id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,993,658,007
[ROCm][CI/CD] create ROCm 6.4 images, part 1, skip magma tarball
jithunnair-amd
closed
[ "module: rocm", "open source", "Merged", "topic: not user facing", "ciflow/rocm" ]
10
COLLABORATOR
cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,993,652,914
[inductor][take 2] Change minimum number of SMs to 58 to let L4 Ada use Triton GEMM backend
henrylhtsang
closed
[ "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148622 * __->__ #151235 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,993,644,674
NCCL: Fix cmake file when cross compiling.
kumpera
open
[ "triaged", "open source" ]
4
CONTRIBUTOR
When cross compiling pytorch, we cannot execute compiled code. FindNCCL uses try_run to check if the header version matches the binary version. This fixes cross compilation scenarios by checking for CMAKE_CROSSCOMPILING prior to try_execute.
true
2,993,585,344
Code Injection via `torch.jit.annotations.parse_type_line()`
paul-gerste-sonarsource
open
[ "oncall: jit", "security" ]
1
NONE
### 🐛 Describe the bug We found the mitigation of https://github.com/pytorch/pytorch/issues/88868 to be incomplete. It is still possible to execute arbitrary Python code when controlling the input to `torch.jit.annotations.parse_type_line()` by bypassing the filter in `_eval_no_call()`. Impact: An attacker that can control the first argument of `torch.jit.annotations.parse_type_line()` can execute arbitrary Python code. You can find the details in our advisory: [PyTorch 2.6.0 Security Advisory.pdf](https://github.com/user-attachments/files/19739249/PyTorch.2.6.0.Security.Advisory.pdf) PoC: ```py import torch torch.jit.annotations.parse_type_line('''# type: [help=='[print(1337),exit(0)]' for help.__class__.__eq__ in [eval]] -> 1337''', None, 1) ``` ### Versions Collecting environment information... PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.3 (arm64) GCC version: Could not collect Clang version: 20.1.1 CMake version: version 3.31.3 Libc version: N/A Python version: 3.13.2 (main, Feb 4 2025, 14:51:09) [Clang 16.0.0 (clang-1600.0.26.6)] (64-bit runtime) Python platform: macOS-15.3-arm64-arm-64bit-Mach-O Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==2.2.4 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchvision==0.21.0 [conda] Could not collect cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,993,573,908
[logging] Separate cuda synchronize overhead in pad_mm
masnesral
closed
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151232 Summary: In order to more accurately debug the overhead of pad_mm, explicity do a cuda.synchronize before benchmarking. Test Plan: See internal test plan here: https://fburl.com/f365xfcj cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,993,571,566
[logging] Separate cuda synchronize overhead in autotuning
masnesral
closed
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151231 Summary: In order to more accurately debug the overhead of autotuning, explicity do a cuda.synchronize before benchmarking and time that. Test Plan: See internal test plan here: https://fburl.com/f365xfcj cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,993,554,760
[ROCM] Fix in-place aten sum with specialized templated kernels.
carlobertolli
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "release notes: cuda", "ciflow/rocm" ]
3
CONTRIBUTOR
We noticed a regression when doing aten.sum in-place (a+=b) and the type of the output is not the same as the functor. Co-authored by: Jerry Mannil <jerry.mannil@amd.com> cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,993,464,427
DISABLED test_foreach_reduce_large_input__foreach_max_w_empty_False_cuda_bool (__main__.TestForeachCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
2
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_foreach_reduce_large_input__foreach_max_w_empty_False_cuda_bool&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40495778601). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_foreach_reduce_large_input__foreach_max_w_empty_False_cuda_bool` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_foreach.py", line 1104, in test_foreach_reduce_large_input wrapped_op( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_max', keys=('aten::_foreach_max', 'Unrecognized', 'aten::zeros', 'aten::empty', 'aten::zero_', 'aten::fill_', 'cudaLaunchKernel', 'Lazy Function Loading', 'cudaDeviceSynchronize') To execute this test, run the following from the base repo dir: PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=1 python test/test_foreach.py TestForeachCUDA.test_foreach_reduce_large_input__foreach_max_w_empty_False_cuda_bool This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,993,464,426
DISABLED test_parity__foreach_add_fastpath_inplace_cuda_bfloat16 (__main__.TestForeachCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_add_fastpath_inplace_cuda_bfloat16&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40495820555). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_add_fastpath_inplace_cuda_bfloat16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_foreach.py", line 228, in test_parity actual = func( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_add_', keys=('aten::_foreach_add_', 'Unrecognized', 'aten::result_type', 'cudaLaunchKernel', 'cudaDeviceSynchronize') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1161, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1975, in wrap_fn return fn(self, *args, **kwargs) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 235, in test_parity with self.assertRaises(type(e)): File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 226, in __exit__ self._raiseFailure("{} not raised".format(exc_name)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 163, in _raiseFailure raise self.test_case.failureException(msg) AssertionError: AssertionError not raised The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1173, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(19, 19), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(18, 18), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(17, 17), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(16, 16), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(15, 15), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(14, 14), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(13, 13), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(12, 12), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(11, 11), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(10, 10), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(9, 9), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(8, 8), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(7, 7), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(6, 6), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(5, 5), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(4, 4), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(3, 3), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(2, 2), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(1, 1), device="cuda:0", dtype=torch.bfloat16]], args=(TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(19, 19), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(18, 18), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(17, 17), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(16, 16), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(15, 15), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(14, 14), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(13, 13), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(12, 12), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(11, 11), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(10, 10), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(9, 9), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(8, 8), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(7, 7), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(6, 6), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(5, 5), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(4, 4), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(3, 3), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(2, 2), device="cuda:0", dtype=torch.bfloat16], Tensor[size=(1, 1), device="cuda:0", dtype=torch.bfloat16]]), kwargs={'alpha': '3.14'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/test_foreach.py TestForeachCUDA.test_parity__foreach_add_fastpath_inplace_cuda_bfloat16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,993,302,960
Add @requires_multicast_support to test_multimem_all_gather
pragupta
closed
[ "oncall: distributed", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/periodic", "ciflow/periodic-rocm-mi300" ]
6
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,993,268,125
[Easy] The event_id of torch.cuda.Event and torch.xpu.Event always is 0
FFFrog
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ciflow/xpu", "ci-no-td" ]
21
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151226 * #151411 * #151221 * #151404 Although torch.cuda.Event and torch.xpu.Event have cuda_event and sycl_event fields respectively, the event_id exposed from the base class torch.Event is always 0, which can confuse users. The memory of torch.Event is not useful to torch.cuda.Event and torch.xpu.Event, but we still need to inherit from torch.Event because CPython will check it. Repro with cuda: ``` >>> import torch >>> event = torch.cuda.Event() >>> event.cuda_event 0 >>> event.event_id 0 >>> event.record() >>> event.cuda_event 127982096 >>> event.event_id 0 ```
true
2,993,255,140
[dynamo] keep C++ symbolic shape guards disabled for benchmarks
isuruf
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #140756 * __->__ #151225 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,993,139,653
[MPSInductor] Fix noop codegen
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151224 By adding `pass` in front of the comment for fake set_device call Which fixes `TestGPU.test_zero_element_mutation_mps`, which previously failed with ``` torch._inductor.exc.InductorError: RuntimeError: Failed to import /var/folders/sc/2thx6_x95h7_h9qs8s48yh140000gn/T/tmp2emka_sx/7k/c7kmnwhb363ysalhewglr3cwtej6tiz3t4ppqa4bvhubaokmlprw.py IndentationError: expected an indented block after 'with' statement on line 38 (c7kmnwhb363ysalhewglr3cwtej6tiz3t4ppqa4bvhubaokmlprw.py, line 40) ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,993,064,703
[FSDP] Cannot writeback when the parameter shape changes
efsotr
open
[ "oncall: distributed", "triaged" ]
1
NONE
### 🐛 Describe the bug ```python import os import torch from torch import nn from torch.distributed.fsdp import FullyShardedDataParallel as FSDP cmd = """ CUDA_VISIBLE_DEVICES=0 torchrun --nproc-per-node=1 mini_bug_reproduce.py # raise error CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc-per-node=2 mini_bug_reproduce.py # pass """ torch.distributed.init_process_group(backend='nccl') world_size = int(os.environ["WORLD_SIZE"]) local_rank = int(os.environ["LOCAL_RANK"]) torch.set_default_device(local_rank) device = torch.get_default_device() class Test(nn.Module): def __init__(self): super().__init__() self.e = nn.Embedding(5, 4) def forward(self, x): x = self.e(x) return x.sum() model = Test().half() model = FSDP( model, use_orig_params=True, ) ## copied from https://github.com/huggingface/accelerate/blob/main/src/accelerate/accelerator.py#L1679-1719 upcasted_log = [] for module in FSDP.fsdp_modules(model): if not module._has_params: continue # skip if FSDP module not managing parameters param = module._flat_param if ( param.dtype != torch.float32 and param.device != torch.device("meta") and param.requires_grad ): # keep log of names_params that was upcasted # NOTE: resorted to this because warnings.simplefilter("once") is somehow not working name_param_log = (module.module.__class__.__name__, ", ".join(module._flat_param._fqns)) if name_param_log not in upcasted_log: upcasted_log.append(name_param_log) # this works because of FSDP's _runtime_utils.lazy_init. # Have to be careful not to call anything before this that # triggers lazy_init (e.g., _is_fsdp_root). param.data = param.data.to(torch.float32) # upcasting module._handle._orig_param_dtype = torch.float32 # update x = torch.randint(0, 5, (20,), device=device) model.eval() with torch.no_grad(): loss = model(x) ``` 1 gpu raise error, 2 gpus pass ```log Expects torch.Size([20]) but got torch.Size([5, 4]) ``` It seems that proper initialization do not occur when using only a single GPU. ### Versions torch 2.6.0 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,992,942,401
[FSDP] Detail information about parameters when raising errors
efsotr
open
[ "oncall: distributed", "triaged" ]
0
NONE
### 🚀 The feature, motivation and pitch When raising an error, please provide the fully qualified name of the parameter within the model hierarchy, such as `model.layers[0].self_attn.q_proj.weight`, `model.layers[0].mlp.gate_proj.weight`. Relevant Code for example: https://github.com/pytorch/pytorch/blob/d5a19e4525f49049f822930ed85fe32bb004589c/torch/distributed/fsdp/_flat_param.py#L2389-L2396 https://github.com/pytorch/pytorch/blob/d5a19e4525f49049f822930ed85fe32bb004589c/torch/distributed/fsdp/_flat_param.py#L784-L788 ### Alternatives _No response_ ### Additional context _No response_ cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,992,915,351
[Easy] Fix the function signature of torch.Event
FFFrog
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
31
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151226 * #151411 * __->__ #151221 * #151404 As the title stated. The difference between declaration and implemention. declaration: https://github.com/pytorch/pytorch/blob/d5a19e4525f49049f822930ed85fe32bb004589c/torch/_C/__init__.pyi.in#L157-L162 Implementation: https://github.com/pytorch/pytorch/blob/d5a19e4525f49049f822930ed85fe32bb004589c/torch/csrc/Event.cpp#L30-L32 **Question**: Which one should we choose? - Change enable_timing to False to be consistent with torch.cuda.Event - Change enable_timing to True to avoid BC-break
true
2,992,833,206
Rendezvous on dead node
georgkaleido
open
[ "oncall: distributed", "triaged", "open source", "release notes: distributed (torchelastic)" ]
2
NONE
This fixes #111646. If a participant in a completed(aka ongoing) rendezvous leaves, this will not trigger a rerendezvous even though [docs state as much](https://github.com/pytorch/pytorch/blob/d5a19e4525f49049f822930ed85fe32bb004589c/torch/distributed/elastic/rendezvous/__init__.py#L69). We force the agent to restart by adding a participant to the wait_list already. This will kick off [all restarting and joining a new rendezvous.](https://github.com/pytorch/pytorch/blob/142f0f86ce054f401d9d5145e4291629cafba45f/torch/distributed/elastic/agent/server/api.py#L906) A test was also added to verify this behaviour. An alternative would be to instead change the [api ](https://github.com/pytorch/pytorch/blob/d5a19e4525f49049f822930ed85fe32bb004589c/torch/distributed/elastic/rendezvous/api.py#L144) to expose a cleaner way that a RendezvousBackend can provide a flag indicating the need for a restart. Fixes #111646 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,992,754,383
Optimize typing in `lr_scheduler.py`
zeshengzong
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: optim" ]
3
CONTRIBUTOR
## Changes - Add typing annotation in `lr_scheduler.py` ## Test Result ```bash pytest test/optim/test_lrscheduler.py -vv ``` ![image](https://github.com/user-attachments/assets/34a91965-ff3a-462a-9ab0-b46ad4b290e9)
true
2,992,721,334
Implement MKLGenerator
michalowski-arm
open
[ "module: cpu", "triaged", "open source", "topic: not user facing", "module: dynamo", "skip-url-lint" ]
22
CONTRIBUTOR
This PR aims to fix the issue from #132395 by implementing a new `MKLGeneratorImpl` that stores a consistent, global `vslStream` for use in random numbers generation. This path was previously disabled due to a problem of repeating variates, caused by repeated reseeding of the MKL generator with variates from the `CPUGenerator`. This new implementation only seeds the `MKLGenerator` once using the `CPUGenerator`, and then keeps reusing the same `vslStream`, providing the full period of the RNG. For the sake of reproducibility, the saving and restoring of the `MKLGenerator` has been linked to `CPUGenerator` state changes, and the former does not provide its own `get_state()` and `set_state()` functionality. The point was to keep the user experience identical to before -- they do not need to handle a separate `MKLGenerator` explicitly. There already exists a test to check for repetition based on the script from #132395. It can be found `test_distribution.py` as `test_multinomial_sequential_draw()`. For the old (reseeded) implementation of the MKL `vslStream`, this test showed 21 repetitions. For this new implementation, the test gives 0 repetitions as expected. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,992,595,547
[Dynamo] add torch.Event && torch.Stream into _in_graph_classes of UserDefinedClassVariable
FFFrog
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151217 * #151213 * #151208 As the title stated. Repro Codes: ```Python torch.compile(backend="eager") def func(): stream = torch.Stream(device="cuda:0") event = torch.Event() event.record(stream) event.synchronize() return event.query() print(func()) ``` Changed Before: Return: ```Python /root/Git.d/pytorch/pytorch/torch/_dynamo/variables/functions.py:1352: UserWarning: Dynamo does not know how to trace the builtin `None.Stream.__new__.` This function is either a Python builtin (e.g. _warnings.warn) or a third-party C/C++ Python extension (perhaps created with pybind). If it is a Python builtin, please file an issue on GitHub so the PyTorch team can add support for it and see the next case for a workaround. If it is a third-party C/C++ Python extension, please either wrap it into a PyTorch-understood custom operator (see https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html for more details) or, if it is traceable, use `torch.compiler.allow_in_graph`. torch._dynamo.utils.warn_once(explanation + "\n" + "\n".join(hints)) /root/Git.d/pytorch/pytorch/torch/_dynamo/variables/functions.py:1352: UserWarning: Dynamo does not know how to trace the builtin `None.Event.__new__.` This function is either a Python builtin (e.g. _warnings.warn) or a third-party C/C++ Python extension (perhaps created with pybind). If it is a Python builtin, please file an issue on GitHub so the PyTorch team can add support for it and see the next case for a workaround. If it is a third-party C/C++ Python extension, please either wrap it into a PyTorch-understood custom operator (see https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html for more details) or, if it is traceable, use `torch.compiler.allow_in_graph`. torch._dynamo.utils.warn_once(explanation + "\n" + "\n".join(hints)) True ``` Graph captured: ```Python def forward(self): stream = torch.Stream(stream_id = 3, device_index = 0, device_type = 1); stream = None return () def forward(self): get_user_object_from_id = torch__dynamo_utils_get_user_object_from_id(140287996703088) stream = torch.Stream(stream_id = 3, device_index = 0, device_type = 1) record = get_user_object_from_id.record(stream); stream = record = None synchronize = get_user_object_from_id.synchronize(); synchronize = None query = get_user_object_from_id.query(); get_user_object_from_id = query = None return () ``` Changed After: Return: ```Python True ``` Graph captured: ```Python def forward(self): stream = torch.Stream(device = 'cuda:0') event = torch.Event() record = event.record(stream); stream = record = None synchronize = event.synchronize(); synchronize = None query = event.query(); event = query = None return () ```
true
2,992,499,362
DISABLED test_queues (__main__.LibUvTCPStoreTest)
pytorch-bot[bot]
closed
[ "oncall: distributed", "module: flaky-tests", "skipped" ]
3
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_queues&suite=LibUvTCPStoreTest&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40480609862). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_queues` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/distributed/test_store.py", line 199, in test_queues fut.result() File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 458, in result return self.__get_result() File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result raise self._exception File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/var/lib/jenkins/workspace/test/distributed/test_store.py", line 184, in worker_a self.assertEqual(local_store.queue_pop("b"), b"b1") torch.distributed.DistStoreError: wait timeout after 10ms, keys: /b To execute this test, run the following from the base repo dir: python test/distributed/test_store.py LibUvTCPStoreTest.test_queues This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `distributed/test_store.py` cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @clee2000
true
2,992,499,062
DISABLED test_queues (__main__.PrefixTCPStoreTest)
pytorch-bot[bot]
closed
[ "oncall: distributed", "module: flaky-tests", "skipped" ]
3
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_queues&suite=PrefixTCPStoreTest&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40480609862). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_queues` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/distributed/test_store.py", line 199, in test_queues fut.result() File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 458, in result return self.__get_result() File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result raise self._exception File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/var/lib/jenkins/workspace/test/distributed/test_store.py", line 184, in worker_a self.assertEqual(local_store.queue_pop("b"), b"b1") torch.distributed.DistStoreError: wait timeout after 10ms, keys: /test_prefix/b To execute this test, run the following from the base repo dir: python test/distributed/test_store.py PrefixTCPStoreTest.test_queues This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `distributed/test_store.py` cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @clee2000
true
2,992,498,972
DISABLED test_parity__foreach_acos_fastpath_outplace_cuda_float64 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
5
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_acos_fastpath_outplace_cuda_float64&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40481457003). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_acos_fastpath_outplace_cuda_float64` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_foreach.py", line 228, in test_parity actual = func( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_acos', keys=('aten::_foreach_acos', 'Unrecognized', 'aten::empty_strided', 'cudaLaunchKernel', 'cudaDeviceSynchronize') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1161, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1975, in wrap_fn return fn(self, *args, **kwargs) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 235, in test_parity with self.assertRaises(type(e)): File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 226, in __exit__ self._raiseFailure("{} not raised".format(exc_name)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 163, in _raiseFailure raise self.test_case.failureException(msg) AssertionError: AssertionError not raised The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1173, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.float64], Tensor[size=(19, 19), device="cuda:0", dtype=torch.float64], Tensor[size=(18, 18), device="cuda:0", dtype=torch.float64], Tensor[size=(17, 17), device="cuda:0", dtype=torch.float64], Tensor[size=(16, 16), device="cuda:0", dtype=torch.float64], Tensor[size=(15, 15), device="cuda:0", dtype=torch.float64], Tensor[size=(14, 14), device="cuda:0", dtype=torch.float64], Tensor[size=(13, 13), device="cuda:0", dtype=torch.float64], Tensor[size=(12, 12), device="cuda:0", dtype=torch.float64], Tensor[size=(11, 11), device="cuda:0", dtype=torch.float64], Tensor[size=(10, 10), device="cuda:0", dtype=torch.float64], Tensor[size=(9, 9), device="cuda:0", dtype=torch.float64], Tensor[size=(8, 8), device="cuda:0", dtype=torch.float64], Tensor[size=(7, 7), device="cuda:0", dtype=torch.float64], Tensor[size=(6, 6), device="cuda:0", dtype=torch.float64], Tensor[size=(5, 5), device="cuda:0", dtype=torch.float64], Tensor[size=(4, 4), device="cuda:0", dtype=torch.float64], Tensor[size=(3, 3), device="cuda:0", dtype=torch.float64], Tensor[size=(2, 2), device="cuda:0", dtype=torch.float64], Tensor[size=(1, 1), device="cuda:0", dtype=torch.float64]], args=(), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/test_foreach.py TestForeachCUDA.test_parity__foreach_acos_fastpath_outplace_cuda_float64 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,992,404,266
[Event] add weakref for torch.Event
FFFrog
open
[ "open source", "topic: not user facing" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151217 * __->__ #151213 * #151208 **Backgroup:** `torch._dynamo.utils.store_user_object_weakref(value)` was introduted by this [PR](https://github.com/pytorch/pytorch/pull/133635/files#diff-9f0663783bcd93e948e0491ef61b48123bdc9977bcc632fd707da578df13bfa1R802) for `torch.xxx.Event`, but `torch.Event` don`t support weakref. So, the code shown below will fail: ```Python @torch.compile(backend="eager"): event = torch.cuda.Event() //Success event = torch.Event() //Fail ``` **Optional sulotions:** - Use Python class to wrap the current `torch.Event` class (Python class not created by C API supports weakref by default) - add weakref capability by Python C API(Just like this pr did) **Question:** For testcase: Where can I put the tests?(If necessary)
true
2,992,212,794
Super tiny fix typo
fzyzcjy
closed
[ "open source", "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes #ISSUE_NUMBER
true
2,992,175,620
[xla hash update] update the pinned xla hash
pytorchupdatebot
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
9
COLLABORATOR
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml). Update the pinned xla hash.
true
2,992,175,519
[ONNX] exported nodes of Multi-head attention can be simplified
m23ayou2
open
[ "module: onnx", "triaged" ]
7
NONE
I am exporting the nn.multiheadattention layer from pytorch to onnx and i have seen that many new operations that are not expected ![Image](https://github.com/user-attachments/assets/7b37f417-23af-4def-8c7a-d5383e827fe0) Is it a bug or a feature!
true
2,992,171,964
[Dynamo] Fix the unimplemented_v2 of EventVariable.call_method in ctx_manager.py
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151217 * #151213 * __->__ #151208 Changes: - Field of `explanations` shoule be `str` instead of `tuple` - Not only `torch.cuda.Event`, but alse `torch.xpu.Event` can trigger this message. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,992,171,404
Update slow tests
pytorchupdatebot
open
[ "open source", "ciflow/trunk", "topic: not user facing", "ciflow/slow", "ci-no-td" ]
13
COLLABORATOR
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml). Update the list of slow tests.
true
2,992,170,495
Fix corner case in `torch.arange()` where int64_t truncation leads to size 0
shink
open
[ "triaged", "open source", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes #149097 ### Changes This PR introduces a workaround for corner case where casting start/end/step to int64_t may introduce precision loss. If all values are within the range that double can represent exactly (i.e., [-2^53, 2^53]), we prefer using double arithmetic for consistency across devices. Otherwise, fallback to int64_t computation. ### Tests All results are same as np ``` python test/test_torch.py -k test_arange ``` cc: @albanD
true
2,992,150,389
Fix `MaskedTensor` to device ignored mask
zeshengzong
open
[ "triaged", "open source", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes #147140 ## Changes - Add `to` implementation in `MaskedTensor` to support move `mask` to target device ## Test Result ```python In [1]: import torch ...: from torch.masked import as_masked_tensor ...: data = torch.tensor([1,2,3]) ...: mask = torch.tensor([True,False,True]) ...: mt = as_masked_tensor(data, mask).to('cuda') ...: mt.get_data().device, mt.get_mask().device /home/zong/code/pytorch/torch/masked/maskedtensor/core.py:247: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project. return MaskedTensor(data, mask) /home/zong/code/pytorch/torch/masked/maskedtensor/_ops_refs.py:354: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project. return MaskedTensor(new_data, _maybe_get_mask(args[0])) Out[1]: (device(type='cuda', index=0), device(type='cuda', index=0)) In [2]: mt.sum(dim=0) /home/zong/code/pytorch/torch/masked/maskedtensor/core.py:247: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project. return MaskedTensor(data, mask) Out[2]: MaskedTensor(4, True) ``` ```bash pytest test/test_maskedtensor.py -vv ``` ![image](https://github.com/user-attachments/assets/640b809c-b4f0-4aca-a09e-04049017a745)
true
2,992,080,311
[Dynamo] Dynamo fails to trace reduce_scatter_v
yyp0
open
[ "oncall: distributed", "triaged", "module: c10d", "oncall: pt2", "module: dynamo" ]
3
NONE
### 🐛 Describe the bug When attempting to trace a module containing reduce_scatter operations with Dynamo (where input tensors have varying sizes), the following error occurs: ``` from user code: File "<eval_with_key>.0", line 659, in forward call_backward_2 = torch__dynamo_external_utils_call_backward(getitem_638, (getitem_8,), _softmax_backward_data); getitem_638 = _softmax_backward_data = None File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/_dynamo/external_utils.py", line 108, in call_backward grads = fake._forward_cls.backward(fake, *args) # type: ignore[attr-defined] File "/opt/tiger/mariana/janus/megatron/gate.py", line 567, in backward torch.distributed.reduce_scatter( File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/distributed/c10d_logger.py", line 81, in wrapper return func(*args, **kwargs) File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/distributed/distributed_c10d.py", line 4159, in reduce_scatter opts = ReduceScatterOptions() File "/home/tiger/.pyenv/versions/3.11.2/lib/python3.11/site-packages/torch/_dynamo/polyfills/__init__.py", line 173, in instantiate_user_defined_class_object obj = cls.__new__(cls, *args, **kwargs) ``` It seems that Dynamo currently lacks support for tracing torch.distributed.reduce_scatter with non-uniform inputs. Are there any workarounds to enable Dynamo compatibility with variable-sized reduce_scatter? @anijain2305 @zhuhaozhe @EikanWang ### Versions Versions of relevant libraries: [pip3] numpy==1.23.3 [pip3] optree==0.14.0 [pip3] torch==2.6.0a0+git037c3cc [pip3] torchlibrosa==0.1.0 [pip3] torchvision==0.22.0a0+fab1188 [pip3] torchvision==0.22.0a0+fab1188 [pip3] triton==3.0.0 [conda] Could not collect cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,992,065,212
Turn off symm_mem when cuda version is <12.3
xw285cornell
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
8
CONTRIBUTOR
Summary: It looks symmetric memory only supports cuda12.3+. We do have the definition w/ 12.3- but we don't have implementation. So maybe a good idea to even disable the definition. Test Plan: CI Reviewed By: jianyuh, houseroad, ngimel, jiawenliu64 Differential Revision: D72936993 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,991,946,118
torch.compile doesn't respect `torch.set_default_device`
bobrenjc93
open
[ "triaged", "oncall: pt2", "module: dynamo" ]
2
CONTRIBUTOR
``` import torch torch.set_default_device('cuda') def foo(x): return x * torch.randn(1) x = torch.randn(1) foo(x) # eager ok torch.compile(foo)(x) # compile not ok because torch.randn doesn't use the default device ``` gives the following compile error ``` (/home/bobren/local/a/pytorch-env) [22:39] devgpu035:/home/bobren/local/a/pytorch python r.py Traceback (most recent call last): File "/data/users/bobren/a/pytorch/r.py", line 10, in <module> torch.compile(foo)(x) # not ok File "/data/users/bobren/a/pytorch/torch/_dynamo/eval_frame.py", line 658, in _fn return fn(*args, **kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/convert_frame.py", line 1452, in __call__ return self._torchdynamo_orig_callable( File "/data/users/bobren/a/pytorch/torch/_dynamo/convert_frame.py", line 1233, in __call__ result = self._inner_convert( File "/data/users/bobren/a/pytorch/torch/_dynamo/convert_frame.py", line 619, in __call__ return _compile( File "/data/users/bobren/a/pytorch/torch/_dynamo/convert_frame.py", line 1079, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/data/users/bobren/a/pytorch/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/convert_frame.py", line 779, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/data/users/bobren/a/pytorch/torch/_dynamo/convert_frame.py", line 815, in _compile_inner out_code = transform_code_object(code, transform) File "/data/users/bobren/a/pytorch/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/data/users/bobren/a/pytorch/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/convert_frame.py", line 736, in transform tracer.run() File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 3519, in run super().run() File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 421, in impl self.push(fn_var.call_function(self, self.popn(nargs), {})) File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/builtin.py", line 1113, in call_function return handler(tx, args, kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/builtin.py", line 791, in <lambda> return lambda tx, args, kwargs: obj.call_function( File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/builtin.py", line 1113, in call_function return handler(tx, args, kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/builtin.py", line 991, in _handle_insert_op_in_graph return dispatch_torch_function(tx, fn_var, args, kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/torch_function.py", line 558, in dispatch_torch_function res = tx.symbolic_torch_function_state.call_torch_function_mode( File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/torch_function.py", line 283, in call_torch_function_mode return cur_mode.call_torch_function(tx, fn, types, args, kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/torch_function.py", line 401, in call_torch_function return call_torch_function( File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/torch_function.py", line 515, in call_torch_function return tx.inline_user_function_return(torch_function_var, tf_args, {}) File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 3745, in inline_call return tracer.inline_call_() File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 3928, in inline_call_ self.run() File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2272, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/data/users/bobren/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/torch.py", line 1205, in call_function return self.call_tensor_method(tx, args, kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/torch.py", line 1480, in call_tensor_method return args[0].call_method(tx, self.get_function().__name__, args[1:], kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/tensor.py", line 634, in call_method return wrap_fx_proxy( File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/builder.py", line 2362, in wrap_fx_proxy return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs) File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/builder.py", line 2428, in wrap_fx_proxy_cls return _wrap_fx_proxy( File "/data/users/bobren/a/pytorch/torch/_dynamo/variables/builder.py", line 2526, in _wrap_fx_proxy example_value = get_fake_value(proxy.node, tx, allow_non_graph_fake=True) File "/data/users/bobren/a/pytorch/torch/_dynamo/utils.py", line 3267, in get_fake_value raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None File "/data/users/bobren/a/pytorch/torch/_dynamo/utils.py", line 3165, in get_fake_value ret_val = wrap_fake_exception( File "/data/users/bobren/a/pytorch/torch/_dynamo/utils.py", line 2679, in wrap_fake_exception return fn() File "/data/users/bobren/a/pytorch/torch/_dynamo/utils.py", line 3166, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) File "/data/users/bobren/a/pytorch/torch/_dynamo/utils.py", line 3363, in run_node raise RuntimeError(make_error_message(e)).with_traceback( File "/data/users/bobren/a/pytorch/torch/_dynamo/utils.py", line 3333, in run_node return getattr(args[0], node.target)(*args[1:], **kwargs) File "/data/users/bobren/a/pytorch/torch/utils/_stats.py", line 27, in wrapper return fn(*args, **kwargs) File "/data/users/bobren/a/pytorch/torch/_subclasses/fake_tensor.py", line 1311, in __torch_dispatch__ return self.dispatch(func, types, args, kwargs) File "/data/users/bobren/a/pytorch/torch/_subclasses/fake_tensor.py", line 1932, in dispatch return self._cached_dispatch_impl(func, types, args, kwargs) File "/data/users/bobren/a/pytorch/torch/_subclasses/fake_tensor.py", line 1414, in _cached_dispatch_impl output = self._dispatch_impl(func, types, args, kwargs) File "/data/users/bobren/a/pytorch/torch/_subclasses/fake_tensor.py", line 2562, in _dispatch_impl self.wrap_meta_outputs_with_default_device_logic( File "/data/users/bobren/a/pytorch/torch/_subclasses/fake_tensor.py", line 2689, in wrap_meta_outputs_with_default_device_logic return tree_map(wrap, r) File "/data/users/bobren/a/pytorch/torch/utils/_pytree.py", line 1355, in tree_map return treespec.unflatten(map(func, *flat_args)) File "/data/users/bobren/a/pytorch/torch/utils/_pytree.py", line 1192, in unflatten leaves = list(leaves) File "/data/users/bobren/a/pytorch/torch/_subclasses/fake_tensor.py", line 2667, in wrap ) = FakeTensor._find_common_device(func, flat_args) File "/data/users/bobren/a/pytorch/torch/_subclasses/fake_tensor.py", line 923, in _find_common_device merge_devices(arg) File "/data/users/bobren/a/pytorch/torch/_subclasses/fake_tensor.py", line 918, in merge_devices raise RuntimeError( torch._dynamo.exc.TorchRuntimeError: Dynamo failed to run FX node with fake tensors: call_method mul(*(FakeTensor(..., device='cuda:0', size=(1,)), FakeTensor(..., size=(1,))), **{}): got RuntimeError('Unhandled FakeTensor Device Propagation for aten.mul.Tensor, found two different devices cuda:0, cpu') from user code: File "/data/users/bobren/a/pytorch/r.py", line 6, in foo return x * torch.randn(1) File "/data/users/bobren/a/pytorch/torch/utils/_device.py", line 104, in __torch_function__ return func(*args, **kwargs) Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" ``` cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,991,873,813
I can't compile Pytorch 2.0.0 because ninja: error: build.ninja:10911: multiple rules generate caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/UfuncCPUKernel_add.cpp.DEFAULT.cpp.o
gty1829
open
[ "needs reproduction", "module: build", "triaged" ]
2
NONE
After I run `DEBUG=1 USE_DISTRIBUTED=0 USE_MKLDNN=0 USE_CUDA=0 BUILD_TEST=0 USE_FBGEMM=0 USE_NNPACK=0 USE_QNNPACK=0 USE_XNNPACK=0 python setup.py develop`, the compiler finally output as follows: ![Image](https://github.com/user-attachments/assets/6b639280-31cb-4488-924f-4f37bcd50c52) I didn't change CMakeList.txt. When I download the source code from github, I found when I run `git submodule sync` or `git submodule update --init --recursive`, there is no output from the cmd as follows, but I can view the submodules from `cat .gitmodules`. So I manually down load the submodules like third_party/benchmark from github. I don't know whether this will affect the compilation error mentioned above. ![Image](https://github.com/user-attachments/assets/ca17d979-d2e0-4399-b150-2b66d82e7c2b) My device and envs: Ubuntu 22.04 CMake 3.31.0 ninja 1.12.1 Python 3.10 cc @malfet @seemethere
true
2,991,846,243
[torch.export] Exported model with LSTM has outputs c_n and h_n with wrong dimensions
alaa-ali
open
[ "oncall: pt2", "oncall: export" ]
1
NONE
### 🐛 Describe the bug There is a bug in torch.export when exporting a model with LSTM layer. When running the following source code in Python, these two outputs of LSTM layer (h_n, c_n) don't match the expected shapes. The generated output for internal states has an additional unnecessary dimension. The shapes are 4D with an additional singleton dimension. ``` import torch import torch.nn as nn class CustomModel(nn.Module): def __init__(self, kwargs): super(CustomModel, self).__init__() self.lstm = nn.LSTM(input_size=kwargs['input_size'], hidden_size=kwargs['hidden_size'], num_layers=kwargs['num_layers'], bias=kwargs['bias'], batch_first=kwargs['batch_first'], dropout=kwargs['dropout'], bidirectional=kwargs['bidirectional'], proj_size=kwargs['proj_size']) def forward(self, *args): input = args[0] output, (h_n, c_n) = self.lstm(input) return output, h_n, c_n model = CustomModel(kwargs={'input_size': 13, 'hidden_size': 20, 'num_layers': 1, 'bias': False, 'batch_first': True, 'dropout': 0.2, 'bidirectional': True, 'proj_size': 0}) sample_input = torch.rand(4, 10, 13) exported_model = torch.export.export(model, (sample_input,)) print(exported_model) ``` The resulting exported model: ``` lstm = torch.ops.aten.lstm.input(args_0, [zeros, zeros_1], [p_lstm_weight_ih_l0, p_lstm_weight_hh_l0, p_lstm_weight_ih_l0_reverse, p_lstm_weight_hh_l0_reverse], False, 1, 0.2, True, True, True); args_0 = zeros = zeros_1 = p_lstm_weight_ih_l0 = p_lstm_weight_hh_l0 = p_lstm_weight_ih_l0_reverse = p_lstm_weight_hh_l0_reverse = None getitem: "f32[4, 10, 40]" = lstm[0] getitem_1: "f32[2, 1, 4, 20]" = lstm[1] getitem_2: "f32[2, 1, 4, 20]" = lstm[2]; lstm = None return (getitem, getitem_1, getitem_2) ``` It's noticeable that the two last outputs of LSTM layer (h_n, c_n) are 4D with an additional singleton dimension. Although these two outputs should be 3D as mentioned below: https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html ![Image](https://github.com/user-attachments/assets/ce071fb5-1e31-497c-8e38-7df7811ee5f6) ### Versions Python version: 3.11.2 Python platform: Linux-6.1.0-32-amd64-x86_64-with-glibc2.36 Is CUDA available: True Versions of relevant libraries: [pip3] numpy==2.2.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0 cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,991,822,586
[CUDA Graph tree] Cannot capture buffer allocation on side CUDA Streams
lirundong
closed
[ "triaged", "module: cuda graphs" ]
7
NONE
### 🐛 Describe the bug Inductor CUDA Graph Tree implementation cannot capture multi-stream programs that contain buffer allocations on side streams. ## A minimal example ```python import torch from torch._inductor.cudagraph_trees import cudagraphify_impl from torch._inductor.cudagraph_trees import reset_cudagraph_trees def multi_stream_allocation(args): main_stream = torch.cuda.current_stream() side_stream = torch.cuda.Stream() entry = main_stream.record_event() with torch.cuda.stream(side_stream): entry.wait(side_stream) side_stream_buffer = torch.ones(*args, device="cuda:0", dtype=torch.float32) side_exit = side_stream.record_event() main_stream_buffer = torch.ones(*args, device="cuda:0", dtype=torch.float32) side_exit.wait(main_stream) if isinstance(args, list): # Reflect the CUDA GraphTree warmup logic implemented in # https://github.com/pytorch/pytorch/blob/81aee3c9/torch/_inductor/cudagraph_trees.py#L682 args.clear() return main_stream_buffer, side_stream_buffer if __name__ == "__main__": torch._dynamo.reset() reset_cudagraph_trees() # Expect error message like # RuntimeError: These storage data ptrs are not allocated in pool (0, 1) but should be {139780908122112} graphed_multi_stream_func = cudagraphify_impl( multi_stream_allocation, inputs=[], static_input_idxs=[], is_backward=False, is_inference=False, device_index=0, ) for i in range(3): main_stream_buffer, side_stream_buffer = graphed_multi_stream_func([2, 3]) print(f"#{i}: {main_stream_buffer.norm()=}") print(f"#{i}: {side_stream_buffer.norm()=}") ``` Output ```log RuntimeError: These storage data ptrs are not allocated in pool (0, 1) but should be {139780908122112} ``` ### Versions [collect_env.log](https://github.com/user-attachments/files/19729417/collect_env.log) cc @mcarilli @ezyang @eellison @penguinwu @BoyuanFeng
true
2,991,770,840
[inductor] [silent incorrectness] `torch.nn.PairwiseDistance(p=2)` outputs incorrect results with eager
shaoyuyoung
open
[ "high priority", "triaged", "module: correctness (silent)", "oncall: pt2", "module: inductor", "ubn" ]
8
CONTRIBUTOR
### 🐛 Describe the bug **symptom**: `torch.nn.PairwiseDistance(p=2)` outputs incorrect results **device backend**: both triton and CPP **note**: I have used `fp64` as baseline to compare the results **repro** ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config import os config.fallback_random = True torch.set_grad_enabled(False) torch.manual_seed(0) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.pad = torch.nn.ReflectionPad3d(1) self.dist = torch.nn.PairwiseDistance(p=2) def forward(self, x): x = self.pad(x) x = x.view(x.size(0), -1) x = torch.chunk(x, 2, dim=1) x = self.dist(x[0], x[1]) return x model = Model().eval().cuda() x = torch.randn(2, 3, 4, 4, 4).cuda() inputs = [x] def run_test(model, inputs, backend): if backend != "eager": model = torch.compile(model, backend=backend) torch.manual_seed(0) output = model(*inputs) return output output = run_test(model, inputs, 'eager') c_output = run_test(model, inputs, 'inductor') fp64 = run_test(model.to(dtype=torch.float64), [x.to(dtype=torch.float64)], 'eager') print(output) print(c_output) print(fp64) print(torch.allclose(output, c_output, 1e-3, 1e-3, equal_nan=True)) print(torch._dynamo.utils.same(output, c_output, fp64)) print(torch.max(torch.abs(output - c_output))) ``` ### Error logs ``` tensor([22.9208, 22.6405], device='cuda:0') tensor([23.1078, 21.4387], device='cuda:0') tensor([22.9208, 22.6405], device='cuda:0', dtype=torch.float64) False E0414 11:20:47.280000 958741 site-packages/torch/_dynamo/utils.py:2930] RMSE (res-fp64): 0.86004, (ref-fp64): 0.00000 and shape=torch.Size([2]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.000100, use_larger_multiplier_for_smaller_tensor: 0 False tensor(1.2018, device='cuda:0') ``` ### Versions nightly 20250414 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov
true
2,991,725,957
Fix `keepdim` param optional description
zeshengzong
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: python_frontend" ]
7
CONTRIBUTOR
Fixes #151104 Fix optional description of `dim` and `keepdim`, except `torch.quantile` which already fixed in #146485 ## Test Result ### Before ![image](https://github.com/user-attachments/assets/69f1824d-3d15-407e-8c92-f25a22e16914) ### After ![image](https://github.com/user-attachments/assets/e5aac674-ab8f-4988-a5f1-7400c36bdc99) cc @soulitzer
true
2,991,645,017
compile of vmap of jacfwd fails
marikgoldstein
open
[ "triaged", "oncall: pt2", "module: functorch" ]
0
NONE
### 🐛 Describe the bug Hi Pytorch Compile developers, Thanks so much for the great library and functionality. I looked around but couldn't find the following as an existing issue. In short: calling vmap of jacfwd of a function works for me, but compiling it triggers an assert that prints out a message, saying I should report the bug. Jacrev works fine though, but isn't optimal for my setup. Please let me know what you think and apologies if doing anything silly. Setup: For batch size N, I have a network that takes in a batch of times of shape (N,) and an image of shape (N,C,H,W). The network also produces an image of (N,C,H,W). For example, a diffusion model. I'd like the pixel-wise derivative of the output with respect to t. So the model is net(t, x) and I want (d/dt) net(t, x). I'd like to do this in a forward pass so I can compute a loss function comparing the image of time derivatives to some value. (Of course, let me know if there are also just some other better ways to do this, but still reporting the bug) If i'm not mistaken: - In general, the jacobian here is (N, C, H, W, N) but it actually factors across datapoints so it makes sense to differentiate a 1 datapoint function and then vmap, to get the correct (N, C, H, W) containing d/dt of each output pixel - jacfwd makes sense here over jacrev since it is high output dim (image) and low input dim (scalar). The error: torch._dynamo.exc.TorchRuntimeError: Dynamo failed to run FX node with fake tensors: call_function <built-in function mul>(*(FakeTensor(..., device='cuda:0', size=(1,), requires_grad=True), GradTrackingTensor(lvl=3, value= BatchedTensor(lvl=1, bdim=0, value= FakeTensor(..., device='cuda:0', size=(16, 1, 1, 1, 1)) ) )), **{}): got RuntimeError('InferenceMode::is_enabled() && self.is_inference() INTERNAL ASSERT FAILED at "/pytorch/aten/src/ATen/native/VariableMethodStubs.cpp":66, please report a bug to PyTorch. Expected this method to only be reached in inference mode and when all the inputs are inference tensors. You should NOT call this method directly as native::_fw_primal. Please use the dispatcher, i.e., at::_fw_primal. Please file an issue if you come across this error otherwise.') Versions/hardware: - Python 3.9.19 - torch 2.8.0.dev20250412+cu126 - NVIDIA-SMI 560.28.03, Driver Version: 560.28.03, CUDA Version: 12.6 - NVIDIA A100 80GB PCIe Here I include code to reproduce: ``` import torch import torch.nn as nn from torch.func import vmap, jacfwd, jacrev import os class Net(nn.Module): # a simple network with 1 param that multiples it times t and x def __init__(self,): super().__init__() self.param = nn.Parameter( torch.randn(1), requires_grad=True, ) def forward(self, t, x): return self.param * t[:, None, None, None] * x if __name__ == '__main__': os.environ['TORCHDYNAMO_VERBOSE']='1' device = torch.device('cuda') net = Net() net.to(device) N = 16 t = torch.rand(N,).to(device) x = torch.randn(N, 3, 32, 32).to(device) net.train() def f_single(t_i, x_i): return net(t_i[None, ...], x_i[None, ...]).squeeze(0) # jacobian on single datapoint method and then vmap # so that jacobian is computed separately per datapoint # yielding desired (N, C, H, W) instead of needless (N, C, H, W, N) ddt_f_single = jacfwd(f_single, argnums=0) ddt_f = vmap(ddt_f_single) output = ddt_f(t, x) print("output shape", output.shape) # above works. but calling the compiled func fails. ddt_f = torch.compile(ddt_f) output2 = ddt_f(t, x) ``` ### Error logs [goldsm20@a100-4029 directory_name]$ python minimal.py output shape torch.Size([16, 3, 32, 32]) Traceback (most recent call last): File "/gpfs/data/ranganathlab/mark/flows_ddt/minimal.py", line 43, in <module> output2 = ddt_f(t, x) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 658, in _fn return fn(*args, **kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 1452, in __call__ return self._torchdynamo_orig_callable( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 1233, in __call__ result = self._inner_convert( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 619, in __call__ return _compile( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 1079, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 779, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 815, in _compile_inner out_code = transform_code_object(code, transform) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 736, in transform tracer.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3491, in run super().run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2244, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/higher_order_ops.py", line 1812, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 405, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2244, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 405, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2244, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 405, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2146, in CALL_FUNCTION self.call_function(fn, args, {}) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2244, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/higher_order_ops.py", line 1812, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 405, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2244, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 405, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2244, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2256, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 405, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2244, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 405, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2146, in CALL_FUNCTION self.call_function(fn, args, {}) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1178, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/nn_module.py", line 952, in call_function return variables.UserFunctionVariable(fn, source=source).call_function( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 405, in call_function return super().call_function(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/functions.py", line 186, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1195, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3717, in inline_call return tracer.inline_call_() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 3900, in inline_call_ self.run() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 421, in impl self.push(fn_var.call_function(self, self.popn(nargs), {})) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/builtin.py", line 1114, in call_function return handler(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/builtin.py", line 792, in <lambda> return lambda tx, args, kwargs: obj.call_function( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/builtin.py", line 1114, in call_function return handler(tx, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/builtin.py", line 1079, in _handle_insert_op_in_graph return wrap_fx_proxy(tx, proxy) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/builder.py", line 2362, in wrap_fx_proxy return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/builder.py", line 2428, in wrap_fx_proxy_cls return _wrap_fx_proxy( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/variables/builder.py", line 2526, in _wrap_fx_proxy example_value = get_fake_value(proxy.node, tx, allow_non_graph_fake=True) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 3269, in get_fake_value raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 3167, in get_fake_value ret_val = wrap_fake_exception( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 2681, in wrap_fake_exception return fn() File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 3168, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 3365, in run_node raise RuntimeError(make_error_message(e)).with_traceback( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 3324, in run_node return node.target(*args, **kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/utils/_stats.py", line 27, in wrapper return fn(*args, **kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 1311, in __torch_dispatch__ return self.dispatch(func, types, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 1932, in dispatch return self._cached_dispatch_impl(func, types, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 1423, in _cached_dispatch_impl output = self._dispatch_impl(func, types, args, kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 2211, in _dispatch_impl (flat_args, flat_arg_fake_tensors) = self.validate_and_convert_non_fake_tensors( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 2640, in validate_and_convert_non_fake_tensors validated_args = [validate(a) for a in flat_args] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 2640, in <listcomp> validated_args = [validate(a) for a in flat_args] File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 2630, in validate f"with 'allow_non_fake_inputs'. Found in {render_call(func, args, kwargs)}" File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_utils.py", line 694, in render_call str_args.extend(repr(a) for a in args) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_utils.py", line 694, in <genexpr> str_args.extend(repr(a) for a in args) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_tensor.py", line 590, in __repr__ return torch._tensor_str._str(self, tensor_contents=tensor_contents) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_tensor_str.py", line 726, in _str return _str_intern(self, tensor_contents=tensor_contents) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_tensor_str.py", line 439, in _str_intern self, tangent = torch.autograd.forward_ad.unpack_dual(inp) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/autograd/forward_ad.py", line 168, in unpack_dual primal, dual = torch._VF._unpack_dual(tensor, level=level) torch._dynamo.exc.TorchRuntimeError: Dynamo failed to run FX node with fake tensors: call_function <built-in function mul>(*(FakeTensor(..., device='cuda:0', size=(1,), requires_grad=True), GradTrackingTensor(lvl=3, value= BatchedTensor(lvl=1, bdim=0, value= FakeTensor(..., device='cuda:0', size=(16, 1, 1, 1, 1)) ) )), **{}): got RuntimeError('InferenceMode::is_enabled() && self.is_inference() INTERNAL ASSERT FAILED at "/pytorch/aten/src/ATen/native/VariableMethodStubs.cpp":66, please report a bug to PyTorch. Expected this method to only be reached in inference mode and when all the inputs are inference tensors. You should NOT call this method directly as native::_fw_primal. Please use the dispatcher, i.e., at::_fw_primal. Please file an issue if you come across this error otherwise.') from user code: File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_functorch/eager_transforms.py", line 1273, in wrapper_fn results = vmap(push_jvp, randomness=randomness)(basis) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_functorch/eager_transforms.py", line 1262, in push_jvp output = _jvp_with_argnums( File "/gpfs/scratch/goldsm20/miniconda3/envs/ddc/lib/python3.9/site-packages/torch/_functorch/eager_transforms.py", line 1101, in _jvp_with_argnums result_duals = func(*duals) File "/gpfs/data/ranganathlab/mark/flows_ddt/minimal.py", line 31, in f_single return net(t_i[None, ...], x_i[None, ...]).squeeze(0) File "/gpfs/data/ranganathlab/mark/flows_ddt/minimal.py", line 14, in forward return self.param * t[:, None, None, None] * x ### Versions [goldsm20@a100-4029 directory_name]$ python3 collect_env.py Collecting environment information... PyTorch version: 2.8.0.dev20250412+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Red Hat Enterprise Linux release 8.8 (Ootpa) (x86_64) GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18) Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.28 Python version: 3.9.19 (main, Mar 21 2024, 17:11:28) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-477.27.1.el8_8.x86_64-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 12.6.20 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100 80GB PCIe Nvidia driver version: 560.28.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 48 On-line CPU(s) list: 0-47 Thread(s) per core: 1 Core(s) per socket: 24 Socket(s): 2 NUMA node(s): 4 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz Stepping: 6 CPU MHz: 3500.000 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5600.00 L1d cache: 48K L1i cache: 32K L2 cache: 1280K L3 cache: 36864K NUMA node0 CPU(s): 0-11 NUMA node1 CPU(s): 12-23 NUMA node2 CPU(s): 24-35 NUMA node3 CPU(s): 36-47 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.26.3 [pip3] nvidia-cublas-cu11==11.11.3.6 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu11==11.8.87 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu11==11.8.89 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu11==11.8.89 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu11==8.7.0.84 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu11==10.9.0.58 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu11==10.3.0.86 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu11==11.4.1.48 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu11==11.7.5.86 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu11==2.20.5 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu11==11.8.86 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-fid==0.3.0 [pip3] pytorch-triton==3.3.0+git96316ce5 [pip3] torch==2.8.0.dev20250412+cu126 [pip3] torchaudio==2.6.0.dev20250127+cu124 [pip3] torchdiffeq==0.2.3 [pip3] torchvision==0.22.0.dev20250127+cu124 [pip3] triton==2.3.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu11 11.11.3.6 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu11 11.8.87 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu11 11.8.89 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu11 11.8.89 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu11 9.1.0.70 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu11 10.3.0.86 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu11 11.4.1.48 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu11 11.7.5.86 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu11 2.20.5 pypi_0 pypi [conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu11 11.8.86 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-fid 0.3.0 pypi_0 pypi [conda] pytorch-triton 3.3.0+git96316ce5 pypi_0 pypi [conda] torch 2.8.0.dev20250412+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250412+cu126 pypi_0 pypi [conda] torchdiffeq 0.2.3 pypi_0 pypi [conda] torchvision 0.22.0.dev20250127+cu124 pypi_0 pypi [conda] triton 2.3.0 pypi_0 pypi cc @chauhang @penguinwu @zou3519 @Chillee @samdow @kshitij12345
true
2,991,585,470
[executorch hash update] update the pinned executorch hash
pytorchupdatebot
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
3
COLLABORATOR
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml). Update the pinned executorch hash.
true
2,991,567,644
Mark auto_functionalized HOPs as cacheable
zou3519
closed
[ "Merged", "ciflow/trunk", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151194 * #151193 Fixes #151188 Test Plan: - new tests cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,991,567,589
Improve sort with non-constant keys error message
zou3519
closed
[ "Merged", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151194 * __->__ #151193 Fixes https://github.com/pytorch/pytorch/issues/143505 Test Plan: - new test cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,991,481,764
[ZCH vNext] Bucket offsets and sizes in torchrec shard metadata for bucket wise sharding
faran928
open
[ "oncall: distributed", "fb-exported", "release notes: distributed (sharded)" ]
10
CONTRIBUTOR
Summary: X-link: https://github.com/pytorch/torchrec/pull/2885 X-link: https://github.com/pytorch/torchrec/pull/2884 Bucket offsets and sizes in torchrec shard metadata for bucket wise sharding for ZCH v.Next Test Plan: buck test torchrec/distributed/tests:test_sharding_plan Differential Revision: D72921209 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,991,438,422
Fix DWConv in QNNPACK for aarch32
joseluisbf-kpsr
open
[ "module: cpu", "triaged", "open source", "release notes: quantization" ]
2
NONE
Some function arguments are stored below the stack pointer, that is, in a free memory area. Any call that stores values in the SP (e.g. OS context switch) will corrupt these values after return. We didn't face this problem in Linux, but it raises an `_ARMV4_Exception_data_abort_default` in RTEMS. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,991,404,420
Clarify that x and dx are mutually exclusive in torch.trapezoid doc
aishwaryar12309
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: python_frontend" ]
6
CONTRIBUTOR
This PR addresses [#151105](https://github.com/pytorch/pytorch/issues/151105) by stating that x and dx are mutually exclusive parameters in torch.trapezoid()
true
2,991,389,434
NotImplementedError: The operator 'aten::_linalg_solve_ex.result' is not currently implemented for the MPS device. Available in nightly for CPU.
peterdn1
closed
[ "triaged", "module: linear algebra", "module: mps" ]
1
NONE
### 🐛 Describe the bug The HiDream-i1 model (currently among the most advanced open-source AI image generators) was released on Hugging Face this week (April 8, 2025). While the full model fails to run on an RTX 5090, I’ve successfully managed to load all components on my M1, with some minor code modifications to their open source project which I will contribute if I am able to have a fully functional mac implementation. Initially, I ran into issues due to an unimplemented method—this has since been addressed in the latest nightly builds. However, when attempting to generate an image, I now encounter the following error: NotImplementedError: The operator 'aten::_linalg_solve_ex.result' is not currently implemented for the MPS device. Available in nightly for CPU. I would really like to get this working with MPS, as it will allow this model as well as others to run efficiently on mac hardware. Appreciate you efforts. Regards, Peter ### Versions PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.3.2 (arm64) GCC version: Could not collect Clang version: 17.0.0 (clang-1700.0.13.3) CMake version: version 3.29.5 Libc version: N/A Python version: 3.10.17 | packaged by conda-forge | (main, Apr 10 2025, 22:23:34) [Clang 18.1.8 ] (64-bit runtime) Python platform: macOS-15.3.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Ultra Versions of relevant libraries: [pip3] numpy==2.2.4 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchvision==0.21.0 [conda] numpy 2.2.4 pypi_0 pypi [conda] torch 2.6.0 pypi_0 pypi [conda] torchaudio 2.6.0 pypi_0 pypi [conda] torchvision 0.21.0 pypi_0 pypi cc @jianyuh @nikitaved @mruberry @walterddr @xwang233 @Lezcano @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,991,284,069
Make auto_functionalize HOPs cacheable
zou3519
closed
[ "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "dynamo-triage-jan2025" ]
0
CONTRIBUTOR
I think this should go into 2.7.1. This was the reason that sglang had torch.compile caching issues and the fix is very simple. cc @chauhang @penguinwu @ydwu4 @bdhirsh
true
2,991,262,051
[aot] remove zip in remove_dupe_args
bobrenjc93
closed
[ "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151187
true
2,991,254,107
autograd: Add VJP and JVP rules for aten::aminmax
vijayabhaskar-ev
open
[ "triaged", "open source", "release notes: autograd" ]
5
NONE
Adds functionally correct backward (VJP) and forward (JVP) autograd rules for the aten::aminmax operator to derivatives.yaml using existing helper functions. This ensures correct eager mode differentiation. Fixes #148808
true
2,991,167,688
fix sympy FloorToInt when compile
zhangheng408
open
[ "module: cpu", "triaged", "open source" ]
4
NONE
fix follow error <img width="1903" alt="image" src="https://github.com/user-attachments/assets/2d967bc4-f884-4e5f-b1d4-d8cca2f281a7" /> cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,991,102,596
[dynamo] Prevent lazy variable realization on STORE_FAST
anijain2305
open
[ "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "ciflow/pull" ]
27
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151184 Fixes https://github.com/pytorch/pytorch/issues/131893 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,991,093,443
[Inductor] Add Additional Configs for persistent+TMA version of Triton mm and addmm
NikhilAPatel
closed
[ "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * (to be filled) Summary: This PR introduces additional autotuning configurations for the persistent+TMA version of Triton `mm` and `addmm` operations. The new configurations are as follows: * `(128, 128, 64, 5, 8)` * `(256, 128, 64, 4, 8)` * `(128, 128, 64, 5, 4)` These configurations were selected based on exhaustive autotuning performed on commonly used shapes from an internal foundational model. While these new configs are generally more performant across the board, we see notable gains a few specific cases: * In scenarios where `n >> m, k`, the configurations `(128, 128, 64, 5, 8)` and `(256, 128, 64, 4, 8)` tend to produce an additional 5-10% speedup over the aten baseline compared to the original configurations. * Similarly, the configuration `(128, 128, 64, 5, 4)` yields approximately an 8% improvement in scenarios where k >> m, n. These enhancements are expected to provide performance benefits across diverse use cases, particularly when compared to the original set of configurations. Test Plan: contbuild & OSS CI Reviewers: paulzhan cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,991,077,077
A problem discovered when computing complex matrices in deep neural networks
DareikAndPutty
open
[ "triaged", "module: complex", "module: NaNs and Infs" ]
4
NONE
### 🐛 Describe the bug Previously, while working with the latest YOLO model provided by Ultralytics, I attempted an operation where I performed torch.fft.fft2() on the output feature maps of certain CSPBlocks to obtain their corresponding complex matrices. I then manipulated the modulus matrices of these complex matrices, multiplied the resulting matrices back into the complex matrices, and finally used torch.fft.ifft2() to obtain the processed output. At this point, a problem arose: during training, the loss value would suddenly become NaN. I later tested the same operation on other simpler models, such as using ResNet for classification tasks or UNet for segmentation tasks, and found that adding the same operation did not cause this issue. I initially thought the problem lay in the design of my operator. However, recently, when I continued testing on YOLO, I discovered that if I manipulated the modulus matrices of the complex matrices, multiplied the resulting matrices back into the modulus matrices, and then recombined them with the phase matrices to form the complex matrices again, the loss value did not suddenly become NaN. This puzzled me because, mathematically, these two operations should be equivalent. ### Versions Several versions before torch-2.5 have been tested on hardware devices such as 3090, 4070tisuper, TITAN, etc. Tested on both Ubuntu and Windows cc @ezyang @anjali411 @dylanbespalko @mruberry @nikitaved @amjames
true
2,990,935,528
Docs: Fix typos in the Symbolic Numbers docstrings
koyuki7w
closed
[ "open source", "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
null
true
2,990,919,873
metamate attempt 0 multi graph
bobrenjc93
closed
[ "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151180 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,990,919,836
[ez] remove unused arg in _create_wrapped_callback
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151180 * __->__ #151179 * #150828 * #150755 * #150754 * #150753 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,990,835,779
Optimize `cdist` param description
zeshengzong
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: python_frontend", "topic: docs" ]
3
CONTRIBUTOR
Fixes #151101
true
2,990,808,924
[MPS] Get Vmap to work with mps backend
qqaatw
open
[ "open source", "ciflow/trunk", "release notes: mps", "ciflow/mps" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151177
true
2,990,808,901
[MPS] Fix where
qqaatw
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: mps", "ciflow/mps" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151177 * __->__ #151176 Fixes #150967
true
2,990,805,335
improve noop elimination for slice and slice_scatter
BoyuanFeng
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Improves noop elimination for `slice` and `slice_scatter`. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,990,801,571
[MPS] Fix where
qqaatw
closed
[ "release notes: mps", "ciflow/mps" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * (to be filled)
true
2,990,800,805
[MPS] Fix where
qqaatw
closed
[ "release notes: mps", "ciflow/mps" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * (to be filled)
true
2,990,740,684
[wip test] (sizes[i] == 0)
laithsakka
closed
[]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151172 * #151171 * #151170
true
2,990,732,908
Fix: missing () in generated runtime assert c++ code
laithsakka
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151171 * #151170 Address one of the issues in https://github.com/pytorch/pytorch/issues/151127 generated code used to be not a==5 or b==5 should be not (a==5 or b==5) address one of the issues in the comments of Address one of the issues in https://github.com/pytorch/pytorch/issues/151127 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,990,728,489
Fix Issues in deferring runtime assertions.
laithsakka
closed
[ "Merged", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151171 * __->__ #151170 This PR fix two bugs: 1) Update self.bound_unbacked_symbols before emitting runtime asserts : set self.bound_unbacked_symbols before emitting runtime asserts to include runtime asserts depending on the current node 2) In the pass that remove unused graph inputs, we should not remove symbols that are used by runtime assertions. Address some of the issues in https://github.com/pytorch/pytorch/issues/151127 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,990,724,738
[dynamo][error message] Hint for dict_items as inputs to the compiled region
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151184 * __->__ #151169 * #151168 * #151164 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,990,711,965
[dynamo] Graph break fixes while tracing inspect module
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151184 * #151169 * __->__ #151168 * #151164 Fixes https://github.com/pytorch/pytorch/issues/139374 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,990,704,071
[Testing] Skip `test_unspec_inputs_float64_mps`
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151155 * __->__ #151167 * #151166 As backend does nto support float64 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,990,704,045
[CI] Fix `GPUTests.test_scheduler_vertical_fusion1`
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * (to be filled) By enabling the test_operators on MPS device cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,990,703,147
Bug on running TorchScript on H100
mikeybydun1
open
[ "oncall: jit" ]
0
NONE
Hello, I have a torch script that using torch 1.13.0 (cuda version), I am compiling a pytorch code into .pt file and then run the model. On every gpu its working well (a100 for example), but when i run the same code on NVIDIA H100 the results just became nan. Do you have any idea why? Pytorch version? what i need to configure? Thanks! cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,990,680,681
[dynamo][nn_module] Use method.__self__ to find source for patched methods
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151169 * #151168 * __->__ #151164 Fixes https://github.com/pytorch/pytorch/issues/137476 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,990,633,295
[CUDA][cuBLAS][cuBLASLt] Opt-in unified cuBLAS + cuBLASLt workspaces
eqy
closed
[ "module: cuda", "module: cublas", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
6
COLLABORATOR
opt-in version of https://github.com/pytorch/pytorch/pull/145130 as there was a lack of repro for the 70% forward issue `TORCH_CUBLASLT_UNIFIED_WORKSPACE=1` @izaitsevfb could you comment if it was repeatable per every forward pass, on startup, or something else? cc @ptrblck @msaroufim @jerryzh168 @csarofeen @xwang233 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,990,578,308
add keepdim to cosine similarity(cpp-change)
Isalia20
open
[ "module: nn", "triaged", "open source", "release notes: nn", "topic: improvements" ]
3
COLLABORATOR
Part of #149134 cpp changes. Not sure if anything else should be changed in this part of the PR. If I change the input argument then I need to change the native_functions.yaml as well cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,990,540,068
Update ir.cpp: if it's not ROCm then it may be Vulkan
Efenstor
closed
[ "oncall: jit", "module: rocm", "open source", "module: vulkan", "release notes: jit" ]
2
NONE
Fix build for USE_ROCM=OFF USE_VULKAN=ON cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,990,483,037
[CI][CUDA] Disable scaled_gemm tests on blackwell
abhilash1910
closed
[ "triaged", "open source", "topic: not user facing" ]
6
NONE
On SM100 or later , torch._scaled_mm is not supported; It is supported till compute capability 9.0 cc @nWEIdia @tinglvv @eqy
true
2,990,359,956
Failed to destroy or init process group after calling _abort_process_group
Gong-air
open
[ "oncall: distributed", "triaged" ]
1
NONE
### 🐛 Describe the bug In a distributed training scenario using PyTorch's torch.distributed module, I encountered an issue when attempting to destroy or reinitialize a process group after calling the internal function _abort_process_group. This issue prevents me from creating new process groups or reinitializing the default process group (WORLD) after the original group has been aborted. ```python import os import torch import torch.distributed as dist from torch.multiprocessing import Process def run(rank, world_size): # Initialize the default process group dist.init_process_group( backend="nccl", init_method="env://", world_size=world_size, rank=rank ) print(f"[Rank {rank}] Default process group initialized.") # Perform a simple all_reduce operation device = torch.device(f"cuda:{rank}") tensor = torch.tensor([rank + 1], dtype=torch.float32).to(device) dist.all_reduce(tensor, op=dist.ReduceOp.SUM) print(f"[Rank {rank}] After all_reduce: {tensor.item()}") # Abort the process group print(f"[Rank {rank}] Aborting the process group...") dist.distributed_c10d._abort_process_group() # Attempt to reinitialize the default process group try: print(f"[Rank {rank}] Re-initializing default process group...") # dist.destroy_process_group() # another error occurs dist.init_process_group( backend="nccl", init_method="env://", world_size=world_size, rank=rank ) print(f"[Rank {rank}] Default process group re-initialized successfully.") except Exception as e: print(f"[Rank {rank}] Failed to re-initialize default process group: {e}") def main(): world_size = 2 # Set to 2 ranks os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29500" processes = [] for rank in range(world_size): p = Process(target=run, args=(rank, world_size)) p.start() processes.append(p) for p in processes: p.join() if __name__ == "__main__": main() ``` ### Versions PyTorch version: 2.6.0+cu124 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,990,304,768
Fix license check for setuptools>=77
oraluben
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
6
CONTRIBUTOR
Fixes #151157 See issue for more information
true
2,990,297,710
`test_distinfo_license` failed after `setuptools>=77`
oraluben
closed
[ "module: build", "module: tests", "triaged" ]
0
CONTRIBUTOR
### 🐛 Describe the bug `test_distinfo_license` checkes if `LICENSE` file exists under `torch-<version>.dist-info/` in the wheel. After https://github.com/pypa/setuptools/commit/ef9b8e5c5eec50853c4cd2ceeccbf5f963172560 ([setuptools v77.0](https://github.com/pypa/setuptools/releases/tag/v77.0.0)), `<pkg>.dist-info/{LICENSE,NOTICE}` have been renamed to `<pkg>.dist-info/licenses/{LICENSE,NOTICE}`, cause the test to fail. ### Versions - cc @malfet @seemethere @mruberry @ZainRizvi
true
2,990,194,792
Inductor doesn't support tensor.view(dtype).copy_(...)
YouJiacheng
closed
[ "high priority", "triaged", "module: correctness (silent)", "oncall: pt2", "module: inductor" ]
5
CONTRIBUTOR
### 🐛 Describe the bug ```python import os import torch from torch import Tensor os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "0" os.environ["TORCHINDUCTOR_UNIQUE_KERNEL_NAMES"] = "1" os.environ["TORCHINDUCTOR_BENCHMARK_KERNEL"] = "1" @torch.compile def view_copy(target: Tensor, source: Tensor): assert target.dtype == torch.bfloat16 assert source.dtype == torch.uint16 target.view(torch.uint16).copy_(source) target: Tensor = torch.ones(65536 * 1024, dtype=torch.bfloat16, device="cuda") source = torch.full_like(target, 4, dtype=torch.uint16) target.view(torch.uint16).copy_(source) print(target[0]) # 3.6734e-40 view_copy(target, source) print(target[0]) # 4. ``` ### Error logs The generated triton code is wrong ```python @triton_heuristics.pointwise( size_hints={'x': 67108864}, filename=__file__, triton_meta={'signature': {'in_ptr0': '*u16', 'out_ptr0': '*bf16', 'xnumel': 'i32'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=132, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, warp_size=32), 'constants': {}, 'configs': [AttrsDescriptor.from_dict({'arg_properties': {'tt.divisibility': (0, 1, 2), 'tt.equal_to': ()}, 'cls': 'AttrsDescriptor'})]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': ['out_ptr0'], 'optimize_mem': True, 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A0D3A2B50857E9501D843044B01F725922648D76E6D26323B14F8A4EA4473D1B', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False, 'kernel_num_gb': 0.268435456}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 67108864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = tmp0.to(tl.float32, bitcast=False) tl.store(out_ptr0 + (x0), tmp1, None) ``` Full code: ```python # AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import ( grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph, cooperative_reduction_grid, ) from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() empty_strided_p2p = torch._C._distributed_c10d._SymmetricMemory.empty_strided_p2p # kernel path: /tmp/torchinductor_root/5m/c5mmszhvnmnuimm6a3j7emw2wh7vx6mwt6uar6eqk5mygz5jqgw4.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %view_2), kwargs = {}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties triton_helpers.set_driver_to_gpu() from torch._dynamo.testing import rand_strided from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid @triton_heuristics.pointwise( size_hints={'x': 67108864}, filename=__file__, triton_meta={'signature': {'in_ptr0': '*u16', 'out_ptr0': '*bf16', 'xnumel': 'i32'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=132, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, warp_size=32), 'constants': {}, 'configs': [AttrsDescriptor.from_dict({'arg_properties': {'tt.divisibility': (0, 1, 2), 'tt.equal_to': ()}, 'cls': 'AttrsDescriptor'})]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': ['out_ptr0'], 'optimize_mem': True, 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A0D3A2B50857E9501D843044B01F725922648D76E6D26323B14F8A4EA4473D1B', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False, 'kernel_num_gb': 0.268435456}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 67108864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = tmp0.to(tl.float32, bitcast=False) tl.store(out_ptr0 + (x0), tmp1, None) def get_args(): arg_0 = rand_strided((67108864,), (1,), device='cuda:0', dtype=torch.uint16) arg_1 = rand_strided((67108864,), (1,), device='cuda:0', dtype=torch.bfloat16) return arg_0, arg_1, def call(args): with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) stream0 = get_raw_stream(0) triton_poi_fused_0.run(*args, 67108864, grid=grid(67108864), stream=stream0) def benchmark_all_configs(args): with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) return triton_poi_fused_0.benchmark_all_configs(*args, 67108864, grid=grid(67108864)) if __name__ == '__main__': from torch._inductor.runtime.benchmarking import benchmarker args = get_args() ms = benchmarker.benchmark_gpu(lambda: call(args), rep=40) num_gb = 0.268435456 gb_per_s = num_gb / (ms / 1e3) print(f"{ms:.3f}ms {num_gb:.3f}GB {gb_per_s:.2f}GB/s") ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (67108864, ), (1, )) assert_size_stride(arg1_1, (67108864, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(arg1_1, arg0_1, 67108864, grid=grid(67108864), stream=stream0) del arg0_1 del arg1_1 return () def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((67108864, ), (1, ), device='cuda:0', dtype=torch.bfloat16) arg1_1 = rand_strided((67108864, ), (1, ), device='cuda:0', dtype=torch.uint16) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module) ``` ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.12.9 (main, Mar 11 2025, 17:26:57) [Clang 20.1.0 ] (64-bit runtime) Python platform: Linux-5.4.250-2-velinux1u1-amd64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 GPU 2: NVIDIA H100 80GB HBM3 GPU 3: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.129.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 168 On-line CPU(s) list: 0-74 Off-line CPU(s) list: 75-167 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8457C CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 42 Socket(s): 2 Stepping: 8 BogoMIPS: 5199.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 3.9 MiB (84 instances) L1i cache: 2.6 MiB (84 instances) L2 cache: 168 MiB (84 instances) L3 cache: 195 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-83 NUMA node1 CPU(s): 84-167 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Unknown: No mitigations Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.2.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0 [pip3] triton==3.2.0 [conda] Could not collect cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov
true
2,990,121,861
[MPS] Start benchmarking compile results
malfet
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151155 To know passrate and speedup. Modify workflow to run when `macos-test.sh` is modified. Got some ridiculous speedup numbers, like 7x for resnet and 93x for yolo
true
2,990,083,087
[dynamo][super variable] Fix bug to use correct source
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "keep-going" ]
12
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151154 Fixes https://github.com/pytorch/pytorch/issues/150994 We should cherry-pick to 2.7 branch if possible, because this breaks torch.compile on some HF models. Look at the issue referenced here. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,990,081,302
DISABLED test_allgather_stress_cuda (__main__.ProcessGroupGlooLazyInitTest)
jithunnair-amd
open
[ "oncall: distributed", "module: rocm", "triaged", "skipped" ]
2
COLLABORATOR
Platforms: rocm This test was disabled because it failed on the MI300 runners in #150667: https://github.com/pytorch/pytorch/actions/runs/14372628446/job/40320881178 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,990,028,958
[MPSInductor] Fix larger-than-threadgroup Welford reductions
malfet
closed
[ "Merged", "Reverted", "topic: improvements", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor", "ci-no-td" ]
8
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151152 * #151151 * #150824 * #151042 By using `welford_combine` primitive in the loop This fixes `GPUTests.test_multilayer_var_lowp_mps` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,990,028,923
[MPSInductor][BE] Implement reduction caching
malfet
closed
[ "Merged", "topic: improvements", "topic: not user facing", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151155 * #151152 * __->__ #151151 * #150824 * #151042 That avoids double/triple invocation of welford reductions when both mean and deviation must be returned Code has been copy-n-pasted for Halide implementation https://github.com/pytorch/pytorch/blob/575f348965abe8ea428eba7098f67ec9764a7f9a/torch/_inductor/codegen/halide.py#L1189-L1191 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,989,995,356
Fix TypeIndex.h signature extraction
r-barnes
open
[ "fb-exported", "ciflow/trunk" ]
3
CONTRIBUTOR
Summary: Addresses [this post](https://fb.workplace.com/groups/1405155842844877/permalink/24043640001903139/). [List of broken tests](https://l.workplace.com/l.php?u=https%3A%2F%2Fwww.internalfb.com%2Fomh%2Fview%2Fxrcia_encoder_pe%2Ftests%3Fpower_search_query%3D%257B%2522key%2522%253A%2522TEST_ISSUES_ROOT_AND%2522%252C%2522children%2522%253A%255B%257B%2522key%2522%253A%2522EQUALS_ANY_STATE%2522%252C%2522field%2522%253A%2522TEST_ISSUES_STATE%2522%252C%2522value%2522%253A%255B%2522OPEN%2522%255D%257D%252C%257B%2522key%2522%253A%2522EQUALS_ANY_ISSUE_TYPE%2522%252C%2522field%2522%253A%2522TEST_ISSUES_TYPE%2522%252C%2522value%2522%253A%255B%2522FAILURE%2522%255D%257D%255D%257D&h=AT13hFE24-RjG4JgIT3e0R6JEE3e3rMVR7SMy4qsoiE7moAN62ZtYAIfzDDIfq9G2ey0S8R0gMFYkDo_chXvH_QHVrAYx-bu-amC0wpMJRXWfNujB_dhOl6oSv95VsqAbPM2fBWZ&__tn__=R]-R&c[0]=AT1RnkuYHJ4JIyNo3wy5-JtYE4-FG4QNzQ_sOg3aFOwLKm24FBV8592S-AiDp0rFNrMMwNHIWmw7qj_gyKOS4-uTWmFQjsXDfU51BuoWeIyntSP7vVmeQ0RUfHsOdgiHGx3cO1NXBzBDKPmtGJuPwyY8guSiY-VXk1Y2iUeF9iM) Test Plan: Sandcastle ``` buck2 build --flagfile fbsource//arvr/mode/platform010/cuda12_8/dev fbsource//arvr/libraries/neural_net_inference:Backends_TorchScript_tests ``` Differential Revision: D72805179
true
2,989,965,826
Update _ordered_set.py
ghost
closed
[ "triaged", "open source", "topic: not user facing" ]
4
NONE
Fixes #150850 Subclass torch/utils/_ordered_set.py and error on update. @pytorchbot label "topic: not user facing"
true
2,989,964,185
[fbgemm_gpu] Incorporate Torch DSA
q10
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
CONTRIBUTOR
Summary: X-link: https://github.com/facebookresearch/FBGEMM/pull/1035 X-link: https://github.com/pytorch/FBGEMM/pull/3950 - Incorporte the PyTorch DSA infrastructure into the FBGEMM kernel launcher utility Test Plan: ``` # Nvidia buck2 test 'fbcode//mode/opt' fbcode//deeplearning/fbgemm/fbgemm_gpu/test/utils:tensor_accessor_builder buck2 test 'fbcode//mode/opt' fbcode//deeplearning/fbgemm/fbgemm_gpu/test/utils:tensor_accessor_builder_with_memcheck buck2 run 'fbcode//mode/opt' -c fbcode.enable_gpu_sections=true -c fbcode.nvcc_arch=a100 -c fbcode.platform=platform010 fbcode//deeplearning/fbgemm/fbgemm_gpu/test/utils:kernel_launcher # AMD buck2 run mode/opt-amd-gpu -c fbcode.platform=platform010 fbcode//deeplearning/fbgemm/fbgemm_gpu/test/utils:tensor_accessor_builder_with_memcheck buck2 run mode/opt-amd-gpu -c fbcode.platform=platform010 fbcode//deeplearning/fbgemm/fbgemm_gpu/test/utils:kernel_launcher buck2 run mode/opt-amd-gpu -c fbcode.platform=platform010 fbcode//deeplearning/fbgemm/fbgemm_gpu/test/tbe:split_embeddings_utils ``` Differential Revision: D72759030
true
2,989,962,042
move find_hop_schema into _higher_order_ops/schema.py
ydwu4
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151067 * __->__ #151147 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,989,962,009
[hop] Make base_hop share utils with control flow ops in backward
ydwu4
open
[ "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151067 * #151147 * __->__ #151146
true
2,989,946,000
[dynamo] unimplemented -> unimplemented_v2 in variables/builtin.py
williamwen42
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "keep-going", "module: compile ux" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151145 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,989,904,078
[Inductor] Add utility to rewrite sympy expressions with FloorDiv
blaine-rister
closed
[ "module: cpu", "topic: not user facing" ]
3
CONTRIBUTOR
Feature used in https://github.com/pytorch/pytorch/pull/146942. # Feature This PR a two new routines: - Pattern match `floor(x/y)` and convert it to `x // y`. This is done by a new static method `FloorDiv.rewrite`, which is not part of sympy's general expression evaluation. The user has to specifically call this method to rewrite the expression. - The inverse: expand `x // y` back into `floor(x/y)`. This is triggered by `expr.expand(floordiv=True)`. The pattern match is useful in the parent PR because `FloorDiv` ops generate FX-friendly Python code, which we can directly embed into `SymInt`'s for things like the Triton launch grid. It would be possible to directly call `FloorDiv` when the grid expression is first constructed, as opposed to this approach of pattern matching it after the fact. However, since these grid expressions generate and evaluate Python code on the fly, that is not completely straightforward. It seems nice to have a utility for "fixing" a sympy expression which wasn't originally constructed with `FloorDiv`. # Test plan Added some unit tests covering these features. Expansion allows us to check that the pattern matcher is sound. The parent PR also uses pattern matching to compute launch grids in some dynamic shape tests. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,989,902,093
add torch.distributed.get_local_rank() (!?!?!?!)
vxnuaj
closed
[ "oncall: distributed" ]
2
NONE
### add torch.distributed.get_local_rank() (!?!?!?!) hey! was writing a function that involved the following, ```python dist.init_process_group(backend = backend) local_rank = dist.get_local_rank() rank = dist.get_rank() world_size = dist.get_world_size() torch.cuda.set_device(rank) device = torch.device(f'cuda:{rank}') ``` only to find out that `torch.distributed` doesn't give the optionality to return the `local_rank` by `distributed.get_local_rank()`. Of course, I could easily bypass this by running `os.environ.get('LOCAL_RANK')`, but if this feature is trivial ti implement, it would be useful to avoid confusion. This was mentioned here as well: https://github.com/pytorch/pytorch/issues/122816 ### Alternatives _No response_ ### Additional context _No response_ cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,989,898,890
AOT Dispatcher converts a single `detach` call to multiple `aten.detach`
StrongerXi
open
[ "triaged", "oncall: pt2", "module: aotdispatch", "module: pt2-dispatcher" ]
3
CONTRIBUTOR
### 🐛 Describe the bug I observed this in #150706, where a `detach` in Dynamo graph becomes multiple `aten.alias` in AOT graph, [tlparse](https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpqAJWZf/-_0_0_0/compilation_metrics_13.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000): ![Image](https://github.com/user-attachments/assets/04e5e984-00fb-4880-871c-b80fbcac8b0f) This isn't blocking #150706 because I have a separate fix to eliminate the `detach` in Dynamo graph, but I'm not sure if the AOTDispatcher behavior is intentional, and if it is, feel free to close this issue. Minimal Repro: ```python import torch @torch.compile(backend="aot_eager", fullgraph=True) def f(x): x = x.detach() res = x + 1 return res f(torch.ones(1)) ``` ### Error logs Running with `TORCH_LOGS="graph_code, aot_graph" gives: ``` V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] TRACED GRAPH V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] ===== pre insert_deferred_runtime_asserts __compiled_fn_1 ===== V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] <eval_with_key>.0 class GraphModule(torch.nn.Module): V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] def forward(self, L_x_: "f32[1]"): V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] l_x_ = L_x_ V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] # File: /home/ryanguo99/scratch/compile-time.py:5 in f, code: x = x.detach() V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] x: "f32[1]" = l_x_.detach(); l_x_ = None V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] # File: /home/ryanguo99/scratch/compile-time.py:6 in f, code: res = x + 1 V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] res: "f32[1]" = x + 1; x = None V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] return (res,) V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] V0411 16:03:36.439000 2423193 torch/fx/passes/runtime_assert.py:118] [0/0] [__graph_code] V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] TRACED GRAPH V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] ===== __compiled_fn_1 ===== V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] /home/ryanguo99/repos/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module): V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] def forward(self, L_x_: "f32[1][1]cpu"): V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] l_x_ = L_x_ V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] # File: /home/ryanguo99/scratch/compile-time.py:5 in f, code: x = x.detach() V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] x: "f32[1][1]cpu" = l_x_.detach(); l_x_ = None V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] # File: /home/ryanguo99/scratch/compile-time.py:6 in f, code: res = x + 1 V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] res: "f32[1][1]cpu" = x + 1; x = None V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] return (res,) V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] V0411 16:03:36.440000 2423193 torch/_dynamo/output_graph.py:1431] [0/0] [__graph_code] V0411 16:03:36.531000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:123] [0/0] [__aot_graphs] aot_config id: 0, fw_metadata=ViewAndMutationMeta(input_info=[InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=False, keep_input_mutations=True)], output_info=[OutputAliasInfo(output_type=<OutputType.non_alias: 1>, raw_type=<class 'torch._subclasses.functional_tensor.FunctionalTensor'>, base_idx=None, dynamic_dims=set(), requires_grad=False, functional_tensor=None)], num_intermediate_bases=0, keep_input_mutations=True, traced_tangents=[], subclass_inp_meta=[PlainTensorMeta(unwrapped_idx=0, memory_format=None)], subclass_fw_graph_out_meta=[PlainTensorMeta(unwrapped_idx=0, memory_format=None)], subclass_tangent_meta=[], is_train=False, traced_tangent_metas=None, num_symints_saved_for_bw=None, grad_enabled_mutation=None, deterministic=None, static_input_indices=[], tokens={}, indices_of_inputs_that_requires_grad_with_mutations_in_bw=[], bw_donated_idxs=None, num_backward_tokens=0, num_graphsafe_rng_states=0, graphsafe_rng_state_index=None),subclass_metadata=None I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] TRACED GRAPH I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] ===== Forward graph 0 ===== I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] /home/ryanguo99/repos/pytorch/torch/fx/_lazy_graph_module.py class <lambda>(torch.nn.Module): I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] def forward(self, arg0_1: "f32[1][1]cpu"): I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] # File: /home/ryanguo99/scratch/compile-time.py:5 in f, code: x = x.detach() I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] detach: "f32[1][1]cpu" = torch.ops.aten.detach.default(arg0_1); arg0_1 = None I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] detach_1: "f32[1][1]cpu" = torch.ops.aten.detach.default(detach); detach = None I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] detach_2: "f32[1][1]cpu" = torch.ops.aten.detach.default(detach_1); detach_1 = None I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] # File: /home/ryanguo99/scratch/compile-time.py:6 in f, code: res = x + 1 I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] add: "f32[1][1]cpu" = torch.ops.aten.add.Tensor(detach_2, 1); detach_2 = None I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] return (add,) I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] I0411 16:03:36.537000 2423193 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:202] [0/0] [__aot_graphs] V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] TRACED GRAPH V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] ===== tensorify_python_scalars ===== V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] /home/ryanguo99/repos/pytorch/torch/fx/_lazy_graph_module.py class <lambda>(torch.nn.Module): V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] def forward(self, arg0_1: "f32[1]"): V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] # File: /home/ryanguo99/scratch/compile-time.py:5 in f, code: x = x.detach() V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] detach: "f32[1]" = torch.ops.aten.detach.default(arg0_1); arg0_1 = None V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] detach_1: "f32[1]" = torch.ops.aten.detach.default(detach); detach = None V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] detach_2: "f32[1]" = torch.ops.aten.detach.default(detach_1); detach_1 = None V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] # File: /home/ryanguo99/scratch/compile-time.py:6 in f, code: res = x + 1 V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] add: "f32[1]" = torch.ops.aten.add.Tensor(detach_2, 1); detach_2 = None V0411 16:03:36.537000 2423193 torch/fx/passes/_tensorify_python_scalars.py:364] [0/0] [__graph_code] return (add,) ``` ### Versions main 1a1a32ce5af, Python 3.11 cc @chauhang @penguinwu @zou3519 @bdhirsh
true
2,989,879,508
[AOTInductor] Add Python interface for user managed buffer.
muchulee8
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Summary: Add pybind for user managed buffer in update_constants_buffer. Test Plan: Included in commit. ``` python test/inductor/test_aot_inductor.py -k user_managed ``` Differential Revision: D72892310 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @amjames @chauhang @aakhundov
true
2,989,867,686
[doc fix] fix torch export docs for preserve_module_call_signature
supercharleszhu
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: export" ]
5
CONTRIBUTOR
The preserve_module_call_signature explanation is missing in the __init__.py. Copying that from _trace.py
true
2,989,829,418
PyTorch algorithm optimization
mikeybydun1
closed
[]
1
NONE
Hello, I have a PyTorch algorithm model (compiled into .pt file) that do torch.prod of tensor in shape (1000,400,400,144) The algorithm takes 10 seconds on strong nvidia GPU (for exmaple A100). I am trying to find way to make it run faster. For now, the only effective optimization was using BFloat16. You have any suggestion for other optimization? Thanks!
true
2,989,807,472
[ROCm][TunableOp] Support submatrices in offline tuning
naromero77amd
closed
[ "module: rocm", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: linalg_frontend", "ciflow/rocm" ]
4
COLLABORATOR
This PR adds support for submatrices in offline tuning for: - GEMM - GEMM and bias - ScaledGEMM - Batch Strided GEMM New UTs to cover submatrices. Submatrices for strided batch API is not part of this PR and will be done seperately. There is also a bug fix for offline tuning for full matrix for GEMM and bias in the `NT` case. Offline and online UTs were updated to cover this corner case. To improve code readability, swapped definition of transA and transB. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
true
2,989,785,991
DISABLED test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_use_static_cuda_launcher_False_grad_False (__main__.TestFxGraphCache)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_use_static_cuda_launcher_False_grad_False&suite=TestFxGraphCache&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40409722784). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_use_static_cuda_launcher_False_grad_False` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_codecache.py", line 160, in test_cache_load_function self.assertEqual( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4095, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not equal! Expected 7 but got 14. Absolute difference: 7 Relative difference: 1.0 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_codecache.py TestFxGraphCache.test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_use_static_cuda_launcher_False_grad_False This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_codecache.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,989,785,951
DISABLED test_parity__foreach_acos_fastpath_outplace_cuda_float32 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
4
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_acos_fastpath_outplace_cuda_float32&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40412598855). Over the past 3 hours, it has been determined flaky in 8 workflow(s) with 16 failures and 8 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_acos_fastpath_outplace_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true