rbf and self.gamma < 0: raise ValueError("gamma value must greater than 0")
machine_learning
def _get_kernel(self, kernel_name): maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf} return maps[kernel_name]
machine_learning
def __call__(self, v1, v2): return self._kernel(v1, v2)
machine_learning
def __repr__(self): return self._kernel_name
machine_learning
def call_func(*args, **kwargs): import time start_time = time.time() func(*args, **kwargs) end_time = time.time() print(f"smo algorithm cost {end_time - start_time} seconds")
machine_learning
def test_cancel_data(): print("Hello!\nStart test svm by smo algorithm!") # 0: download dataset and load into pandas' dataframe if not os.path.exists(r"cancel_data.csv"): request = urllib.request.Request( CANCER_DATASET_URL, headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"}, ) response = urllib.request.urlopen(request) content = response.read().decode("utf-8") with open(r"cancel_data.csv", "w") as f: f.write(content) data = pd.read_csv(r"cancel_data.csv", header=None) # 1: pre-processing data del data[data.columns.tolist()[0]] data = data.dropna(axis=0) data = data.replace({"M": np.float64(1), "B": np.float64(-1)}) samples = np.array(data)[:, :] # 2: dividing data into train_data data and test_data data train_data, test_data = samples[:328, :], samples[328:, :] test_tags, test_samples = test_data[:, 0], test_data[:, 1:] # 3: choose kernel function,and set initial alphas to zero(optional) mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5) al = np.zeros(train_data.shape[0]) # 4: calculating best alphas using SMO algorithm and predict test_data samples mysvm = SmoSVM( train=train_data, kernel_func=mykernel, alpha_list=al, cost=0.4, b=0.0, tolerance=0.001, ) mysvm.fit() predict = mysvm.predict(test_samples) # 5: check accuracy score = 0 test_num = test_tags.shape[0] for i in range(test_tags.shape[0]): if test_tags[i] == predict[i]: score += 1 print(f"\nall: {test_num}\nright: {score}\nfalse: {test_num - score}") print(f"Rough Accuracy: {score / test_tags.shape[0]}")
machine_learning
def test_demonstration(): # change stdout print("\nStart plot,please wait!!!") sys.stdout = open(os.devnull, "w") ax1 = plt.subplot2grid((2, 2), (0, 0)) ax2 = plt.subplot2grid((2, 2), (0, 1)) ax3 = plt.subplot2grid((2, 2), (1, 0)) ax4 = plt.subplot2grid((2, 2), (1, 1)) ax1.set_title("linear svm,cost:0.1") test_linear_kernel(ax1, cost=0.1) ax2.set_title("linear svm,cost:500") test_linear_kernel(ax2, cost=500) ax3.set_title("rbf kernel svm,cost:0.1") test_rbf_kernel(ax3, cost=0.1) ax4.set_title("rbf kernel svm,cost:500") test_rbf_kernel(ax4, cost=500) sys.stdout = sys.__stdout__ print("Plot done!!!")
machine_learning
def test_linear_kernel(ax, cost): train_x, train_y = make_blobs( n_samples=500, centers=2, n_features=2, random_state=1 ) train_y[train_y == 0] = -1 scaler = StandardScaler() train_x_scaled = scaler.fit_transform(train_x, train_y) train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled)) mykernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5) mysvm = SmoSVM( train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False, ) mysvm.fit() plot_partition_boundary(mysvm, train_data, ax=ax)
machine_learning
def test_rbf_kernel(ax, cost): train_x, train_y = make_circles( n_samples=500, noise=0.1, factor=0.1, random_state=1 ) train_y[train_y == 0] = -1 scaler = StandardScaler() train_x_scaled = scaler.fit_transform(train_x, train_y) train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled)) mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5) mysvm = SmoSVM( train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False, ) mysvm.fit() plot_partition_boundary(mysvm, train_data, ax=ax)
machine_learning
def plot_partition_boundary( model, train_data, ax, resolution=100, colors=("b", "k", "r") ): train_data_x = train_data[:, 1] train_data_y = train_data[:, 2] train_data_tags = train_data[:, 0] xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution) yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution) test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape( resolution * resolution, 2 ) test_tags = model.predict(test_samples, classify=False) grid = test_tags.reshape((len(xrange), len(yrange))) # Plot contour map which represents the partition boundary ax.contour( xrange, yrange, np.mat(grid).T, levels=(-1, 0, 1), linestyles=("--", "-", "--"), linewidths=(1, 1, 1), colors=colors, ) # Plot all train samples ax.scatter( train_data_x, train_data_y, c=train_data_tags, cmap=plt.cm.Dark2, lw=0, alpha=0.5, ) # Plot support vectors support = model.support ax.scatter( train_data_x[support], train_data_y[support], c=train_data_tags[support], cmap=plt.cm.Dark2, )
machine_learning
def collect_dataset(): response = requests.get( "https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/" "master/Week1/ADRvsRating.csv" ) lines = response.text.splitlines() data = [] for item in lines: item = item.split(",") data.append(item) data.pop(0) # This is for removing the labels from the list dataset = np.matrix(data) return dataset
machine_learning
def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta): n = len_data prod = np.dot(theta, data_x.transpose()) prod -= data_y.transpose() sum_grad = np.dot(prod, data_x) theta = theta - (alpha / n) * sum_grad return theta
machine_learning
def sum_of_square_error(data_x, data_y, len_data, theta): prod = np.dot(theta, data_x.transpose()) prod -= data_y.transpose() sum_elem = np.sum(np.square(prod)) error = sum_elem / (2 * len_data) return error
machine_learning
def run_linear_regression(data_x, data_y): iterations = 100000 alpha = 0.0001550 no_features = data_x.shape[1] len_data = data_x.shape[0] - 1 theta = np.zeros((1, no_features)) for i in range(0, iterations): theta = run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta) error = sum_of_square_error(data_x, data_y, len_data, theta) print(f"At Iteration {i + 1} - Error is {error:.5f}") return theta
machine_learning
def mean_absolute_error(predicted_y, original_y): total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y)) return total / len(original_y)
machine_learning
def data_handling(data: dict) -> tuple: # Split dataset into features and target. Data is features. return (data["data"], data["target"])
machine_learning
def xgboost( features: np.ndarray, target: np.ndarray, test_features: np.ndarray ) -> np.ndarray: xgb = XGBRegressor(verbosity=0, random_state=42) xgb.fit(features, target) # Predict target for test data predictions = xgb.predict(test_features) predictions = predictions.reshape(len(predictions), 1) return predictions
machine_learning
def main() -> None: # Load California house price dataset california = fetch_california_housing() data, target = data_handling(california) x_train, x_test, y_train, y_test = train_test_split( data, target, test_size=0.25, random_state=1 ) predictions = xgboost(x_train, y_train, x_test) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(y_test, predictions)}") print(f"Mean Square Error : {mean_squared_error(y_test, predictions)}")
machine_learning
def wrapper(y): return list(y)
machine_learning
def viz_polymonial(): plt.scatter(X, y, color="red") plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color="blue") plt.title("Truth or Bluff (Linear Regression)") plt.xlabel("Position level") plt.ylabel("Salary") plt.show() return
machine_learning
def weighted_matrix( point: np.array, training_data_x: np.array, bandwidth: float ) -> np.array: m, _ = np.shape(training_data_x) # m is the number of training samples weights = np.eye(m) # Initializing weights as identity matrix # calculating weights for all training examples [x(i)'s] for j in range(m): diff = point - training_data_x[j] weights[j, j] = np.exp(diff @ diff.T / (-2.0 * bandwidth**2)) return weights
machine_learning
def local_weight( point: np.array, training_data_x: np.array, training_data_y: np.array, bandwidth: float, ) -> np.array: weight = weighted_matrix(point, training_data_x, bandwidth) w = np.linalg.inv(training_data_x.T @ (weight @ training_data_x)) @ ( training_data_x.T @ weight @ training_data_y.T ) return w
machine_learning
def local_weight_regression( training_data_x: np.array, training_data_y: np.array, bandwidth: float ) -> np.array: m, _ = np.shape(training_data_x) ypred = np.zeros(m) for i, item in enumerate(training_data_x): ypred[i] = item @ local_weight( item, training_data_x, training_data_y, bandwidth ) return ypred
machine_learning
def load_data( dataset_name: str, cola_name: str, colb_name: str ) -> tuple[np.array, np.array, np.array, np.array]: import seaborn as sns data = sns.load_dataset(dataset_name) col_a = np.array(data[cola_name]) # total_bill col_b = np.array(data[colb_name]) # tip mcol_a = col_a.copy() mcol_b = col_b.copy() one = np.ones(np.shape(mcol_b)[0], dtype=int) # pairing elements of one and mcol_a training_data_x = np.column_stack((one, mcol_a)) return training_data_x, mcol_b, col_a, col_b
machine_learning
def get_preds(training_data_x: np.array, mcol_b: np.array, tau: float) -> np.array: ypred = local_weight_regression(training_data_x, mcol_b, tau) return ypred
machine_learning
def plot_preds( training_data_x: np.array, predictions: np.array, col_x: np.array, col_y: np.array, cola_name: str, colb_name: str, ) -> plt.plot: xsort = training_data_x.copy() xsort.sort(axis=0) plt.scatter(col_x, col_y, color="blue") plt.plot( xsort[:, 1], predictions[training_data_x[:, 1].argsort(0)], color="yellow", linewidth=5, ) plt.title("Local Weighted Regression") plt.xlabel(cola_name) plt.ylabel(colb_name) plt.show()
machine_learning
def linear_regression_prediction( train_dt: list, train_usr: list, train_mtch: list, test_dt: list, test_mtch: list ) -> float: x = np.array([[1, item, train_mtch[i]] for i, item in enumerate(train_dt)]) y = np.array(train_usr) beta = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), x)), x.transpose()), y) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2])
machine_learning
def sarimax_predictor(train_user: list, train_match: list, test_match: list) -> float: order = (1, 2, 1) seasonal_order = (1, 1, 0, 7) model = SARIMAX( train_user, exog=train_match, order=order, seasonal_order=seasonal_order ) model_fit = model.fit(disp=False, maxiter=600, method="nm") result = model_fit.predict(1, len(test_match), exog=[test_match]) return result[0]
machine_learning
def support_vector_regressor(x_train: list, x_test: list, train_user: list) -> float: regressor = SVR(kernel="rbf", C=1, gamma=0.1, epsilon=0.1) regressor.fit(x_train, train_user) y_pred = regressor.predict(x_test) return y_pred[0]
machine_learning
def interquartile_range_checker(train_user: list) -> float: train_user.sort() q1 = np.percentile(train_user, 25) q3 = np.percentile(train_user, 75) iqr = q3 - q1 low_lim = q1 - (iqr * 0.1) return low_lim
machine_learning
def data_safety_checker(list_vote: list, actual_result: float) -> bool: safe = 0 not_safe = 0 for i in list_vote: if i > actual_result: safe = not_safe + 1 else: if abs(abs(i) - abs(actual_result)) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe
machine_learning
def xnor_gate(input_1: int, input_2: int) -> int: return 1 if input_1 == input_2 else 0
boolean_algebra
def test_xnor_gate() -> None: assert xnor_gate(0, 0) == 1 assert xnor_gate(0, 1) == 0 assert xnor_gate(1, 0) == 0 assert xnor_gate(1, 1) == 1
boolean_algebra
def compare_string(string1: str, string2: str) -> str | Literal[False]: list1 = list(string1) list2 = list(string2) count = 0 for i in range(len(list1)): if list1[i] != list2[i]: count += 1 list1[i] = "_" if count > 1: return False else: return "".join(list1)
boolean_algebra
def check(binary: list[str]) -> list[str]: pi = [] while True: check1 = ["$"] * len(binary) temp = [] for i in range(len(binary)): for j in range(i + 1, len(binary)): k = compare_string(binary[i], binary[j]) if k is False: check1[i] = "*" check1[j] = "*" temp.append("X") for i in range(len(binary)): if check1[i] == "$": pi.append(binary[i]) if len(temp) == 0: return pi binary = list(set(temp))
boolean_algebra
def decimal_to_binary(no_of_variable: int, minterms: Sequence[float]) -> list[str]: temp = [] for minterm in minterms: string = "" for _ in range(no_of_variable): string = str(minterm % 2) + string minterm //= 2 temp.append(string) return temp
boolean_algebra
def is_for_table(string1: str, string2: str, count: int) -> bool: list1 = list(string1) list2 = list(string2) count_n = 0 for i in range(len(list1)): if list1[i] != list2[i]: count_n += 1 return count_n == count
boolean_algebra
def selection(chart: list[list[int]], prime_implicants: list[str]) -> list[str]: temp = [] select = [0] * len(chart) for i in range(len(chart[0])): count = 0 rem = -1 for j in range(len(chart)): if chart[j][i] == 1: count += 1 rem = j if count == 1: select[rem] = 1 for i in range(len(select)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(chart)): chart[k][j] = 0 temp.append(prime_implicants[i]) while True: max_n = 0 rem = -1 count_n = 0 for i in range(len(chart)): count_n = chart[i].count(1) if count_n > max_n: max_n = count_n rem = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(chart)): chart[j][i] = 0
boolean_algebra
def prime_implicant_chart( prime_implicants: list[str], binary: list[str] ) -> list[list[int]]: chart = [[0 for x in range(len(binary))] for x in range(len(prime_implicants))] for i in range(len(prime_implicants)): count = prime_implicants[i].count("_") for j in range(len(binary)): if is_for_table(prime_implicants[i], binary[j], count): chart[i][j] = 1 return chart
boolean_algebra
def main() -> None: no_of_variable = int(input("Enter the no. of variables\n")) minterms = [ float(x) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] binary = decimal_to_binary(no_of_variable, minterms) prime_implicants = check(binary) print("Prime Implicants are:") print(prime_implicants) chart = prime_implicant_chart(prime_implicants, binary) essential_prime_implicants = selection(chart, prime_implicants) print("Essential Prime Implicants are:") print(essential_prime_implicants)
boolean_algebra
def or_gate(input_1: int, input_2: int) -> int: return int((input_1, input_2).count(1) != 0)
boolean_algebra
def test_or_gate() -> None: assert or_gate(0, 0) == 0 assert or_gate(0, 1) == 1 assert or_gate(1, 0) == 1 assert or_gate(1, 1) == 1
boolean_algebra
def not_gate(input_1: int) -> int: return 1 if input_1 == 0 else 0
boolean_algebra
def test_not_gate() -> None: assert not_gate(0) == 1 assert not_gate(1) == 0
boolean_algebra
def nor_gate(input_1: int, input_2: int) -> int: return int(input_1 == input_2 == 0)
boolean_algebra
def main() -> None: print("Truth Table of NOR Gate:") print("| Input 1 | Input 2 | Output |") print(f"| 0 | 0 | {nor_gate(0, 0)} |") print(f"| 0 | 1 | {nor_gate(0, 1)} |") print(f"| 1 | 0 | {nor_gate(1, 0)} |") print(f"| 1 | 1 | {nor_gate(1, 1)} |")
boolean_algebra
def nand_gate(input_1: int, input_2: int) -> int: return int((input_1, input_2).count(0) != 0)
boolean_algebra
def test_nand_gate() -> None: assert nand_gate(0, 0) == 1 assert nand_gate(0, 1) == 1 assert nand_gate(1, 0) == 1 assert nand_gate(1, 1) == 0
boolean_algebra
def and_gate(input_1: int, input_2: int) -> int: return int((input_1, input_2).count(0) == 0)
boolean_algebra
def test_and_gate() -> None: assert and_gate(0, 0) == 0 assert and_gate(0, 1) == 0 assert and_gate(1, 0) == 0 assert and_gate(1, 1) == 1
boolean_algebra
def xor_gate(input_1: int, input_2: int) -> int: return (input_1, input_2).count(0) % 2
boolean_algebra
def test_xor_gate() -> None: assert xor_gate(0, 0) == 0 assert xor_gate(0, 1) == 1 assert xor_gate(1, 0) == 1 assert xor_gate(1, 1) == 0
boolean_algebra
def generate_sum_of_subsets_soln(nums: list[int], max_sum: int) -> list[list[int]]: result: list[list[int]] = [] path: list[int] = [] num_index = 0 remaining_nums_sum = sum(nums) create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum) return result
backtracking
def create_state_space_tree( nums: list[int], max_sum: int, num_index: int, path: list[int], result: list[list[int]], remaining_nums_sum: int, ) -> None: if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum: return if sum(path) == max_sum: result.append(path) return for index in range(num_index, len(nums)): create_state_space_tree( nums, max_sum, index + 1, [*path, nums[index]], result, remaining_nums_sum - nums[index], )
backtracking
def valid_coloring( neighbours: list[int], colored_vertices: list[int], color: int ) -> bool: # Does any neighbour not satisfy the constraints return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(neighbours) )
backtracking
def util_color( graph: list[list[int]], max_colors: int, colored_vertices: list[int], index: int ) -> bool: # Base Case if index == len(graph): return True # Recursive Step for i in range(max_colors): if valid_coloring(graph[index], colored_vertices, i): # Color current vertex colored_vertices[index] = i # Validate coloring if util_color(graph, max_colors, colored_vertices, index + 1): return True # Backtrack colored_vertices[index] = -1 return False
backtracking
def minimax( depth: int, node_index: int, is_max: bool, scores: list[int], height: float ) -> int: if depth < 0: raise ValueError("Depth cannot be less than 0") if len(scores) == 0: raise ValueError("Scores cannot be empty") if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, False, scores, height), minimax(depth + 1, node_index * 2 + 1, False, scores, height), ) return min( minimax(depth + 1, node_index * 2, True, scores, height), minimax(depth + 1, node_index * 2 + 1, True, scores, height), )
backtracking
def main() -> None: scores = [90, 23, 6, 33, 21, 65, 123, 34423] height = math.log(len(scores), 2) print("Optimal value : ", end="") print(minimax(0, 0, True, scores, height))
backtracking
def depth_first_search( possible_board: list[int], diagonal_right_collisions: list[int], diagonal_left_collisions: list[int], boards: list[list[str]], n: int, ) -> None: # Get next row in the current board (possible_board) to fill it with a queen row = len(possible_board) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board]) return # We iterate each column in the row to find all possible results in each row for col in range(n): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col], [*diagonal_right_collisions, row - col], [*diagonal_left_collisions, row + col], boards, n, )
backtracking
def n_queens_solution(n: int) -> None: boards: list[list[str]] = [] depth_first_search([], [], [], boards, n) # Print all the boards for board in boards: for column in board: print(column) print("") print(len(boards), "solutions were found.")
backtracking
def generate_all_combinations(n: int, k: int) -> list[list[int]]: result: list[list[int]] = [] create_all_state(1, n, k, [], result) return result
backtracking
def create_all_state( increment: int, total_number: int, level: int, current_list: list[int], total_list: list[list[int]], ) -> None: if level == 0: total_list.append(current_list[:]) return for i in range(increment, total_number - level + 2): current_list.append(i) create_all_state(i + 1, total_number, level - 1, current_list, total_list) current_list.pop()
backtracking
def print_all_state(total_list: list[list[int]]) -> None: for i in total_list: print(*i)
backtracking
def solve_maze(maze: list[list[int]]) -> bool: size = len(maze) # We need to create solution object to save path. solutions = [[0 for _ in range(size)] for _ in range(size)] solved = run_maze(maze, 0, 0, solutions) if solved: print("\n".join(str(row) for row in solutions)) else: print("No solution exists!") return solved
backtracking
def run_maze(maze: list[list[int]], i: int, j: int, solutions: list[list[int]]) -> bool: size = len(maze) # Final check point. if i == j == (size - 1): solutions[i][j] = 1 return True lower_flag = (not i < 0) and (not j < 0) # Check lower bounds upper_flag = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. block_flag = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited solutions[i][j] = 1 # check for directions if ( run_maze(maze, i + 1, j, solutions) or run_maze(maze, i, j + 1, solutions) or run_maze(maze, i - 1, j, solutions) or run_maze(maze, i, j - 1, solutions) ): return True solutions[i][j] = 0 return False return False
backtracking
def generate_all_subsequences(sequence: list[Any]) -> None: create_state_space_tree(sequence, [], 0)
backtracking
def create_state_space_tree( sequence: list[Any], current_subsequence: list[Any], index: int ) -> None: if index == len(sequence): print(current_subsequence) return create_state_space_tree(sequence, current_subsequence, index + 1) current_subsequence.append(sequence[index]) create_state_space_tree(sequence, current_subsequence, index + 1) current_subsequence.pop()
backtracking
def minimax( depth: int, node_index: int, is_max: bool, scores: list[int], height: float ) -> int: if depth < 0: raise ValueError("Depth cannot be less than 0") if not scores: raise ValueError("Scores cannot be empty") if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, False, scores, height), minimax(depth + 1, node_index * 2 + 1, False, scores, height), ) if is_max else min( minimax(depth + 1, node_index * 2, True, scores, height), minimax(depth + 1, node_index * 2 + 1, True, scores, height), ) )
backtracking
def main() -> None: scores = [90, 23, 6, 33, 21, 65, 123, 34423] height = math.log(len(scores), 2) print(f"Optimal value : {minimax(0, 0, True, scores, height)}")
backtracking
def is_safe(board: list[list[int]], row: int, column: int) -> bool: for i in range(len(board)): if board[row][i] == 1: return False for i in range(len(board)): if board[i][column] == 1: return False for i, j in zip(range(row, -1, -1), range(column, -1, -1)): if board[i][j] == 1: return False for i, j in zip(range(row, -1, -1), range(column, len(board))): if board[i][j] == 1: return False return True
backtracking
def solve(board: list[list[int]], row: int) -> bool: if row >= len(board): solution.append(board) printboard(board) print() return True for i in range(len(board)): if is_safe(board, row, i): board[row][i] = 1 solve(board, row + 1) board[row][i] = 0 return False
backtracking
def printboard(board: list[list[int]]) -> None: for i in range(len(board)): for j in range(len(board)): if board[i][j] == 1: print("Q", end=" ") else: print(".", end=" ") print()
backtracking
def is_safe(grid: Matrix, row: int, column: int, n: int) -> bool: for i in range(9): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3): for j in range(3): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True
backtracking
def find_empty_location(grid: Matrix) -> tuple[int, int] | None: for i in range(9): for j in range(9): if grid[i][j] == 0: return i, j return None
backtracking
def sudoku(grid: Matrix) -> Matrix | None: if location := find_empty_location(grid): row, column = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10): if is_safe(grid, row, column, digit): grid[row][column] = digit if sudoku(grid) is not None: return grid grid[row][column] = 0 return None
backtracking
def print_solution(grid: Matrix) -> None: for row in grid: for cell in row: print(cell, end=" ") print()
backtracking
def get_point_key(len_board: int, len_board_column: int, row: int, column: int) -> int: return len_board * len_board_column * row + column
backtracking
def exits_word( board: list[list[str]], word: str, row: int, column: int, word_index: int, visited_points_set: set[int], ) -> bool: if board[row][column] != word[word_index]: return False if word_index == len(word) - 1: return True traverts_directions = [(0, 1), (0, -1), (-1, 0), (1, 0)] len_board = len(board) len_board_column = len(board[0]) for direction in traverts_directions: next_i = row + direction[0] next_j = column + direction[1] if not (0 <= next_i < len_board and 0 <= next_j < len_board_column): continue key = get_point_key(len_board, len_board_column, next_i, next_j) if key in visited_points_set: continue visited_points_set.add(key) if exits_word(board, word, next_i, next_j, word_index + 1, visited_points_set): return True visited_points_set.remove(key) return False
backtracking
def word_exists(board: list[list[str]], word: str) -> bool: # Validate board board_error_message = ( "The board should be a non empty matrix of single chars strings." ) len_board = len(board) if not isinstance(board, list) or len(board) == 0: raise ValueError(board_error_message) for row in board: if not isinstance(row, list) or len(row) == 0: raise ValueError(board_error_message) for item in row: if not isinstance(item, str) or len(item) != 1: raise ValueError(board_error_message) # Validate word if not isinstance(word, str) or len(word) == 0: raise ValueError( "The word parameter should be a string of length greater than 0." ) len_board_column = len(board[0]) for i in range(len_board): for j in range(len_board_column): if exits_word( board, word, i, j, 0, {get_point_key(len_board, len_board_column, i, j)} ): return True return False
backtracking
def backtrack( candidates: list, path: list, answer: list, target: int, previous_index: int ) -> None: if target == 0: answer.append(path.copy()) else: for index in range(previous_index, len(candidates)): if target >= candidates[index]: path.append(candidates[index]) backtrack(candidates, path, answer, target - candidates[index], index) path.pop(len(path) - 1)
backtracking
def combination_sum(candidates: list, target: int) -> list: path = [] # type: list[int] answer = [] # type: list[int] backtrack(candidates, path, answer, target, 0) return answer
backtracking
def main() -> None: print(combination_sum([-8, 2.3, 0], 1))
backtracking
def generate_all_permutations(sequence: list[int | str]) -> None: create_state_space_tree(sequence, [], 0, [0 for i in range(len(sequence))])
backtracking
def create_state_space_tree( sequence: list[int | str], current_sequence: list[int | str], index: int, index_used: list[int], ) -> None: if index == len(sequence): print(current_sequence) return for i in range(len(sequence)): if not index_used[i]: current_sequence.append(sequence[i]) index_used[i] = True create_state_space_tree(sequence, current_sequence, index + 1, index_used) current_sequence.pop() index_used[i] = False
backtracking
def valid_connection( graph: list[list[int]], next_ver: int, curr_ind: int, path: list[int] ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path)
backtracking
def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int) -> bool: # Base Case if curr_ind == len(graph): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0, len(graph)): if valid_connection(graph, next_ver, curr_ind, path): # Insert current vertex into path as next transition path[curr_ind] = next_ver # Validate created path if util_hamilton_cycle(graph, path, curr_ind + 1): return True # Backtrack path[curr_ind] = -1 return False
backtracking
def get_valid_pos(position: tuple[int, int], n: int) -> list[tuple[int, int]]: y, x = position positions = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] permissible_positions = [] for position in positions: y_test, x_test = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(position) return permissible_positions
backtracking
def is_complete(board: list[list[int]]) -> bool: return not any(elem == 0 for row in board for elem in row)
backtracking
def open_knight_tour_helper( board: list[list[int]], pos: tuple[int, int], curr: int ) -> bool: if is_complete(board): return True for position in get_valid_pos(pos, len(board)): y, x = position if board[y][x] == 0: board[y][x] = curr + 1 if open_knight_tour_helper(board, position, curr + 1): return True board[y][x] = 0 return False
backtracking
def open_knight_tour(n: int) -> list[list[int]]: board = [[0 for i in range(n)] for j in range(n)] for i in range(n): for j in range(n): board[i][j] = 1 if open_knight_tour_helper(board, (i, j), 1): return board board[i][j] = 0 raise ValueError(f"Open Kight Tour cannot be performed on a board of size {n}")
backtracking
def get_data(source_data: list[list[float]]) -> list[list[float]]: data_lists: list[list[float]] = [] for data in source_data: for i, el in enumerate(data): if len(data_lists) < i + 1: data_lists.append([]) data_lists[i].append(float(el)) return data_lists
other