id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,961,473,536
[PP] Add schedule visualizer
H-Huang
closed
[ "oncall: distributed", "release notes: distributed (pipeline)", "module: pipelining" ]
1
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150333 Added a new private file (`_schedule_visualizer.py`) with some helper methods that can be used to visualize the operations of a schedule and plot with matplotlib. Interleaved1F1B (pp_group=4, microbatches=8): ![image](https://github.com/user-attachments/assets/6363343b-53b9-4b44-9354-b80d3c51219f) cc @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,961,471,730
Stash tensors for reduce_scatter_v and all_gather_v
kwen2501
closed
[ "oncall: distributed", "release notes: distributed (c10d)" ]
1
CONTRIBUTOR
Mirror of #149753 for 2.7 release. Fix 1 of 3 for https://github.com/pytorch/pytorch/pull/148590 https://github.com/pytorch/pytorch/pull/148590 removed record_stream. Since previous AVOID_RECORD flag does not cover reduce_scatter_v and all_gather_v which are in coalescing form, these two ops were missed. Causing TorchRec's Variable Length Embedding to fail. This PR adds a vector to stash tensors when coalescing is in flight. And the end of coalescing, it will hand over the tensors to Work. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,961,460,155
[FlexAttention] Don't load invalid values from mask mod
drisspg
open
[ "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150331 ## Summary See https://github.com/pytorch/pytorch/issues/150321 for more details cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,961,460,009
[FlexAttention] Allow dispatch to SAC for flex
drisspg
closed
[]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150331 * __->__ #150330
true
2,961,456,398
Testing binary builds
malfet
closed
[ "topic: not user facing", "ciflow/binaries_wheel" ]
1
CONTRIBUTOR
Fixes #ISSUE_NUMBER
true
2,961,449,189
☂️ Update submodule dependencies to supported version of Cmake
malfet
open
[ "module: build", "triaged" ]
0
CONTRIBUTOR
### 🐛 Describe the bug Recent cmake-4.0.0 uncovered that number of PyTorch projects depend on pretty old (and sometimes archived) repositories which are no longer compatible and should be cleaned up Below is the list of the submodules that needs to be udpated/removed (in no particular order): - [ ] protobuf - [x] gloo: Updated by https://github.com/pytorch/pytorch/pull/150320 - [ ] FP16 - [ ] PSimd - [ ] TensorPipe - [ ] hiprtc ### Versions CI cc @seemethere
true
2,961,429,184
[cherry-pick] [CI] Disable some tests that are failing in periodic #150059
atalman
closed
[ "topic: not user facing", "ciflow/periodic", "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Disabling some tests to restore periodic nogpu avx512 timeout: https://hud.pytorch.org/pytorch/pytorch/commit/59f14d19aea4091c65cca2417c509e3dbf60c0ed#38492953496-box profiler failure: https://hud.pytorch.org/pytorch/pytorch/commit/7ae0ce6360b6e4f944906502d20da24c04debee5#38461255009-box test_accelerator failure: https://hud.pytorch.org/pytorch/pytorch/commit/87bfd66c3c7061db6d36d8daa62f08f507f90e39#39476723746-box origin: 146098 test_overrides failure: https://hud.pytorch.org/pytorch/pytorch/commit/bf752c36da08871d76a66fd52ad09f87e66fc770#39484562957-box origin: 146098 inductor cpu repro: https://hud.pytorch.org/pytorch/pytorch/commit/bb9c4260249ea0c57e87395eff5271fb479efb6a#38447525659-box functorch eager transforms: https://hud.pytorch.org/pytorch/pytorch/commit/8f858e226ba81fde41d39aa34f1fd4cb4a4ecc51#39488068620-box https://hud.pytorch.org/pytorch/pytorch/commit/f2cea01f7195e59abd154b5551213ee3e38fa40d#39555064878 https://hud.pytorch.org/pytorch/pytorch/commit/b5281a4a1806c978e34c5cfa0befd298e469b7fd#39599355600 either 148288 or 148261? https://hud.pytorch.org/hud/pytorch/pytorch/2ec9aceaeb77176c4bdeb2d008a34cba0cd57e3c/1?per_page=100&name_filter=periodic&mergeLF=true Pull Request resolved: https://github.com/pytorch/pytorch/pull/150059 Approved by: https://github.com/ZainRizvi, https://github.com/atalman, https://github.com/malfet Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,961,424,430
Add reverse engineered code to iOS build
JohnDaWalka
open
[ "triaged", "open source", "topic: not user facing" ]
2
NONE
Add reverse engineered code to the repository and update relevant scripts and documentation. * **Build Process** - Include reverse engineered code in the build process in `.circleci/scripts/binary_ios_build.sh` and `scripts/build_ios.sh`. - Update `scripts/xcode_build.rb` to include reverse engineered code in the Xcode build process. * **Testing** - Add a step to test the reverse engineered code in `.circleci/scripts/binary_ios_test.sh`. * **Upload Process** - Include reverse engineered code in the upload process in `.circleci/scripts/binary_ios_upload.sh`. * **Dependencies** - Add additional dependencies required for the reverse engineered code in `.github/requirements/pip-requirements-iOS.txt`. * **Documentation** - Update `README.md` to reflect the addition of the reverse engineered code and provide instructions on how to use it.
true
2,961,305,050
Avoid circular imports in tracing_state_functions
justinchuby
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
12
COLLABORATOR
tracing_state_functions references some torch functions from submodules like `torch.onnx.is_in_onnx_export` that could trigger module initialization & circular imports. I turned the mapping into a function so that the dictionary is not initialized at torch import. (discovered in https://github.com/pytorch/pytorch/pull/149646) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,961,299,108
[ROCm] cmake 4 workaround for hiprtc
amdfaa
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
CONTRIBUTOR
cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,961,227,011
[dynamo] add error message for unsupported LOAD_BUILD_CLASS
williamwen42
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "module: compile ux" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150341 * __->__ #150323 Improved error message for https://github.com/pytorch/pytorch/issues/128942 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,961,217,925
[logging] Add pgo remote get/put timings to dynamo_compile
masnesral
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150322 Test Plan: https://fburl.com/scuba/dynamo_compile/sandbox/xf950tw8 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,961,191,886
Masking out Loads from mask_modded out regions
drisspg
open
[ "triaged", "module: flex attention" ]
0
CONTRIBUTOR
# Summary There is a very common gotcha/footgun that users run into when composing score_mods w/ blockmasks. ```Py import torch from torch.nn.attention.flex_attention import create_block_mask, flex_attention B, H, SEQ_LEN, HEAD_DIM = 1, 1, 128, 16 MAX_LEN = 127 # 1 less then possible values buffer = torch.arange(MAX_LEN).to(device="cuda") def make_tensor(): return torch.randn((B, SEQ_LEN, H, HEAD_DIM), device="cuda").permute(0,2,1,3) q, k, v = make_tensor(), make_tensor(), make_tensor() def causal(b, h, q, kv): return q >= kv def mask_mod(b, h, q, kv): upper = kv < MAX_LEN return upper & causal(b, h, q, kv) def score_mod(score, b, h, q, kv): # Users expect that we will only apply where we have masked out values # However for the last block and last row we will attempt to read from the buffer return score + buffer[kv] bm = create_block_mask(mask_mod, None, None, SEQ_LEN, SEQ_LEN) out = flex_attention(q, k, v, score_mod=score_mod, block_mask=bm) print(out) ``` Above is a minimal repro that highlights this issue. The crux of the issues has to do w/ the overlapping semantics of mask_mods and score_mods. If a users is reading from a buffer and utilizing both a score_mod and mask_mod they typically ensure that any read is globally correct by using the mask_mod to "mask out" any invalid locations. In this example the line doing that is: `upper = kv < MAX_LEN`. And now they write their score_mod in a mask oblivious way - which feels natural. If you run this example w/ compute-sanitizer: ```Shell ========= at triton_tem_fused_0+0xa90 in /tmp/torchinductor_drisspg/iu/ciuwwipvcnwchdwps3ekuddezubfuty76o2ynvjrinyvcw4l4qkv.py:398 ========= by thread (15,0,0) in block (1,0,0) ========= Address 0x7f434de003f0 is out of bounds ========= and is inside the nearest allocation at 0x7f434de00000 of size 1,016 bytes ========= Saved host backtrace up to driver entry point at kernel launch time ========= Host Frame: [0x331d4f] ========= in /lib64/libcuda.so.1 ========= Host Frame:launch [0x2513] ``` You can see that the IMA is from a read OOB on the passed in buffer: ```Py tmp0 = (qk) tmp1 = (n) tmp2 = tl.load(in_ptr8 + tmp1) # <-------------- ``` If we were free to read OOB this would actually work correctly (and in fact this can happen since we have the cuda-caching allocator) ```Py # ~~~~~~~~~~~~~~~~~~~ Apply score modification ~~~~~~~~~~~~~~~~~~~ # If this is the last block of a non divisible seqlen, we still need to load [BLOCK_M, BLOCK_N] elements, # which is larger than the actual number of elements. To avoid access memory out of bound, # we need to mask out the elements that are out of Q_LEN & KV_LEN. m = get_bounded_indices(offs_m, Q_LEN if CHECK_BLOCK_BOUNDARY else None) n = get_bounded_indices(offs_n, KV_LEN if CHECK_BLOCK_BOUNDARY else None) tmp0 = (qk) tmp1 = (n) tmp2 = tl.load(in_ptr8 + tmp1) tmp3 = tmp2.to(tl.float32) tmp4 = tmp0 + tmp3 post_mod_scores = tmp4 if CHECK_BLOCK_BOUNDARY: mask_mod_output = tl.where(offs_n < KV_LEN, mask_mod_output, False) # apply mask for partially unmasked blocks post_mod_scores = tl.where(mask_mod_output, post_mod_scores, float("-inf")) ``` Since the mask_mod is applied after we generate the scores and indeed masks out this invalid scores. ### Possible solutions 1. We can update the graph we generate for score_mods, so that they include the masking from mask_mod. We would like to only apply this masking on non FULL_BLOCKS and only when we read from input buffers. This would likley look something like ```Py valid_load_mask = mask_mod(...) if do masking else tl.full(index, True, tl.bool) inpt = tl.load(buf + index, mask=valid_load_mask, other = 0.0) ``` This is pretty trivial for users to do on their end, but a little trickier to do for arbitrary score_mod captures. But not trivial to do for only the non FULL BLOCKS cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @yanboliang @BoyuanFeng
true
2,961,145,000
Update gloo submodule
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
That updates its CMake minimum version(via https://github.com/facebookincubator/gloo/pull/424 ) and removes cmake-4.0.0 workarounds for gloo
true
2,961,142,030
[dynamo] Bad error message when trying to compile async functions due to bad bytecode jump targets
williamwen42
open
[ "triaged", "oncall: pt2", "module: dynamo", "module: compile ux" ]
0
MEMBER
Encountered this when trying to compile unsupported async bytecodes. Repro: ```python import torch async def fn(): return 1 torch.compile(fn, backend="eager", fullgraph=True)() ``` Output: ``` (/data/users/williamwen/py312-env) [williamwen@devgpu020.odn1 /data/users/williamwen/pytorch (84684e93)]$ python playground.py Traceback (most recent call last): File "/data/users/williamwen/pytorch/playground.py", line 8, in <module> torch.compile(fn, backend="eager", fullgraph=True)() File "/data/users/williamwen/pytorch/torch/_dynamo/eval_frame.py", line 658, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 1453, in __call__ return self._torchdynamo_orig_callable( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 619, in __call__ return _compile( ^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 1131, in _compile raise InternalTorchDynamoError( File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 1080, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 782, in compile_inner return _compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 818, in _compile_inner out_code = transform_code_object(code, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 758, in transform propagate_inst_exn_table_entries(instructions) File "/data/users/williamwen/pytorch/torch/_dynamo/bytecode_transformation.py", line 965, in propagate_inst_exn_table_entries indexof[inst.exn_tab_entry.end], ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^ torch._dynamo.exc.InternalTorchDynamoError: KeyError: Instruction(opcode=121, opname='RETURN_CONST', arg=1, argval=1, offset=6, starts_line=5, is_jump_target=False, positions=Positions(lineno=5, end_lineno=5, col_offset=11, end_col_offset=12), target=None, exn_tab_entry=InstructionExnTabEntry(start=Instruction(opname=RESUME, offset=4), end=Instruction(opname=RETURN_CONST, offset=6), target=Instruction(opname=CALL_INTRINSIC_1, offset=8), depth=0, lasti=True), argrepr=None) ``` cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,961,135,303
[cuDNN][SDPA][WIP] cuDNN >= 9.8.0 should support seqlen 1
eqy
closed
[ "module: cudnn", "module: cuda", "open source", "ciflow/trunk", "topic: not user facing", "module: sdpa" ]
2
COLLABORATOR
Still testing edge cases cc @csarofeen @ptrblck @xwang233 @msaroufim
true
2,961,130,405
[WIP] standalone torch.inductor.compile API
zou3519
closed
[ "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150317 [no-ci] cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,961,064,782
assert on all_reduce_event only if it's not CPU device.
Ritesh1905
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: distributed (fsdp)", "ciflow/inductor" ]
9
CONTRIBUTOR
Summary: For CPU based runs, `all_reduce_event` would be None since this is the result of the `all_reduce_stream.record_event()`, which does not do much other than returning None when device type is CPU. Test Plan: CI Differential Revision: D72176406 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,961,019,783
Update periodic.yml to test NVIDIA GPU hosted runner
zhe-thoughts
closed
[ "open source", "topic: not user facing" ]
2
NONE
Update periodic.yml to test NVIDIA GPU hosted runner Fixes #ISSUE_NUMBER
true
2,960,998,471
[PT2][cutlass backend] No suitable Cutlass GEMM configs for max-autotune mode
efsotr
closed
[ "triaged", "oncall: pt2", "module: inductor" ]
2
NONE
### 🐛 Describe the bug ```python import os os.environ["TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_BACKENDS"] = "ATEN,TRITON,CPP,CUTLASS" # os.environ["TORCH_LOGS"] = "+dynamo" import logging import torch import torch._inductor.config as config import torch._inductor.codegen.cuda.gemm_template as gemm_template gemm_template.log.setLevel(logging.INFO) config.cuda.cutlass_dir = "../../cutlass" config.debug = True x = torch.randn(8192, 2048, dtype=torch.bfloat16, device="cuda") y = torch.randn(2048, 2048, dtype=torch.bfloat16, device="cuda") def gemm(a, b): return torch.nn.functional.linear(a, b) compiled_gemm = torch.compile(gemm, mode="max-autotune") z = compiled_gemm(x, y) ``` ```log W0401 00:02:00.853000 3516130 site-packages/torch/_inductor/codegen/cuda/gemm_template.py:518] [0/0] No suitable Cutlass GEMM configs found, fallbacks used ( len(ops)=0, output_layout=FixedLayout('cuda', torch.bfloat16, size=[8192, 2048], stride=[2048, 1]), input_layouts=[FixedLayout('cuda', torch.bfloat16, size=[8192, 2048], stride=[2048, 1]), FixedLayout('cuda', torch.bfloat16, size=[2048, 2048], stride=[1, 2048])], input_strides=[[2048, 1], [1, 2048]] ) ``` First, the `CUTLASSArgs` was missing the `exclude_kernels` and `instantiation_level` attributes. After I found the code and filled in the missing parts, this issue appeared. Then, through further investigation, I found that when sm < 90, there are no available CUTLASS 3.x GEMM templates, only CUTLASS 2.x GEMM templates, and it just so happens that max-autotune only uses CUTLASS 3.x GEMM templates when tuning mm. ### Versions ``` torch 2.5.1+cu124 ``` cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,960,978,614
Lint rule for always using std::optional?
clee2000
closed
[ "module: ci", "module: lint", "triaged" ]
2
CONTRIBUTOR
There were a couple of PRs to use std::optional instead of c10::optional and a few other similar functions. Is there a lint rule we can make to prevent people from continuing to use c10::optional? Some internal failures might have been caught if this lint rule did exist: https://github.com/pytorch/pytorch/pull/150129#issuecomment-2766739155 cc @seemethere @malfet @pytorch/pytorch-dev-infra @r-barnes since I think they were the one to do some of the changes
true
2,960,946,019
[WIP] Refactor CUDAAllocatorConfig to reuse AllocatorConfig
guangyey
open
[ "open source", "release notes: cpp", "topic: not user facing" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151298 * #138222 * __->__ #150312 * #149601
true
2,960,933,781
[Inductor] Synchronize type annotations between torch and triton
penguin-wwy
open
[ "triaged", "open source", "topic: not user facing", "module: inductor" ]
13
CONTRIBUTOR
cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,960,923,800
cd: Fix naming for windows arm64 libtorch builds
seemethere
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
4
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150310 Apparently the magical incantation to name these correctly lies in the build_variant variable otherwise it silently does nothing. Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
true
2,960,874,595
DISABLED test_foreach_copy_with_multi_dtypes__foreach_copy_cuda_int16 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
7
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_foreach_copy_with_multi_dtypes__foreach_copy_cuda_int16&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39687880634). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_foreach_copy_with_multi_dtypes__foreach_copy_cuda_int16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,960,856,869
Update ExecuTorch pin to latest viable/strict 3/28/2025
mergennachin
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
9
CONTRIBUTOR
From latest viable/strict: https://hud.pytorch.org/hud/pytorch/executorch/viable%2Fstrict/1?per_page=50 Fixes https://github.com/pytorch/pytorch/issues/144480 This commit has important CI stability fixes, such as https://github.com/pytorch/executorch/pull/9561 and https://github.com/pytorch/executorch/pull/9634
true
2,960,834,655
test dynamo
Sunnie912
open
[ "fb-exported", "topic: not user facing" ]
2
CONTRIBUTOR
Summary: Testing failures in the github Differential Revision: D72172374
true
2,960,808,257
[Hierarchical Compile] Apply deduplication after output node creation
mlazos
closed
[ "Merged", "ciflow/trunk", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150306 * #150305 * #150304 * #150303 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,960,808,085
[Hierarchical Compile] Add cycle detection to graph region expansion
mlazos
closed
[ "Merged", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150306 * __->__ #150305 * #150304 * #150303 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,960,807,909
[Hierarchical Compile] Add cycle detection function for debug
mlazos
closed
[ "Merged", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150306 * #150305 * __->__ #150304 * #150303 Remove print cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,960,807,748
[Hierarchical Compile] Remove spammy debug log
mlazos
closed
[ "Merged", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150306 * #150305 * #150304 * __->__ #150303 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,960,768,915
allow collectives to be DCEd during collective optimizations, fix bad partitioner save decision
bdhirsh
open
[ "oncall: distributed", "module: inductor", "ciflow/inductor", "release notes: AO frontend" ]
1
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/146693. There are more details in the issue discussion. I tested the repro and confirmed that we no longer save the allgather'd tensor for backward. Going to move a (smaller version of) that repro into a test and update soon. Here's a tlparse pair of the generated graphs in the test case I wrote, with and without the config: without config https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/hirsheybar/86f0cbaf-ba47-4896-941b-d3ea75ac85f0/custom/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 with config: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/hirsheybar/0ad9a0ea-6413-4195-9373-572977896e29/custom/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 You can see that without the config, we save `wait_tensor_7` for backward. With it, we save `primals_1` for backward and compute the allgather directly in the bw graph Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150355 * __->__ #150302 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,960,590,390
[Build] Fix XPU builds inside venv
pytorchbot
closed
[ "open source", "release notes: build", "topic: bug fixes", "topic: not user facing", "ciflow/xpu" ]
2
COLLABORATOR
Update the torch-xpu-ops commit to [3ee2bd2f13e1ed17a685986ff667a58bed5f2aa5](https://github.com/intel/torch-xpu-ops/commit/3ee2bd2f13e1ed17a685986ff667a58bed5f2aa5) - Fix the build error if users build torch xpu through python virtual environment. It was due to that torch-xpu-ops uses `${PYTHON_EXECUTABLE}` to get python path. However, `${PYTHON_EXECUTABLE}` is the sytem python path, while the pytorch root cmake is using the Python_EXECUTABLE ([Here](https://github.com/pytorch/pytorch/blob/420a9be743f8dd5d6296a32a1351c1baced12f1f/tools/setup_helpers/cmake.py#L310)) https://github.com/intel/torch-xpu-ops/issues/1461 - code diff (https://github.com/intel/torch-xpu-ops/compare/026b2c8c7c92a7b2cec5d26334006e3423251cc6..3ee2bd2f13e1ed17a685986ff667a58bed5f2aa5) - base commit: 026b2c8c7c92a7b2cec5d26334006e3423251cc6 - new commit: 3ee2bd2f13e1ed17a685986ff667a58bed5f2aa5
true
2,960,456,392
Update torch-xpu-ops commit pin to 3ee2bd2
chuanqi129
closed
[ "open source", "Merged", "topic: not user facing" ]
10
COLLABORATOR
Update the torch-xpu-ops commit to [3ee2bd2f13e1ed17a685986ff667a58bed5f2aa5](https://github.com/intel/torch-xpu-ops/commit/3ee2bd2f13e1ed17a685986ff667a58bed5f2aa5)
true
2,960,416,808
DISABLED AotInductorTest.FreeInactiveConstantBufferRuntimeConstantFoldingCuda (build.bin.test_aoti_inference)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "oncall: export", "module: aotinductor" ]
28
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=AotInductorTest.FreeInactiveConstantBufferRuntimeConstantFoldingCuda&suite=build.bin.test_aoti_inference&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39682713246). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 5 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `AotInductorTest.FreeInactiveConstantBufferRuntimeConstantFoldingCuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Expected equality of these values: initMemory - DATASIZE - 2 * FOLDEDDATASIZE Which is: 21856321536 updateMemory1 Which is: 22390374400 /var/lib/jenkins/workspace/test/cpp/aoti_inference/test.cpp:544: C++ failure ``` </details> Test file path: `` or `test/run_test` Error: Error retrieving : 400, test/run_test: 404 cc @clee2000 @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @chenyang78 @yushangdi @benjaminglass1
true
2,960,416,709
DISABLED test_foreach_copy_with_multi_dtypes__foreach_copy_cuda_float64 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
7
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_foreach_copy_with_multi_dtypes__foreach_copy_cuda_float64&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39679712735). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 8 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_foreach_copy_with_multi_dtypes__foreach_copy_cuda_float64` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,960,410,195
Disable cache and utilization stats uploading steps on s390x
AlekseiNikiforovIBM
open
[ "triaged", "open source", "ciflow/trunk", "topic: not user facing", "ciflow/s390" ]
10
COLLABORATOR
There are no AWS credentials available on s390x runners. These steps are failing anyway due to that.
true
2,960,400,404
[RFC] zentorch Integration
naveenthangudu
open
[ "triaged", "oncall: pt2", "module: inductor" ]
8
NONE
# zentorch Integration ## Table of Contents - [1. Authors](#1-authors) - [2. Summary](#2-summary) - [3. Highlights](#3-highlights) - [4. Motivation](#4-motivation) - [4.1. Benchmarking Configuration](#41-benchmarking-configuration) - [4.2. Single Core Performance Summary](#42-single-core-performance-summary) - [4.3. Multi Core Performance Summary](#43-multi-core-performance-summary) - [5. Proposal](#5-proposal) - [5.1. User Flow](#51-user-flow) - [5.2. Implementation](#52-implementation) - [5.2.1. ZenDNN Library](#521-zendnn-library) - [5.2.2. Graph Optimizations](#522-graph-optimizations) - [5.2.3. Plugging into Torch 2.x Flow](#523-plugging-into-torch-2x-flow) - [6. Plan](#6-plan) - [6.1. Phase 1 - Optimizations of Recommender Systems for BF16 and FP32](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) - [6.2. Phase 2 - Migration to New ZenDNN Library API and Architecture](#62-phase-2---migration-to-new-zendnn-library-api-and-architecture) - [6.3. Phase 3 - Optimizations of Recommender Systems for INT8 Linear and woq_embedding_bag](#63-phase-3---optimizations-of-recommender-systems-for-int8-linear-and-woq-embedding_bag) - [6.4. Phase 4 - Optimizations of NLPs and Generative LLM Workloads](#64-phase-4---optimizations-of-nlps-and-generative-llm-workloads) ## 1. Authors @naveenthangudu, Sudarshan, @amukho, and Avinash ## 2. Summary This document proposes an approach for integrating the ZenDNN library and Zentorch optimizations into PyTorch. This integration will enable inference optimizations for deep learning workloads on AMD EPYC™ CPUs. It will provide AMD EPYC™-focused optimizations in both the AOT Inductor (Torch Export) and the Inductor (Torch Compile) paths. The integration will be carried out in three phases for Recommender Systems targeting [Phase 1](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) in PT 2.8 and others in 2.9: * [Phase 1](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32): Optimizations of Recommender Systems for BF16 and FP32 * [Phase 2](#62-phase-2---migration-to-new-zendnn-library-api-and-architecture): Migration to the new ZenDNN Library API and Architecture * [Phase 3](#63-phase-3---optimizations-of-recommender-systems-for-int8-linear-and-woq-embedding_bag): Optimizations of Recommender Systems for INT8 linear and woq_embedding_bag We will then add support for [NLP and LLM operators and optimizations](#64-phase-4---optimizations-of-nlps-and-generative-llm-workloads) in subsequent phases. ## 3. Highlights * Can be optionally enabled by the end user through runtime flags. * Optimized kernels from AOCL BLIS and beyond via the ZenDNN library. * [ZenDNN Library](https://github.com/amd/ZenDNN) consists of kernels specifically optimized for AMD CPUs and includes [AOCL BLIS](https://github.com/amd/blis) as a submodule. * ZenDNN Library also has the following dependencies, which will be reused from Torch: * FBGEMM * oneDNN * Zentorch graph optimizations are added as FX passes on frozen graphs through the `zentorch_optimize` API. ## 4. Motivation The main goal of this integration is to enable optimal inference performance on AMD EPYC™ CPUs for PyTorch. This will be achieved through Torch FX graph optimizations, which rewrite FX graphs intended for both the TorchInductor and AOTInductor backends to use AMD EPYC™-optimized ops from the [ZenDNN Library](https://github.com/amd/ZenDNN). To highlight the potential uplift using zentorch compared to PyTorch's Inductor on AMD EPYC™ CPUs, we benchmarked our Zentorch plugin using the PyTorch Mar 15th, 2025 Nightly build on a Genoa CPU (4th Generation AMD EPYC™ Processors) with scripts from the Torch Inductor performance dashboard. ### 4.1. Benchmarking Configuration | Configuration | Value | |-----------------------------|-------| | PyTorch Version | '2025-03-15 Nightly' | | CPU | 4th Generation AMD EPYC™ Genoa CPU | | Number of Physical Cores | 96 | | NUMA Nodes per Socket (NPS) | 1 | | Model Data Type | FP32 | ### 4.2. Single Core Performance Summary #### 4.2.1. Performance Results (2025-03-15 Nightly Release) ##### 4.2.1.1. Geometric Mean Speedup | Compiler | torchbench | huggingface | timm_models | |-----------|-----------:|------------:|------------:| | inductor | 1.92x | 1.01x | 1.14x | | zentorch | 1.58x | 1.05x | 2.04x | ##### 4.2.1.2. Mean Compilation Time (seconds) | Compiler | torchbench | huggingface | timm_models | |-----------|-----------:|------------:|------------:| | inductor | 40.52 | 26.49 | 57.99 | | zentorch | 23.97 | 19.99 | 46.41 | ##### 4.2.1.3. Peak Memory Footprint Compression Ratio (Higher Is Better) | Compiler | torchbench | huggingface | timm_models | |-----------|-----------:|------------:|------------:| | inductor | 0.89x | 0.93x | 0.89x | | zentorch | 0.76x | 0.89x | 0.90x | ### 4.3. Multi Core Performance Summary #### 4.3.1. Performance Results (2025-03-15 Nightly Release) ##### 4.3.1.1. Geometric Mean Speedup | Compiler | torchbench | huggingface | timm_models | |-----------|-----------:|------------:|------------:| | inductor | 1.09x | 0.97x | 1.07x | | zentorch | 1.05x | 0.98x | 2.04x | ##### 4.3.1.2. Mean Compilation Time (seconds) | Compiler | torchbench | huggingface | timm_models | |-----------|-----------:|------------:|------------:| | inductor | 20.08 | 25.92 | 46.31 | | zentorch | 19.74 | 24.59 | 4.13 | ##### 4.3.1.3. Peak Memory Footprint Compression Ratio (Higher Is Better) | Compiler | torchbench | huggingface | timm_models | |-----------|-----------:|------------:|------------:| | inductor | 0.87x | 0.93x | 0.90x | | zentorch | 0.83x | 0.94x | 0.93x | ## 5. Proposal ### 5.1. User Flow Two approaches are proposed for enabling the zentorch optimizations: #### 5.1.1. Explicit Enablement via Configuration Users can explicitly enable the zentorch optimizations through a configuration flag. ##### 5.1.1.1. With Inductor (torch.compile path) The zentorch optimizations will be applied in both the model freezing path and within `torch.no_grad()` contexts: ```python import torch # Explicitly enable zentorch optimizations torch._inductor.config.enable_zentorch = True # Compile the model in evaluation mode model = torch.compile(model.eval()) out = model(inp) ``` ##### 5.1.1.2. With AOT Inductor (torch.export path) ```python import torch # Explicitly enable zentorch optimizations torch._inductor.config.enable_zentorch = True # Export and compile the model exported_model = torch.export.export(model.eval(), (sample_input,)) so_model = torch._export.aot_compile(exported_model, (sample_input,)) ``` #### 5.1.2. Automatic Detection Based on CPU Architecture The zentorch optimizations can be automatically enabled when running on compatible AMD EPYC™ CPUs (Zen4 and Zen5 architectures). Users retain the ability to override this default behavior through explicit configuration. ##### 5.1.2.1. With Inductor (torch compile path) The zentorch optimizations will be applied in both the model freezing path and within `torch.no_grad()` contexts: ```python import torch # Explicitly enable or disable zentorch optimizations #torch._inductor.config.enable_zentorch = True/False model = torch.compile(model.eval()) out = model(inp) ``` ##### 5.1.2.2. With AOT Inductor (torch export path) ```python import torch # Explicitly enable or disable zentorch optimizations #torch._inductor.config.enable_zentorch = True/False exported_model = torch.export.export(model.eval(), (sample_input,)) so_model = torch._export.aot_compile(exported_model, (sample_input,)) ``` ### 5.2. Implementation #### 5.2.1. ZenDNN Library ##### 5.2.1.1. Overview ZenDNN is a library of accelerated primitives for deep learning inference workloads on AMD EPYC™ class CPUs. The library can be interfaced with and can be used as a backend by any deep learning framework. ##### 5.2.1.2. Design #The ZenDNN library interfaces with PyTorch to run accelerated primitives on AMD EPYC™ platforms. Various components of the library are as follows: ###### 5.2.1.2.1 Operators An operator (or primitive) implements accelerated computation of a node, a fused computation, or a computation of a block of a DNN. For example, an operator may implement matrix-matrix multiplication for a linear graph node, a matrix multiplication followed by a series of elementwise computations (such as ReLU) as a fused computation, or a complete attention block for LLMs. In general, an operator implements multiple computational kernels. A computational kernel is selected based on various parameters such as input size, quantization level, supported ISA of the hardware, etc. The ZenDNN library includes those operators for which there is an additive performance boost with optimizations targetted at EPYC. For all other operators,the stack falls back to x86 optimized primitives or operators available in the native framework, either through aten operators or the OneDNN library. ZenDNN also interfaces with compute libraries such as AOCL and FBGEMM to utilize their compute kernels in its primitives. ###### 5.2.1.2.2 Runtime The ZenDNN runtime can create command queues that schedule operators on different cores or group of cores. This feature is used to support concurrent primitive execution. It also consists of an auto-tuner that, given an operator, collects performance data of various kernels and selects the compute kernel with the best performance. ###### 5.2.1.2.3 Profiler The ZenDNN profiler measures performance of an operator kernel. ZenDNN supports time-based profiling of an operator. Profiling data is written in profiler logs. #### 5.2.2. Graph Optimizations * Performant op replacements: * [linear](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) * [matmul](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) * [bmm](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) * [embedding_bag](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) * [qlinear](#63-phase-3---optimizations-of-recommender-systems-for-int8-linear-and-woq-embedding_bag) * [woq_embedding_bag](#63-phase-3---optimizations-of-recommender-systems-for-int8-linear-and-woq-embedding_bag) * Elementwise op fusions: * Fusion of linear(addmm_1dbias) or linear_nobias(mm) with * [relu, sigmoid, tanh, add and mul](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) * [gelu, silu and silu+mul](#64-phase-4---optimizations-of-nlps-and-generative-llm-workloads) * Fusion of qlinear with * [relu, sigmoid, tanh, add and mul](#63-phase-3---optimizations-of-recommender-systems-for-int8-linear-and-woq-embedding_bag) * [gelu, silu and silu+mul](#64-phase-4---optimizations-of-nlps-and-generative-llm-workloads) * Horizontal or parallel op fusions * [Fusion of parallel embedding_bag ops](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) * [Fusion of parallel woq_embedding_bag ops](#63-phase-3---optimizations-of-recommender-systems-for-int8-linear-and-woq-embedding_bag) * Concat folding * By modifying all input ops to concat to their out variants and by feeding them sliced tensors, concat will be done without additional memcopy. * [Folding of concat into embedding_bag and linear variants](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) * [Folding of concat into woq_embedding_bag and qlinear variants](#63-phase-3---optimizations-of-recommender-systems-for-int8-linear-and-woq-embedding_bag) #### 5.2.3. Plugging into Torch 2.x Flow ##### 5.2.3.1. Approach 1 We are currently using this same approach in our zentorch plugin, which will enable a smooth integration path. This approach has two parts: * Controlling the decompositions of ops * Decompositions of ops such as gelu and linear are controlled as needed for zentorch. * The zentorch graph optimizations are performed after AOT Autograd and before Inductor or AOT Inductor. ![Approach 1 Flow](https://github.com/user-attachments/assets/7cdd425f-a4ae-4eb4-856d-0e8fc24f469f) ##### 5.2.3.2. Approach 2 Registering the zentorch graph optimizations in the post-grad pass stage will enable zentorch optimizations in both Inductor (torch compile) and AOT Inductor (torch export) flows. * Integration with PyTorch's existing optimization pipeline * Register zentorch optimizations as post-grad pass plugins * Leverage PyTorch's existing pass infrastructure for better compatibility * Benefits compared to Approach 1 * More seamless integration with both JIT and AOT compilation paths * Reduced code duplication across Inductor and AOT Inductor flows * Better maintainability as PyTorch's compiler architecture evolves ![Approach 2 Flow](https://github.com/user-attachments/assets/a3daf0a4-12e7-45b1-a47e-ceec157612cb) ## 6. Plan ### 6.1. Phase 1 - Optimizations of Recommender Systems for BF16 and FP32 * Validate Approach 1 * Torch Compile path: Test Inductor integration feasibility * Torch Export path: Test AOT Inductor path feasibility * Validate Approach 2 * Test the feasibility of registering zentorch graph optimizations in post-grad pass * PR1 - linear op and its unary post-op fusions * Basic infrastructure * Add ZenDNN library repo as a submodule into PyTorch build infrastructure * Integrate graph ops support for linear, linear_relu, linear_sigmoid and linear_tanh * Create op level unit tests * Integrate zentorch_optimize function for op replacement and unary fusion * Implement CPU vendor and architecture-based checks * Add optional build flag to enable zentorch optimizations * Add user override option for zentorch optimizations * Integrate the zentorch_optimize into the torch 2.x flows * Add unit tests for the graph passes * PR2 - linear with mul and add * Integrate graph ops support for linear_mul, linear_add and linear_mul_add * Add the graph pass for binary elementwise fusions * Create unit tests for the ops and fusions * PR3 - bmm op and matmul op * Integrate graph ops support for bmm and matmul * Graph pass update for op replacement * Create unit tests for the ops and op replacement * PR4 - embedding_bag op, embedding_bag_group op and concat folding * Integrate graph ops support for embedding_bag, embedding_bag_group * Update linear ops for supporting folding of concat * Integrate the graph pass for grouping of horizontal or parallel embedding bag ops * Integrate the concat folding graph pass * Create unit tests for the ops and fusions * PR5 - Tuning zentorch Integration If Required * Benchmark and tune the PyTorch integration to match the performance of the zentorch plugin for [DLRM model](https://github.com/facebookresearch/dlrm) ### 6.2. Phase 2 - Migration to new ZenDNN Library API and Architecture * Update ZenDNN library integration to align with the new API and internal architecture. * ZenDNN library becomes thin and lightweight by using oneDNN as a third-party library instead of managing it under the hood. * Refactor the code added in [Phase 1](#61-phase-1---optimizations-of-recommender-systems-for-bf16-and-fp32) to ensure compatibility with the new ZenDNN library API. * Validate the migration with unit tests and benchmarks. * Ensure performance parity or improvements compared to the previous ZenDNN library integration. * PR1 - Migration Changes * Implement all required changes for the new ZenDNN library API and architecture in a single PR. * Add unit tests and benchmarks to validate the migration. ### 6.3. Phase 3 - Optimizations of Recommender Systems for INT8 linear and woq_embedding_bag * PR1 - qlinear and woq_embedding_bag ops support * Integrate graph ops support for qlinear (Quantized Linear), woq_embedding_bag (Weight-Only Quantized embedding_bag) * Integrate PyTorch 2.0 Export (PT2E) graph to the zentorch Qops conversion pass * Create op and conversion pass unit tests * PR2 - qlinear op and its fusions * Integrate elementwise fusions of qlinear ops such as relu, sigmoid, tanh, mul and add * Integrate the graph pass for unary and binary elementwise fusions * Integrate requant optimization pass * Create unit tests for the ops and fusions * PR3 - woq_embedding_bag op, group_woq_embedding_bag op and concat folding * Implement graph ops support for woq_embedding_bag and group_woq_embedding_bag * Develop the graph pass for grouping of horizontal or parallel embedding bag ops * Create unit tests for the ops and fusions * PR4 - Tuning of zentorch integration if required * Benchmark and tune the PyTorch integration to match the performance of the zentorch plugin for Quantized DLRMv2 model ### 6.4. Phase 4 - Optimizations of NLPs and Generative LLM Workloads * The optimizations targeting NLPs (Natural Language Processing models) and Generative LLM (Large Language Model) workloads will be covered in a separate RFC. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,960,393,544
Add overload for __getitem__ of Sequentail to fix type hint
FFFrog
closed
[ "open source", "topic: not user facing" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150295 As the title stated. Realted issue: https://github.com/pytorch/pytorch/issues/150257
true
2,960,251,472
Make PyTorch buildable by CMake-4.x on s390x
AlekseiNikiforovIBM
closed
[ "open source", "Merged", "topic: not user facing", "ciflow/binaries_wheel" ]
7
COLLABORATOR
This is a continuation of https://github.com/pytorch/pytorch/pull/150203 that fixes nightly build on s390x.
true
2,960,144,601
Unify on dynamo_compile as the overall wait counter
ppanchalia
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
10
CONTRIBUTOR
Summary: dynamo_compile for the most part has been accounting for compile time except autotuning. all_compilation_types had earlier been injected on fx_codegen_and_compile, which was incorrect. Add autotuining to dynamo and deprcate all_compilation_types counter. Differential Revision: D72145447 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,960,004,959
[clang-tidy] Get rid-off dangerouse clang-tidy option
ivanmurashko
open
[ "fb-exported", "topic: not user facing" ]
3
CONTRIBUTOR
Summary: WarningsAsErrors is a special option that should be applied carefully. At our case clang-tidy checks have a lot of false positives and as result WarningsAsErrors will prevent the corresponding diffs from landing Test Plan: No special test required here Differential Revision: D72159625
true
2,959,971,510
Add differentiable ops hint message in Module docs
zeshengzong
open
[ "triaged", "open source", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes #101934 ## Test Result ### Before ![image](https://github.com/user-attachments/assets/862229ac-8966-4629-8ad2-9dcec82d2009) ### After ![image](https://github.com/user-attachments/assets/d4eb4671-fb3d-438e-922b-032f5ad61caf)
true
2,959,951,442
Remove torch functions that do not support device arguments from _device_constructor
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150290 As the title stated In Addition: - I have checked all the functions in _device_constructor and found ``torch.vander`` also don`t support device arguments - Remove the duplicated function such as torch.ones and torch.asarray Related issue:https://github.com/pytorch/pytorch/issues/150284
true
2,959,932,100
[Dynamo][Misc] Apply typing hints for `codegen`
shink
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo" ]
12
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,959,845,593
[Intel GPU] Allow XPU backend in Quantize operators
yucai-intel
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: quantization" ]
14
CONTRIBUTOR
This modification is to support torch.quantize_per_channel() on XPU, otherwise it will cause a segmentation fault.
true
2,959,817,103
[Inductor XPU] Support mkldnn fusion for XPU.
etaf
open
[ "open source", "module: inductor", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150287 * #150286 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,959,816,979
[Inductor XPU] Refine `test_mkldnn_pattern_matcher.py` to be reusable for XPU.
etaf
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150287 * __->__ #150286 This PR extracts some test cases from TestPatternMatcher into a newly created TestPatternMatcherGeneric, and uses instantiate_device_type_tests to make them reusable across multiple devices. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,959,786,360
CuSparse doesn't work on sparse tensor
qwerty10086
open
[ "module: sparse", "triaged" ]
1
NONE
### 🐛 Describe the bug I need to compute very large sparse matrix multiplications in my project, and I encountered the same issue as [#103820](https://github.com/pytorch/pytorch/issues/103820). It's mentioned that CUDA 12 provide two new algorithms with less memory occupation. I tested them on my matrices and they worked well, so now I'm writing a cpp extension to invoke `CUSPARSE_SPGEMM_ALG3`. However, I find it can't directly work on sparse tensor. To be specific, only the first `cusparseSpGEMM_workEstimation` works correctly. But if I read the data of `crow_indices`, `col_indices`, and `values` to CPU and copy them to GPU again, it works. To enable the copy operations, just modify the macro `COPY_MATRIX_DATA` to 1. Moreover, even if I invoke `CUSPARSE_SPGEMM_ALG1`, the issue still exists. ```cpp #include <cusparse.h> #include <torch/torch.h> #define COPY_MATRIX_DATA 0 #define CHECK_CUSPARSE(func) \ { \ cusparseStatus_t status = (func); \ if (status != CUSPARSE_STATUS_SUCCESS) { \ printf("CUSPARSE API failed at line %d with error: %s (%d)\n", \ __LINE__, cusparseGetErrorString(status), status); \ return 0; \ } \ } template<typename T> std::vector<T> toVector(const torch::Tensor& vTensor) { auto TensorCpu = vTensor.cpu(); auto NumElem = TensorCpu.numel(); std::vector<T> Data; Data.reserve(NumElem); for (int i = 0;i < NumElem;++i) Data.emplace_back(TensorCpu[i].item<T>()); return Data; } int toCuSparseCsrMat(cusparseSpMatDescr_t* vCsrMat, const torch::Tensor& vCsrTensor) { #if COPY_MATRIX_DATA auto RowOffsets = torch::from_blob(toVector<int>(vCsrTensor.crow_indices()).data(), {vCsrTensor.size(0) + 1}, torch::dtype(torch::kInt32)).cuda(); auto Columns = torch::from_blob(toVector<int>(vCsrTensor.col_indices()).data(), { vCsrTensor._nnz() }, torch::dtype(torch::kInt32)).cuda(); auto Values = torch::from_blob(toVector<float>(vCsrTensor.values()).data(), { vCsrTensor._nnz() }, torch::dtype(torch::kFloat32)).cuda(); CHECK_CUSPARSE(cusparseCreateCsr( vCsrMat, vCsrTensor.size(0), vCsrTensor.size(1), vCsrTensor._nnz(), RowOffsets.data_ptr(), Columns.data_ptr(), Values.data_ptr(), CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F )); #else CHECK_CUSPARSE(cusparseCreateCsr( vCsrMat, vCsrTensor.size(0), vCsrTensor.size(1), vCsrTensor._nnz(), vCsrTensor.crow_indices().data_ptr(), vCsrTensor.col_indices().data_ptr(), vCsrTensor.values().data_ptr(), CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F )); #endif return 1; } int computeCsrMatMul(const torch::Tensor& vA, const torch::Tensor& vB, torch::Tensor& voC, float vChunkFrac = 1.f) { torch::cuda::synchronize(); cusparseHandle_t Handle = nullptr; CHECK_CUSPARSE(cusparseCreate(&Handle)); cusparseSpMatDescr_t MatA = nullptr, MatB = nullptr, MatC = nullptr; if (!toCuSparseCsrMat(&MatA, vA)) return 0; if (!toCuSparseCsrMat(&MatB, vB)) return 0; CHECK_CUSPARSE(cusparseCreateCsr( &MatC, vA.size(0), vB.size(1), 0, nullptr, nullptr, nullptr, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F )); cusparseSpGEMMDescr_t SpGEMM = nullptr; CHECK_CUSPARSE(cusparseSpGEMM_createDescr(&SpGEMM)); float Alpha = 1.f; float Beta = 0.f; auto OpA = CUSPARSE_OPERATION_NON_TRANSPOSE; auto OpB = CUSPARSE_OPERATION_NON_TRANSPOSE; auto ComputeType = CUDA_R_32F; auto Alg = CUSPARSE_SPGEMM_ALG3; size_t BufferSize1 = 0; CHECK_CUSPARSE(cusparseSpGEMM_workEstimation( Handle, OpA, OpB, &Alpha, MatA, MatB, &Beta, MatC, ComputeType, Alg, SpGEMM, &BufferSize1, nullptr )); auto WorkBuffer1 = torch::zeros({ int64_t(BufferSize1) }, torch::dtype(torch::kInt8).device(torch::kCUDA)); CHECK_CUSPARSE(cusparseSpGEMM_workEstimation( Handle, OpA, OpB, &Alpha, MatA, MatB, &Beta, MatC, ComputeType, Alg, SpGEMM, &BufferSize1, WorkBuffer1.data_ptr() )); int64_t NumProd = 0; CHECK_CUSPARSE(cusparseSpGEMM_getNumProducts(SpGEMM, &NumProd)); std::cout << NumProd << std::endl; size_t BufferSize3 = 0; CHECK_CUSPARSE(cusparseSpGEMM_estimateMemory( Handle, OpA, OpB, &Alpha, MatA, MatB, &Beta, MatC, ComputeType, Alg, SpGEMM, vChunkFrac, &BufferSize3, nullptr, nullptr )); auto WorkBuffer3 = torch::empty({ int64_t(BufferSize3) }, torch::dtype(torch::kInt8).device(torch::kCUDA)); size_t BufferSize2 = 0; CHECK_CUSPARSE(cusparseSpGEMM_estimateMemory( Handle, OpA, OpB, &Alpha, MatA, MatB, &Beta, MatC, ComputeType, Alg, SpGEMM, vChunkFrac, &BufferSize3, WorkBuffer3.data_ptr(), &BufferSize2 )); WorkBuffer3 = torch::Tensor(); auto WorkBuffer2 = torch::empty({ int64_t(BufferSize2) }, torch::dtype(torch::kInt8).device(torch::kCUDA)); std::cout << BufferSize1 << " " << BufferSize2 << " " << BufferSize3 << std::endl; CHECK_CUSPARSE(cusparseSpGEMM_compute( Handle, OpA, OpB, &Alpha, MatA, MatB, &Beta, MatC, ComputeType, Alg, SpGEMM, &BufferSize2, WorkBuffer2.data_ptr() )); int64_t NumRowC = 0, NumColC = 0, NnzC = 0; CHECK_CUSPARSE(cusparseSpMatGetSize( MatC, &NumRowC, &NumColC, &NnzC )); auto CrowIndicesC = torch::empty({ NumRowC + 1 }, torch::dtype(torch::kInt32).device(torch::kCUDA)); auto ColIndicesC = torch::empty({ NnzC }, torch::dtype(torch::kInt32).device(torch::kCUDA)); auto ValuesC = torch::empty({ NnzC }, torch::dtype(torch::kFloat32).device(torch::kCUDA)); CHECK_CUSPARSE(cusparseCsrSetPointers( MatC, CrowIndicesC.data_ptr(), ColIndicesC.data_ptr(), ValuesC.data_ptr() )); CHECK_CUSPARSE(cusparseSpGEMM_copy( Handle, OpA, OpB, &Alpha, MatA, MatB, &Beta, MatC, ComputeType, Alg, SpGEMM )); voC = torch::sparse_csr_tensor(CrowIndicesC, ColIndicesC, ValuesC, { NumRowC, NumColC }, torch::dtype(torch::kFloat).device(torch::kCUDA)); CHECK_CUSPARSE(cusparseSpGEMM_destroyDescr(SpGEMM)); CHECK_CUSPARSE(cusparseDestroySpMat(MatA)); CHECK_CUSPARSE(cusparseDestroySpMat(MatB)); CHECK_CUSPARSE(cusparseDestroySpMat(MatC)); CHECK_CUSPARSE(cusparseDestroy(Handle)); return 1; } int main() { auto A = torch::tensor( { {0, 0, 1, 2}, {3, 0, 4, 0}, {5, 6, 7, 0} }, torch::dtype(torch::kFloat32).device(torch::kCUDA)).to_sparse_csr(); auto At = A.t().to_sparse_csr(); torch::cuda::synchronize(); torch::Tensor AtA; if (!computeCsrMatMul(At, A, AtA)) return 1; std::cout << AtA.crow_indices() << std::endl; std::cout << AtA.col_indices() << std::endl; std::cout << AtA.values() << std::endl; return 0; } ``` ### Versions PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 专业版 (10.0.22631 64 位) GCC version: Could not collect Clang version: 18.1.8 CMake version: version 3.31.5 Libc version: N/A Python version: 3.10.0rc2 (tags/v3.10.0rc2:839d789, Sep 7 2021, 18:51:45) [MSC v.1929 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.22631-SP0 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Nvidia driver version: 572.16 cuDNN version: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\cudnn_ops_train64_8.dll HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz Manufacturer: GenuineIntel Family: 198 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 2904 MaxClockSpeed: 2904 L2CacheSize: 2048 L2CacheSpeed: None Revision: None Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==2.6.0+cu124 [pip3] torchaudio==2.6.0+cu124 [pip3] torchvision==0.21.0+cu124 [conda] Could not collect cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer @jcaip
true
2,959,759,778
torch.fill bug
0x45f
open
[ "triaged", "module: python frontend" ]
2
NONE
### 🐛 Describe the bug ``` import torch import numpy as np torch.set_default_device("cuda") x = torch.randn(4, 5) # y = torch.randn(4, 5) out = torch.fill(x, 1) print(out) ``` raise error: ``` Traceback (most recent call last): File "/home/wangzhen/gems-ops/FlagGems/build/run.py", line 11, in <module> out = torch.fill(x, 1) File "/root/miniconda3/envs/gems-ops/lib/python3.10/site-packages/torch/utils/_device.py", line 104, in __torch_function__ return func(*args, **kwargs) TypeError: fill() received an invalid combination of arguments - got (Tensor, int, device=torch.device), but expected one of: * (Tensor input, Tensor value) * (Tensor input, Number value) ``` ### Versions ``` Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.29.2 Libc version: glibc-2.35 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-113-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB Nvidia driver version: 470.129.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 256 On-line CPU(s) list: 0-255 Vendor ID: AuthenticAMD Model name: AMD EPYC 7742 64-Core Processor CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 64 Socket(s): 2 Stepping: 0 Frequency boost: enabled CPU max MHz: 2250.0000 CPU min MHz: 1500.0000 BogoMIPS: 4491.72 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate sme ssbd mba sev ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca Virtualization: AMD-V L1d cache: 4 MiB (128 instances) L1i cache: 4 MiB (128 instances) L2 cache: 64 MiB (128 instances) L3 cache: 512 MiB (32 instances) NUMA node(s): 8 NUMA node0 CPU(s): 0-15,128-143 NUMA node1 CPU(s): 16-31,144-159 NUMA node2 CPU(s): 32-47,160-175 NUMA node3 CPU(s): 48-63,176-191 NUMA node4 CPU(s): 64-79,192-207 NUMA node5 CPU(s): 80-95,208-223 NUMA node6 CPU(s): 96-111,224-239 NUMA node7 CPU(s): 112-127,240-255 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchvision==0.21.0 [pip3] triton==3.1.0 [conda] numpy 2.2.1 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.6.0 pypi_0 pypi [conda] torchaudio 2.6.0 pypi_0 pypi [conda] torchvision 0.21.0 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi ``` cc @albanD
true
2,959,706,801
Update slow tests
pytorchupdatebot
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/slow", "ci-no-td" ]
6
COLLABORATOR
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml). Update the list of slow tests.
true
2,959,603,294
Add `label_smoothing` param in `nn.BCELoss` and `nn.BCEWithLogitsLoss`
zeshengzong
open
[ "open source", "release notes: nn" ]
4
CONTRIBUTOR
Fixes #91545 ## Changes - Add `label_smoothing` param and docs - Add test case for `label_smoothing` - Remove duplicate description in `nn.BCELoss` and `nn.BCEWithLogitsLoss` ## Test Result ```bash pytest -s test/test_nn.py -k test_bce ``` ![image](https://github.com/user-attachments/assets/30c0b7fe-fe49-4aa0-9b05-4d70403a7b05) ![image](https://github.com/user-attachments/assets/4fe3fd1c-54b8-4012-afd9-133ce9fb4964) ![image](https://github.com/user-attachments/assets/5cad019a-3a4c-475a-9fde-9c1acad5792d)
true
2,959,418,248
rename_privateuse1_backend arise CUPTI_ERROR_NOT_INITIALIZED error.
kstreee-furiosa
closed
[ "oncall: profiler", "module: PrivateUse1" ]
2
NONE
### 🐛 Describe the bug Following code arise cuda profiling warnings and an error. In case I install torch==2.5.1+cpu, it works well without warnings and an error. ```python import torch # If comment out `torch.utils.rename_privateuse1_backend("test")`, works fine. torch.utils.rename_privateuse1_backend("test") with torch.profiler.profile( activities=[torch.profiler.ProfilerActivity.CPU], ) as p: pass ``` ``` WARNING:2025-03-31 04:07:16 3245742:3245742 init.cpp:178] function cbapi->getCuptiStatus() failed with error CUPTI_ERROR_NOT_INITIALIZED (15) WARNING:2025-03-31 04:07:16 3245742:3245742 init.cpp:179] CUPTI initialization failed - CUDA profiler activities will be missing INFO:2025-03-31 04:07:16 3245742:3245742 init.cpp:181] If you see CUPTI_ERROR_INSUFFICIENT_PRIVILEGES, refer to https://developer.nvidia.com/nvidia-development-tools-solutions-err-nvgpuctrperm-cupti ``` ### Versions PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-134-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 192 On-line CPU(s) list: 0-191 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6348H CPU @ 2.30GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 4 Stepping: 11 CPU max MHz: 4200.0000 CPU min MHz: 1000.0000 BogoMIPS: 4600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 96 MiB (96 instances) L3 cache: 132 MiB (4 instances) NUMA node(s): 4 NUMA node0 CPU(s): 0-23,96-119 NUMA node1 CPU(s): 24-47,120-143 NUMA node2 CPU(s): 48-71,144-167 NUMA node3 CPU(s): 72-95,168-191 Vulnerability Gather data sampling: Vulnerable: No microcode Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1 [pip3] triton==3.1.0 cc @robieta @chaekit @guotuofeng @guyang3532 @dzhulgakov @davidberard98 @briancoutinho @sraikund16 @sanrise @NmomoN @mengpenghui @fwenguang @cdzhan @1274085042 @PHLens @albanD
true
2,959,392,506
Discrepancy between eager and torch.compile (mode='max-autotune-no-cudagraphs') outputs under strict tolerance
tinywisdom
open
[ "triaged", "oncall: pt2", "module: inductor" ]
1
NONE
### 🐛 Describe the bug I'm observing **output inconsistencies** between Eager mode and `torch.compile` when using `mode="max-autotune-no-cudagraphs"`, and this behavior persists in both stable and nightly builds(2.6.0.dev20241112+cu121). In particular, the outputs differ beyond acceptable tolerances for some models, even when using **strict error thresholds** in `torch.allclose`: ```python rtol=1e-2 atol=1e-3 ``` This threshold is already quite tight, and I'd like to understand whether such discrepancies are expected in this compilation mode — or if this may indicate potential numerical instability in some backend optimizations. ### Reproducible Script ```python import torch import importlib.util import os def load_model_from_file(module_path, model_function_name="my_model_function"): model_file = os.path.basename(module_path)[:-3] spec = importlib.util.spec_from_file_location(model_file, module_path) model_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(model_module) model_function = getattr(model_module, model_function_name) model = model_function() return model def compare_outputs(a: torch.Tensor, b: torch.Tensor, rtol=1e-2, atol=1e-3): print("=== Output difference comparison ===") if a.shape != b.shape: print(f"[error] Tensor shapes do not match: {a.shape} vs {b.shape}") return diff = a - b abs_diff = diff.abs() rel_diff = abs_diff / (a.abs() + 1e-8) total_elements = a.numel() max_abs_err = abs_diff.max().item() mean_abs_err = abs_diff.mean().item() max_rel_err = rel_diff.max().item() mean_rel_err = rel_diff.mean().item() is_close = torch.isclose(a, b, atol=atol, rtol=rtol) num_not_close = (~is_close).sum().item() percent_not_close = 100.0 * num_not_close / total_elements all_close = torch.allclose(a, b, atol=atol, rtol=rtol) print(f"- Total elements: {total_elements}") print(f"- Max absolute error : {max_abs_err:.8f}") print(f"- Mean absolute error : {mean_abs_err:.8f}") print(f"- Max relative error : {max_rel_err:.8f}") print(f"- Mean relative error : {mean_rel_err:.8f}") print(f"- Elements not close : {num_not_close}") print(f"- Percentage not close : {percent_not_close:.4f}%") print(f"- torch.allclose : {all_close}") if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") input_tensor = torch.rand(1, 3, 224, 224, dtype=torch.float32, device=device) model_path = xxx.py model = load_model_from_file(model_path).to(device).eval() with torch.no_grad(): output_eager = model(input_tensor) compiled_model = torch.compile(model, mode="max-autotune-no-cudagraphs") with torch.no_grad(): output_compiled = compiled_model(input_tensor) compare_outputs(output_eager, output_compiled) ``` ### Model File ```python # torch.rand(1, 3, 224, 224, dtype=input_dtype) import torch import torch.nn as nn class LN(nn.Module): def __init__(self, eps): super().__init__() self.eps = eps def forward(self, x): mean = x.mean(dim=-1, keepdim=True) std = x.std(dim=-1, keepdim=True) return (x - mean) / (std + self.eps) class Foo(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x * 2 class MyModel(nn.Module): def __init__( self, in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, bias=True, output_padding=None, num_layers=0, param1=None, param2=None, eps=1e-5 ): super().__init__() # Core layers self.conv_layers = nn.ModuleList([ nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) ]) self.activation_layers = nn.ModuleList([ nn.ReLU() ]) self.pooling_layers = nn.ModuleList([ nn.MaxPool2d(kernel_size, stride, padding, dilation) ]) self.bn_layers = nn.ModuleList([ nn.BatchNorm2d(out_channels) ]) self.transposed_conv_layers = nn.ModuleList() if output_padding is not None: self.transposed_conv_layers.append( nn.ConvTranspose2d(out_channels, in_channels, kernel_size, stride, padding, output_padding, dilation, groups, bias) ) self.additional_layers = nn.ModuleList([nn.Identity() for _ in range(num_layers)]) self.custom_layer = LN(eps) self.fc1 = nn.Linear(16, 16) self.fc2 = nn.Linear(16, 16) self.foo = Foo() def forward(self, x): for layer in self.conv_layers: x = layer(x) for act in self.activation_layers: x = act(x) for pool in self.pooling_layers: x = pool(x) for bn in self.bn_layers: x = bn(x) for tconv in self.transposed_conv_layers: x = tconv(x) for layer in self.additional_layers: x = layer(x) x = self.custom_layer(x) x = x.view(-1, 16) x = self.fc1(x) x = self.foo(x) x = self.fc2(x) return x def my_model_function(): return MyModel() if __name__ == "__main__": model = my_model_function() input_tensor = torch.randn(1, 3, 224, 224) output = model(input_tensor) print(output.shape) ``` ### Output Comparison ```text === Output difference comparison === - Total elements: 3211264 - Max absolute error : 0.45826077 - Mean absolute error : 0.00039007 - Max relative error : 2887.75512695 - Mean relative error : 0.00781209 - Elements not close : 8526 - Percentage not close : 0.2655% - torch.allclose : False ``` ### Versions ```text PyTorch version: 2.5.0a0+gita8d6afb Is debug build: True CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0 Clang version: 17.0.6 (https://github.com/llvm/llvm-project 6009708b4367171ccdbf4b5905cb6a803753fe18) CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.5.0-18-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.1.105 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX A6000 GPU 1: NVIDIA RTX A6000 GPU 2: NVIDIA RTX A6000 GPU 3: NVIDIA RTX A6000 Nvidia driver version: 550.78 cuDNN version: Probably one of the following: /usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn.so.8.9.7 /usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.7 /usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.7 /usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.7 /usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.7 /usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.7 /usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6426Y CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 2 Stepping: 8 CPU max MHz: 4100.0000 CPU min MHz: 800.0000 BogoMIPS: 5000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req hfi vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.5 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 64 MiB (32 instances) L3 cache: 75 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-15,32-47 NUMA node1 CPU(s): 16-31,48-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.2 [pip3] optree==0.14.1 [pip3] pytorch-triton==3.1.0+5fe38ffd73 [pip3] torch==2.5.0a0+gita8d6afb [conda] blas 1.0 mkl defaults [conda] magma-cuda121 2.6.1 1 pytorch [conda] mkl 2023.1.0 h213fc3f_46344 defaults [conda] mkl-include 2025.1.0 pypi_0 pypi [conda] mkl-service 2.4.0 py310h5eee18b_2 defaults [conda] mkl-static 2025.1.0 pypi_0 pypi [conda] mkl_fft 1.3.11 py310h5eee18b_0 defaults [conda] mkl_random 1.2.8 py310h1128e8f_0 defaults [conda] numpy 2.2.4 pypi_0 pypi [conda] numpy-base 2.2.2 py310hb5e798b_0 defaults [conda] optree 0.14.1 pypi_0 pypi [conda] pytorch-triton 3.1.0+5fe38ffd73 pypi_0 pypi [conda] torch 2.5.0a0+gita8d6afb dev_0 <develop> ``` cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,959,392,351
[MPS] Add support for hermite_polynomial_h.
dcci
closed
[ "Merged", "release notes: mps", "ciflow/mps" ]
4
MEMBER
null
true
2,959,381,652
softmax: add device check for xpu with half_to_float
weishi-deng
open
[ "open source", "release notes: xpu", "module: xpu" ]
11
CONTRIBUTOR
To support "half_to_float" functionality on xpu devices, we add the device checks for xpu devices here. cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,959,332,725
Sparse tensor indexing not implemented, but partially supported by using index_select
zbh2047
open
[ "module: sparse", "triaged" ]
0
NONE
### 🚀 The feature, motivation and pitch I want to index a sparse tensor with a dense index tensor `idx`. This setting is quite useful in extracting sub-matrices or obtaining samples from a sparse tensor dataset. However, I found this operation is not implemented, but partially supported in an inconsistent sense. First, if an input sparse tensor a is a SparseCOO tensor and `idx` is 1-dimensional, the operation can be achieved via `torch.index_select(a, index=b, dim=0)`. However, direct indexing `a[b]` is not supported. Since they should be equivalent, the latter should be supported. Second, if an input sparse tensor a is a SparseCOO tensor and `idx` is multi-dimensional, `index_select` cannot be used. However, the inner mechanism should be highly similar to indexing using 1-dimensional tensor so I think this case should be very easy to implement. Third, if an input sparse tensor a is a SparseCSR tensor, then no matter what idx is 1-dimensional or multi-dimensional, neither index_select nor direct indexing is not supported yet. However, I think indexing along `dim=0` should be easily implemented and is a very important use case. For example, SparseCSR format can represent sparse dataset where each row is a sample, then indexing along `dim=0` corresponds to forming a batch. In summary, I think the above three points are worth implementing, as they are basic usages and implementing them are straightforward. ### Alternatives The only workaround is `index_select` but it only works for SparseCOO format with 1-dimensional indexing. ### Additional context PyTorch version: 2.6 cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer @jcaip
true
2,959,238,895
[AOTInductor] Add User Managed buffer for AOTI constant buffer.
muchulee8
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
8
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150276 Summary: We add the functionality to allow users to directly pass in a at::Tensor into AOTInductor, that would be used as the constant. This user managed buffer skips the copying step in AOTInductor, and let users to directly manage the memory usage themselve. Test Plan: LD_LIBRARY_PATH=/data/users/$USER/pytorch/build/lib /data/users/$USER/pytorch/build/bin/test_aoti_inference Reviewers: Subscribers: Tasks: Tags: cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @amjames @chauhang @aakhundov Differential Revision: [D72589514](https://our.internmc.facebook.com/intern/diff/D72589514)
true
2,959,238,814
[AOTInductor] Introduce MaybeOwningAtenTensorHandle for ConstantMap
muchulee8
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150275 Summary: We used RAIIAtenTensorHandle for ConstantMap, where RAIIAtenTensorHandle is a unique_ptr, indicating that all memory handling is by the AOTInductor internally. In this PR, we introduce ConstantAtenTensorHandle which replaces RAIIATenTensorHandle. This class holds a raw AtenTensorHandle, and also owns a RAIIAtenTensorHandle if user decides to delegate memory management to AOTInductor. This is a prerequisite for user managed buffer, this PR, however only introduces this class and make sure it works with existing AOTInductor and has the default behavior identical as using RAIIAtenTensorHandle. Test Plan: Existing tests. No change should be introduced within this PR. Reviewers: Subscribers: Tasks: Tags:
true
2,959,237,630
[AOTInductor] Free tensors in test
muchulee8
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
8
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150274 Summary: This PR frees tensor that were new-ed within the test itself to prevent memory leak. Test Plan: Fixing tests itself. Reviewers: Subscribers: Tasks: Tags:
true
2,959,233,392
DISABLED test_tensor_with_grad_to_scalar_warning (__main__.TestTorch)
pytorch-bot[bot]
open
[ "module: autograd", "triaged", "module: flaky-tests", "skipped", "module: python frontend" ]
1
NONE
Platforms: asan, linux, mac, macos, rocm, win, windows This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_tensor_with_grad_to_scalar_warning&suite=TestTorch&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39662402641). Over the past 3 hours, it has been determined flaky in 19 workflow(s) with 38 failures and 19 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_tensor_with_grad_to_scalar_warning` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_torch.py", line 10840, in test_tensor_with_grad_to_scalar_warning self.assertEqual(len(w), 1) File "/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/testing/_internal/common_utils.py", line 4094, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not equal! Expected 1 but got 0. Absolute difference: 1 Relative difference: 1.0 To execute this test, run the following from the base repo dir: python test/test_torch.py TestTorch.test_tensor_with_grad_to_scalar_warning This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_torch.py` ResponseTimeoutError: Response timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_torch.py -1 (connected: true, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan @clee2000
true
2,959,184,428
Update Doc for Intel XPU Profiling
pytorchbot
closed
[ "open source" ]
1
COLLABORATOR
Updated below two pages for Intel XPU https://pytorch.org/docs/stable/torch.compiler_profiling_torch_compile.html https://pytorch.org/docs/stable/profiler.html cc @svekars @brycebortree @sekyondaMeta @AlannaBurke @tstatler
true
2,959,182,157
[fbcode]Removing `@NoIntBaseDeprecated` annotation in `evaluation.thrift` file
Sunnie912
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
10
CONTRIBUTOR
Summary: #buildall Test Plan: ``` buck test 'fbcode//mode/opt' fbcode//caffe2/torch/fb/training_toolkit/applications/bulk_eval/tests:evaluator_test -- --exact 'caffe2/torch/fb/training_toolkit/applications/bulk_eval/tests:evaluator_test - test_setup_evaluation_utils (caffe2.torch.fb.training_toolkit.applications.bulk_eval.tests.evaluator_test.EvaluatorTest)' ``` Differential Revision: D72028940
true
2,959,169,648
Add error check for out variant of tensordot function with requries_grad tensor
cz2h
closed
[ "module: bc-breaking", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: autograd", "release notes: linalg_frontend", "topic: bc breaking" ]
13
CONTRIBUTOR
Fixes #147846. Previously there is no error out under out variant of`tensordot` while `requires_grad=True`. This can cause potential issue when out tensor is part of a computation graph. Enforces the out variant of tensordot to run without setting `requries_grad=True`. Change same to #117067 cc @ezyang @gchanan
true
2,959,132,004
[AOTInductor] Modify test for Memory tracking for memory-related
muchulee8
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
14
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150269 operations Summary: Fix the test for memory tracking. This PR does: (1) Add tracking before and after for all memory-related operations. Make sure the operation do indeed captures memory both in CUDA and torch's CUDACachAllocator Make sure the operation do indeed captures consumed memory both in CUDA and torch's CUDACachAllocator. (2) Keep track of memory being reserved by CUDACacheAllocator in torch and it's relationship with global CUDA memory consumption. Test Plan: This PR is adding tests. Reviewers: Subscribers: Tasks: Tags:
true
2,959,031,738
Add a test for checking that the CUDA stubs directory is not in libcaffe2_nvrts.so's RPATH or RUNPATH
Flamefire
open
[ "triaged", "open source", "topic: not user facing" ]
1
COLLABORATOR
The CUDA stub directory must not appear in the rpath or RUNPATH of any library as that would make it unusable at runtime. This should no longer happen (it did before, see the previous PR) but we better check that it stays like that. See the referenced issue https://github.com/pytorch/pytorch/issues/35418 The test verifies this. Closes https://github.com/pytorch/pytorch/issues/35418 See also https://github.com/pytorch/pytorch/pull/134669
true
2,958,962,575
Gradient update with `differentiable=True` is slightly different from the default
dilithjay
closed
[ "module: autograd", "module: optimizer", "triaged" ]
3
NONE
### 🐛 Describe the bug I observe a slight difference in the weights produced when `differentiable=True` as opposed to the default, specifically for a higher number of updates. The following is the code to reproduce: ```python import torch from learn2learn import clone_module lr = 0.01 n_updates = 100 # ------------------ Torch Differentiable ------------------ torch.manual_seed(1) model = torch.nn.Linear(3, 1) model_clone = clone_module(model) for param in model_clone.parameters(): param.retain_grad() optim = torch.optim.Adam(model_clone.parameters(), lr=lr) x = torch.rand((n_updates, 3), requires_grad=True) for i in range(n_updates): b_x = x[i] y = torch.rand((1,), requires_grad=True) out = model_clone(b_x) loss = ((out - y) ** 2).sum() optim.zero_grad() loss.backward(retain_graph=True) optim.step() params_1 = next(model_clone.parameters()).detach() # ------------------ Torch ------------------ torch.manual_seed(1) model = torch.nn.Linear(3, 1) optim = torch.optim.Adam(model.parameters(), lr=lr) x = torch.rand((n_updates, 3), requires_grad=True) for i in range(n_updates): b_x = x[i] y = torch.rand((1,), requires_grad=True) out = model(b_x) loss = ((out - y) ** 2).sum() optim.zero_grad() loss.backward() optim.step() params_2 = next(model.parameters()).detach() print("All close:", torch.allclose(params_1, params_2)) print("Difference:", params_1 - params_2) ``` The following is the observed output: ``` All close: False Difference: tensor([[ 1.2219e-06, -7.2643e-07, -3.6880e-07]]) ``` This difference is exaggerated for higher `lr` or higher `n_updates`. Note that I'm using the `clone_module` function from the `learn2learn` library, but I don't believe this is the cause of the difference because when I set `differentiable=False` in the first case, the difference is 0. ### Versions ``` Collecting environment information... PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: 12.2 ROCM used to build PyTorch: N/A OS: Gentoo Linux (x86_64) GCC version: (Gentoo 12.3.1_p20230526 p2) 12.3.1 20230526 Clang version: Could not collect CMake version: version 3.27.7 Libc version: glibc-2.37 Python version: 3.10.13 (main, Sep 18 2023, 17:18:13) [GCC 12.3.1 20230526] (64-bit runtime) Python platform: Linux-5.14.0-362.24.2.el9_3.x86_64-x86_64-Intel-R-_Xeon-R-_CPU_E5-2683_v4_@_2.10GHz-with-glibc2.37 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz CPU family: 6 Model: 79 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 2 Stepping: 1 CPU(s) scaling MHz: 59% CPU max MHz: 3000.0000 CPU min MHz: 1200.0000 BogoMIPS: 4190.33 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap intel_pt xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts md_clear flush_l1d L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 8 MiB (32 instances) L3 cache: 80 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Versions of relevant libraries: [pip3] numpy==1.26.4+computecanada [pip3] optree==0.14.1 [pip3] torch==2.6.0+computecanada [pip3] torch-tb-profiler==0.4.3 [pip3] torchopt==0.7.3 [pip3] torchvision==0.21.0+computecanada [conda] Could not collect ``` cc @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan @vincentqb @jbschlosser @janeyx99 @crcrpar
true
2,958,912,075
Pytorch nightly Cuda 12.8 - 'too many resources requested for launch' with multiple layers of LayerNorm after strided Conv1d
Pyr-000
closed
[ "high priority", "module: cuda", "triaged", "Blackwell" ]
19
NONE
### 🐛 Describe the bug The current pytorch nightly build for CUDA 12.8: `2.8.0.dev20250327+cu128` yields the following error: `RuntimeError: CUDA error: too many resources requested for launch` When running a backward pass through a model with multiple strided Conv1d modules followed by LayerNorm modules. The error does not seem to occur when the Conv1d modules have their stride set to 1. The error does not seem to occur when only one strided Conv1d followed by one LayerNorm is used. (The issue does not occur when setting the device to CPU or replacing the LayerNorm module with e.g. RMSNorm) Running the following example script: ```python import torch class PermuteModule(torch.nn.Module): def __init__(self, permutation): super(PermuteModule, self).__init__() self.permutation = permutation def forward(self, x:torch.Tensor) -> torch.Tensor: assert len(x.shape) == len(self.permutation), f"Dimension mismatch! Unable to permute {len(x.shape)} dim input with a {len(self.permutation)} dim permutation!" return x.permute(*self.permutation) def test(n_layers:int, conv_stride:int): _sequence = [] for _ in range(n_layers): # Conv1d inputs are (N x C x L), LayerNorm expects (* x C). Dims must be permuted between modules. _sequence += [ PermuteModule((0,2,1)), torch.nn.Conv1d(in_channels=512, out_channels=512, groups=1, kernel_size=9, dilation=1, stride=conv_stride, padding=0, bias=False), PermuteModule((0,2,1)), torch.nn.LayerNorm(512), torch.nn.ReLU() ] model = torch.nn.Sequential(*_sequence).to(device="cuda") data = torch.randn((100,2048,512), device="cuda") out = model(data) loss = torch.nn.functional.mse_loss(out, torch.rand_like(out)) loss.backward() torch.autograd.set_detect_anomaly(True) print(f"Torch version: {torch.__version__}") print(f"layers=1, stride=1") test(n_layers=1, conv_stride=1) print(f"layers=2, stride=1") test(n_layers=2, conv_stride=1) print(f"layers=1, stride=2") test(n_layers=1, conv_stride=2) print(f"layers=2, stride=2") test(n_layers=2, conv_stride=2) # we will not reach this print statement. print("DONE.") ``` Yields the output: ```bash Torch version: 2.8.0.dev20250327+cu128 layers=1, stride=1 layers=2, stride=1 layers=1, stride=2 layers=2, stride=2 C:\Applications\Python\Python312\Lib\site-packages\torch\autograd\graph.py:824: UserWarning: Error detected in NativeLayerNormBackward0. Traceback of forward call that caused the error: File "C:\TWD\sample.py", line 38, in <module> test(n_layers=2, conv_stride=2) File "C:\TWD\sample.py", line 24, in test out = model(data) File "C:\Applications\Python\Python312\Lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Applications\Python\Python312\Lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "C:\Applications\Python\Python312\Lib\site-packages\torch\nn\modules\container.py", line 240, in forward input = module(input) File "C:\Applications\Python\Python312\Lib\site-packages\torch\nn\modules\module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Applications\Python\Python312\Lib\site-packages\torch\nn\modules\module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "C:\Applications\Python\Python312\Lib\site-packages\torch\nn\modules\normalization.py", line 217, in forward return F.layer_norm( File "C:\Applications\Python\Python312\Lib\site-packages\torch\nn\functional.py", line 2910, in layer_norm return torch.layer_norm( (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\autograd\python_anomaly_mode.cpp:127.) return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass Traceback (most recent call last): File "C:\TWD\sample.py", line 38, in <module> test(n_layers=2, conv_stride=2) File "C:\TWD\sample.py", line 26, in test loss.backward() File "C:\Applications\Python\Python312\Lib\site-packages\torch\_tensor.py", line 648, in backward torch.autograd.backward( File "C:\Applications\Python\Python312\Lib\site-packages\torch\autograd\__init__.py", line 353, in backward _engine_run_backward( File "C:\Applications\Python\Python312\Lib\site-packages\torch\autograd\graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: CUDA error: too many resources requested for launch CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` ### Versions PyTorch version: 2.8.0.dev20250327+cu128 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Pro for Workstations (10.0.26100 64-bit) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.12.7 (tags/v3.12.7:0b05ead, Oct 1 2024, 03:06:41) [MSC v.1941 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-11-10.0.26100-SP0 Is CUDA available: True CUDA runtime version: 12.8.93 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 5090 Nvidia driver version: 572.83 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: AMD Ryzen 9 7950X3D 16-Core Processor Manufacturer: AuthenticAMD Family: 107 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 4201 MaxClockSpeed: 4201 L2CacheSize: 16384 L2CacheSpeed: None Revision: 24834 Versions of relevant libraries: [pip3] numpy==2.2.0 [pip3] torch==2.8.0.dev20250327+cu128 [pip3] torchaudio==2.6.0.dev20250330+cu128 [pip3] torchvision==0.22.0.dev20250330+cu128 [conda] Could not collect cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @ptrblck @eqy
true
2,958,748,550
Graph break on Tensor._make_subclass
KareemMusleh
closed
[ "triaged", "oncall: pt2", "module: dynamo" ]
12
NONE
### 🐛 Describe the bug I am having the following problem ```python from torch import nn import torch torch_compile_options = { "epilogue_fusion" : True, "max_autotune" : True, "shape_padding" : True, "trace.enabled" : True, "triton.cudagraphs" : False, } class a(nn.Linear): def __init__(self, b): super().__init__(128, 128) self.b = b class b(nn.Parameter): def __new__(cls, data): self = torch.Tensor._make_subclass(cls, data) return self A = a(b(torch.randn(12, 12))) @torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options) def test(): out = 3 * A.b return out test() ``` Throws the following error `Unsupported: call_method UserDefinedObjectVariable(b) __rmul__ [ConstantVariable(int: 3)] {} ` Is there a way around it? ### Versions using torch2.6 cuda12.4 in colab. Tried it also with nightly cuda 12.6 and it also fails Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.11.11 (main, Dec 4 2024, 08:55:07) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.1.85+-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.5.82 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 550.54.15 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.00GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 3 BogoMIPS: 4000.28 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 1 MiB (1 instance) L3 cache: 38.5 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable (Syscall hardening enabled) Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] nvtx==0.2.11 [pip3] optree==0.14.1 [pip3] pynvjitlink-cu12==0.5.2 [pip3] torch==2.6.0+cu124 [pip3] torchaudio==2.6.0+cu124 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.21.0+cu124 [pip3] triton==3.2.0 [conda] Could not collect cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,958,742,336
Refresh expected results.
laithsakka
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150264 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,958,689,615
[submodule] Bump ITTAPI to 3.25.5
cyyever
closed
[ "triaged", "open source", "oncall: profiler", "Merged", "ciflow/trunk", "topic: not user facing", "topic: build" ]
18
COLLABORATOR
It hasn't been updated for 3 years. And also to remove CMake 4 workaround. cc @robieta @chaekit @guotuofeng @guyang3532 @dzhulgakov @davidberard98 @briancoutinho @sraikund16 @sanrise
true
2,958,668,229
Fake mode mismatch when doing nested compile + tensor subclass
gau-nernst
open
[ "triaged", "oncall: pt2", "module: fakeTensor", "module: pt2-dispatcher" ]
2
NONE
### 🐛 Describe the bug ```python import torch import torch.nn.functional as F from torch import Tensor, nn class MyEmbedding(nn.Module): def __init__(self, num_embeds, embed_dim): super().__init__() self.weight = nn.Parameter(torch.randn(num_embeds, embed_dim)) def forward(self, x): return F.embedding(x, self.weight) @torch.compile def _dequantize(int4_data: Tensor, scales: Tensor) -> Tensor: # int4_data: (..., N / 2), in int8 # scales: (..., N / block_size) int8_data = torch.stack([int4_data << 4 >> 4, int4_data >> 4], dim=-1) fp32_data = int8_data.float().view(*scales.shape, -1) * scales.unsqueeze(-1) return fp32_data.flatten(-2).to(scales.dtype) class Int4Tensor(Tensor): @staticmethod def __new__(cls, int4_data: Tensor, scales: Tensor): shape = int4_data.shape return Tensor._make_wrapper_subclass( cls, shape[:-1] + (shape[-1] * 2,), dtype=scales.dtype, device=scales.device, ) def __init__(self, int4_data: Tensor, scales: Tensor) -> None: self.int4_data = int4_data self.scales = scales def __tensor_flatten__(self): return ["int4_data", "scales"], [] @classmethod def __tensor_unflatten__(cls, tensor_data_dict, tensor_attributes, outer_size=None, outer_stride=None): return cls(*tensor_data_dict.values(), *tensor_attributes) def __repr__(self): fields = dict( shape=tuple(self.shape), block_size=self.int4_data.shape[-1] * 2 // self.scales.shape[-1], device=self.device, ) fields_str = ", ".join(f"{k}={v}" for k, v in fields.items()) return f"{self.__class__.__name__}({fields_str})" @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): kwargs = kwargs or dict() if func is F.embedding: input: Tensor = args[0] weight: Int4Tensor = args[1] return _dequantize(F.embedding(input, weight.int4_data), F.embedding(input, weight.scales)) with torch._C.DisableTorchFunctionSubclass(): return func(*args, **kwargs) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): aten = torch.ops.aten if func is aten.detach.default: x: Int4Tensor = args[0] return Int4Tensor(x.int4_data, x.scales) msg = f"{cls.__name__} dispatch: {func} is not implemented" for i, arg in enumerate(args): msg += f"\n- args[{i}]={arg}" for k, v in kwargs.items(): msg += f"\n- {k}={v}" raise NotImplementedError(msg) if __name__ == "__main__": embedding = MyEmbedding(100, 32).cuda() # this doesn't work # embedding = nn.Embedding(100, 32).cuda() # this works embedding.weight = nn.Parameter( Int4Tensor( torch.randint(-128, 127, size=(100, 16), dtype=torch.int8, device="cuda"), torch.randn(100, 1, device="cuda"), ) ) embedding.compile() embedding(torch.randint(100, size=(2,), device="cuda")) # this also works model = nn.Sequential( nn.Embedding(100, 32), nn.ReLU(), ).cuda() model[0].weight = nn.Parameter( Int4Tensor( torch.randint(-128, 127, size=(100, 16), dtype=torch.int8, device="cuda"), torch.randn(100, 1, device="cuda"), ) ) model.compile() model(torch.randint(100, size=(2,), device="cuda")) ``` I'm implementing int4 quant via tensor subclass. I want to get reasonable perf without full-model compile by compiling the dequant function only, since full-model compile might not always be possible or during debugging when full-model compile is slow. And I want it to be compatible with full-model compile too, so I can squeeze all the perf when I can get full-model compile working. In most cases, nested torch.compile works well. However, under certain circumstances, like the snippet above, I'm getting fake mode mismatch. I don't understand the internals of torch.compile well enough to know why this error is happening. `MyEmbedding` is just to create an MRE. The actual model code is a bit more complicated. Some non-ideal alternatives: - Don't decorate dequant function with torch.compile -> bad "eager" perf (non full-model compile to be exact) - Wrap compiled dequant function in a custom op -> works, but the compiler losses some optimization opportunity ### Error logs <details> <summary>Error message</summary> ``` torch._dynamo.exc.TorchRuntimeError: Dynamo failed to run FX node with fake tensors: call_function <function embedding at 0x7b5102b39d00>(*(FakeTensor(..., device='cuda:0', size=(2,), dtype=torch.int64), Int4Tensor(shape=(100, 32), block_size=32, device=cuda:0)), **{}): got BackendCompilerFailed('backend='inductor' raised: AssertionError: fake mode (<torch._subclasses.fake_tensor.FakeTensorMode object at 0x7b505185cb90>) from tracing context 0 doesn't match mode (<torch._subclasses.fake_tensor.FakeTensorMode object at 0x7b50518b3490>) from fake tensor input 0 fake mode from tracing context 0 allocated at: File "/home/thien/code/gemma3-int4/debug.py", line 93, in <module> embedding(torch.randint(100, size=(2,), device="cuda")) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1749, in _wrapped_call_impl return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 658, in _fn return fn(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1453, in __call__ return self._torchdynamo_orig_callable( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1234, in __call__ result = self._inner_convert( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 619, in __call__ return _compile( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1080, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 782, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 818, in _compile_inner out_code = transform_code_object(code, transform) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 736, in transform tracer.run() File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 3500, in run super().run() File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 1337, in run while self.step(): File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 1246, in step self.dispatch_table[inst.opcode](self, inst) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 819, in wrapper return inner_fn(self, inst) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 2933, in CALL self._call(inst) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 2927, in _call self.call_function(fn, args, kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 1170, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/variables/torch.py", line 1213, in call_function tensor_variable = wrap_fx_proxy( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/variables/builder.py", line 2325, in wrap_fx_proxy return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/variables/builder.py", line 2391, in wrap_fx_proxy_cls return _wrap_fx_proxy( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/variables/builder.py", line 2487, in _wrap_fx_proxy example_value = get_fake_value(proxy.node, tx, allow_non_graph_fake=True) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/utils.py", line 3130, in get_fake_value ret_val = wrap_fake_exception( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/utils.py", line 2644, in wrap_fake_exception return fn() File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/utils.py", line 3131, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/utils.py", line 3287, in run_node return node.target(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/nn/functional.py", line 2516, in embedding return handle_torch_function( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/overrides.py", line 1743, in handle_torch_function result = torch_func_method(public_api, types, args, kwargs) File "/home/thien/code/gemma3-int4/debug.py", line 62, in __torch_function__ return _dequantize(F.embedding(input, weight.int4_data), F.embedding(input, weight.scales)) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 658, in _fn return fn(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1453, in __call__ return self._torchdynamo_orig_callable( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1234, in __call__ result = self._inner_convert( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 619, in __call__ return _compile( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1080, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 782, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 818, in _compile_inner out_code = transform_code_object(code, transform) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 736, in transform tracer.run() File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 3500, in run super().run() File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 1337, in run while self.step(): File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 1246, in step self.dispatch_table[inst.opcode](self, inst) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 3701, in RETURN_VALUE self._return(inst) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 3686, in _return self.output.compile_subgraph( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/output_graph.py", line 1145, in compile_subgraph self.compile_and_call_fx_graph( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/output_graph.py", line 1429, in compile_and_call_fx_graph backend_fake_mode = torch._subclasses.FakeTensorMode( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_subclasses/fake_tensor.py", line 1228, in __init__ self._stack_trace = traceback.extract_stack() fake mode from fake tensor input 0 allocated at: File "/home/thien/code/gemma3-int4/debug.py", line 93, in <module> embedding(torch.randint(100, size=(2,), device="cuda")) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1749, in _wrapped_call_impl return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 658, in _fn return fn(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1453, in __call__ return self._torchdynamo_orig_callable( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1234, in __call__ result = self._inner_convert( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 619, in __call__ return _compile( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1080, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 782, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 818, in _compile_inner out_code = transform_code_object(code, transform) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 715, in transform tracer = InstructionTranslator( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 3329, in __init__ output=OutputGraph( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_dynamo/output_graph.py", line 349, in __init__ fake_mode = torch._subclasses.FakeTensorMode( File "/home/thien/uv_envs/dev2.7_nightly/lib/python3.11/site-packages/torch/_subclasses/fake_tensor.py", line 1228, in __init__ self._stack_trace = traceback.extract_stack() Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" ') ``` </details> ### Versions 2.8.0.dev20250327+cu128 2.6.0 also has the same error cc @chauhang @penguinwu @eellison @zou3519 @bdhirsh
true
2,958,636,790
UNSTABLE pull / linux-jammy-py3-clang12-executorch / build
clee2000
closed
[ "module: ci", "unstable" ]
2
CONTRIBUTOR
> Please provide a brief reason on why you need to mark this job as unstable. executorch is not yet compatible with cmake 4.0.0 but doesn't pin cmake, similar to https://github.com/pytorch/pytorch/pull/150158. Marking this as unstable until we executorch updates? cc @seemethere @malfet @pytorch/pytorch-dev-infra
true
2,958,593,616
[XPU] `torch.xpu.is_available()` fails on Intel Arc A770 on latest nightly.
simonlui
closed
[ "needs reproduction", "triaged", "module: regression", "module: xpu" ]
3
NONE
### 🐛 Describe the bug Using the latest nightly 2.8.0.dev20250327+xpu build with my Intel Arc A770, I get the following: ``` Python 3.12.5 | Intel Corporation | (main, Sep 9 2024, 23:35:37) [GCC 14.1.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>>torch.xpu.is_available() False ``` Using torch 2.8.0.dev20250321+xpu ``` Python 3.12.5 | Intel Corporation | (main, Sep 9 2024, 23:35:37) [GCC 14.1.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>>torch.xpu.is_available() True ``` I am not sure what changed between torch 2.8.0.dev20250321+xpu and torch-2.8.0.dev20250325+xpu which seems to be the first build where it broke. There didn't seem to be any core dependencies changes so am confused as to what would break the reporting of availability with the build difference. Versions listed will be with the non-working configuration. ### Versions ``` PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Fedora Linux 40 (Workstation Edition) (x86_64) GCC version: (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3) Clang version: 18.1.8 (Fedora 18.1.8-2.fc40) CMake version: version 3.31.2 Libc version: glibc-2.39 Python version: 3.12.5 | Intel Corporation | (main, Sep 9 2024, 23:35:37) [GCC 14.1.0] (64-bit runtime) Python platform: Linux-6.13.5-100.fc40.x86_64-x86_64-with-glibc2.39 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 5950X 16-Core Processor CPU family: 25 Model: 33 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 55% CPU max MHz: 5084.0000 CPU min MHz: 550.0000 BogoMIPS: 6800.38 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm debug_swap Virtualization: AMD-V L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 8 MiB (16 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] onnx==1.17.0 [pip3] optree==0.13.1 [pip3] pytorch-triton-xpu==3.3.0+git0bcc8265 [pip3] torch==2.8.0.dev20250327+xpu [pip3] torchaudio==2.6.0.dev20250329+xpu [pip3] torchdiffeq==0.2.5 [pip3] torchsde==0.2.6 [pip3] torchvision==0.22.0.dev20250329+xpu [conda] mkl 2025.0.1 pypi_0 pypi [conda] mkl-dpcpp 2025.0.1 pypi_0 pypi [conda] mkl-service 2.4.2 py312_0 https://software.repos.intel.com/python/conda [conda] mkl_fft 1.3.11 py312h3948073_81 https://software.repos.intel.com/python/conda [conda] mkl_random 1.2.8 py312hd605fbb_101 https://software.repos.intel.com/python/conda [conda] mkl_umath 0.1.2 py312h481091c_111 https://software.repos.intel.com/python/conda [conda] numpy 2.1.2 pypi_0 pypi [conda] onemkl-sycl-blas 2025.0.1 pypi_0 pypi [conda] onemkl-sycl-datafitting 2025.0.1 pypi_0 pypi [conda] onemkl-sycl-dft 2025.0.1 pypi_0 pypi [conda] onemkl-sycl-lapack 2025.0.1 pypi_0 pypi [conda] onemkl-sycl-rng 2025.0.1 pypi_0 pypi [conda] onemkl-sycl-sparse 2025.0.1 pypi_0 pypi [conda] onemkl-sycl-stats 2025.0.1 pypi_0 pypi [conda] onemkl-sycl-vm 2025.0.1 pypi_0 pypi [conda] pytorch-triton-xpu 3.3.0+git0bcc8265 pypi_0 pypi [conda] torch 2.8.0.dev20250327+xpu pypi_0 pypi [conda] torchaudio 2.6.0.dev20250329+xpu pypi_0 pypi [conda] torchdiffeq 0.2.5 pypi_0 pypi [conda] torchsde 0.2.6 pypi_0 pypi [conda] torchvision 0.22.0.dev20250329+xpu pypi_0 pypi ``` cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,958,509,083
[inductor][comms] fix node_summary for composite scheduler nodes
xmfan
closed
[ "Merged", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150074 * __->__ #150258 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,958,154,573
Type hint bug report relating to Sequential
erlebach
open
[ "module: typing", "triaged" ]
0
NONE
### 🐛 Describe the bug Consider the following code in Cursor (also in VSCode): ```python from torch import nn from torch.nn import Module, Sequential dim = 10 heads = 10 num_kv_per_token = 10 to_adaptive_step = Sequential( nn.Linear(dim, heads * num_kv_per_token), nn.Linear(dim, heads * num_kv_per_token), ) a = to_adaptive_step[0] ``` The variable `a` registers as `Sequential` when hovering, rather than `nn.Linear`. This might lead to errors since `Sequential` supports indexing, while `nn.Linear` doesn't. A developer would not expect `a` to be of type Sequential. ### Versions Python version 3.10.16 ```text `python collect_env.py`: (did not work on my mac): python collect_env.py Collecting environment information... Traceback (most recent call last): File "/Users/erlebach/src/2024/titans-pytorch/gordon_memory_models/collect_env.py", line 694, in <module> main() File "/Users/erlebach/src/2024/titans-pytorch/gordon_memory_models/collect_env.py", line 677, in main output = get_pretty_env_info() File "/Users/erlebach/src/2024/titans-pytorch/gordon_memory_models/collect_env.py", line 672, in get_pretty_env_info return pretty_str(get_env_info()) File "/Users/erlebach/src/2024/titans-pytorch/gordon_memory_models/collect_env.py", line 497, in get_env_info pip_version, pip_list_output = get_pip_packages(run_lambda) File "/Users/erlebach/src/2024/titans-pytorch/gordon_memory_models/collect_env.py", line 450, in get_pip_packages for line in out.splitlines() AttributeError: 'NoneType' object has no attribute 'splitlines' ``` pyproject.toml: created with uv. Attached along with lock file (both files are converted to txt) [pyproject.toml.txt](https://github.com/user-attachments/files/19521864/pyproject.toml.txt) [uv.lock.txt](https://github.com/user-attachments/files/19521865/uv.lock.txt) cc @ezyang @malfet @xuzhao9 @gramster
true
2,958,084,238
[inductor] Fix inductor windows linker error
jansel
closed
[ "module: build", "module: windows", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
13
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150256 Fixes #149889 cc @malfet @seemethere @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,957,945,267
[MPS] grad scaler
Isalia20
closed
[ "triaged", "open source", "module: amp (automated mixed precision)", "Merged", "ciflow/trunk", "module: mps", "release notes: mps" ]
14
COLLABORATOR
Fixes #142397 Basic implementation is done. What's left: - [x] Different dtype/device tensors in the TensorList - [x] fast path for grouping the foreach kernel - [x] Tests Regarding tests, I found some tests in `test/test_torch.py` for GradScaler but I couldn't figure out what is the best way to enable the test for MPS device. By removing `@onlyNativeDeviceTypes`, one enables the tests for MPS but also enables tests for all other devices which are not included in the native device types. If I put: `instantiate_device_type_tests(TestTorchDeviceType, globals(), allow_mps=True)` This enables lots of tests in that class for MPS which were not(?) being tested before? This part needs some clarification cc @mcarilli @ptrblck @leslie-fang-intel @jgong5 @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,957,864,225
RNN training is very slow on Intel xpu
JimmysAIPG
open
[ "triaged", "module: xpu" ]
7
NONE
### 🐛 Describe the bug Hello, I am a newbie and I just switched from the cuda environment to the xpu environment for learning. I found that when I use GRU or LSTM to train the model, the speed is very slow in the xpu environment. Is there a problem? Please refer to the attachment for the code [imdb.txt](https://github.com/user-attachments/files/19516292/imdb.txt) ### Versions I am using the docker environment: REPOSITORY TAG IMAGE ID CREATED SIZE intel/intel-extension-for-pytorch 2.6.10-xpu ed87f8f3c7e0 3 weeks ago 15.1GB root@97f8d2344ae3:/home# python collect_env.py [W329 08:10:54.485931320 OperatorEntry.cpp:154] Warning: Warning only once for all operators, other operators may also be overridden. Overriding a previously registered kernel for the same operator and the same dispatch key operator: aten::_validate_compressed_sparse_indices(bool is_crow, Tensor compressed_idx, Tensor plain_idx, int cdim, int dim, int nnz) -> () registered at /pytorch/build/aten/src/ATen/RegisterSchema.cpp:6 dispatch key: XPU previous kernel: registered at /pytorch/build/aten/src/ATen/RegisterCPU.cpp:30477 new kernel: registered at /build/intel-pytorch-extension/build/Release/csrc/gpu/csrc/aten/generated/ATen/RegisterXPU.cpp:468 (function operator()) Collecting environment information... PyTorch version: 2.6.0+xpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.12.20-061220-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i3-10100F CPU @ 3.60GHz CPU family: 6 Model: 165 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 Stepping: 3 CPU max MHz: 4300.0000 CPU min MHz: 800.0000 BogoMIPS: 7200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts vnmi md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 128 KiB (4 instances) L1i cache: 128 KiB (4 instances) L2 cache: 1 MiB (4 instances) L3 cache: 6 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-7 Vulnerability Gather data sampling: Vulnerable Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] intel_extension_for_pytorch==2.6.10+xpu [pip3] numpy==2.2.3 [pip3] pytorch-triton-xpu==3.2.0 [pip3] torch==2.6.0+xpu [pip3] torchaudio==2.6.0+xpu [pip3] torchvision==0.21.0+xpu [conda] Could not collect root@97f8d2344ae3:/home# [W329 08:10:57.987819736 OperatorEntry.cpp:154] Warning: Warning only once for all operators, other operators may also be overridden. Overriding a previously registered kernel for the same operator and the same dispatch key operator: aten::_validate_compressed_sparse_indices(bool is_crow, Tensor compressed_idx, Tensor plain_idx, int cdim, int dim, int nnz) -> () registered at /pytorch/build/aten/src/ATen/RegisterSchema.cpp:6 dispatch key: XPU previous kernel: registered at /pytorch/build/aten/src/ATen/RegisterCPU.cpp:30477 new kernel: registered at /build/intel-pytorch-extension/build/Release/csrc/gpu/csrc/aten/generated/ATen/RegisterXPU.cpp:468 (function operator()) cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,957,821,440
pytorch for NVIDIA-5090
Reginald-L
open
[ "needs reproduction", "module: binaries", "module: cuda", "triaged" ]
4
NONE
I am installing the pytorch gpu version on an RTX5090 device, but I am getting an error: ![Image](https://github.com/user-attachments/assets/4bae051c-4539-4513-bae4-b7317ec8ddcf) here is my torch version: Name: torch Version: 2.8.0.dev20250327+cu128 Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration Home-page: https://pytorch.org/ Author: PyTorch Team Author-email: packages@pytorch.org License: BSD-3-Clause Location: /home/air/anaconda3/envs/kohya/lib/python3.12/site-packages Requires: filelock, fsspec, jinja2, networkx, nvidia-cublas-cu12, nvidia-cuda-cupti-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-runtime-cu12, nvidia-cudnn-cu12, nvidia-cufft-cu12, nvidia-cufile-cu12, nvidia-curand-cu12, nvidia-cusolver-cu12, nvidia-cusparse-cu12, nvidia-cusparselt-cu12, nvidia-nccl-cu12, nvidia-nvjitlink-cu12, nvidia-nvtx-cu12, pytorch-triton, setuptools, sympy, typing-extensions Required-by: torchaudio, torchvision here is my os info: ![Image](https://github.com/user-attachments/assets/213e48bf-f40f-41c2-b075-175463a35d9d) cc @seemethere @malfet @osalpekar @atalman @ptrblck @msaroufim @eqy
true
2,957,777,398
RuntimeError: Subtracting Reconstructed Jagged Nested Tensor Fails with Shape Mismatch
xsgxlz
open
[ "module: docs", "triaged", "module: nestedtensor" ]
2
NONE
### 🐛 Describe the bug When a `torch.nested.nested_tensor` with `layout=torch.jagged` is converted to a padded tensor using `to_padded_tensor()` and then reconstructed back into a jagged `nested_tensor` using its offsets, performing a binary operation (like subtraction) between the original and the reconstructed nested tensor results in a `RuntimeError`. The error message `cannot call binary pointwise function sub.Tensor with inputs of shapes (N, j1) and (N, j2)` suggests that although the tensors represent the same logical jagged structure and have the same number of top-level elements (N=2 in the example), their internal jagged shape representations are treated as incompatible by the binary operation dispatcher for nested tensors. Expected behavior: The subtraction `nt - reconstructed_nt` should succeed, ideally resulting in a nested tensor of zeros, or raise a more specific error if subtraction between jagged tensors reconstructed this way isn't supported, rather than a generic shape mismatch error. ```python import torch # Sample code to reproduce the problem tensor_list = [torch.zeros(3), torch.ones(2)] nt = torch.nested.nested_tensor(tensor_list, layout=torch.jagged) nt_dense = nt.to_padded_tensor(padding=0) offset = nt.offsets() # Reconstruct the list of tensors from the padded tensor using offsets reconstructed_tensor_list = [nt_dense[i, :offset[i+1]-offset[i]] for i in range(len(offset)-1)] # Create a new jagged nested tensor from the reconstructed list reconstructed_nt = torch.nested.nested_tensor(reconstructed_tensor_list, layout=torch.jagged) # This subtraction fails print("Original Nested Tensor:", nt) print("Reconstructed Nested Tensor:", reconstructed_nt) result = nt - reconstructed_nt print(result) # This line is not reached ``` ``` Original Nested Tensor: NestedTensor(size=(2, j1), offsets=tensor([0, 3, 5]), contiguous=True) Reconstructed Nested Tensor: NestedTensor(size=(2, j2), offsets=tensor([0, 3, 5]), contiguous=True) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[1], line 13 10 reconstructed_tensor_list = [nt_dense[i, :offset[i+1]-offset[i]] for i in range(len(offset)-1)] 11 # Create a new jagged nested tensor from the reconstructed list 12 reconstructed_nt = torch.nested.nested_tensor(reconstructed_tensor_list, layout=torch.jagged) ---> 13 result = nt - reconstructed_nt 14 print(result) # This line is not reached File /path/to/your/env/lib/python3.x/site-packages/torch/nested/_internal/nested_tensor.py:353, in NestedTensor.__torch_function__(cls, func, types, args, kwargs) 351 pass 352 with torch._C.DisableTorchFunctionSubclass(): --> 353 return func(*args, **kwargs) File /path/to/your/env/lib/python3.x/site-packages/torch/nested/_internal/nested_tensor.py:325, in NestedTensor.__torch_dispatch__(cls, func, types, args, kwargs) 323 fn = lookup_jagged(func, *args, **kwargs) 324 if fn is not None: --> 325 return fn(*args, **kwargs) 327 # Poor man's redispatch for composite ops. This becomes relevant under inference 328 # mode, where disabling autograd key dispatch prevents decomposition. 329 dk = torch._C.DispatchKey.CompositeImplicitAutogradNestedTensor File /path/to/your/env/lib/python3.x/site-packages/torch/nested/_internal/ops.py:307, in jagged_binary_pointwise(func, *args, **kwargs) 303 if raggedness_matches(a, b._size): 304 return NestedTensor( 305 func(a._values, b._values, *args[2:], **kwargs), **extract_kwargs(a) 306 ) --> 307 raise RuntimeError(mismatch_error_msg.format(func.__name__, a._size, b._size)) 308 # either a is NT or b is NT at this point 309 a_is_nt = isinstance(a, NestedTensor) RuntimeError: cannot call binary pointwise function sub.Tensor with inputs of shapes (2, j1) and (2, j2) ``` ### Versions ``` PyTorch version: 2.6.0+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.2 | packaged by conda-forge | (main, Feb 17 2025, 14:10:22) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.0-101-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.85 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100 80GB PCIe Nvidia driver version: 535.104.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Vendor ID: AuthenticAMD Model name: AMD EPYC 7643 48-Core Processor CPU family: 25 Model: 1 Thread(s) per core: 1 Core(s) per socket: 48 Socket(s): 2 Stepping: 1 Frequency boost: enabled CPU max MHz: 3640.9170 CPU min MHz: 1500.0000 BogoMIPS: 4599.97 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm Virtualization: AMD-V L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 48 MiB (96 instances) L3 cache: 512 MiB (16 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-47 NUMA node1 CPU(s): 48-95 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.4 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] torch==2.6.0+cu126 [pip3] torchaudio==2.6.0+cu126 [pip3] torchode==1.0.0 [pip3] torchtyping==0.1.5 [pip3] torchvision==0.21.0+cu126 [pip3] triton==3.2.0 [conda] cuda-cudart 12.6.77 0 nvidia [conda] cuda-cudart-dev 12.6.77 0 nvidia [conda] cuda-cudart-dev_linux-64 12.6.77 0 nvidia [conda] cuda-cudart-static 12.6.77 0 nvidia [conda] cuda-cudart-static_linux-64 12.6.77 0 nvidia [conda] cuda-cudart_linux-64 12.6.77 0 nvidia [conda] cuda-cupti 12.6.80 0 nvidia [conda] cuda-cupti-dev 12.6.80 0 nvidia [conda] cuda-libraries 12.6.3 0 nvidia [conda] cuda-libraries-dev 12.6.3 0 nvidia [conda] cuda-nvrtc 12.6.85 0 nvidia [conda] cuda-nvrtc-dev 12.6.85 0 nvidia [conda] cuda-nvtx 12.6.77 0 nvidia [conda] cuda-opencl 12.6.77 0 nvidia [conda] cuda-opencl-dev 12.6.77 0 nvidia [conda] cuda-runtime 12.6.3 0 nvidia [conda] libcublas 12.6.4.1 0 nvidia [conda] libcublas-dev 12.6.4.1 0 nvidia [conda] libcufft 11.3.0.4 0 nvidia [conda] libcufft-dev 11.3.0.4 0 nvidia [conda] libcurand 10.3.7.77 0 nvidia [conda] libcurand-dev 10.3.7.77 0 nvidia [conda] libcusolver 11.7.1.2 0 nvidia [conda] libcusolver-dev 11.7.1.2 0 nvidia [conda] libcusparse 12.5.4.2 0 nvidia [conda] libcusparse-dev 12.5.4.2 0 nvidia [conda] libnvjitlink 12.6.85 0 nvidia [conda] libnvjitlink-dev 12.6.85 0 nvidia [conda] numpy 2.2.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] torch 2.6.0+cu126 pypi_0 pypi [conda] torchaudio 2.6.0+cu126 pypi_0 pypi [conda] torchode 1.0.0 pypi_0 pypi [conda] torchtyping 0.1.5 pypi_0 pypi [conda] torchvision 0.21.0+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi ``` cc @svekars @sekyondaMeta @AlannaBurke @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
true
2,957,731,885
[Release/2.7] Update torch-xpu-ops commit pin (For CI test)
xytintel
closed
[ "open source", "topic: not user facing", "ciflow/xpu", "release notes: xpu" ]
6
CONTRIBUTOR
Update the torch-xpu-ops commit to [b18528c455d0297b89b255e93b86ff668069459f](https://github.com/intel/torch-xpu-ops/commit/b18528c455d0297b89b255e93b86ff668069459f), include - Bugfix of performance issue relating to GRF configuration.
true
2,957,723,095
ROCm: Add trailing comma for consistency in gfx architecture list
jagadish-amd
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
6
CONTRIBUTOR
Adding trailing comma for consistency. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,957,720,209
[ROCm] change preferred blas lib defaults
pytorchbot
closed
[ "module: rocm", "open source", "ciflow/rocm" ]
1
COLLABORATOR
Fixes #148883 Fixes #150155 Also adds at::BlasBackend:Default. Instinct cards prefer hipBLASLt, everything else prefers rocBLAS. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,957,712,319
dist.all_reduce should check if all tensors are same data type when using nccl
hyleepp
closed
[ "oncall: distributed" ]
2
NONE
### 🐛 Describe the bug Hello, I find that when I use nccl as backend, if the data type of a tensor on different devices do not match, then all reduce will give a very strange value (looks like overflow). ```python import torch import torch.distributed as dist import torch.multiprocessing as mp import os def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' dist.init_process_group(backend='nccl', rank=rank, world_size=world_size) def cleanup(): dist.destroy_process_group() def all_reduce_demo(rank, world_size): setup(rank, world_size) torch.cuda.set_device(rank) dtype = torch.float32 if rank != 0 else torch.bfloat16 # dtype = torch.float16 tensor = torch.tensor([1e-1], dtype=dtype).cuda() print(f"Rank {rank} before all_reduce: {tensor}") dist.all_reduce(tensor, op=dist.ReduceOp.SUM) print(f"Rank {rank} after all_reduce: {tensor}") cleanup() if __name__ == "__main__": world_size = 3 mp.spawn(all_reduce_demo, args=(world_size,), nprocs=world_size, join=True) ``` Here we get <img width="783" alt="Image" src="https://github.com/user-attachments/assets/29cedb22-816a-4b57-8d29-af86fbfc6cdf" /> And if we swtich from nccl to gloo, it will throw an error as expected <img width="774" alt="Image" src="https://github.com/user-attachments/assets/1eecac9a-43b7-448f-af91-4394cf099072" /> ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (GCC) 12.2.0 Clang version: 3.8.0 (tags/RELEASE_380/final) CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.10.11 (main, Apr 5 2023, 14:15:10) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.10.0-1.0.0.26-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A800-SXM4-80GB GPU 1: NVIDIA A800-SXM4-80GB GPU 2: NVIDIA A800-SXM4-80GB GPU 3: NVIDIA A800-SXM4-80GB GPU 4: NVIDIA A800-SXM4-80GB GPU 5: NVIDIA A800-SXM4-80GB GPU 6: NVIDIA A800-SXM4-80GB GPU 7: NVIDIA A800-SXM4-80GB Nvidia driver version: 525.125.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.0.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.0.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.0.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.0.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.0.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.0.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.0.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.0.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 57 bits virtual CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8350C CPU @ 2.60GHz Stepping: 6 Frequency boost: enabled CPU MHz: 3100.000 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5200.00 Virtualization: VT-x L1d cache: 3 MiB L1i cache: 2 MiB L2 cache: 80 MiB L3 cache: 96 MiB NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3.10] numpy 1.24.3 [pip3.10] nvidia-cublas-cu12 12.4.5.8 [pip3.10] nvidia-cuda-cupti-cu12 12.4.127 [pip3.10] nvidia-cuda-nvrtc-cu12 12.4.127 [pip3.10] nvidia-cuda-runtime-cu12 12.4.127 [pip3.10] nvidia-cudnn-cu12 9.1.0.70 [pip3.10] nvidia-cufft-cu12 11.2.1.3 [pip3.10] nvidia-curand-cu12 10.3.5.147 [pip3.10] nvidia-cusolver-cu12 11.6.1.9 [pip3.10] nvidia-cusparse-cu12 12.3.1.170 [pip3.10] nvidia-nccl-cu12 2.21.5 [pip3.10] nvidia-nvjitlink-cu12 12.4.127 [pip3.10] nvidia-nvtx-cu12 12.4.127 [pip3.10] torch 2.5.1 [pip3.10] torchaudio 2.5.1 [pip3.10] torchvision 0.20.1 [pip3.10] transformer-engine-torch 1.13.0 [pip3.10] triton 3.1.0 [conda] Could not collect cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,957,707,161
[MPSInductor] Specify `max_total_threads_per_threadgroup`
malfet
closed
[ "Merged", "topic: bug fixes", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150247 When generating reduction kernel, otherwise compiler can unroll loops too much that kernel could not be launched for the intended threadgroup size Extend `c10::metal::max` to accept different dtypes Together this fixes `test_large_broadcast_reduction` TODO: - Explore different threadgroup_sizes for best perf cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,957,707,117
[BE] Fix signed/unsigned comparison warning
malfet
closed
[ "Merged", "topic: not user facing", "release notes: mps" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150247 * __->__ #150246 One will see them only if compilation fails, but still
true
2,957,640,076
Add cmake variable USE_ROCM_CK
trixirt
open
[ "module: rocm", "open source" ]
6
NONE
To control the use of ROCm Composable Kernel usage. CK is not compatible with all rocBLAS gpu's, so the user must explicitly choose to use CK. Fixes #150187 cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,957,575,223
Update type of `create_block_mask` to more accurately reflect things
Chillee
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "suppress-api-compatibility-check", "suppress-bc-linter" ]
4
COLLABORATOR
Fixes some mypy issues
true
2,957,569,926
if blaslt fails, fall back to blas
jeffdaily
closed
[ "open source" ]
2
COLLABORATOR
Fixes #150016. This is implemented for both cublaslt and hipblaslt. gemm_and_bias on failure will fall back to unfused path. lt gemm on failure falls back to gemm even if gemm preference is set to lt. Pull Request resolved: https://github.com/pytorch/pytorch/pull/150147 Approved by: https://github.com/malfet
true
2,957,503,285
Feature Request: Enhance Nested Tensor Operations for Direct RoPE Application
xsgxlz
open
[ "triaged", "module: nestedtensor" ]
2
NONE
### 🚀 The feature, motivation and pitch **Feature Proposal:** We propose enhancing the operations available for `torch.NestedTensor` to facilitate the direct and efficient application of position-dependent transformations, specifically Rotary Positional Embeddings (RoPE), without extra unnecessary memory operations This could involve a better broadcasting mechanism and more supported `torch.NestedTensor` operations. Applying RoPE to nested tensors now is not straightforward because each sequence has a different length so you have to repeat the RoPE cache `batch_size` times to properly apply it. As all other parts in a standard transformer can be elegantly implemented with `torch.NestedTensor`, we believe it's time to include RoPE. ### Alternatives If heavily improved `torch.NestedTensor`'s API is infeasible, we can implement a RoPE Module that supports both dense and nested tensors. ### Additional context _No response_ cc @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
true
2,957,500,581
[decomps] Add decomposition for linalg_vector_norm
SS-JIA
open
[ "ciflow/inductor" ]
8
CONTRIBUTOR
Summary: ## Context `linalg_vector_norm` is required to run Vision Transformer models in ExecuTorch. Currently, model export + inference fails because ExecuTorch doesn't have a kernel for `linalg_vector_norm`. However, there is a decomposition for the operator. Add the decomposition to the core decomp table to unblock ExecuTorch.
true
2,957,457,596
Fix NVTX functions compatibility with torch.compile(fullgraph=True)
zsnoob
open
[ "triaged", "open source", "release notes: cuda", "module: dynamo", "release notes: dynamo" ]
4
NONE
## Problem Solved This PR resolves the incompatibility between NVTX functions and torch._dynamo. When attempting to use NVTX profiling tools within code compiled with `torch.compile(fullgraph=True)`, the following error occurs: ``` torch._dynamo.exc.Unsupported: torch.* op returned non-Tensor int call_function <function range_push at 0x...> ``` The root cause is that `torch._dynamo` requires all function calls within a compiled graph to return tensor types, but NVTX functions return integers, objects, or None. ## Changes - Added a global toggle system to enable/disable tensor returns for NVTX functions - Implemented a decorator to handle type conversion automatically - Enhanced all NVTX functions to support tensor return mode - Added clear documentation and type annotations - Maintained backward compatibility with existing code ## Impact on Existing Functionality This change has **zero impact** on existing functionality when used normally. The default behavior remains unchanged, and all functions continue to return their original types. Only when explicitly enabled via `torch.utils.nvtx.enable_tensor_returns()` will the functions return tensor types instead. This opt-in approach ensures no disruption to existing code. ## Testing - Added comprehensive unit tests that verify: - Default behavior is preserved - Tensor return mode correctly converts all return types to tensors - Switching between modes works as expected - Example when use `torch.compile(fullgraph=True)' and non-tensor-return function ## Usage Example ```python # Enable tensor returns for dynamo compatibility torch.cuda.nvtx.enable_tensor_returns() # Use NVTX functions in dynamo-compiled code # All functions now return tensors # with torch.compile context with torch.cuda.nvtx.range("my_range"): pass # Disable tensor returns to restore original behavior torch.cuda.nvtx.disable_tensor_returns() ``` ## Within Similar Issues Many issues have been reported regarding tensor returns when using `torch.compile(fullgraph=True)`. Many other projects(e.g. vLLM) use `fullgraph=True` transparently but will get stopped because the compatible issue. This compatibility problem affects numerous libraries and tools that integrate with PyTorch's compilation system. Based on the existing implementation, a more robust decorator could be designed that: * Handles conversion transparently: Converts all return types (int, object, None) to appropriate tensor representations without manual intervention. * Maintains type consistency: Uses PyTorch's native tensor metadata to ensure type information is preserved. * Provides extensibility: Allows third-party libraries to register their non-tensor returning functions to receive the same treatment. https://github.com/pytorch/pytorch/issues/123041 https://github.com/pytorch/pytorch/issues/122692 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @janeyx99 @eqy @syed-ahmed @IlyasMoutawwakil @ezyang @YangQun1
true
2,957,455,316
[state dict] add strict check when there are more keys in global than local state
mori360
open
[ "oncall: distributed", "release notes: distributed (checkpoint)" ]
4
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/149516 In broadcast_from_rank0, currently there's no strict check in loading global state dict to local. If there are any keys that in global but not in local, they will be added into local state_dict no matter strict is True or False Here are the logic after this PR: Global state dict rank0: {"0.weight":..., "1.weight":...} rank1: None Local state dict rank0: {"0.weight":...} rank1: {"0.weight":...} -> set_model_state_dict(options=StateDictOptions(broadcast_from_rank0=True,))) -> if strict is True loaded model state dict: rank0: {"0.weight":...} rank1: {"0.weight":...} if strict is False loaded model state dict: rank0: {"0.weight":..., "1.weight":...} rank1: {"0.weight":...} cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,957,426,301
remove guard _size_oblivious from expand and make it more resilient to data dependent errors.
laithsakka
closed
[ "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150238 * #148809 When we do not know that requested_length == x, we do not have to fail we can make it runtime assert with sym_or. address #150235 https://github.com/pytorch/pytorch/issues/128645 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,957,408,362
[MPS] Fix dot/mm for conj_tensors
pytorchbot
closed
[ "open source", "release notes: mps", "ciflow/mps" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150157 - Distinguish between conjugated/non_conjugated inputs by appending conjugation to the operator key - For matmul or dot, add `conjugateWithTensor:name:` calls before running the op - Enable testing for conjugated ops by passing `include_conjugated_inputs` to opinfo - Filter `include_conjugated_inputs` argument from `sample_inputs_window` (probably should have landed as separate PR) - Preserve conj property when gathering the views, that fixes `cov` operator Fixes https://github.com/pytorch/pytorch/issues/148156
true
2,957,404,986
[dynamic shapes] rewrite expand with guard_or_false
pianpwk
closed
[ "Merged", "ciflow/trunk", "module: dynamo", "ciflow/inductor", "release notes: export" ]
4
CONTRIBUTOR
Rewrites the expand decomposition to avoid unbacked errors, assuming the general path where `input shape == output shape or input shape == 1`. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,957,383,626
Fix _Waitcounter decorator and dd backward pass wait counter
ppanchalia
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
13
CONTRIBUTOR
Summary: This will log a wait counter with for backward compile and fixes weirdness with nested context managers. Since the old wait counters added through dynamo_timed were never created with the nesting issue. I am also changing the key nomenclature from `pytorch.dynamo_timed` to `pytorch.wait_counter`. We want to use the same nomenclature, to make it easy to find keys. Reviewed By: jamesjwu Differential Revision: D72032055 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,957,377,947
[CI] Fix log artifact not containing test logs attempt 2
clee2000
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes #ISSUE_NUMBER Take two of https://github.com/pytorch/pytorch/pull/149577 since it didn't work
true
2,957,373,430
[aten] 8 bytes aligned vector loads for bf16 and fp16 dtypes in torch.cat
zhaozhul
closed
[ "Merged", "ciflow/trunk", "release notes: cuda", "topic: performance" ]
8
CONTRIBUTOR
Enable aligned vector loading for 2 bytes datatypes in torch.cat. Specifically: 1. reduce the vector length to 8 bytes for 2-byte types (fp16, bf16 etc) 2. enable through a conditional template The reason why 8-byte vector loading was chosen for fp16 and bf16: 16-byte load results in heavier register overheads (i.e. 4 register per load for fp32 -> 8 register per load for fp16). Therefore, to employ the benefits of vectorized loading, we reduced ALIGNED_VEC_LOAD_BYTES to 8 for fp16 and bf16 ### perf testing: before: ``` torch-cat-D1-30108-D2-624-D3-772-dtype-torch.float32: B pt_eager copy 0 100.0 0.022621 0.036162 1 1000.0 0.133616 0.207051 2 10000.0 1.326848 1.848768 3 20000.0 2.744544 3.692128 torch-cat-D1-30108-D2-624-D3-772-dtype-torch.bfloat16: B pt_eager copy 0 100.0 0.022434 0.035477 1 1000.0 0.140608 0.144518 2 10000.0 1.303792 1.229584 3 20000.0 2.668288 2.436160 ``` after: ``` torch-cat-D1-30108-D2-624-D3-772-dtype-torch.float32: B pt_eager copy 0 100.0 0.022608 0.036328 1 1000.0 0.133861 0.207399 2 10000.0 1.325120 1.847136 3 20000.0 2.726528 3.693184 torch-cat-D1-30108-D2-624-D3-772-dtype-torch.bfloat16: B pt_eager copy 0 100.0 0.019942 0.035482 1 1000.0 0.084858 0.144544 2 10000.0 0.924384 1.230672 3 20000.0 1.944448 2.436480 ``` ### bw analysis: bw on fp16/bf16 got increased by 40%-50% for large tensors before: ``` Bandwidth (GB/s) for ((16384, 16384), 1) int8;fp16;fp32;int32;fp64;long|869.87|1382.74|1956.46|1952.73|1969.03|1963.66 Bandwidth (GB/s) for ((4194304,), 0) int8;fp16;fp32;int32;fp64;long|568.43|926.53|1589.20|1567.52|1771.54|1783.68 Bandwidth (GB/s) for ((16777216,), 0) int8;fp16;fp32;int32;fp64;long|752.07|1269.50|1894.86|1900.85|1954.10|1955.08 Bandwidth (GB/s) for ((33554432,), 0) int8;fp16;fp32;int32;fp64;long|807.08|1354.69|1960.48|1962.45|1972.73|1973.85 Bandwidth (GB/s) for ((134217728,), 0) int8;fp16;fp32;int32;fp64;long|864.02|1398.02|1963.43|1955.32|1963.37|1969.96 ``` after: ``` Bandwidth (GB/s) for ((16384, 16384), 1) int8;fp16;fp32;int32;fp64;long|873.08|1892.16|1954.35|1962.51|1962.03|1965.98 Bandwidth (GB/s) for ((4194304,), 0) int8;fp16;fp32;int32;fp64;long|575.13|1242.45|1576.37|1571.30|1769.94|1790.22 Bandwidth (GB/s) for ((16777216,), 0) int8;fp16;fp32;int32;fp64;long|742.92|1734.57|1887.99|1897.62|1940.99|1959.25 Bandwidth (GB/s) for ((33554432,), 0) int8;fp16;fp32;int32;fp64;long|802.60|1865.45|1952.64|1947.53|1974.47|1973.48 Bandwidth (GB/s) for ((134217728,), 0) int8;fp16;fp32;int32;fp64;long|865.32|1939.07|1965.72|1963.25|1969.06|1968.72 ``` ### Perf testing code: ``` # pyre-strict from typing import List, Optional, Tuple import click import pandas as pd import torch # @manual=//triton:triton import triton # CUDA_VISIBLE_DEVICEs=7 buck2 run @mode/opt //scripts/zhaozhu:cat_bench @click.command() @click.option("--data-type", type=str, default="bf16") @click.option("--return-result", type=bool, default=False) def main( data_type: str, return_result: bool, ) -> Optional[Tuple[List[triton.testing.Benchmark], List[pd.DataFrame]]]: torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True if data_type == "fp32": dtype = torch.float32 elif data_type == "fp16": dtype = torch.float16 elif data_type == "bf16": dtype = torch.bfloat16 else: raise ValueError(f"Unsupported data type: {data_type}.") D1 = int(torch.randint(low=10000, high=50000, size=(1,)).item()) D2 = int(torch.randint(low=100, high=1000, size=(1,)).item()) D3 = int(torch.randint(low=500, high=1000, size=(1,)).item()) configs: List[triton.testing.Benchmark] = [ triton.testing.Benchmark( x_names=["B"], x_vals=[100, 1000, 10000, 20000], line_arg="provider", line_vals=["pt_eager", "copy"], line_names=["pt_eager", "copy"], styles=[("blue", "-"), ("green", "-"), ("red", "-")], ylabel="ms", plot_name=f"torch-cat-D1-{D1}-D2-{D2}-D3-{D3}-dtype-{dtype}", args={ "D1": D1, "D2": D2, "D3": D3, "dtype": dtype, }, ) ] @triton.testing.perf_report(configs) def bench_cat( B: int, D1: int, D2: int, D3: int, dtype: torch.dtype, provider: str, ) -> float: warmup = 10 rep = 3 tensors = [] a = torch.empty( # (B, 30108), (B, D1), dtype=dtype, device=torch.device("cuda"), ).uniform_(-1.0, 1.0) b = torch.empty( # (B, 624), (B, D2), dtype=dtype, device=torch.device("cuda"), ).uniform_(-1.0, 1.0) c = torch.empty( # (B, 772), (B, D3), dtype=dtype, device=torch.device("cuda"), ).uniform_(-1.0, 1.0) tensors = [a, b, c] total_cols: int = int(a.shape[1] + b.shape[1] + c.shape[1]) def torch_copy( tensors: List[torch.Tensor], is_inplace: bool = True ) -> torch.Tensor: f = torch.zeros([B, total_cols], dtype=dtype, device=torch.device("cuda")) col_idx = 0 for t in tensors: temp = f[:, col_idx : col_idx + t.shape[1]] if is_inplace: temp.copy_(t) else: f[:, col_idx : col_idx + t.shape[1]] = t col_idx += t.shape[1] return f def torch_cat(tensors: List[torch.Tensor]) -> torch.Tensor: return torch.cat(tensors, dim=1) ref = torch_cat(tensors) real = torch_copy(tensors, is_inplace=False) torch.testing.assert_allclose(ref, real) if provider == "pt_eager": fn = lambda: torch_cat(tensors) # noqa E731 ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) return ms elif provider == "stack": def torch_stack(tensors: List[torch.Tensor]) -> torch.Tensor: return torch.stack(tensors, dim=1).view(-1, total_cols) fn = lambda: torch_stack(tensors) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) return ms elif provider == "copy": fn = lambda: torch_copy(tensors) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) return ms else: raise ValueError(f"unsupported provider: {provider}") df = bench_cat.run(print_data=True, return_df=return_result) if return_result: return configs, df if __name__ == "__main__": main() ``` and bw analysis code is from: https://github.com/pytorch/pytorch/pull/102815?fbclid=IwZXh0bgNhZW0CMTEAAR1Rwclp_O1fknl1Litpm9GeY0ZZZovdCv8_kQfGf6Zy8LaoP9JhO0ZsutM_aem_BPCZEZda5OOMnzI9Mrlapg#issue-1737409146
true