function
stringlengths
18
3.86k
intent_category
stringlengths
5
24
def simple_interest( principal: float, daily_interest_rate: float, days_between_payments: int ) -> float: if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0") if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0") if principal <= 0: raise ValueError("principal must be > 0") return principal * daily_interest_rate * days_between_payments
financial
def compound_interest( principal: float, nominal_annual_interest_rate_percentage: float, number_of_compounding_periods: int, ) -> float: if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0") if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0") if principal <= 0: raise ValueError("principal must be > 0") return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 )
financial
def equated_monthly_installments( principal: float, rate_per_annum: float, years_to_repay: int ) -> float: if principal <= 0: raise Exception("Principal borrowed must be > 0") if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0") if years_to_repay <= 0 or not isinstance(years_to_repay, int): raise Exception("Years to repay must be an integer > 0") # Yearly rate is divided by 12 to get monthly rate rate_per_month = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly number_of_payments = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) )
financial
def calculate_waiting_times(duration_times: list[int]) -> list[int]: waiting_times = [0] * len(duration_times) for i in range(1, len(duration_times)): waiting_times[i] = duration_times[i - 1] + waiting_times[i - 1] return waiting_times
scheduling
def calculate_turnaround_times( duration_times: list[int], waiting_times: list[int] ) -> list[int]: return [ duration_time + waiting_times[i] for i, duration_time in enumerate(duration_times) ]
scheduling
def calculate_average_turnaround_time(turnaround_times: list[int]) -> float: return sum(turnaround_times) / len(turnaround_times)
scheduling
def calculate_average_waiting_time(waiting_times: list[int]) -> float: return sum(waiting_times) / len(waiting_times)
scheduling
def __init__(self, process_name: str, arrival_time: int, burst_time: int) -> None: self.process_name = process_name # process name self.arrival_time = arrival_time # arrival time of the process # completion time of finished process or last interrupted time self.stop_time = arrival_time self.burst_time = burst_time # remaining burst time self.waiting_time = 0 # total time of the process wait in ready queue self.turnaround_time = 0 # time from arrival time to completion time
scheduling
def __init__( self, number_of_queues: int, time_slices: list[int], queue: deque[Process], current_time: int, ) -> None: # total number of mlfq's queues self.number_of_queues = number_of_queues # time slice of queues that round robin algorithm applied self.time_slices = time_slices # unfinished process is in this ready_queue self.ready_queue = queue # current time self.current_time = current_time # finished process is in this sequence queue self.finish_queue: deque[Process] = deque()
scheduling
def calculate_sequence_of_finish_queue(self) -> list[str]: sequence = [] for i in range(len(self.finish_queue)): sequence.append(self.finish_queue[i].process_name) return sequence
scheduling
def calculate_waiting_time(self, queue: list[Process]) -> list[int]: waiting_times = [] for i in range(len(queue)): waiting_times.append(queue[i].waiting_time) return waiting_times
scheduling
def calculate_turnaround_time(self, queue: list[Process]) -> list[int]: turnaround_times = [] for i in range(len(queue)): turnaround_times.append(queue[i].turnaround_time) return turnaround_times
scheduling
def calculate_completion_time(self, queue: list[Process]) -> list[int]: completion_times = [] for i in range(len(queue)): completion_times.append(queue[i].stop_time) return completion_times
scheduling
def calculate_remaining_burst_time_of_processes( self, queue: deque[Process] ) -> list[int]: return [q.burst_time for q in queue]
scheduling
def update_waiting_time(self, process: Process) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time
scheduling
def first_come_first_served(self, ready_queue: deque[Process]) -> deque[Process]: finished: deque[Process] = deque() # sequence deque of finished process while len(ready_queue) != 0: cp = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(cp) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 cp.burst_time = 0 # set the process's turnaround time because it is finished cp.turnaround_time = self.current_time - cp.arrival_time # set the completion time cp.stop_time = self.current_time # add the process to queue that has finished queue finished.append(cp) self.finish_queue.extend(finished) # add finished process to finish queue # FCFS will finish all remaining processes return finished
scheduling
def round_robin( self, ready_queue: deque[Process], time_slice: int ) -> tuple[deque[Process], deque[Process]]: finished: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(ready_queue)): cp = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(cp) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time cp.stop_time = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(cp) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished cp.burst_time = 0 # set the finish time cp.stop_time = self.current_time # update the process' turnaround time because it is finished cp.turnaround_time = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(cp) self.finish_queue.extend(finished) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue
scheduling
def multi_level_feedback_queue(self) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1): finished, self.ready_queue = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue) return self.finish_queue
scheduling
def job_sequencing_with_deadlines(num_jobs: int, jobs: list) -> list: # Sort the jobs in descending order of profit jobs = sorted(jobs, key=lambda value: value[2], reverse=True) # Create a list of size equal to the maximum deadline # and initialize it with -1 max_deadline = max(jobs, key=lambda value: value[1])[1] time_slots = [-1] * max_deadline # Finding the maximum profit and the count of jobs count = 0 max_profit = 0 for job in jobs: # Find a free time slot for this job # (Note that we start from the last possible slot) for i in range(job[1] - 1, -1, -1): if time_slots[i] == -1: time_slots[i] = job[0] count += 1 max_profit += job[2] break return [count, max_profit]
scheduling
def calculate_waiting_times(burst_times: list[int]) -> list[int]: quantum = 2 rem_burst_times = list(burst_times) waiting_times = [0] * len(burst_times) t = 0 while True: done = True for i, burst_time in enumerate(burst_times): if rem_burst_times[i] > 0: done = False if rem_burst_times[i] > quantum: t += quantum rem_burst_times[i] -= quantum else: t += rem_burst_times[i] waiting_times[i] = t - burst_time rem_burst_times[i] = 0 if done is True: return waiting_times
scheduling
def calculate_turn_around_times( burst_times: list[int], waiting_times: list[int] ) -> list[int]: return [burst + waiting for burst, waiting in zip(burst_times, waiting_times)]
scheduling
def calculate_turn_around_time( process_name: list, arrival_time: list, burst_time: list, no_of_process: int ) -> list: current_time = 0 # Number of processes finished finished_process_count = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. finished_process = [0] * no_of_process # List to include calculation results turn_around_time = [0] * no_of_process # Sort by arrival time. burst_time = [burst_time[i] for i in np.argsort(arrival_time)] process_name = [process_name[i] for i in np.argsort(arrival_time)] arrival_time.sort() while no_of_process > finished_process_count: i = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: current_time = arrival_time[i] response_ratio = 0 # Index showing the location of the process being performed loc = 0 # Saves the current response ratio. temp = 0 for i in range(0, no_of_process): if finished_process[i] == 0 and arrival_time[i] <= current_time: temp = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: response_ratio = temp loc = i # Calculate the turn around time turn_around_time[loc] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. finished_process[loc] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time
scheduling
def calculate_waiting_time( process_name: list, turn_around_time: list, burst_time: list, no_of_process: int ) -> list: waiting_time = [0] * no_of_process for i in range(0, no_of_process): waiting_time[i] = turn_around_time[i] - burst_time[i] return waiting_time
scheduling
def calculate_waitingtime( arrival_time: list[int], burst_time: list[int], no_of_processes: int ) -> list[int]: waiting_time = [0] * no_of_processes remaining_time = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(no_of_processes): remaining_time[i] = burst_time[i] ready_process: list[int] = [] completed = 0 total_time = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: ready_process = [] target_process = -1 for i in range(no_of_processes): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(i) if len(ready_process) > 0: target_process = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: target_process = i total_time += burst_time[target_process] completed += 1 remaining_time[target_process] = 0 waiting_time[target_process] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time
scheduling
def calculate_turnaroundtime( burst_time: list[int], no_of_processes: int, waiting_time: list[int] ) -> list[int]: turn_around_time = [0] * no_of_processes for i in range(no_of_processes): turn_around_time[i] = burst_time[i] + waiting_time[i] return turn_around_time
scheduling
def calculate_waitingtime( arrival_time: list[int], burst_time: list[int], no_of_processes: int ) -> list[int]: remaining_time = [0] * no_of_processes waiting_time = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(no_of_processes): remaining_time[i] = burst_time[i] complete = 0 increment_time = 0 minm = 999999999 short = 0 check = False # Process until all processes are completed while complete != no_of_processes: for j in range(no_of_processes): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: minm = remaining_time[j] short = j check = True if not check: increment_time += 1 continue remaining_time[short] -= 1 minm = remaining_time[short] if minm == 0: minm = 999999999 if remaining_time[short] == 0: complete += 1 check = False # Find finish time of current process finish_time = increment_time + 1 # Calculate waiting time finar = finish_time - arrival_time[short] waiting_time[short] = finar - burst_time[short] if waiting_time[short] < 0: waiting_time[short] = 0 # Increment time increment_time += 1 return waiting_time
scheduling
def calculate_turnaroundtime( burst_time: list[int], no_of_processes: int, waiting_time: list[int] ) -> list[int]: turn_around_time = [0] * no_of_processes for i in range(no_of_processes): turn_around_time[i] = burst_time[i] + waiting_time[i] return turn_around_time
scheduling
def calculate_average_times( waiting_time: list[int], turn_around_time: list[int], no_of_processes: int ) -> None: total_waiting_time = 0 total_turn_around_time = 0 for i in range(no_of_processes): total_waiting_time = total_waiting_time + waiting_time[i] total_turn_around_time = total_turn_around_time + turn_around_time[i] print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}") print("Average turn around time =", total_turn_around_time / no_of_processes)
scheduling
def evaluate(item: str, main_target: str = target) -> tuple[str, float]: score = len( [g for position, g in enumerate(item) if g == main_target[position]] ) return (item, float(score))
genetic_algorithm
def select(parent_1: tuple[str, float]) -> list[str]: random_slice = random.randint(0, len(parent_1) - 1) child_1 = parent_1[:random_slice] + parent_2[random_slice:] child_2 = parent_2[:random_slice] + parent_1[random_slice:] return (child_1, child_2)
genetic_algorithm
def pressure_conversion(value: float, from_type: str, to_type: str) -> float: if from_type not in PRESSURE_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ", ".join(PRESSURE_CONVERSION) ) if to_type not in PRESSURE_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ", ".join(PRESSURE_CONVERSION) ) return ( value * PRESSURE_CONVERSION[from_type].from_ * PRESSURE_CONVERSION[to_type].to )
conversions
def convert_speed(speed: float, unit_from: str, unit_to: str) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: raise ValueError( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(speed_chart_inverse)}" ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to], 3)
conversions
def convert_si_prefix( known_amount: float, known_prefix: str | SIUnit, unknown_prefix: str | SIUnit, ) -> float: if isinstance(known_prefix, str): known_prefix = SIUnit[known_prefix.lower()] if isinstance(unknown_prefix, str): unknown_prefix = SIUnit[unknown_prefix.lower()] unknown_amount: float = known_amount * ( 10 ** (known_prefix.value - unknown_prefix.value) ) return unknown_amount
conversions
def convert_binary_prefix( known_amount: float, known_prefix: str | BinaryUnit, unknown_prefix: str | BinaryUnit, ) -> float: if isinstance(known_prefix, str): known_prefix = BinaryUnit[known_prefix.lower()] if isinstance(unknown_prefix, str): unknown_prefix = BinaryUnit[unknown_prefix.lower()] unknown_amount: float = known_amount * ( 2 ** ((known_prefix.value - unknown_prefix.value) * 10) ) return unknown_amount
conversions
def hex_to_decimal(hex_string: str) -> int: hex_string = hex_string.strip().lower() if not hex_string: raise ValueError("Empty string was passed to the function") is_negative = hex_string[0] == "-" if is_negative: hex_string = hex_string[1:] if not all(char in hex_table for char in hex_string): raise ValueError("Non-hexadecimal value was passed to the function") decimal_number = 0 for char in hex_string: decimal_number = 16 * decimal_number + hex_table[char] return -decimal_number if is_negative else decimal_number
conversions
def hsv_to_rgb(hue: float, saturation: float, value: float) -> list[int]: if hue < 0 or hue > 360: raise Exception("hue should be between 0 and 360") if saturation < 0 or saturation > 1: raise Exception("saturation should be between 0 and 1") if value < 0 or value > 1: raise Exception("value should be between 0 and 1") chroma = value * saturation hue_section = hue / 60 second_largest_component = chroma * (1 - abs(hue_section % 2 - 1)) match_value = value - chroma if hue_section >= 0 and hue_section <= 1: red = round(255 * (chroma + match_value)) green = round(255 * (second_largest_component + match_value)) blue = round(255 * (match_value)) elif hue_section > 1 and hue_section <= 2: red = round(255 * (second_largest_component + match_value)) green = round(255 * (chroma + match_value)) blue = round(255 * (match_value)) elif hue_section > 2 and hue_section <= 3: red = round(255 * (match_value)) green = round(255 * (chroma + match_value)) blue = round(255 * (second_largest_component + match_value)) elif hue_section > 3 and hue_section <= 4: red = round(255 * (match_value)) green = round(255 * (second_largest_component + match_value)) blue = round(255 * (chroma + match_value)) elif hue_section > 4 and hue_section <= 5: red = round(255 * (second_largest_component + match_value)) green = round(255 * (match_value)) blue = round(255 * (chroma + match_value)) else: red = round(255 * (chroma + match_value)) green = round(255 * (match_value)) blue = round(255 * (second_largest_component + match_value)) return [red, green, blue]
conversions
def rgb_to_hsv(red: int, green: int, blue: int) -> list[float]: if red < 0 or red > 255: raise Exception("red should be between 0 and 255") if green < 0 or green > 255: raise Exception("green should be between 0 and 255") if blue < 0 or blue > 255: raise Exception("blue should be between 0 and 255") float_red = red / 255 float_green = green / 255 float_blue = blue / 255 value = max(max(float_red, float_green), float_blue) chroma = value - min(min(float_red, float_green), float_blue) saturation = 0 if value == 0 else chroma / value if chroma == 0: hue = 0.0 elif value == float_red: hue = 60 * (0 + (float_green - float_blue) / chroma) elif value == float_green: hue = 60 * (2 + (float_blue - float_red) / chroma) else: hue = 60 * (4 + (float_red - float_green) / chroma) hue = (hue + 360) % 360 return [hue, saturation, value]
conversions
def hex_to_bin(hex_num: str) -> int: hex_num = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function") is_negative = hex_num[0] == "-" if is_negative: hex_num = hex_num[1:] try: int_num = int(hex_num, 16) except ValueError: raise ValueError("Invalid value was passed to the function") bin_str = "" while int_num > 0: bin_str = str(int_num % 2) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str)
conversions
def get_positive(cls: type[T]) -> dict: return {unit.name: unit.value for unit in cls if unit.value > 0}
conversions
def get_negative(cls: type[T]) -> dict: return {unit.name: unit.value for unit in cls if unit.value < 0}
conversions
def add_si_prefix(value: float) -> str: prefixes = SIUnit.get_positive() if value > 0 else SIUnit.get_negative() for name_prefix, value_prefix in prefixes.items(): numerical_part = value / (10**value_prefix) if numerical_part > 1: return f"{str(numerical_part)} {name_prefix}" return str(value)
conversions
def add_binary_prefix(value: float) -> str: for prefix in BinaryUnit: numerical_part = value / (2**prefix.value) if numerical_part > 1: return f"{str(numerical_part)} {prefix.name}" return str(value)
conversions
def weight_conversion(from_type: str, to_type: str, value: float) -> float: if to_type not in KILOGRAM_CHART or from_type not in WEIGHT_TYPE_CHART: raise ValueError( f"Invalid 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Supported values are: {', '.join(WEIGHT_TYPE_CHART)}" ) return value * KILOGRAM_CHART[to_type] * WEIGHT_TYPE_CHART[from_type]
conversions
def binary_recursive(decimal: int) -> str: decimal = int(decimal) if decimal in (0, 1): # Exit cases for the recursion return str(decimal) div, mod = divmod(decimal, 2) return binary_recursive(div) + str(mod)
conversions
def main(number: str) -> str: number = str(number).strip() if not number: raise ValueError("No input value was provided") negative = "-" if number.startswith("-") else "" number = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(number))}"
conversions
def bin_to_octal(bin_string: str) -> str: if not all(char in "01" for char in bin_string): raise ValueError("Non-binary value was passed to the function") if not bin_string: raise ValueError("Empty string was passed to the function") oct_string = "" while len(bin_string) % 3 != 0: bin_string = "0" + bin_string bin_string_in_3_list = [ bin_string[index : index + 3] for index in range(len(bin_string)) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: oct_val = 0 for index, val in enumerate(bin_group): oct_val += int(2 ** (2 - index) * int(val)) oct_string += str(oct_val) return oct_string
conversions
def oct_to_decimal(oct_string: str) -> int: oct_string = str(oct_string).strip() if not oct_string: raise ValueError("Empty string was passed to the function") is_negative = oct_string[0] == "-" if is_negative: oct_string = oct_string[1:] if not oct_string.isdigit() or not all(0 <= int(char) <= 7 for char in oct_string): raise ValueError("Non-octal value was passed to the function") decimal_number = 0 for char in oct_string: decimal_number = 8 * decimal_number + int(char) if is_negative: decimal_number = -decimal_number return decimal_number
conversions
def molarity_to_normality(nfactor: int, moles: float, volume: float) -> float: return round(float(moles / volume) * nfactor)
conversions
def moles_to_pressure(volume: float, moles: float, temperature: float) -> float: return round(float((moles * 0.0821 * temperature) / (volume)))
conversions
def moles_to_volume(pressure: float, moles: float, temperature: float) -> float: return round(float((moles * 0.0821 * temperature) / (pressure)))
conversions
def pressure_and_volume_to_temperature( pressure: float, moles: float, volume: float ) -> float: return round(float((pressure * volume) / (0.0821 * moles)))
conversions
def excel_title_to_column(column_title: str) -> int: assert column_title.isupper() answer = 0 index = len(column_title) - 1 power = 0 while index >= 0: value = (ord(column_title[index]) - 64) * pow(26, power) answer += value power += 1 index -= 1 return answer
conversions
def roman_to_int(roman: str) -> int: vals = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} total = 0 place = 0 while place < len(roman): if (place + 1 < len(roman)) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total
conversions
def int_to_roman(number: int) -> str: result = [] for arabic, roman in ROMAN: (factor, number) = divmod(number, arabic) result.append(roman * factor) if number == 0: break return "".join(result)
conversions
def volume_conversion(value: float, from_type: str, to_type: str) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ", ".join(METRIC_CONVERSION) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ", ".join(METRIC_CONVERSION) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
conversions
def length_conversion(value: float, from_type: str, to_type: str) -> float: new_from = from_type.lower().rstrip("s") new_from = TYPE_CONVERSION.get(new_from, new_from) new_to = to_type.lower().rstrip("s") new_to = TYPE_CONVERSION.get(new_to, new_to) if new_from not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r}.\n" f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}" ) if new_to not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}.\n" f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}" ) return value * METRIC_CONVERSION[new_from].from_ * METRIC_CONVERSION[new_to].to
conversions
def length_conversion(value: float, from_type: str, to_type: str) -> float: from_sanitized = from_type.lower().strip("s") to_sanitized = to_type.lower().strip("s") from_sanitized = UNIT_SYMBOL.get(from_sanitized, from_sanitized) to_sanitized = UNIT_SYMBOL.get(to_sanitized, to_sanitized) if from_sanitized not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r}.\n" f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}" ) if to_sanitized not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}.\n" f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}" ) from_exponent = METRIC_CONVERSION[from_sanitized] to_exponent = METRIC_CONVERSION[to_sanitized] exponent = 1 if from_exponent > to_exponent: exponent = from_exponent - to_exponent else: exponent = -(to_exponent - from_exponent) return value * pow(10, exponent)
conversions
def bin_to_hexadecimal(binary_str: str) -> str: # Sanitising parameter binary_str = str(binary_str).strip() # Exceptions if not binary_str: raise ValueError("Empty string was passed to the function") is_negative = binary_str[0] == "-" binary_str = binary_str[1:] if is_negative else binary_str if not all(char in "01" for char in binary_str): raise ValueError("Non-binary value was passed to the function") binary_str = ( "0" * (4 * (divmod(len(binary_str), 4)[0] + 1) - len(binary_str)) + binary_str ) hexadecimal = [] for x in range(0, len(binary_str), 4): hexadecimal.append(BITS_TO_HEX[binary_str[x : x + 4]]) hexadecimal_str = "0x" + "".join(hexadecimal) return "-" + hexadecimal_str if is_negative else hexadecimal_str
conversions
def bin_to_decimal(bin_string: str) -> int: bin_string = str(bin_string).strip() if not bin_string: raise ValueError("Empty string was passed to the function") is_negative = bin_string[0] == "-" if is_negative: bin_string = bin_string[1:] if not all(char in "01" for char in bin_string): raise ValueError("Non-binary value was passed to the function") decimal_number = 0 for char in bin_string: decimal_number = 2 * decimal_number + int(char) return -decimal_number if is_negative else decimal_number
conversions
def send_file(filename: str = "mytext.txt", testing: bool = False) -> None: import socket port = 12312 # Reserve a port for your service. sock = socket.socket() # Create a socket object host = socket.gethostname() # Get local machine name sock.bind((host, port)) # Bind to the port sock.listen(5) # Now wait for client connection. print("Server listening....") while True: conn, addr = sock.accept() # Establish connection with client. print(f"Got connection from {addr}") data = conn.recv(1024) print(f"Server received: {data = }") with open(filename, "rb") as in_file: data = in_file.read(1024) while data: conn.send(data) print(f"Sent {data!r}") data = in_file.read(1024) print("Done sending") conn.close() if testing: # Allow the test to complete break sock.shutdown(1) sock.close()
file_transfer
def knapsack(capacity: int, weights: list[int], values: list[int], counter: int) -> int: # Base Case if counter == 0 or capacity == 0: return 0 # If weight of the nth item is more than Knapsack of capacity, # then this item cannot be included in the optimal solution, # else return the maximum of two cases: # (1) nth item included # (2) not included if weights[counter - 1] > capacity: return knapsack(capacity, weights, values, counter - 1) else: left_capacity = capacity - weights[counter - 1] new_value_included = values[counter - 1] + knapsack( left_capacity, weights, values, counter - 1 ) without_new_value = knapsack(capacity, weights, values, counter - 1) return max(new_value_included, without_new_value)
knapsack
def calc_profit(profit: list, weight: list, max_weight: int) -> int: if len(profit) != len(weight): raise ValueError("The length of profit and weight must be same.") if max_weight <= 0: raise ValueError("max_weight must greater than zero.") if any(p < 0 for p in profit): raise ValueError("Profit can not be negative.") if any(w < 0 for w in weight): raise ValueError("Weight can not be negative.") # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. profit_by_weight = [p / w for p, w in zip(profit, weight)] # Creating a copy of the list and sorting profit/weight in ascending order sorted_profit_by_weight = sorted(profit_by_weight) # declaring useful variables length = len(sorted_profit_by_weight) limit = 0 gain = 0 i = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight biggest_profit_by_weight = sorted_profit_by_weight[length - i - 1] index = profit_by_weight.index(biggest_profit_by_weight) profit_by_weight[index] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain
knapsack
def knapsack( weights: list, values: list, number_of_items: int, max_weight: int, index: int ) -> int: if index == number_of_items: return 0 ans1 = 0 ans2 = 0 ans1 = knapsack(weights, values, number_of_items, max_weight, index + 1) if weights[index] <= max_weight: ans2 = values[index] + knapsack( weights, values, number_of_items, max_weight - weights[index], index + 1 ) return max(ans1, ans2)
knapsack
def test_base_case(self): cap = 0 val = [0] w = [0] c = len(val) self.assertEqual(k.knapsack(cap, w, val, c), 0) val = [60] w = [10] c = len(val) self.assertEqual(k.knapsack(cap, w, val, c), 0)
knapsack
def test_easy_case(self): cap = 3 val = [1, 2, 3] w = [3, 2, 1] c = len(val) self.assertEqual(k.knapsack(cap, w, val, c), 5)
knapsack
def test_knapsack(self): cap = 50 val = [60, 100, 120] w = [10, 20, 30] c = len(val) self.assertEqual(k.knapsack(cap, w, val, c), 220)
knapsack
def test_sorted(self): profit = [10, 20, 30, 40, 50, 60] weight = [2, 4, 6, 8, 10, 12] max_weight = 100 self.assertEqual(kp.calc_profit(profit, weight, max_weight), 210)
knapsack
def test_negative_max_weight(self): # profit = [10, 20, 30, 40, 50, 60] # weight = [2, 4, 6, 8, 10, 12] # max_weight = -15 self.assertRaisesRegex(ValueError, "max_weight must greater than zero.")
knapsack
def test_negative_profit_value(self): # profit = [10, -20, 30, 40, 50, 60] # weight = [2, 4, 6, 8, 10, 12] # max_weight = 15 self.assertRaisesRegex(ValueError, "Weight can not be negative.")
knapsack
def test_negative_weight_value(self): # profit = [10, 20, 30, 40, 50, 60] # weight = [2, -4, 6, -8, 10, 12] # max_weight = 15 self.assertRaisesRegex(ValueError, "Profit can not be negative.")
knapsack
def test_null_max_weight(self): # profit = [10, 20, 30, 40, 50, 60] # weight = [2, 4, 6, 8, 10, 12] # max_weight = null self.assertRaisesRegex(ValueError, "max_weight must greater than zero.")
knapsack
def test_unequal_list_length(self): # profit = [10, 20, 30, 40, 50] # weight = [2, 4, 6, 8, 10, 12] # max_weight = 100 self.assertRaisesRegex( IndexError, "The length of profit and weight must be same." )
knapsack
def count_inversions_bf(arr): num_inversions = 0 n = len(arr) for i in range(n - 1): for j in range(i + 1, n): if arr[i] > arr[j]: num_inversions += 1 return num_inversions
divide_and_conquer
def count_inversions_recursive(arr): if len(arr) <= 1: return arr, 0 mid = len(arr) // 2 p = arr[0:mid] q = arr[mid:] a, inversion_p = count_inversions_recursive(p) b, inversions_q = count_inversions_recursive(q) c, cross_inversions = _count_cross_inversions(a, b) num_inversions = inversion_p + inversions_q + cross_inversions return c, num_inversions
divide_and_conquer
def _count_cross_inversions(p, q): r = [] i = j = num_inversion = 0 while i < len(p) and j < len(q): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(p) - i r.append(q[j]) j += 1 else: r.append(p[i]) i += 1 if i < len(p): r.extend(p[i:]) else: r.extend(q[j:]) return r, num_inversion
divide_and_conquer
def main(): arr_1 = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = ", num_inversions_bf) # testing an array with zero inversion (a sorted arr_1) arr_1.sort() num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", num_inversions_bf) # an empty list should also have zero inversions arr_1 = [] num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", num_inversions_bf)
divide_and_conquer
def __init__(self, x, y): self.x, self.y = float(x), float(y)
divide_and_conquer
def __eq__(self, other): return self.x == other.x and self.y == other.y
divide_and_conquer
def __ne__(self, other): return not self == other
divide_and_conquer
def __gt__(self, other): if self.x > other.x: return True elif self.x == other.x: return self.y > other.y return False
divide_and_conquer
def __lt__(self, other): return not self > other
divide_and_conquer
def __ge__(self, other): if self.x > other.x: return True elif self.x == other.x: return self.y >= other.y return False
divide_and_conquer
def __le__(self, other): if self.x < other.x: return True elif self.x == other.x: return self.y <= other.y return False
divide_and_conquer
def __repr__(self): return f"({self.x}, {self.y})"
divide_and_conquer
def __hash__(self): return hash(self.x)
divide_and_conquer
def _construct_points( list_of_tuples: list[Point] | list[list[float]] | Iterable[list[float]], ) -> list[Point]: points: list[Point] = [] if list_of_tuples: for p in list_of_tuples: if isinstance(p, Point): points.append(p) else: try: points.append(Point(p[0], p[1])) except (IndexError, TypeError): print( f"Ignoring deformed point {p}. All points" " must have at least 2 coordinates." ) return points
divide_and_conquer
def _validate_input(points: list[Point] | list[list[float]]) -> list[Point]: if not hasattr(points, "__iter__"): raise ValueError( f"Expecting an iterable object but got an non-iterable type {points}" ) if not points: raise ValueError(f"Expecting a list of points but got {points}") return _construct_points(points)
divide_and_conquer
def _det(a: Point, b: Point, c: Point) -> float: det = (a.x * b.y + b.x * c.y + c.x * a.y) - (a.y * b.x + b.y * c.x + c.y * a.x) return det
divide_and_conquer
def convex_hull_bf(points: list[Point]) -> list[Point]: points = sorted(_validate_input(points)) n = len(points) convex_set = set() for i in range(n - 1): for j in range(i + 1, n): points_left_of_ij = points_right_of_ij = False ij_part_of_convex_hull = True for k in range(n): if k != i and k != j: det_k = _det(points[i], points[j], points[k]) if det_k > 0: points_left_of_ij = True elif det_k < 0: points_right_of_ij = True else: # point[i], point[j], point[k] all lie on a straight line # if point[k] is to the left of point[i] or it's to the # right of point[j], then point[i], point[j] cannot be # part of the convex hull of A if points[k] < points[i] or points[k] > points[j]: ij_part_of_convex_hull = False break if points_left_of_ij and points_right_of_ij: ij_part_of_convex_hull = False break if ij_part_of_convex_hull: convex_set.update([points[i], points[j]]) return sorted(convex_set)
divide_and_conquer
def convex_hull_recursive(points: list[Point]) -> list[Point]: points = sorted(_validate_input(points)) n = len(points) # divide all the points into an upper hull and a lower hull # the left most point and the right most point are definitely # members of the convex hull by definition. # use these two anchors to divide all the points into two hulls, # an upper hull and a lower hull. # all points to the left (above) the line joining the extreme points belong to the # upper hull # all points to the right (below) the line joining the extreme points below to the # lower hull # ignore all points on the line joining the extreme points since they cannot be # part of the convex hull left_most_point = points[0] right_most_point = points[n - 1] convex_set = {left_most_point, right_most_point} upper_hull = [] lower_hull = [] for i in range(1, n - 1): det = _det(left_most_point, right_most_point, points[i]) if det > 0: upper_hull.append(points[i]) elif det < 0: lower_hull.append(points[i]) _construct_hull(upper_hull, left_most_point, right_most_point, convex_set) _construct_hull(lower_hull, right_most_point, left_most_point, convex_set) return sorted(convex_set)
divide_and_conquer
def _construct_hull( points: list[Point], left: Point, right: Point, convex_set: set[Point] ) -> None: if points: extreme_point = None extreme_point_distance = float("-inf") candidate_points = [] for p in points: det = _det(left, right, p) if det > 0: candidate_points.append(p) if det > extreme_point_distance: extreme_point_distance = det extreme_point = p if extreme_point: _construct_hull(candidate_points, left, extreme_point, convex_set) convex_set.add(extreme_point) _construct_hull(candidate_points, extreme_point, right, convex_set)
divide_and_conquer
def convex_hull_melkman(points: list[Point]) -> list[Point]: points = sorted(_validate_input(points)) n = len(points) convex_hull = points[:2] for i in range(2, n): det = _det(convex_hull[1], convex_hull[0], points[i]) if det > 0: convex_hull.insert(0, points[i]) break elif det < 0: convex_hull.append(points[i]) break else: convex_hull[1] = points[i] i += 1 for j in range(i, n): if ( _det(convex_hull[0], convex_hull[-1], points[j]) > 0 and _det(convex_hull[-1], convex_hull[0], points[1]) < 0 ): # The point lies within the convex hull continue convex_hull.insert(0, points[j]) convex_hull.append(points[j]) while _det(convex_hull[0], convex_hull[1], convex_hull[2]) >= 0: del convex_hull[1] while _det(convex_hull[-1], convex_hull[-2], convex_hull[-3]) <= 0: del convex_hull[-2] # `convex_hull` is contains the convex hull in circular order return sorted(convex_hull[1:] if len(convex_hull) > 3 else convex_hull)
divide_and_conquer
def main(): points = [ (0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3), ] # the convex set of points is # [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] results_bf = convex_hull_bf(points) results_recursive = convex_hull_recursive(points) assert results_bf == results_recursive results_melkman = convex_hull_melkman(points) assert results_bf == results_melkman print(results_bf)
divide_and_conquer
def max_sum_from_start(array): array_sum = 0 max_sum = float("-inf") for num in array: array_sum += num if array_sum > max_sum: max_sum = array_sum return max_sum
divide_and_conquer
def max_cross_array_sum(array, left, mid, right): max_sum_of_left = max_sum_from_start(array[left : mid + 1][::-1]) max_sum_of_right = max_sum_from_start(array[mid + 1 : right + 1]) return max_sum_of_left + max_sum_of_right
divide_and_conquer
def max_subarray_sum(array, left, right): # base case: array has only one element if left == right: return array[right] # Recursion mid = (left + right) // 2 left_half_sum = max_subarray_sum(array, left, mid) right_half_sum = max_subarray_sum(array, mid + 1, right) cross_sum = max_cross_array_sum(array, left, mid, right) return max(left_half_sum, right_half_sum, cross_sum)
divide_and_conquer
def generate(k: int, arr: list): if k == 1: res.append(tuple(arr[:])) return generate(k - 1, arr) for i in range(k - 1): if k % 2 == 0: # k is even arr[i], arr[k - 1] = arr[k - 1], arr[i] else: # k is odd arr[0], arr[k - 1] = arr[k - 1], arr[0] generate(k - 1, arr)
divide_and_conquer
def generate(n: int, arr: list): c = [0] * n res.append(tuple(arr)) i = 0 while i < n: if c[i] < i: if i % 2 == 0: arr[0], arr[i] = arr[i], arr[0] else: arr[c[i]], arr[i] = arr[i], arr[c[i]] res.append(tuple(arr)) c[i] += 1 i = 0 else: c[i] = 0 i += 1
divide_and_conquer
def max_difference(a: list[int]) -> tuple[int, int]: # base case if len(a) == 1: return a[0], a[0] else: # split A into half. first = a[: len(a) // 2] second = a[len(a) // 2 :] # 2 sub problems, 1/2 of original size. small1, big1 = max_difference(first) small2, big2 = max_difference(second) # get min of first and max of second # linear time min_first = min(first) max_second = max(second) # 3 cases, either (small1, big1), # (min_first, max_second), (small2, big2) # constant comparisons if big2 - small2 > max_second - min_first and big2 - small2 > big1 - small1: return small2, big2 elif big1 - small1 > max_second - min_first: return small1, big1 else: return min_first, max_second
divide_and_conquer
def peak(lst: list[int]) -> int: # middle index m = len(lst) // 2 # choose the middle 3 elements three = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m]) == 2: m -= 1 return peak(lst[m:]) # decreasing else: if len(lst[:m]) == 2: m += 1 return peak(lst[:m])
divide_and_conquer