id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,785,869,806
Handle meta tensors in FX quantization
kausv
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: quantization", "release notes: AO frontend" ]
11
CONTRIBUTOR
Summary: D66895899 got reverted in D67565250 because of pytorch OSS linter failure. Adding back with the format the linter suggested https://github.com/pytorch/pytorch/actions/runs/12443655335/job/34743090791 Test Plan: buck run fbcode//mode/dev-nosan fbcode//torchrec/fb/quant/tests:test_embedding_modules Reviewed By: emlin Differential Revision: D68132568
true
2,785,808,532
update IS_JETSON check
Fuzzkatt
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
4
COLLABORATOR
update IS_JETSON check to include the latest SM cc @eqy @tinglvv @nWEIdia
true
2,785,783,528
ck: add explicit addmm test
coconutruben
closed
[ "fb-exported", "Stale", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Summary: # Why keep https://github.com/pytorch/pytorch/pull/144519 from regressing # What run addmm through CK only with a shape that previously caused a segfault Test Plan: ``` buck2 test mode/dev-nosan-amd-gpu fbcode//caffe2/test/inductor:test_ck_backend -- --exact 'caffe2/test/inductor:test_ck_backend - test_addmm (caffe2.test.inductor.test_ck_backend.TestCKBackend)' ``` Differential Revision: D68119352 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,785,770,901
Drop unused num_elements variable
c-p-i-o
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
4
CONTRIBUTOR
Summary: With the recent enforcement of unused variable as an error in D67329035, certain tests like https://www.internalfb.com/intern/test/562950135258426?ref_report_id=0 can't build citing: ``` Action failed: fbcode//caffe2:libtorch_cuda (cfg:linux-x86_64-fbcode-platform010-clang17-no-san#2a7259832b2f5c67) (cxx_compile torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp (pic)) Remote command returned non-zero exit code 1 Remote action, reproduce with: `frecli cas download-action a95a6625d2b071a782a7a8ea2882f4adccf103b023df5ccb596f48c506101754:145` Stdout: <empty> Stderr: fbcode/caffe2/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:3757:16: error: unused variable 'num_elements' [-Werror,-Wunused-variable] 3757 | size_t num_elements = output.numel(); | ^~~~~~~~~~~~ 1 error generated. ``` This causes Sandcastle to turn off these tests, decreasing protection from other bad diffs. Clean up the unused variable to unblock. Test Plan: ``` buck2 build --config hpc_comms.use_ncclx=dev --flagfile fbcode//mode/opt fbcode//ftar:ftar_py_e2e_test ``` https://www.internalfb.com/buck2/888dfc68-07eb-4ba1-add5-b38c12d52b33 Reviewed By: c-p-i-o Differential Revision: D68126236 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,785,760,479
[Intel GPU] Support SparseCsrXPU codegen
cfgfung
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/xpu" ]
24
CONTRIBUTOR
Adding a new dispatch key - `SparseCsrXPU` to enable Intel GPU support for SparseCsr Tensor. Similar PR: https://github.com/pytorch/pytorch/pull/139267
true
2,785,748,597
Add tests for different dtypes with max autotune
exclamaforte
open
[ "Merged", "Reverted", "Stale", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td" ]
15
CONTRIBUTOR
cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,785,717,403
fixup top
soulitzer
closed
[]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144720 * #141842 * #141841 * #144719
true
2,785,717,315
Support FunctionalTensor subclass in is_fake and maybe_get_fake_mode
soulitzer
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #141842 * #141841 * __->__ #144719
true
2,785,709,316
[xpu] Compilation of pytorch failed, unable to generate RegisterSparseXPU.cpp
jgtong
closed
[ "triaged", "module: xpu" ]
3
NONE
### 🐛 Describe the bug Description: pytorch installation cannot generate the file `RegisterSparseXPU.cpp` Back trace of the error: ``` [4/617] Generating ../../../xpu/ATen/XPUFunctions.h, ../../../xpu/ATen/RegisterXPU.cpp, ../../../xpu/ATe...xtend/c_shim_xpu.h, /home/jaytong/pytorch/torch/csrc/inductor/aoti_torch/generated/extend/c_shim_xpu.cpp FAILED: xpu/ATen/XPUFunctions.h xpu/ATen/RegisterXPU.cpp xpu/ATen/RegisterSparseXPU.cpp /home/jaytong/pytorch/torch/csrc/inductor/aoti_torch/generated/extend/c_shim_xpu.h /home/jaytong/pytorch/torch/csrc/inductor/aoti_torch/generated/extend/c_shim_xpu.cpp /home/jaytong/pytorch/build/xpu/ATen/XPUFunctions.h /home/jaytong/pytorch/build/xpu/ATen/RegisterXPU.cpp /home/jaytong/pytorch/build/xpu/ATen/RegisterSparseXPU.cpp cd /home/jaytong/pytorch && /home/jaytong/pyenv/pytorch_nightly_2/bin/python -m torchgen.gen --source-path /home/jaytong/pytorch/third_party/torch-xpu-ops/yaml/ --install-dir /home/jaytong/pytorch/build/xpu/ATen/ --per-operator-headers --static-dispatch-backend --backend-whitelist XPU SparseXPU --xpu --update-aoti-c-shim --extend-aoti-c-shim --aoti-install-dir=/home/jaytong/pytorch/torch/csrc/inductor/aoti_torch/generated/extend && cat /home/jaytong/pytorch/third_party/torch-xpu-ops/src/ATen/native/xpu/XPUFallback.template >> /home/jaytong/pytorch/build/xpu/ATen//RegisterXPU.cpp && /home/jaytong/pyenv/pytorch_nightly_2/bin/python /home/jaytong/pytorch/third_party/torch-xpu-ops/tools/codegen/remove_headers.py --register_xpu_path /home/jaytong/pytorch/build/xpu/ATen//RegisterXPU.cpp && /home/jaytong/pyenv/pytorch_nightly_2/bin/python /home/jaytong/pytorch/third_party/torch-xpu-ops/tools/codegen/remove_headers.py --register_xpu_path /home/jaytong/pytorch/build/xpu/ATen//RegisterSparseXPU.cpp ``` ### Versions Pytorch version: From `main` branch from commit: `c15d6508bdb82580803ea4899230043bf6ac2c04` OS: Ubuntu 22.04.5 LTS GCC: 11.4.0 cmake: 3.31.4 python: 3.10.12 cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,785,704,570
assert size/strides for fallback kernel
shunting314
closed
[ "high priority", "good first issue", "triaged", "oncall: pt2", "module: inductor" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Inductor right now does not generate size/stride asserts for fallback kernel. This makes issue like [this](https://fb.workplace.com/groups/1075192433118967/posts/1567334737238065) very hard to debug (this is a meta internal link). Actually in ir.FallbackKernel, we have the following code whose intention is to assert for size/strides for fallback kernel: https://github.com/pytorch/pytorch/blob/c15d6508bdb82580803ea4899230043bf6ac2c04/torch/_inductor/ir.py#L6669-L6670 However, Fallback kernel usually generate a node with MultiOutputLayout which does not pass the if check. A fix is to iterate thru each item for the FallbackKernel (check self.outputs) and assert size/stride for each of them. I use the following testing script: ``` import torch import einops from torch._inductor import config as inductor_config from torch._dynamo.testing import rand_strided, reset_rng_state inductor_config.fallback_random = True image_latent = torch.randn((24, 16, 32, 32), device="cuda").to(memory_format=torch.channels_last).view(2, 12, 16, 32, 32) def f(image_latent): indices = torch.argsort(torch.rand(2, 12), dim=-1)[:, : 6] tar_latent = image_latent[ torch.arange(2).unsqueeze(-1), indices[:, 3:] ] tar_latent_rearranged = einops.rearrange( tar_latent, "b n c h w -> (b n) c h w" ) return { "tar_latent": tar_latent, "tar_latent_rearranged": tar_latent_rearranged, } reset_rng_state() ref = f(image_latent) opt_f = torch.compile(f) reset_rng_state() act = opt_f(image_latent) print(f"max dif {(act['tar_latent'] - ref['tar_latent']).abs().max()}") print(f"max dif {(act['tar_latent_rearranged'] - ref['tar_latent_rearranged']).abs().max()}") ``` The script may not be able to repro anymore once we fix the layout problem for index.Tensor . ### Versions .. cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @BoyuanFeng @eellison
true
2,785,677,267
[BE] [CD] Remove pygit2 dep for aarch64_wheel build
malfet
closed
[ "Merged", "release notes: releng", "topic: improvements", "ciflow/binaries_wheel" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144698 * __->__ #144716 As it's incompatible with 3.13t and only used to fetch the branch name, which could be done by running ``` git rev-parse --abbrev-ref HEAD ``` Also, remove yet another reference to long gone `master` branch. Test plan: Download `manywheel-py3_11-cpu-aarch64.zip` produced by this PR, install it inside docker container and check it's version ``` # pip install torch-2.7.0.dev20250113+cpu-cp311-cp311-manylinux_2_28_aarch64.whl ... Installing collected packages: mpmath, typing-extensions, sympy, networkx, MarkupSafe, fsspec, filelock, jinja2, torch Successfully installed MarkupSafe-3.0.2 filelock-3.16.1 fsspec-2024.12.0 jinja2-3.1.5 mpmath-1.3.0 networkx-3.4.2 sympy-1.13.1 torch-2.7.0.dev20250113+cpu typing-extensions-4.12.2 root@434f2540345e:/# python Python 3.11.9 (main, Aug 1 2024, 23:33:10) [GCC 12.2.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> torch.__version__ '2.7.0.dev20250113+cpu' ```
true
2,785,624,580
[mps/inductor] Add support for `ceil`
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
4
MEMBER
inductor/test_index_dynamic_shapes passes after this change. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,785,611,635
[cutlass backend] cexpr the arg before writing to cpp file
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
15
CONTRIBUTOR
Summary: The problem is for certain shapes, see unit test, one of the dimensions is like `s0 // 2`. If we use cutlass backend, this means writing that to C++ file, which would lead to C++ compilation error. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,785,608,446
[dynamo] Delete DictKeysVariable - already have DictKeySetVariable
anijain2305
closed
[ "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144485 * __->__ #144713 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,785,586,534
[dynamo] skip frame recursively when no graph is traced
williamwen42
closed
[ "Stale", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144712 Fixes https://github.com/pytorch/pytorch/issues/144360. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @ydwu4 I'm considering refactoring the code flag logic in eval_frame (i.e. SKIP_CODE, SKIP_CODE_RECURSIVE, cache_limit_hit_fag, skip_frame_recursive_flag) to make things better defined and to have a cleaner, more consistent implementation. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,785,573,645
Tensor Stride Inconsistent (?) Behavior When One of the Dimension is 1
HanGuo97
open
[ "triaged", "module: memory format" ]
0
CONTRIBUTOR
Hi, I noticed that when a Tensor has `1` in one of its dimensions, its `stride` exhibit inconsistent (?) behavior under transformations + `.contiguous()` compared to a new tensor initialized with the final shape. Granted, since the dimension in question is `1`, we are never supposed to use index other than `0`. That being said, this could cause some custom (Triton) kernel that relied on certain stride behavior to fail. ```python import torch print("--- n = 1 ---") X = torch.randn(16, 2048, 1, 128, device="cuda") print("shape: ", X.shape, "\t\tstride: ", X.contiguous().stride()) X = X.transpose(dim0=1, dim1=2).contiguous() print("shape: ", X.shape, "\t\tstride: ", X.contiguous().stride()) X = torch.randn(16, 1, 2048, 128, device="cuda") print("shape: ", X.shape, "\t\tstride: ", X.contiguous().stride()) print("--- n = 2 ---") X = torch.randn(16, 2048, 2, 128, device="cuda") print("shape: ", X.shape, "\t\tstride: ", X.contiguous().stride()) X = X.transpose(dim0=1, dim1=2).contiguous() print("shape: ", X.shape, "\t\tstride: ", X.contiguous().stride()) X = torch.randn(16, 2, 2048, 128, device="cuda") print("shape: ", X.shape, "\t\tstride: ", X.contiguous().stride()) ``` The above code would print out: ```python --- n = 1 --- shape: torch.Size([16, 2048, 1, 128]) stride: (262144, 128, 128, 1) shape: torch.Size([16, 1, 2048, 128]) stride: (262144, 128, 128, 1) # <--- different shape: torch.Size([16, 1, 2048, 128]) stride: (262144, 262144, 128, 1) # <--- different --- n = 2 --- shape: torch.Size([16, 2048, 2, 128]) stride: (524288, 256, 128, 1) shape: torch.Size([16, 2, 2048, 128]) stride: (524288, 262144, 128, 1) # <--- the same shape: torch.Size([16, 2, 2048, 128]) stride: (524288, 262144, 128, 1) # <--- the same ``` cc @jamesr66a
true
2,785,566,841
Allow ROCm runner to upload benchmark results if found
huydhn
closed
[ "module: rocm", "Merged", "ciflow/trunk", "topic: not user facing", "test-config/default", "ciflow/rocm" ]
3
CONTRIBUTOR
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database. This will unblock AMD when they try to run benchmark MI300 benchmarks on CI. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,785,548,881
[aoti] Deduplicate "V.aot_compilation" and "V.graph.aot_mode" flags. [1/n]
zhxchen17
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
9
CONTRIBUTOR
Summary: According to angelayi, these two flags indicated different things when we have two-pass codegen but since now we basically keep the two flags all the same, we should merge two flags. This can prevent some bug (e.g. we change value of aot_mode which will not cover branches like if V.aot_compialtion is True) from happening when we're trying to add different code paths to tweak the value of aot_mode in the future. Test Plan: CI Differential Revision: D68122536 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,785,533,964
[PT][PG] fix build error `nused variable 'num_elements'`
tianfengfrank
closed
[ "oncall: distributed", "fb-exported", "ciflow/trunk", "release notes: distributed (c10d)" ]
9
NONE
Summary: fix the build error revealed in D68075676. Build error exposed by added new `-Werror ` flag https://github.com/pytorch/pytorch/pull/136965 Test Plan: CI Differential Revision: D68120898 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,785,463,492
functional compiled autograd
zou3519
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "skip-pr-sanity-checks", "module: inductor", "module: dynamo", "ciflow/inductor", "module: compiled autograd" ]
13
CONTRIBUTOR
This PR squashes together the following commits: https://github.com/pytorch/pytorch/pull/144115 https://github.com/pytorch/pytorch/pull/143417 https://github.com/pytorch/pytorch/pull/143405 https://github.com/pytorch/pytorch/pull/143387 https://github.com/pytorch/pytorch/pull/143304 https://github.com/pytorch/pytorch/pull/143296 This is a refactor of compiled autograd to use "functional autograd". The end goal is that it gets compiled autograd's initial capture to stop specializing on Tensor metadata, therefore allowing compiled autograd to better handle Tensor subclasses. For more information, please read the commit messages for each PR. cc @albanD @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @xmfan
true
2,785,456,089
Revert "Upload METADATA file with whl binaries (#143677)"
clee2000
closed
[ "Merged", "ciflow/binaries", "topic: not user facing" ]
3
CONTRIBUTOR
This reverts commit 3eb3f4ed5580010a7961d996ccc6ee19c7ccbb5e. Also reverts https://github.com/pytorch/pytorch/pull/144164 Manual revert because the above causes merge conflicts Reverting in favor of https://github.com/pytorch/test-infra/pull/6159
true
2,785,310,766
int_mm seems broken due to Triton upgrade
cpuhrsch
closed
[ "high priority", "triaged", "oncall: pt2", "module: inductor", "upstream triton" ]
5
CONTRIBUTOR
### 🐛 Describe the bug ```python import torch from torch._higher_order_ops.out_dtype import out_dtype def quantized_matmul(x_vals_int8, x_scales, w_vals_int8): return out_dtype(torch.ops.aten.mm.default, torch.int32, x_vals_int8, w_vals_int8) * x_scales x_vals_int8 = torch.randn(65536, 144).to(dtype=torch.int8).cuda() x_scales = torch.randn(65536, 1).to(dtype=torch.float32).cuda() w_vals_int8 = torch.randn(432, 144).to(dtype=torch.int8).cuda().t() qcm = torch.compile(quantized_matmul, mode='max-autotune-no-cudagraphs') qcm(x_vals_int8, x_scales, w_vals_int8) ``` produces ``` python: /root/.triton/llvm/llvm-86b69c31-almalinux-x64/include/llvm/Support/Casting.h:566: decltype(auto) llvm::cast(const From &) [To = mlir::FloatAttr, From = mlir::Attribute]: Assertion `isa<To>(Val) && "cast<Ty>() argument of incompatible type!"' failed. Aborted (core dumped) ``` This works on `nightly20241126py312` with `pytorch-triton 3.1.0+cf34004b8a`. Can do more fine-grained bisection if needed. ### Versions ``` ersions of relevant libraries: [pip3] numpy==2.1.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.7.0.dev20250113+cu124 [pip3] torchaudio==2.6.0.dev20250113+cu124 [pip3] torchvision==0.22.0.dev20250113+cu124 [conda] numpy 2.1.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] pytorch-triton 3.2.0+git0d4682f0 pypi_0 pypi [conda] torch 2.7.0.dev20250113+cu124 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250113+cu124 pypi_0 pypi [conda] torchvision 0.22.0.dev20250113+cu124 pypi_0 pypi ``` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @bertmaher @int3 @davidberard98 @nmacchioni @embg @peterbell10
true
2,785,233,817
Leave SCCACHE_S3_KEY_PREFIX empty to share the cache among all build jobs
huydhn
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
6
CONTRIBUTOR
This is a follow-up of https://github.com/pytorch/pytorch/pull/144112#pullrequestreview-2528451214. After leaving https://github.com/pytorch/pytorch/pull/144112 running for more than a week, all build jobs were fine, but I failed to see any improvement in build time. So, let's try @malfet suggestion by removing the prefix altogether to keep it simple. After this land, I will circle back on this to see if there is any improvements. Otherwise, it's still a simple BE change I guess. Here is the query I'm using to gather build time data for reference: ``` with jobs as ( select id, name, DATE_DIFF('minute', created_at, completed_at) as duration, DATE_TRUNC('week', created_at) as bucket from workflow_job where name like '%/ build' and html_url like concat('%', {repo: String }, '%') and conclusion = 'success' and created_at >= (CURRENT_TIMESTAMP() - INTERVAL 6 MONTHS) ), aggregated_jobs_in_bucket as ( select --groupArray(duration) as durations, --quantiles(0.9)(duration), avg(duration), bucket from jobs group by bucket ) select * from aggregated_jobs_in_bucket order by bucket desc ```
true
2,785,105,673
[XPU] Fix AOTI Runner Syntax Error
ratnampa
closed
[ "open source", "topic: not user facing", "module: xpu" ]
6
CONTRIBUTOR
Syntax error in xpu aoti runner from commit: https://github.com/pytorch/pytorch/pull/142213/ leads to XPU build failure. cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,785,082,412
[PP] Don't allow for num_microbatches > num_stages for single stage schedules
H-Huang
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (pipeline)" ]
8
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144702 There is an edge case where `Schedule1F1B` will hang when num_microbatches=1 (https://github.com/pytorch/torchtitan/issues/775). For validation it makes sense to check that the number of stages should be >= number of microbatches otherwise there will be an even larger bubble. This can be removed when we have the single stage schedules to use an IR and updated to run with schedule runtime (issue tracker https://github.com/pytorch/pytorch/issues/144701) cc @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,785,072,714
[Pipelining] Update all schedules to use _PipelineScheduleRuntime
H-Huang
open
[ "triaged", "better-engineering", "module: pipelining" ]
0
MEMBER
We have a new runtime for pipeline schedules that the existing schedules should be transitioned to. Things we need to do: - Update the `_step_microbatches` for each Schedule class to call into the `_PipelineScheduleRuntime._step_microbatches()` - Update the `Schedule1F1B` and `ScheduleGpipe` to generate the pipeline_order (IR). - Handle the differences between `PipelineScheduleSingle` vs `PipelineScheduleMulti` - Update `test_schedule_multiproc.py` and `test_schedule.py` to work as expected
true
2,785,016,599
inductor_config_logging: Don't drop keys
c00w
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
15
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144700 This bit me while I was trying to debug some trace issues. In general this config is already quite large when dumping, so adding more fields doesn't make it significantly worse. Also a number of the items we are type checking for (except the test configs), don't even show up. Primarily this will help us when debugging rocm, halide, and trace configs. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,785,011,820
inductor `full_like` decompositions give incorrect strides
bdhirsh
open
[ "high priority", "triaged", "actionable", "module: correctness (silent)", "oncall: pt2", "module: inductor", "ubn" ]
14
CONTRIBUTOR
min repro: ``` import torch def f(x): return torch.full_like(x, 3) x = torch.randn(4, 5, 6).transpose(1, -1) out = f(x) out_compiled = torch.compile(f, backend="aot_eager_decomp_partition")(x) print(out.stride()) print(out_compiled.stride()) # prints # (30, 1, 6) # (30, 5, 1) ``` This seems like the root cause of an NJT compile crash that @jbschlosser was running into (see his [repro](https://www.internalfb.com/intern/paste/P1710266970), [njt_patch](https://www.internalfb.com/phabricator/paste/view/P1710266748) and [error](https://www.internalfb.com/phabricator/paste/view/P1710267237)) cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov
true
2,784,983,615
[CD] Enable python3.13t builds for aarch64
malfet
closed
[ "Merged", "release notes: releng", "topic: improvements", "ciflow/binaries_wheel", "no-runner-experiments" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144698 * #144716 But make sure that right numpy version is picked (2.0.2 does not support 3.13)
true
2,784,975,450
[EZ] [CD] Add 3.13 to FULL_PYTHON_VERSIONS
malfet
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144698 * __->__ #144697 * #144696 Separation was necessary for Conda codegen, but now it's gone
true
2,784,974,975
[EZ] [CD] Eliminate stale TODO
malfet
closed
[ "Merged", "topic: not user facing" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144698 * #144697 * __->__ #144696 As 3.13 has been enabled across the board, which one can verify by running `./github/regenerate.sh` and observe that non of the configs have changed
true
2,784,957,840
Output of nonzero is transposed, fix fake tensor
ezyang
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: bug fixes", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: dynamo", "ci-no-td" ]
18
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144695 Needs this companion executorch PR: https://github.com/pytorch/executorch/pull/7657 Signed-off-by: Edward Z. Yang <ezyang@meta.com> cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,784,942,012
Fix inductor periodic smoke test wrong artifact
huydhn
closed
[ "Merged", "topic: not user facing", "test-config/default", "ciflow/inductor-periodic", "test-config/inductor_torchbench_smoketest_perf" ]
5
CONTRIBUTOR
I'm not entirely sure why this failure starts to show up in periodic since Friday https://github.com/pytorch/pytorch/actions/runs/12716967189/job/35463656803. The artifact was uploaded to S3, but `use-gha: anything-non-empty-to-use-gh` was set and it was working. Maybe this is related to https://github.com/pytorch/pytorch/issues/144479 I also clean up the GCP/AWS A100 selection logic as the GCP cluster doesn't exist anymore. cc @mlazos
true
2,784,926,778
[PagedAttention] Support different input position for each batch index
BoyuanFeng
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "module: flex attention" ]
6
CONTRIBUTOR
In LLM inference, each request usually has different prefill length, leading to different input position for each batch index. This PR adds such support for paged attention. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @Chillee @drisspg @yanboliang
true
2,784,895,369
ROCm: Skip tests in elastic/utils/distributed_test
jagadish-amd
closed
[ "oncall: distributed", "module: rocm", "open source", "Merged", "topic: not user facing", "ciflow/periodic" ]
7
CONTRIBUTOR
The tests are failing on ROCm machines due to the below error. The client socket has timed out after 1000ms while trying to connect to (gpu4f67.jax.cs.cpe.ice.amd.com, 0) Disabling the tests. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,784,863,760
torch.cond + torch.non_zero does not work with torch.export.export
xadupre
closed
[ "oncall: pt2", "oncall: export" ]
14
COLLABORATOR
### 🐛 Describe the bug I can't export the following model after rewriting the code with torch.cond. I tried with different configurations all listed below. None worked. ```python import torch class Model(torch.nn.Module): def forward( self, input_ids, image_features, vocab_size, ): if image_features.numel(): input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) # positions for image tokens condition = (input_ids < 0) & (input_ids > -int(1e9)) positions = torch.where(condition) # has_image = len(positions[0].tolist()) > 0 input_ids = input_ids.clamp_min(0).clamp_max(vocab_size) return (input_ids, *positions) return (input_ids, *torch.where(torch.zeros((1, 1), dtype=torch.bool))) inputs = [ ( (torch.arange(24) - 8).reshape((2, -1)).to(torch.int64), torch.arange(32).reshape((2, -1)).to(torch.float32), 1025, ), ( (torch.arange(24) - 8).reshape((2, -1)).to(torch.int64), torch.tensor([[], []], dtype=torch.float32), 1025, ), ] model = Model() expected = [model(*inp) for inp in inputs] assert len(expected) == 2 assert len(expected[0]) == len(expected[1]) == 3 # Rewriting with torch.cond. class Model2(torch.nn.Module): def forward(self, input_ids, image_features, vocab_size): def then_branch(input_ids, image_features, vocab_size): input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) condition = (input_ids < 0) & (input_ids > -int(1e9)) positions = torch.nonzero(condition, as_tuple=True) input_ids = input_ids.clamp_min(0).clamp_max(vocab_size) return (input_ids, positions[0], positions[1]) def else_branch(input_ids, image_features, vocab_size): r = torch.where(torch.zeros((1, 1), dtype=torch.bool)) return (input_ids, r[0], r[1]) a, b, c = torch.cond( image_features.numel() > 0, then_branch, else_branch, [input_ids, image_features, vocab_size], ) return a, b, c # Check that it is equivalent. model2 = Model2() new_out = [model2(*inp) for inp in inputs] for i in range(2): for j in range(3): torch.testing.assert_close(expected[i][j], new_out[i][j]) batch = torch.export.Dim("batch") seq_length = torch.export.Dim("seq_length") dynamic_shapes = ({0: batch}, {0: batch, 1: seq_length}, None) # We try to export with (tensor, tensor, int) # ep = torch.export.export(model2, inputs[0], dynamic_shapes=dynamic_shapes, strict=False) # fails with Expect operands to be a tuple of possibly nested dict/list/tuple that only consists of tensor leaves, but got [FakeTensor(..., size=(s1, 12), dtype=torch.int64), FakeTensor(..., size=(s2, s3)), 1025]. # print(ep) # We try to export with (tensor, tensor, int) new_inputs = (*inputs[0][:2], torch.tensor([1025], dtype=torch.int64)) # ep = torch.export.export(model2, new_inputs, dynamic_shapes=dynamic_shapes, strict=False) # torch._dynamo.exc.Unsupported: dynamic shape operator: aten.nonzero.default; to enable, set torch._dynamo.config.capture_dynamic_output_shape_ops = True # torch._dynamo.exc.UncapturedHigherOrderOpError: Cond doesn't work unless it is captured completely with torch.compile. Scroll up to find out what causes the graph break. # print(ep) torch._dynamo.config.capture_dynamic_output_shape_ops = True ep = torch.export.export(model2, new_inputs, dynamic_shapes=dynamic_shapes, strict=False) # torch._dynamo.exc.UncapturedHigherOrderOpError: Expected true_fn_output and false_fn_output to have same metadata but found: # pair[1] differ in 'shape: torch.Size([u0]) vs torch.Size([u1])', where lhs is FakeTensor(..., size=(u0,), dtype=torch.int64) and rhs is FakeTensor(..., size=(u1,), dtype=torch.int64) # pair[2] differ in 'shape: torch.Size([u0]) vs torch.Size([u1])', where lhs is FakeTensor(..., size=(u0,), dtype=torch.int64) and rhs is FakeTensor(..., size=(u1,), dtype=torch.int64) print(ep) ``` ### Versions Collecting environment information... PyTorch version: 2.7.0.dev20250113+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.35 Python version: 3.12.8 (main, Dec 4 2024, 08:54:12) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Laptop GPU Nvidia driver version: 538.92 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i7-13800H CPU family: 6 Model: 186 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 Stepping: 2 BogoMIPS: 5836.79 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 480 KiB (10 instances) L1i cache: 320 KiB (10 instances) L2 cache: 12.5 MiB (10 instances) L3 cache: 24 MiB (1 instance) Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.1 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnx==1.18.0 [pip3] onnx-extended==0.3.0 [pip3] onnxruntime_extensions==0.13.0 [pip3] onnxruntime-training==1.21.0+cu126 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.7.0.dev20250113+cu126 [pip3] torch_geometric==2.4.0 [pip3] torchaudio==2.6.0.dev20250113+cu126 [pip3] torchvision==0.22.0.dev20250113+cu126 [conda] Could not collect cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,784,701,156
Support new CUDA conda package layout natively in cpp_extension.CUDAExtension
vyasr
open
[ "module: cpp-extensions", "module: cuda", "triaged", "enhancement" ]
5
NONE
### 🚀 The feature, motivation and pitch [`torch.utils.cpp_extension.CUDAExtension`](https://pytorch.org/docs/stable/cpp_extension.html#torch.utils.cpp_extension.CUDAExtension) is designed to simplify compiling extension modules that require CUDA. To facilitate CUDA usage, it adds library/include/etc paths and passes them along to setuptools. These paths are currently based on the standard layout for CUDA packages provided via standard package managers (e.g. for Linux distros). However, as of CUDA 12 this is not the layout when CUDA is installed via conda packages. Recent updates to the CUDA infrastructure on conda-forge have added support for compiling CUDA code using compilers installed from CUDA (which was previously not possible). Since conda environments need to support cross-compilation, the packages are installed into a splayed layout where all files are placed into a `${PREFIX}/targets` directory and only a subset of them are symlinked directly into normal directories. In particular, shared libraries are symlinked into `${PREFIX}/lib`, but the includes are not linked into `${PREFIX}/include` because instead the nvcc compiler in conda is configured (via nvcc.profile and environment variables) to know where to search for includes. As mentioned above, supporting cross-compilation in conda environments was a key point in these decisions (some discussion started in https://github.com/conda-forge/cuda-nvcc-feedstock/issues/12, happy to point to more threads if needed). It would be ideal for PyTorch to also support compilation in these environments. To do so, the extension would need to also start searching these additional directories. ### Alternatives At the moment this issue may be worked around by setting [`CUDA_INC_PATH`](https://github.com/pytorch/pytorch/blob/main/torch/utils/cpp_extension.py#L1240), so this issue is primarily to document a nice-to-have feature as well as to have something to point to in case future users encounter confusion around building extensions with pytorch inside modern conda environments. ### Additional context _No response_ cc @malfet @zou3519 @xmfan @ptrblck @msaroufim @eqy
true
2,784,695,373
DISABLED test_tcp (__main__.WorkerServerTest)
jeffdaily
open
[ "oncall: distributed", "module: rocm", "triaged", "skipped" ]
1
COLLABORATOR
Platforms: rocm This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22distributed%2Felastic%2Ftest_control_plane.py%3A%3AWorkerServerTest%3A%3Atest_tcp%22%5D)). There is some setup issue with the ROCm CI self-hosted runners that blocks this port. Need to investigate further, but disable for now to improve the CI signal. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,784,672,782
topK for sparse Vectors
arthur-75
open
[ "module: sparse", "triaged" ]
1
NONE
### 🚀 The feature, motivation and pitch Hello, Thanks for this great package. is it possible to have topk with sparse vectors ? Thanks ### Alternatives _No response_ ### Additional context _No response_ cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer @jcaip
true
2,784,639,505
Loading sparse tensors in a `DataLoader` raises CUDA initialization error since `2.5.0`
douglas-boubert
closed
[ "module: sparse", "module: dataloader", "module: cuda", "triaged", "module: regression" ]
16
NONE
### 🐛 Describe the bug ```python import torch from torch.utils.data import Dataset, DataLoader def create_sparse_tensor(): tensor = torch.randn(5, 5) sparse_tensor = tensor.to_sparse().to("cpu") torch.save(sparse_tensor, "sparse_tensor.pth") class OperatorDataset(Dataset): def __init__(self): self.files = ["sparse_tensor.pth"] def __len__(self): return len(self.files) def __getitem__(self, idx): _ = torch.load(self.files[idx], weights_only=True, map_location="cpu") return None if __name__ == '__main__': print(torch.__version__) create_sparse_tensor() dataset = OperatorDataset() dataloader = DataLoader( dataset, batch_size=None, num_workers=1, pin_memory=True, ) for sparse_tensor in dataloader: # Error raised here pass ``` This code snippet succeeds on PyTorch 2.4.1 and fails on 2.5.0, 2.5.1 and the latest nightly: ``` 2.5.1+cu124 Traceback (most recent call last): File "/home/douglas/minimum_working_example.py", line 37, in <module> for sparse_tensor in dataloader: File "/home/douglas/miniconda3/envs/torch_sparse/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 701, in __next__ data = self._next_data() File "/home/douglas/miniconda3/envs/torch_sparse/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1465, in _next_data return self._process_data(data) File "/home/douglas/miniconda3/envs/torch_sparse/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1491, in _process_data data.reraise() File "/home/douglas/miniconda3/envs/torch_sparse/lib/python3.10/site-packages/torch/_utils.py", line 715, in reraise raise exception RuntimeError: Caught RuntimeError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/douglas/miniconda3/envs/torch_sparse/lib/python3.10/site-packages/torch/utils/data/_utils/worker.py", line 351, in _worker_loop data = fetcher.fetch(index) # type: ignore[possibly-undefined] File "/home/douglas/miniconda3/envs/torch_sparse/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 54, in fetch data = self.dataset[possibly_batched_index] File "/home/douglas/projects/gen11/research-lethe/minimum_working_example.py", line 19, in __getitem__ _ = torch.load(self.files[idx], weights_only=True, map_location="cpu") File "/home/douglas/miniconda3/envs/torch_sparse/lib/python3.10/site-packages/torch/serialization.py", line 1351, in load return _load( File "/home/douglas/miniconda3/envs/torch_sparse/lib/python3.10/site-packages/torch/serialization.py", line 1851, in _load torch._utils._validate_loaded_sparse_tensors() File "/home/douglas/miniconda3/envs/torch_sparse/lib/python3.10/site-packages/torch/_utils.py", line 254, in _validate_loaded_sparse_tensors torch._validate_sparse_coo_tensor_args( RuntimeError: CUDA error: initialization error CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Rocky Linux release 8.8 (Green Obsidian) (x86_64) GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18) Clang version: Could not collect CMake version: version 3.20.2 Libc version: glibc-2.28 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-477.13.1.el8_8.x86_64-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100 80GB PCIe GPU 1: NVIDIA A100 80GB PCIe GPU 2: NVIDIA A100 80GB PCIe GPU 3: NVIDIA A100 80GB PCIe Nvidia driver version: 530.30.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Thread(s) per core: 1 Core(s) per socket: 16 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz Stepping: 6 CPU MHz: 3500.000 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5800.00 Virtualization: VT-x L1d cache: 48K L1i cache: 32K L2 cache: 1280K L3 cache: 24576K NUMA node0 CPU(s): 0-15 NUMA node1 CPU(s): 16-31 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1 [pip3] torchaudio==2.5.1 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [conda] numpy 2.2.1 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] torchaudio 2.5.1 pypi_0 pypi [conda] torchvision 0.20.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer @jcaip @andrewkho @divyanshk @SsnL @VitalyFedyunin @dzhulgakov @ptrblck @msaroufim @eqy
true
2,784,601,231
[export] Load side info about pos/kw argument kind for serialization.
zhxchen17
closed
[ "fb-exported", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
8
CONTRIBUTOR
Summary: Fixing issue of nodes like ``` torch.ops.aten.linear.default(x, w, b) ``` being deserialized as ``` torch.ops.aten.linear.default(x, w, bias=b) ``` which breaks roundtripping. Test Plan: buck test mode/opt caffe2/test:test_export -- -r TestDeserialize buck test mode/opt caffe2/test:test_export -- -r TestSerialize Differential Revision: D67991410
true
2,784,571,322
[RelEng] Add `--ami` option to build_aarch64
malfet
closed
[ "Merged", "topic: not user facing" ]
4
CONTRIBUTOR
Which should be mutually-exclusive with OS For example, one can use the following to alloc one-off instance ``` ./build_aarch64_wheel.py --alloc-instance --instance-type g5.4xlarge --key-name nshulga-key --ami ami-0f51103893c02957c --ebs-size 200 ``` TODO: - Figure out EBS volume name depending on the AMI (for `ami-05576a079321f21f8`(al2023) it's `/dev/xvda`, but for `ami-0f51103893c02957c`(deep learning container) it's `/dev/sda1`
true
2,784,544,778
[export] Fix torchbind constant folding
yiming0416
closed
[ "fb-exported", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: export" ]
6
CONTRIBUTOR
Summary: `CallTorchBind` should not be folded during constant folding Test Plan: ``` buck2 run mode/dev-nosan sigmoid/inference/test:test_passes -- -r test_const_folding_torchbind ``` Reviewed By: henryoier Differential Revision: D67721272 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,784,500,397
torch.export treats two of the same parameters as the same node
jackzhxng
open
[ "oncall: pt2", "oncall: export" ]
2
CONTRIBUTOR
### 🚀 The feature, motivation and pitch `torch.export` where the same tensor is used for multiple args in the example inputs, e.g. (self.x, self.x) results in a confusing graph where the two parameters seem to be treated as the same node. As a basic example, when I would pass in something like ep.module()(torch.zeros(10), torch.ones(10)) as example inputs for the export, when tracing through the exported graph, for ops where I am expecting the arg to be the first parameter, torch.zeros(10), it takes the second parameter, torch.ones(10). Discussed with @angelayi and we think that this should be expected behavior, since it is a valid use case that the two parameters passed in are references to the same object, in which case it would make sense for them to share a node in the graph. However, my case was that both are possible - they could refer to the same object in some scenarios and different objects in others. To capture this dual use case we would need to pass in the latter as example input instead of the former. We think it would be useful thought to add a warning log about this behavior. ### Alternatives _No response_ ### Additional context _No response_ cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,784,393,208
[BE]: Improve typing inference with TypeIs
Skylion007
closed
[ "oncall: distributed", "open source", "better-engineering", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
4
COLLABORATOR
cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @LucasLLC @MeetVadakkanchery @mhorowitz @pradeepfn @ekr0
true
2,784,131,177
Add heuristic to fail block pointer match early
kundaMwiza
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor" ]
8
CONTRIBUTOR
This PR adds a heuristic to potentially fail the block pointer match early. Expressions like below take a long time to match using sympy (e.g. > 100 seconds) ```python # torch._inductor.config.triton.use_block_ptr = True # torch._inductor.config.triton.prefer_nd_tiling = True # Expression from pytest -k test_max_pool2d1_dynamic_shapes_cuda: ((xindex//ps1))*((s2 - 3//2))**2 + 2*((xindex//ps1))*((s2 - 3//2)) + ((xindex//ps1)) + ((s2 - 3//2))*(ModularIndexing(xindex, ps0, ps0)) + (ModularIndexing(xindex, 1, ps0)) + (ModularIndexing(xindex, ps0, ps0)) ``` Additionally, the heuristic for the number of dimensions based on the indexing expression is refined to only add dimensions for FloorDiv(index, denom) and ModularIndexing(index, denom, modulo) instead of including FloorDiv/ModularIndexing expressions that don't involve the index. Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @blaine-rister cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,783,989,203
[BE][Easy] improve submodule discovery for `torch.ao` type annotations
XuehaiPan
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "release notes: AO frontend" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144680
true
2,783,926,028
Improve softmax's perf in cuda
ywq880611
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: cuda" ]
8
CONTRIBUTOR
Fixes #144645
true
2,783,810,200
torch.distributed. pipelining source code page is not accessible.
kyoungbinkim
closed
[ "module: docs", "triaged" ]
2
NONE
### 📚 The doc issue https://github.com/pytorch/pytorch/blob/main/docs/source/distributed.pipelining.rst?plain=1#L424C1-L491C21 https://pytorch.org/docs/stable/distributed.pipelining.html#torch.distributed.pipelining.pipeline When accessing the source code page, a 404 error appears. thanks <img width="1458" alt="Image" src="https://github.com/user-attachments/assets/11cbfc02-878e-4967-9bc0-1eb90eab15b9" /> ### Suggest a potential alternative/fix _No response_ cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @svekars @brycebortree @sekyondaMeta @AlannaBurke
true
2,783,582,709
Tensorboard SummaryWriter.add_hparams doesn't log hparam metrics dictionary
eren-ture
open
[ "triaged", "module: tensorboard" ]
1
NONE
### 🐛 Describe the bug When trying to add_params, I cannot get the tensorboard to display the metrics. ```python from torch.utils.tensorboard import SummaryWriter import numpy as np with SummaryWriter(r'.\runs\test_01') as writer: for i in range(4, 7): for j in range(3, 6): batch_size, lr = 2**i, 10**(-j) writer.add_hparams( { 'batch_size': batch_size, 'learning_rate': lr }, { 'accuracy': float(np.random.random()) }, run_name=f'{batch_size}_e-{j}' ) ``` The output doesn't have the accuracy metrics. ![image](https://github.com/user-attachments/assets/8bc91a43-c9a2-4936-b1e1-38d474c891eb) ### Versions ``` PyTorch version: 2.4.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Enterprise (10.0.22631 64-bit) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.12.3 | packaged by conda-forge | (main, Apr 15 2024, 18:20:11) [MSC v.1938 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-11-10.0.22631-SP0 Is CUDA available: True CUDA runtime version: 12.4.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX 2000 Ada Generation Laptop GPU Nvidia driver version: 556.12 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: 13th Gen Intel(R) Core(TM) i7-13700H Manufacturer: GenuineIntel Family: 198 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 2400 MaxClockSpeed: 2400 L2CacheSize: 11776 L2CacheSpeed: None Revision: None Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] torch==2.4.1+cu124 [pip3] torchaudio==2.4.1+cu124 [pip3] torchmetrics==1.6.1 [pip3] torchvision==0.19.1+cu124 [conda] numpy 2.1.2 pypi_0 pypi [conda] torch 2.4.1+cu124 pypi_0 pypi [conda] torchaudio 2.4.1+cu124 pypi_0 pypi [conda] torchmetrics 1.6.1 pypi_0 pypi [conda] torchvision 0.19.1+cu124 pypi_0 pypi ```
true
2,783,576,231
Allow KGEModel.test to collect hits@k for several values of k at once
ACHinrichs
closed
[]
1
NONE
### 🚀 The feature, motivation and pitch Currently, `KGEModel.test` takes an optional integer-parameter `k` to calculate hits@k. I would like to collect hits for different `k`s, e.g. I would like to collect hits@1, hits@10 and hits@100 without having to re-run the model. In the solution I envision `KGEModel.test` would take a list of values for the parameter `k` and instead of the current hits_at_k list it would return a dict with the corresponding hits@k. To maintain backwards compatibility, the current behaviour (`int` as parameter, list as return) could be maintained, giving `k` the type `int | List[int]` I would be happy to implement the changes myself, if they are indeed desired. ### Alternatives run `KGEModel.test` multiple times with different values for the parameter `k` ### Additional context _No response_
true
2,783,401,918
Apply clang-format for ATen/core/boxing cpp files
zeshengzong
closed
[ "triaged", "open source", "Stale", "topic: not user facing" ]
3
CONTRIBUTOR
Code change via add path config in .lintrunner.toml file and running ```bash lintrunner -a --take CLANGFORMAT --all-files ```
true
2,783,322,243
[inductor][cpu] fused attention Inductor tests fails with an error " name 'getitem' is not defined "
kareemshaik80
closed
[ "oncall: pt2", "oncall: cpu inductor" ]
7
CONTRIBUTOR
### 🐛 Describe the bug I have regrenrated all the patterens with the flag PYTORCH_GEN_PATTERNS=1 by setting config flag "fallback_random" is set to true. By default this falg is false. After setting this flag to True. I ran existing fused attention tests but the test failed with the following error. **CMD to run the test:** 1. run once with the flag regenerte patterns PYTORCH_GEN_PATTERNS=1 python -m pytest test_fused_attention.py -k test_sdpa_rewriter_1_cpu 2. run again python -m pytest test_fused_attention.py -k test_sdpa_rewriter_1_cpu **Error:** NameError: name 'getitem' is not defined The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/lib/python3.10/unittest/case.py", line 59, in testPartExecutor yield File "/usr/lib/python3.10/unittest/case.py", line 591, in run self._callTestMethod(testMethod) File "/usr/lib/python3.10/unittest/case.py", line 549, in _callTestMethod method() ### Versions Collecting environment information... PyTorch version: 2.5.0a0+gite84e33f Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-127-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz CPU family: 6 Model: 85 Thread(s) per core: 1 Core(s) per socket: 6 Socket(s): 2 Stepping: 0 BogoMIPS: 4389.68 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xsaves arat pku ospke md_clear flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: VMware Virtualization type: full L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 12 MiB (12 instances) L3 cache: 71.5 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX flush not necessary, SMT disabled Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==7.0.0 [pip3] intel_extension_for_pytorch==2.5.10+git1104b12 [pip3] numpy==1.26.4 [pip3] torch==2.5.0a0+gite84e33f [pip3] torchaudio==2.1.0+6ea1133 [pip3] torchvision==0.16.0+fbb4cc5 [conda] Could not collect cc @soulitzer @chauhang @penguinwu
true
2,783,291,020
Thread-safe approach on temporarily changing the `set_default_type`
baluyotraf
open
[ "triaged", "enhancement", "module: python frontend" ]
5
NONE
### 🚀 The feature, motivation and pitch There are cases in our code in which we rely on torch to infer the type of the data. There are code sections in which we would like to use higher precision for floating points and it would be nice to only set the default types in these code blocks. ### Alternatives We are currently using a version that is not thread-safe. I don't think (?) there's a good way to do it given it's global nature, but maybe I'm missing the right API for it. ### Additional context _No response_ cc @albanD
true
2,783,246,761
[FlexAttention] Allow to pass mod_type info to `create_mask` via arg or keyword.
oraluben
closed
[ "triaged", "open source", "Stale", "topic: not user facing" ]
5
CONTRIBUTOR
`_get_mod_type` does not always work, e.g. `def some_score(score, *args)` in https://github.com/pytorch-labs/attention-gym/pull/103/commits/29f43391be8c952e86307c6cb1682022abf7de00. This PR allows user to specific the type (mask/score) via `create_mask(mod_fn, mod_type=_ModificationType.SCORE, ...)` or `create_mask(score_mod=mod_fn, ...)` @drisspg
true
2,783,246,531
torch.stack for sequences
yueyinqiu
open
[ "module: typing", "triaged", "enhancement", "module: python frontend" ]
6
NONE
### 🚀 The feature, motivation and pitch I'm trying to let my tensors to have a static dimension count for type checking, like: ```python import torch import typing Tensor2d = typing.NewType("Tensor2d", torch.Tensor) def matmul(x: Tensor2d, y: Tensor2d) -> Tensor2d: return Tensor2d(x.matmul(y)) # So that we won't pass any other tensors with wrong dims in accident. ``` However, I found that it is impossible to use functions like `torch.stack` on a `list[Tensor2d]`: ```python import torch import typing Tensor2d = typing.NewType("Tensor2d", torch.Tensor) my_list: list[Tensor2d] = [] torch.stack(my_list) # Pylance for example, says: # Argument of type "list[Tensor2d]" cannot be assigned to parameter "tensors" of type "Tuple[Tensor, ...] | List[Tensor]" in function "stack" # Type "list[Tensor2d]" is not assignable to type "Tuple[Tensor, ...] | List[Tensor]" # "list[Tensor2d]" is not assignable to "Tuple[Tensor, ...]" # "list[Tensor2d]" is not assignable to "List[Tensor]" # Type parameter "_T@list" is invariant, but "Tensor2d" is not the same as "Tensor" # Consider switching from "list" to "Sequence" which is covariant ``` So I wonder if it is possible to switch the signature from ```python def stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: ``` to ```python def stack(tensors: Sequence[Tensor], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: ``` ? And then since `Sequence` is covariant, we could pass a `list[Tensor2d]` into it. I guess there are some optimization measures that can only be applied on `tuple` and `list`, but is it possible to check the type at runtime? And if it's something other than a `list` or `tuple`, we could also automatically convert it. And same for some other functions like `cat`. Thanks in advance. ### Alternatives _No response_ ### Additional context _No response_ cc @ezyang @malfet @xuzhao9 @gramster @albanD
true
2,783,237,681
Update slow tests
pytorchupdatebot
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/slow", "ci-no-td" ]
3
COLLABORATOR
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml). Update the list of slow tests.
true
2,783,226,964
Fix Throughputbenchmark issue
shiyang-weng
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: bug fixes", "topic: not user facing", "module: dynamo" ]
5
CONTRIBUTOR
Fixes [144461](https://github.com/pytorch/pytorch/issues/144461) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,783,187,401
[Update torch-xpu-ops] Update torch-xpu-ops to resolve XPU build error introduced by #144364
etaf
closed
[ "open source", "topic: not user facing", "ciflow/xpu" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144668 * #144667 As title.
true
2,783,159,480
[XPU build] Fix XPU build error caused by wrong code change introduced by #142213
etaf
closed
[ "open source", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
6
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144668 * __->__ #144667 The PR #142213 changed the function parameter name from `inputs` to `input_handles` but still use `inputs` in function, and caused XPU build failure. Since XPU CI did not gate the PR, we need to fix it here to unblock the XPU build.
true
2,783,135,743
[mps/inductor] Add support for truncdiv().
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
MEMBER
Two other inductor tests pass after this change. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,783,106,932
[MPSInductor] Fix maximum/minimum for int types
malfet
closed
[ "Merged", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
`metal::isnan` is only defined for floats, so provide a generic wrapper that is false for integral types TODO: Figure out why type propagantion is not working (or should it?) Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,783,084,636
Generalize poison fork logic for each device backend
guangyey
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: improvements", "topic: not user facing", "ciflow/periodic", "ciflow/mps", "ciflow/rocm", "ciflow/xpu", "ci-no-td", "module: accelerator" ]
39
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144664 # Motivation Generalize the posion_fork code to make it reusable across different devices. cc @albanD @EikanWang
true
2,783,078,906
Support loading and executing a ExportedProgram from torch.export in C++ environment
supercharleszhu
open
[ "oncall: pt2", "oncall: export" ]
11
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Hi all, we are currently working on an online ML platform in the company which require us to 1. similar to torchscript, export a pytorch model graph and variable into an IR which can be executed in c++ environment 2. Update the model parameters when executing inference. I did some doc and code search and [torch.export](https://pytorch.org/docs/stable/export.html) seems to be the closest way to achieve this, but there are some gaps, not sure if I missed anything 1. torch.export can only export forward pass and cannot export forward + backward + optimizer step all into the same graph . The backward graph is executed eagerly after loaded back in python environment (checked the latest pytorch 2.5 doc [here](https://pytorch.org/docs/stable/export.html)). 2. In order to run the graph in C++, We can only compile the graph into aot_inductor and put that into .so file, there is not C++ API to load the exported graph and programically call this graph 3. There is no way to call this compute graph while passing variable update to the compute graph Do we have any plans to extend torch export to support such functionalities? ### Alternatives _No response_ ### Additional context same issue posted here https://discuss.pytorch.org/t/support-loading-and-executing-a-exportedprogram-from-torch-export-with-forward-backward-optimizer-step-in-c-environment/213024 cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,782,916,424
[MPSInductor] Add support for sizevars
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Just pass them as kernel arguments After this change `pytest test/inductor/test_torchinduct.py -v -k _mps` reports 330 failed, 429 passed after and 335 failed, 424 passed before cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,782,872,702
Fix torch.logsumexp dim description
zeshengzong
closed
[ "triaged", "open source", "Stale", "release notes: python_frontend" ]
3
CONTRIBUTOR
Fixes #144339 Remove `dim` optional description in `torch.logsumexp` doc. **Test Result** **Before** ![image](https://github.com/user-attachments/assets/44cea233-4103-4d7f-b784-1228a6cae0ef) **After** ![image](https://github.com/user-attachments/assets/69cecd50-7422-40b7-bed6-608a9c2398ad)
true
2,782,807,117
Implement the `mode` property for transformed distributions
hukz18
open
[ "module: distributions", "triaged" ]
0
NONE
### 🚀 The feature, motivation and pitch Currently, the `TransformedDistribution` class of `torch.distributions.transformed_distribution` doesn't have a `mode` property. Calling `mode` on such an instance will raise a `NotImplementedError` that falls back to the `Distributions` base class. Though I understand the `mode` of a transformed distribution should not necessarily equal to just applying the transforms onto the base distribution's `mode` value, as seen in the discussion [here](https://math.stackexchange.com/questions/2526473/modes-under-transformation). Is there a feasible way to get the actual mode value of a transformed distribution? cc @fritzo @neerajprad @alicanb @nikitaved
true
2,782,762,476
Incorrect formula in docstring for torch.nn.modules.normalization.RMSNorm
enedil
closed
[]
3
NONE
### 📚 The doc issue Issue is at this line: https://github.com/pytorch/pytorch/blob/9ae35b8bb13f3c35803355ce26fb9ee9954f1bdf/torch/nn/modules/normalization.py#L328 Assume for simplicity, that len(x.shape) == 1. Formula is ``` y = x / sqrt(RMS[x] + epsilon) * gamma ``` RMS, as indicated from the linked ARXIV paper, sqrt(mean(x^2)). So, according to the docstring, this formula is correct: ``` y = x / sqrt(sqrt(mean(x^2)) + epsilon) * gamma ``` RMSNorm computes however something else, namely ``` y = x / sqrt(mean(x^2) + epsilon) * gamma ``` This is apparently what RMSNorm should do, so the issue is in the docs. ### Suggest a potential alternative/fix Change the formula not to refer to RMS[x], if we want epsilon to be included, or introduce a term like RMS[x, eps]? It is not clear for me how to make this legible and compact.
true
2,782,740,342
Update CONTRIBUTING.md
kaykenho
closed
[ "open source", "topic: not user facing" ]
3
NONE
Update documentation for the contributing process - Clarified the steps - Minor fixes to grammar and formatting for clarity. Fixes #ISSUE_NUMBER
true
2,782,732,952
Async distributed checkpointing works incorrectly with tensors on CPU
dimdi-y
closed
[ "oncall: distributed", "triaged", "oncall: distributed checkpointing" ]
5
NONE
### 🐛 Describe the bug If an update to model CPU parameters happens before an async distributed checkpoint (via `torch.distributed.checkpoint.async_save`) is finished, the new value is written instead of the original one. Moving the model to GPU or waiting on the returned future helps with the issue, but doing an optimizer update before waiting on the future seems to be the intended use-case (for example, the [official recipe](https://pytorch.org/tutorials/recipes/distributed_async_checkpoint_recipe.html) does this). I think the intended behaviour for `torch.distributed.checkpoint.async_save` should be to only return after the CPU state has been copied into a separate buffer. Here is a short reproduction script: ```python import os import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp from torch.distributed.checkpoint.state_dict import get_model_state_dict import torch.nn as nn class Net(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.ones(1, 1)) def forward(self, x): return self.layer(x) os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "12345" os.environ["WORLD_SIZE"] = "1" os.environ["RANK"] = "0" dist.init_process_group() model = Net() state_dict = get_model_state_dict(model) pg = dist.new_group(backend="gloo") try: steps = [10, 20, 30, 40, 50] future = None for step in steps: # simulate a training step, e.g. optimizer updating values with torch.no_grad(): model.weight.data.fill_(step) if future is not None: future.result() future = None future = dcp.async_save( state_dict, checkpoint_id=f"outputs/{step}", process_group=pg, ) future.result() for step in steps: dcp.load( state_dict, checkpoint_id=f"outputs/{step}", process_group=pg, ) assert state_dict["weight"][0, 0] == step, f"got {state_dict['weight'][0, 0]=} on {step=}" finally: dist.destroy_process_group(pg) dist.destroy_process_group() ``` which fails with the following error: ``` [rank0]: Traceback (most recent call last): [rank0]: File "/home/ubuntu/dimdi-y/oss/torchtitan/../reproduce_cpu_dcp_save.py", line 55, in <module> [rank0]: assert state_dict["weight"][0, 0] == step, f"got {state_dict['weight'][0, 0]=} on {step=}" [rank0]: AssertionError: got state_dict['weight'][0, 0]=tensor(20.) on step=10 ``` the script does several iterations of updating the model weights to be equal to step id and then saving the model. Each of the checkpoints (except for the last one) has the state of the model that should only be written in the subsequent checkpoint. ### Versions ``` Collecting environment information... PyTorch version: 2.7.0.dev20250110+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.30.3 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-1031-aws-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.85 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H200 GPU 1: NVIDIA H200 GPU 2: NVIDIA H200 GPU 3: NVIDIA H200 GPU 4: NVIDIA H200 GPU 5: NVIDIA H200 GPU 6: NVIDIA H200 GPU 7: NVIDIA H200 Nvidia driver version: 550.90.07 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 192 On-line CPU(s) list: 0-191 Vendor ID: AuthenticAMD Model name: AMD EPYC 7R13 Processor CPU family: 25 Model: 1 Thread(s) per core: 2 Core(s) per socket: 48 Socket(s): 2 Stepping: 1 BogoMIPS: 5299.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid Hypervisor vendor: KVM Virtualization type: full L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 48 MiB (96 instances) L3 cache: 384 MiB (12 instances) NUMA node(s): 4 NUMA node0 CPU(s): 0-23,96-119 NUMA node1 CPU(s): 24-47,120-143 NUMA node2 CPU(s): 48-71,144-167 NUMA node3 CPU(s): 72-95,168-191 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.0 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.7.0.dev20250110+cu126 [pip3] torchaudio==2.6.0.dev20250110+cu126 [pip3] torchdata==0.10.1 [pip3] torchtitan==0.0.2 [pip3] torchvision==0.22.0.dev20250110+cu126 [conda] Could not collect ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @LucasLLC @pradeepfn
true
2,782,728,512
remove allow-untyped-defs from torch/ao/nn/quantized/reference/modules/linear.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "release notes: AO frontend" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144656
true
2,782,728,489
remove allow-untyped-defs from torch/_C/_dynamo/eval_frame.pyi
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144655
true
2,782,728,470
remove allow-untyped-defs from torch/nn/parameter.pyi
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144656 * #144655 * __->__ #144654
true
2,782,728,455
remove allow-untyped-defs from torch/distributed/checkpoint/api.py
bobrenjc93
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144656 * #144655 * #144654 * __->__ #144653 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @LucasLLC @MeetVadakkanchery @mhorowitz @pradeepfn @ekr0
true
2,782,728,434
remove allow-untyped-defs from torch/ao/nn/intrinsic/__init__.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "release notes: AO frontend" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144652
true
2,782,698,709
[MPS] lu factor ex implementation
Isalia20
closed
[ "triaged", "open source", "Merged", "topic: improvements", "release notes: mps", "ciflow/mps" ]
7
COLLABORATOR
Implements `torch.linalg.lu_factor_ex`
true
2,782,604,784
[BE]: Update literal typing for torch/fx/graph nodelist
Skylion007
closed
[ "open source", "better-engineering", "Merged", "ciflow/trunk", "release notes: fx", "fx" ]
3
COLLABORATOR
Mentioned in discussion for #144631 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,782,592,023
[MPSInductor] Better error when kernel fails to compile
malfet
closed
[ "Merged", "ciflow/trunk", "topic: improvements", "release notes: mps", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144649 * #144648 * #144647 Now error message looks as follows: ``` % python ../test/inductor/test_torchinductor.py -v -k test_cat_unbacked_2d_mps test_cat_unbacked_2d_mps (__main__.GPUTests) ... inline_call [] stats [('calls_captured', 6)] inductor [('extern_calls', 2), ('fxgraph_cache_miss', 1)] aot_autograd [('total', 1), ('autograd_cache_bypass', 1), ('not_ok', 1)] ERROR ====================================================================== ERROR: test_cat_unbacked_2d_mps (__main__.GPUTests) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/malfet/git/pytorch/pytorch/torch/testing/_internal/common_utils.py", line 3126, in wrapper method(*args, **kwargs) File "/Users/malfet/git/pytorch/pytorch/build/../test/inductor/test_torchinductor.py", line 12254, in new_test return value(self) File "/Users/malfet/miniconda3/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/Users/malfet/git/pytorch/pytorch/build/../test/inductor/test_torchinductor.py", line 5885, in test_cat_unbacked_2d self.common( File "/Users/malfet/miniconda3/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/Users/malfet/git/pytorch/pytorch/build/../test/inductor/test_torchinductor.py", line 620, in check_model_gpu check_model( File "/Users/malfet/git/pytorch/pytorch/build/../test/inductor/test_torchinductor.py", line 461, in check_model actual = run(*example_inputs, **kwargs) File "/Users/malfet/git/pytorch/pytorch/torch/_dynamo/eval_frame.py", line 580, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 File "/Users/malfet/git/pytorch/pytorch/torch/_inductor/compile_fx.py", line 704, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/Users/malfet/git/pytorch/pytorch/torch/_inductor/compile_fx.py", line 689, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/Users/malfet/git/pytorch/pytorch/torch/_inductor/compile_fx.py", line 1149, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/Users/malfet/git/pytorch/pytorch/torch/_inductor/compile_fx.py", line 1064, in codegen_and_compile compiled_fn = graph.compile_to_module().call File "/Users/malfet/git/pytorch/pytorch/torch/_inductor/graph.py", line 1977, in compile_to_module return self._compile_to_module() File "/Users/malfet/git/pytorch/pytorch/torch/_inductor/graph.py", line 2018, in _compile_to_module mod = PyCodeCache.load_by_key_path( File "/Users/malfet/git/pytorch/pytorch/torch/_inductor/codecache.py", line 2768, in load_by_key_path mod = _reload_python_module(key, path) File "/Users/malfet/git/pytorch/pytorch/torch/_inductor/runtime/compile_tasks.py", line 51, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/var/folders/sc/2thx6_x95h7_h9qs8s48yh140000gn/T/tmpmyfz2ju8/lt/cltm34ognlgcc6oxoe6bexvtbwcdtdfgnkjj5miz7vhkemitacp7.py", line 40, in <module> File "/var/folders/sc/2thx6_x95h7_h9qs8s48yh140000gn/T/tmpmyfz2ju8/lt/cltm34ognlgcc6oxoe6bexvtbwcdtdfgnkjj5miz7vhkemitacp7.py", line 32, in _compile_mps_shader torch._inductor.exc.InductorError: SyntaxError: failed to compile kernel void generated_kernel( device float* out_ptr0, constant float* in_ptr0, uint xindex [[thread_position_in_grid]] ) { long x1 = (xindex) / (3); auto tmp0 = x1; auto tmp1 = static_cast<long>(tmp0); auto tmp2 = 0; auto tmp3 = tmp1 >= tmp2; auto tmp4 = 2; auto tmp5 = tmp1 < tmp4; long x0 = (xindex) % (3); auto tmp6 = in_ptr0[x0 + 3*(x1)]; auto tmp7 = tmp5 ? tmp6 : 0.0; auto tmp8 = tmp1 >= tmp4; auto tmp9 = 2 + ks0; auto tmp10 = static_cast<long>(tmp9); auto tmp11 = tmp1 < tmp10; auto tmp12 = 1.0; auto tmp13 = tmp8 ? tmp12 : 0.0; auto tmp14 = tmp5 ? tmp7 : tmp13; long x2 = xindex; out_ptr0[x2] = static_cast<float>(tmp14); } with program_source:18:25: error: use of undeclared identifier 'ks0' auto tmp9 = 2 + ks0; ^ Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True To execute this test, run the following from the base repo dir: python test/inductor/test_torchinductor.py GPUTests.test_cat_unbacked_2d_mps This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ---------------------------------------------------------------------- Ran 1 test in 0.472s FAILED (errors=1) ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,782,585,380
[MPS][BE] Surface syntax errors shader compilation
malfet
closed
[ "better-engineering", "Merged", "release notes: mps", "ciflow/mps" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144649 * __->__ #144648 * #144647 Before this change ```python >>> import torch >>> torch.mps._compile_shader('What') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/malfet/miniconda3/envs/py311/lib/python3.11/site-packages/torch/mps/__init__.py", line 157, in _compile_shader return torch._C._mps_compileShader(source) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: Failed to create metal library, error: Error Domain=MTLLibraryErrorDomain Code=3 "program_source:1:1: error: unknown type name 'What' What ^ program_source:1:5: error: expected unqualified-id What ^ " UserInfo={NSLocalizedDescription=program_source:1:1: error: unknown type name 'What' What ^ program_source:1:5: error: expected unqualified-id What ^ } ``` After this change ```python >>> import torch >>> torch.mps._compile_shader('What') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/malfet/git/pytorch/pytorch/torch/mps/__init__.py", line 157, in _compile_shader return torch._C._mps_compileShader(source) SyntaxError: program_source:1:1: error: unknown type name 'What' What ^ program_source:1:5: error: expected unqualified-id What ^ ```
true
2,782,585,353
[BE] Introduce `c10::SyntaxError`
malfet
closed
[ "better-engineering", "Merged", "release notes: python_frontend", "topic: improvements" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144649 * #144648 * __->__ #144647 Which will be translated into Python's SyntaxError
true
2,782,545,207
[Inductor] Unifiy Low Precision FP Legalization for to_dtype_bitcast & constant
DDEle
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
10
CONTRIBUTOR
The upcast in `to_dtype_bitcast()` breaks following operations that only works with the target type (I uses `bitwise_and` in the updated UT). ![image](https://github.com/user-attachments/assets/77a6f3b6-b5e7-4ed8-ab65-09d76f077376) This PR fixes this problem. Let's check the CI results to make sure it doesn't bring accuracy problems. - Unified the type promotion of low-precision FP operations in the legalize func, grouping ops into sources (whose results may be promoted) and sinks (whose input may be cast back). (The term of _sink_ and _source_ are from [graph theory](https://en.wikipedia.org/wiki/Directed_graph#Indegree_and_outdegree).) ## Test ```bash pytest -vs test/inductor/test_torchinductor.py::CpuTests::test_float16_to_int16_cpu pytest -vs test/inductor/test_torchinductor.py::CpuTests::test_bfloat16_to_int16_cpu pytest -vs test/inductor/test_torchinductor.py::CpuTests::test_float32_to_int32_cpu ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,782,541,376
[RFC] Improve performance for softmax op for cuda in some specific size
ywq880611
closed
[ "module: performance", "module: cuda", "triaged" ]
4
CONTRIBUTOR
### 🚀 The feature, motivation and pitch In the triton [tutorial](https://triton-lang.org/main/getting-started/tutorials/02-fused-softmax.html) for softmax, we could compare the performance of pytorch op and triton, here is the result on my local (RTX3080): ### Compare between triton and torch ![softmax-perf](https://github.com/user-attachments/assets/eb24461e-66a2-4738-bcdd-348f052ba993) We could see there is a dramatic perf drop after **N=1024** for torch. ### Mini repro Here is my mini repro to test the perf around **N=1024** ```python import torch DEVICE=torch.device('cuda') # Time cost for near 1024 for cnt in range(1020, 1030): x = torch.randn(4096, cnt, device=DEVICE, dtype=torch.float32) #x = torch.randn(M, N, device=DEVICE, dtype=torch.float32) #warm up need_warmup = True round = 5 if need_warmup: for _ in range(round): output = torch.softmax(x, dim=-1) torch.cuda.synchronize() start_time = torch.cuda.Event(enable_timing=True) end_time = torch.cuda.Event(enable_timing=True) # Start time start_time.record() # Apply softmax for _ in range(round): output = torch.softmax(x, dim=-1) # End time end_time.record() torch.cuda.synchronize() # Calculate elapsed time elapsed_time_ms = start_time.elapsed_time(end_time) # print(f"CUDA Time: {elapsed_time_ms:.6f} ms") gbps = lambda ms: round * 2 * x.numel() * x.element_size() * 1e-9 / (ms * 1e-3) print(f"n as {cnt} of softmax: {gbps(elapsed_time_ms):.6f} gb/s") ``` Its output is: ``` n as 1020 of softmax: 645.059274 gb/s n as 1021 of softmax: 653.439969 gb/s n as 1022 of softmax: 644.096473 gb/s n as 1023 of softmax: 649.523815 gb/s n as 1024 of softmax: 656.015990 gb/s n as 1025 of softmax: 209.183680 gb/s n as 1026 of softmax: 208.490244 gb/s n as 1027 of softmax: 201.126073 gb/s n as 1028 of softmax: 278.307944 gb/s n as 1029 of softmax: 205.510996 gb/s ``` We could see there is about ***>3x*** perf drop after **n=1024** `(656 vs 209)`. ### Investigation #### Current state Let's look at the below code snippet: https://github.com/pytorch/pytorch/blob/1664033e13cc8831e2bb66e5c975ffb4dfc24eda/aten/src/ATen/native/cuda/SoftMax.cu#L846-L880 There are two kinds of softmax op in CUDA: 1. `dispatch_softmax_forward` 2. `cunn_SoftMaxForwardSmem` or `cunn_SoftMaxForward` The implementation of `cunn_SoftMaxForwardSmem` or `cunn_SoftMaxForward` will be invoked if **N>1024**, but it's not efficient in the rough range 1025~2000. #### root cause The reason why the `cunn_SoftMaxForwardSmem` and `cunn_SoftMaxForward` is not efficient is **too much global memory and share memory access**, because they didn't cache the data each thread would like to access in register, so they may have to load data from memory much times. ### Alternatives We could try to use registers to cache the data which a thread would like to use. Pros: Improve performance by reducing memory access Cons: Increase register pressure, but we could just do it in range of `N` in about 1025~2000, which may just increase about `1~2` register for a thread (I guess it's acceptable). Now I have a draft implement in my local, it shows **~50%** performance gain compared with current torch, for the above case, its output is: ``` n as 1020 of softmax: 613.605899 gb/s n as 1021 of softmax: 628.307691 gb/s n as 1022 of softmax: 627.565386 gb/s n as 1023 of softmax: 658.589191 gb/s n as 1024 of softmax: 632.968698 gb/s n as 1025 of softmax: 297.640651 gb/s n as 1026 of softmax: 297.408139 gb/s n as 1027 of softmax: 298.221413 gb/s n as 1028 of softmax: 279.757637 gb/s n as 1029 of softmax: 298.785226 gb/s ``` I'm still working on to make it better now. WDYT? Any insights or comments are appreciated! ### Additional context A [doc](https://docs.google.com/document/d/1K030-wgNlzyYePBAPvwZ5W0Tm7jebFAjSat6QvmWoz4/edit?usp=sharing) contains some nsight profiler screen shot. cc @msaroufim @ptrblck @eqy
true
2,782,524,234
remove Windows XPU build workaround.
xuhancn
closed
[ "module: windows", "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/binaries_wheel", "intel", "ciflow/xpu", "module: xpu" ]
34
COLLABORATOR
From the RFC: https://github.com/pytorch/pytorch/issues/141946 Fixes https://github.com/pytorch/pytorch/issues/134989 After we land these fixing PRs: 1. https://github.com/pytorch/pytorch/pull/142245 2. https://github.com/pytorch/pytorch/pull/141943 We can remove the Windows XPU workaround. cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,782,469,720
nn.functional.interpolate doesn't work correctly with NCW tensors when output W exceeds 2^23
alexlyulkov
open
[ "module: nn", "triaged", "module: edge cases" ]
0
NONE
### 🐛 Describe the bug nn.functional.interpolate returns strange results for NCW tensors when output W exceeds 2^23. **Reproduction:** ``` import torch n = (1 << 22) + 4 x = [] for i in range(n // 2): x.append(0.0) x.append(1.0) x = torch.tensor(x, device="cuda:0", dtype=torch.float) x = x.view(1, 1, -1) y = torch.nn.functional.interpolate(x, size = n * 2, mode="linear") print(y[0, 0, :20]) print(y[0, 0, -20:]) ``` **Output:** ``` tensor([0.0000, 0.2500, 0.7500, 0.7500, 0.2500, 0.2500, 0.7500, 0.7500, 0.2500, 0.2500, 0.7500, 0.7500, 0.2500, 0.2500, 0.7500, 0.7500, 0.2500, 0.2500, 0.7500, 0.7500], device='cuda:0') tensor([0.2500, 0.2500, 0.7500, 0.7500, 0.2500, 0.2500, 0.7500, 0.7500, 0.2500, 0.2500, 0.7500, 0.7500, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 1.0000], device='cuda:0') ``` Only the first 2^23 values are correct. It reproduces with float32 and float16 types on CPU and CUDA ### Versions PyTorch: 2.5.1 CUDA 12.4 Python: 3.12.3 OS: Ubuntu 24.04 cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,782,424,962
[Not4Land] test `optree` version compatibility
XuehaiPan
closed
[ "open source", "ciflow/trunk", "topic: not user facing", "not4land", "ciflow/inductor" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,782,409,175
FSDP OOM error
blurmemo
closed
[]
1
NONE
I use two 40G A100 GPUs and one 80G GPUs to fine-tune my model through lora and FSDP which ShardingStrategy is FULL SHARD. When I use command(CUDA_VISIBLE_DEVICES=5,3,4 torchrun --standalone --nnodes=1 --nproc-per-node=3 finetuning.py) to begin my work. I still get problems which are OOM on two 40G A100 GPUs. I watch my GPUs and find all GPUs will load total model weights when using FullyShardedDataParallel to init model. So I am so confused about them and do not know how to fix them. Bug logs ``` [rank2]: Traceback (most recent call last): [rank2]: File "/data0/home/ening/NICA/cogmllm/src/cogmllm/tools/finetuning.py", line 438, in <module> [rank2]: fire.Fire(main) [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/fire/core.py", line 135, in Fire [rank2]: component_trace = _Fire(component, args, parsed_flag_args, context, name) [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/fire/core.py", line 468, in _Fire [rank2]: component, remaining_args = _CallAndUpdateTrace( [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/fire/core.py", line 684, in _CallAndUpdateTrace [rank2]: component = fn(*varargs, **kwargs) [rank2]: File "/data0/home/ening/NICA/cogmllm/src/cogmllm/tools/finetuning.py", line 281, in main [rank2]: model = FSDP( [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py", line 509, in __init__ [rank2]: _init_param_handle_from_module( [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/torch/distributed/fsdp/_init_utils.py", line 636, in _init_param_handle_from_module [rank2]: _init_param_handle_from_params(state, managed_params, fully_sharded_module) [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/torch/distributed/fsdp/_init_utils.py", line 648, in _init_param_handle_from_params [rank2]: handle = FlatParamHandle( [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/torch/distributed/fsdp/_flat_param.py", line 584, in __init__ [rank2]: self._init_flat_param_and_metadata( [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/torch/distributed/fsdp/_flat_param.py", line 739, in _init_flat_param_and_metadata [rank2]: self.flat_param: FlatParameter = self.flatten_tensors_into_flat_param( [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/torch/distributed/fsdp/_flat_param.py", line 852, in flatten_tensors_into_flat_param [rank2]: flat_param_data = self.flatten_tensors(tensors, aligned_numel) [rank2]: File "/data0/home/ening/software/miniconda3/envs/cogmllm/lib/python3.10/site-packages/torch/distributed/fsdp/_flat_param.py", line 844, in flatten_tensors [rank2]: return torch.cat(flat_tensors, dim=0) [rank2]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 19.88 GiB. GPU 2 has a total capacity of 39.38 GiB of which 18.80 GiB is free. Including non-PyTorch memory, this process has 20.57 GiB memory in use. Of the allocated memory 19.89 GiB is allocated by PyTorch, and 208.63 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ```
true
2,782,406,282
[FX] Refactor immutable collections implementation
XuehaiPan
closed
[ "open source", "Merged", "release notes: fx", "fx", "module: inductor", "module: dynamo", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147691 * __->__ #144640 * #147699 Get rid of dynamic class creation via `type(name, bases, ...)`. Convert it to classic static class definition for better readability and static analysis support. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,782,317,400
torch.vmap + autograd.Function + current_level bug
yanboliang
open
[ "module: autograd", "triaged", "module: vmap", "module: functorch" ]
0
CONTRIBUTOR
### 🐛 Describe the bug It we call ```torch._C._functorch.current_level()``` inside of an autograd function's ```setup_context``` method, and then apply ```torch.vmap``` on top of it, it errors out. Repro: * Checkout and apply https://github.com/pytorch/pytorch/pull/143811 * Replace ```key = id(Generated)``` with ```key = current_level()``` in ```setup_context```. * Run the following example: ``` import torch class LinearFunction(torch.autograd.Function): generate_vmap_rule = True # Note that forward, setup_context, and backward are @staticmethods @staticmethod def forward(input, weight, bias): output = input.mm(weight.t()) if bias is not None: output += bias.unsqueeze(0).expand_as(output) return output @staticmethod # inputs is a Tuple of all of the inputs passed to forward. # output is the output of the forward(). def setup_context(ctx, inputs, output): input, weight, bias = inputs ctx.save_for_backward(input, weight, bias) # This function has only a single output, so it gets only one gradient @staticmethod def backward(ctx, grad_output): input, weight, bias = ctx.saved_tensors grad_input = grad_weight = grad_bias = None if ctx.needs_input_grad[0]: grad_input = grad_output.mm(weight) if ctx.needs_input_grad[1]: grad_weight = grad_output.t().mm(input) if bias is not None and ctx.needs_input_grad[2]: grad_bias = grad_output.sum(0) return grad_input, grad_weight, grad_bias def fn(input, weight, bias=None): return torch.vmap(LinearFunction.apply)(input, weight, bias) torch.manual_seed(124) batch_input = torch.randn(4, 2, 2, dtype=torch.double, requires_grad=True) batch_weight = torch.randn(4, 3, 2, dtype=torch.double, requires_grad=True) batch_bias = torch.randn(4, 3, dtype=torch.double, requires_grad=True) output = fn(batch_input, batch_weight, batch_bias) print(output) ``` Then it errors out: ``` Traceback (most recent call last): File "/data/users/ybliang/debug/debug7.py", line 44, in <module> output = fn(batch_input, batch_weight, batch_bias) File "/data/users/ybliang/debug/debug7.py", line 37, in fn return torch.vmap(LinearFunction.apply)(input, weight, bias) File "/home/ybliang/local/pytorch/torch/_functorch/apis.py", line 203, in wrapped return vmap_impl( File "/home/ybliang/local/pytorch/torch/_functorch/vmap.py", line 331, in vmap_impl return _flat_vmap( File "/home/ybliang/local/pytorch/torch/_functorch/vmap.py", line 481, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/home/ybliang/local/pytorch/torch/autograd/function.py", line 585, in apply return custom_function_call(cls, *args, **kwargs) File "/home/ybliang/local/pytorch/torch/_functorch/autograd_function.py", line 49, in __call__ return super().__call__(autograd_function, *args, **kwargs) File "/home/ybliang/local/pytorch/torch/_ops.py", line 439, in __call__ return wrapper() File "/home/ybliang/local/pytorch/torch/_dynamo/eval_frame.py", line 755, in _fn return fn(*args, **kwargs) File "/home/ybliang/local/pytorch/torch/_ops.py", line 435, in wrapper return self.dispatch( File "/home/ybliang/local/pytorch/torch/_ops.py", line 305, in dispatch return dispatch_functorch(self, args, kwargs) File "/home/ybliang/local/pytorch/torch/_functorch/pyfunctorch.py", line 294, in dispatch_functorch return interpreter.process(op, args, kwargs) File "/home/ybliang/local/pytorch/torch/_functorch/pyfunctorch.py", line 130, in process return kernel(self, *args, **kwargs) File "/home/ybliang/local/pytorch/torch/_functorch/autograd_function.py", line 300, in custom_function_call_vmap return custom_function_call_vmap_generate_rule( File "/home/ybliang/local/pytorch/torch/_functorch/autograd_function.py", line 384, in custom_function_call_vmap_generate_rule outputs = custom_function_call(vmapped_function, *unwrapped_operands) File "/home/ybliang/local/pytorch/torch/_functorch/autograd_function.py", line 50, in __call__ return autograd_function.apply(*args, **kwargs) File "/home/ybliang/local/pytorch/torch/autograd/function.py", line 575, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "/home/ybliang/local/pytorch/torch/_functorch/autograd_function.py", line 410, in setup_context key = current_level() RuntimeError: maybe_layer.has_value() INTERNAL ASSERT FAILED at "/data/users/ybliang/pytorch/torch/csrc/functorch/init.cpp":370, please report a bug to PyTorch. ``` ### Versions main cc @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan @zou3519 @Chillee @samdow @kshitij12345
true
2,782,298,517
[MPSInductor] Implement bitcasts
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
That will be used to compile something like `torch.rand(32, device='mps').view(dtype=torch.int32)` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,782,277,604
CheckpointError with `torch.distributed.algorithms._checkpoint.checkpoint_wrapper` and `torch.compile`
eliphatfs
open
[ "module: activation checkpointing", "triaged", "oncall: pt2", "module: inductor" ]
2
CONTRIBUTOR
### 🐛 Describe the bug ```python import functools import torch import torch.nn as nn import torch.nn.functional as F from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import apply_activation_checkpointing, checkpoint_wrapper, CheckpointImpl @torch.compile(mode='reduce-overhead') class SelfAttention(nn.Module): def __init__(self, num_heads: int, head_dim: int, norm_eps: float, causal: bool): super().__init__() self.num_heads = num_heads self.head_dim = head_dim self.causal = causal total_dim = num_heads * head_dim self.to_qkv = nn.Linear(total_dim, total_dim * 3, bias=False) self.to_out = nn.Linear(total_dim, total_dim, bias=False) self.q_norm = nn.RMSNorm(head_dim, eps=norm_eps) self.k_norm = nn.RMSNorm(head_dim, eps=norm_eps) def forward(self, x_btc: torch.Tensor): states = x_btc batch_size, sequence_length, _ = states.shape proj: torch.Tensor = self.to_qkv(states) proj = proj.view(batch_size, sequence_length, self.num_heads, 3, self.head_dim).transpose(1, 2) query, key, value = proj.unbind(-2) query: torch.Tensor = self.q_norm(query) key: torch.Tensor = self.k_norm(key) hidden_states = F.scaled_dot_product_attention( query, key, value, is_causal=self.causal ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, sequence_length, self.num_heads * self.head_dim) hidden_states = hidden_states.to(query.dtype) return self.to_out(hidden_states) class Block(nn.Module): def __init__(self): super().__init__() self.attn = SelfAttention(1, 64, 1e-5, False) def forward(self, x): return x + self.attn(x) class Transformer(nn.Module): def __init__(self): super().__init__() self.blocks = nn.ModuleList([Block() for _ in range(4)]) def forward(self, x): for block in self.blocks: x = block(x) return x if __name__ == '__main__': mod = Transformer().cuda() non_reentrant_wrapper = functools.partial( checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT, ) apply_activation_checkpointing( mod, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=lambda mod: isinstance(mod, Block) ) mod(torch.randn(3, 77, 64).cuda()).sum().backward() ``` Output: ``` /opt/conda/lib/python3.11/site-packages/torch/_inductor/compile_fx.py:167: UserWarning: TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. Consider setting `torch.set_float32_matmul_precision('high')` for better performance. warnings.warn( Traceback (most recent call last): File "/root/bug/repro.py", line 74, in <module> mod(torch.randn(3, 77, 64).cuda()).sum().backward() File "/opt/conda/lib/python3.11/site-packages/torch/_tensor.py", line 581, in backward torch.autograd.backward( File "/opt/conda/lib/python3.11/site-packages/torch/autograd/__init__.py", line 347, in backward _engine_run_backward( File "/opt/conda/lib/python3.11/site-packages/torch/autograd/graph.py", line 825, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 1740, in backward ctx_saved_tensors = ctx.saved_tensors ^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/utils/checkpoint.py", line 1129, in unpack_hook frame.check_recomputed_tensors_match(gid) File "/opt/conda/lib/python3.11/site-packages/torch/utils/checkpoint.py", line 903, in check_recomputed_tensors_match raise CheckpointError( torch.utils.checkpoint.CheckpointError: torch.utils.checkpoint: Recomputed values for the following tensors have different metadata than during the forward pass. tensor at position 12: saved metadata: {'shape': torch.Size([]), 'dtype': torch.int64, 'device': device(type='cpu')} recomputed metadata: {'shape': torch.Size([]), 'dtype': torch.int64, 'device': device(type='cuda', index=0)} tensor at position 13: saved metadata: {'shape': torch.Size([]), 'dtype': torch.int64, 'device': device(type='cpu')} recomputed metadata: {'shape': torch.Size([]), 'dtype': torch.int64, 'device': device(type='cuda', index=0)} ``` ### Versions ``` Collecting environment information... PyTorch version: 2.5.1+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.30.5 Libc version: glibc-2.35 Python version: 3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:27:36) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-4.18.0-477.21.1.el8_8.x86_64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.1.105 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.154.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 224 On-line CPU(s) list: 0-223 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8480+ CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 56 Socket(s): 2 Stepping: 8 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 5.3 MiB (112 instances) L1i cache: 3.5 MiB (112 instances) L2 cache: 224 MiB (112 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-55,112-167 NUMA node1 CPU(s): 56-111,168-223 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu11==11.11.3.6 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu11==11.8.87 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu11==11.8.89 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu11==11.8.89 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu11==9.1.0.70 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu11==10.9.0.58 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu11==10.3.0.86 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu11==11.4.1.48 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu11==11.7.5.86 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-nccl-cu11==2.21.5 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.1.105 [pip3] nvidia-nvtx-cu11==11.8.86 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] onnx==1.17.0 [pip3] onnxruntime-gpu==1.20.1 [pip3] onnxscript==0.1.0.dev20250108 [pip3] optree==0.13.0 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.5.1+cu121 [pip3] torch.redstone==0.0.6 [pip3] torchaudio==2.5.1+cu121 [pip3] torchdiffeq==0.2.5 [pip3] torchelastic==0.2.2 [pip3] torchprofile==0.0.4 [pip3] torchvision==0.20.1+cu121 [pip3] triton==3.1.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu11 11.11.3.6 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu11 11.8.87 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu11 11.8.89 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu11 11.8.89 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu11 9.1.0.70 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu11 10.3.0.86 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu11 11.4.1.48 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu11 11.7.5.86 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-nccl-cu11 2.21.5 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.1.105 pypi_0 pypi [conda] nvidia-nvtx-cu11 11.8.86 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] optree 0.13.0 pypi_0 pypi [conda] pytorch-triton 3.2.0+git0d4682f0 pypi_0 pypi [conda] torch 2.5.1+cu121 pypi_0 pypi [conda] torch-redstone 0.0.6 pypi_0 pypi [conda] torchaudio 2.5.1+cu121 pypi_0 pypi [conda] torchdiffeq 0.2.5 pypi_0 pypi [conda] torchelastic 0.2.2 pypi_0 pypi [conda] torchprofile 0.0.4 pypi_0 pypi [conda] torchvision 0.20.1+cu121 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi ``` cc @soulitzer @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @LucasLLC @pradeepfn
true
2,782,277,352
Error loading "pytorch\torch\lib\shm.dll" or one of its dependencies when building from source (Windows 11)
Panchovix
closed
[]
0
NONE
### 🐛 Describe the bug I have built torch from source, on https://github.com/pytorch/pytorch/commit/63569d9745b0530f8d66721e2a462c9f042e6b16 commit, using: Magma for CUDA 12.6 (2.5.4) MKL 2025.0 and 2020.2 cudNN 9.6 cuSPARSELt 0.6 cuDSS 0.4 On VS 2022 with MSVC v143 Using ``` cmake .. -GNinja ^ -DCUDNN_LIBRARY_PATH="C:/Program Files/NVIDIA/CUDNN/v9.6/lib/12.6/x64/cudnn.lib" ^ -DCUDNN_INCLUDE_PATH="C:/Program Files/NVIDIA/CUDNN/v9.6/include/12.6" ^ -DCUSPARSELT_LIBRARY_PATH="C:/Program Files/NVIDIA cuSPARSELt/v0.6/lib/cusparseLt.lib" ^ -DCUSPARSELT_INCLUDE_PATH="C:/Program Files/NVIDIA cuSPARSELt/v0.6/include" ^ -DCUDSS_LIBRARY_PATH="C:/Program Files/NVIDIA cuDSS/v0.4/lib/12/cudss.lib" ^ -DCUDSS_INCLUDE_PATH="C:/Program Files/NVIDIA cuDSS/v0.4/include" ^ -DUSE_CUDA=ON ^ -DUSE_FLASH_ATTENTION=ON ^ -DUSE_CUDNN=ON ^ -DUSE_CUSPARSELT=ON ^ -DUSE_CUDSS=ON ^ -DCMAKE_BUILD_TYPE=Release ^ -DUSE_STATIC_DISPATCH=OFF ^ -DCMAKE_INSTALL_PREFIX=../torch ``` And then doing ``` cmake --build . --target install --config Release -j 6 cd .. pip install -e . ``` When importing, I get ``` (py310) C:\Users\User\Desktop\pytorch_compile\pytorch\build>python Python 3.10.16 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:19:12) [MSC v.1929 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import torch Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\User\Desktop\pytorch_compile\pytorch\torch\__init__.py", line 274, in <module> _load_dll_libraries() File "C:\Users\User\Desktop\pytorch_compile\pytorch\torch\__init__.py", line 270, in _load_dll_libraries raise err OSError: [WinError 126] No se puede encontrar el módulo especificado. Error loading "C:\Users\User\Desktop\pytorch_compile\pytorch\torch\lib\shm.dll" or one of its dependencies. ``` Issue happens with both Python 3.10 and 3.12 Complete log when running cmake is ``` (py310) C:\Users\User\Desktop\pytorch_compile\pytorch\build>cmake .. -GNinja ^ ¿Más? -DCUDNN_LIBRARY_PATH="C:/Program Files/NVIDIA/CUDNN/v9.6/lib/12.6/x64/cudnn.lib" ^ ¿Más? -DCUDNN_INCLUDE_PATH="C:/Program Files/NVIDIA/CUDNN/v9.6/include/12.6" ^ ¿Más? -DCUSPARSELT_LIBRARY_PATH="C:/Program Files/NVIDIA cuSPARSELt/v0.6/lib/cusparseLt.lib" ^ ¿Más? -DCUSPARSELT_INCLUDE_PATH="C:/Program Files/NVIDIA cuSPARSELt/v0.6/include" ^ ¿Más? -DCUDSS_LIBRARY_PATH="C:/Program Files/NVIDIA cuDSS/v0.4/lib/12/cudss.lib" ^ ¿Más? -DCUDSS_INCLUDE_PATH="C:/Program Files/NVIDIA cuDSS/v0.4/include" ^ ¿Más? -DUSE_CUDA=ON ^ ¿Más? -DUSE_FLASH_ATTENTION=ON ^ ¿Más? -DUSE_CUDNN=ON ^ ¿Más? -DUSE_CUSPARSELT=ON ^ ¿Más? -DUSE_CUDSS=ON ^ ¿Más? -DCMAKE_BUILD_TYPE=Release ^ ¿Más? -DUSE_STATIC_DISPATCH=OFF ^ ¿Más? -DCMAKE_INSTALL_PREFIX=../torch -- The CXX compiler identification is MSVC 19.42.34435.0 -- The C compiler identification is MSVC 19.42.34435.0 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/bin/Hostx64/x64/cl.exe - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/bin/Hostx64/x64/cl.exe - skipped -- Detecting C compile features -- Detecting C compile features - done -- Not forcing any particular BLAS to be found CMake Warning at CMakeLists.txt:422 (message): TensorPipe cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:424 (message): KleidiAI cannot be used on Windows. Set it to OFF -- Performing Test C_HAS_AVX_1 -- Performing Test C_HAS_AVX_1 - Success -- Performing Test C_HAS_AVX2_1 -- Performing Test C_HAS_AVX2_1 - Success -- Performing Test C_HAS_AVX512_1 -- Performing Test C_HAS_AVX512_1 - Success -- Performing Test CXX_HAS_AVX_1 -- Performing Test CXX_HAS_AVX_1 - Success -- Performing Test CXX_HAS_AVX2_1 -- Performing Test CXX_HAS_AVX2_1 - Success -- Performing Test CXX_HAS_AVX512_1 -- Performing Test CXX_HAS_AVX512_1 - Success -- Current compiler supports avx2 extension. Will build perfkernels. -- Performing Test CAFFE2_COMPILER_SUPPORTS_AVX512_EXTENSIONS -- Performing Test CAFFE2_COMPILER_SUPPORTS_AVX512_EXTENSIONS - Success -- Current compiler supports avx512f extension. Will build fbgemm. -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY - Failed -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY - Failed -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- Compiler does not support SVE extension. Will not build perfkernels. -- Performing Test HAS/UTF_8 -- Performing Test HAS/UTF_8 - Success -- Found CUDA: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6 (found version "12.6") -- The CUDA compiler identification is NVIDIA 12.6.85 -- Detecting CUDA compiler ABI info -- Detecting CUDA compiler ABI info - done -- Check for working CUDA compiler: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/bin/nvcc.exe - skipped -- Detecting CUDA compile features -- Detecting CUDA compile features - done -- Found CUDAToolkit: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/include (found version "12.6.85") -- PyTorch: CUDA detected: 12.6 -- PyTorch: CUDA nvcc is: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/bin/nvcc.exe -- PyTorch: CUDA toolkit directory: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6 -- PyTorch: Header version is: 12.6 -- Found Python: C:/Users/User/anaconda3/envs/py310/python.exe (found version "3.10.16") found components: Interpreter CMake Warning at cmake/public/cuda.cmake:140 (message): Failed to compute shorthash for libnvrtc.so Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:865 (include) -- Found nvtx3: C:/Users/User/Desktop/pytorch_compile/pytorch/third_party/NVTX/c/include -- Found CUDNN: C:/Program Files/NVIDIA/CUDNN/v9.6/lib/12.6/x64/cudnn.lib -- Found CUSPARSELT: C:/Program Files/NVIDIA cuSPARSELt/v0.6/lib/cusparseLt.lib -- Found CUDSS: C:/Program Files/NVIDIA cuDSS/v0.4/lib/12/cudss.lib -- USE_CUFILE is set to 0. Compiling without cuFile support -- Autodetected CUDA architecture(s): 8.9 8.9 8.6 -- Added CUDA NVCC flags for: -gencode;arch=compute_89,code=sm_89;-gencode;arch=compute_86,code=sm_86 CMake Warning at cmake/Dependencies.cmake:95 (message): Not compiling with XPU. Could NOT find SYCL.Suppress this warning with -DUSE_XPU=OFF. Call Stack (most recent call first): CMakeLists.txt:865 (include) -- Building using own protobuf under third_party per request. -- Use custom protobuf build. CMake Deprecation Warning at third_party/protobuf/cmake/CMakeLists.txt:2 (cmake_minimum_required): Compatibility with CMake < 3.5 will be removed from a future version of CMake. Update the VERSION argument <min> value or use a ...<max> suffix to tell CMake that the project does not need compatibility with older versions. -- -- 3.13.0.0 -- Performing Test CMAKE_HAVE_LIBC_PTHREAD -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed -- Looking for pthread_create in pthreads -- Looking for pthread_create in pthreads - not found -- Looking for pthread_create in pthread -- Looking for pthread_create in pthread - not found -- Found Threads: TRUE -- Caffe2 protobuf include directory: $<BUILD_INTERFACE:C:/Users/User/Desktop/pytorch_compile/pytorch/third_party/protobuf/src>$<INSTALL_INTERFACE:include> -- Trying to find preferred BLAS backend of choice: MKL -- MKL_THREADING = OMP -- Looking for sys/types.h -- Looking for sys/types.h - found -- Looking for stdint.h -- Looking for stdint.h - found -- Looking for stddef.h -- Looking for stddef.h - found -- Check size of void* -- Check size of void* - done -- Looking for cblas_sgemm -- Looking for cblas_sgemm - found -- Looking for cblas_gemm_bf16bf16f32 -- Looking for cblas_gemm_bf16bf16f32 - found -- Looking for cblas_gemm_f16f16f32 -- Looking for cblas_gemm_f16f16f32 - found -- MKL libraries: C:/Program Files (x86)/Intel/oneAPI/mkl/2025.0/lib/mkl_intel_lp64_dll.lib;C:/Program Files (x86)/Intel/oneAPI/mkl/2025.0/lib/mkl_intel_thread_dll.lib;C:/Program Files (x86)/Intel/oneAPI/mkl/2025.0/lib/mkl_core_dll.lib;C:/Users/User/anaconda3/envs/py310/Library/lib/libiomp5md.lib -- MKL include directory: C:/Program Files (x86)/Intel/oneAPI/mkl/2025.0/include -- MKL OpenMP type: Intel -- MKL OpenMP library: C:/Users/User/anaconda3/envs/py310/Library/lib/libiomp5md.lib -- The ASM compiler identification is MSVC -- Found assembler: C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/bin/Hostx64/x64/cl.exe -- Building for XNNPACK_TARGET_PROCESSOR: x86_64 -- Generating microkernels.cmake Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avx256vnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c (1th function) Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-scalar.c No microkernel found in src\reference\binary-elementwise.cc No microkernel found in src\reference\packing.cc No microkernel found in src\reference\unary-elementwise.cc CMake Warning (dev) at third_party/fbgemm/CMakeLists.txt:93 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonInterp: C:/Users/User/anaconda3/envs/py310/python.exe (found version "3.10.16") -- Performing Test COMPILER_SUPPORTS_AVX512 -- Performing Test COMPILER_SUPPORTS_AVX512 - Success -- Check OMP with lib C:/Users/User/anaconda3/envs/py310/Library/lib/libiomp5md.lib and flags -openmp:experimental -- Check OMP with lib C:/Users/User/anaconda3/envs/py310/Library/lib/libiomp5md.lib and flags -openmp:experimental CMake Warning (dev) at C:/Users/User/anaconda3/envs/py310/Library/share/cmake-3.27/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_C) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:590 (find_package_handle_standard_args) third_party/fbgemm/CMakeLists.txt:136 (find_package) This warning is for project developers. Use -Wno-dev to suppress it. -- Found OpenMP_C: -openmp:experimental CMake Warning (dev) at C:/Users/User/anaconda3/envs/py310/Library/share/cmake-3.27/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_CXX) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:590 (find_package_handle_standard_args) third_party/fbgemm/CMakeLists.txt:136 (find_package) This warning is for project developers. Use -Wno-dev to suppress it. -- Found OpenMP_CXX: -openmp:experimental -- Found OpenMP: TRUE CMake Warning at third_party/fbgemm/CMakeLists.txt:138 (message): OpenMP found! OpenMP_C_INCLUDE_DIRS = CMake Warning at third_party/fbgemm/CMakeLists.txt:232 (message): ========== CMake Warning at third_party/fbgemm/CMakeLists.txt:233 (message): CMAKE_BUILD_TYPE = Release CMake Warning at third_party/fbgemm/CMakeLists.txt:234 (message): CMAKE_CXX_FLAGS_DEBUG is /Z7 /Ob0 /Od /RTC1 /bigobj CMake Warning at third_party/fbgemm/CMakeLists.txt:235 (message): CMAKE_CXX_FLAGS_RELEASE is /O2 /Ob2 /DNDEBUG /bigobj CMake Warning at third_party/fbgemm/CMakeLists.txt:236 (message): ========== ** AsmJit Summary ** ASMJIT_DIR=C:/Users/User/Desktop/pytorch_compile/pytorch/third_party/fbgemm/third_party/asmjit ASMJIT_TEST=FALSE ASMJIT_TARGET_TYPE=SHARED ASMJIT_DEPS= ASMJIT_LIBS=asmjit ASMJIT_CFLAGS= ASMJIT_PRIVATE_CFLAGS=-MP;-GF;-Zc:__cplusplus;-Zc:inline;-Zc:strictStrings;-Zc:threadSafeInit-;-W4 ASMJIT_PRIVATE_CFLAGS_DBG=-GS ASMJIT_PRIVATE_CFLAGS_REL=-GS-;-O2;-Oi CMake Deprecation Warning at third_party/ittapi/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.5 will be removed from a future version of CMake. Update the VERSION argument <min> value or use a ...<max> suffix to tell CMake that the project does not need compatibility with older versions. CMake Deprecation Warning at third_party/FP16/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.5 will be removed from a future version of CMake. Update the VERSION argument <min> value or use a ...<max> suffix to tell CMake that the project does not need compatibility with older versions. CMake Deprecation Warning at third_party/psimd/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.5 will be removed from a future version of CMake. Update the VERSION argument <min> value or use a ...<max> suffix to tell CMake that the project does not need compatibility with older versions. -- Using third party subdirectory Eigen. -- Found Python: C:/Users/User/anaconda3/envs/py310/python.exe (found version "3.10.16") found components: Interpreter Development.Module NumPy -- Using third_party/pybind11. -- pybind11 include dirs: C:/Users/User/Desktop/pytorch_compile/pytorch/cmake/../third_party/pybind11/include -- Could NOT find OpenTelemetryApi (missing: OpenTelemetryApi_INCLUDE_DIRS) -- Using third_party/opentelemetry-cpp. -- opentelemetry api include dirs: C:/Users/User/Desktop/pytorch_compile/pytorch/cmake/../third_party/opentelemetry-cpp/api/include -- Could NOT find MPI_C (missing: MPI_C_LIB_NAMES MPI_C_HEADER_DIR MPI_C_WORKS) -- Could NOT find MPI_CXX (missing: MPI_CXX_LIB_NAMES MPI_CXX_HEADER_DIR MPI_CXX_WORKS) -- Could NOT find MPI (missing: MPI_C_FOUND MPI_CXX_FOUND) CMake Warning at cmake/Dependencies.cmake:945 (message): Not compiling with MPI. Suppress this warning with -DUSE_MPI=OFF Call Stack (most recent call first): CMakeLists.txt:865 (include) -- Adding OpenMP CXX_FLAGS: -openmp:experimental -- Will link against OpenMP libraries: C:/Users/User/anaconda3/envs/py310/Library/lib/libiomp5md.lib -- Found CUB: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/include CMake Deprecation Warning at third_party/gloo/CMakeLists.txt:1 (cmake_minimum_required): Compatibility with CMake < 3.5 will be removed from a future version of CMake. Update the VERSION argument <min> value or use a ...<max> suffix to tell CMake that the project does not need compatibility with older versions. CMake Warning (dev) at third_party/gloo/CMakeLists.txt:21 (option): Policy CMP0077 is not set: option() honors normal variables. Run "cmake --help-policy CMP0077" for policy details. Use the cmake_policy command to set the policy and suppress this warning. For compatibility with older versions of CMake, option is clearing the normal variable 'BUILD_BENCHMARK'. This warning is for project developers. Use -Wno-dev to suppress it. CMake Warning (dev) at third_party/gloo/CMakeLists.txt:35 (option): Policy CMP0077 is not set: option() honors normal variables. Run "cmake --help-policy CMP0077" for policy details. Use the cmake_policy command to set the policy and suppress this warning. For compatibility with older versions of CMake, option is clearing the normal variable 'USE_NCCL'. This warning is for project developers. Use -Wno-dev to suppress it. CMake Warning (dev) at third_party/gloo/CMakeLists.txt:36 (option): Policy CMP0077 is not set: option() honors normal variables. Run "cmake --help-policy CMP0077" for policy details. Use the cmake_policy command to set the policy and suppress this warning. For compatibility with older versions of CMake, option is clearing the normal variable 'USE_RCCL'. This warning is for project developers. Use -Wno-dev to suppress it. -- MSVC detected -- Set USE_REDIS OFF -- Set USE_IBVERBS OFF -- Set USE_NCCL OFF -- Set USE_RCCL OFF -- Set USE_LIBUV ON -- Only USE_LIBUV is supported on Windows -- Enabling sccache for CXX -- Enabling sccache for C -- Gloo build as SHARED library CMake Warning (dev) at third_party/gloo/cmake/Cuda.cmake:109 (find_package): Policy CMP0074 is not set: find_package uses <PackageName>_ROOT variables. Run "cmake --help-policy CMP0074" for policy details. Use the cmake_policy command to set the policy and suppress this warning. CMake variable CUDAToolkit_ROOT is set to: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6 For compatibility, CMake is ignoring the variable. Call Stack (most recent call first): third_party/gloo/cmake/Dependencies.cmake:115 (include) third_party/gloo/CMakeLists.txt:111 (include) This warning is for project developers. Use -Wno-dev to suppress it. -- Found CUDAToolkit: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/include (found suitable version "12.6.85", minimum required is "7.0") -- CUDA detected: 12.6.85 CMake Warning (dev) at third_party/onnx/CMakeLists.txt:106 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. Generated: C:/Users/User/Desktop/pytorch_compile/pytorch/build/third_party/onnx/onnx/onnx_onnx_torch-ml.proto Generated: C:/Users/User/Desktop/pytorch_compile/pytorch/build/third_party/onnx/onnx/onnx-operators_onnx_torch-ml.proto Generated: C:/Users/User/Desktop/pytorch_compile/pytorch/build/third_party/onnx/onnx/onnx-data_onnx_torch.proto -- -- ******** Summary ******** -- CMake version : 3.27.4 -- CMake command : C:/Users/User/anaconda3/envs/py310/Library/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/bin/Hostx64/x64/cl.exe -- C++ compiler version : 19.42.34435.0 -- CXX flags : /DWIN32 /D_WINDOWS /GR /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL /EHsc /wd26812 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;__STDC_FORMAT_MACROS -- CMAKE_PREFIX_PATH : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6 -- CMAKE_INSTALL_PREFIX : C:/Users/User/Desktop/pytorch_compile/pytorch/torch -- CMAKE_MODULE_PATH : C:/Users/User/Desktop/pytorch_compile/pytorch/cmake/Modules;C:/Users/User/Desktop/pytorch_compile/pytorch/cmake/public/../Modules_CUDA_fix -- -- ONNX version : 1.17.0 -- ONNX NAMESPACE : onnx_torch -- ONNX_USE_LITE_PROTO : OFF -- USE_PROTOBUF_SHARED_LIBS : OFF -- Protobuf_USE_STATIC_LIBS : ON -- ONNX_DISABLE_EXCEPTIONS : OFF -- ONNX_DISABLE_STATIC_REGISTRATION : OFF -- ONNX_WERROR : OFF -- ONNX_BUILD_TESTS : OFF -- ONNX_BUILD_SHARED_LIBS : -- BUILD_SHARED_LIBS : OFF -- -- Protobuf compiler : -- Protobuf includes : -- Protobuf libraries : -- BUILD_ONNX_PYTHON : OFF -- Found CUDA with FP16 support, compiling with torch.cuda.HalfTensor -- Adding -DNDEBUG to compile flags -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 - False -- Compiling with MAGMA support -- MAGMA INCLUDE DIRECTORIES: C:/magma_dir/include -- MAGMA LIBRARIES: C:/magma_dir/lib/magma.lib -- MAGMA V2 check: 0 -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- Looking for sbgemm_ -- Looking for sbgemm_ - not found -- Found a library with LAPACK API (mkl). disabling ROCM because NOT USE_ROCM is set -- MIOpen not found. Compiling without MIOpen support -- Will build oneDNN UKERNEL -- MKLDNN_CPU_RUNTIME = OMP CMake Deprecation Warning at third_party/ideep/mkl-dnn/CMakeLists.txt:17 (cmake_minimum_required): Compatibility with CMake < 3.5 will be removed from a future version of CMake. Update the VERSION argument <min> value or use a ...<max> suffix to tell CMake that the project does not need compatibility with older versions. -- DNNL_TARGET_ARCH: X64 -- DNNL_LIBRARY_NAME: dnnl CMake Warning (dev) at C:/Users/User/anaconda3/envs/py310/Library/share/cmake-3.27/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_C) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:590 (find_package_handle_standard_args) third_party/ideep/mkl-dnn/cmake/OpenMP.cmake:55 (find_package) third_party/ideep/mkl-dnn/CMakeLists.txt:119 (include) This warning is for project developers. Use -Wno-dev to suppress it. -- Found OpenMP_C: -openmp:experimental CMake Warning (dev) at C:/Users/User/anaconda3/envs/py310/Library/share/cmake-3.27/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_CXX) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:590 (find_package_handle_standard_args) third_party/ideep/mkl-dnn/cmake/OpenMP.cmake:55 (find_package) third_party/ideep/mkl-dnn/CMakeLists.txt:119 (include) This warning is for project developers. Use -Wno-dev to suppress it. -- Found OpenMP_CXX: -openmp:experimental -- Found Git: C:/Program Files/Git/cmd/git.exe (found version "2.47.0.windows.1") -- Enabled testing coverage: CI -- Enabled workload: TRAINING -- Enabled primitives: ALL -- Enabled primitive CPU ISA: ALL -- Enabled primitive GPU ISA: ALL -- Enabled GeMM kernels ISA: ALL -- Primitive cache is enabled -- Experimental functionality for ukernels is enabled -- The ASM_MASM compiler identification is MSVC -- Found assembler: C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/bin/Hostx64/x64/ml64.exe -- Graph component is enabled -- Graph compiler backend is disabled. -- Found MKL-DNN: TRUE -- {fmt} version: 11.1.1 -- Build type: Release -- Using CPU-only version of Kineto -- Configuring Kineto dependency: -- KINETO_SOURCE_DIR = C:/Users/User/Desktop/pytorch_compile/pytorch/third_party/kineto/libkineto -- KINETO_BUILD_TESTS = OFF -- KINETO_LIBRARY_TYPE = static CMake Warning (dev) at third_party/kineto/libkineto/CMakeLists.txt:15 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. INFO CUDA_SOURCE_DIR = INFO ROCM_SOURCE_DIR = INFO CUPTI unavailable or disabled - not building GPU profilers -- Kineto: FMT_SOURCE_DIR = C:/Users/User/Desktop/pytorch_compile/pytorch/third_party/fmt -- Kineto: FMT_INCLUDE_DIR = C:/Users/User/Desktop/pytorch_compile/pytorch/third_party/fmt/include INFO CUPTI_INCLUDE_DIR = /extras/CUPTI/include INFO ROCTRACER_INCLUDE_DIR = /include/roctracer INFO DYNOLOG_INCLUDE_DIR = C:/Users/User/Desktop/pytorch_compile/pytorch/third_party/kineto/libkineto/third_party/dynolog/ INFO IPCFABRIC_INCLUDE_DIR = C:/Users/User/Desktop/pytorch_compile/pytorch/third_party/kineto/libkineto/third_party/dynolog//dynolog/src/ipcfabric/ -- Configured Kineto (CPU) -- Performing Test HAS/WD4624 -- Performing Test HAS/WD4624 - Success -- Performing Test HAS/WD4068 -- Performing Test HAS/WD4068 - Success -- Performing Test HAS/WD4067 -- Performing Test HAS/WD4067 - Success -- Performing Test HAS/WD4267 -- Performing Test HAS/WD4267 - Success -- Performing Test HAS/WD4661 -- Performing Test HAS/WD4661 - Success -- Performing Test HAS/WD4717 -- Performing Test HAS/WD4717 - Success -- Performing Test HAS/WD4244 -- Performing Test HAS/WD4244 - Success -- Performing Test HAS/WD4804 -- Performing Test HAS/WD4804 - Success -- Performing Test HAS/WD4273 -- Performing Test HAS/WD4273 - Success -- Performing Test HAS_WNO_STRINGOP_OVERFLOW -- Performing Test HAS_WNO_STRINGOP_OVERFLOW - Failed -- -- Use the C++ compiler to compile (MI_USE_CXX=ON) -- -- Library base name: mimalloc -- Version : 1.8 -- Build type : release -- C++ Compiler : C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/bin/Hostx64/x64/cl.exe -- Compiler flags : /Zc:__cplusplus -- Compiler defines : -- Link libraries : psapi;shell32;user32;advapi32;bcrypt -- Build targets : static -- -- Performing Test HAS_WDEPRECATED -- Performing Test HAS_WDEPRECATED - Failed -- don't use NUMA -- Looking for backtrace -- Looking for backtrace - not found -- Could NOT find Backtrace (missing: Backtrace_LIBRARY Backtrace_INCLUDE_DIR) -- Autodetected CUDA architecture(s): 8.9 8.9 8.6 -- headers outputs: -- sources outputs: -- declarations_yaml outputs: -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT - Failed -- Using ATen parallel backend: OMP -- Found OpenSSL: C:/Users/User/anaconda3/envs/py310/Library/lib/libcrypto.lib (found version "3.4.0") -- Check size of long double -- Check size of long double - done -- Performing Test COMPILER_SUPPORTS_FLOAT128 -- Performing Test COMPILER_SUPPORTS_FLOAT128 - Failed -- Performing Test COMPILER_SUPPORTS_SSE2 -- Performing Test COMPILER_SUPPORTS_SSE2 - Success -- Performing Test COMPILER_SUPPORTS_SSE4 -- Performing Test COMPILER_SUPPORTS_SSE4 - Success -- Performing Test COMPILER_SUPPORTS_AVX -- Performing Test COMPILER_SUPPORTS_AVX - Success -- Performing Test COMPILER_SUPPORTS_FMA4 -- Performing Test COMPILER_SUPPORTS_FMA4 - Success -- Performing Test COMPILER_SUPPORTS_AVX2 -- Performing Test COMPILER_SUPPORTS_AVX2 - Success -- Performing Test COMPILER_SUPPORTS_AVX512F -- Performing Test COMPILER_SUPPORTS_AVX512F - Success -- Found OpenMP_C: -openmp:experimental (found version "2.0") -- Found OpenMP_CXX: -openmp:experimental (found version "2.0") -- Found OpenMP: TRUE (found version "2.0") -- Performing Test COMPILER_SUPPORTS_OPENMP -- Performing Test COMPILER_SUPPORTS_OPENMP - Success -- Performing Test COMPILER_SUPPORTS_OMP_SIMD -- Performing Test COMPILER_SUPPORTS_OMP_SIMD - Failed -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES - Failed -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH - Failed -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM - Failed -- Configuring build for SLEEF-v3.7.0 Target system: Windows-10.0.26100 Target processor: AMD64 Host system: Windows-10.0.26100 Host processor: AMD64 Detected C compiler: MSVC @ C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/bin/Hostx64/x64/cl.exe CMake: 3.27.4 Make program: C:/Users/User/anaconda3/envs/py310/Library/bin/ninja.exe -- Using option `/D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE ` to compile libsleef -- Building shared libs : OFF -- Building static test bins: OFF -- MPFR : LIB_MPFR-NOTFOUND -- GMP : LIBGMP-NOTFOUND -- RT : -- FFTW3 : LIBFFTW3-NOTFOUND -- OPENSSL : 3.4.0 -- SDE : SDE_COMMAND-NOTFOUND -- COMPILER_SUPPORTS_OPENMP : FALSE AT_INSTALL_INCLUDE_DIR include/ATen/core core header install: C:/Users/User/Desktop/pytorch_compile/pytorch/build/aten/src/ATen/core/TensorBody.h core header install: C:/Users/User/Desktop/pytorch_compile/pytorch/build/aten/src/ATen/core/aten_interned_strings.h core header install: C:/Users/User/Desktop/pytorch_compile/pytorch/build/aten/src/ATen/core/enum_tag.h -- Autodetected CUDA architecture(s): 8.9 8.9 8.6 CMake Warning at CMakeLists.txt:1275 (message): Generated cmake files are only fully tested if one builds with system glog, gflags, and protobuf. Other settings may generate files that are not well tested. -- -- ******** Summary ******** -- General: -- CMake version : 3.27.4 -- CMake command : C:/Users/User/anaconda3/envs/py310/Library/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/bin/Hostx64/x64/cl.exe -- C++ compiler id : MSVC -- C++ compiler version : 19.42.34435.0 -- Using ccache if found : OFF -- CXX flags : /DWIN32 /D_WINDOWS /GR /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -- Shared LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Static LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Module LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;ONNX_NAMESPACE=onnx_torch;_CRT_SECURE_NO_DEPRECATE=1;IDEEP_USE_MKL;USE_EXTERNAL_MZCRC;MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS;FLASHATTENTION_DISABLE_ALIBI;WIN32_LEAN_AND_MEAN;_UCRT_LEGACY_INFINITY;NOMINMAX;USE_MIMALLOC -- CMAKE_PREFIX_PATH : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6 -- CMAKE_INSTALL_PREFIX : C:/Users/User/Desktop/pytorch_compile/pytorch/torch -- USE_GOLD_LINKER : OFF -- -- TORCH_VERSION : 2.7.0 -- BUILD_STATIC_RUNTIME_BENCHMARK: OFF -- BUILD_BINARY : OFF -- BUILD_CUSTOM_PROTOBUF : ON -- Link local protobuf : ON -- BUILD_PYTHON : ON -- Python version : 3.10.16 -- Python executable : C:/Users/User/anaconda3/envs/py310/python.exe -- Python library : C:/Users/User/anaconda3/envs/py310/libs/python310.lib -- Python includes : C:/Users/User/anaconda3/envs/py310/include -- Python site-package : C:\Users\User\anaconda3\envs\py310\Lib\site-packages -- BUILD_SHARED_LIBS : ON -- CAFFE2_USE_MSVC_STATIC_RUNTIME : OFF -- BUILD_TEST : OFF -- BUILD_JNI : OFF -- BUILD_MOBILE_AUTOGRAD : OFF -- BUILD_LITE_INTERPRETER: OFF -- INTERN_BUILD_MOBILE : -- TRACING_BASED : OFF -- USE_BLAS : 1 -- BLAS : mkl -- BLAS_HAS_SBGEMM : -- USE_LAPACK : 1 -- LAPACK : mkl -- USE_ASAN : OFF -- USE_TSAN : OFF -- USE_CPP_CODE_COVERAGE : OFF -- USE_CUDA : ON -- Split CUDA : -- CUDA static link : OFF -- USE_CUDNN : ON -- USE_CUSPARSELT : ON -- USE_CUDSS : ON -- USE_CUFILE : OFF -- CUDA version : 12.6 -- USE_FLASH_ATTENTION : OFF -- USE_MEM_EFF_ATTENTION : ON -- cuDNN version : 9.6.0 -- cuSPARSELt version : 0.6.3 -- CUDA root directory : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6 -- CUDA library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/lib/x64/cuda.lib -- cudart library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/lib/x64/cudart.lib -- cublas library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/lib/x64/cublas.lib -- cufft library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/lib/x64/cufft.lib -- curand library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/lib/x64/curand.lib -- cusparse library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/lib/x64/cusparse.lib -- cuDNN library : C:/Program Files/NVIDIA/CUDNN/v9.6/lib/12.6/x64/cudnn.lib -- cuSPARSELt library : C:/Program Files/NVIDIA cuSPARSELt/v0.6/lib/cusparseLt.lib -- cuDSS library : C:/Program Files/NVIDIA cuDSS/v0.4/lib/12/cudss.lib -- nvrtc : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/lib/x64/nvrtc.lib -- CUDA include path : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/include -- NVCC executable : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/bin/nvcc.exe -- CUDA compiler : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/bin/nvcc.exe -- CUDA flags : -DLIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS -Xcompiler /Zc:__cplusplus -Xcompiler /w -w -Xcompiler /FS -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch --use-local-env -gencode arch=compute_89,code=sm_89 -gencode arch=compute_86,code=sm_86 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --Werror cross-execution-space-call --no-host-device-move-forward --expt-relaxed-constexpr --expt-extended-lambda -Xcompiler=/wd4819,/wd4503,/wd4190,/wd4244,/wd4251,/wd4275,/wd4522 -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUB_WRAPPED_NAMESPACE=at_cuda_detail -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -- CUDA host compiler : -- CUDA --device-c : OFF -- USE_TENSORRT : -- USE_XPU : OFF -- USE_ROCM : OFF -- BUILD_NVFUSER : -- USE_EIGEN_FOR_BLAS : -- USE_FBGEMM : ON -- USE_FAKELOWP : OFF -- USE_KINETO : ON -- USE_GFLAGS : OFF -- USE_GLOG : OFF -- USE_LITE_PROTO : OFF -- USE_PYTORCH_METAL : OFF -- USE_PYTORCH_METAL_EXPORT : OFF -- USE_MPS : OFF -- CAN_COMPILE_METAL : -- USE_MKL : ON -- USE_STATIC_MKL : OFF -- USE_MKLDNN : ON -- USE_MKLDNN_ACL : OFF -- USE_MKLDNN_CBLAS : OFF -- USE_UCC : OFF -- USE_ITT : ON -- USE_NCCL : OFF -- USE_NNPACK : OFF -- USE_NUMPY : ON -- USE_OBSERVERS : ON -- USE_OPENCL : OFF -- USE_OPENMP : ON -- USE_MIMALLOC : ON -- USE_MIMALLOC_ON_MKL : OFF -- USE_VULKAN : OFF -- USE_PROF : OFF -- USE_PYTORCH_QNNPACK : OFF -- USE_XNNPACK : ON -- USE_DISTRIBUTED : ON -- USE_MPI : OFF -- USE_GLOO : ON -- USE_GLOO_WITH_OPENSSL : OFF -- USE_TENSORPIPE : OFF -- Public Dependencies : caffe2::mkl -- Private Dependencies : Threads::Threads;pthreadpool;cpuinfo;XNNPACK;microkernels-prod;fbgemm;ittnotify;fp16;caffe2::openmp;gloo;fmt::fmt-header-only;kineto -- Public CUDA Deps. : -- Private CUDA Deps. : caffe2::curand;caffe2::cufft;caffe2::cublas;torch::cudnn;torch::cusparselt;gloo_cuda;fmt::fmt-header-only;C:/Program Files (x86)/Intel/oneAPI/mkl/2025.0/lib/mkl_lapack95_lp64.lib;C:/Program Files (x86)/Intel/oneAPI/mkl/2025.0/lib/mkl_intel_lp64_dll.lib;C:/Program Files (x86)/Intel/oneAPI/mkl/2025.0/lib/mkl_intel_thread_dll.lib;C:/Program Files (x86)/Intel/oneAPI/mkl/2025.0/lib/mkl_core_dll.lib;C:/Users/User/anaconda3/envs/py310/Library/lib/libiomp5md.lib;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/lib/x64/cudart_static.lib;CUDA::cusparse;CUDA::cufft;CUDA::cusolver;torch::magma;ATEN_CUDA_FILES_GEN_LIB -- USE_COREML_DELEGATE : OFF -- BUILD_LAZY_TS_BACKEND : ON -- USE_ROCM_KERNEL_ASSERT : OFF -- Performing Test HAS_WMISSING_PROTOTYPES -- Performing Test HAS_WMISSING_PROTOTYPES - Failed -- Performing Test HAS_WERROR_MISSING_PROTOTYPES -- Performing Test HAS_WERROR_MISSING_PROTOTYPES - Failed -- Configuring done (71.9s) -- Generating done (12.1s) CMake Warning: Manually-specified variables were not used by the project: USE_STATIC_DISPATCH -- Build files have been written to: C:/Users/User/Desktop/pytorch_compile/pytorch/build ``` ### Versions Not applicable (can't import torch)
true
2,782,232,134
[MPSInductor] Implement `check_bounds`
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Although at the moment it returns rather than rasises assert due to https://github.com/pytorch/pytorch/pull/144632 `pytest test/inductor/test_torchinductor.py -v -k _mps` score is `368 failed, 391 passed, 32 skipped` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,782,226,572
[MPS] `torch.mps.synchronize` hangs on error
malfet
open
[ "triaged", "module: deadlock", "module: mps" ]
3
CONTRIBUTOR
### 🐛 Describe the bug Consider following code ```python import torch lib=torch.mps._compile_shader("kernel void foo(device float* x) {__builtin_trap();}") lib.foo(torch.rand(3, device="mps")) torch.mps.synchronize() ``` It will hang the process, and few attempt to reproduce the same resulted in system hang ### Versions Nightly cc @kulinseth @albanD @DenisVieriu97 @jhavukainen
true
2,782,217,891
144x less efficient CPU usage when training NN past a certain width
dustinboswell
open
[ "module: performance", "triaged", "module: arm" ]
2
NONE
### 🐛 Describe the bug The code below is a minimal NN training loop with a fully connected NN of shape (10->width->width->10). When width is 45, everything is fine, the code takes about 1 second, and only uses 1 CPU. When width is 46, the code takes 9 seconds, and uses all 16 cpus. So it's 144x less efficient (what are all those cycles doing?) I'm guessing it switches over to a multi-threaded implementation when multiplying matrices of a certain size. But something doesn't seem right. I also tried the "mps" backend, which surprisingly has enough overhead that it isn't faster until the network is very wide. ``` import time import os import torch from torch import nn, optim print(f"{torch.__version__=}, {os.uname()=}") batch_size = 128 all_inputs = torch.randn((batch_size * 100, 10)) all_targets = all_inputs + 0.01 * torch.randn((batch_size * 100, 10)) for device, omp_num_threads in [("cpu", None), ("cpu", 1), ("mps", 1)]: if omp_num_threads is not None: torch.set_num_threads(omp_num_threads) for width in [32, 45, 46, 64, 128, 256, 512, 1024, 2048, 4096]: if device == "cpu" and width > 256: break # too slow, don't bother network = nn.Sequential(nn.Linear(10, width), nn.Linear(width, width), nn.Linear(width, 10)).to(device) optimizer = optim.Adam(network.parameters(), lr=3e-4) t_start = time.time() for epoch in range(50): for offset in range(0, len(all_inputs), batch_size): inputs = all_inputs[offset:offset+batch_size].to(device) targets = all_targets[offset:offset+batch_size].to(device) optimizer.zero_grad() ((network(inputs) - targets) ** 2).mean().backward() optimizer.step() final_loss = ((network(all_inputs.to(device)) - all_targets.to(device)) ** 2).mean() print(f"{torch.get_num_threads()=}, device={device}, nn_width={width}, final_loss={final_loss:2.5f}, took {time.time() - t_start:2.1f} secs") ``` output on my machine is: ``` torch.__version__='2.3.1.post100', os.uname()=posix.uname_result(sysname='Darwin', nodename='username.macbook.pro.m3.lan', release='23.5.0', version='Darwin Kernel Version 23.5.0: Wed May 1 20:17:33 PDT 2024; root:xnu-10063.121.3~5/RELEASE_ARM64_T6031', machine='arm64') torch.get_num_threads()=16, device=cpu, nn_width=32, final_loss=0.00010, took 0.8 secs torch.get_num_threads()=16, device=cpu, nn_width=45, final_loss=0.00010, took 1.0 secs torch.get_num_threads()=16, device=cpu, nn_width=46, final_loss=0.00010, took 8.8 secs <---- 16 cpus, and 9x slower! torch.get_num_threads()=16, device=cpu, nn_width=64, final_loss=0.00011, took 6.8 secs torch.get_num_threads()=16, device=cpu, nn_width=128, final_loss=0.00012, took 19.9 secs torch.get_num_threads()=16, device=cpu, nn_width=256, final_loss=0.00015, took 65.6 secs # everything is way faster with just 1 thread (below) torch.get_num_threads()=1, device=cpu, nn_width=32, final_loss=0.00010, took 0.9 secs torch.get_num_threads()=1, device=cpu, nn_width=45, final_loss=0.00010, took 1.0 secs torch.get_num_threads()=1, device=cpu, nn_width=46, final_loss=0.00010, took 2.5 secs <---- 1 cpu, and faster! torch.get_num_threads()=1, device=cpu, nn_width=64, final_loss=0.00011, took 1.9 secs torch.get_num_threads()=1, device=cpu, nn_width=128, final_loss=0.00012, took 2.5 secs torch.get_num_threads()=1, device=cpu, nn_width=256, final_loss=0.00015, took 4.2 secs # mps has a lot of overhead, but eventually is faster torch.get_num_threads()=1, device=mps, nn_width=32, final_loss=0.00010, took 8.7 secs torch.get_num_threads()=1, device=mps, nn_width=45, final_loss=0.00010, took 8.7 secs torch.get_num_threads()=1, device=mps, nn_width=46, final_loss=0.00010, took 8.9 secs torch.get_num_threads()=1, device=mps, nn_width=64, final_loss=0.00011, took 8.4 secs torch.get_num_threads()=1, device=mps, nn_width=128, final_loss=0.00012, took 11.8 secs torch.get_num_threads()=1, device=mps, nn_width=256, final_loss=0.00015, took 8.4 secs torch.get_num_threads()=1, device=mps, nn_width=512, final_loss=0.00019, took 11.2 secs torch.get_num_threads()=1, device=mps, nn_width=1024, final_loss=0.00027, took 9.2 secs torch.get_num_threads()=1, device=mps, nn_width=2048, final_loss=0.00033, took 10.0 secs torch.get_num_threads()=1, device=mps, nn_width=4096, final_loss=0.00032, took 27.9 secs. <-- quadratic runtime starts here as expected ``` ### Versions ``` Collecting environment information... PyTorch version: 2.3.1.post100 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 14.5 (arm64) GCC version: Could not collect Clang version: 15.0.0 (clang-1500.3.9.4) CMake version: Could not collect Libc version: N/A Python version: 3.11.0 | packaged by conda-forge | (main, Jan 14 2023, 12:26:40) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-14.5-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M3 Max Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==2.3.1.post100 [conda] numpy 1.26.4 py311he598dae_0 [conda] numpy-base 1.26.4 py311hfbfe69c_0 [conda] pytorch 2.3.1 gpu_mps_py311h7b7e308_100 ``` cc @msaroufim @malfet @snadampal @milpuz01
true
2,782,208,242
[MPSInductor] Properly generate index expressions
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Now test_slice_scatter4_mps passes Before this change test_torchinductor.py reported 422 failed and 337 passed, after this change 412 failed 347 passed. Fixes https://github.com/pytorch/pytorch/issues/144630 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,782,173,571
Micro-optimization in Graph.nodes.__iter__
jansel
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "fx", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144631 This generates slightly better code (removing a generator frame) and drops a redundant assert. ```py >>> import timeit >>> def a(): ... yield from range(3) ... >>> def b(): ... return range(3) ... >>> timeit.timeit(lambda: [*a()]) 0.2714634328149259 >>> timeit.timeit(lambda: [*b()]) 0.12076826114207506 >>> ``` cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,782,090,892
[mps/inductor] Adjust lowering to not emit comments
dcci
closed
[ "module: mps", "oncall: pt2" ]
7
MEMBER
### 🐛 Describe the bug **Edit** The problem weren't VLAs, rather, the fact that `//` is a comment in metal and an operation in python. ** Original report ** There are currently a fair amount of inductor tests that are failing because the lowering emits VLAs, which aren't supported by the Metal shading language (according to https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf -- only fixed sized arrays are supported). We will need to massage the codegen a little bit to not emit VLAs, or find some alternative solution. Filing this issue so that I don't forget. cc: @malfet cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @chauhang @penguinwu
true
2,782,086,391
[mps/inductor] Add support for trunc().
dcci
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
6
MEMBER
inductor/test_div1 passes after this change. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,782,074,987
Patch Weibull.mode
j-wilson
closed
[ "module: distributions", "triaged", "open source", "Stale" ]
4
CONTRIBUTOR
This PR fixes the Weibull distribution's `mode` property, which is currently incorrect for `concentration < 1`. Before: ``` dist = Weibull(scale=torch.ones(4), concentration=torch.tensor([0.5, 0.75, 1.0, 1.25])) dist.mode > tensor([1.0000, nan, 0.0000, 0.2759]) ``` After: ``` dist = Weibull(scale=torch.ones(4), concentration=torch.tensor([0.5, 0.75, 1.0, 1.25])) dist.mode > tensor([0.0000, 0.0000, 0.0000, 0.2759]) ``` cc @fritzo @neerajprad @alicanb @nikitaved
true
2,782,054,624
remove allow-untyped-defs from torch/distributed/_checkpointable.py
bobrenjc93
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144627 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true