id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,779,156,470
Expose several APIs to public (torch python APIs)
dilililiwhy
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
18
CONTRIBUTOR
Fixes #144302 Try to expose several APIs to public for privateuse1 scenario. cc @albanD
true
2,779,114,690
Use structure binding
cyyever
closed
[ "module: cpu", "open source", "better-engineering", "Merged", "ciflow/trunk", "release notes: mps", "ciflow/mps", "ciflow/xpu" ]
3
COLLABORATOR
Fixes #ISSUE_NUMBER cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,779,097,589
Update the accuracy results for moco and llama
huydhn
closed
[ "Merged", "topic: not user facing", "module: dynamo", "ciflow/inductor", "ciflow/inductor-periodic" ]
3
CONTRIBUTOR
This has been failing in trunk for sometimes, let's just update the accuracy results first. The command I run `python benchmarks/dynamo/ci_expected_accuracy/update_expected.py 127f836881e75e0c688619b54a35b018a69d7ee7`. I also fix the update script a bit to make it working after https://github.com/pytorch/pytorch/pull/139337 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,779,047,925
quantize_fx.prepare_qat_fx, `get_default_qat_qconfig_mapping` is unused in code.
LukeLIN-web
open
[ "module: docs", "oncall: quantization" ]
1
NONE
### 📚 The doc issue https://pytorch.org/docs/stable/_modules/torch/ao/quantization/quantize_fx.html#prepare_qat_fx ``` from torch.ao.quantization import get_default_qat_qconfig_mapping ``` In Example, It is unused in code. Not sure which one is correct. ### Suggest a potential alternative/fix ``` from torch.ao.quantization import get_default_qconfig ``` cc @svekars @brycebortree @sekyondaMeta @AlannaBurke @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim
true
2,779,044,988
WIP make a test for FSDP mixed precision
wconstab
closed
[ "oncall: distributed", "topic: not user facing" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144521 * #144426 * #144352 * #144345 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @d4l3k @c-p-i-o
true
2,779,041,704
[aoti] Remove example inputs from aoti_compile_and_package
angelayi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
8
CONTRIBUTOR
Summary: The args were removed in https://github.com/pytorch/pytorch/pull/140991 Test Plan: CI Differential Revision: D67998954 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,779,039,386
[ROCm][Inductor][CK] hackfix for segfault in addmm op
tenpercent
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/rocm" ]
4
COLLABORATOR
This snippet used to cause segfault on GPU due to incorrect input order when invoking the kernel ``` import os import torch import torch.nn as nn from torch._inductor import config as inductor_config from torch._inductor.utils import fresh_inductor_cache M, N, K = 128, 128, 4096 dtype = torch.float16 X = torch.randn(M, N, dtype=dtype).cuda() A = torch.randn(M, K, dtype=dtype).cuda() B = torch.randn(K, N, dtype=dtype).cuda() class SimpleModel(nn.Module): def __init__(self): super().__init__() def forward(self, b, x, y): return torch.addmm(b, x, y) import ck4inductor ck_dir = os.path.dirname(ck4inductor.__file__) with fresh_inductor_cache(): with inductor_config.patch( { "max_autotune_gemm_backends": "CK", "autotune_fallback_to_aten": False, "compile_threads": 144, "rocm.ck_dir": ck_dir, } ): compiled_model = torch.compile(SimpleModel(), mode="max-autotune") res = compiled_model(X, A, B) res_eager = torch.addmm(X, A, B) torch.testing.assert_close(res, res_eager) ``` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,779,035,532
[minifier] Fix config generator for callables
yushangdi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
13
CONTRIBUTOR
Summary: When config contains callables, the current configs generated cannot be run: ``` torch._dynamo.config.reorderable_logging_functions = {<built-in function print>, <function warning at 0x7f774c595630>, <function log at 0x7f774c595870>, <function error at 0x7f774c595510>, <function info at 0x7f774c595750>, <built-in function warn>, <function exception at 0x7f774c5955a0>, <function debug at 0x7f774c5957e0>, <function critical at 0x7f774c5953f0>} ``` We fix the config to generate the right string, so the config is runnable, like below ``` import logging import warnings torch._dynamo.config.reorderable_logging_functions = { warnings.warn, logging.warn, print } ``` Test Plan: ``` buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:utils -- -r test_codegen_config ``` Differential Revision: D67998703
true
2,779,022,382
Cleanup gpt_fast benchmark
nmacchioni
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
This is an exact copy of https://github.com/pytorch/pytorch/pull/144484, I bricked the last PR running ghstack land :( Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144517
true
2,779,007,244
[dynamo, nested graph breaks] add nested graph break tests
williamwen42
open
[ "module: dynamo", "ciflow/inductor" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151056 * __->__ #144516 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,778,997,092
[while_loop] specialize when cond_fn return constants
ydwu4
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144515 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,778,985,134
Custom operation defined in C++, fails op_check and breaks on compile() and dynamo - only in real build
borisfom
closed
[ "triaged", "module: custom-operators", "oncall: pt2" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Here is what I get : Custom operation defined in C++, fails op_check: ``` E torch.testing._internal.optests.generate_tests.OpCheckError: opcheck(op, ...): test_aot_dispatch_static failed with The tensor has a non-zero number of elements, but its data is not allocated yet. E If you're using torch.compile/export/fx, it is likely that we are erroneously tracing into a custom kernel. To fix this, please wrap the custom kernel into an opaque custom op. Please see the following for details: https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html E If you're using Caffe2, Caffe2 uses a lazy allocation, so you will need to call mutable_data() or raw_mutable_data() to actually allocate memory. (scroll up for stack trace) ``` If I strip down all real functionality, it passes (see commented out block below) If I literally copy-paste that stripped-down implementation to create a small repro, I can't adequately model calling CUDA kernel from forward - see comments: Here, op.cpp: ``` #include <torch/library.h> #include <torch/torch.h> #include <cstdint> #include <stdexcept> #include <string> using namespace torch::autograd; using at::ScalarType; using torch::Tensor; static Tensor _segmented_transpose_fwd_op(const Tensor& tensor, const Tensor& segment_info, int64_t input_contiguous_as_info ) { // Just returning tensor back works fine: return tensor; // Fails if it's like: // ret = torch::empty_like(tensor); // <apply CUDA kernel to ret, tensor ... // return ret; } class SegmentedTranspose : public Function<SegmentedTranspose> { public: // Forward pass static Tensor forward(AutogradContext* ctx, const Tensor& tensor, const Tensor& segment_info, int64_t input_contiguous_as_info) { auto _tensor = tensor.is_contiguous() ? tensor : tensor.contiguous(); auto _segment_info = segment_info.is_contiguous() ? segment_info : segment_info.contiguous(); // Save the constant for use in the backward pass ctx->saved_data["segment_info"] = _segment_info; ctx->saved_data["input_contiguous_as_info"] = input_contiguous_as_info; // Actual forward return _segmented_transpose_fwd_op(_tensor, _segment_info, input_contiguous_as_info); } // Backward pass static tensor_list backward(AutogradContext* ctx, tensor_list grad_outputs) { // Retrieve the saved constant auto tensor = grad_outputs[0]; auto segment_info = ctx->saved_data["segment_info"].toTensor(); auto input_contiguous_as_info = ctx->saved_data["input_contiguous_as_info"].toInt(); auto currentStream = c10::cuda::getCurrentCUDAStream(); // using the whole new op here to enable double backward Tensor grad_input = SegmentedTranspose::apply(tensor, segment_info, !input_contiguous_as_info); return {grad_input, Tensor(), Tensor()}; // Return gradients for inputs } }; static Tensor _segmented_transpose_autograd( const Tensor& tensor, const Tensor& segment_info, int64_t input_contiguous_as_info ) { return SegmentedTranspose::apply(tensor, segment_info, input_contiguous_as_info); } TORCH_LIBRARY_FRAGMENT(cuequivariance_ops_torch, m) { // Define an operator schema m.def( "segmented_transpose_primitive(Tensor tensor, Tensor segment_info, int " "input_contiguous_as_info) -> Tensor"); } TORCH_LIBRARY_IMPL(cuequivariance_ops_torch, CUDA, m) { m.impl("segmented_transpose_primitive", _segmented_transpose_fwd_op ); } TORCH_LIBRARY_IMPL(cuequivariance_ops_torch, AutogradCUDA, m) { m.impl("segmented_transpose_primitive", _segmented_transpose_autograd); } ``` Test: ``` import torch # Load the shared library torch.ops.load_library("build/libcustom_operator.so") @torch.library.register_fake("cuequivariance_ops_torch::segmented_transpose_primitive") def _(a: torch.Tensor, b: torch.Tensor, c: int) -> torch.Tensor: return torch.empty_like(a) # Use the custom operator a = torch.tensor([1.0, 2.0], device="cuda", requires_grad=True) b = torch.tensor([3.0, 4.0], device="cuda", requires_grad=True) c = 5 class Mul(torch.nn.Module): def forward(self, a: torch.Tensor, b: torch.Tensor, c: int) -> torch.Tensor: return torch.ops.cuequivariance_ops_torch.segmented_transpose_primitive(a, b, c); from torch.library import opcheck ret = opcheck(torch.ops.cuequivariance_ops_torch.segmented_transpose_primitive,(a, b, c)) print(ret) mul = Mul() # result = mul(a, b, c) # print(result) # Output: tensor([20., 30.], device='cuda:0', grad_fn=<MulBackward1>) # mul = torch.export.export(mul, (a, b, c)).module() mul = torch.compile(mul) result = mul(a, b, c) print(result) # Output: result.sum().backward() print(a.grad, b.grad) ``` CMakeLists.txt: ``` cmake_minimum_required(VERSION 3.10) # Project name and version project(CustomOperator LANGUAGES CXX) # Set C++ standard set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD_REQUIRED ON) # Find PyTorch package find_package(Torch REQUIRED) # Include directories include_directories(${TORCH_INCLUDE_DIRS}) # Add source files add_library(custom_operator SHARED src/op.cpp) # Link against Torch library target_link_libraries(custom_operator "${TORCH_LIBRARIES}") # Set RPATH for shared library loading set_target_properties(custom_operator PROPERTIES INSTALL_RPATH "${TORCH_INSTALL_PREFIX}/lib") ``` Does that ring any bells ? Id does look like it tries to trace where it should not - how to prevent that ? ### Versions Pytorch nightly cc @chauhang @penguinwu @zou3519 @bdhirsh @yf225
true
2,778,968,204
[docs] Minor fixes to export and aoti docs
angelayi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,778,967,902
[BE][Opinfo] Delete redundant `dtypesIfCUDA`
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
If they are the same as CPU, no need to have that extra line Discovered while reviewing https://github.com/pytorch/pytorch/pull/143833
true
2,778,959,601
Illegal Memory Access when Using Trainable Biases in Flex Attention
cora-codes
open
[ "module: crash", "module: cuda", "triaged", "module: flex attention" ]
3
NONE
### 🐛 Describe the bug I'm back with another insane flex attention bug report. Recently, I was playing around with the learnable biases in flex attention when I started hitting an illegal memory access in the backward pass. After using `CUDA_LAUNCH_BLOCKING` I found it was happening in the following kernel during autotuning: ```python File "/tmp/torchinductor_ubuntu/jy/cjy56z23prjyls6tnwn4ay4mmmb6vvergqxm4wmnv5l7zlfzk66e.py", line 3784, in call triton_poi_fused_zeros_1.run(buf0, 100663296, grid=grid(100663296), stream=stream0) ``` ```python import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties triton_helpers.set_driver_to_gpu() @triton_heuristics.pointwise( size_hints={'x': 134217728}, filename=__file__, triton_meta={'signature': {'out_ptr0': '*fp32', 'xnumel': 'i32'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=114, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, warp_size=32), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_1', 'mutated_arg_names': [], 'optimize_mem': True, 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'BC5F52D6E7923B9DC1733AF7005D933F35B86508E4142BC7F067F48E9C59404B', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 100663296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, None) ``` What might be also related is the following inductor warnings beforehand: ``` [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] Failed to reorder for topological_sort_lpmf: SchedulerBuffer(scheduler=<torch._inductor.scheduler.Scheduler object at 0x750d4019caf0>, node=ComputedBuffer(name='buf0', layout=FixedLayout('cuda:0', torch.float32, size=[1, 1, 384, 256], stride=[98304, 98304, 1, 384]), data=Reduction( [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] 'cuda', [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] torch.float32, [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] def inner_fn(index, rindex): [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] _, _, i2, i3 = index [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] r0_0 = rindex [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] tmp0 = ops.load(tangents_1, i2 + 384 * ModularIndexing(r0_0 + 256 * i3, 1, 4096) + 1572864 * ModularIndexing(r0_0 + 256 * i3, 4096, 16)) [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] tmp1 = ops.load(add_24, i2 + 384 * ModularIndexing(r0_0 + 256 * i3, 1, 4096) + 1572864 * ModularIndexing(r0_0 + 256 * i3, 4096, 16)) [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] tmp2 = ops.load(rsqrt_6, 4096 * ModularIndexing(r0_0 + 256 * i3, 4096, 16) + ModularIndexing(r0_0 + 256 * i3, 1, 4096)) [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] tmp3 = tmp1 * tmp2 [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] tmp4 = tmp0 * tmp3 [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] return tmp4 [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] , [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] ranges=[1, 1, 384, 256], [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] reduction_ranges=[256], [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] reduction_type=sum, [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] origin_node=None, [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] origins=OrderedSet([sum_21, mul_52, mul_49]) [rank0]:E0109 15:24:39.114000 535215 torch/_inductor/memory.py:646] [0/1] )), defining_op=SchedulerNode(name='op0'), users=[NodeUser(node=SchedulerNode(name='op1'), can_inplace=False, is_weak=False), NodeUser(node=SchedulerNode(name='op27'), can_inplace=False, is_weak=False)], mpi_buffer=MemoryPlanningInfoForBuffer(size_alloc=0, size_free=0, succ_nodes=OrderedSet([]))) ``` I know this likely isn't enough to fix the issue and I'd love to provide as repo as soon as possible, I'm just having trouble tracing down what exactly is going wrong here. ### Versions 2.7.0.dev20250109+cu126 cc @ptrblck @msaroufim @eqy @Chillee @drisspg @yanboliang @BoyuanFeng @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @yf225
true
2,778,955,241
[BE] Fix extra-semi warnings in int4mm_kernel.cpp
malfet
closed
[ "module: cpu", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes ``` In file included from /Users/nshulga/git/pytorch/pytorch/build/aten/src/ATen/native/cpu/int4mm_kernel.cpp.DEFAULT.cpp:1: /Users/nshulga/git/pytorch/pytorch/aten/src/ATen/native/cpu/int4mm_kernel.cpp:998:2: warning: extra ';' outside of a function is incompatible with C++98 [-Wc++98-compat-extra-semi] }; ^ ``` cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,778,942,148
[MPSInductor] Add dummy properties
malfet
closed
[ "Merged", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144796 * #144795 * __->__ #144509 For compute capabilitiy (which is an empty string, same as CPU) And for multicore count return 8, as this is smallest number of GPU cores on Apple silicon cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,778,941,223
Save integral tensor data for ET
shengfukevin
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
22
CONTRIBUTOR
Summary: et_replay uses random data to run operators, however, the operators using index tensor to access memory won't work with random data. It usually ran into two exceptions: 1. illegal memory access since index is out of range, it has been fixed with the environment variable ENABLE_PYTORCH_EXECUTION_TRACE_SAVE_INTEGRAL_TENSOR_RANGE to record the min/max value of index tensors. 2. unaligned memory access, FBGEMM ops have speical requirements for the memory layout. To fix the second execption, ENABLE_PYTORCH_EXECUTION_TRACE_SAVE_INTEGRAL_TENSOR is added to allow user to specify the node names, separated by comma, so ET will save the integral tensor data for these nodes. The saved data will be used in et_replay. Be careful to turn on this option since it will use more space to save the extra data. Test Plan: buck2 run mode/opt caffe2/test:test_profiler_cuda -- profiler.test_execution_trace.TestExecutionTraceCUDA.test_execution_trace_record_integral_tensor_data_cuda Differential Revision: D67989856
true
2,778,910,682
blocked benchmarking to avoid queue limit
nmacchioni
closed
[ "Stale", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144507 * #144505 * #144501 * #144353 * #133287 * #144365 * #133121 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,778,874,645
Add instantiation level to CutlassArgs
drisspg
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/slow" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144506 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,778,871,575
better overlapping of sleep and memory warmup
nmacchioni
closed
[ "Stale", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144507 * __->__ #144505 * #144501 * #144353 * #133287 * #144365 * #133121 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,778,835,866
Confusing documentation for torch.bucketize
blaine-rister
closed
[ "module: docs", "triaged", "actionable", "module: python frontend" ]
3
CONTRIBUTOR
### 📚 The doc issue I was reading through this page describing `torch.bucketize`, and it took me a few passes to understand the behavior of the `right` argument. https://pytorch.org/docs/stable/generated/torch.bucketize.html It says: > right ([bool](https://docs.python.org/3/library/functions.html#bool), optional) – if False, return the first suitable location that is found. If True, return the last such index. If no suitable index found, return 0 for non-numerical value (eg. nan, inf) or the size of boundaries (one pass the last index). In other words, if False, gets the lower bound index for each value in input from boundaries. If True, gets the upper bound index instead. Default value is False. This seems to suggest that there are multiple suitable buckets for a value. In reality, there is only ever one suitable bucket, and `right` defines the behavior when `input` equals `boundaries`. The previous section describes it much more clearly. > right | returned index satisfies > -- | -- > False | boundaries[i-1] < input[m][n]...[l][x] <= boundaries[i] > True | boundaries[i-1] <= input[m][n]...[l][x] < boundaries[i] ### Suggest a potential alternative/fix Would it be more precise to say something like this? > right ([bool](https://docs.python.org/3/library/functions.html#bool), optional) – controls how buckets are assigned to values in `boundaries`. Let's say `input[i] == boundaries[j]` for some indices `i` and `j`. If `right == False`, `out[i] == j`. Else, `out[i] == j+1`. cc @svekars @brycebortree @sekyondaMeta @AlannaBurke @albanD
true
2,778,832,136
Release 2.6.0 validations checklist and cherry-picks
atalman
closed
[ "oncall: releng", "triaged" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Similar to: https://github.com/pytorch/pytorch/issues/134694 We need to make sure that: - [x] Python 3.13 wheel validate - https://github.com/pytorch/test-infra/actions/runs/12898326715/job/35965201816#step:14:3798 - [x] Validate Metadata section of wheels - make sure python versions are set - [x] PyTorch 2.5.0 exposes statically linked libstdc++ CXX11 ABI symbols : https://github.com/pytorch/pytorch/issues/133437 - [ ] CUDA - [x] pypi binaries with slimmed dependencies are usable in standard AWS containers 2023 regression in 1.13 - https://github.com/pytorch/test-infra/actions/runs/12936813683/job/36083269755#step:14:125 - [ ] Check cuda 1.12.1 update issue: https://github.com/pytorch/pytorch/issues/94772 with small wheels . Passes on GPU but failing on CPU, new issue: https://github.com/pytorch/pytorch/issues/145801 - [ ] `torch.compile` - [x] Basic test works (for example see test mentioned in https://github.com/openai/triton/pull/1176 ) in PyTorch docker container - [x] `torch.compile` raises an error if used on Windows. Test (part of torchvision): https://github.com/pytorch/test-infra/actions/runs/12935566485/job/36079281843#step:9:486 - [x] `torch.compile` works on 3.13 : Test: https://github.com/pytorch/test-infra/actions/runs/12873664387/job/35891677345#step:14:3604 - [x] `torch.compile` raises error on 3.13t: https://github.com/pytorch/test-infra/actions/runs/12873664387/job/35891678653#step:14:2811 - MPS - [x] Resnet is usable out of the box (https://github.com/pytorch/test-infra/actions/runs/12898326715/job/35965216838#step:9:1996) - Is torchvision usable? True German shepherd (cpu): 37.6% German shepherd (mps): 34.1% - [x] Validate docker release builds Issues/Milestone validation - [x] https://github.com/pytorch/pytorch/issues/137597 - [x] https://github.com/pytorch/pytorch/issues/140797 @atalman - [x] https://github.com/pytorch/pytorch/pull/144358 @justinchuby - [ ] https://github.com/pytorch/pytorch/pull/143242 @jithunnair-amd - [x] https://github.com/pytorch/pytorch/issues/142203 @atalman - [x] https://github.com/pytorch/pytorch/issues/143933 @atalman - [x] https://github.com/pytorch/pytorch/issues/142266 @atalman - [x] https://github.com/pytorch/pytorch/issues/141909 @malfet - [x] https://github.com/pytorch/pytorch/issues/142344 @atalman - [x] https://github.com/pytorch/pytorch/issues/141770 @justinchuby - [x] https://github.com/pytorch/pytorch/issues/141046 @kit1980 - [x] https://github.com/pytorch/pytorch/issues/139722 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/142448 @atalman - [x] https://github.com/pytorch/pytorch/pull/142113 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/141230 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/141949 @chuanqi129 - [x] https://github.com/pytorch/pytorch/issues/142043 @atalman - [x] https://github.com/pytorch/pytorch/pull/141948 @atalman - [x] https://github.com/pytorch/pytorch/pull/141800 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/141333 @chuanqi129 - [x] https://github.com/pytorch/pytorch/issues/141471 @atalman - [x] https://github.com/pytorch/pytorch/issues/135867 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/141569 @justinchuby - [x] https://github.com/pytorch/pytorch/pull/141658 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/138049 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/140873 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/140865 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/137886 @chuanqi129 - [x] https://github.com/pytorch/pytorch/issues/141729 @justinchuby - [x] https://github.com/pytorch/pytorch/pull/141413 @justinchuby - [x] https://github.com/pytorch/pytorch/issues/141260 @justinchuby - [x] https://github.com/pytorch/pytorch/issues/141080 @justinchuby - [x] https://github.com/pytorch/pytorch/pull/137428 @justinchuby - [x] https://github.com/pytorch/pytorch/issues/137374 @atalman - [x] https://github.com/pytorch/pytorch/issues/138340 @drisspg - [x] https://github.com/pytorch/pytorch/pull/137966 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/138802 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/134666 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/138186 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/138727 @chuanqi129 - [ ] https://github.com/pytorch/pytorch/pull/138354 @nWEIdia - [x] https://github.com/pytorch/pytorch/issues/138391 @justinchuby - [x] https://github.com/pytorch/pytorch/issues/136559 @kit1980 - [x] https://github.com/pytorch/pytorch/pull/137338 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/138992 @chuanqi129 - [x] https://github.com/pytorch/pytorch/issues/138478 @kit1980 - [x] https://github.com/pytorch/pytorch/issues/138851 @kit1980 - [x] https://github.com/pytorch/pytorch/pull/137394 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/138189 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/138543 @kit1980 - [x] https://github.com/pytorch/pytorch/pull/138331 @chuanqi129 - [x] https://github.com/pytorch/pytorch/pull/137890 @kit1980 - [x] https://github.com/pytorch/pytorch/pull/137889 @kit1980 - [x] https://github.com/pytorch/pytorch/pull/137745 @kit1980 - [x] https://github.com/pytorch/pytorch/pull/137267 @kit1980 - [x] https://github.com/pytorch/pytorch/pull/137199 @yifuwang - [ ] https://github.com/pytorch/pytorch/issues/134929 @atalman Amazon Linux 2023 - [x] https://github.com/pytorch/pytorch/issues/138482 - [x] https://github.com/pytorch/pytorch/issues/144433 - https://github.com/pytorch/test-infra/actions/runs/12936813683/job/36083269755#step:14:125 XPU Binaries Validations: - [x] https://github.com/pytorch/pytorch/issues/145290 ### Cherry-Picks to validate ### Versions 2.6.0
true
2,778,830,393
Remove is_reduced_floating_point from namespace std
swolchok
closed
[ "module: cpu", "fb-exported", "Merged", "ciflow/trunk", "release notes: cpp", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144502 Partial fix for #144495. Avoiding BC-break using existing practice of removing only if FBCODE_CAFFE2 and C10_NODEPRECATED are not defined. Differential Revision: [D67992342](https://our.internmc.facebook.com/intern/diff/D67992342/) cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,778,815,139
add most basic event packing
nmacchioni
closed
[ "Stale", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144507 * #144505 * __->__ #144501 * #144353 * #133287 * #144365 * #133121 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,778,814,887
[MPSInductor] Fix `masked`/`where` for inf values
malfet
closed
[ "Merged", "topic: bug fixes", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Move constant to value logic to `value_to_metal` function (similar to `value_to_cpp`) Call it from `constant` as well as `where` ops (which is in turn being called from `masked` op Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,778,797,722
Add AOTAutogradCache support for cache hot loading APIs
jamesjwu
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
8
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144499 This diff adds AOTAutogradCache support to the mega cache. Differential Revision: [D67991059](https://our.internmc.facebook.com/intern/diff/D67991059/) **NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D67991059/)! cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,778,792,558
[PGNCCL] Add an API to get the status/error code at the PG level
shuqiangzhang
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144498 Summary: This PR is basically a replacement of https://github.com/pytorch/pytorch/pull/140087, which caused some perf drop due to frequent TCPStore check in watchdog thread. The fix is to move the tcpstore check in monitoring thread If unhealthy, the user should be able to get the type of errors, e.g., timeout,nccl error or remote error. This API is applied to PG level, compared to the work.get_future_result() API which is applied to Work Level. Error detection at PG level is much more convenient for users to handle the PG failure as a whole, e.g, restarting the PG. Error handling at the work level is still useful for users to attach work specific context and debug the RC of the specific failing work/collective Note it is critical for all ranks in the PG to be notified about an error as soon as it occurs, so we introduce an errorType of REMOTE_ERROR, which is 'broadcasted' from a src rank (which detects a local error) to all other ranks in the PG, the broadcast is done through TCPStore currently Tags: cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,778,787,069
[Inductor] Restrict ND tiling analysis to MemoryDeps
blaine-rister
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
# Issue https://github.com/pytorch/pytorch/pull/137243 introduced a feature where the ND tiling algorithm analyzes memory dependencies. It iterates over all `Dep`'s of the kernel. However, the analysis is only applicable to `MemoryDep` instances, which are a subclass of `Dep`. In particular, it doesn't work for `StarDep`'s, for the reasons described here: https://github.com/pytorch/pytorch/blob/main/torch/_inductor/codegen/simd.py#L1653 # Fix This PR changes the algorithm to only iterate over `MemoryDep` instances. # Testing Parameterized an existing test for `torch.bucketize` to also run with ND tiling. This test emits a node with `StarDep`'s. Without this PR, the compiler would crash on this test case. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,778,778,587
[c10d] Fix CudaEventCache for dangling references
fduwjj
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)", "topic: bug fixes" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144496 Reported in https://github.com/pytorch/pytorch/issues/143470, we have a dangling references in `CudaEventCache`. So we want to fix it. 1. We add a unit test to repro the issue mentioned in the issue. 2. Instead of converting variables to shared pointers as suggested in the issue, we then make the cache itself a shared pointer. So if the thread creates the cache dies before all events get recycled, the cache is still there until the last CudaEvent get deleted. (thanks for the suggestion from @kwen2501 ) cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @wz337 @wconstab @d4l3k @c-p-i-o
true
2,778,776,951
c10/util/BFloat16-math.h has undefined behavior
swolchok
open
[ "module: build", "triaged", "module: core aten" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Per https://en.cppreference.com/w/cpp/language/extending_std: > It is undefined behavior to add declarations or definitions to namespace std or to any namespace nested within std, with a few exceptions noted below. The "exceptions noted below" do not seem to include what we're doing in [BFloat16-math.h](https://github.com/pytorch/pytorch/blob/main/c10/util/BFloat16-math.h), and specifically don't include adding overloads of functions that take program-defined types. This problem is currently "theoretical" in that I am not aware of practical issues resulting from this header at this time. To fix this, we would need to at least put the functions in BFloat16-math.h into a namespace other than `std` (either `c10` or a new one, like say `c10_math`). Then, we could either: - have callers do `using std::pow` and all the other cmath functions, and rely on [ADL](https://quuxplusone.github.io/blog/2019/04/26/what-is-adl/) to select the c10/c10_math version for half/BFloat16 - `using` all the std:: functions into our namespace (which IMO argues toward that namespace being a new one like `c10_math`). ### Versions N/A cc @malfet @seemethere @manuelcandales @SherlockNoMad @angelayi
true
2,778,764,409
[Profiler] Hide Kineto Step Tracker Behind Env Var
sraikund16
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: profiler", "topic: bug fixes" ]
6
CONTRIBUTOR
Summary: To support iteration-based on-demand we have step tracker hooks for both the scheduler and for the optimizer to control Kineto's backend FSM. We already hide the optimizer step tracker behind and ENV_VAR to prevent any extra overhead from the frontend profiler down to the kineto backend, but we don't do any such thing for the profiler step tracker. It also seems to cause errors occasionally in the FSM having both auto-trace and on-demand occurring at the same time. To remedy this issue, lets put in a patch to guard the step incrementer for the frontend step function. This will bypass all of the on-demand logic which shouldn't occur in auto-trace Test Plan: Ran `buck run mode/dev-nosan kineto/libkineto/fb/integration_tests:pytorch_resnet_integration_test -- --enable_profiling --trace_handler=auto_trace --with_stack` and added prints in on-demand functions (performLoopStep and collectTrace) and saw that neither were called even though they were called on main. Also got following healthy traces: Auto-Trace (schedule-based): https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Jan_09_12_43_37.1122140.pt.trace.json.gz&bucket=gpu_traces Timing Based On-demand: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/0/1736456722/localhost/libkineto_activities_1286261.json.gz&bucket=gpu_traces Iteration Based On-demand: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/0/1736456889/localhost/libkineto_activities_1304781.json.gz&bucket=gpu_traces Differential Revision: D67990080
true
2,778,688,291
Amazon Linux 2023: Preload cusparseLt.so
pytorchbot
closed
[ "open source" ]
1
COLLABORATOR
Fixes https://github.com/pytorch/pytorch/issues/144433 Test with some debug statements added: ``` >>> import torch trying to load libcublas.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cublas/lib/libcublas.so.12'] trying to load libcublas.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cublas/lib/libcublas.so.12 trying to load libcudnn.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cudnn/lib/libcudnn.so.9'] trying to load libcudnn.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cudnn/lib/libcudnn.so.9 trying to load libnvrtc.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12'] trying to load libnvrtc.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12 trying to load libcudart.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12'] trying to load libcudart.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12 trying to load libcupti.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12'] trying to load libcupti.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 trying to load libcufft.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cufft/lib/libcufft.so.11'] trying to load libcufft.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cufft/lib/libcufft.so.11 trying to load libcurand.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/curand/lib/libcurand.so.10'] trying to load libcurand.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/curand/lib/libcurand.so.10 trying to load libnvJitLink.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12'] trying to load libnvJitLink.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12 trying to load libcusparse.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cusparse/lib/libcusparse.so.12'] trying to load libcusparse.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cusparse/lib/libcusparse.so.12 trying to load libcusparseLt.so.*[0-9] from [] trying to load libcusparseLt.so.*[0-9] from /usr/local/lib/python3.9/site-packages/cusparselt/lib/libcusparseLt.so.0 trying to load libcusolver.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cusolver/lib/libcusolver.so.11'] trying to load libcusolver.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cusolver/lib/libcusolver.so.11 trying to load libnccl.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/nccl/lib/libnccl.so.2'] trying to load libnccl.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/nccl/lib/libnccl.so.2 trying to load libnvToolsExt.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/nvtx/lib/libnvToolsExt.so.1'] trying to load libnvToolsExt.so.*[0-9] from /usr/local/lib/python3.9/site- packages/nvidia/nvtx/lib/libnvToolsExt.so.1 /usr/local/lib64/python3.9/site-packages/torch/_subclasses/functional_tensor.py:275: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu")) >>> exit() ```
true
2,778,660,673
patch for block-wise quantization + pt2e
cccclai
closed
[ "fb-exported", "Merged", "Reverted", "ciflow/trunk", "release notes: quantization", "ciflow/inductor", "release notes: export", "ci-no-td" ]
26
CONTRIBUTOR
Summary: As title, needed for enable qcom block-wise quantization kernel Test Plan: local test Differential Revision: D67985303
true
2,778,642,814
Restore support for other types of async_compile pools (spawn, fork)
masnesral
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144491 Summary: https://github.com/pytorch/pytorch/pull/142001 removed support for process pools other than "subprocess", but some OSS users still find it useful; put it back. Test Plan: New unit test cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,778,627,067
use collective_comm activity for hccl traces
fenypatel99
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
5
MEMBER
Summary: Use existing collective_comm (currently used for nccl traces) for hccl traces as well. Only init the nccl profiler when KINETO_HAS_NCCL_PROFILER is defined so as to not init it when the build is for MTIA/HCCL Test Plan: CIs Differential Revision: D67285333
true
2,778,624,586
Introduce cache clearing APIs for the lazy graph executor
rpsilva-aws
closed
[ "oncall: distributed", "triaged", "open source", "lazy", "Merged", "module: lazy", "ciflow/trunk", "release notes: lazy", "module: inductor", "module: dynamo" ]
16
CONTRIBUTOR
This PR introduces two new methods to the LazyGraphExecutor class: - ClearComputationCache(): Allows clearing the entire computation cache. - RemoveFromComputationCache(hash): Enables removal of specific cache entries based on their hash. The main objective is to expose cache management functionality for debugging cache hits and misses across different computations. For instance: - Reset the cache state in tests, allowing reuse of the same computation client to evaluate cache logic consistently. - Selectively remove cache entries to analyze the impact on subsequent computations. - Improve observability into the cache behavior, aiding in the investigation of cache-related issues or optimizations. On the XLA lazy graph executor, we want to run a series of tests that modify some parts of the HLO module proto of the computation, and we need a means to ensure that the hash is agnostic to some elements (OpMetadata in the XLA proto data). Hence, it would be easy to parameterize the test, clear the cache and validate that the resulting hash is the same between runs. Otherwise, we'd need to hardcode the resulting serialized hash. Simultaneously, **another motivation**, is that users could also clear some computation hashes for an added flexibility in their applications, by introducing their own custom strategies for maintaining the cache (without relying on the default LRU). cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,778,615,412
Back out "[AoTI Minifier] UX Improvement"
yushangdi
closed
[ "fb-exported", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Summary: Original commit changeset: 2966389eb680 Original Phabricator Diff: D67299312 Test Plan: - Differential Revision: D67985187 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,778,609,529
retracing in strict doesn't like dataclass registration
avikchaudhuri
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144487 Retracing in strict doesn't seem to like dataclass registration. Just refactoring some tests to make this explicit (whereas other export testing variants work fine). Differential Revision: [D67985149](https://our.internmc.facebook.com/intern/diff/D67985149/)
true
2,778,608,076
Simplify vec128 bfloat16/half fmadds
swolchok
closed
[ "module: cpu", "fb-exported", "Merged", "ciflow/trunk" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144486 I was being silly when I wrote these; it doesn't make sense to do four conversions and two FMAs when we could do a multiply and an add. Differential Revision: [D67985074](https://our.internmc.facebook.com/intern/diff/D67985074/) cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,778,585,319
[dynamo] Use polyfill to implement comparison operators
anijain2305
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "keep-going", "ci-no-td" ]
20
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144485 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,778,579,435
Cleanup gpt_fast benchmark
nmacchioni
closed
[ "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
Prefer to use `benchmarker.benchmark` instead of explicitly selecting `benchmarker.benchmark_cpu` or `benchmarker.benchmark_gpu` Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144484
true
2,778,578,920
Stop ignoring mypy errors in torch/testing/_internal/common_utils.py
aorenste
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ciflow/periodic", "ci-no-td" ]
17
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #141659 * __->__ #144483
true
2,778,553,195
Link to transformer tutorial in transformer docs
pytorchbot
closed
[ "open source" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144425 <img width="1045" alt="Screenshot 2025-01-08 at 4 50 20 PM" src="https://github.com/user-attachments/assets/05adfecb-8a23-4c48-9a2c-50c5b3f886b0" />
true
2,778,532,265
DISABLED MULTIPLE ignore this, this is a test
clee2000
closed
[]
1
CONTRIBUTOR
This is a test, feel free to ignore this disable the following tests: ``` test_abcd123 (TestSuiteABCDEF): mac test_abcd12asdf3 (TestSuiteABCDEF) test_abcd1asdf23 (TestSuiteABCDEF): linux ```
true
2,778,501,349
UNSTABLE pull / linux-jammy-py3-clang12-executorch / test (executorch)
huydhn
closed
[ "module: ci", "triaged", "unstable" ]
13
CONTRIBUTOR
The test starts failing flakily possibly after https://github.com/pytorch/pytorch/pull/143787 lands and needs to be updated cc @seemethere @malfet @pytorch/pytorch-dev-infra @mergennachin
true
2,778,480,860
Failures because of deprecated version of `actions/download-artifact: v3`
kit1980
closed
[ "ci: sev" ]
4
CONTRIBUTOR
## Current Status Mitigated ## Error looks like > Error: This request has been automatically failed because it uses a deprecated version of `actions/download-artifact: v3`. Learn more: https://github.blog/changelog/2024-04-16-deprecation-notice-v3-of-the-artifact-actions/. This request has been automatically failed because it uses a deprecated version of `actions/upload-artifact: v3`. Learn more: https://github.blog/changelog/2024-04-16-deprecation-notice-v3-of-the-artifact-actions/ https://github.com/pytorch/pytorch/actions/runs/12694840556/job/35385520678 ## Incident timeline (all times pacific) *Include when the incident began, when it was detected, mitigated, root caused, and finally closed.* ## User impact *How does this affect users of PyTorch CI?* ## Root cause *What was the root cause of this issue?* ## Mitigation *How did we mitigate the issue?* ## Prevention/followups *How do we prevent issues like this in the future?*
true
2,778,376,726
[dynamo] Support using UserDefinedFunction as argument (as_proxy).
IvanKobzarev
open
[ "feature", "triaged", "oncall: pt2", "module: dynamo" ]
2
CONTRIBUTOR
### 🚀 The feature, motivation and pitch At the moment using UserDefainedFunction as_proxy() fails as unimplemented. The original reason why it is needed - we want to dynamo trace through Subclasses constructor that receives python Callable as an argument (and it is not used inside the constructor). Dynamo tries to inline it and fails on UserDefinedFunction. as_proxy() The straightforward approach will be: 1. trace through UserDefinedFn with speculate_subgraph and register subgraph as attribute of output_graph At the moment of using UserDefinedFn, arguments for this function are not specified. One of the ideas - could we put some "stub", empty subgraph at the moment of creating an argument and replace it with real subgraph only when this UserDefinedFunciton is called? The original testcase: ``` def test_unwrap_subclass_parameters_with_unused_callable_arg_in_ctor(self): def fn(x): return x _test_fn = fn class SC(WrapperSubclass): @staticmethod def __new__(cls, a, fn, outer_size=None, outer_stride=None): return WrapperSubclass.__new__(cls, a, outer_size, outer_stride) def __init__(self, a, fn, outer_size=None, outer_stride=None): self.a = a self.fn = fn def __tensor_flatten__(self): return ["a"], [self.fn] @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): a = inner_tensors["a"] fn = meta[0] return SC(a, fn, outer_size, outer_stride) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if kwargs is None: kwargs = {} args_a = pytree.tree_map_only(cls, lambda x: x.a, args) kwargs_a = pytree.tree_map_only(cls, lambda x: x.a, kwargs) out_a = func(*args_a, **kwargs_a) out_a_flat, spec = pytree.tree_flatten(out_a) out_flat = [ cls(o_a, _test_fn) if isinstance(o_a, torch.Tensor) else o_a for o_a in out_a_flat ] out = pytree.tree_unflatten(out_flat, spec) from torch._higher_order_ops.cond import cond_op if func is cond_op: return out else: return return_and_correct_aliasing(func, args, kwargs, out) class M(torch.nn.Module): def __init__(self): super().__init__() self.p1 = torch.nn.Parameter(torch.ones(3, 4)) self.p2 = torch.nn.Parameter(SC(torch.ones(3, 4), _test_fn)) def forward(self, x): return x + 2 * self.p1 + self.p2 m = M() from torch._functorch._aot_autograd.subclass_parametrization import ( unwrap_tensor_subclass_parameters, ) unwrap_tensor_subclass_parameters(m) x = torch.randn(3, 4) comp_fn = torch.compile(m, backend="aot_eager", fullgraph=True) out = comp_fn(x) ``` Error: ``` File "/data/users/ivankobzarev/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1685, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ivankobzarev/a/pytorch/torch/_dynamo/symbolic_convert.py", line 921, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/data/users/ivankobzarev/a/pytorch/torch/_dynamo/variables/user_defined.py", line 600, in call_function *proxy_args_kwargs(args, kwargs, tx=tx), File "/data/users/ivankobzarev/a/pytorch/torch/_dynamo/utils.py", line 976, in proxy_args_kwargs unimplemented( File "/data/users/ivankobzarev/a/pytorch/torch/_dynamo/exc.py", line 355, in unimplemented raise Unsupported(msg, case_name=case_name) from from_exc torch._dynamo.exc.Unsupported: call_function args: TensorVariable() UserFunctionVariable() ConstantVariable(NoneType: None) ConstantVariable(NoneType: None) from user code: File "/data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py", line 6421, in forward return x + 2 * self.p1 + self.p2 File "/data/users/ivankobzarev/a/pytorch/torch/nn/utils/parametrize.py", line 407, in get_parametrized return parametrization() File "/data/users/ivankobzarev/a/pytorch/torch/nn/utils/parametrize.py", line 303, in forward x = self[0](*originals) File "/data/users/ivankobzarev/a/pytorch/torch/_functorch/_aot_autograd/subclass_parametrization.py", line 16, in forward rebuilt = tp.__tensor_unflatten__(d, meta, None, None) # type: ignore[attr-defined] File "/data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py", line 6391, in __tensor_unflatten__ return SC(a, fn, outer_size, outer_stride) ``` ### Alternatives _No response_ ### Additional context _No response_ cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,778,337,442
Amazon Linux 2023: Preload cusparseLt.so
atalman
closed
[ "Merged", "topic: not user facing" ]
5
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/144433 Test with some debug statements added: ``` >>> import torch trying to load libcublas.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cublas/lib/libcublas.so.12'] trying to load libcublas.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cublas/lib/libcublas.so.12 trying to load libcudnn.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cudnn/lib/libcudnn.so.9'] trying to load libcudnn.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cudnn/lib/libcudnn.so.9 trying to load libnvrtc.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12'] trying to load libnvrtc.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12 trying to load libcudart.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12'] trying to load libcudart.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12 trying to load libcupti.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12'] trying to load libcupti.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 trying to load libcufft.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cufft/lib/libcufft.so.11'] trying to load libcufft.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cufft/lib/libcufft.so.11 trying to load libcurand.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/curand/lib/libcurand.so.10'] trying to load libcurand.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/curand/lib/libcurand.so.10 trying to load libnvJitLink.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12'] trying to load libnvJitLink.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12 trying to load libcusparse.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cusparse/lib/libcusparse.so.12'] trying to load libcusparse.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cusparse/lib/libcusparse.so.12 trying to load libcusparseLt.so.*[0-9] from [] trying to load libcusparseLt.so.*[0-9] from /usr/local/lib/python3.9/site-packages/cusparselt/lib/libcusparseLt.so.0 trying to load libcusolver.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/cusolver/lib/libcusolver.so.11'] trying to load libcusolver.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/cusolver/lib/libcusolver.so.11 trying to load libnccl.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/nccl/lib/libnccl.so.2'] trying to load libnccl.so.*[0-9] from /usr/local/lib/python3.9/site-packages/nvidia/nccl/lib/libnccl.so.2 trying to load libnvToolsExt.so.*[0-9] from ['/usr/local/lib/python3.9/site-packages/nvidia/nvtx/lib/libnvToolsExt.so.1'] trying to load libnvToolsExt.so.*[0-9] from /usr/local/lib/python3.9/site- packages/nvidia/nvtx/lib/libnvToolsExt.so.1 /usr/local/lib64/python3.9/site-packages/torch/_subclasses/functional_tensor.py:275: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu")) >>> exit() ```
true
2,778,300,277
[ROCm] add support for gfx12
jeffdaily
closed
[ "module: rocm", "open source", "release notes: linalg_frontend", "ciflow/rocm" ]
2
COLLABORATOR
- add gfx1200 gfx1201 to allowed hipblaslt lists - enable hipify of CUDA_R_8F_E4M3 and CUDA_R_8F_E5M2 - enable types of Float8_e4m3fn Float8_e5m2 - conditionalize tests to create appropriate F8 types for given gfx target cc @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,778,298,885
Partially Revert D67299312: [AoTI Minifier] UX Improvement" for one test failure
yushangdi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
7
CONTRIBUTOR
Summary: This diff partially reverts D67299312 D67299312: [AoTI Minifier] UX Improvement by yushangdi causes the following test failure: Differential Revision: D67963019 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,778,250,585
Fix block pointer test module for triton CPU and add to CI
kundaMwiza
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
- Fix for BlockPointerTestBase._discontiguous_tensor. It defaults to constructing CUDA tensors, causing a failure if CUDA is not available. - Add test module to CI to prevent errors like the above from occurring. Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,778,216,066
[20/N] Fix extra warnings brought by clang-tidy-17
cyyever
closed
[ "oncall: distributed", "module: cpu", "triaged", "open source", "release notes: cpp" ]
7
COLLABORATOR
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,778,149,008
[BE]: Remove redundant contiguous copy in torch/_decomp/decompositions
Skylion007
closed
[ "open source", "better-engineering", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
6
COLLABORATOR
Removes a redundant extra copy by calling contiguous. Instead, just add a memory_format flag to the dtype cast.
true
2,778,102,291
Add max kwarg to torch._check with alternate size oblivious semantics
ezyang
closed
[ "Merged", "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144745 * #144743 * __->__ #144471 Fixes https://github.com/pytorch/pytorch/issues/120288 for the static bound case I had been tying myself in knots in the original issue about the fact that we can't really do symbolic bounds like u0 < s0. But then I realized, "Wait, but the static bounds are easy!" So this makes it so you can also exclude a specific upper bound when doing size oblivious tests, which is enough to solve https://github.com/pytorch/pytorch/issues/123592#issuecomment-2574556708 It's written very dirtily, maybe there's some cleanup. Bikeshed on the public API name also welcome. Signed-off-by: Edward Z. Yang <ezyang@meta.com> cc @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,778,092,242
Partitioner's auto-AC misbehaves with mixed dtypes
lw
open
[ "module: activation checkpointing", "feature", "module: autograd", "triaged", "oncall: pt2" ]
4
CONTRIBUTOR
### 🚀 The feature, motivation and pitch When using the partitioner to do some automatic selective activation checkpointing, the default mode consists in estimating the runtime cost of the operators by computing the number of FLOPs they consume. Unfortunately, this is a bad proxy metric in cases where different operators are executed with different dtypes because, in a sense, not all FLOPs are equal. Concretely, this occurs when using fp8 matmuls on H100 GPUs, because (in most/all current recipes) only the matmuls are converted to fp8, whereas the self-attention remains in bf16. Moreover, in some cases only _some_ matmuls get converted to fp8 (e.g., some layers, or some specific weights within layers). If the partitioner just compares FLOPs without adjusting them by the time it takes to execute a FLOP in a given dtype this might lead to a suboptimal solution to the AC problem. ### Alternatives _No response_ ### Additional context _No response_ cc @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan @chauhang @penguinwu
true
2,778,055,487
[BE]: Replace clone detach with detach clone to be more efficient
Skylion007
closed
[ "open source", "better-engineering", "Merged", "ciflow/trunk", "release notes: vulkan" ]
3
COLLABORATOR
Follow up to #144270 and fix some vulkan code
true
2,778,039,277
[BE]: Follow detach().clone() pattern for SGD
Skylion007
open
[ "triaged", "open source", "better-engineering", "Stale", "ciflow/trunk", "release notes: optim" ]
15
COLLABORATOR
Clone() copies the gradients too, but we immediately detach them. Detach returns a view of the tensor without it's gradients, and the copies only that subset. Related to #144270
true
2,778,010,521
[BE]: Remove redundant contiguous copy in flex attention
Skylion007
closed
[ "open source", "better-engineering", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
COLLABORATOR
Removes a redundant potential copy, instead use memory_format kwarg to fuse both operations into a single copy.
true
2,777,835,430
DISABLED test_qs8_conv1d_batchnorm_seq (__main__.TestConv1d)
albanD
closed
[ "triaged", "module: flaky-tests", "skipped" ]
2
COLLABORATOR
Platforms: linux, executorch This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22backends%2Fxnnpack%2Ftest%2Fops%2Ftest_conv1d.py%3A%3ATestConv1d%3A%3Atest_qs8_conv1d_batchnorm_seq%22%5D)). This is most likely due to hardcoded random values following https://github.com/pytorch/pytorch/pull/143787 We should investigate and fix the test to not rely on specific random samples. cc @clee2000 @wdvr @mergennachin
true
2,777,771,359
Support Swiglu for Module and functional
fmo-mt
open
[ "triaged", "open source", "release notes: nn", "release notes: cpp", "module: inductor", "module: dynamo" ]
28
CONTRIBUTOR
Fixes #128712 I see #138790 has not been updated for a while, and it just implement a torch..nn.Module which can not be fully used for SwiGLU, so I implemented this activation function. Here're some features that we can discuss: - it's better to use `torch.swiglu` or `torch.swish_glu`? I chose the latter. - Do we need to implement a kernel to receive better performance? I think so but it needs more effort so I leave it to other contributor. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,777,753,083
[ONNX] Trying to export QAT model with torch.onnx.export, running into Problems that workarounds cant fix. Is ONNX export planned for QAT?
Beoje
open
[ "module: onnx", "triaged" ]
6
NONE
### 🐛 Describe the bug The bug occurs when trying to export a model fully converted model to onnx. I have tried the workarounds suggested in (https://pytorch.org/docs/main/quantization.html#frequently-asked-questions) but even after trying all of them and debugging further I end up at various torch.onnx.errors.SymbolicValueError, which I cannot really explain due to the nature of these workarounds feeling like patchwork. Imports: ``` import torch.onnx import torch import torch.nn as nn from torchinfo import summary import numpy as np import onnx from torch.ao.quantization import fuse_modules, QuantStub, DeQuantStub from torch.ao.quantization import ( get_default_qat_qconfig, prepare_qat, convert ) ``` My Code: ``` class Conv1d(nn.Conv1d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.causal_padding = self.dilation[0] * (self.kernel_size[0] - 1) self.conv1d = nn.Conv1d( in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=self.kernel_size[0], stride=self.stride[0], dilation=self.dilation[0], padding= 0, padding_mode='zeros' ) def forward(self, x): x = nn.functional.pad(x, (self.causal_padding//2, self.causal_padding-self.causal_padding//2), 'constant') return self.conv1d(x) class ResidualUnit(nn.Module): def __init__(self, in_channels, out_channels, dilation): super().__init__() self.dilation = dilation self.layers = nn.Sequential( Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=5, dilation=dilation), nn.LeakyReLU(), nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1), ) def forward(self, x): return x + self.layers(x) class EncoderBlock(nn.Module): def __init__(self, in_channels, out_channels, stride): super().__init__() self.layers = nn.Sequential( ResidualUnit(in_channels=int(in_channels), out_channels=int(in_channels), dilation=3), nn.LeakyReLU(), Conv1d(in_channels=int(in_channels), out_channels=int(out_channels), kernel_size=2*stride, stride=stride), ) def forward(self, x): return self.layers(x) class Encoder(nn.Module): def __init__(self, C=36, D=9): super().__init__() self.layers = nn.Sequential( Conv1d(in_channels=36, out_channels=C, kernel_size=7), nn.LeakyReLU(), EncoderBlock(in_channels=C ,out_channels=24, stride=1), nn.LeakyReLU(), EncoderBlock(in_channels=24 ,out_channels=20, stride=2), nn.LeakyReLU(), EncoderBlock(in_channels=20 ,out_channels=16, stride=2), nn.LeakyReLU(), EncoderBlock(in_channels=16 ,out_channels=12, stride=2), nn.LeakyReLU(), Conv1d(in_channels=12, out_channels=D, kernel_size=1), ) def forward(self, x): x = self.layers(x) return x if __name__ == "__main__": model = Encoder() model.train() model.qconfig = get_default_qat_qconfig("x86") qat_model = prepare_qat(model) qat_model_done = convert(qat_model) dummy_input = torch.rand(1, 36, 800) onnx_file_path = "./qat_export_test.onnx" onnx_model = torch.onnx.export( qat_model_done, dummy_input, onnx_file_path, export_params=True ) ``` Error: ``` Traceback (most recent call last): File "/media/data/xxx/xxx/prev_code/xxx/data_compression/data_compression/examples/idk.py", line 115, in <module> onnx_model = torch.onnx.export( ^^^^^^^^^^^^^^^^^^ File /media/data/xxx/xxx/prev_code/xxx//prev_code/moritz_martinolli_397/venv/lib/python3.11/site-packages/torch/onnx/__init__.py", line 375, in export export( File "/media/data/xxx/xxx/prev_code/xxx/prev_code/moritz_martinolli_397/venv/lib/python3.11/site-packages/torch/onnx/utils.py", line 502, in export _export( File "/media/data/xxx/xxx/prev_code/xxx/venv/lib/python3.11/site-packages/torch/onnx/utils.py", line 1564, in _export graph, params_dict, torch_out = _model_to_graph( ^^^^^^^^^^^^^^^^ File "/media/data/xxx/xxx/prev_code/xxx/venv/lib/python3.11/site-packages/torch/onnx/utils.py", line 1117, in _model_to_graph graph = _optimize_graph( ^^^^^^^^^^^^^^^^ File "/media/data/xxx/xxx/prev_code/xxx/venv/lib/python3.11/site-packages/torch/onnx/utils.py", line 639, in _optimize_graph graph = _C._jit_pass_onnx(graph, operator_export_type) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/media/data/xxx/xxx/prev_code/xxx/venv/lib/python3.11/site-packages/torch/onnx/utils.py", line 1836, in _run_symbolic_function return symbolic_fn(graph_context, *inputs, **attrs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/media/data/xxx/xxx/prev_code/xxx/venv/lib/python3.11/site-packages/torch/onnx/symbolic_opset10.py", line 747, in dequantize return symbolic_helper.dequantize_helper(g, input)[0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/media/data/xxx/xxx/prev_code/xxx/venv/lib/python3.11/site-packages/torch/onnx/symbolic_helper.py", line 1525, in dequantize_helper unpacked_qtensors = _unpack_quantized_tensor(qtensor) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/media/data/xxx/xxx/prev_code/xxx/venv/lib/python3.11/site-packages/torch/onnx/symbolic_helper.py", line 189, in _unpack_quantized_tensor raise errors.SymbolicValueError( torch.onnx.errors.SymbolicValueError: ONNX symbolic expected the output of `%x.1 : Float(1, 36, 800, strides=[28800, 800, 1], requires_grad=0, device=cpu) = prim::Param() ` to be a quantized tensor. Is this likely due to missing support for quantized `prim::Param`. Please create an issue on https://github.com/pytorch/pytorch/issues [Caused by the value 'x.1 defined in (%x.1 : Float(1, 36, 800, strides=[28800, 800, 1], requires_grad=0, device=cpu) = prim::Param() )' (type 'Tensor') in the TorchScript graph. The containing node has kind 'prim::Param'.] Inputs: Empty Outputs: #0: x.1 defined in (%x.1 : Float(1, 36, 800, strides=[28800, 800, 1], requires_grad=0, device=cpu) = prim::Param() ) (type 'Tensor') ``` This error arrose while I was doing the whole QuantStub and DeQuantstub workarounds suggested in the FAQ of QAT. If no one has time to actually recreate this and debug it, please just tell me if full QAT to ONNX support is planned or not (I've seen contributors saying it is not planned, I've seen posts where there is said that it should be in torch 2.0, so maybe just a clear answer would be good), so I know if I can just disregard this until it eventually becomes an option. ### Versions ``` Versions of relevant libraries: [pip3] numpy==1.26.0 [pip3] nvidia-cublas-cu11==11.10.3.66 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu11==11.7.101 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu11==11.7.99 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu11==11.7.99 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu11==8.5.0.96 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu11==10.9.0.58 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu11==10.2.10.91 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu11==11.4.0.1 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu11==11.7.4.91 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu11==2.14.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu11==11.7.91 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] onnxscript==0.1.0.dev20241217 [pip3] torch==2.5.1 [pip3] torchaudio==2.5.1 [pip3] torchinfo==1.8.0 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 ```
true
2,777,640,254
improve WOQ first token performance on CPU
yuchengliu1
open
[ "module: cpu", "module: mkldnn", "open source", "release notes: releng", "module: inductor" ]
1
NONE
cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @gujinghui @PenghuiCheng @jianyuh @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,777,458,487
[Inductor][GPU] Input is padded with incorrect value when executing `torch.nn.functional.pad` on gpu
maybeLee
closed
[ "high priority", "triaged", "oncall: pt2", "module: inductor" ]
4
CONTRIBUTOR
### 🐛 Describe the bug When running `torch.nn.functional.pad` using `torch.compile` with GPU, this operator will not use the `value` parameter when padding a one-element tensor. Instead, it pads the tensor with the tensor's own value. Please run the following code to reproduce this issue: ```python import torch from torch import nn torch.manual_seed(100) class Temp(nn.Module): def __init__(self): super(Temp, self).__init__() def forward(self, input, pad, mode, value): return torch.nn.functional.pad(input, pad, mode, value) model = Temp() cmodel = torch.compile(model) input = torch.randn(1,1,1) print(f"The input is: ", input) input = input.to('cuda') pad = [10, 10] mode = 'constant' value = 0 print(f"Eager result: ", model(input, pad, mode, value)) print(f"Compiled result: ", cmodel(input, pad, mode, value)) ``` Output: ``` The input is: tensor([[[0.3607]]]) Eager result: tensor([[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.3607, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]], device='cuda:0') Compiled result: tensor([[[0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607, 0.3607]]], device='cuda:0') ``` This issue seems worth fixing since the API `torch.nn.functional.pad` **silently pads the given tensor with a wrong padding value**, without any warning messages. Moreover, another API (`nn.ConstantPad2d`) also has this issue. Please note that this issue only happens when running on cuda. ### Versions PyTorch version: 2.7.0.dev20250109+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: AlmaLinux 9.4 (Seafoam Ocelot) (x86_64) GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3) Clang version: 17.0.6 (AlmaLinux OS Foundation 17.0.6-5.el9) CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.14.0-427.37.1.el9_4.x86_64-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 74% CPU max MHz: 4368.1641 CPU min MHz: 2200.0000 BogoMIPS: 7000.73 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.2 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] optree==0.13.1 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.7.0.dev20250109+cu126 [pip3] torchaudio==2.6.0.dev20250106+cu124 [conda] numpy 1.26.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] pytorch-triton 3.2.0+git0d4682f0 pypi_0 pypi [conda] torch 2.7.0.dev20250109+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250106+cu124 pypi_0 pypi cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @BoyuanFeng
true
2,777,028,709
ThroughputBenchmark incorrectly change autocast dtype on CPU
shiyang-weng
closed
[ "high priority", "triaged", "oncall: pt2", "module: dynamo" ]
4
CONTRIBUTOR
### 🐛 Describe the bug After applying this patch https://github.com/pytorch/pytorch/commit/1c2593f035d852a5743b8634eccf9476d775f1ad#diff-176dae2fa097bbdb3f04182d59109027bbe143a63bc5ca045dcaae4b0c4798a7R461, ThroughputBenchmark not work. And the previous commit run it successfully. ```python import torch class CatDense(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(128, 128) def forward(self, x) -> torch.Tensor: y = self.linear(x) return y class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(13, 128) self.catdense = CatDense() def forward(self, dense): out = self.linear(dense) out = self.catdense(out) return out dtype = torch.float32 # this issue also exists with float16 bs = 256 from torch._inductor import config as inductor_config from torch._dynamo import config config.error_on_recompile = True inductor_config.cpp_wrapper = True inductor_config.cpp.enable_kernel_profile = True inductor_config.freezing = True model = Model() dense = torch.zeros(bs, 13) model(dense) autocast = dtype != torch.float32 with torch.no_grad(), torch.cpu.amp.autocast(enabled=autocast, dtype=dtype): print('[Info] Running torch.compile() with default backend') model(dense) model = torch.compile(model) model(dense) model(dense) from torch.utils import ThroughputBenchmark import contextlib ctx = contextlib.suppress() if dtype == 'fp16': ctx = torch.cpu.amp.autocast(enabled=autocast, dtype=dtype) with torch.no_grad(), ctx: bench = ThroughputBenchmark(model) bench.add_input(dense) stats = bench.benchmark( num_calling_threads=1, num_warmup_iters=200, num_iters=300, ) ``` There are following error. ``` terminate called after throwing an instance of 'pybind11::error_already_set' what(): RecompileError: Recompiling function forward in pytorch/torchrec_dlrm/inference/cpu/debug_comp ile.py:18 triggered by the following guard failure(s): - 0/0: GLOBAL_STATE changed: autocast 123 At: pytorch/torch/_dynamo/guards.py(2824): get_and_maybe_log_recompilation_reason pytorch/torch/_dynamo/convert_frame.py(893): _compile pytorch/torch/_dynamo/convert_frame.py(548): __call__ pytorch/torch/_dynamo/convert_frame.py(1227): __call__ pytorch/torch/_dynamo/convert_frame.py(1387): __call__ pytorch/torch/nn/modules/module.py(1750): _call_impl pytorch/torch/nn/modules/module.py(1739): _wrapped_call_impl pytorch/torchrec_dlrm/inference/cpu/pytorch/torch/_dynamo/eval_frame.py(588): _fn pytorch/torchrec_dlrm/inference/cpu/pytorch/torch/nn/modules/module.py(1750): _call_impl pytorch/torch/nn/modules/module.py(1739): _wrapped_call_impl Aborted (core dumped) ``` I print AutocastState().dtype[0] on pytorch/torch/csrc/dynamo/guards.cpp:GlobalStateGuard::check by ``` # git diff torch/csrc/dynamo/guards.cpp diff --git a/torch/csrc/dynamo/guards.cpp b/torch/csrc/dynamo/guards.cpp index 0f016d3fc9..54eaecca2f 100644 --- a/torch/csrc/dynamo/guards.cpp +++ b/torch/csrc/dynamo/guards.cpp @@ -540,6 +540,13 @@ struct AutocastState { bool operator==(const AutocastState& o) const { for (size_t i = 0; i < DEVICES.size(); i++) { if (enabled[i] != o.enabled[i] || dtype[i] != o.dtype[i]) { + if (enabled[i] != o.enabled[i]) { + std::cout << "not enable\n"; + } + if (dtype[i] != o.dtype[i]) { + std::cout << "dtype mismatch\n"; + std::cout << dtype[i] << " " << o.dtype[i] << std::endl; + } return false; } } @@ -577,6 +584,7 @@ struct GlobalStateGuard { inline bool check() const { auto& ctx = at::globalContext(); + std::cout << "AutocastState().dtype[0]: " << AutocastState().dtype[0] << std::endl; return (_grad_mode == at::GradMode::is_enabled() && _autocast_state == AutocastState() && _torch_function == torch::torch_function_enabled() && ``` Find bench.benchmark change AutocastState().dtype[0] to BF16. But data type should be fp32. FP16 also has this issue ### Versions ``` # cd pytorch/ # git log -1 commit 1c2593f035d852a5743b8634eccf9476d775f1ad (HEAD) # cd vision/ # git log -1 commit d3beb52a00e16c71e821e192bcc592d614a490c0 (HEAD -> main, origin/main, origin/HEAD) # python collect_env.py Collecting environment information... PyTorch version: 2.6.0a0+git1c2593f Is debug build: True CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: CentOS Linux 8 (x86_64) GCC version: (conda-forge gcc 12.3.0-13) 12.3.0 Clang version: Could not collect CMake version: version 3.29.4 Libc version: glibc-2.28 Python version: 3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:45:18) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-6.2.0-gnr.bkc.6.2.7.5.31.x86_64-x86_64-with-glibc2.28 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 480 On-line CPU(s) list: 0-479 Thread(s) per core: 2 Core(s) per socket: 120 Socket(s): 2 NUMA node(s): 6 Vendor ID: GenuineIntel BIOS Vendor ID: Intel(R) Corporation CPU family: 6 Model: 173 Model name: Intel(R) Xeon(R) 6979P BIOS Model name: Intel(R) Xeon(R) 6979P Stepping: 1 CPU MHz: 750.854 CPU max MHz: 3900.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Virtualization: VT-x L1d cache: 48K L1i cache: 64K L2 cache: 2048K L3 cache: 516096K NUMA node0 CPU(s): 0-39,240-279 NUMA node1 CPU(s): 40-79,280-319 NUMA node2 CPU(s): 80-119,320-359 NUMA node3 CPU(s): 120-159,360-399 NUMA node4 CPU(s): 160-199,400-439 NUMA node5 CPU(s): 200-239,440-479 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_ freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_de adline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 s sbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invp cid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect user_shstk cat_l3_io cqm_occup_llc_io cqm_mbm_io avx _vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm m d_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.0.1 [pip3] onnx==1.16.2 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.6.0a0+git1c2593f [pip3] torchaudio==2.6.0.dev20250105+cpu [pip3] torchmetrics==0.11.0 [pip3] torchrec==0.3.2 [pip3] torchsnapshot==0.1.0 [pip3] torchvision==0.22.0a0+d3beb52 [conda] mkl 2024.2.0 pypi_0 pypi [conda] mkl-include 2024.2.0 pypi_0 pypi [conda] numpy 2.0.1 pypi_0 pypi [conda] pytorch-triton 3.2.0+git0d4682f0 pypi_0 pypi [conda] torch 2.6.0a0+git1c2593f dev_0 <develop> [conda] torchaudio 2.6.0.dev20250105+cpu pypi_0 pypi [conda] torchmetrics 0.11.0 pypi_0 pypi [conda] torchrec 0.3.2 pypi_0 pypi [conda] torchsnapshot 0.1.0 pypi_0 pypi [conda] torchvision 0.22.0a0+d3beb52 dev_0 <develop> ``` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @amjames
true
2,777,028,677
[Inductor] Fix starvation issue when threads attempt to acquire write…
NSBlink
closed
[ "triaged", "open source", "Stale", "topic: not user facing", "module: inductor" ]
7
NONE
… lock on `model_exec_mutex_` Fixes #144459 ## explain A write-priority strategy is implemented. When a thread attempts to acquire the `model_exec_mutex_` write lock, other threads attempting to acquire the `model_exec_mutex_` read lock enter a waiting state until no thread is requesting the `model_exec_mutex_` write lock. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,777,027,183
In AOTI Runtime, acquiring a write lock on model_exec_mutex_ may cause starvation.
NSBlink
open
[ "triaged", "oncall: export", "module: aotinductor" ]
2
NONE
### 🐛 Describe the bug **Describe** https://github.com/pytorch/pytorch/blob/6f28e466f3d7b396dfe9cea87f4377be77fa7ddf/torch/csrc/inductor/aoti_runtime/model_container.h#L87 In `AOTInductorModelContainer::run`, if constant_folded_ is false, it will attempt to acquire a write lock on `model_exec_mutex_`. However, if multiple threads enter here simultaneously, some threads will be blocked. Subsequently, other threads may continue calling `AOTInductorModelContainer::run` while holding the read lock on `model_exec_mutex_`, and those threads attempting to acquire the write lock on `model_exec_mutex_` may remain blocked. **reproduction** Use any model, such as the one in the [tutorial](https://pytorch.org/tutorials/recipes/torch_export_aoti_python.html), to export model.so, Complex models may be more likely to reproduce issues. When inference is executed in multiple threads, there is a probability that some threads will be blocked. ``` #include <iostream> #include <vector> #include <thread> #include <torch/torch.h> #include <torch/csrc/inductor/aoti_runner/model_container_runner_cpu.h> void test_inference(torch::inductor::AOTIModelContainerRunnerCpu& runner) { std::vector<torch::Tensor> inputs = {torch::randn({8, 10}, at::kCPU)}; for (int i = 0; i < 1000000; i++) { std::vector<torch::Tensor> outputs = runner.run(inputs); } } int main() { c10::InferenceMode mode; torch::inductor::AOTIModelContainerRunnerCpu runner("./model.so", 512); torch::set_num_interop_threads(1); torch::set_num_threads(1); std::vector<std::thread> threads; for (int i = 0; i < 16; i++) { threads.push_back(std::thread(test_inference, std::ref(runner))); } for (int i = 0; i < 16; i++) { threads[i].join(); } return 0; } ``` ![image](https://github.com/user-attachments/assets/5bcfd798-672c-497d-9090-72ae27cec328) ### Versions PyTorch version: 2.5.1+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 Nvidia driver version: 550.127.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 112 On-line CPU(s) list: 0-111 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8480+ CPU family: 6 Model: 143 Thread(s) per core: 1 Core(s) per socket: 56 Socket(s): 2 Stepping: 8 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 5.3 MiB (112 instances) L1i cache: 3.5 MiB (112 instances) L2 cache: 224 MiB (112 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-55 NUMA node1 CPU(s): 56-111 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Vulnerable; BHI: Vulnerable Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.3 [pip3] optree==0.13.1 [pip3] pytorch-triton==3.1.0+5fe38ffd73 [pip3] torch==2.5.1+cpu [pip3] torchaudio==2.5.1+cpu [pip3] torchvision==0.20.1+cpu [conda] Could not collect cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @BoyuanFeng @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,776,984,082
Support negative values for fill with uint tensors
isuruf
closed
[ "open source", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
6
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144458 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov Fixes https://github.com/pytorch/pytorch/issues/144188
true
2,776,937,934
[Inductor UT] Add expected failure for newly added case on XPU, align CUDA.
etaf
closed
[ "open source", "Merged", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/xpu" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144452 * #144456 * __->__ #144457 The newly added case `test_randint_distribution` from #143787 was set expected failure for CUDA but not for XPU. We add the expected failure here because if fails with the same reason as CUDA. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,776,891,038
[Inductor UT] Generalize newly introduced device-bias hard code in
etaf
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/xpu" ]
9
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144452 * __->__ #144456 * #144457 Re-land #143975. Fix "cuda" hard code in test_pattern_matcher.py introduced by #139321 Fix #143974 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,776,765,876
[Profiler]Close CUPTI by default after pytorch profiling ends
leveretconey
open
[ "oncall: profiler" ]
4
NONE
### 🚀 The feature, motivation and pitch Recently, I observed that the torch profiler continues to affect program performance even after profiling has completed. Upon investigation, I found that this issue occurs because Kineto does not close CUPTI (i.e., it does not call `cuptiFinalize`) by default when profiling ends, unless the environment variable `TEARDOWN_CUPTI` is explicitly set to `"1"`. I believe most users do not know this behavior. Is it possible to change the behavior so that CUPTI is closed by default at the end of profiling if the env is not set? Are there risks associated with this change? I noticed the following comment in the torch code: ```python if self.config.get("triton.cudagraphs", False): os.environ["DISABLE_CUPTI_LAZY_REINIT"] = "1" # FIXME: CUDA Graph does not work well with CUPTI teardown. # 1) crashes on 1st lazy CUPTI re-init after teardown (CUDA 11) # 2) crashes on 2nd non-lazy CUPTI re-init after teardown (CUDA 12) # Workaround: turn off CUPTI teardown when using CUDA Graphs. os.environ["TEARDOWN_CUPTI"] = "0" ``` Is the current behavior of not closing CUPTI primarily due to concerns about crashes caused by CUDA Graphs? Thank you for your attention to this matter. ### Alternatives _No response_ ### Additional context _No response_ cc @robieta @chaekit @guotuofeng @guyang3532 @dzhulgakov @davidberard98 @briancoutinho @sraikund16 @sanrise
true
2,776,755,088
Apply clang-format for ATen/core headers
zeshengzong
closed
[ "open source", "Stale", "topic: not user facing" ]
3
CONTRIBUTOR
Code change via add path config in .lintrunner.toml file and running ```bash lintrunner -a --take CLANGFORMAT --all-files ```
true
2,776,737,651
Enable XPU tests
zhangxiaoli73
closed
[ "oncall: distributed", "release notes: distributed (fsdp)" ]
1
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,776,716,306
[WIP][Inductor XPU] Use channel last format for XPU conv in Inductor.
etaf
closed
[ "open source", "Stale", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/xpu" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144452 * #144456 * #144457 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,776,712,445
Remove the `_stacklevel` arg from `log_softmax`, `softmax` and `softmin`
zeshengzong
open
[ "triaged", "open source", "Stale", "release notes: AO frontend", "suppress-bc-linter" ]
3
CONTRIBUTOR
Fixes #83163 Remove `_stacklevel` parameter **Test Result** **Before** ![image](https://github.com/user-attachments/assets/8bd2e4d9-06a2-4ef0-b832-040ca47e9760) ![image](https://github.com/user-attachments/assets/7f756c08-65b7-4351-bb4d-d17df342722a) ![image](https://github.com/user-attachments/assets/e8a2719f-70ff-4d70-9e37-8dfe7fef6f4e) **After** ![image](https://github.com/user-attachments/assets/31fade7f-b100-4ee8-a833-ae29363f2423) ![image](https://github.com/user-attachments/assets/a73e1349-0e8c-4b79-a77e-acc28c5f5702) ![image](https://github.com/user-attachments/assets/9b8a2099-a5cb-4c1b-8987-c4670f13a9a7)
true
2,776,690,400
[XPU] Fix build error
etaf
closed
[ "module: cpu", "open source", "ciflow/trunk", "topic: not user facing", "ciflow/xpu" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144452 * #144456 * #144457 * __->__ #144450 Caused by https://github.com/pytorch/pytorch/pull/144014 Fixes https://github.com/pytorch/pytorch/issues/144447 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,776,678,361
[mps/inductor] Add support for fmod().
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
MEMBER
397 -> 395 tests failing. `static_cast<>` is because there are several overloads of `fmod()` that's otherwise ambiguous. I wonder if we should take in account NaN propagation (maybe it's not tested). cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,776,674,336
[19/N] Fix extra warnings brought by clang-tidy-17
cyyever
closed
[ "oncall: distributed", "module: cpu", "open source", "Merged", "ciflow/trunk", "release notes: cpp", "module: dynamo", "ciflow/inductor", "module: compiled autograd", "ciflow/xpu" ]
6
COLLABORATOR
Apply more clang-tidy fixes. There was a bug introduced by #144014 due to incorrect namespace concatenation which is reverted here. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @xmfan @yf225
true
2,776,661,041
[Break XPU] PyTorch XPU build failure caused by incorrect change in xpu/Blas.cpp from #144014.
etaf
closed
[ "triaged", "module: xpu" ]
1
COLLABORATOR
### 🐛 Describe the bug As title, the change from #144014 , in [aten/src/ATen/native/mkldnn/xpu/Blas.cpp](https://github.com/pytorch/pytorch/pull/144014/files#diff-9ae74b4a8990350760237cc09e715cc25a333f1d0655bd13cddb71c62cea2a39) break the origin namespace declaration and caused PyTorch XPU build fail: ``` home/xinanlin/xinanlin/pytorch/aten/src/ATen/TensorMeta.h:58:36: error: ‘structured_addmm_out_xpu’ has not been declared 58 | #define TORCH_IMPL_FUNC(name) void structured_##name::impl | ^~~~~~~~~~~ /home/xinanlin/xinanlin/pytorch/aten/src/ATen/native/mkldnn/xpu/Blas.cpp:459:1: note: in expansion of macro ‘TORCH_IMPL_FUNC’ 459 | TORCH_IMPL_FUNC(addmm_out_xpu) | ^~~~~~~~~~~~~~~ /home/xinanlin/xinanlin/pytorch/aten/src/ATen/native/mkldnn/xpu/Blas.cpp:460:8: error: ‘Tensor’ does not name a type 460 | (const Tensor& self, | ^~~~~~ /home/xinanlin/xinanlin/pytorch/aten/src/ATen/native/mkldnn/xpu/Blas.cpp:461:8: error: ‘Tensor’ does not name a type 461 | const Tensor& mat1, | ^~~~~~ /home/xinanlin/xinanlin/pytorch/aten/src/ATen/native/mkldnn/xpu/Blas.cpp:462:8: error: ‘Tensor’ does not name a type 462 | const Tensor& mat2, | ^~~~~~ /home/xinanlin/xinanlin/pytorch/aten/src/ATen/native/mkldnn/xpu/Blas.cpp:463:8: error: ‘Scalar’ does not name a type 463 | const Scalar& beta, | ^~~~~~ /home/xinanlin/xinanlin/pytorch/aten/src/ATen/native/mkldnn/xpu/Blas.cpp:464:8: error: ‘Scalar’ does not name a type 464 | const Scalar& alpha, | ^~~~~~ /home/xinanlin/xinanlin/pytorch/aten/src/ATen/native/mkldnn/xpu/Blas.cpp:465:8: error: ‘Tensor’ does not name a type 465 | const Tensor& result) { | ^~~~~~ ``` ### Versions PyTorch version: 2.7.0a0+gitd0070ca Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.15 | packaged by conda-forge | (main, Oct 16 2024, 01:24:24) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.47+prerelease24.6.13-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,776,650,764
[CUDA] parse arch-conditional compute-capability when building extensions
eqy
closed
[ "module: cpp-extensions", "module: cuda", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
4
COLLABORATOR
don't choke on arch-conditional compute capabilities e.g., `sm_90a`: #144037 cc @malfet @zou3519 @xmfan @ptrblck @msaroufim
true
2,776,647,942
NotImplementedError: Output channels > 65536 not supported at the MPS device.
AimoneAndex
open
[ "module: convolution", "triaged", "module: mps" ]
6
NONE
### 🐛 Describe the bug I used the newest edited version of this fork and torch==2.7.0.dev,but it just said "NotImplementedError: Output channels > 65536 not supported at the MPS device",instead of giving me a corrrect output. 1.Run the following command : wav = tts.tts(text="Hello,world!",speaker_wav="project/input/001.wav",language="en") 2.See error: Traceback (most recent call last): File "", line 1, in File "/Users/rbhan/Data/StellAIHub/voice/coqui-ai-TTS/TTS/api.py", line 312, in tts wav = self.synthesizer.tts( ^^^^^^^^^^^^^^^^^^^^^ File "/Users/rbhan/Data/StellAIHub/voice/coqui-ai-TTS/TTS/utils/synthesizer.py", line 408, in tts outputs = self.tts_model.synthesize( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/rbhan/Data/StellAIHub/voice/coqui-ai-TTS/TTS/tts/models/xtts.py", line 410, in synthesize return self.full_inference(text, speaker_wav, language, **settings) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/Users/rbhan/Data/StellAIHub/voice/coqui-ai-TTS/TTS/tts/models/xtts.py", line 471, in full_inference (gpt_cond_latent, speaker_embedding) = self.get_conditioning_latents( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/Users/rbhan/Data/StellAIHub/voice/coqui-ai-TTS/TTS/tts/models/xtts.py", line 354, in get_conditioning_latents speaker_embedding = self.get_speaker_embedding(audio, load_sr) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/Users/rbhan/Data/StellAIHub/voice/coqui-ai-TTS/TTS/tts/models/xtts.py", line 309, in get_speaker_embedding self.hifigan_decoder.speaker_encoder.forward(audio_16k.to(self.device), l2_norm=True) File "/Users/rbhan/Data/StellAIHub/voice/coqui-ai-TTS/TTS/encoder/models/resnet.py", line 167, in forward x = self.torch_spec(x) ^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/lib/python3.11/site-packages/torch/nn/modules/container.py", line 250, in forward input = module(input) ^^^^^^^^^^^^^ File "/opt/anaconda3/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/rbhan/Data/StellAIHub/voice/coqui-ai-TTS/TTS/encoder/models/base_encoder.py", line 26, in forward return torch.nn.functional.conv1d(x, self.filter).squeeze(1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ NotImplementedError: Output channels > 65536 not supported at the MPS device. ### Versions coqui-tts 0.25.1 ....../coqui-ai-TTS coqui-tts-trainer 0.2.2 torch 2.7.0.dev20250108 torchaudio 2.6.0.dev20250108 torchvision 0.22.0.dev20250108 cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,776,637,291
[Trace Python Dispatcher] Support FuncTorchInterpreter
yanboliang
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144444 * #144439 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,776,635,528
[mps/inductor] Add support for tanh().
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
4
MEMBER
Fixes test_tanh() in the inductor testsuite. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,776,607,992
[XPU] Fix Namespace Error due to Clang-tidy
ratnampa
closed
[ "module: cpu", "open source", "topic: not user facing", "ciflow/xpu", "module: xpu" ]
5
CONTRIBUTOR
Fixes #ISSUE_NUMBER Recent changes to aten/src/ATen/native/mkldnn/xpu/Blas.cpp from PR:https://github.com/pytorch/pytorch/pull/144014, leads to build failures. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,776,586,997
[CUDA][cuBLAS] Add fp16 accumulate option to cuBLAS/cuBLASLt
eqy
closed
[ "module: cuda", "module: cublas", "open source", "module: half", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "matrix multiplication", "ciflow/rocm", "ci-no-td" ]
74
COLLABORATOR
Test for `cublasGemmEx` added, still need to figure out the best way to exercise the other APIs... cc @ptrblck @msaroufim @csarofeen @xwang233
true
2,776,548,910
[XPU] Fix Syntax Error due to Clang-tidy
ratnampa
closed
[ "module: cpu", "open source" ]
3
CONTRIBUTOR
Fixes #ISSUE_NUMBER Recent changes to `aten/src/ATen/native/mkldnn/xpu/Blas.cpp` from PR:https://github.com/pytorch/pytorch/pull/144014, leads to build failures. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,776,545,036
[Trace Python dispatcher] Support torch.DispatchKey & torch.DispatchKeySet
yanboliang
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144444 * __->__ #144439 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,776,529,847
add some basic shape_env info to tlparse
bdhirsh
open
[ "release notes: composability", "fx", "module: dynamo", "ciflow/inductor" ]
1
CONTRIBUTOR
It seems generally useful to add stuff like shape_env hints on a given compile into tlparse, especially since hints are used by the partitioner / inductor and can affect compile times and performance (see [doc](https://docs.google.com/document/d/1SyOGPKKVQAmnEY-LkGbcVj1H6TTMtsXu0DRVVQJqCGw/edit?tab=t.0#bookmark=id.bc18vdapcxwf)) Example tlparse: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpuO2Pey/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=100 From this code: ``` import torch @torch.compile def f(x, y): if x.shape[0] > y.shape[0]: return x.sum() + y.sum() else: return x.sum() - y.sum() x = torch.randn(5, 6) y = torch.randn(6, 3) out = f(x, y) x = torch.randn(7, 3) y = torch.randn(8, 3) out = f(x, y) ``` Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144438 * #144097 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,776,522,917
[dynamo][graph break] omegaconfig ListConfig `__contains__`
anijain2305
closed
[ "triaged", "oncall: pt2", "module: dynamo" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Fixing this graph break should help with the performance regression in https://github.com/pytorch/pytorch/issues/132872 ~~~ + @unittest.skipIf(not HAS_OMEGACONG, "missing omegaconf package") + def test_omegaconf_listconfig_contains(self): + def fn(cfg, x): + if 1 in cfg: + return torch.sin(x) + return torch.cos(x) + + config = list_config = OmegaConf.create([1, 2, 3, {"key": "value"}]) + + x = torch.randn(4) + opt_fn = torch.compile(fn, backend="eager", fullgraph=True) + self.assertEqual(fn(config, x), opt_fn(config, x)) + + ~~~ ### Error logs ``` File "/home/anijain/local/pytorch/torch/_dynamo/symbolic_convert.py", line 1076, in run while self.step(): ^^^^^^^^^^^ File "/home/anijain/local/pytorch/torch/_dynamo/symbolic_convert.py", line 986, in step self.dispatch_table[inst.opcode](self, inst) File "/home/anijain/local/pytorch/torch/_dynamo/symbolic_convert.py", line 1676, in COMPARE_OP self.push(compare_op_handlers[inst.argval](self, self.popn(2), {})) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/anijain/local/pytorch/torch/_dynamo/variables/builtin.py", line 1008, in call_function return handler(tx, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/anijain/local/pytorch/torch/_dynamo/variables/builtin.py", line 859, in builtin_dispatch unimplemented(error_msg) File "/home/anijain/local/pytorch/torch/_dynamo/exc.py", line 356, in unimplemented raise Unsupported(msg, case_name=case_name) torch._dynamo.exc.Unsupported: builtin: eq [<class 'torch._dynamo.variables.user_defined.UserDefinedObjectVariable'>, <class 'torch._dynamo.variables.constant.ConstantVariable'>] False from user code: File "/home/anijain/local/pytorch/test/dynamo/test_repros.py", line 6137, in fn if 1 in cfg: File "/home/anijain/.conda/envs/pytorch-3.11/lib/python3.11/site-packages/omegaconf/listconfig.py", line 606, in __contains__ if x == item: Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True To execute this test, run the following from the base repo dir: python test/dynamo/test_repros.py ReproTests.test_omegaconf_listconfig_contains This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ```` ### Versions NA cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,776,505,215
[aarch64] fix TORCH_CUDA_ARCH_LIST for cuda arm build
tinglvv
closed
[ "open source", "Merged", "ciflow/binaries", "ciflow/trunk", "topic: not user facing" ]
7
COLLABORATOR
Fixes #144037 Root cause is CUDA ARM build did not call `.ci/manywheel/build_cuda.sh`, but calls `.ci/aarch64_linux/aarch64_ci_build.sh `instead. Therefore, https://github.com/pytorch/pytorch/blob/main/.ci/manywheel/build_cuda.sh#L56 was not called for CUDA ARM build. Adding the equivalent of the code to `.ci/aarch64_linux/aarch64_ci_build.sh` as a WAR. In the future, we should target to integrate the files in .ci/aarch64_linux/aarch64_ci_build.sh back to .ci/manywheel/build_cuda.sh. cc @ptrblck @atalman @malfet @nWEIdia @eqy
true
2,776,498,030
Need newer driver
drisspg
closed
[]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144435
true
2,776,478,366
Int8 Inference Slowdown Comparing to FP32 when using PyTorch 2 Export Quantization with X86 Backend through Inductor
YixuanSeanZhou
closed
[ "oncall: quantization" ]
20
NONE
### 🐛 Describe the bug INT8 inference is significantly slower comparing to FP32 after performing quantization using the tutorial: [PyTorch 2 Export Quantization with X86 Backend through Inductor](https://pytorch.org/tutorials/prototype/pt2e_quant_x86_inductor.html) When benchmarking the inference speed I observe: ``` Python before quant inference time: 0.022294288396835327 Python inference time after quant: 1.5116438150405884 ``` A complete repro of the issue: ``` import torch import torchvision import tempfile import time import sys import os torch.manual_seed(42) from torch._export import capture_pre_autograd_graph from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e # from torch.ao.quantization.quantizer.xnnpack_quantizer import ( # XNNPACKQuantizer, get_symmetric_quantization_config, # ) from torch.ao.quantization.quantizer.x86_inductor_quantizer import ( X86InductorQuantizer, get_default_x86_inductor_quantization_config ) import torch._inductor.config as config config.cpp_wrapper = True RUN_NUM = 1000 def print_size_of_model(model): torch.save(model.state_dict(), "temp.p") print("Size (MB):", os.path.getsize("temp.p")/1e6) os.remove("temp.p") def main(argv): workdir="/tmp" # Step 1: Capture the model args = (torch.randn(1, 3, 224, 224),) m = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT).eval() m1 = m.eval() print("before size") print_size_of_model(m) with torch.no_grad(): compiled = torch.compile(m1, backend="inductor") before = time.time() for i in range(RUN_NUM): compiled(*args) print(f"Python inference time: {(time.time() - before) / RUN_NUM}") # torch.export.export_for_training is only avaliable for torch 2.5+ m = capture_pre_autograd_graph(m, args) # Step 2: Insert observers or fake quantize modules # quantizer = XNNPACKQuantizer().set_global( # get_symmetric_quantization_config()) quantizer = X86InductorQuantizer().set_global( get_default_x86_inductor_quantization_config()) m = prepare_pt2e(m, quantizer) # Step 2.5 fake calibration m(*args) # # Step 3: Quantize the model m = convert_pt2e(m, fold_quantize=True) print(m) print("after size") print_size_of_model(m) with torch.autocast(device_type="cpu", dtype=torch.bfloat16, enabled=True), torch.no_grad(): before_compile_time = time.time() compiled_quant = torch.compile(m, backend="inductor") print("finnished compiliation", time.time() - before_compile_time) before = time.time() for i in range(RUN_NUM // 100): compiled_quant(*args) # print("finished run", i) print(f"Python inference before quant time after quant: {(time.time() - before) / (RUN_NUM // 100)}") os.makedirs(workdir, exist_ok=True) if __name__ == '__main__': main(sys.argv) ``` ### Versions Versions ``` python collect_env.py Versions of relevant libraries: [pip3] numpy==1.26.3 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.1.105 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] torch==2.5.1+cu121 [pip3] torchaudio==2.5.1+cu121 [pip3] torchvision==0.20.1+cu121 [pip3] triton==3.1.0 [conda] numpy 1.26.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.1.105 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] torch 2.5.1+cu121 pypi_0 pypi [conda] torchaudio 2.5.1+cu121 pypi_0 pypi [conda] torchvision 0.20.1+cu121 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi ``` cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim
true
2,776,463,633
Torch 2.6.0 rc is broken on Amazon linux 2023
atalman
closed
[ "high priority", "triage review", "module: binaries" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Follow instructions from: https://github.com/pytorch/pytorch/issues/138324 install torch=2.6.0 ``` >>> import torch Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib64/python3.9/site-packages/torch/__init__.py", line 379, in <module> from torch._C import * # noqa: F403 ImportError: libcusparseLt.so.0: cannot open shared object file: No such file or directory ``` ### Versions 2.6.0 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @seemethere @malfet @osalpekar
true
2,776,463,102
[ROCm] hipblaslt rowwise f8 gemm
jeffdaily
closed
[ "module: rocm", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: rocm", "release notes: nn", "ciflow/rocm" ]
14
COLLABORATOR
hipblaslt added rowwise f8 gemm support. Integrate with scaled_mm. cc @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,776,457,381
inductor slow kernel choice for max(x) if x is not contiguous
vkuzo
closed
[ "triaged", "oncall: pt2", "module: inductor" ]
3
CONTRIBUTOR
### 🐛 Describe the bug I noticed that if `x` is not contiguous, torchinductor generates unexpectedly slow cuda kernels for `torch.max(x)`. Small repro: ``` import torch import fire from torch._inductor.utils import do_bench_using_profiling torch.manual_seed(0) def get_max(x): x = torch.max(x) return x def run(is_contiguous: bool = True): x = torch.randn(4096, 8192, dtype=torch.bfloat16, device="cuda") if not is_contiguous: x = x.t().contiguous().t() get_max_c = torch.compile(get_max) # warmup y = get_max_c(x) # perf duration_microseconds = do_bench_using_profiling(lambda: get_max_c(x)) print('duration in microseconds', duration_microseconds) if __name__ == '__main__': fire.Fire(run) ``` Running this script with `is_contiguous=True` results in the expected (to me) pattern of a two stage reduction. Running this script with `is_contiguous=False` results in a three stage reduction, which seems to be significantly slower than the two-stage variant - ~8x slower on my machine for this example input. Example script calls with logs: ``` > TORCH_LOGS_FORMAT="short" TORCH_LOGS="output_code" python ~/local/tmp/20250108_max_repro.py --is_contiguous True 2>&1 | with-proxy gh gist create - Creating gist... ✓ Created secret gist https://gist.github.com/vkuzo/4798af9dbd1a13ff66d9586312c04d03 > TORCH_LOGS_FORMAT="short" TORCH_LOGS="output_code" python ~/local/tmp/20250108_max_repro.py --is_contiguous False 2>&1 | with-proxy gh gist create - Creating gist... ✓ Created secret gist https://gist.github.com/vkuzo/6b9d3e1397ff808b4897d75a59b7eaab ``` For context, I noticed this during a refactor of torchao float8 code (https://github.com/pytorch/ao/pull/1481). I can work around by manually passing contiguous tensors to `max(tensor)` in the modeling code, but sharing this as it was unexpected. ### Versions PyTorch commit: 768d73f6929be2a6eb81fe7424416dceb4a4aca9 (main branch) hardware: NVIDIA H100 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @BoyuanFeng
true
2,776,439,263
Request for: torch-2.5.1-cp313-cp313-win_amd64.whl
tlh45342
closed
[]
1
NONE
I don't see the posting for 313 there. I am guessing the Mac people would be interested as well?
true
2,776,423,628
Fix overflows in checkInBoundsForStorage
mikaylagawarecki
closed
[ "Stale" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144429
true
2,776,419,294
[ONNX] Update images and APIs to onnx_dynamo.rst
pytorchbot
closed
[ "open source", "release notes: onnx" ]
1
COLLABORATOR
Update the result image of exporting, and delete the functions/class that belongs to `torch.onnx.dynamo_export`
true
2,776,400,115
Inductor dashboard benchmarks: swap unused freeze_autotune_cudagraphs workflow for cppwrapper workflow
benjaminglass1
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
5
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144427 GitHub limits us to 10 inputs per workflow_dispatch job, so this PR swaps out an input that is no longer used for the cppwrapper input. See [the HUD](https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Thu%2C%2002%20Jan%202025%2016%3A30%3A07%20GMT&stopTime=Thu%2C%2009%20Jan%202025%2016%3A30%3A07%20GMT&granularity=hour&mode=inference&dtype=bfloat16&deviceName=cuda%20(a100)&lBranch=gh/benjaminglass1/53/orig&lCommit=4c3d3ad3c7886cbda9705b41c6db5fa7da0d6fe9&rBranch=main&rCommit=00df63f09f07546bacec734f37132edc58ccf574) for an example showing that it works and displays sane output.
true
2,776,293,690
[Pipelining] Fix ZeroBubblePP+DDP grad reduction issue
wconstab
closed
[ "oncall: distributed" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144521 * __->__ #144426 * #144352 * #144345 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @d4l3k @c-p-i-o
true