id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,966,257,840
[torchrun] Fix: Use Correctly Reachable Host Address in c10d Rendezvous
kuizhiqing
open
[ "oncall: distributed", "triaged", "open source", "release notes: distributed (torchelastic)" ]
2
NONE
Fixes https://github.com/pytorch/pytorch/issues/150532 In this PR, we replace `socket.getfqdn()` with `socket.gethostbyname(socket.getfqdn())`, ensuring that an IP address is used instead of a potentially unresolvable hostname. Anyway, using an IP is more reliable than a hostname in this case. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,966,233,840
torchrun Hangs Due to Unresolvable Hostname in c10d Rendezvous
kuizhiqing
open
[ "oncall: distributed", "triaged", "module: c10d" ]
1
NONE
I'm managing a cluster with a large number of nodes, where each node's `hostname` is only resolvable locally on that node. This causes my `torchrun` program to hang when using the `c10d` rendezvous backend: ```bash export PET_NPROC_PER_NODE=8 export PET_NNODES=2 export PET_RDZV_ENDPOINT=<MASTER_IP>:36123 export PET_RDZV_BACKEND=c10d torchrun demo.py ``` After investigating the issue, I found that the problem originates from the `local_addr` being retrieved via `socket.getfqdn()`. This method does not return a correctly reachable hostname, leading to connectivity issues during rendezvous. Precisely, in `torch/distributed/elastic/rendezvous/dynamic_rendezvous.py` ```python class _NodeDescGenerator: def generate(self, local_addr: Optional[str] = None) -> _NodeDesc: return _NodeDesc(local_addr or socket.getfqdn(), os.getpid(), local_id) ``` A potential issue also exists in `torch/distributed/elastic/rendezvous/api.py` ```python class RendezvousStoreInfo: def build(...): if rank == 0: addr = local_addr or socket.getfqdn() ``` cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,965,892,385
Intermittent SSL certificate expiry warnings for `download.pytorch.org` (load balancer?)
charlienewey-odin
open
[ "triaged" ]
12
NONE
### 🐛 Describe the bug This was tested at 10:00 GMT (11:00 London time). We're based in the UK (might be relevant if the issue is specific to e.g. UK geo). On _some_ HTTPS requests to `download.pytorch.org`, the SSL certificate on the server is expired. This is intermittent so I imagine the problem is an expired certificate on a load-balanced node or something similar. Here is an example of an expired certificate: ``` 11:01:28.183488 [0-0] * ALPN: server accepted h2 11:01:28.183499 [0-0] * Server certificate: 11:01:28.183510 [0-0] * subject: CN=pytorch.org 11:01:28.183519 [0-0] * start date: Mar 4 00:00:00 2024 GMT 11:01:28.183527 [0-0] * expire date: Apr 1 23:59:59 2025 GMT 11:01:28.183538 [0-0] * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M03 ``` The failing node in this case appears to be `11:01:28.183657 [0-0] * Connected to download.pytorch.org (108.156.46.108) port 443`. I can't verify whether this is the only failing node. Here is the full output from `curl --insecure -vvI https://download.pytorch.org/models/resnet101-cd907fc2.pth 2>&1`: ``` 11:04:51.467721 [0-0] * Host download.pytorch.org:443 was resolved. 11:04:51.467771 [0-0] * IPv6: 2600:9000:2491:7c00:d:607e:4540:93a1, 2600:9000:2491:9a00:d:607e:4540:93a1, 2600:9000:2491:fa00:d:607e:4540:93a1, 2600:9000:2491:2800:d:607e:4540:93a1, 2600:9000:2491:5000:d:607e:4540:93a1, 2600:9000:2491:8200:d:607e:4540:93a1, 2600:9000:2491:1800:d:607e:4540:93a1, 2600:9000:2491:a200:d:607e:4540:93a1 11:04:51.467780 [0-0] * IPv4: 108.138.26.122, 108.138.26.24, 108.138.26.16, 108.138.26.43 11:04:51.467794 [0-0] * [HTTPS-CONNECT] created with 1 ALPNs -> 0 11:04:51.467804 [0-0] * [HTTPS-CONNECT] added 11:04:51.467817 [0-0] * [HTTPS-CONNECT] connect, init 11:04:51.467840 [0-0] * Trying [2600:9000:2491:7c00:d:607e:4540:93a1]:443... 11:04:51.467923 [0-0] * Immediate connect fail for 2600:9000:2491:7c00:d:607e:4540:93a1: Network is unreachable 11:04:51.467945 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.467956 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 0 socks 11:04:51.467972 [0-0] * Trying [2600:9000:2491:9a00:d:607e:4540:93a1]:443... 11:04:51.467989 [0-0] * Immediate connect fail for 2600:9000:2491:9a00:d:607e:4540:93a1: Network is unreachable 11:04:51.467999 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.468007 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 0 socks 11:04:51.468018 [0-0] * Trying [2600:9000:2491:fa00:d:607e:4540:93a1]:443... 11:04:51.468028 [0-0] * Immediate connect fail for 2600:9000:2491:fa00:d:607e:4540:93a1: Network is unreachable 11:04:51.468037 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.468045 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 0 socks 11:04:51.468064 [0-0] * Trying [2600:9000:2491:2800:d:607e:4540:93a1]:443... 11:04:51.468074 [0-0] * Immediate connect fail for 2600:9000:2491:2800:d:607e:4540:93a1: Network is unreachable 11:04:51.468083 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.468091 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 0 socks 11:04:51.468104 [0-0] * Trying [2600:9000:2491:5000:d:607e:4540:93a1]:443... 11:04:51.468116 [0-0] * Immediate connect fail for 2600:9000:2491:5000:d:607e:4540:93a1: Network is unreachable 11:04:51.468127 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.468137 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 0 socks 11:04:51.468149 [0-0] * Trying [2600:9000:2491:8200:d:607e:4540:93a1]:443... 11:04:51.468162 [0-0] * Immediate connect fail for 2600:9000:2491:8200:d:607e:4540:93a1: Network is unreachable 11:04:51.468173 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.468182 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 0 socks 11:04:51.468194 [0-0] * Trying [2600:9000:2491:1800:d:607e:4540:93a1]:443... 11:04:51.468206 [0-0] * Immediate connect fail for 2600:9000:2491:1800:d:607e:4540:93a1: Network is unreachable 11:04:51.468217 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.468227 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 0 socks 11:04:51.468239 [0-0] * Trying [2600:9000:2491:a200:d:607e:4540:93a1]:443... 11:04:51.468253 [0-0] * Immediate connect fail for 2600:9000:2491:a200:d:607e:4540:93a1: Network is unreachable 11:04:51.468269 [0-0] * Trying 108.138.26.122:443... 11:04:51.468337 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.468348 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 1 socks 11:04:51.470431 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.470452 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 1 socks 11:04:51.488784 [0-0] * ALPN: curl offers h2,http/1.1 11:04:51.488933 [0-0] } [5 bytes data] 11:04:51.488957 [0-0] * TLSv1.3 (OUT), TLS handshake, Client hello (1): 11:04:51.488967 [0-0] } [512 bytes data] 11:04:51.489033 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.489046 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 1 socks 11:04:51.507775 [0-0] { [5 bytes data] 11:04:51.507835 [0-0] * TLSv1.3 (IN), TLS handshake, Server hello (2): 11:04:51.507861 [0-0] { [122 bytes data] 11:04:51.508358 [0-0] * TLSv1.3 (IN), TLS change cipher, Change cipher spec (1): 11:04:51.508376 [0-0] { [1 bytes data] 11:04:51.508431 [0-0] * TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8): 11:04:51.508454 [0-0] { [19 bytes data] 11:04:51.508518 [0-0] * [HTTPS-CONNECT] connect -> 0, done=0 11:04:51.508546 [0-0] * [HTTPS-CONNECT] adjust_pollset -> 1 socks 11:04:51.508670 [0-0] { [1 bytes data] 11:04:51.508711 [0-0] * TLSv1.3 (IN), TLS handshake, Certificate (11): 11:04:51.508731 [0-0] { [3811 bytes data] 11:04:51.509455 [0-0] * TLSv1.3 (IN), TLS handshake, CERT verify (15): 11:04:51.509470 [0-0] { [264 bytes data] 11:04:51.509600 [0-0] * TLSv1.3 (IN), TLS handshake, Finished (20): 11:04:51.509615 [0-0] { [36 bytes data] 11:04:51.509685 [0-0] * TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1): 11:04:51.509700 [0-0] } [1 bytes data] 11:04:51.509751 [0-0] * TLSv1.3 (OUT), TLS handshake, Finished (20): 11:04:51.509769 [0-0] } [36 bytes data] 11:04:51.509849 [0-0] * SSL connection using TLSv1.3 / TLS_AES_128_GCM_SHA256 / x25519 / RSASSA-PSS 11:04:51.509868 [0-0] * ALPN: server accepted h2 11:04:51.509887 [0-0] * Server certificate: 11:04:51.509908 [0-0] * subject: CN=pytorch.org 11:04:51.509929 [0-0] * start date: Apr 2 00:00:00 2025 GMT 11:04:51.509947 [0-0] * expire date: May 1 23:59:59 2026 GMT 11:04:51.509964 [0-0] * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M04 11:04:51.509984 [0-0] * SSL certificate verify result: unable to get local issuer certificate (20), continuing anyway. 11:04:51.510002 [0-0] * Certificate level 0: Public key type RSA (2048/112 Bits/secBits), signed using sha256WithRSAEncryption 11:04:51.510020 [0-0] * Certificate level 1: Public key type RSA (2048/112 Bits/secBits), signed using sha256WithRSAEncryption 11:04:51.510033 [0-0] * Certificate level 2: Public key type RSA (2048/112 Bits/secBits), signed using sha256WithRSAEncryption 11:04:51.510052 [0-0] * [HTTPS-CONNECT] connect+handshake h2: 42ms, 1st data: 39ms 11:04:51.510089 [0-0] * [HTTP/2] [0] created h2 session 11:04:51.510111 [0-0] * [HTTP/2] [0] -> FRAME[SETTINGS, len=18] 11:04:51.510128 [0-0] * [HTTP/2] [0] -> FRAME[WINDOW_UPDATE, incr=1048510465] 11:04:51.510145 [0-0] * [HTTP/2] cf_connect() -> 0, 1, 11:04:51.510163 [0-0] * [HTTPS-CONNECT] connect -> 0, done=1 11:04:51.510186 [0-0] * Connected to download.pytorch.org (108.138.26.122) port 443 11:04:51.510206 [0-0] * using HTTP/2 11:04:51.510234 [0-0] * [HTTP/2] [1] OPENED stream for https://download.pytorch.org/models/resnet101-cd907fc2.pth 11:04:51.510248 [0-0] * [HTTP/2] [1] [:method: HEAD] 11:04:51.510261 [0-0] * [HTTP/2] [1] [:scheme: https] 11:04:51.510270 [0-0] * [HTTP/2] [1] [:authority: download.pytorch.org] 11:04:51.510288 [0-0] * [HTTP/2] [1] [:path: /models/resnet101-cd907fc2.pth] 11:04:51.510297 [0-0] * [HTTP/2] [1] [user-agent: curl/8.12.1] 11:04:51.510314 [0-0] * [HTTP/2] [1] [accept: */*] 11:04:51.510329 [0-0] * [HTTP/2] [1] submit -> 112, 0 11:04:51.510351 [0-0] * [HTTP/2] [1] -> FRAME[HEADERS, len=62, hend=1, eos=1] 11:04:51.510374 [0-0] } [5 bytes data] 11:04:51.510401 [0-0] * [HTTP/2] [0] egress: wrote 135 bytes 11:04:51.510416 [0-0] * [HTTP/2] [1] cf_send(len=112) -> 112, 0, eos=1, h2 windows 65535-65535 (stream-conn), buffers 0-0 (stream-conn) 11:04:51.510424 [0-0] > HEAD /models/resnet101-cd907fc2.pth HTTP/2 11:04:51.510424 [0-0] > Host: download.pytorch.org 11:04:51.510424 [0-0] > User-Agent: curl/8.12.1 11:04:51.510424 [0-0] > Accept: */* 11:04:51.510424 [0-0] > 11:04:51.510512 [0-0] * [HTTP/2] [0] progress ingress: done 11:04:51.510525 [0-0] * [HTTP/2] [1] cf_recv(len=102400) -> -1 81, window=0/65535, connection 1048576000/1048576000 11:04:51.510541 [0-0] * Request completely sent off 11:04:51.528973 [0-0] { [5 bytes data] 11:04:51.529045 [0-0] * TLSv1.3 (IN), TLS handshake, Newsession Ticket (4): 11:04:51.529070 [0-0] { [157 bytes data] 11:04:51.529182 [0-0] * [HTTP/2] [0] ingress: read 40 bytes 11:04:51.529212 [0-0] * [HTTP/2] [0] <- FRAME[SETTINGS, len=18] 11:04:51.529240 [0-0] * [HTTP/2] [0] MAX_CONCURRENT_STREAMS: 128 11:04:51.529264 [0-0] * [HTTP/2] [0] ENABLE_PUSH: TRUE 11:04:51.529289 [0-0] * [HTTP/2] [0] notify MAX_CONCURRENT_STREAMS: 128 11:04:51.529324 [0-0] * [HTTP/2] [0] <- FRAME[WINDOW_UPDATE, incr=2147418112] 11:04:51.529343 [0-0] * [HTTP/2] [0] progress ingress: inbufg=0 11:04:51.529373 [0-0] { [5 bytes data] 11:04:51.529442 [0-0] * [HTTP/2] [0] ingress: read 9 bytes 11:04:51.529466 [0-0] * [HTTP/2] [0] <- FRAME[SETTINGS, ack=1] 11:04:51.529481 [0-0] * [HTTP/2] [0] progress ingress: inbufg=0 11:04:51.529509 [0-0] * [HTTP/2] [0] progress ingress: done 11:04:51.529537 [0-0] * [HTTP/2] [0] -> FRAME[SETTINGS, ack=1] 11:04:51.529558 [0-0] } [5 bytes data] 11:04:51.529601 [0-0] * [HTTP/2] [0] egress: wrote 9 bytes 11:04:51.529626 [0-0] * [HTTP/2] [1] cf_recv(len=102400) -> -1 81, window=0/65536, connection 1048576000/1048576000 11:04:51.529654 [0-0] { [5 bytes data] 11:04:51.529696 [0-0] * [HTTP/2] [0] ingress: read 386 bytes 11:04:51.529718 [0-0] < HTTP/2 200 11:04:51.529756 [0-0] * [HTTP/2] [1] local window update by 10420224 11:04:51.529783 [0-0] * [HTTP/2] [1] status: HTTP/2 200 11:04:51.529816 [0-0] < content-type: application/x-www-form-urlencoded; charset=utf-8 11:04:51.529846 [0-0] * [HTTP/2] [1] header: content-type: application/x-www-form-urlencoded; charset=utf-8 11:04:51.529875 [0-0] < content-length: 178814045 11:04:51.529912 [0-0] * [HTTP/2] [1] header: content-length: 178814045 11:04:51.529949 [0-0] < last-modified: Wed, 10 Nov 2021 13:13:40 GMT 11:04:51.529977 [0-0] * [HTTP/2] [1] header: last-modified: Wed, 10 Nov 2021 13:13:40 GMT 11:04:51.530006 [0-0] < x-amz-version-id: WxVjHsX41t.Gox4D9vXBqw8_BNcgtttq 11:04:51.530030 [0-0] * [HTTP/2] [1] header: x-amz-version-id: WxVjHsX41t.Gox4D9vXBqw8_BNcgtttq 11:04:51.530052 [0-0] < accept-ranges: bytes 11:04:51.530074 [0-0] * [HTTP/2] [1] header: accept-ranges: bytes 11:04:51.530099 [0-0] < server: AmazonS3 11:04:51.530123 [0-0] * [HTTP/2] [1] header: server: AmazonS3 11:04:51.530149 [0-0] < date: Tue, 01 Apr 2025 10:38:55 GMT 11:04:51.530177 [0-0] * [HTTP/2] [1] header: date: Tue, 01 Apr 2025 10:38:55 GMT 11:04:51.530199 [0-0] < etag: "e06d6d4c722f9d6a4848468cb70ea3df-11" 11:04:51.530222 [0-0] * [HTTP/2] [1] header: etag: "e06d6d4c722f9d6a4848468cb70ea3df-11" 11:04:51.530242 [0-0] < x-cache: Hit from cloudfront 11:04:51.530261 [0-0] * [HTTP/2] [1] header: x-cache: Hit from cloudfront 11:04:51.530285 [0-0] < via: 1.1 9672a97668a5842cedcfaee3e743019e.cloudfront.net (CloudFront) 11:04:51.530311 [0-0] * [HTTP/2] [1] header: via: 1.1 9672a97668a5842cedcfaee3e743019e.cloudfront.net (CloudFront) 11:04:51.530332 [0-0] < x-amz-cf-pop: FRA56-P7 11:04:51.530358 [0-0] * [HTTP/2] [1] header: x-amz-cf-pop: FRA56-P7 11:04:51.530379 [0-0] < x-amz-cf-id: I9q0GFiron5llgpNG3QFDYBkbK5zPEpaqqW3mEZlf1Ki8MRyOHTw6Q== 11:04:51.530399 [0-0] * [HTTP/2] [1] header: x-amz-cf-id: I9q0GFiron5llgpNG3QFDYBkbK5zPEpaqqW3mEZlf1Ki8MRyOHTw6Q== 11:04:51.530422 [0-0] < age: 84357 11:04:51.530438 [0-0] * [HTTP/2] [1] header: age: 84357 11:04:51.530455 [0-0] * [HTTP/2] [1] <- FRAME[HEADERS, len=377, hend=1, eos=1] 11:04:51.530478 [0-0] < 11:04:51.530499 [0-0] * [HTTP/2] [1] DRAIN select_bits=1 11:04:51.530513 [0-0] * [HTTP/2] [1] CLOSED 11:04:51.530533 [0-0] * [HTTP/2] [1] DRAIN select_bits=1 11:04:51.530557 [0-0] * [HTTP/2] [0] progress ingress: inbufg=0 11:04:51.530579 [0-0] * [HTTP/2] [1] DRAIN select_bits=1 11:04:51.530601 [0-0] * [HTTP/2] [0] progress ingress: done 11:04:51.530627 [0-0] * [HTTP/2] [1] returning CLOSE 11:04:51.530649 [0-0] * [HTTP/2] handle_stream_close -> 0, 0 11:04:51.530672 [0-0] * [HTTP/2] [1] cf_recv(len=102400) -> 0 0, window=-1/-1, connection 1048576000/1048576000 11:04:51.530689 [0-0] { [0 bytes data] 0 170M 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 11:04:51.530826 [0-0] * Connection #0 to host download.pytorch.org left intact HTTP/2 200 content-type: application/x-www-form-urlencoded; charset=utf-8 content-length: 178814045 last-modified: Wed, 10 Nov 2021 13:13:40 GMT x-amz-version-id: WxVjHsX41t.Gox4D9vXBqw8_BNcgtttq accept-ranges: bytes server: AmazonS3 date: Tue, 01 Apr 2025 10:38:55 GMT etag: "e06d6d4c722f9d6a4848468cb70ea3df-11" x-cache: Hit from cloudfront via: 1.1 9672a97668a5842cedcfaee3e743019e.cloudfront.net (CloudFront) x-amz-cf-pop: FRA56-P7 x-amz-cf-id: I9q0GFiron5llgpNG3QFDYBkbK5zPEpaqqW3mEZlf1Ki8MRyOHTw6Q== age: 84357 ``` ### Versions This is not version specific.
true
2,965,826,377
DISABLED test_parity__foreach_abs_fastpath_inplace_cuda_float32 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_abs_fastpath_inplace_cuda_float32&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39821368287). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 10 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_abs_fastpath_inplace_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_foreach.py", line 228, in test_parity actual = func( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_abs_', keys=('aten::_foreach_abs_', 'Unrecognized', 'cudaLaunchKernel', 'cudaDeviceSynchronize') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1159, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1975, in wrap_fn return fn(self, *args, **kwargs) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 235, in test_parity with self.assertRaises(type(e)): File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 226, in __exit__ self._raiseFailure("{} not raised".format(exc_name)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 163, in _raiseFailure raise self.test_case.failureException(msg) AssertionError: AssertionError not raised The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1171, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.float32], Tensor[size=(19, 19), device="cuda:0", dtype=torch.float32], Tensor[size=(18, 18), device="cuda:0", dtype=torch.float32], Tensor[size=(17, 17), device="cuda:0", dtype=torch.float32], Tensor[size=(16, 16), device="cuda:0", dtype=torch.float32], Tensor[size=(15, 15), device="cuda:0", dtype=torch.float32], Tensor[size=(14, 14), device="cuda:0", dtype=torch.float32], Tensor[size=(13, 13), device="cuda:0", dtype=torch.float32], Tensor[size=(12, 12), device="cuda:0", dtype=torch.float32], Tensor[size=(11, 11), device="cuda:0", dtype=torch.float32], Tensor[size=(10, 10), device="cuda:0", dtype=torch.float32], Tensor[size=(9, 9), device="cuda:0", dtype=torch.float32], Tensor[size=(8, 8), device="cuda:0", dtype=torch.float32], Tensor[size=(7, 7), device="cuda:0", dtype=torch.float32], Tensor[size=(6, 6), device="cuda:0", dtype=torch.float32], Tensor[size=(5, 5), device="cuda:0", dtype=torch.float32], Tensor[size=(4, 4), device="cuda:0", dtype=torch.float32], Tensor[size=(3, 3), device="cuda:0", dtype=torch.float32], Tensor[size=(2, 2), device="cuda:0", dtype=torch.float32], Tensor[size=(1, 1), device="cuda:0", dtype=torch.float32]], args=(), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/test_foreach.py TestForeachCUDA.test_parity__foreach_abs_fastpath_inplace_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,965,824,087
Remove redundant code in cuda/__init__.py
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150529 As the title stated. Follow: https://github.com/pytorch/pytorch/pull/147078 Fix issue: https://github.com/pytorch/pytorch/issues/150519
true
2,965,768,931
Work on API Forwarding
kpouget
closed
[ "oncall: distributed", "module: rocm", "module: cpu", "release notes: releng", "fx", "module: inductor", "module: dynamo" ]
3
NONE
PR opened against the wrong repo :/
true
2,965,680,428
Add BF16 SVE intrinsics
Ryo-not-rio
open
[ "module: cpu", "open source", "module: inductor", "ciflow/inductor" ]
2
COLLABORATOR
** DO NOT REVIEW ** Draft PR for a sqaushed version of https://github.com/pytorch/pytorch/pull/143666
true
2,965,637,848
Consider context when tuning kernels for max-autotune to more accurately reflect the performance of real workloads
CaoE
open
[ "oncall: pt2", "module: inductor", "oncall: cpu inductor" ]
2
COLLABORATOR
### 🚀 The feature, motivation and pitch ### Motivation This request was initiated by https://github.com/pytorch/pytorch/pull/147368, which adds float16 support for CppMicroGemmAMX to get better performance for float16 templated gemm. We get improvements in micro-benchmarks with single linear, but we found regressions in real workloads. Profiling results show that kernels after templated gemm are affected. For example: * max-autotune enabled: <img width="567" alt="Image" src="https://github.com/user-attachments/assets/45cb279d-6c63-411f-a2f6-7e2d7141b082" /> * max-autotune disabled: <img width="560" alt="Image" src="https://github.com/user-attachments/assets/0d5d49e6-a779-43bb-9b0a-42b58faea15d" /> From the above results, the selected templated gemms are faster than mkldnn linear but flash attention kernel and `cpp_fused__log_softmax__to_copy_masked_fill_...` become slower. Such impacts maybe different on different cores due to different cache behavior or load Imbalance. Benchmarks in autotune need to more accurately reflect the performance of real workloads. In more detail, it may need to reflect the overall performance of the current kernel, subsequent kernels, and previous kernels. ### Alternatives Benchmarks in max-autotune may need a context environment, the previous kernels and the following kernels, to more accurately reflect the performance of real workloads. ### Additional context _No response_ cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,965,633,827
[Do Not Review][WIP] Enable Mkldnn fusion for XPU.
etaf
open
[ "module: cpu", "module: mkldnn", "open source", "ciflow/binaries_wheel", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ciflow/linux-aarch64" ]
2
COLLABORATOR
Fixes #ISSUE_NUMBER cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @gujinghui @PenghuiCheng @jianyuh @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,965,576,593
Fix CPU bitwise shifts for out-of-limit values in VSX-vec
Flamefire
open
[ "module: cpu", "triaged", "open source" ]
2
COLLABORATOR
Similar to #96659 this implements the conditionals handling the out-of-limit values in the shift amounts (rhs) for the vectorized VSX code using the same logic as the scalar code. Fixes #109777 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,965,527,857
[Question] How to load extremely large model checkpoint for FSDP wrapped model?
zigzagcai
open
[ "oncall: distributed", "triaged", "module: fsdp" ]
2
NONE
Hello, We tried to train DeepSeek v3 model with the parallelism of `FSDP+Expert Parallel`. It works well with random initialized weights. But if we want do SFT or RLHF, we need to load the 670B model weights from https://huggingface.co/deepseek-ai/DeepSeek-V3-0324/tree/main So, does PyTorch has ways to load extremely large model weight checkpoint for FSDP wrapped model? cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @zhaojuanmao @mrshenli @rohan-varma @chauhang @mori360 @kwen2501 @c-p-i-o
true
2,965,451,384
[AOTInductor] Fix autotuning code's codegen
muchulee8
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Summary: Codegen used to generate tmp_arg_{index} as temporary args, and index is the position of the caller. We changed the logic of codegen such that we can reuse previous generated samples, and only delete after arg is no longer used. In this case, we need to make {index} unique, since different functions could reuse the same "tmp_arg_{index}" name string, but corresponds to different args. Test Plan: `python test/inductor/test_aot_inductor.py -k test_autotuning_args_reuse` Differential Revision: D72297084 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @amjames @chauhang @aakhundov
true
2,965,443,235
[ROCm][Windows] Include AOTriton dependent sources in Windows build
ikalinic
closed
[ "module: rocm", "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm" ]
13
CONTRIBUTOR
Includes ATen native transformers hipified sources in ROCm+Windows build. This was removed due to Trinton not being available on Windows, but this causes further linker errors. Setting `USE_FLASH_ATTENTION=0` and `USE_MEM_EFF_ATTENTION=0` during the build will mitigate the missing headers, but also not cause any linker errors, so we will use this approach for now. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,965,408,110
[XPU] Fix XPU unit test on Windows
LuFinch
closed
[ "open source", "Merged", "module: testing", "ciflow/trunk", "topic: not user facing", "keep-going", "ciflow/xpu", "module: xpu" ]
14
CONTRIBUTOR
This PR is to resolve issue reported in https://github.com/intel/torch-xpu-ops/issues/1478 There are two cases failing in our Windows CI enabling. - **test_xpu.py::TestXpuXPU::test_lazy_init_xpu** Needs to add `if __name__ == '__main__':` for Windows when using multiprocess. Refer to https://stackoverflow.com/a/18205006 ``` RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable. Traceback (most recent call last): File "C:\Users\sdp\lufengqing\torch-xpu-ops\test\xpu\xpu_test_utils.py", line 24, in <module> test_multi_process(model, input) File "C:\Users\sdp\lufengqing\torch-xpu-ops\test\xpu\xpu_test_utils.py", line 16, in test_multi_process assert p.exitcode == 0 AssertionError ``` - **test_xpu.py::TestXpuXPU::test_wrong_xpu_fork_xpu** is a linux only test case, we should skip it on Windows. Refer to https://github.com/pytorch/pytorch/blob/248487f455e943cbba368404119ca9bcb14c0499/test/test_multiprocessing.py#L609 cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,965,375,858
Potential redundant code
MisterLin1995
open
[ "module: cuda", "triaged", "better-engineering" ]
1
NONE
These lines looks redundant to me since we already get the handler through the previous line. https://github.com/pytorch/pytorch/blob/main/torch/cuda/__init__.py#L1214 https://github.com/pytorch/pytorch/blob/main/torch/cuda/__init__.py#L1223:L1224 https://github.com/pytorch/pytorch/blob/main/torch/cuda/__init__.py#L1230:L1231 https://github.com/pytorch/pytorch/blob/main/torch/cuda/__init__.py#L1273:L1274 https://github.com/pytorch/pytorch/blob/main/torch/cuda/__init__.py#L1294:L1295 https://github.com/pytorch/pytorch/blob/main/torch/cuda/__init__.py#L1315:L1316 cc @ptrblck @msaroufim @eqy
true
2,965,366,942
fix bug in logging code
exclamaforte
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
13
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/150379 ```python >>> key = "aten._int_mm_1_2_3" >>> m, n, k = key.split("_")[-3:] >>> m, n, k ('1', '2', '3') >>> name = "_".join(key.split("_")[:-3]) >>> name 'aten._int_mm' ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,965,267,880
Pinned memory doubles memory usage for tensors slightly over 128MB
scott306lr
open
[ "module: cuda", "module: memory usage", "triaged" ]
3
NONE
### 🐛 Describe the bug This issue appears related to #95823 but on smaller tensors. Although #95823 is closed the underlying problem persists. PyTorch seems to allocate memory up to the next power of two (256MB) when pinning tensors slightly above 128MB in size. This causes nearly double the expected memory usage. ### Minimal Example ```python import torch def get_free(): import subprocess r = subprocess.run(["free", "-m"], capture_output=True) d = r.stdout.decode('utf-8') s = d.split(':')[1].split() return f"[used={s[1]:7}, shared={s[3]:7}] " model_weight = torch.randn(18944, 3584, dtype=torch.float16, device='cpu') #129.5MB (qwen2.5 7b, up_proj) # model_weight = torch.randn(14336, 4096, dtype=torch.float16, device='cpu') #112.0MB (llama3.1 7b, up_proj) print("weight memory usage:", model_weight.element_size() * model_weight.nelement() / (1024 ** 2), "MB") # Pinning memory print(get_free() + "Before pin") model_weight = model_weight.pin_memory() print(get_free() + "After pin") ``` ### Observed Behavior It allocates almost double the memory when pinning qwen2.5 7b's up_proj (129.5 MB): ```bash weight memory usage: 129.5 MB [used=9306 , shared=108 ] Before pin [used=9334 , shared=372 ] After pin ``` Pinning llama3.1 8b's up_proj (112.0 MB) takes much less memory: ```bash weight memory usage: 112.0 MB [used=9280 , shared=108 ] Before pin [used=9321 , shared=244 ] After pin ``` Although the additionally used memory to pin a single tensor is less noticeable, it scales ip when pinning all decoder layers and significantly inflates DRAM usage. For instance, it results in approximately 12GB of extra memory overhead for Qwen2.5 7b ### Versions PyTorch version: 2.6.0+cu126 cc @ptrblck @msaroufim @eqy
true
2,965,197,092
OLMo in-loop evals change with `torch.compile()` in 2.7.0
dirkgr
closed
[ "high priority", "triaged", "oncall: pt2" ]
11
CONTRIBUTOR
### 🐛 Describe the bug OLMo-core is the LLM trainer used for the OLMo series of models. It features in-loop evals that compute perplexity on held-out validation sets. With torch 2.7.0, these evals start the same as with torch 2.6.0, but start diverging at some point. <img width="420" alt="Image" src="https://github.com/user-attachments/assets/4bcdb5e4-4e90-4b61-8172-f692ac631a03" /> After a brief discussion on the PyTorch Slack, I have put together a self-contained repro in the OLMo-core codebase. It takes about three minutes to reproduce on one H100. Please don't be alarmed by how much code there is. OLMo-core has a lot of features, but most of it doesn't run in this example. Most of the flags needed below are just there to turn stuff off and force the trainer to just run the eval, instead of training. To reproduce the problem: 1. Check out https://github.com/allenai/OLMo-core 2. Switch to the `1B-ReproForTorch` branch 3. `pip install -e .[all]` 4. To see the bug, install torch 2.7.0 at this point. For the baseline / expected behavior, skip this step. 5. Run this gnarly command: `torchrun --standalone src/scripts/train/OLMo2-1B.py train titan-baseline-5T-eval-local local --train_module.optim.compile=true --trainer.callbacks.lm_evaluator.eval_on_startup=true --trainer.load_path=s3://ai2-llm-public/checkpoints/dirkg/titan-baseline-5T/step200000 --trainer.callbacks.comet.enabled=false --trainer.hard_stop.unit=steps --trainer.hard_stop.value=200001 --trainer.callbacks.lm_evaluator.eval_interval=2 --trainer.callbacks.downstream_evaluator.enabled=false --trainer.load_strategy=always --trainer.save_folder=./runs/test --dataset.mix_base_dir=http://olmo-data.org --trainer.callbacks.lm_evaluator.eval_dataset.mix_base_dir=http://olmo-data.org` 6. The command starts up the trainer, loads the model and data (from the internet the first time, cached after that), and performs an evaluation right away. Then runs out of memory because you can't train with these settings on a single GPU, but we don't care about that. We just care about the evaluation. It will print some lines that look like the following: ``` pile-validation/CE loss=2.230 pile-validation/PPL=9.296 ``` A CE loss around 2.25 is expected. CE loss of 2.90 or worse shows the bug. More notes: * In the command, you can turn off compile with `--train_module.compile_model=False`. * The model checkpoint this is loading was trained with torch 2.7.0. This seems to be an eval-only issue. ### Error logs _No response_ ### Versions ``` Collecting environment information... PyTorch version: 2.7.0+cu128 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-135-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 Nvidia driver version: 570.124.06 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 57 bits virtual CPU(s): 192 On-line CPU(s) list: 0-191 Thread(s) per core: 2 Core(s) per socket: 48 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 143 Model name: Intel(R) Xeon(R) Platinum 8468 Stepping: 8 Frequency boost: enabled CPU MHz: 3800.010 CPU max MHz: 2101.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Virtualization: VT-x L1d cache: 4.5 MiB L1i cache: 3 MiB L2 cache: 192 MiB L3 cache: 210 MiB NUMA node0 CPU(s): 0-47,96-143 NUMA node1 CPU(s): 48-95,144-191 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.8.3.14 [pip3] nvidia-cuda-cupti-cu12==12.8.57 [pip3] nvidia-cuda-nvrtc-cu12==12.8.61 [pip3] nvidia-cuda-runtime-cu12==12.8.57 [pip3] nvidia-cudnn-cu12==9.7.1.26 [pip3] nvidia-cufft-cu12==11.3.3.41 [pip3] nvidia-curand-cu12==10.3.9.55 [pip3] nvidia-cusolver-cu12==11.7.2.55 [pip3] nvidia-cusparse-cu12==12.5.7.53 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.8.61 [pip3] nvidia-nvtx-cu12==12.8.55 [pip3] torch==2.7.0+cu128 [pip3] torchaudio==2.7.0+cu128 [pip3] torchmetrics==1.7.0 [pip3] torchvision==0.22.0+cu128 [pip3] triton==3.3.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.8.3.14 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.8.57 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.8.61 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.8.57 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.7.1.26 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.3.41 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.9.55 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.2.55 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.7.53 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.8.61 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.8.55 pypi_0 pypi [conda] torch 2.7.0+cu128 pypi_0 pypi [conda] torchaudio 2.7.0+cu128 pypi_0 pypi [conda] torchmetrics 1.7.0 pypi_0 pypi [conda] torchvision 0.22.0+cu128 pypi_0 pypi [conda] triton 3.3.0 pypi_0 pypi ``` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu
true
2,965,193,552
[export] Fix deserialization issue
angelayi
closed
[ "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
4
CONTRIBUTOR
An internal model was serialized in 2023, and is now breaking while loading with the following error: ``` File "<eval_with_key>.1675", line 4 def forward(self, arg1163_1, arg1164_1, , arg1166_1, , arg1168_1, arg1169_1, arg1170_1, , arg1172_1, arg1173_1, arg1174_1, arg1175_1, arg1176_1, arg1177_1, arg1178_1, arg1179_1, arg1180_1, arg1181_1, arg1182_1, arg1183_1, arg1184_1, arg1185_1, arg1186_1, arg1187_1, arg1188_1, arg1189_1, arg1190_1, arg1191_1, arg1192_1, arg1193_1, arg1194_1, arg1195_1, arg1196_1, arg1197_1, arg1198_1, arg1199_1, arg1200_1, arg1201_1, arg1202_1, arg1203_1, arg1204_1, arg1205_1, arg1206_1, arg1207_1, arg1208_1, arg1209_1, arg1210_1, arg1211_1, arg1212_1, arg1213_1, arg1214_1, arg1215_1, arg1216_1, , arg1218_1, arg1219_1, arg1220_1, arg1221_1, arg1222_1, arg1223_1, arg1224_1, , arg1226_1, arg1227_1, arg1228_1, , arg1230_1, , , , , , , , , , , , , , , ): ^ SyntaxError: invalid syntax ``` The syntax errors are due to inputs that are `None` when exporting. Prior to changes in https://github.com/pytorch/pytorch/pull/123590 (landed 4/2024), input specs for none inputs look like `InputSpec(userInput=UserInputSpec(arg=Argument(asNone=True)))`, and during deserialization when creating a node, we would just use a dummy name `arg`. After to those changes, the input specs for none inputs look like `InputSpec(constantInput=InputToConstantInputSpec(name='y', value=ConstantValue(asNone=True)))`, and when creating a node we would use the name `y` as the name. However the PR didn't handle the case if it's loading an old package which doesn't have this name, so ended up putting empty names in the placeholder nodes. This error was uncovered after https://github.com/pytorch/pytorch/pull/149717, where we now use the GraphModule's python codegen to run the UnflattenedModule instead of going through the interpreter path. The placeholder nodes having empty names caused the python codegen to fail.
true
2,965,140,419
Conv2D performance regression
jiqing-feng
closed
[ "triaged", "topic: performance", "intel" ]
6
NONE
### 🐛 Describe the bug The Conv2D is too slow. CMD: numactl -C 0-31 -m 0 python test_conv.py ```python import time import torch conv_layer = torch.nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dtype=torch.float16) input_tensor = torch.rand([16, 256, 512, 512]).to(conv_layer.weight.dtype) - 0.5 with torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], ) as prof: with torch.no_grad(): for i in range(2): start = time.time() out = conv_layer(input_tensor) end = time.time() print(f"time costs: {end-start} s") print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10)) ``` Regression version: torch-2.8.0.dev20250331+cpu Fine version: torch-2.7.0.dev20250216+cpu ### Versions ``` Collecting environment information... PyTorch version: 2.8.0.dev20250401+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.11.0-21-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 384 On-line CPU(s) list: 0-383 Vendor ID: GenuineIntel BIOS Vendor ID: Intel(R) Corporation Model name: Intel(R) Xeon(R) 6972P BIOS Model name: Intel(R) Xeon(R) 6972P CPU family: 6 Model: 173 Thread(s) per core: 2 Core(s) per socket: 96 Socket(s): 2 Stepping: 1 CPU max MHz: 3900.0000 CPU min MHz: 800.0000 BogoMIPS: 4800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acp i mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_faul t epb cat_l3 cat_l2 cdp_l3 intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad f sgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb int el_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local spli t_lock_detect user_shstk avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req hfi vnm i avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid b us_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 a mx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 9 MiB (192 instances) L1i cache: 12 MiB (192 instances) L2 cache: 384 MiB (192 instances) L3 cache: 960 MiB (2 instances) NUMA node(s): 6 NUMA node0 CPU(s): 0-31,192-223 NUMA node1 CPU(s): 32-63,224-255 NUMA node2 CPU(s): 64-95,256-287 NUMA node3 CPU(s): 96-127,288-319 NUMA node4 CPU(s): 128-159,320-351 NUMA node5 CPU(s): 160-191,352-383 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS Not a ffected; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] intel_extension_for_pytorch==2.8.0+git6daf1d8 [pip3] numpy==1.26.4 [pip3] onnx==1.17.0 [pip3] pytorch-lightning==2.5.0.post0 [pip3] pytorch-metric-learning==2.8.1 [pip3] pytorch-msssim==1.0.0 [pip3] pytorchvideo==0.1.5 [pip3] torch==2.8.0.dev20250401+cpu [pip3] torch-audiomentations==0.11.1 [pip3] torch_pitch_shift==1.2.5 [pip3] torchaudio==2.6.0.dev20250401+cpu [pip3] torchmetrics==1.6.1 [pip3] torchvision==0.22.0.dev20250401+cpu [conda] Could not collect ``` cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,965,137,329
[c10d] Add logging for desync debug report
fduwjj
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
7
CONTRIBUTOR
Summary: We want to add a logging to first understand what is the distribution of desync debug report. Test Plan: Test with logger staging Differential Revision: D72249281 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @wz337 @wconstab @d4l3k @c-p-i-o
true
2,965,133,326
[BE] Fix triton windows build
chuanqi129
closed
[ "open source", "Merged", "topic: not user facing" ]
5
COLLABORATOR
Fixes #150480
true
2,965,122,393
Inductor respects exact strides on custom ops by default
zou3519
closed
[ "Merged", "Reverted", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor", "ci-no-td" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150511 * #148104 If a tag is not specified on a custom operator, then inductor will assume that it needs exact strides. Test Plan: - tests + CI cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,965,099,565
DISABLED test_parity__foreach_abs_fastpath_inplace_cuda_float16 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
4
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_abs_fastpath_inplace_cuda_float16&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39806742309). Over the past 3 hours, it has been determined flaky in 8 workflow(s) with 16 failures and 8 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_abs_fastpath_inplace_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_foreach.py", line 228, in test_parity actual = func( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_abs_', keys=('aten::_foreach_abs_', 'Unrecognized', 'cudaLaunchKernel', 'Lazy Function Loading', 'cudaDeviceSynchronize') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1159, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1975, in wrap_fn return fn(self, *args, **kwargs) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 235, in test_parity with self.assertRaises(type(e)): File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 226, in __exit__ self._raiseFailure("{} not raised".format(exc_name)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 163, in _raiseFailure raise self.test_case.failureException(msg) AssertionError: AssertionError not raised The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1171, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.float16], Tensor[size=(19, 19), device="cuda:0", dtype=torch.float16], Tensor[size=(18, 18), device="cuda:0", dtype=torch.float16], Tensor[size=(17, 17), device="cuda:0", dtype=torch.float16], Tensor[size=(16, 16), device="cuda:0", dtype=torch.float16], Tensor[size=(15, 15), device="cuda:0", dtype=torch.float16], Tensor[size=(14, 14), device="cuda:0", dtype=torch.float16], Tensor[size=(13, 13), device="cuda:0", dtype=torch.float16], Tensor[size=(12, 12), device="cuda:0", dtype=torch.float16], Tensor[size=(11, 11), device="cuda:0", dtype=torch.float16], Tensor[size=(10, 10), device="cuda:0", dtype=torch.float16], Tensor[size=(9, 9), device="cuda:0", dtype=torch.float16], Tensor[size=(8, 8), device="cuda:0", dtype=torch.float16], Tensor[size=(7, 7), device="cuda:0", dtype=torch.float16], Tensor[size=(6, 6), device="cuda:0", dtype=torch.float16], Tensor[size=(5, 5), device="cuda:0", dtype=torch.float16], Tensor[size=(4, 4), device="cuda:0", dtype=torch.float16], Tensor[size=(3, 3), device="cuda:0", dtype=torch.float16], Tensor[size=(2, 2), device="cuda:0", dtype=torch.float16], Tensor[size=(1, 1), device="cuda:0", dtype=torch.float16]], args=(), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/test_foreach.py TestForeachCUDA.test_parity__foreach_abs_fastpath_inplace_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,965,099,518
DISABLED test_foreach_l2_large_value_input__foreach_norm_cuda_float16 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
3
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_foreach_l2_large_value_input__foreach_norm_cuda_float16&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39810501223). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_foreach_l2_large_value_input__foreach_norm_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1159, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1420, in only_fn return fn(slf, *args, **kwargs) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 1004, in test_foreach_l2_large_value_input actual = fn( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_norm', keys=('aten::_foreach_norm', 'Unrecognized', 'aten::zeros', 'aten::empty', 'aten::zero_', 'aten::fill_', 'cudaLaunchKernel', 'Lazy Function Loading', 'void at::native::lpnorm_cleanup<c10::Half, (at::native::NormType)1, c10::Half, float>(float const*, at::native::TensorListAddresses, int)', 'void at::native::vectorized_elementwise_kernel<8, at::native::FillFunctor<c10::Half>, std::array<char*, 1ul> >(int, at::native::FillFunctor<c10::Half>, std::array<char*, 1ul>)', 'cudaDeviceSynchronize') The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1171, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=TensorList[Tensor[size=(0,), device="cuda:0", dtype=torch.float16], Tensor[size=(9, 9), device="cuda:0", dtype=torch.float16], Tensor[size=(8, 8), device="cuda:0", dtype=torch.float16], Tensor[size=(0,), device="cuda:0", dtype=torch.float16], Tensor[size=(6, 6), device="cuda:0", dtype=torch.float16], Tensor[size=(5, 5), device="cuda:0", dtype=torch.float16], Tensor[size=(0,), device="cuda:0", dtype=torch.float16], Tensor[size=(3, 3), device="cuda:0", dtype=torch.float16], Tensor[size=(0,), device="cuda:0", dtype=torch.float16], Tensor[size=(0,), device="cuda:0", dtype=torch.float16]], args=(), kwargs={'ord': '0', 'dtype': 'torch.float64'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/test_foreach.py TestForeachCUDA.test_foreach_l2_large_value_input__foreach_norm_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,965,095,245
caffe2: Fix lint errors in native/xnnpack/Linear.cpp
EricGriffith
closed
[ "triaged", "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
CONTRIBUTOR
Summary: See title Test Plan: Sandcastle Differential Revision: D72275403
true
2,965,094,979
caffe2: Fix lint errors in native/TensorShape.cpp
EricGriffith
open
[ "fb-exported" ]
7
CONTRIBUTOR
Summary: See title Test Plan: Sandcastle Differential Revision: D72275198
true
2,965,094,244
caffe2: Fix lint errors in native/TensorAdvancedIndexing.cpp
EricGriffith
open
[ "fb-exported", "topic: not user facing" ]
5
CONTRIBUTOR
Summary: See title Test Plan: Sandcastle Differential Revision: D72274536
true
2,965,093,901
caffe2: Fix lint errors in native/RNN.cpp
EricGriffith
open
[ "fb-exported" ]
7
CONTRIBUTOR
Summary: See title Test Plan: Sandcastle Differential Revision: D72273826
true
2,965,093,577
caffe2: Fix lint errors in native/quantized/TensorAdvancedIndexing
EricGriffith
open
[ "fb-exported", "release notes: quantization" ]
7
CONTRIBUTOR
Summary: See title Test Plan: Sandcastle Differential Revision: D72273049
true
2,965,093,253
caffe2: Fix lint errors in native/int4mm_kernel
EricGriffith
open
[ "module: cpu", "fb-exported" ]
6
CONTRIBUTOR
Summary: See title Test Plan: Sandcastle Differential Revision: D72218816 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,965,058,558
Enable weekly test for operator benchmark
LifengWang
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/op-benchmark" ]
3
CONTRIBUTOR
To regularly track the performance of the operator benchmark, enable the weekly test. Hi, @huydhn, as you mentioned in https://github.com/pytorch/pytorch/pull/143733#issuecomment-2578317520, we could integrate the performance data from the weekly test into the OSS benchmark database for the dashboard.
true
2,964,948,179
caffe2: Fix lint errors in runtime/register_prim_ops.cpp
EricGriffith
open
[ "oncall: jit", "fb-exported", "release notes: jit" ]
6
CONTRIBUTOR
Summary: See title Test Plan: Sandcastle Differential Revision: D72276588 cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,964,944,307
Revert "[fx] Move map_aggregate to C++ (#148243)"
clee2000
closed
[ "ciflow/trunk", "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150500 * #150499 * #150498 * #150497 * #150496 Something in this stack is causes a memory leak, some context can be found here in #150059. My guess is 150498 It is also causing issues in internal [S503111](https://www.internalfb.com/sevmanager/view/503111) Manual revert because merge conflicts in expected results csv This reverts commit bec7bdad47a4a96863af623a63029dfc5ea8d011. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames Differential Revision: [D72289031](https://our.internmc.facebook.com/intern/diff/D72289031)
true
2,964,943,884
Revert "[fx] Move Node._update_args_kwargs to C++ (#148260)"
clee2000
closed
[ "ciflow/trunk", "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150500 * __->__ #150499 * #150498 * #150497 * #150496 This reverts commit bf752c36da08871d76a66fd52ad09f87e66fc770. Differential Revision: [D72289029](https://our.internmc.facebook.com/intern/diff/D72289029) cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,964,925,173
Revert "[fx] Move Node._prepend/Node._remove_from_list to C++ (#148261)"
clee2000
closed
[ "ciflow/trunk", "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150500 * #150499 * __->__ #150498 * #150497 * #150496 This reverts commit 5d4e7d58b42623a9024a84f0050967ff0318dcdb. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames Differential Revision: [D72289030](https://our.internmc.facebook.com/intern/diff/D72289030)
true
2,964,924,890
Revert "[fx] Optimizations for node name generation (#148288)"
clee2000
closed
[ "ciflow/trunk", "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150500 * #150499 * #150498 * __->__ #150497 * #150496 This reverts commit 8f858e226ba81fde41d39aa34f1fd4cb4a4ecc51. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames Differential Revision: [D72289033](https://our.internmc.facebook.com/intern/diff/D72289033)
true
2,964,924,803
Revert "[fx] Optimize TracerBase.create_arg and Graph._gen_python_code (#148292)"
clee2000
closed
[ "ciflow/trunk", "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150500 * #150499 * #150498 * #150497 * __->__ #150496 This reverts commit a60b4ed6236fea46bd41c6410204612f85c37818. Differential Revision: [D72289032](https://our.internmc.facebook.com/intern/diff/D72289032) cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,964,919,127
Fix _del_library
zou3519
closed
[ "Merged", "topic: not user facing" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150511 * #148104 * __->__ #150495 On library deletion, we need to clear fx's schema cache. Test Plan: - top PR in the stack, I don't have a good test case for this PR.
true
2,964,890,747
[inductor][autotune cache] add torch_key() to configs hash
davidberard98
closed
[ "fb-exported", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
20
CONTRIBUTOR
Summary: **Context**: https://github.com/pytorch/pytorch/pull/150122 (D71982587 - let's call this "the WS diff") introduces "bc/fc-breaking" cache changes. In particular, it introduces `num_consumer_groups` and adds it to the cached config. In versions of torch that include the WS diff, `num_consumer_groups` is treated as a class variable on a triton.Config object (i.e. `triton.Config({..kwargs..}, num_consumer_groups=num_consumer_groups, ...`). And in versions of torch that don't include the WS diff, you generally don't expect to see this kwarg. But if a program is run WS-torch (i.e. torch w/ the WS diff), and then later you run the same program with non-WS-torch, then non-WS-torch is going to find this autotune cache entry, and interpret `num_consumer_groups` as a kwarg, because there's no special handling for for num_consumer_groups in this version of torch. Then the program crashes with a triton failure message. **The fix**: add the torch version / torch key into the hash, so that any changes to inductor will invalidate the cache (ensuring that other changes to triton_heuristics won't cause these bc/fc issues). Test Plan: D72285868 (or https://gist.github.com/davidberard98/2ea697eb550c94d0d1948fedb5c5c7d8, but this doesn't repro in OSS because this version of warp specialization is not available in oss triton) can repro the failure, and the failure is fixed after this PR is patched. Also, added a test in test/inductor/test_codecache.py which verifies that there's no cache hit if the torch_key changes (and verified that without the functional changes in this PR, the test fails). Differential Revision: D72285303 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,836,843
[DTensor] add _explicit_order_placements util
wconstab
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150887 * #150862 * #150650 * #150490 * __->__ #150493 The util converts a list of placements in the traditional DTensor format (e.g. [_StridedShard(0), Shard(0)], where list position is mesh_dim and sharding is always applied left-to-right (from dim 0 to higher dims)) to a more explicitly ordered format, also replacing '_StridedShard' with simple 'Shard' placements in the process. (e.g. the above becomes [(1, Shard(0)), (0, Shard(0)] where the first item in the tuple is the mesh_dim and the ordering of the tuples is the sharding order. This is useful so far as a helper for fixing local shape computation for strided sharding in the uneven shape case, in the following PR- but may also be useful more broadly if we can use explicit orderings to simplify other parts of DTensor logic. This skips implementing some combinations of _StridedSharding that are not currently used in the wild today, but could be supported easily. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @d4l3k @c-p-i-o
true
2,964,827,662
Expired SSL breaking CI builds
harshalparekh6
closed
[ "module: ci", "ci: sev" ]
5
NONE
The SSL certificate is expired causing this error: ``` Could not fetch URL https://download.pytorch.org/whl/cpu/torchvision/: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host='download.pytorch.org', port=443): Max retries exceeded with url: /whl/cpu/torchvision/ (Caused by SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: certificate has expired (_ssl.c:1133)'))) - skipping ``` cc @seemethere @malfet @pytorch/pytorch-dev-infra @ezyang @gchanan @zou3519 @kadeng @msaroufim
true
2,964,826,276
Security certificate expired on https://download.pytorch.org/whl/
djgagne
closed
[]
7
NONE
I have a CI pipeline that depends on the Linux CPU version of PyTorch and downloads from https://download.pytorch.org/whl/cpu. The CI script failed, so I visited the wheel site and discovered that the site's RSA security certificate Expired: Tuesday, April 1, 2025 at 5:59:59 PM Mountain Daylight Time. When will the certificate be renewed?
true
2,964,795,100
[DTensor] StridedShard support uneven sharding
wconstab
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (fsdp)", "ciflow/inductor", "release notes: distributed (dtensor)", "release notes: distributed (checkpoint)", "merging" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150887 * #150862 * #150650 * __->__ #150490 This enables using FSDP+TP on parameters with dimensions that aren't evenly divisible by the DP/TP mesh sizes. - this may not support all possible combinations of strided shardings and shardings, but the support before this PR is not complete anyway This contains several fixes for different aspects of DTensor behavior relating to uneven strided sharding: - original creation of the strided tensor requires fixes in StridedShard._split_tensor - full_tensor() reconstruction requries fixes in StridedShard._to_replicate_tensor to correctly reshuffle the data into the original pre-sharded order - Distributed Checkpointing support requires correct computation of the compute_local_shape_and_global_offset util so it knows how a local shard maps to the global tensor, for reconstruction during load/reshard. This PR also adds a util `_explicit_order_placements` which converts a list of placements with StridedSharding into a list of placements with only regular sharding, with the order shuffled such that it is equivalent. Builds on and completes the work started in https://github.com/pytorch/pytorch/pull/148894 Uneven Sharding Example ------- (copied from _StridedShard._to_replicate_tensor docstring) mesh = (DP=2, TP=2) original = torch.arange(5) **Applying Sharding** Step 1 - Apply TP sharding `tp = distribute_tensor(x, world_mesh['tp'], [Shard(0)])` local_tensors: rank0: [0,1,2] rank1: [3,4] rank1: [0,1,2] rank3: [3,4] Step 2 - Apply FSDP sharding `dp_tp = ...` (the process of creating a strided-shard tensor is skipped over as it is hacky and complicated) dp_tp has placement (_StridedShard(0, split_factor=2), Shard(0)) local_tensors: rank0: [0,1] rank1: [3] rank1: [2] rank3: [4] **Reconstructing the Full Tensor** Now, say someone wants to reconstruct dp_tp's full tensor. This will invoke 'redistribute' to replicate. redistribute will first replicate the "Shard(0)" placement on the rightmost mesh dim, then replicate the StridedShard placement second, which is implemented by this function. So our starting point (`local_tensor` arg) is the result of replicating the Shard(0) placement across the TP dim, which looks like this. Note the discrepancy with the 'tp sharded tensor' line above! We'll fix it by locally shuffling data. local_tensors: rank0: [0,1,3] rank1: [0,1,3] rank1: [2,4] rank3: [2,4] Step 1: replicate over the DP dimension. Afterwards, each rank can locally sort the values. note: we need padding to do this allgather, and we'll need to keep track of the padding amount for later local_tensors: rank0: [0,1,3,2,4] rank1: [0,1,3,2,4] rank1: [0,1,3,2,4] rank3: [0,1,3,2,4] Step 2: chunk and shuffle values around to account for the wrong order of operations above and get the original tensor content back 01324# <- our allgather includes padding, if padding was applied in step 1 01324 <- Remove the padding 013, 24 <- chunk once, 'undoing' the DP allgather 01, 3, 2, 4 <- chunk each chunk, 'undoing' the initial (wrong) TP allgather performed by Shard(0)->Replicate() 012, 34 <- interleave with stride=TP mesh dim size 01234 <- concatenate Co-authored-by: Luca Wehrstedt <lw@meta.com> Co-authored-by: Will Constable <whc@meta.com> cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @d4l3k @c-p-i-o
true
2,964,780,337
[Inductor] Refactor accuracy check to `allclose_many` function
blaine-rister
closed
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
**Note: This seems like a duplicate of `torch._dynamo.utils.same`. I will likely close this PR in favor of that.** Preparatory refactor for https://github.com/pytorch/pytorch/pull/146942. # Feature This is a small change to refactor an existing test utility into a common library, so it can be reused across test modules. The feature is a function called `allclose_many`, which checks accuracy across a pytree of tensors. Most end-to-end tests perform this type of check. I'm not sure if there's an existing utility for this, but this one seems simple enough. As a bonus, `allclose_many` calls into its own helper `call_many`, which can be used for other types of checks. This is essentially a variadic form of `pytree.tree_map`. # Test plan This feature is used by existing block pointer tests. Also, this PR adds a new unit test checking that `allclose_many` correctly spots an accuracy bug. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,779,061
Lightweight CUDAGraph backend
BoyuanFeng
open
[ "triaged", "module: cuda graphs", "oncall: pt2", "module: inductor", "vllm-compile" ]
2
CONTRIBUTOR
### 🚀 The feature, motivation and pitch There might be a large runtime overhead from TorchDyanmo Cache Lookup and cudagraph tree runtime checks. This overhead is small when the computation graph is large. However, it becomes noticeable when the computation graph is small. In one example, the breakdown is 1) Other torch.compile overhead (e.g., TorchDynamoCacheLookup): 176 us 2) Cudagraph tree overhead: 128 us 3) cudaGraphLaunch time: 41 us 4) Actual cuda kernel time: 72 us 1)+2)+3)+4) = 417 us Ideally we only need 3) + 4), so the overall latency reduces from 417 us -> 113 us. In this example, the user turns on fullgraph=True and there is a single cudagraph. This may also apply to vLLM case where there is 1 cudagraph for each layer after graph partition. Another use case is multiple smaller cudagraphs from graph partition. We may consider a “CUDAGraph List” when there is a sequence of CUDAGraphs that always run one after another. Then we don’t need runtime checks (e.g., [check_invariants](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/cudagraph_trees.py#L2116-L2122)) and can avoid overhead. This loses generality but also reduces some overhead. Internal ref: https://fb.workplace.com/groups/1075192433118967/permalink/1633387517299453/ cc @mcarilli @ezyang @eellison @penguinwu @chauhang @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @zou3519 ### Alternatives _No response_ ### Additional context _No response_
true
2,964,766,992
Expose symbols on macos in the xplat pytorch stack
stepanhruda
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
CONTRIBUTOR
Summary: X-link: https://github.com/pytorch/executorch/pull/9819 Had to revert D71321310 because it affected way too many targets and build sizes. These changes should expose just enough symbols to be buildable in arvr mode on macOS. Could potentially make narrow it down even more by avoiding eg `get_pt_compiler_flags` Differential Revision: D72255474
true
2,964,766,244
[invoke_subgraph] Filter out grad_out where fw_out requires_grad is False
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150486 * #150450 * #150082 I am not sure if this is the right way.
true
2,964,762,336
[inductor][test] Disable Triton GEMM backend tests for SM89
henrylhtsang
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148622 * __->__ #150485 Motivation: To deprecate a silent fallback behavior https://github.com/pytorch/pytorch/issues/150390 Problem: On SM89, Trition GEMM backend isn't working. This seems to be a pre-existing issue. I don't have access to SM89 to debug further. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,723,206
API to specify cudagraph sizes
BoyuanFeng
open
[ "triaged", "module: cuda graphs", "oncall: pt2", "module: inductor", "vllm-compile" ]
0
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Currently PT2 cudagraph supports automated dynamic shapes. Specifically, we caches on symint function args and record a new cudagraph whenever we see a new dynamic shapes. When there are many dynamic shapes, we keep recording new cudagraphs until reaching certain threshold (e.g., 256 cudagraphs). This automated experience frees users from considering dynamic shapes in cudagraph. However, it also adds runtime overhead. An alternative ux is to allow users specify a set of important input shapes and only record a cudagraph for these shapes. For all other shapes, we fallback to a general but non-cudagraphed code. This only targets pro-users. cc @mcarilli @ezyang @eellison @penguinwu @chauhang @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @zou3519 ### Alternatives _No response_ ### Additional context _No response_
true
2,964,722,314
[dynamic shapes] guard_or_false for computeStorageNbytes
pianpwk
open
[ "module: dynamo", "ciflow/inductor", "release notes: export" ]
6
CONTRIBUTOR
removes fast path for computing storage, fixes some adjacent tests cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,964,713,890
API to specify static input indices for cudagraph
BoyuanFeng
open
[ "triaged", "module: cuda graphs", "oncall: pt2", "module: inductor", "vllm-compile" ]
2
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Currently we rely on AOTAutograd to identify static input indices. However, if the graph module is not captured by dynamo, we don’t have static input indices anymore ([code](https://github.com/pytorch/pytorch/blob/main/torch/_functorch/aot_autograd.py#L1013-L1015)). This leads to cudagraph issues that we unnecessarily copy all parameters/buffers to static tensor addresses. One use case is user want to call inductor compile_fx directly on a graph (e.g., vLLM). To fix this issue, we should add an API for users to specify static input indices which will be used by cudagraph in PT2. cc @mcarilli @ezyang @eellison @penguinwu @chauhang @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @zou3519 ### Alternatives _No response_ ### Additional context _No response_
true
2,964,710,303
[dynamic shapes] guard_or_false rewrite for scatter, gather, index metas
pianpwk
open
[ "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,964,707,750
[XPU] Triton Windows build failing release 2.7
atalman
closed
[ "module: binaries", "topic: binaries", "module: xpu" ]
0
CONTRIBUTOR
### 🐛 Describe the bug Observing following failure: https://github.com/pytorch/pytorch/actions/runs/14203257536/job/39804771702 Error: Filename longer than 260 characters: ``` 2025-04-01T21:28:58.8631176Z ninja: error: Stat(C:/Users/runneruser/AppData/Local/Temp/tmpzgzp7pwt/triton/python/build/cmake.win-amd64-cpython-3.10/_deps/spirv-llvm-translator-subbuild/spirv-llvm-translator-populate-prefix/src/spirv-llvm-translator-populate-stamp/spirv-llvm-translator-populate-patch-info.txt): Filename longer than 260 characters 2025-04-01T21:28:58.8632966Z 2025-04-01T21:28:58.8633695Z CMake Error at C:/actions-runner/_work/pytorch/pytorch/pytorch/Miniconda3/envs/py310/Lib/site-packages/cmake/data/share/cmake-4.0/Modules/FetchContent.cmake:1918 (message): 2025-04-01T21:28:58.8634660Z Build step for spirv-llvm-translator failed: 1 2025-04-01T21:28:58.8635024Z Call Stack (most recent call first): 2025-04-01T21:28:58.8636375Z C:/actions-runner/_work/pytorch/pytorch/pytorch/Miniconda3/envs/py310/Lib/site-packages/cmake/data/share/cmake-4.0/Modules/FetchContent.cmake:1609 (__FetchContent_populateSubbuild) 2025-04-01T21:28:58.8638648Z C:/actions-runner/_work/pytorch/pytorch/pytorch/Miniconda3/envs/py310/Lib/site-packages/cmake/data/share/cmake-4.0/Modules/FetchContent.cmake:2145:EVAL:2 (__FetchContent_doPopulation) 2025-04-01T21:28:58.8640199Z C:/actions-runner/_work/pytorch/pytorch/pytorch/Miniconda3/envs/py310/Lib/site-packages/cmake/data/share/cmake-4.0/Modules/FetchContent.cmake:2145 (cmake_language) 2025-04-01T21:28:58.8641734Z C:/actions-runner/_work/pytorch/pytorch/pytorch/Miniconda3/envs/py310/Lib/site-packages/cmake/data/share/cmake-4.0/Modules/FetchContent.cmake:1978:EVAL:1 (__FetchContent_Populate) 2025-04-01T21:28:58.8643270Z C:/actions-runner/_work/pytorch/pytorch/pytorch/Miniconda3/envs/py310/Lib/site-packages/cmake/data/share/cmake-4.0/Modules/FetchContent.cmake:1978 (cmake_language) 2025-04-01T21:28:58.8644409Z third_party/intel/cmake/FindSPIRVToLLVMTranslator.cmake:23 (FetchContent_Populate) 2025-04-01T21:28:58.8645058Z third_party/intel/lib/Target/SPIRV/CMakeLists.txt:2 (find_package) ``` ### Versions 2.8.0 cc @seemethere @malfet @osalpekar @gujinghui @EikanWang @fengyuan14 @guangyey cc @EikanWang @chuanqi129
true
2,964,704,309
[MPS] tril op not handling infs correctly
pytorchbot
closed
[ "open source", "release notes: mps", "ciflow/mps" ]
1
COLLABORATOR
Fixes #149813 cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,964,681,990
[CUDAGraph] support meta tensor
BoyuanFeng
closed
[ "Merged", "module: cuda graphs", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Previously, cudagraph is skipped if the graph contains any meta tensor. However, we should not skip since meta tensor does not have actual computation. This PR fixes the issue. ### Example ```python import torch def foobar(x, y): return x * 2, y * 3 foo_c = torch.compile(mode="reduce-overhead")(foobar) t = torch.empty((1, 16, 128, 128), device="meta") y = torch.rand([64], device="cuda") eager_out = foobar(t, y) for _ in range(3): compiled_out = foo_c(t, y) ``` Prior to this PR, above code leads to ``` skipping cudagraphs due to multiple devices: device(type='cuda', index=0), device(type='meta') ``` With this PR, we don't skip. cc @mcarilli @ezyang @eellison @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,681,518
[dynamo] improve graph break message causing skipped frame
williamwen42
open
[ "triaged", "oncall: pt2", "module: dynamo", "module: compile ux" ]
0
MEMBER
Example: ```python import torch class CtxMgr: def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): pass def fn(x): with CtxMgr(): assert x is None torch.compile(fn, backend="eager")(torch.randn(3)) ``` Logs: ``` Graph break: skip: from user code at: File "/data/users/williamwen/pytorch/playground.py", line 16, in fn assert x is None Traceback (most recent call last): File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 1233, in __call__ result = self._inner_convert( ^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 619, in __call__ return _compile( ^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 1079, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 779, in compile_inner return _compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 815, in _compile_inner out_code = transform_code_object(code, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/convert_frame.py", line 736, in transform tracer.run() File "/data/users/williamwen/pytorch/torch/_dynamo/symbolic_convert.py", line 3511, in run super().run() File "/data/users/williamwen/pytorch/torch/_dynamo/symbolic_convert.py", line 1337, in run while self.step(): ^^^^^^^^^^^ File "/data/users/williamwen/pytorch/torch/_dynamo/symbolic_convert.py", line 1246, in step self.dispatch_table[inst.opcode](self, inst) File "/data/users/williamwen/pytorch/torch/_dynamo/symbolic_convert.py", line 646, in inner jump_graph_break(self, inst, value) File "/data/users/williamwen/pytorch/torch/_dynamo/symbolic_convert.py", line 594, in jump_graph_break unimplemented_v2( File "/data/users/williamwen/pytorch/torch/_dynamo/exc.py", line 517, in unimplemented_v2 raise Unsupported(msg) torch._dynamo.exc.Unsupported: Should not compile partial graph (data-dependent branching) Explanation: Dynamo has determined when encountering data-dependent branching (e.g. `if my_tensor.item() > 0:`) that it should not compile the partial graph. Developer debug context: from user code: File "/data/users/williamwen/pytorch/playground.py", line 16, in fn assert x is None Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" ``` Notes: - We should hide the internal compiler stack trace if verbose logging is not set - We should better explain what is meant by "skip" cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,964,678,385
Better test coverage on _inductor/scheduler.py
exclamaforte
open
[ "triaged", "better-engineering", "oncall: pt2", "module: inductor" ]
0
CONTRIBUTOR
### 🚀 The feature, motivation and pitch I noticed that we have almost no direct tests of the classes in scheduler.py. It's not clear how much of an issue this is as the scheduler is covered by almost every other inductor test. Ideally, we'd get some coverage stats and then add tests to cover the gaps: - [ ] get coverage of scheduler.py - [ ] fill in gaps ### Alternatives _No response_ ### Additional context _No response_ cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,674,925
expect fail scan test in sigmoid
ydwu4
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
Summary: as titled. Test Plan: see modified test. Differential Revision: D72271976
true
2,964,674,616
[dynamic shapes] rewrite slice_forward decomp with guard_or_false
pianpwk
open
[ "ciflow/inductor", "release notes: export" ]
1
CONTRIBUTOR
Uses guard_or_false in place of size-oblivious to assume if not already known that the start/end indices are in-bounds. Adds torch._checks for this, checking `start_val >= 0, end_val <= sizes[dim], start_val >= end_val`, which helps guarantee that the output size at runtime matches the symbolic expression in `end_val - start_val`. Without these checks the reported symbolic size might not match, e.g. if end_val < start_val, eager returns a size-0 tensor but the symbolic size is negative.
true
2,964,674,274
[ROCm] code cleanup of architecture checks
apakbin
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm" ]
7
CONTRIBUTOR
This PR replaces several calls to `at::cuda::getCurrentDeviceProperties()->gcnArchName` and `at::cuda::getDeviceProperties(device_index)->gcnArchName` when checking to see if the GPU architecture is in a certain list. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,964,671,453
torch.library.custom_op doesn't handle 1-element tuples returns
zou3519
open
[ "triaged", "module: custom-operators", "oncall: pt2", "module: pt2-dispatcher", "internal ramp-up task" ]
1
CONTRIBUTOR
``` import torch @torch.library.custom_op("mylib::add", mutates_args=()) def add(x: torch.Tensor, y: torch.Tensor) -> tuple[torch.Tensor]: return (x.clone(),) x = torch.randn(3) ret = add(x, x) ``` gives: ``` yset, *args, **kwargs) 720 def redispatch(self, /, keyset, *args, **kwargs): --> 721 return self._handle.redispatch_boxed(keyset, *args, **kwargs) RuntimeError: Unable to cast (tensor([-0.3896, 0.1958, -0.0152]),) to Tensor ``` cc @chauhang @penguinwu @bdhirsh
true
2,964,664,187
[dynamo] emit only 1 graph break message on unrecoverable data-dependent assert fail
williamwen42
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150471 Addresses https://fb.workplace.com/groups/1075192433118967/permalink/1625299684774903/ cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,964,649,000
[pytorch][triton] Allow warp spec for FlexAttention kernel
mandroid6
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
13
CONTRIBUTOR
Summary: Given inductor support for warp-specialization for `TritonTemplateKernel`, this change adds: - num_consumer_groups - num_buffers_warp_spec to the flexattention template generated by inductor in `torch.compile`. NOTE: Currently default config doesn't enable warp-spec and needs explicit args for num_consumer_groups, num_buffers_warp_spec in the kernel options to enable. Test Plan: ### Functional Testing ```Py import torch from torch.nn.attention.flex_attention import flex_attention from triton.testing import do_bench make_tensor = lambda: torch.rand(8, 16, 8192, 128, device="cuda", dtype=torch.bfloat16) q, k, v = make_tensor(), make_tensor(), make_tensor() flex_compiled = torch.compile(flex_attention, fullgraph=True) print(do_bench(lambda: flex_compiled(q, k, v, kernel_options={"num_warps": 4, "num_consumer_groups": 2, "num_buffers_warp_spec": 3,}))) ``` - (best config) without WS: 11.06 - with WS: 9.35 Differential Revision: D70501880 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,640,394
[torchrec] update local_shards_wrapper to latest version
iamzainhuda
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/periodic", "ciflow/inductor" ]
11
CONTRIBUTOR
Summary: Adding new ops, support for empty shards, and fixed initializations for downstream checkpointing. Test Plan: buck2 run 'fbcode//mode/dev-nosan' fbcode//torchrec/distributed/tests:test_shards_wrapper Differential Revision: D72271275 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,964,634,759
DISABLED test_parity__foreach_abs_fastpath_inplace_cuda_bool (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
4
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_abs_fastpath_inplace_cuda_bool&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39794859365). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 10 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_abs_fastpath_inplace_cuda_bool` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_foreach.py", line 228, in test_parity actual = func( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_abs_', keys=('aten::_foreach_abs_', 'Unrecognized', 'cudaLaunchKernel', 'Lazy Function Loading', 'cudaDeviceSynchronize') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1159, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1975, in wrap_fn return fn(self, *args, **kwargs) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 235, in test_parity with self.assertRaises(type(e)): File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 226, in __exit__ self._raiseFailure("{} not raised".format(exc_name)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 163, in _raiseFailure raise self.test_case.failureException(msg) AssertionError: AssertionError not raised The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1171, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.bool], Tensor[size=(19, 19), device="cuda:0", dtype=torch.bool], Tensor[size=(18, 18), device="cuda:0", dtype=torch.bool], Tensor[size=(17, 17), device="cuda:0", dtype=torch.bool], Tensor[size=(16, 16), device="cuda:0", dtype=torch.bool], Tensor[size=(15, 15), device="cuda:0", dtype=torch.bool], Tensor[size=(14, 14), device="cuda:0", dtype=torch.bool], Tensor[size=(13, 13), device="cuda:0", dtype=torch.bool], Tensor[size=(12, 12), device="cuda:0", dtype=torch.bool], Tensor[size=(11, 11), device="cuda:0", dtype=torch.bool], Tensor[size=(10, 10), device="cuda:0", dtype=torch.bool], Tensor[size=(9, 9), device="cuda:0", dtype=torch.bool], Tensor[size=(8, 8), device="cuda:0", dtype=torch.bool], Tensor[size=(7, 7), device="cuda:0", dtype=torch.bool], Tensor[size=(6, 6), device="cuda:0", dtype=torch.bool], Tensor[size=(5, 5), device="cuda:0", dtype=torch.bool], Tensor[size=(4, 4), device="cuda:0", dtype=torch.bool], Tensor[size=(3, 3), device="cuda:0", dtype=torch.bool], Tensor[size=(2, 2), device="cuda:0", dtype=torch.bool], Tensor[size=(1, 1), device="cuda:0", dtype=torch.bool]], args=(), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/test_foreach.py TestForeachCUDA.test_parity__foreach_abs_fastpath_inplace_cuda_bool This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,964,634,694
DISABLED test_foreach_l2_large_value_input__foreach_norm_cuda_bfloat16 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
4
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_foreach_l2_large_value_input__foreach_norm_cuda_bfloat16&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39793119621). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_foreach_l2_large_value_input__foreach_norm_cuda_bfloat16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,964,619,998
Add some CPython tests to dynamo
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
7
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150466 * #147990 * #146506 * #146501 * #146500 CPython tests included: * test_baseexception.py * test_cmath.py * test_complex.py * test_contextlib.py * test_dict.py * test_exceptions.py * test_float.py * test_generators.py * test_generator_stop.py * test_grammar.py * test_int_literal.py * test_int.py * test_iter.py * test_list.py * test_math.py * test_ordered_dict.py * test_raise.py * test_setcomps.py * test_set.py * test_sort.py * test_string.py * test_sys.py * test_tuple.py * test_userdict.py * test_userlist.py * test_userstring.py * unittest/test_assertions.py cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,964,606,785
`torch._dynamo.nonstrict_trace` has confusing user code stacktrace
StrongerXi
open
[ "triaged", "oncall: pt2", "module: dynamo" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Repro: ```python import torch @torch._dynamo.nonstrict_trace def f(x, items): it = iter(items) return next(it), x.sin() opt_f = torch.compile(f, backend="eager", fullgraph=True) x = torch.randn(3) dct = {'a': 3, 'b': 3} ref = f(x, dct.items()) print(ref) res = opt_f(x, dct.items()) print(res) # Traceback (most recent call last): # File "/home/ryanguo99/scratch/test.py", line 15, in <module> # res = opt_f(x, dct.items()) # ^^^^^^^^^^^^^^^^^^^^^ # File "/home/ryanguo99/repos/pytorch/torch/_dynamo/eval_frame.py", line 667, in _fn # raise e.with_traceback(None) from e.__cause__ # torch._dynamo.exc.Unsupported: # For `nonstrict_trace`-ed function, the only allowed input types are basic types (e.g., torch.Tensor, int, float) or pytree containers of those. Here you are calling the function with arguments that contain a value of type <dict_items>, please use one of the following to register the type with pytree: # * `torch.utils._pytree.register_constant` # * `torch.utils._pytree.register_dataclass` # * `torch.utils._pytree.register_pytree_node` # # # from user code: # File "/home/ryanguo99/repos/pytorch/torch/_dynamo/external_utils.py", line 70, in inner # return fn(*args, **kwargs) ``` ### Error logs _No response_ ### Versions main 0d96c38b76b, python 3.11 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,964,577,373
[BE] Do not allow PyTorch codebase to use `c10::optional`
malfet
closed
[ "oncall: distributed", "Merged", "Reverted", "topic: not user facing", "ciflow/mps", "ci-no-td" ]
14
CONTRIBUTOR
Extensions can still rely on it, and we should decorate it with deprecated, but it is a C++20 feature. XPU still uses it, so exclude XPU builds until https://github.com/intel/torch-xpu-ops/pull/1615 is merged Test plan: - https://github.com/pytorch/pytorch/pull/150464/commits/0def9b4acc81f9bcb032f57f8c606a71234564c9 should fail MPS builds ``` /Users/ec2-user/runner/_work/pytorch/pytorch/aten/src/ATen/native/mps/OperationUtils.mm:975:44: error: no template named 'optional' in namespace 'c10'; did you mean 'std::optional'? c10::optional<int64_t> extra) { ^~~~~~~~~~~~~ std::optional ``` - https://github.com/pytorch/pytorch/pull/150464/commits/a769759dd42cb8b370d9cbfac5c161832ee033b8 should fail CUDA builds ``` /var/lib/jenkins/workspace/torch/csrc/distributed/c10d/CUDASymmetricMemoryOps.cu(530): error: namespace "c10" has no member "nullopt" input, c10::nullopt, reduce_op, group_name, out); ^ 1 error detected in the compilation of ``` Fixes https://github.com/pytorch/pytorch/issues/150313 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,964,529,349
[ROCm][TunableOp] Fix UT race condition and reduce UT duration.
naromero77amd
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm", "ciflow/rocm-mi300" ]
3
COLLABORATOR
This PR fixes two race conditions that occur when UT tests are run: - In a particular order within a single shard. - Concurrently in multiple shards. Each test now gets a unique filename that depends on the test name. There were two other minor improvements to the UTs: - matmul_offline_mgpu could occasionally fail if run on 8 GPUs. Criteria was relaxed. - bmm_tunableop_rocm checks that the rotating buffer is not zero. Otherwise, the test is not useful. Additionally, several UTs took over 1 minute to run. Their duration was reduced by a combination of setting max tuning iterations to one, setting the rotating buffer size to zero, and/or reducing the matrix dimensions. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
true
2,964,477,866
enable torch.compile for torch._scaled_mm nvfp4 recipe
vkuzo
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "topic: improvements", "fx" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150462 Summary: Updates the meta registration for `torch._scaled_mm` to work for the nvfp4 recipe. Test Plan: ```bash pytest test/test_matmul_cuda.py -s -k test_blockwise_nvfp4 ``` Reviewers: Subscribers: Tasks: Tags: cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,964,472,635
[release] Make pytorch source distribution package respect pep-0517
atalman
open
[ "module: binaries", "triaged", "topic: binaries" ]
2
CONTRIBUTOR
### 🐛 Describe the bug I would like to make modifications to Source Distribution package to respect https://peps.python.org/pep-0517/ Our source packaging was initially introduced by https://github.com/pytorch/pytorch/pull/63022 and have not changed since then. I would like to modify create-release yml to build sdist respecting PEP 0517: https://github.com/pytorch/pytorch/blob/main/.github/workflows/create_release.yml#L68 PyPi documentation on generating sdist: https://packaging.python.org/en/latest/tutorials/packaging-projects/#generating-distribution-archives Currently if one tries to install the tar.gz file used in the release, we get something like this: ``` pip install pytorch-v2.6.0.tar.gz Processing ./pytorch-v2.6.0.tar.gz ERROR: Exception: Traceback (most recent call last): File "/Users/atalman/miniconda3/lib/python3.9/tarfile.py", line 2617, in next tarinfo = self.tarinfo.fromtarfile(self) File "/Users/atalman/miniconda3/lib/python3.9/tarfile.py", line 1295, in fromtarfile obj = cls.frombuf(buf, tarfile.encoding, tarfile.errors) File "/Users/atalman/miniconda3/lib/python3.9/tarfile.py", line 1231, in frombuf raise EmptyHeaderError("empty header") tarfile.EmptyHeaderError: empty header ``` ### Versions 2.8.0 cc @seemethere @malfet @osalpekar
true
2,964,426,151
[Cherry-pick] Make PyTorch buildable with cmake-4
malfet
closed
[ "module: cpu", "ciflow/binaries", "release notes: quantization", "release notes: releng" ]
1
CONTRIBUTOR
This cherry-picks following two PRs into release/2.7 branch - **[Cmake] Make PyTorch buildable by CMake-4.x (#150203)** - **Make PyTorch buildable by CMake-4.x on s390x (#150294)** cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,964,418,981
[test] testing binary builds for 150226
clee2000
closed
[ "ciflow/binaries", "topic: not user facing" ]
1
CONTRIBUTOR
testing binary builds for https://github.com/pytorch/pytorch/pull/150226
true
2,964,407,696
[Inductor] Refactor wrapper codegen to use Wrapper IR.
blaine-rister
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td" ]
17
CONTRIBUTOR
Preparatory refactor for https://github.com/pytorch/pytorch/pull/146942. # Feature This PR refactors the existing wrapper codegen into `WrapperLine` subclasses, extending the existing Memory Planning IR into a fully-fledged Wrapper IR. See the diagram below. ![wrapper_ir](https://github.com/user-attachments/assets/a61db21b-caf3-45d2-bfdb-91066ae4ba6b) The IR currently supports the following ops: - All existing memory planning IR ops (`AllocateLine`, `FreeIfNotReusedLine`, etc.) - Reinterpret views (`ReinterpretLine`) - Kernel definitions (`KernelDefinitionLine`) - Calls to defined kernels (`KernelCallLine`) - Calls to extern kernels (`ExternKernelLine`, `ExternKernelAllocLine`) - Ops with multiple outputs (`MultiOutputLine`) - Tensor cleanup at the end of a graph (`FreeLine`) - Leaving comments in code (`CommentLine`) There are two main motivations for this refactor: 1. Unlike free-form C++ and and Python code, Wrapper IR lines provide structured information about what the wrapper code does. This serves as a natural extension point for other types of wrapper codegen. For example, the parent PR generates FX IR from Wrapper IR. Wrapper IR aims to give new backends enough information to generate wrapper code without needing to modify core Inductor files such as `ir.py`. 2. This design will hopefully promote stronger modularity and encapsulation. a. Inductor's core compilation passes don't need to worry about whether they're targeting Python, C++, FX or anything else. They can simply focus on generating Wrapper IR, and target-specific code can be refactored into the various backends. b. Backends do not need to know about all the details and internal state of `V.graph` IR. For example, they don't need to consider whether a buffer has been removed from the graph when generating code. Wrapper IR will hopefully provide a simpler interface for generating wrapper code, which abstracts away the details of device code. # Implementation details The implementation mainly consists of separating direct C++/Python codegen into two phases: 1. Emit Wrapper IR lines describing what the wrapper code is supposed to do. 2. Inside the `codegen()` method of each `WrapperLine`, call backend methods which generate pure Python/C++ code using the information stored in the Wrapper IR line. For example, `KernelCallLine` calls `wrapper._generate_kernel_call_helper`, which is overriden by the various Python and C++ backends to generate the final wrapper code. The main difficulty in implementing this is that we need to be careful that code is generated in the correct order. Wrapper codegen happens in two passes: first we write code into `self.lines` which mainly contains wrapper IR, but can also contain raw Python or C++ lines in some situations. Then, we convert the wrapper IR into the final Python/C++ code in `self.wrapper_call`. Since the same macros may be used in both passes, it's difficult to ensure that code is written to the correct buffer. The easiest solution for this was to implement a context manager overriding the `writeline` method to write to `self.wrapper_call` after memory planning is finished. This way, `writeline` writes to `self.lines` in the first pass, and `self.wrapper_call` in the second. This obviated the need to pass `code` or `writeline` variables all the way through the call stack, which would have touched most of the existing macros. # Test plan Since this refactor touches all the existing wrapper codegen classes, the existing CI provides good coverage. The parent PR introduces new tests for the FX IR backend. Among other things, these tests assert that `self.lines` only contains Wrapper IR lines, and no free-form code. While this would not be true of all programs today, the tests suggests that the IR implemented in this PR is sufficient to cover basic PyTorch usage. # Future directions These two goals are only partially realized by this PR. These are several important steps which still undergo direct Python/C++ codegen in core files: - User-defined Triton kernels. - Reinterpret views on outputs, from `gen_output_refs()`. (In the parent PR, the FX converter has a custom way of handling this. This can eventually be ported into Wrapper IR.) - Fallback ops with custom `codegen()` methods, e.g. `ScatterFallback`. - Misc. C++ lines emitted by the various cpp backends, e.g. declaring constants. These cases will gradually be handled in subsequent PRs, as the Inductor->FX converter expands its coverage. Given that these refactors are pretty tricky to do, it seems wiser to execute them in stages, as opposed to porting everything to Wrapper IR at once.Some Python and codegen still lives in core files such as `ir.py`, as described in previous sections. Hopefully, this PR will serve as a starting point which moves the codebase towards a more modular design. Over time, we can gradually refactor the remaining codegen (mainly in `ir.py`) into backend classes. One limitation of this PR is that codegen still happens in two phases during `PythonWrapperCodegen`. First, we generate Wrapper IR into `self.lines`, and from there we generate Python or C++ code into `self.wrapper_call`, `self.header`, etc. In the long term, it would be cleaner to split wrapper IR into its own class which doesn't deal with Python/C++ codegen at all. (See the diagram at the top.) That would strictly enforce the boundary between Wrapper IR and Python/C++ wrapper code. However, this would probably be a much larger refactor. Another limitation of the current code is that the helper functions have a lot of call args. It's also possible to clean this up by passing Wrapper IR ops e.g. `KernelCallLine` into helper functions like `_generate_kernel_call_helper`, since they store all the arguments. However, that change would likely be prone to merge conflicts, so I would like to save it for follow-up PRs if possible. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,402,519
[MPSInductor] Add `store_reduce` method
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150457 * #150452 That restrict the store operation to 0th thread, which should be much better, shouldn't it (Though I don't observe it in the benchmark) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,392,667
[dynamic shapes] add sym_and, sym_or
pianpwk
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "fx", "ciflow/inductor" ]
9
CONTRIBUTOR
This has been pretty helpful for the size-oblivious rewrite. Wanted the variadic args version to avoid `sym_or(a, sym_or(b, sym_or(c, d)))` in favor of `sym_or(a, b, c, d)`. Happy to change this to ban the 1-arg version. This is better than plain and/or because the whole symbolic expression gets preserved, and if we guard on it or defer as a runtime assert, we preserve all branches. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,964,389,111
[dynamic shapes] oblivious rewrite for meta_select
pianpwk
open
[ "release notes: fx", "fx", "ciflow/inductor" ]
1
CONTRIBUTOR
Uses guard_or_true in place of size-oblivious to assume if not already known, that the index is in-bounds. Tests to check runtime asserts for out-of-bounds indexing cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,964,380,841
torch.compile on MPS: error running compiled RMSNorm
manuelcandales
open
[ "triaged", "module: mps", "oncall: pt2", "module: inductor" ]
1
CONTRIBUTOR
### 🐛 Describe the bug torch.compile on MPS generates syntactically incorrect shader for RMSNorm ```python import torch model = torch.compile(torch.nn.RMSNorm(2048, device="mps")) x = torch.randn(2048, device="mps") y = model(x) ``` Error: ``` Traceback (most recent call last): File "/Users/mcandales/github/experiment/rms_norm_compile.py", line 27, in <module> y = model(x) ^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 671, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 658, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 1453, in __call__ return self._torchdynamo_orig_callable( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 1234, in __call__ result = self._inner_convert( ^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 619, in __call__ return _compile( ^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 1080, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 782, in compile_inner return _compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 818, in _compile_inner out_code = transform_code_object(code, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 736, in transform tracer.run() File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3500, in run super().run() File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1337, in run while self.step(): ^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1246, in step self.dispatch_table[inst.opcode](self, inst) File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3701, in RETURN_VALUE self._return(inst) File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3686, in _return self.output.compile_subgraph( File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/output_graph.py", line 1158, in compile_subgraph self.compile_and_call_fx_graph( File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/output_graph.py", line 1451, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/output_graph.py", line 1501, in call_user_compiler return self._call_user_compiler(gm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/output_graph.py", line 1533, in _call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/repro/after_dynamo.py", line 150, in __call__ compiled_gm = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/__init__.py", line 2355, in __call__ return compile_fx(model_, inputs_, config_patches=self.config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 2162, in compile_fx raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 2149, in compile_fx return aot_autograd( ^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/backends/common.py", line 101, in __call__ cg = aot_module_simplified(gm, example_inputs, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_functorch/aot_autograd.py", line 1165, in aot_module_simplified compiled_fn = AOTAutogradCache.load( ^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/autograd_cache.py", line 835, in load compiled_fn = dispatch_and_compile() ^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_functorch/aot_autograd.py", line 1150, in dispatch_and_compile compiled_fn, _ = create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_functorch/aot_autograd.py", line 574, in create_aot_dispatcher_function return _create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_functorch/aot_autograd.py", line 824, in _create_aot_dispatcher_function compiled_fn, fw_metadata = compiler_fn( ^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 1107, in aot_dispatch_autograd compiled_fw_func = aot_config.fw_compiler(fw_module, adjusted_flat_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_functorch/aot_autograd.py", line 483, in __call__ return self.compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1996, in fw_compiler_base return inner_compile( ^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 642, in compile_fx_inner return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_dynamo/repro/after_aot.py", line 124, in debug_wrapper inner_compiled_fn = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 774, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 759, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1337, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1226, in codegen_and_compile compiled_module = graph.compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2199, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2246, in _compile_to_module mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 2872, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/var/folders/d1/qlny9nnj0s97c0pljt5x0b8w0000gn/T/torchinductor_mcandales/54/c54ce5ll7l3ttfvx7q3g3wj6n3v6ivpnewh7uovrfjzbwebkx3bl.py", line 42, in <module> mps_lib_0 = compile_mps_shader(""" ^^^^^^^^^^^^^^^^^^^^^^ File "/Users/mcandales/miniconda3/envs/gptfast/lib/python3.12/site-packages/torch/_inductor/runtime/runtime_utils.py", line 181, in compile_mps_shader raise SyntaxError(f"failed to compile {source} with {err.msg}") from err torch._inductor.exc.InductorError: SyntaxError: failed to compile #include <c10/metal/random.h> #include <c10/metal/special_math.h> #include <c10/metal/utils.h> #include <c10/metal/reduction_utils.h> kernel void generated_kernel( device float* out_ptr1, device float* out_ptr2, constant float* in_ptr0, constant float* in_ptr1, uint2 thread_pos [[thread_position_in_grid]], uint2 group_pos [[thread_position_in_threadgroup]] ) { auto xindex = thread_pos.x; auto r0_index = thread_pos.y; threadgroup float tmp_acc_0[1024]; tmp_acc_0[r0_index] = 0; for(auto r0_0_cnt = 0; r0_0_cnt < 2; ++r0_0_cnt) { int r0_0 = 2 * r0_index + r0_0_cnt; auto tmp0 = in_ptr0[r0_0]; auto tmp1 = tmp0 * tmp0; tmp_acc_0[r0_index] += tmp1; } auto tmp2 = c10::metal::threadgroup_sum(tmp_acc_0, 1024); auto tmp3 = 2048.0; auto tmp4 = tmp2 / tmp3; auto tmp5 = 1.1920928955078125e-07; auto tmp6 = tmp4 + tmp5; auto tmp7 = metal::rsqrt(tmp6); out_ptr1[0] = static_cast<float>(tmp7); auto tmp9 = in_ptr1[r0_0]; auto tmp8 = tmp0 * tmp7; auto tmp10 = tmp8 * tmp9; out_ptr2[r0_0] = static_cast<float>(tmp10); } with program_source:2120:29: error: use of undeclared identifier 'r0_0' auto tmp9 = in_ptr1[r0_0]; ^ program_source:2121:21: error: use of undeclared identifier 'tmp0' auto tmp8 = tmp0 * tmp7; ^ program_source:2123:18: error: use of undeclared identifier 'r0_0' out_ptr2[r0_0] = static_cast<float>(tmp10); ^ ``` ### Versions PyTorch version: 2.8.0.dev20250330 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.3.2 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: Could not collect Libc version: N/A Python version: 3.12.1 | packaged by Anaconda, Inc. | (main, Jan 19 2024, 09:45:58) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-15.3.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==2.8.0.dev20250330 [pip3] torchaudio==2.6.0.dev20250330 [pip3] torchvision==0.18.0.dev20240223 [conda] numpy 1.26.4 py312h7f4fdc5_0 [conda] numpy-base 1.26.4 py312he047099_0 [conda] torch 2.8.0.dev20250330 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250330 pypi_0 pypi [conda] torchvision 0.18.0.dev20240223 py312_cpu pytorch-nightly cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,964,365,573
Proactively remove CompiledTritonKernels before loading from cache/starting inductor compile
jamesjwu
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150453 We'll still running into this issue intermittently and it's hard to debug; so I thought a more aggressive cache clear strategy may fix it as a stopgap until we can Statically launch cuda kernels and avoid some of this stuff Differential Revision: [D72257973](https://our.internmc.facebook.com/intern/diff/D72257973/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,352,149
[MPS][Testing] Benchmark reduction ops
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150457 * __->__ #150452 That compares eager vs compile On my M4Pro mini I'm getting the following now ``` [--------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------] | eager-512x512 | compile-512x512 | eager-1024x1024 | compile-1024x1024 | eager-2048x2048 | compile-2048x2048 | eager-4096x4096 | compile-4096x4096 1 threads: ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- sum (torch.float32) | 121.0 | 201.5 | 130.3 | 772.3 | 179.4 | 1470.5 | 476.1 | 2980.0 max (torch.float32) | 154.1 | 165.9 | 198.7 | 211.6 | 344.2 | 386.9 | 1326.6 | 1345.6 ```
true
2,964,349,364
[ROCm] Build Pytorch extensions with amdclang++
akashveramd
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm" ]
11
CONTRIBUTOR
Here are the following modifications made to cpp_extension.py- 1) Changed compiler flag to use --version. 2) Added a feature to convert alpha-numeric string to numeric string for the version string returned by compiler. This was the source of error as the parser was failing on parsing alpha-numeric version string. Build with following pytorch extensions- Apex, TorchVision, TorchAudio & DeepSpeed. Unit tested with following pytorch extensions- Apex, TorchVision. (cherry picked from commit c873aeac35851a7d5000eb7f24561d3f56c2ffbd) Fixes #ISSUE_NUMBER cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,964,342,317
[invoke_subgraph] Do not cache fake tensors for AOTDispatcher first pass
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150486 * __->__ #150450 * #150082
true
2,964,339,210
[2.7 RC] [Intel GPU] fused optimizers use FP64 internally which fails on A770
aleqs
closed
[ "triaged", "module: xpu" ]
4
NONE
### 🐛 Describe the bug torch.optim.SGD/Adam/AdamW all fail when step() is invoked on A770 whenever fused is set to True. Below is the typical exception: > ... > File "/home/xxx/dev/nn/train_util.py", line 825, in train_model > opt.step() > File "/home/xxx/anaconda3/lib/python3.12/site-packages/torch/optim/optimizer.py", line 485, in wrapper > out = func(*args, **kwargs) > ^^^^^^^^^^^^^^^^^^^^^ > File "/home/xxx/anaconda3/lib/python3.12/site-packages/torch/optim/optimizer.py", line 79, in _use_grad > ret = func(self, *args, **kwargs) > ^^^^^^^^^^^^^^^^^^^^^^^^^^^ > File "/home/xxx/anaconda3/lib/python3.12/site-packages/torch/optim/sgd.py", line 125, in step > sgd( > File "/home/xxx/anaconda3/lib/python3.12/site-packages/torch/optim/sgd.py", line 300, in sgd > func( > File "/home/xxx/anaconda3/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 838, in _fn > return fn(*args, **kwargs) > ^^^^^^^^^^^^^^^^^^^ > File "/home/xxx/anaconda3/lib/python3.12/site-packages/torch/optim/sgd.py", line 513, in _fused_sgd > torch._fused_sgd_( > RuntimeError: Required aspect fp64 is not supported on the device I hacked together a cast to fp32 of every single input into _fused_adamw, and the result is still the same, which means fp64 is used internally while the current software layer doesn't seem to support this Minimal example: ``` import math import torch # change this around to observe the failure device = "xpu" x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x) p = torch.tensor([1, 2, 3]) xx = x.unsqueeze(-1).pow(p) model = torch.nn.Sequential( torch.nn.Linear(3, 1), torch.nn.Flatten(0, 1) ) xx = xx.float().to(device) y = y.float().to(device) model = model.to(device) loss_fn = torch.nn.MSELoss(reduction='sum') learning_rate = 1e-3 optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, fused=True) for t in range(2000): y_pred = model(xx) # Compute and print loss. loss = loss_fn(y_pred, y) if t % 100 == 99: print(t, loss.item()) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() linear_layer = model[0] print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3') ``` ### Versions Collecting environment information... PyTorch version: 2.7.0+xpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.2 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: version 3.31.6 Libc version: glibc-2.39 Python version: 3.12.9 | packaged by conda-forge | (main, Feb 14 2025, 08:00:06) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.8.0-56-generic-x86_64-with-glibc2.39 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 24 On-line CPU(s) list: 0-23 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 7900X 12-Core Processor CPU family: 25 Model: 97 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 2 CPU(s) scaling MHz: 78% CPU max MHz: 5733.0000 CPU min MHz: 400.0000 BogoMIPS: 9381.97 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc amd_ibpb_ret arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d Virtualization: AMD-V L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 12 MiB (12 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-23 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] pytorch-triton-xpu==3.3.0 [pip3] torch==2.7.0+xpu [pip3] torchaudio==2.7.0+xpu [pip3] torchinfo==1.8.0 [pip3] torchvision==0.22.0+xpu [conda] numpy 2.1.3 py312h58c1407_0 conda-forge [conda] pytorch-triton-xpu 3.3.0 pypi_0 pypi [conda] torch 2.7.0+xpu pypi_0 pypi [conda] torchaudio 2.7.0+xpu pypi_0 pypi [conda] torchinfo 1.8.0 pypi_0 pypi [conda] torchvision 0.22.0+xpu pypi_0 pypi cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,964,325,535
[Windows][inductor] fix blank space break windows file path
pytorchbot
closed
[ "open source", "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
Fixes #149310 From origin error message: ```cmd Command: cl /I C:/Program Files/Python310/Include /I c:/code/.env/lib/site-packages/torch/include /I c:/code/.env/lib/site-packages/torch/include/torch/csrc/api/include /I c:/code/.env/lib/site-packages/torch/include/TH /I c:/code/.env/lib/site-packages/torch/include/THC /D TORCH_INDUCTOR_CPP_WRAPPER /D STANDALONE_TORCH_HEADER /D C10_USING_CUSTOM_GENERATED_MACROS /DLL /MD /O2 /std:c++20 /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /wd4624 /wd4067 /wd4068 /EHsc /openmp /openmp:experimental C:/Users/user/AppData/Local/Temp/torchinductor_user/ou/coubnfnqsm2gbdzdytufv46jotd6sxsnnhgldiw45pl5yjq5nbvz.cpp /LD /FeC:/Users/user/AppData/Local/Temp/torchinductor_user/ou/coubnfnqsm2gbdzdytufv46jotd6sxsnnhgldiw45pl5yjq5nbvz.pyd /link /LIBPATH:c:/code/.env/Scripts/libs /LIBPATH:c:/code/.env/lib/site-packages/torch/lib torch.lib torch_cpu.lib torch_python.lib sleef.lib Output: Microsoft (R) C/C++ Optimizing Compiler Version 19.43.34809 for x86 Copyright (C) Microsoft Corporation. All rights reserved. cl : Command line warning D9025 : overriding '/openmp' with '/openmp:experimental' cl : Command line warning D9024 : unrecognized source file type 'Files/Python310/Include', object file assumed coubnfnqsm2gbdzdytufv46jotd6sxsnnhgldiw45pl5yjq5nbvz.cpp C:/Users/user/AppData/Local/Temp/torchinductor_user/ou/coubnfnqsm2gbdzdytufv46jotd6sxsnnhgldiw45pl5yjq5nbvz.cpp(21): fatal error C1083: Cannot open include file: 'Python.h': No such file or directory ``` Python installed in `C:/Program Files/Python310` path, and the blank space break the file path. Solution: Add quotes to declare Windows file paths, after that: ```cmd cl /I "C:/Users/Xuhan/.conda/envs/new_build/Include" /I "C:/Users/Xuhan/.conda/envs/new_build/lib/site-packages/torch/include" /I "C:/Users/Xuhan/.conda/envs/new_build/lib/site-packages/torch/include/torch/csrc/api/include" /D TORCH_INDUCTOR_CPP_WRAPPER /D STANDALONE_TORCH_HEADER /D C10_USING_CUSTOM_GENERATED_MACROS /D CPU_CAPABILITY_AVX512 /DLL /MD /O2 /std:c++20 /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /wd4624 /wd4067 /wd4068 /EHsc /openmp /openmp:experimental C:/Users/Xuhan/AppData/Local/Temp/tmp1wsj0m8r/za/czarp3ly5c22ge3hydvnzvad4cjimyr3hkwvofodxqffgil7frfd.cpp /arch:AVX512 /FeC:/Users/Xuhan/AppData/Local/Temp/tmp1wsj0m8r/za/czarp3ly5c22ge3hydvnzvad4cjimyr3hkwvofodxqffgil7frfd.pyd /LD /link /LIBPATH:"C:/Users/Xuhan/.conda/envs/new_build/libs" /LIBPATH:"C:/Users/Xuhan/.conda/envs/new_build/lib/site-packages/torch/lib" "torch.lib" "torch_cpu.lib" "torch_python.lib" "sleef.lib" ``` cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,321,011
[inductor] Fix inductor windows linker error
pytorchbot
closed
[ "open source", "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150256 Fixes #149889 cc @malfet @seemethere @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,320,594
[ONNX] [Dynamo] std.dim needs implementation
MilesV64
open
[ "module: onnx", "triaged", "OSS contribution wanted" ]
4
NONE
### 🐛 Describe the bug No decomposition for torch.std.dim ``` <class 'torch.onnx._internal.exporter._errors.DispatchError'>: No ONNX function found for <OpOverload(op='prims.broadcast_in_dim', overload='default')>. Failure message: No decompositions registered for the real-valued input ⬆️ <class 'torch.onnx._internal.exporter._errors.ConversionError'>: Error when translating node %broadcast_in_dim : [num_users=1] = call_function[target=torch.ops.prims.broadcast_in_dim.default](args = (%var, [3, 1, 1], [0]), kwargs = {}). See the stack trace for more information. ``` Full reproduction code: ```python import torch class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: return x.std((1, 2), keepdim=True) m = Model() input = torch.randn((3, 4, 5), device='cpu') args = (input,) ep = torch.onnx.export( m, args, dynamo=True, report=True ) print(ep) ``` ### Versions PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.3.2 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: Could not collect Libc version: N/A Python version: 3.12.9 | packaged by conda-forge | (main, Feb 14 2025, 07:56:32) [Clang 18.1.8 ] (64-bit runtime) Python platform: macOS-15.3.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M4 Pro Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] onnxscript==0.3.0.dev20250401 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchvision==0.21.0 [conda] Could not collect
true
2,964,296,143
caffe2: Fix lint errors in FlashAttentionKernel
EricGriffith
open
[ "module: cpu", "fb-exported", "release notes: quantization" ]
10
CONTRIBUTOR
Summary: See title Test Plan: Sandcastle Differential Revision: D72218753 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,964,294,678
DISABLED test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_use_static_cuda_launcher_False (__main__.TestFxGraphCache)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_use_static_cuda_launcher_False&suite=TestFxGraphCache&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/39778937526). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_use_static_cuda_launcher_False` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_codecache.py", line 318, in test_remote_cache_load_function self.assertEqual(global_stats.fx_graph, Stats(1, 3, 1)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4094, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Object comparison failed: _GlobalItemStats(num_put=2, num_get_hit=2, num_get_miss=2) != Stats(num_put=1, num_get_hit=3, num_get_miss=1) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_codecache.py TestFxGraphCache.test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_use_static_cuda_launcher_False This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_codecache.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,288,657
caffe2: Fix lint errors in native/CPUFallback.cpp
EricGriffith
open
[ "module: cpu", "fb-exported", "release notes: quantization" ]
9
CONTRIBUTOR
Summary: See title Test Plan: Sandcastle Differential Revision: D72218921 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,964,261,773
cuda.h not found error when missing local CTK
tinglvv
open
[ "module: cuda", "oncall: releng", "triaged", "module: aotinductor" ]
7
COLLABORATOR
### 🐛 Describe the bug Seeing below error with AOT inductor when testing 2.6.0 RC wheel in a plain docker without local CTK. Opening the issue for tracking the fix. In the case of such error, we should give a clear error message suggesting the missing file is related to CTK installation. Or should we add the file when it is missing? Open the issue for later follow-up (non-urgent) cc @ptrblck @msaroufim @eqy @desertfire @chenyang78 @penguinwu @yushangdi @benjaminglass1 @chauhang @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @malfet @atalman @nWEIdia ``` root@47634bb57d4b:/opt/pytorch/pytorch# python test/inductor/test_aot_inductor_package.py TestAOTInductorPackage_cuda.test_linear In file included from /usr/local/lib/python3.12/dist-packages/torch/include/torch/csrc/inductor/aoti_runtime/model.h:17, from /tmp/tmpf2szg6ab/cnz4ulmnfd7mraahh23lgc2lmejzgx67etxgjpcfh3h7yn6pu5h5/cmt6f253zl4hyovrmrmpja5p6g7cjd2i4ookgutf7baavulnnrc6.cpp:4: /usr/local/lib/python3.12/dist-packages/torch/include/torch/csrc/inductor/aoti_runtime/device_utils.h:14:10: fatal error: cuda.h: No such file or directory 14 | #include <cuda.h> | ^~~~~~~~ compilation terminated. ``` ### Versions ``` root@47634bb57d4b:/opt/pytorch/pytorch# python collect_env.py Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.1 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: version 3.31.6 Libc version: glibc-2.39 Python version: 3.12.3 (main, Feb 4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.0-122-generic-x86_64-with-glibc2.39 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA H100 PCIe Nvidia driver version: 550.54.15 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6444Y CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 8 CPU(s) scaling MHz: 100% CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 7200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 768 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 32 MiB (16 instances) L3 cache: 45 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Vulnerable; BHI: Vulnerable Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cudnn-frontend==1.11.0 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] nvtx==0.2.11 [pip3] onnx==1.17.0 [pip3] optree==0.14.1 [pip3] pynvjitlink==0.3.0 [pip3] pytorch-triton==3.2.0+git4b3bb1f8b.nvinternal [pip3] torch==2.6.0 [pip3] torch-geometric==2.6.1 [pip3] torch_tensorrt==2.7.0a0 [pip3] torchprofile==0.0.4 [pip3] torchvision==0.22.0a0 [pip3] triton==3.2.0 [conda] Could not collect ```
true
2,964,255,377
[Inductor] Reland Merge Triton ScaledMM as epilogue to MM template #150045
PaulZhang12
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td" ]
6
CONTRIBUTOR
Merges https://github.com/pytorch/pytorch/pull/150438 and https://github.com/pytorch/pytorch/pull/150045. https://github.com/pytorch/pytorch/pull/150045 was already landed, but did not include a change that makes it unable to land internally. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,215,993
[dynamo] add dynamo disable reasons to codebase
williamwen42
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
6
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150440 * #150341 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,964,208,537
Update PyTorchStreamReader API to take cpu allocator override
huxintong
closed
[ "caffe2", "triaged", "open source", "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
10
CONTRIBUTOR
Summary: Add allocator param in getRecord Test Plan: newly added UT ``` buck test caffe2/caffe2/serialize:inline_container_test ``` Differential Revision: D72252585
true
2,964,193,676
Fix scaled_mm template migration missing endif block
PaulZhang12
closed
[ "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150438 * #150437 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,193,163
Consolidate mm_scaled into mm template
PaulZhang12
closed
[ "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150438 * __->__ #150437
true
2,964,173,051
[Inductor] Hide reinplace_fsdp_all_gather pass behind skip_fsdp_hooks config
yf225
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
The `reinplace_fsdp_all_gather` pass is currently only for Traceable FSDP2 and doesn't work together with SimpleFSDP. We should hide the pass behind `skip_fsdp_hooks` config which makes it only apply to Traceable FSDP2. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150436 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,964,147,675
[dynamo] Improve trace rules reasoning
williamwen42
open
[ "triaged", "oncall: pt2", "module: dynamo", "module: compile ux" ]
0
MEMBER
The reasoning infra for trace_rules.py is outdated and not very user friendly. For example, we get graph break logs such as ``` Attempted to inline function marked as skipped Explanation: Dynamo developers have intentionally marked that the function `skip` should not be traced. Hint: Avoid calling the function `skip`. Hint: Remove the function `case.py` from torch/_dynamo/trace_rules.py. More graph breaks may occur as a result of attempting to trace into the function. Hint: Please file an issue to PyTorch. Developer debug context: qualname: skip, name: skip, filename: `case.py`, skip reason: skipped according trace_rules.lookup SKIP_DIRS ``` (what is SKIP_DIRS? and the hint to modify trace_rules.py isn't precise) And we have a lot of cases where the trace_rules reason is missing: ``` Attempted to call function marked as skipped Explanation: Dynamo developers have intentionally marked that the function `disable` in file `_dynamo/decorators.py` should not be traced. Hint: Avoid calling the function `disable`. Developer debug context: module: torch._dynamo.decorators, qualname: disable, skip reason: <missing reason> ``` Internal example of lack of clarity: https://fb.workplace.com/groups/1075192433118967/permalink/1638325513472320/ cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,964,103,934
Faster way to test self hosted GPU runner
zhe-thoughts
open
[ "triaged", "open source", "topic: not user facing", "ciflow/periodic" ]
2
NONE
This is for experimenting with hosting github runners on nvidia managed hardware
true