id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,997,294,179
[FSDP1] print fqns when debug FlatParamHandle
weifengpy
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (fsdp)", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151336 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,997,291,125
DISABLED test_load_from_bias_head_seq_batch_float16_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_load_from_bias_head_seq_batch_float16_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40594293880). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_load_from_bias_head_seq_batch_float16_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1551, in test_load_from_bias_head_seq_batch self.run_test(bias_mod, dtype, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 491, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 353, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 471, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 467, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 327, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/utils.py", line 72, in inner return autograd_not_implemented_inner(op, deferred_error, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/utils.py", line 45, in autograd_not_implemented_inner result = operator(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 471, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 467, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 327, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 846, in sdpa_dense_backward grad_softmax_scores - sum_scores + grad_logsumexp.unsqueeze(-1) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 21.95 GiB of which 766.12 MiB is free. Process 92950 has 21.20 GiB memory in use. Of the allocated memory 6.02 GiB is allocated by PyTorch, and 14.82 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_load_from_bias_head_seq_batch_float16_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,997,291,124
DISABLED test_builtin_score_mods_different_block_size_float16_score_mod7_BLOCK_SIZE2_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float16_score_mod7_BLOCK_SIZE2_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40585278657). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float16_score_mod7_BLOCK_SIZE2_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,997,290,830
DISABLED test_builtin_score_mods_different_block_size_float32_score_mod1_BLOCK_SIZE_128_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float32_score_mod1_BLOCK_SIZE_128_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40586885149). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float32_score_mod1_BLOCK_SIZE_128_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,997,290,742
DISABLED test_silu_on_score_float16_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_silu_on_score_float16_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40594293880). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_silu_on_score_float16_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1659, in test_silu_on_score self.run_test(silu_score, dtype, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 491, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 353, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 471, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 467, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 327, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/utils.py", line 72, in inner return autograd_not_implemented_inner(op, deferred_error, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/utils.py", line 45, in autograd_not_implemented_inner result = operator(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 471, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 467, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 327, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 869, in sdpa_dense_backward grad_scores, _, _, _, _, *grad_score_mod_captured = joint_score_mod( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 833, in call_wrapped return self._wrapped_call(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 409, in __call__ raise e File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 396, in __call__ return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc] File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "<eval_with_key>.819 from /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py:1265 in wrapped", line 7, in forward empty_like = torch.ops.aten.empty_like.default(sigmoid, memory_format = torch.preserve_format) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 776, in __call__ return self._op(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/_trace_wrapped_higher_order_op.py", line 142, in __torch_function__ return func(*args, **(kwargs or {})) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 776, in __call__ return self._op(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 21.95 GiB of which 346.12 MiB is free. Process 126192 has 21.61 GiB memory in use. Of the allocated memory 6.67 GiB is allocated by PyTorch, and 14.62 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_silu_on_score_float16_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,997,290,663
DISABLED test_mask_mod_combiners_cuda (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_mask_mod_combiners_cuda&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40585278657). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_mask_mod_combiners_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 2060, in test_mask_mod_combiners self.run_test_with_call(attention, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 768, in run_test_with_call golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 353, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 471, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 467, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 327, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/utils.py", line 72, in inner return autograd_not_implemented_inner(op, deferred_error, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/utils.py", line 45, in autograd_not_implemented_inner result = operator(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 471, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 467, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 327, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 880, in sdpa_dense_backward grad_scores = torch.where( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/_trace_wrapped_higher_order_op.py", line 142, in __torch_function__ return func(*args, **(kwargs or {})) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 21.95 GiB of which 212.12 MiB is free. Process 143252 has 21.74 GiB memory in use. Of the allocated memory 6.87 GiB is allocated by PyTorch, and 14.60 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_mask_mod_combiners_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,997,290,554
[invoke_subgraph][inductor] Run pre and post grad passes on invoke_subgraph
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151410 * #151409 * #150704 * #150717 * #151357 * #151256 * __->__ #151330 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,997,280,368
[c10d][fr] Add counters for FR dump and reduce its timeout to finish dump before watchdog timeout
fduwjj
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151329 After https://github.com/pytorch/pytorch/pull/150652, we still see some ranks missing dumps. Upon looking further, the case is that FR dump timed out for its first attempt: watchdog thread: notify FR dump -> wait for 1 mins -> throw watchdog timeout -> notify elastic to kill process FR dump thread: received FR dump signal -> timeout after 1 mins with first attempt -> started 2nd attempt -> got killed. So we want to make the FR dump timeout shorter, in reality, the log shows that the dump finished within one sec. Even if we consider a very slow speed like 200K/s the usual size FR (1MB at most) takes around 5 secs, so 15 secs is like 3 times buffer. Also we still let watchdog sleep for 1 min so that we can wait enough time for two dump to timeout and the following check like GIL checker to execute. Also, if we get stuck in getting GIL or cuda hang, 15 seconds should be enough to detect the hang. cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k
true
2,997,226,111
Can't call torch.compile inside of a custom op
zou3519
open
[ "feature", "triaged", "oncall: pt2", "module: fakeTensor", "module: dynamo", "module: pt2-dispatcher" ]
1
CONTRIBUTOR
```py import torch lib = torch.library.Library("mylib", "FRAGMENT") lib.define("foo(Tensor x) -> Tensor") def inner(x): return x.sin().cos() def foo_impl(x): return torch.compile(inner, fullgraph=True)(x) lib.impl("foo", foo_impl, "CompositeExplicitAutograd") @torch.compile(fullgraph=True) def f(x): return torch.ops.mylib.foo.default(x) x = torch.randn(3) f(x) """ File ~/dev/misc_cpu11/pt-misc_cpu11/torch/_subclasses/meta_utils.py:894, in MetaConverter.meta_tensor(self, t, shape_env, callback_, source, symbolic_context) 886 source = ConstantSource( 887 f"__meta_utils_unknown_tensor{len(self.tensor_memo)}" 888 ) 890 # This indicates you set no_dispatch() before calling into this 891 # function. This is an error: we may be creating fake tensors and 892 # will perform operations on them which need fake tensor mode to 893 # be active. You will segfault if you are in a no_dispatch() block. --> 894 assert not torch._C._dispatch_tls_local_exclude_set().has( 895 torch._C.DispatchKey.Python 896 ) 897 self.arg_cnt += 1 899 # When we make as_strided calls, we end up generating a guard 900 # that the new as_strided tensor is in bounds for the old storage 901 # for the base (since as_strided calls can "bust" out of their (...) 921 # as we allocate variables, and we do need to register guards for 922 # these cases. TorchRuntimeError: Dynamo failed to run FX node with fake tensors: call_function mylib.foo.default(*(FakeTensor(..., size=(3,)),), **{}): got AssertionError('\n\nfrom user c ode:\n File "<ipython-input-2-9e7ce20b02c0>", line 8, in inner\n return x.sin().cos()\n\nSet TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especial ly if you\'re reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"\n') from user code: File "<ipython-input-2-9e7ce20b02c0>", line 17, in f return torch.ops.mylib.foo.default(x) Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dy namo" """ ``` motivation is that we want the custom op to be backed by a torch.compile implemetation? cc @chauhang @penguinwu @eellison @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @bdhirsh
true
2,997,197,804
[ONNX] Implement scan
justinchuby
open
[ "module: onnx", "triaged" ]
1
COLLABORATOR
### 🚀 The feature, motivation and pitch Implement scan from higher ordered ops in https://github.com/pytorch/pytorch/blob/main/torch/onnx/_internal/exporter/_torchlib/ops/hop.py ### Alternatives _No response_ ### Additional context _No response_
true
2,997,189,657
[ROCm] replace miniconda with miniforge
BowenBao
closed
[ "module: rocm", "open source", "topic: not user facing", "ciflow/rocm" ]
2
COLLABORATOR
cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd Related to: https://github.com/pytorch/pytorch/issues/148335
true
2,997,074,321
[AOTInductor] Add interface for user managed buffer in package api.
muchulee8
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Summary: https://github.com/pytorch/pytorch/pull/151141 We add interface for user managed buffer in the package api. Test Plan: Included in commit.] Reviewed By: henrylhtsang Differential Revision: D72985440 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @amjames @chauhang @aakhundov
true
2,997,013,412
Testing compatibility with new sympy
malfet
closed
[ "topic: not user facing", "ciflow/inductor", "ci-no-td" ]
1
CONTRIBUTOR
See https://github.com/pytorch/pytorch/issues/151312
true
2,996,997,755
Gracefully handle optree less than minimum version, part 2
pytorchbot
closed
[ "open source", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151257 If optree is less than the minimum version, we should pretend it doesn't exist. The problem right now is: - Install optree==0.12.1 - `import torch._dynamo` - This raise an error "min optree version is 0.13.0" The fix is to pretend optree doesn't exist if it is less than the min version. There are ways to clean up this PR more (e.g. have a single source of truth for the version, some of the variables are redundant), but I am trying to reduce the risk as much as possible for this to go into 2.7. Test Plan: I verified the above problem was fixed. Also tried some other things, like the following, which now gives the expected behavior. ```py >>> import torch >>> import optree >>> optree.__version__ '0.12.1' >>> import torch._dynamo >>> import torch._dynamo.polyfills.pytree >>> import torch.utils._pytree >>> import torch.utils._cxx_pytree ImportError: torch.utils._cxx_pytree depends on optree, which is an optional dependency of PyTorch. To u se it, please upgrade your optree package to >= 0.13.0 ``` I also audited all non-test callsites of optree and torch.utils._cxx_pytree. Follow along with me: optree imports - torch.utils._cxx_pytree. This is fine. - [guarded by check] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/_dynamo/polyfills/pytree.py#L29-L31 _cxx_pytree imports - [guarded by check] torch.utils._pytree (changed in this PR) - [guarded by check] torch/_dynamo/polyfills/pytree.py (changed in this PR) - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/distributed/_functional_collectives.py#L17 - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/distributed/tensor/_op_schema.py#L15 - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/distributed/tensor/_dispatch.py#L35 - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/_dynamo/variables/user_defined.py#L94 - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/distributed/tensor/experimental/_func_map.py#L14 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,996,984,495
[CI] No workflows scheduled on PRs
malfet
open
[ "module: ci", "triaged", "module: flaky-tests", "module: third_party" ]
11
CONTRIBUTOR
### 🐛 Describe the bug Few instances of PRs with no tests run on them were reported recently, for example: - https://github.com/pytorch/pytorch/pull/146273 <img width="898" alt="Image" src="https://github.com/user-attachments/assets/7c40a29d-8901-4747-a980-2e7dfc5004ab" /> - https://github.com/pytorch/pytorch/pull/149271 (see https://github.com/pytorch/pytorch/pull/149271#issuecomment-2797687516 ) - https://github.com/pytorch/pytorch/pull/148436 ### Versions CI cc @seemethere @pytorch/pytorch-dev-infra @clee2000
true
2,996,981,873
[inductor] Check NoneLayout in update_zero_dim_cpu_tensor
angelayi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Summary: This fixes the error in https://fb.workplace.com/groups/1075192433118967/permalink/1640802133224658/ I tried really hard but I couldn't come up with a test case to repro the issue, but I confirmed with the OP that this issue has been fixed. ``` Traceback (most recent call last): File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/compile_fx.py", line 746, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/compile_fx.py", line 1343, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/compile_fx.py", line 1232, in codegen_and_compile compiled_module = graph.compile_to_module() File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/graph.py", line 2087, in compile_to_module return self._compile_to_module() File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/graph.py", line 2095, in _compile_to_module self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen() File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/graph.py", line 2002, in codegen self._update_scheduler() File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/graph.py", line 1996, in _update_scheduler self.scheduler = Scheduler(self.operations) File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/scheduler.py", line 1954, in __init__ self._init(nodes) File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/scheduler.py", line 1974, in _init self.update_zero_dim_cpu_tensor() File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/scheduler.py", line 4433, in update_zero_dim_cpu_tensor and buffer.get_size() == [] File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/ir.py", line 3903, in get_size return [*self.get_layout().size] File "/dev/shm/uid-99/d2b830f6-seed-nspid4026547915_cgpid362302-ns-4026547912/torch/_inductor/ir.py", line 3914, in get_layout raise NotImplementedError(type(self.layout).__name__) torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: NotImplementedError: NoneLayout ``` Test Plan: OP said the issue is fixed Differential Revision: D72575808 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,996,899,280
[DCP] Add logging for _stateful_to_state_dict(), stage_state_dict(), and synchronize_staging()
MeetVadakkanchery
closed
[ "oncall: distributed", "fb-exported", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "release notes: hub", "release notes: distributed (checkpoint)", "ci-no-td", "oncall: distributed checkpointing" ]
18
CONTRIBUTOR
Summary: As titled. Test Plan: CI Differential Revision: D73040700 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @LucasLLC @pradeepfn
true
2,996,880,944
update expected results for comptime benchmark
bdhirsh
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
This PR https://github.com/pytorch/pytorch/pull/150594 bumped the benchmark up by ~1%, a bit under our 1.5% "regression" mark. Modeled this PR after https://github.com/pytorch/pytorch/pull/144274 Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151319 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,996,795,312
[dynamo] Add guard serialization for tensor matches.
zhxchen17
closed
[ "fb-exported", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "ci-no-td" ]
37
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151349 * #151343 * __->__ #151318 This is a proof-of-concept of how we could serialize a guard and deserialize it back from the bytes. The main behavioral change introduced in this diff is on CheckFunctionManager: ``` check_fn_manager = CheckFunctionManager(code, output_graph, guards_serialization_mode="save") guards_state: bytes = check_fn_manager.guards_state ``` Once `guards_serialization_mode` is set to `save`, CheckFunctionManager will return an addtional `bytes` object called `guards_state` which should contain all the information needed for deserializing guards later. When we load back guards state, we will set `guards_serialization_mode` is set to `load`: ``` output_graph_state = pickle.loads(guards_state) check_fn_manager = CheckFunctionManager(code, output_graph_state, guards_serialization_mode="load") ``` # TENSOR_MATCH Since we have many types of guards to support, we will break the work into small diffs instead of a single diff to support every guards. We kick off the work from TENSOR_MATCH from this diff. # Testing For each type of guard we will test it like the following: 1. Use guard_filter_fn to select 1 type of guard each time. 2. Call InstructionTranslator directly on an example function to get OutputGraph and CheckFunctionManager (reference guard manager) 3. Serialize->deserialize the output graph state and re-build the guards with a new CheckFunctionManager (loaded guard manager) 4. Throw a set of example inputs to both reference and loaded guard manager to see if their behavior match. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,996,705,437
Fix support of MixtureSameFamily [bugfix].
BenZickel
open
[ "open source", "release notes: python_frontend", "module: python frontend" ]
7
NONE
Fixes https://github.com/pyro-ppl/pyro/issues/3419 which is actually a `torch` bug that can be replicated by the below code: ``` from torch import rand from torch.distributions import MixtureSameFamily, Categorical, Binomial max_count = 20 probs = rand(10, 5) binom_probs = rand(10, 5) d = MixtureSameFamily(Categorical(probs=probs), Binomial(max_count, binom_probs)) d.log_prob(d.sample()) ``` which results in: ``` Traceback (most recent call last): File "test.py", line 11, in <module> d.log_prob(d.sample()) File "pytorch\torch\distributions\mixture_same_family.py", line 168, in log_prob self._validate_sample(x) File "pytorch\torch\distributions\distribution.py", line 315, in _validate_sample valid = support.check(value) ^^^^^^^^^^^^^^^^^^^^ File "pytorch\torch\distributions\constraints.py", line 307, in check (value % 1 == 0) & (self.lower_bound <= value) & (value <= self.upper_bound) ^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: The size of tensor a (10) must match the size of tensor b (5) at non-singleton dimension 1 ``` ### Fix explanation (only for cases when the component distribution contains parameters with batch dimenisons) - The failure is due to sample validation taking place before padding in `MixtureSameFamily.log_prob`, and hence the fix is to pad before doing sample validation. - The fix itself does not alter the calculations at all. It only affects the sample validation process. - The failure does not occur with the component distribution set to the `Normal` distribution, as its validation is not defined elementwise (the validation itself is elementwise). - I've split the `test_mixture_same_family_log_prob` test into two tests based on the `Normal` and `Binomial` distributions. - Initially, the `Binomial` version of the test did not fail, but this was due to the component distribution having equal batch dimensions of (5, 5) so I changed it to (10, 5). ### Updated fix explanation (for all cases) - The previous fix caused a bug in sample shape validation (which is done correctly) due to the padding taking place before the sample validation. - The updated fix corrects the support to reflect the fact that the support of `MixtureSameFamily` is equal to the support of its components distribution with the first event dimension removed. - This issue was already anticipated in the [code](https://github.com/pytorch/pytorch/blob/331423e5c24170b218e743b3392acbad4480340d/torch/distributions/mixture_same_family.py#L127). cc @albanD
true
2,996,613,582
Apple Clang 17 build error
adamjstewart
closed
[ "high priority", "triage review", "module: build", "module: tensorpipe" ]
3
CONTRIBUTOR
### 🐛 Describe the bug When building PyTorch 2.6.0 with Apple Clang 17.0.0, I see the following build error: ``` FAILED: third_party/tensorpipe/tensorpipe/CMakeFiles/tensorpipe.dir/channel/helpers.cc.o /Users/Adam/spack/opt/spack/darwin-m2/compiler-wrapper-1.0-cdasmd2yy77m4m6wp6mdpf72p6usoqcq/libexec/spack/clang/clang++ -I/private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe -I/private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/build/third_party/tensorpipe -I/private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/third_party/libnop/include -I/private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/third_party/libuv/include -F/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX15.4.sdk/System/Library/Frameworks -isystem /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/cmake/../third_party/tensorpipe/third_party/libuv/include -isystem /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/protobuf/src -isystem /Users/Adam/spack/opt/spack/darwin-m2/openblas-0.3.29-2vttv3y5thdu4gnqda3rypsjgt5hfike/include -isystem /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/XNNPACK/include -isystem /Users/Adam/spack/opt/spack/darwin-m2/eigen-3.4.0-yboqnztyk6kzxv3vnadzd2hwovg2hb73/include/eigen3 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -O3 -DNDEBUG -std=gnu++14 -arch arm64 -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX15.4.sdk -mmacosx-version-min=15.0 -fPIC -DTORCH_USE_LIBUV -MD -MT third_party/tensorpipe/tensorpipe/CMakeFiles/tensorpipe.dir/channel/helpers.cc.o -MF third_party/tensorpipe/tensorpipe/CMakeFiles/tensorpipe.dir/channel/helpers.cc.o.d -o third_party/tensorpipe/tensorpipe/CMakeFiles/tensorpipe.dir/channel/helpers.cc.o -c /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/tensorpipe/channel/helpers.cc In file included from /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/tensorpipe/channel/helpers.cc:9: In file included from /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/tensorpipe/channel/helpers.h:15: In file included from /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/tensorpipe/common/nop.h:11: In file included from /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/third_party/libnop/include/nop/serializer.h:35: In file included from /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/third_party/libnop/include/nop/base/variant.h:21: /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/third_party/libnop/include/nop/types/variant.h:241:30: error: a template argument list is expected after a name prefixed by the template keyword [-Wmissing-template-arg-list-after-template-kw] 241 | index_ = value_.template Construct(std::forward<Args>(args)...); | ^ /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/third_party/libnop/include/nop/types/variant.h:258:26: error: a template argument list is expected after a name prefixed by the template keyword [-Wmissing-template-arg-list-after-template-kw] 258 | if (!value_.template Assign(TypeTag<T>{}, index_, std::forward<U>(value))) { | ^ /private/var/folders/jv/cgkfvslj6nq1l7cw0c8c_8gm0000gn/T/Adam/spack-stage/spack-stage-py-torch-2.6.0-qcpp7ic3nurlnspjyivxwhzbiomf7bit/spack-src/third_party/tensorpipe/third_party/libnop/include/nop/types/variant.h:265:26: error: a template argument list is expected after a name prefixed by the template keyword [-Wmissing-template-arg-list-after-template-kw] 265 | if (!value_.template Assign(index_, std::forward<T>(value))) { | ^ 3 errors generated. ``` Any suggestions on how to fix this? I would report this issue to tensorpipe or libnop, but both seem abandoned and PyTorch does not allow using an externally installed version anyway. ### Versions Can't run collect_env.py since PyTorch doesn't build, but here are some relevant things: * PyTorch version: 2.6.0 * CUDA: N/A * ROCM: N/A * OS: macOS 15.4 * Clang version: 17.0.0 * CMake version: 3.31.6 * Python version: 3.13.2 Also: * [build log](https://github.com/user-attachments/files/19759874/spack-build-out.txt) * [build env](https://github.com/user-attachments/files/19759876/spack-build-env-mods.txt) Happy to provide additional reproducibility instructions, but the bug should be obvious to anyone with access to Apple Clang 17. cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @malfet @seemethere @osalpekar @jiayisuse @lw @beauby @pritamdamania87 @mrshenli @jjlilley @gqchen
true
2,996,374,987
Fix skipIfXpu and skipIfHpu disables tests when used on class
EikanWang
open
[ "oncall: distributed", "open source", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "keep-going", "merging" ]
25
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151315 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @voznesenskym @penguinwu @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,996,336,599
Add inductor backend to device interface; make minifier_tests more device agnostic
charlie-wt
open
[ "triaged", "open source", "topic: not user facing", "module: inductor", "module: dynamo" ]
3
CONTRIBUTOR
Tried to decouple the always cpu <=> c++, cuda <=> triton assumption. Tried to keep it relatively simple by just guarding things more specifically, at the moment. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,996,334,547
DISABLED test_parity__foreach_add_fastpath_inplace_cuda_complex64 (__main__.TestForeachCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_add_fastpath_inplace_cuda_complex64&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40567936561). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_add_fastpath_inplace_cuda_complex64` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_foreach.py", line 228, in test_parity actual = func( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_add_', keys=('aten::_foreach_add_', 'Unrecognized', 'aten::result_type', 'cudaLaunchKernel', 'Lazy Function Loading', 'cudaDeviceSynchronize') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1161, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1975, in wrap_fn return fn(self, *args, **kwargs) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 235, in test_parity with self.assertRaises(type(e)): File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 226, in __exit__ self._raiseFailure("{} not raised".format(exc_name)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 163, in _raiseFailure raise self.test_case.failureException(msg) AssertionError: AssertionError not raised The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1173, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.complex64], Tensor[size=(19, 19), device="cuda:0", dtype=torch.complex64], Tensor[size=(18, 18), device="cuda:0", dtype=torch.complex64], Tensor[size=(17, 17), device="cuda:0", dtype=torch.complex64], Tensor[size=(16, 16), device="cuda:0", dtype=torch.complex64], Tensor[size=(15, 15), device="cuda:0", dtype=torch.complex64], Tensor[size=(14, 14), device="cuda:0", dtype=torch.complex64], Tensor[size=(13, 13), device="cuda:0", dtype=torch.complex64], Tensor[size=(12, 12), device="cuda:0", dtype=torch.complex64], Tensor[size=(11, 11), device="cuda:0", dtype=torch.complex64], Tensor[size=(10, 10), device="cuda:0", dtype=torch.complex64], Tensor[size=(9, 9), device="cuda:0", dtype=torch.complex64], Tensor[size=(8, 8), device="cuda:0", dtype=torch.complex64], Tensor[size=(7, 7), device="cuda:0", dtype=torch.complex64], Tensor[size=(6, 6), device="cuda:0", dtype=torch.complex64], Tensor[size=(5, 5), device="cuda:0", dtype=torch.complex64], Tensor[size=(4, 4), device="cuda:0", dtype=torch.complex64], Tensor[size=(3, 3), device="cuda:0", dtype=torch.complex64], Tensor[size=(2, 2), device="cuda:0", dtype=torch.complex64], Tensor[size=(1, 1), device="cuda:0", dtype=torch.complex64]], args=(TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.complex64], Tensor[size=(19, 19), device="cuda:0", dtype=torch.complex64], Tensor[size=(18, 18), device="cuda:0", dtype=torch.complex64], Tensor[size=(17, 17), device="cuda:0", dtype=torch.complex64], Tensor[size=(16, 16), device="cuda:0", dtype=torch.complex64], Tensor[size=(15, 15), device="cuda:0", dtype=torch.complex64], Tensor[size=(14, 14), device="cuda:0", dtype=torch.complex64], Tensor[size=(13, 13), device="cuda:0", dtype=torch.complex64], Tensor[size=(12, 12), device="cuda:0", dtype=torch.complex64], Tensor[size=(11, 11), device="cuda:0", dtype=torch.complex64], Tensor[size=(10, 10), device="cuda:0", dtype=torch.complex64], Tensor[size=(9, 9), device="cuda:0", dtype=torch.complex64], Tensor[size=(8, 8), device="cuda:0", dtype=torch.complex64], Tensor[size=(7, 7), device="cuda:0", dtype=torch.complex64], Tensor[size=(6, 6), device="cuda:0", dtype=torch.complex64], Tensor[size=(5, 5), device="cuda:0", dtype=torch.complex64], Tensor[size=(4, 4), device="cuda:0", dtype=torch.complex64], Tensor[size=(3, 3), device="cuda:0", dtype=torch.complex64], Tensor[size=(2, 2), device="cuda:0", dtype=torch.complex64], Tensor[size=(1, 1), device="cuda:0", dtype=torch.complex64]]), kwargs={'alpha': '(3+3j)'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/test_foreach.py TestForeachCUDA.test_parity__foreach_add_fastpath_inplace_cuda_complex64 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,995,975,523
Compatibility with SymPy 1.14.0
oscarbenjamin
closed
[ "triaged", "module: third_party", "oncall: pt2" ]
9
NONE
Hi PyTorch people. I have just pushed a new prerelease of SymPy 1.14.0rc1 to PyPI: https://pypi.org/project/sympy/#history Previously PyTorch had some issues with SymPy and mpmath prereleases so I just want to check in whether this release is going to cause any problems for PyTorch. In particular if I read this correctly then when the SymPy 1.14.0 final release is pushed to PyPI anyone doing `pip install torch` is going to get this new SymPy version: https://github.com/pytorch/pytorch/blob/70e7b767079fcda178e11a81c4f8d8b416a107d9/setup.py#L1123 For now SymPy 1.13.3 would be installed because the release I just pushed is a prerelease (rc1) which will not be picked up by pip in a normal installation. It would be great if someone could check whether or not SymPy 1.14.0rc1 is compatible with PyTorch and in particular whether it would be compatible with the current release torch==2.6.0: https://pypi.org/project/torch/#history Does PyTorch test this prerelease in CI? Is there some other way of checking this? If any changes are needed in SymPy then it would be better to make those changes in another 1.14.0rc2 prerelease before making the final 1.14.0 release. CC @rgommers @asmeurer cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu
true
2,995,956,681
`repeat_interleave_cpu` is not implemented for short integers
ev-br
open
[ "triaged", "actionable", "module: python array api", "module: python frontend" ]
1
COLLABORATOR
### 🐛 Describe the bug ``` In [7]: import torch In [8]: torch.repeat_interleave(torch.arange(5, dtype=torch.int8), 2) Out[8]: tensor([0, 0, 1, 1, 2, 2, 3, 3, 4, 4], dtype=torch.int8) In [9]: torch.repeat_interleave(torch.arange(5, dtype=torch.int8), torch.as_tensor(2, dt ...: ype=torch.int8)) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[9], line 1 ----> 1 torch.repeat_interleave(torch.arange(5, dtype=torch.int8), torch.as_tensor(2, dtype=torch.int8)) RuntimeError: "repeat_interleave_cpu" not implemented for 'Char' In [14]: torch.repeat_interleave(torch.arange(5, dtype=torch.int16), torch.as_tensor(2, ...: dtype=torch.int16)) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[14], line 1 ----> 1 torch.repeat_interleave(torch.arange(5, dtype=torch.int16), torch.as_tensor(2, dtype=torch.int16)) ``` It seems that what matters is the dtype of the `repeats` argument and not the `input` argument. ### Versions ``` $ python collect_env.py Collecting environment information... PyTorch version: 2.6.0+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (conda-forge gcc 13.3.0-1) 13.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.12.8 | packaged by conda-forge | (main, Dec 5 2024, 14:24:40) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 39 bits physical, 48 bits virtual CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 142 Model name: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz Stepping: 12 CPU MHz: 975.613 CPU max MHz: 3900,0000 CPU min MHz: 400,0000 BogoMIPS: 3600.00 Virtualization: VT-x L1d cache: 128 KiB L1i cache: 128 KiB L2 cache: 1 MiB L3 cache: 6 MiB NUMA node0 CPU(s): 0-7 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] mypy==1.15.0 [pip3] mypy_extensions==1.0.0 [pip3] numpy==2.2.3 [pip3] numpydoc==1.8.0 [pip3] torch==2.6.0+cpu [conda] mkl 2024.2.2 ha957f24_16 conda-forge [conda] numpy 2.2.3 py312h72c5963_0 conda-forge [conda] numpydoc 1.8.0 pyhd8ed1ab_1 conda-forge [conda] torch 2.6.0+cpu pypi_0 pypi ``` cc @mruberry @rgommers @asmeurer @leofang @AnirudhDagar @asi1024 @emcastillo @kmaehashi @albanD
true
2,995,794,797
cpp_extension.load 'sources' does not support Chinese paths
juntaosun
open
[ "needs reproduction", "module: windows", "module: cpp-extensions", "triaged", "actionable" ]
3
NONE
### 🐛 Describe the bug Does not support Chinese character paths ``` from torch.utils import cpp_extension ... cpp_extension.load( name=name, sources=sources, build_directory=buildpath, extra_cflags=[ "-O3", ], extra_cuda_cflags=[ "-O3", "-gencode", "arch=compute_70,code=sm_70", "--use_fast_math", ] + extra_cuda_flags + cc_flag, verbose=True, ) ``` If the sources path list contains Chinese characters, cpp_extension.load will fail. https://github.com/NVIDIA/BigVGAN/tree/main/alias_free_activation/cuda BigVGAN\alias_free_activation\cuda build.ninja ![Image](https://github.com/user-attachments/assets/9821c81c-5bfc-40c3-b9a5-382efc435802) ### Versions pip show torch Version: 2.6.0+cu124 cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @malfet @zou3519 @xmfan
true
2,995,693,367
[inductor] type checking of `torch.linalg.inv` is not sufficient on inductor
shaoyuyoung
open
[ "triaged", "oncall: pt2", "module: inductor" ]
2
CONTRIBUTOR
### 🐛 Describe the bug **symptom**: When the **determinant of a square matrix is zero**. `aot_eager` is the first backend that loses the check. **device backend**: both CPP and triton **repro** ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config config.fallback_random = True torch.set_grad_enabled(False) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x): x = torch.linalg.inv(x) return x model = Model() x = torch.tensor([[0., 0.], [0., 0.]]) inputs = [x] def run_test(model, inputs, backend): torch.manual_seed(0) if backend != "eager": model = torch.compile(model, backend=backend) try: output = model(*inputs) print(output) print(f"succeed on {backend}") except Exception as e: print(e) run_test(model, inputs, 'eager') run_test(model, inputs, 'aot_eager') ``` ### Error logs eager ``` linalg.inv: The diagonal element 1 is zero, the inversion could not be completed because the input matrix is singular. ``` aot_eager ``` tensor([[nan, nan], [nan, nan]]) succeed on aot_eager ``` ### Versions nightly 20250414 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,995,552,513
[Intel GPU][UT failure] Depthwise conv related UT failures
ZhiweiYan-96
open
[ "triaged", "module: xpu" ]
1
COLLABORATOR
### 🐛 Describe the bug For UTs that would call depthwise conv on XPU backend, following error would be raised. `NotImplementedError: The operator 'aten::_conv_depthwise2d' is not currently implemented for the XPU device` ### Versions Collecting environment information... PyTorch version: 2.8.0a0+git84ac876 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 48 On-line CPU(s) list: 0-47 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 6 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.1 MiB (24 instances) L1i cache: 768 KiB (24 instances) L2 cache: 30 MiB (24 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-47 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] onnx==1.17.0 [pip3] optree==0.15.0 [pip3] pytorch-triton-xpu==3.3.0+git83111ab2 [pip3] torchvision==0.22.0.dev20250408+xpu [conda] numpy 1.26.4 pypi_0 pypi [conda] optree 0.15.0 pypi_0 pypi [conda] pytorch-triton-xpu 3.3.0+git83111ab2 pypi_0 pypi [conda] torchvision 0.22.0.dev20250408+xpu pypi_0 pypi cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,995,512,619
[Export] Remove to() from module generated form exported program
Eldalie
open
[ "triaged", "open source", "release notes: export" ]
2
NONE
Prevent users from calling `to()` on module-generated form-exported programs, as this is not supported [[PyTorch issue #151010](https://github.com/pytorch/pytorch/issues/151010)]
true
2,995,481,830
add Out Notes
ILCSFNO
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
14
CONTRIBUTOR
Fixes #150181 @albanD Could you please have a check? Build locally without pytorch build: ![Developer-FAQ](https://github.com/user-attachments/assets/351a7e0b-588e-48ae-ad0a-03f427c86e89)
true
2,995,427,732
Use Allocator API raw_allocate & raw_dealloc in CUDAAllocator
guangyey
open
[ "oncall: distributed", "open source", "ciflow/trunk", "release notes: distributed (c10d)", "ciflow/rocm" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151305 # Motivation While generalizing the device caching allocator in [#138222](https://github.com/pytorch/pytorch/pull/138222), I noticed that `raw_alloc` and `raw_delete` are redundant, as similar functionality is already provided by `raw_allocate` and `raw_deallocate` in [c10::Allocator](https://github.com/pytorch/pytorch/blob/ccfce9ae868131cc87dd99584ab79e316c14e7d4/c10/core/Allocator.h#L190). In general, when an allocator defines both `allocate` and `raw_deleter`, the base `raw_allocate` and `raw_deallocate` methods become active and provide the necessary behavior. Therefore, I’ve removed the custom definitions of `raw_alloc` and `raw_delete` in `CUDAAllocator` to reduce duplication and simplify future changes in this area. Additionally, `raw_allocate` and `raw_deallocate` in `c10::Allocator` are now virtual to allow custom allocators (e.g., `CUDAPluggableAllocator`) to override them, particularly in cases where `data` and `ctx` in `DataPtr{data, ctx, deleter, device}` are distinct. This cleanup also helps streamline the review process for the upcoming generalization PR. I am trying to break up common code changes into smaller PRs for easier review. # Additional Context `CUDAAllocator` is not a public API, so I removed the redundant `raw_alloc` and `raw_delete` methods from it. However, we rename `raw_alloc` and `raw_delete` in [CUDAPluggableAllocator](https://github.com/pytorch/pytorch/blob/ccfce9ae868131cc87dd99584ab79e316c14e7d4/torch/csrc/cuda/CUDAPluggableAllocator.h#L69), as it is part of the public API and may be relied upon externally. This change introduces some concern, as it may impact downstream users relying on the existing method names. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,995,427,625
Optimize `interpolate` saturate description
zeshengzong
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: nn", "topic: docs" ]
7
CONTRIBUTOR
Fixes #108225 ## Test Result ### Before ![image](https://github.com/user-attachments/assets/bdbf8a5c-d5a4-44a5-b81e-2cbb5b8bfd02) ### After ![image](https://github.com/user-attachments/assets/1c21a27d-1700-4661-9988-dbb1cdc81fa2)
true
2,995,411,045
[Feature Request] Experimental support to Moore Threads GPU MUSA
jobs-git
open
[ "triaged", "module: backend" ]
0
NONE
### 🚀 The feature, motivation and pitch This is to further democratize AI utilization by enable emerging hardware as CUDA hardware becomes more expensive while China invests to GPU technology. There is already an existing implementation: https://github.com/MooreThreads/torch_musa While CUDA is still the gold standard, experimental support for emerging hardware ensures that PyTorch will function and continue to be used in new AI hardware in the future. Some information on general features can be seen here: https://wccftech.com/china-first-in-house-alternative-to-nvidias-cuda-emerges-online/ ### Alternatives https://github.com/MooreThreads/torch_musa ### Additional context Support for emerging hardware ensures that PyTorch will function and continue to be used in new AI hardware in the future. cc @bdhirsh @NmomoN @mengpenghui @fwenguang @cdzhan @1274085042 @PHLens @albanD
true
2,995,351,973
[Easy] Fix the compilation warning of BlasKernel.
FFFrog
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
8
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151302 * #151427 As the title stated. Change Before: ```C++ [2/21] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/native/BlasKernel.cpp.o /root/Git.d/pytorch/pytorch/aten/src/ATen/native/BlasKernel.cpp:346:6: warning: ‘void at::native::blas_impl::gemv_fast_path(const char*, const int*, const int*, const scalar_t*, const scalar_t*, const int*, const scalar_t*, const int*, const scalar_t*, scalar_t*, const int*) [with scalar_t = c10::Half]’ defined but not used [-Wunused-function] 346 | void gemv_fast_path<at::Half>( | ^~~~~~~~~~~~~~~~~~~~~~~~ /root/Git.d/pytorch/pytorch/aten/src/ATen/native/BlasKernel.cpp:329:6: warning: ‘bool at::native::blas_impl::gemv_use_fast_path(char, int64_t, int64_t, scalar_t, int64_t, int64_t, scalar_t, int64_t) [with scalar_t = c10::Half]’ defined but not used [-Wunused-function] 329 | bool gemv_use_fast_path<at::Half>( | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /root/Git.d/pytorch/pytorch/aten/src/ATen/native/BlasKernel.cpp:301:6: warning: ‘void at::native::blas_impl::gemv_fast_path(const char*, const int*, const int*, const scalar_t*, const scalar_t*, const int*, const scalar_t*, const int*, const scalar_t*, scalar_t*, const int*) [with scalar_t = c10::BFloat16]’ defined but not used [-Wunused-function] 301 | void gemv_fast_path<at::BFloat16>( | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /root/Git.d/pytorch/pytorch/aten/src/ATen/native/BlasKernel.cpp:273:6: warning: ‘bool at::native::blas_impl::gemv_use_fast_path(char, int64_t, int64_t, scalar_t, int64_t, int64_t, scalar_t, int64_t) [with scalar_t = c10::BFloat16]’ defined but not used [-Wunused-function] 273 | bool gemv_use_fast_path<at::BFloat16>( | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ```
true
2,995,338,344
DISABLED test_fake_registration (__main__.TestOpProfiles)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "module: custom-operators", "skipped", "oncall: pt2", "module: pt2-dispatcher" ]
9
NONE
Platforms: asan, linux, mac, macos, rocm, slow, win, windows This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_fake_registration&suite=TestOpProfiles&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40550182470). Over the past 3 hours, it has been determined flaky in 37 workflow(s) with 74 failures and 37 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_fake_registration` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_custom_ops.py", line 4500, in test_fake_registration torch.library.define( File "/opt/conda/envs/py_3.10/lib/python3.10/functools.py", line 889, in wrapper return dispatch(args[0].__class__)(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/library.py", line 555, in define lib.define(name + schema, alias_analysis="", tags=tags) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/library.py", line 172, in define result = self.m.define(schema, alias_analysis, tuple(tags)) RuntimeError: Tried to register an operator (mylib::foo(Tensor a, Tensor b) -> Tensor) with the same name and overload name multiple times. Each overload's schema should only be registered with a single call to def(). Duplicate registration: registered at /dev/null:135. Original registration: registered at /dev/null:212 To execute this test, run the following from the base repo dir: python test/test_custom_ops.py TestOpProfiles.test_fake_registration This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_custom_ops.py` cc @clee2000 @chauhang @penguinwu @zou3519 @bdhirsh
true
2,995,338,214
DISABLED test_parity__foreach_add_fastpath_inplace_cuda_complex128 (__main__.TestForeachCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
3
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_add_fastpath_inplace_cuda_complex128&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40550182917). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 10 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_add_fastpath_inplace_cuda_complex128` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_foreach.py", line 228, in test_parity actual = func( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_add_', keys=('aten::_foreach_add_', 'Unrecognized', 'aten::result_type', 'cudaLaunchKernel', 'cudaDeviceSynchronize') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1161, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1975, in wrap_fn return fn(self, *args, **kwargs) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 235, in test_parity with self.assertRaises(type(e)): File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 226, in __exit__ self._raiseFailure("{} not raised".format(exc_name)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 163, in _raiseFailure raise self.test_case.failureException(msg) AssertionError: AssertionError not raised The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1173, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.complex128], Tensor[size=(19, 19), device="cuda:0", dtype=torch.complex128], Tensor[size=(18, 18), device="cuda:0", dtype=torch.complex128], Tensor[size=(17, 17), device="cuda:0", dtype=torch.complex128], Tensor[size=(16, 16), device="cuda:0", dtype=torch.complex128], Tensor[size=(15, 15), device="cuda:0", dtype=torch.complex128], Tensor[size=(14, 14), device="cuda:0", dtype=torch.complex128], Tensor[size=(13, 13), device="cuda:0", dtype=torch.complex128], Tensor[size=(12, 12), device="cuda:0", dtype=torch.complex128], Tensor[size=(11, 11), device="cuda:0", dtype=torch.complex128], Tensor[size=(10, 10), device="cuda:0", dtype=torch.complex128], Tensor[size=(9, 9), device="cuda:0", dtype=torch.complex128], Tensor[size=(8, 8), device="cuda:0", dtype=torch.complex128], Tensor[size=(7, 7), device="cuda:0", dtype=torch.complex128], Tensor[size=(6, 6), device="cuda:0", dtype=torch.complex128], Tensor[size=(5, 5), device="cuda:0", dtype=torch.complex128], Tensor[size=(4, 4), device="cuda:0", dtype=torch.complex128], Tensor[size=(3, 3), device="cuda:0", dtype=torch.complex128], Tensor[size=(2, 2), device="cuda:0", dtype=torch.complex128], Tensor[size=(1, 1), device="cuda:0", dtype=torch.complex128]], args=(TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.complex128], Tensor[size=(19, 19), device="cuda:0", dtype=torch.complex128], Tensor[size=(18, 18), device="cuda:0", dtype=torch.complex128], Tensor[size=(17, 17), device="cuda:0", dtype=torch.complex128], Tensor[size=(16, 16), device="cuda:0", dtype=torch.complex128], Tensor[size=(15, 15), device="cuda:0", dtype=torch.complex128], Tensor[size=(14, 14), device="cuda:0", dtype=torch.complex128], Tensor[size=(13, 13), device="cuda:0", dtype=torch.complex128], Tensor[size=(12, 12), device="cuda:0", dtype=torch.complex128], Tensor[size=(11, 11), device="cuda:0", dtype=torch.complex128], Tensor[size=(10, 10), device="cuda:0", dtype=torch.complex128], Tensor[size=(9, 9), device="cuda:0", dtype=torch.complex128], Tensor[size=(8, 8), device="cuda:0", dtype=torch.complex128], Tensor[size=(7, 7), device="cuda:0", dtype=torch.complex128], Tensor[size=(6, 6), device="cuda:0", dtype=torch.complex128], Tensor[size=(5, 5), device="cuda:0", dtype=torch.complex128], Tensor[size=(4, 4), device="cuda:0", dtype=torch.complex128], Tensor[size=(3, 3), device="cuda:0", dtype=torch.complex128], Tensor[size=(2, 2), device="cuda:0", dtype=torch.complex128], Tensor[size=(1, 1), device="cuda:0", dtype=torch.complex128]]), kwargs={'alpha': '(3+3j)'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/test_foreach.py TestForeachCUDA.test_parity__foreach_add_fastpath_inplace_cuda_complex128 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,995,214,765
[custom ops] Fix destroy function
angelayi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
CONTRIBUTOR
Summary: D72906445 seemed to cause a SIGABRT when running the test in the test plan. The change I narrowed it down to was where in fake_impls the [`deregister_fake_kernel` no longer calls `lib.destroy`](https://github.com/pytorch/pytorch/pull/150806/files#diff-7fd3f4222276c63b91f3a895530bb5efe137fd23165b48f25afcf3c06a5d2a8fL65-L69). Calling `lib.destroy` in that handle results in a maximum recursion error where someone calls library.destroy which calls the handle which calls back to library.destroy. So I compared the implementation of this _del_library and lib.destroy and it seemed like the main thing different was deleting `self.m`. So adding that fixed my issue! Side note, I feel like we can combine `_del_library` and `library._destroy`? But I won't do it in this diff to make sure we don't break too many things 😅 Test Plan: `buck test 'fbcode//mode/opt' fbcode//aiplatform/gmpp/bulk_eval/reader/service/tests:reader_service_handler_tests -- --exact 'aiplatform/gmpp/bulk_eval/reader/service/tests:reader_service_handler_tests - aiplatform.gmpp.bulk_eval.reader.service.tests.reader_service_handler_tests.ReaderServiceHandlerTests: test_add_preproc_output_into_queue'` https://www.internalfb.com/intern/testinfra/testrun/10977524170296078 Differential Revision: D73017613
true
2,995,179,893
[WIP] Generalize device caching allocator
guangyey
open
[ "open source", "release notes: cpp" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151298 * #152932 * #138222
true
2,995,169,599
[3/N] Use internal linkage in C++ files
cyyever
closed
[ "oncall: jit", "module: cpu", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: jit", "ciflow/periodic" ]
6
COLLABORATOR
Follows #151070. cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @mingfeima @XiaobingSuper @ashokei @jingxu10 @jerryzh168
true
2,995,120,499
[inductor] [assertion error] `torch.select_scatter` crashes on inductor but passes on eager
shaoyuyoung
open
[ "high priority", "triaged", "oncall: pt2", "module: pt2-dispatcher" ]
5
CONTRIBUTOR
### 🐛 Describe the bug **symptom**: `torch.select_scatter` crashes with `assertionerror`. **repro** ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config config.fallback_random = True torch.set_grad_enabled(False) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x): x = torch.select_scatter(x, torch.tensor([0]), 1, 0) return x model = Model() x = torch.randn(1, 10) inputs = [x] def run_test(model, inputs, backend): torch.manual_seed(0) if backend != "eager": model = torch.compile(model, backend=backend) try: output = model(*inputs) print(f"succeed on {backend}") except Exception as e: print(e) run_test(model, inputs, 'eager') run_test(model, inputs, 'inductor') ``` ### Error logs eager ``` succeed on eager ``` Inductor ``` LoweringException: AssertionError: target: aten.select_scatter.default args[0]: TensorBox(StorageBox( InputBuffer(name='arg0_1', layout=FixedLayout('cpu', torch.float32, size=[1, 10], stride=[10, 1])) )) args[1]: TensorBox(StorageBox( Pointwise( 'cpu', torch.int64, def inner_fn(index): _ = index tmp0 = ops.constant(0, torch.int64) return tmp0 , ranges=[1], origin_node=full_default, origins=OrderedSet([full_default]) ) )) args[2]: 1 args[3]: 0 ``` ### Versions nightly 20250414 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @bdhirsh @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @amjames
true
2,995,093,773
[Hierarchical compile] Ensure output nodes are sorted last
mlazos
closed
[ "Merged", "ciflow/trunk", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151295 * #151294 * #151293 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,995,093,693
[Hierarchical Compile] Handle autocast ctx manager
mlazos
closed
[ "Merged", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151295 * __->__ #151294 * #151293 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,995,093,627
[Hierarchical Compile] Fix small bug
mlazos
closed
[ "Merged", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151295 * #151294 * __->__ #151293 This technically would never be exposed because we never check that a node is an ancestor of itself, but it is good for it to be correct. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,995,039,425
Remove outdated Android workarounds of nearbyintf
cyyever
open
[ "module: cpu", "triaged", "open source", "oncall: mobile", "ciflow/trunk", "release notes: quantization", "ciflow/periodic", "ciflow/mps", "test-config/executorch" ]
3
COLLABORATOR
This PR uses std::nearbyint on all supported platforms. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168
true
2,994,968,427
Improve error message when calling binary pointwise functions with two jagged nested tensors
shink
open
[ "triaged", "open source", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes #150252 ### Changes Raise an ValueError with detailed message when calling binary pointwise functions with two jagged nested tensors with different symint sizes. For example, `(B, j1, D)` - `(B, j2, D)` will get an error.
true
2,994,951,511
[Inductor UT] Conflicting declaration found in create_block_mask with torch.compile in specific CI image.
jianan-gu
closed
[ "oncall: cpu inductor" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Meeting Conflicting declaration issue when running following UT in specific CI ephemeral.linux.2xlarge image. - Detailed error: https://github.com/pytorch/pytorch/actions/runs/14444977199/job/40548513199 - UT code: test/inductor/test_flex_attention.py::TestFlexAttentionCPU::test_make_block_mask_cpu ``` def causal_mask(b, h, q_idx, kv_idx): return q_idx >= kv_idx block_mask_a = torch.compile(create_block_mask)( causal_mask, 1, 1, 512, 512, device=device ) block_mask_b = create_block_mask(causal_mask, 1, 1, 512, 512, device=device) ``` ### Versions CI ephemeral.linux.2xlarge image Refer to the link of https://github.com/pytorch/pytorch/actions/runs/14444977199/job/40548513199
true
2,994,928,426
Fix CosineAnnealingWarmRestarts reset T_cur
zeshengzong
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: optim" ]
9
CONTRIBUTOR
Fixes #88791 ## Test Result ```python pytest test/optim/test_lrscheduler.py -k test_CosineAnnealingWarmRestarts ``` ![image](https://github.com/user-attachments/assets/75ad238c-f319-47dc-bf2d-da05b0879b84)
true
2,994,844,580
[MPSInductor] Adjust memory format detection
malfet
closed
[ "Merged", "topic: bug fixes", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150821 * __->__ #151288 * #151282 * #151272 * #151246 * #151224 MPS conv implementation will only yield channels last if input is in channels_last format Fixes `TestGPUTests.test_conv2d_backward_channels_last` on MacOS-15 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,994,810,057
There is a significant performance degradation in the Triton operator generated for scaled_dot_product_attention by TorchInductor's aotcompile.
sujuyu
closed
[]
2
NONE
### 🐛 Describe the bug I have created a simple demo using cross-attention. ```python import os os.environ['TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_BACKENDS'] = "ATEN,CPP" os.environ['TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE'] = "EXHAUSTIVE" os.environ['TORCHINDUCTOR_MAX_AUTOTUNE_GEMM'] = "1" import torch import torch.nn.functional as F import time os.makedirs("./torch251_target", exist_ok=True) os.environ['TORCHINDUCTOR_CACHE_DIR'] = "./torch251_target" q, k, v = ( torch.randn(1000, 4, 1, 32).cuda(), torch.randn(1, 4, 2048, 32).cuda(), torch.randn(1, 4, 2048, 32).cuda(), ) class M(torch.nn.Module): def forward(self, q, k, v): x = F.scaled_dot_product_attention(q, k, v) return x ``` The sequence length of q is 2048, while the sequence length for k and v is 1. The forward operation is repeated 1000 times in both the Python runtime and AotInductor, using amp.autocast for half-precision inference. ```python if __name__ == "__main__": model = M().cuda().eval() exported_model = torch.export.export( model, (q, k, v), dynamic_shapes={ "q": {0: torch.export.Dim("batch", min=1, max=2048)}, "k": None, "v": None }, ) # exported_model = exported_model.run_decompositions() fx_model = torch.fx.symbolic_trace(exported_model.module()).cuda() fx_model(q, k, v) # repeat 100 times to test the cost with torch.amp.autocast(device_type = "cuda", enabled=True, dtype=torch.float16): start_time = time.perf_counter() for _ in range(1000): fx_model(q, k, v) end_time = time.perf_counter() print(f"fx model cost {end_time - start_time} s") with torch.amp.autocast(device_type = "cuda", enabled=True, dtype=torch.float16): dynamic_lib_path = torch._export.aot_compile( fx_model, (q, k, v), dynamic_shapes = ( {0: torch.export.Dim("batch", min=1, max=2048)}, None, None, ), options={ "aot_inductor.output_path": os.path.join( "./torch251_target_before_decompose.so" ), "max_autotune": True, }, ) aot_model = torch._export.aot_load( dynamic_lib_path, "cuda" ) q, k, v = ( torch.randn(1000, 4, 1, 32).cuda(), torch.randn(1, 4, 2048, 32).cuda(), torch.randn(1, 4, 2048, 32).cuda(), ) # warm up for _ in range(100): aot_model(q, k, v) # repeat 1000 times to test the cost start_time = time.perf_counter() for _ in range(1000): aot_model(q, k, v) end_time = time.perf_counter() print(f"aot_model cost {end_time - start_time} s") ``` the print info is: ```bash fx model cost 11.029950745403767 s aot_model cost 11.29344904050231 s ``` For the NVIDIA A10, this performance data is already very slow. If I add the line exported_model = exported_model.run_decompositions(), the performance even improves significantly. ```bash fx model cost 14.736855018883944 s aot_model cost 4.444696590304375 s ``` I tried to find the answer from the generated C++ code. AOTInductor did not use operators like aten::_scaled_dot_product_flash_attention; instead, it replaced them with a Triton operator. ```C++ // Topologically Sorted Source Nodes: [scaled_dot_product_attention_default], Original ATen: [aten.mul] auto triton_poi_fused_mul_0_xnumel = 128L*s0; if (kernels.triton_poi_fused_mul_0 == nullptr) { kernels.triton_poi_fused_mul_0 = loadKernel("./torch251_target/./cjgeab4gltlrnrbe62w4fewx4ni35pmm265wyndlslk4ddfdocgc.cubin", "triton_", 0, this->cubin_dir_); } ``` "I think using _scaled_dot_product_flash_attention could further improve the speed. Is there a switch in AOTInductor that allows me to disable the Triton optimization for SDPA? I have some additional information. If the dimensions of my q, k, v are all (1000, 4, 256, 32), simulating a self-attention scenario, even though the computational load increases significantly, the C++ code directly uses aten::_scaled_dot_product_flash_attention, and the performance is much better compared to the current cross-attention. ```C++ auto buf21 = at::_ops::_scaled_dot_product_flash_attention::call(buf18, buf19, buf20, 0.0, false, false, 0.17677669529663687); ``` ### Versions $python collect_env.py Collecting environment information... PyTorch version: 2.5.1+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Alibaba Cloud Linux 3 (Soaring Falcon) (x86_64) GCC version: (GCC) 10.2.1 20200825 (Alibaba 10.2.1-3.8 2.32) Clang version: 17.0.6 (Alibaba Cloud Compiler 17.0.6.4-24.11.20.alios7) CMake version: version 3.31.1 Libc version: glibc-2.32 Python version: 3.10.0 | packaged by conda-forge | (default, Nov 20 2021, 02:24:10) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-4.19.91-009.ali4000.alios7.x86_64-x86_64-with-glibc2.32 Is CUDA available: True CUDA runtime version: 12.4.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz Stepping: 6 CPU MHz: 2899.992 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5800.00 Virtualization: VT-x L1d cache: 48K L1i cache: 32K L2 cache: 1280K L3 cache: 49152K NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.1.105 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] torch==2.5.1+cu121 [pip3] torch_tensorrt==2.5.0 [pip3] torchaudio==2.5.1+cu121 [pip3] torchmetrics==1.0.3 [pip3] torchrec==1.1.0a0+7e7819e [pip3] torchvision==0.20.1+cu121 [pip3] torchx==0.7.0 [pip3] triton==3.1.0 [conda] numpy 2.2.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.1.105 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] torch 2.5.1+cu121 pypi_0 pypi [conda] torch-tensorrt 2.5.0 pypi_0 pypi [conda] torchaudio 2.5.1+cu121 pypi_0 pypi [conda] torchmetrics 1.0.3 pypi_0 pypi [conda] torchrec 1.1.0a0+7e7819e pypi_0 pypi [conda] torchvision 0.20.1+cu121 pypi_0 pypi [conda] torchx 0.7.0 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi
true
2,994,777,851
vmap- out of memory
GLCUI
open
[ "triaged", "module: vmap" ]
0
NONE
### 🚀 The feature, motivation and pitch i find the torch.vmap will need several times more memory when i use vmap to Performing matrix multiplication with batch than normal neural network Linear operation(eg: Linear) need with batch is there any optimization method? ### Alternatives _No response_ ### Additional context _No response_ cc @zou3519 @Chillee @samdow @kshitij12345
true
2,994,770,627
there is no cuda 12.1 of pytoch 2.6.0, when update pytorch,the cuda version is always not suitble for pytorch version
cqray1990
closed
[ "module: binaries", "oncall: releng" ]
1
NONE
### 🚀 The feature, motivation and pitch there is no cuda 12.1 of pytoch 2.6.0, when update pytorch,the cuda version is always not suitble for pytorch version ### Alternatives _No response_ ### Additional context _No response_ cc @seemethere @malfet @osalpekar @atalman
true
2,994,714,740
[cutlass backend] "Fix" FlexibleLayout
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151284 So Horace was right, Triton does fix the layout when rendering the template (i.e. roughly at the same time). You can double check that running the unit test with gemm backend as "TRITON,CUTLASS". You will notice that the layout is fixed if we have triton in gemm backend, but flexible if triton is not there. code pointer: https://github.com/pytorch/pytorch/blob/main/torch/_inductor/select_algorithm.py#L927 In the future, we should remove `fix_op_layout` from class CUTLASSGemmTemplate. But maybe we can monitor it for a bit first. Differential Revision: [D72996143](https://our.internmc.facebook.com/intern/diff/D72996143/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,994,708,131
Replace all random is_fbcode imports to environment
oulgen
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151283 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,994,695,281
[MPS] Fix logit output for half/bfloat
malfet
closed
[ "Merged", "release notes: mps", "ciflow/mps" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150821 * #151288 * __->__ #151282 * #151272 * #151246 * #151224 Which also fixes MPSInductor pointwise test TODO: (as followup PRs): get rid of special native_function.yaml dispatches and use stub
true
2,994,674,307
DISABLED test_duplicate_registration_impl (__main__.TestOpProfiles)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "module: custom-operators", "skipped", "oncall: pt2", "module: pt2-dispatcher" ]
7
NONE
Platforms: asan, linux, mac, macos, rocm, win, windows, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_duplicate_registration_impl&suite=TestOpProfiles&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40542477311). Over the past 3 hours, it has been determined flaky in 60 workflow(s) with 122 failures and 60 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_duplicate_registration_impl` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_custom_ops.py` cc @clee2000 @chauhang @penguinwu @zou3519 @bdhirsh
true
2,994,630,358
[executorch hash update] update the pinned executorch hash
pytorchupdatebot
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
6
COLLABORATOR
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml). Update the pinned executorch hash.
true
2,994,620,812
[cutlass backend][ez] Ban FP32 output dtype from using CUTLASS GEMM backend
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151279 FP32 not supported: https://github.com/pytorch/pytorch/issues/145952 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,994,591,812
[dynamo] replace `unimplemented` with `unimplemented_v2` in `variables/torch_functions.py`
StrongerXi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151278 * #151277 This addresses part of #147913. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,994,591,707
[dynamo] replace `unimplemented` with `unimplemented_v2` in `variables/functions.py`
StrongerXi
closed
[ "Merged", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151278 * __->__ #151277 This addresses part of #147913. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,994,578,555
[Inductor] Modify persistent+TMA template for Triton mm and admm to use new TMA API
NikhilAPatel
closed
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151276 Summary: This PR modifies the Triton template for persisten+TMA mm and admm to use the new functional API for TMA introduced here: https://github.com/triton-lang/triton/pull/6248/ This also involves setting a global Triton allocator function to be called at kernel launch for any kernels that require additional global memory workspace. This is done in triton_heuristics.py directly before kernels are launched. Test Plan: contbuild & OSS CI Reviewers: paulzhan cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,994,557,082
[sigmoid] memory planner C10 deps
dolpm
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
28
CONTRIBUTOR
Summary: perf-sensitive util functions for use in our memory planner Test Plan: CI Differential Revision: D73002726
true
2,994,511,729
[inductor] disable alignment asserts in fbcode
shunting314
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151274 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,994,484,281
[AOTInductor] Add states for constant folding process
muchulee8
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151273 Summary: We add states in the constant folding process for AOTInductor. Basically, there's 3 states, which is (1) None: The state when no constants are loaded and uninitialized. (2) Initialized: The state when constants are loaded, but not yet folded. (3) Folded: The state where the model is fully ready with folded constants. Note that even if constant folding is not enabled, we still only run when state is FOLDED, this is okay because without constant folding, the transition from INITIALIZED to FOLDED is just a pass-throught. Test Plan: python test/inductor/test_aot_inductor.py -k test_constant_folding_with_update Reviewers: Subscribers: Tasks: Tags: cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @amjames @chauhang @aakhundov Differential Revision: [D73002538](https://our.internmc.facebook.com/intern/diff/D73002538)
true
2,994,473,488
[MPSInductor] Fix silent correctness in bitcast
malfet
closed
[ "Merged", "topic: bug fixes", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150821 * __->__ #151272 * #151246 * #151224 By using Metal `as_type` which according to documentation does exactly that: > Metal adds an as_type<type-id> operator to allow any scalar or vector data type (that is not a pointer) to be reinterpreted as another scalar or vector data type of the same size. The bits in the operand are returned directly without modification as the new type. The usual type promotion for function arguments is not performed. Using `reinterpret_cast` created a potential silent correctness error when dtypes of different sizes were bitcast to each other Add expicit cast to src_type to avoid errors due to type promotion (i.e. soemthing like (x+1).view(dtype=torch.float16) would work correctly in eager mode for int16 dtype, but would fail in compile, as arithmetic operations will promote int16 to int32 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,994,458,541
[WIP][dynamic shapes] lru cache bound_sympy
pianpwk
open
[ "release notes: fx", "fx", "ciflow/inductor" ]
1
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,994,447,228
Fix score_mod.py dynamic max autotune for backward
fegin
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151270 Same as https://github.com/pytorch/pytorch/pull/148991 but this PR fixes the backward path. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,994,306,456
[PP] Hang when num_microbatches < stages for Interleaved1F1B
H-Huang
open
[ "oncall: distributed", "triaged", "module: pipelining" ]
0
MEMBER
Seeing a hang when pp_rank=4 and num_stages=8 with num_microbatches=2 for `Interleaved1F1B`. This is reproducible in torchtitan. Issue has not been root caused yet. First step is to write a unit test to reproduce this in PyTorch. cc @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,994,300,904
DISABLED test_parity__foreach_add_fastpath_inplace_cuda_bool (__main__.TestForeachCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_add_fastpath_inplace_cuda_bool&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40526159287). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 10 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_add_fastpath_inplace_cuda_bool` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,994,300,838
DISABLED test_kineto_profiler_with_environment_variable (__main__.SimpleKinetoInitializationTest)
pytorch-bot[bot]
open
[ "module: flaky-tests", "skipped", "oncall: profiler" ]
1
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_kineto_profiler_with_environment_variable&suite=SimpleKinetoInitializationTest&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40526253603). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 4 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_kineto_profiler_with_environment_variable` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/profiler/test_kineto.py", line 25, in test_kineto_profiler_with_environment_variable subprocess.check_output( File "/opt/conda/envs/py_3.10/lib/python3.10/subprocess.py", line 421, in check_output return run(*popenargs, stdout=PIPE, timeout=timeout, check=True, File "/opt/conda/envs/py_3.10/lib/python3.10/subprocess.py", line 526, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['/opt/conda/envs/py_3.10/bin/python', '-W', 'always', '-c', '\nimport torch\nif torch.cuda.is_available() > 0:\n torch.cuda.init()\n']' died with <Signals.SIGSEGV: 11>. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/profiler/test_kineto.py", line 31, in test_kineto_profiler_with_environment_variable self.assertTrue( File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 687, in assertTrue raise self.failureException(msg) AssertionError: False is not true : Kineto is not working properly with the Dynolog environment variable To execute this test, run the following from the base repo dir: python test/profiler/test_kineto.py SimpleKinetoInitializationTest.test_kineto_profiler_with_environment_variable This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `profiler/test_kineto.py` cc @clee2000 @robieta @chaekit @guotuofeng @guyang3532 @dzhulgakov @davidberard98 @briancoutinho @sraikund16 @sanrise
true
2,994,180,469
[Dynamo] Implement sourceless named tuple support
mlazos
closed
[ "Merged", "ciflow/trunk", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
6
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/140903 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,994,131,512
[dynamo] Avoid unnecessary `.detach()` call in `_make_subclass` polyfill
StrongerXi
open
[ "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151265 This brings down compilation time quite a bit for certain tensor subclass + `torch.compile` use cases, see #150706. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,994,089,268
[reland] Make export._trace._WrapperModule work in strict mode (#146919)
yushangdi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "module: dynamo", "ciflow/inductor", "release notes: export", "ci-no-td" ]
7
CONTRIBUTOR
Summary: as title `export._trace._WrapperModule` is used to wrap functions into a Module so we can export the function. We add `export._wrapper_utils` to `dynamo`'s `MOD_INLINELIST` so dynamo traces into `_WrapperModule` Fixes https://github.com/pytorch/pytorch/issues/146867 Test Plan: ``` buck run fbcode//mode/dev-nosan //caffe2/test:test_export -- -r wrapper_module ``` Differential Revision: D72986826 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,994,085,358
Make torch._chunk_cat support non-contiguous inputs
yf225
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
9
CONTRIBUTOR
Currently, `torch._chunk_cat` only supports contiguous inputs (due to `.view()` usage in `_pad_chunk()` supporting only contiguous tensor). This doesn't work for internal models where there can be non-contiguous input tensors: - size=[8192, 16416], stride=[16448, 1] # stride[0] is larger than size[1] - size=[1152, 384], stride=[1, 1152] # column-major tensor In this PR, we relax the assumption on contiguous input tensor, by switching from `.view()` to `.reshape()`. Note that since `.reshape()` will try to use `.view()` under the hood whenever possible, this should not cause regression to existing use cases. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151263
true
2,994,060,562
[WIP][SymmMem] Add sendrecv op
kwen2501
open
[ "oncall: distributed", "release notes: distributed (c10d)" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151993 * #151819 * #151498 * __->__ #151262 * #151261 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,994,060,432
[SymmMem] Experimental NVSHMEM integration
kwen2501
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151993 * #151819 * #151498 * __->__ #151261 Adding NVSHMEM as a backend for `SymmetricMemory`, implementation of which is in `NVSHMEMSymmetricMemory.cu`. Moving some helper functions in `CUDASymmetricMemory.cu` to `CUDASymmetricMemoryUtils.cpp`, so that they can be shared by `NVSHMEMSymmetricMemory`. These functions are mostly side-band exchange helpers (`store_all_gather`, `IpcChannel`, etc). Adding `TORCH_SYMMEM` to control which implementation to use for CUDA tensors, currently support: `CUDA` (in-house impl), `NVSHMEM`. The NVSHMEM feature is gated by build-time flag: `USE_NVSHMEM=1`. And `NVSHMEM_HOME` setting is required (TODO). Ported most code from #146593. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,994,060,320
clang-format CUDASymmetricMemory.cu
kwen2501
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)", "topic: not user facing" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151262 * #151261 * __->__ #151260 Ported from #146592 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,994,054,112
[ONNX] Produce correct dtypes for bf16/f8 in IR TorchTensor
justinchuby
closed
[ "module: onnx", "open source", "Merged", "ciflow/trunk", "release notes: onnx", "topic: bug fixes" ]
4
COLLABORATOR
Split the changes from https://github.com/pytorch/pytorch/pull/151069 to address https://github.com/microsoft/onnxscript/issues/2187, where the output np arrays do not have the correct ml_dtypes types as expected.
true
2,994,040,897
[AMD][FA] Block mem efficient attention if backward head_dim > 128 in CK backend
merengue171
open
[ "fb-exported", "topic: not user facing" ]
9
NONE
Summary: https://github.com/ROCm/flash-attention?tab=readme-ov-file {F1977092246} CK doesn't support bwd head_dim>128. We'll exclude mem eff attention and pick math if use CK backend and bwd_head_dim > 128. Test Plan: buck2 run mode/opt scripts/xdwang/example:sdpa -- --head_dim 256 fwd+bwd: {F1977100595} Differential Revision: D72973245
true
2,994,014,000
Gracefully handle optree less than minimum version, part 2
zou3519
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151257 If optree is less than the minimum version, we should pretend it doesn't exist. The problem right now is: - Install optree==0.12.1 - `import torch._dynamo` - This raise an error "min optree version is 0.13.0" The fix is to pretend optree doesn't exist if it is less than the min version. There are ways to clean up this PR more (e.g. have a single source of truth for the version, some of the variables are redundant), but I am trying to reduce the risk as much as possible for this to go into 2.7. Test Plan: I verified the above problem was fixed. Also tried some other things, like the following, which now gives the expected behavior. ```py >>> import torch >>> import optree >>> optree.__version__ '0.12.1' >>> import torch._dynamo >>> import torch._dynamo.polyfills.pytree >>> import torch.utils._pytree >>> import torch.utils._cxx_pytree ImportError: torch.utils._cxx_pytree depends on optree, which is an optional dependency of PyTorch. To u se it, please upgrade your optree package to >= 0.13.0 ``` I also audited all non-test callsites of optree and torch.utils._cxx_pytree. Follow along with me: optree imports - torch.utils._cxx_pytree. This is fine. - [guarded by check] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/_dynamo/polyfills/pytree.py#L29-L31 _cxx_pytree imports - [guarded by check] torch.utils._pytree (changed in this PR) - [guarded by check] torch/_dynamo/polyfills/pytree.py (changed in this PR) - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/distributed/_functional_collectives.py#L17 - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/distributed/tensor/_op_schema.py#L15 - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/distributed/tensor/_dispatch.py#L35 - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/_dynamo/variables/user_defined.py#L94 - [guarded by try-catch] https://github.com/pytorch/pytorch/blob/f76b7ef33cc30f7378ef71a201f68a2bef18dba0/torch/distributed/tensor/experimental/_func_map.py#L14 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,994,003,430
[aot autograd][logging] Profile large missing gaps in compile time tracing
anijain2305
open
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: AO frontend", "ci-no-td" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151410 * #151409 * #150704 * #150717 * #151357 * __->__ #151256 * #151330 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,993,957,837
[cutlass backend][experimental] Try out presets for cutlass instead of searching all configs
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151255 Differential Revision: [D72668861](https://our.internmc.facebook.com/intern/diff/D72668861/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,993,936,426
`torch.compile(mode="max-autotune-without-cudagraph")` errors in triton compiler
StrongerXi
closed
[ "oncall: pt2" ]
3
CONTRIBUTOR
### 🐛 Describe the bug This was originally observed in https://github.com/city96/ComfyUI-GGUF/issues/250. After 20250405 nightly, `torch.compile(mode="max-autotune-without-cudagraph")` started to error for ComfyUI Flux, when we graph break on the attention (so it's not specific to sageattention as the original issue suggested). I can't really come up with a repro without ComfyUI, so after chatting with @exclamaforte I'm creating this issue for now. The error part of the logs (see more raw logs below): ```verbatim triton_heuristics.py:617] Triton compilation failed: Placeholder.DESCRIPTIVE_NAME triton_heuristics.py:617] def triton_mm(in_ptr0, arg_A, arg_B, out_ptr0): triton_heuristics.py:617] EVEN_K : tl.constexpr = True triton_heuristics.py:617] ALLOW_TF32 : tl.constexpr = False triton_heuristics.py:617] USE_FAST_ACCUM : tl.constexpr = False triton_heuristics.py:617] ACC_TYPE : tl.constexpr = tl.float32 triton_heuristics.py:617] BLOCK_M : tl.constexpr = 16 triton_heuristics.py:617] BLOCK_N : tl.constexpr = 32 triton_heuristics.py:617] BLOCK_K : tl.constexpr = 16 triton_heuristics.py:617] GROUP_M : tl.constexpr = 8 triton_heuristics.py:617] A = arg_A triton_heuristics.py:617] B = arg_B triton_heuristics.py:617] triton_heuristics.py:617] M = 1 triton_heuristics.py:617] N = 18432 triton_heuristics.py:617] K = 3072 triton_heuristics.py:617] if M * N == 0: triton_heuristics.py:617] # early exit due to zero-size input(s) triton_heuristics.py:617] return triton_heuristics.py:617] stride_am = 0 triton_heuristics.py:617] stride_ak = 1 triton_heuristics.py:617] stride_bk = 1 triton_heuristics.py:617] stride_bn = 3072 triton_heuristics.py:617] triton_heuristics.py:617] # based on triton.ops.matmul triton_heuristics.py:617] pid = tl.program_id(0) triton_heuristics.py:617] grid_m = (M + BLOCK_M - 1) // BLOCK_M triton_heuristics.py:617] grid_n = (N + BLOCK_N - 1) // BLOCK_N triton_heuristics.py:617] triton_heuristics.py:617] # re-order program ID for better L2 performance triton_heuristics.py:617] width = GROUP_M * grid_n triton_heuristics.py:617] group_id = pid // width triton_heuristics.py:617] group_size = min(grid_m - group_id * GROUP_M, GROUP_M) triton_heuristics.py:617] pid_m = group_id * GROUP_M + (pid % group_size) triton_heuristics.py:617] pid_n = (pid % width) // (group_size) triton_heuristics.py:617] tl.assume(pid_m >= 0) triton_heuristics.py:617] tl.assume(pid_n >= 0) triton_heuristics.py:617] triton_heuristics.py:617] rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) triton_heuristics.py:617] rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) triton_heuristics.py:617] if ((stride_am == 1 and stride_ak == M) or (stride_am == K and str triton_heuristics.py:617] offs_a_m = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), triton_heuristics.py:617] else: triton_heuristics.py:617] offs_a_m = rm % M triton_heuristics.py:617] if ((stride_bk == 1 and stride_bn == K) or (stride_bk == N and str triton_heuristics.py:617] offs_b_n = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), triton_heuristics.py:617] else: triton_heuristics.py:617] offs_b_n = rn % N triton_heuristics.py:617] offs_k = tl.arange(0, BLOCK_K) triton_heuristics.py:617] acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) triton_heuristics.py:617] triton_heuristics.py:617] for k_idx in range(0, tl.cdiv(K, BLOCK_K)): triton_heuristics.py:617] triton_heuristics.py:617] a_k_idx_vals = offs_k[None, :] + (k_idx * BLOCK_K) triton_heuristics.py:617] b_k_idx_vals = offs_k[:, None] + (k_idx * BLOCK_K) triton_heuristics.py:617] triton_heuristics.py:617] idx_m = offs_a_m[:, None] triton_heuristics.py:617] idx_n = a_k_idx_vals triton_heuristics.py:617] xindex = idx_n triton_heuristics.py:617] a = tl.load(A + (xindex)) triton_heuristics.py:617] triton_heuristics.py:617] idx_m = b_k_idx_vals triton_heuristics.py:617] idx_n = offs_b_n[None, :] triton_heuristics.py:617] xindex = idx_m + 3072*idx_n triton_heuristics.py:617] b = tl.load(B + (xindex)) triton_heuristics.py:617] triton_heuristics.py:617] triton_heuristics.py:617] acc += tl.dot(a, b, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE) triton_heuristics.py:617] triton_heuristics.py:617] triton_heuristics.py:617] # rematerialize rm and rn to save registers triton_heuristics.py:617] rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) triton_heuristics.py:617] rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) triton_heuristics.py:617] idx_m = rm[:, None] triton_heuristics.py:617] idx_n = rn[None, :] triton_heuristics.py:617] mask = (idx_m < M) & (idx_n < N) triton_heuristics.py:617] triton_heuristics.py:617] # inductor generates a suffix triton_heuristics.py:617] xindex = idx_n + 18432*idx_m triton_heuristics.py:617] tmp0 = tl.load(in_ptr0 + (tl.broadcast_to(idx_n, acc.shape)), mask triton_heuristics.py:617] tmp1 = acc + tmp0 triton_heuristics.py:617] tl.store(out_ptr0 + (tl.broadcast_to(idx_n, acc.shape)), tmp1, mas triton_heuristics.py:617] triton_heuristics.py:617] metadata: {'signature': {'in_ptr0': '*bf16', 'arg_A': '*bf16', 'arg_B' triton_heuristics.py:617] Traceback (most recent call last): triton_heuristics.py:617] File "/home/ryanguo99/.conda/envs/comfyui/lib/python3.12/site-packag triton_heuristics.py:617] return fn(*args, **kwargs) triton_heuristics.py:617] ^^^^^^^^^^^^^^^^^^^ triton_heuristics.py:617] File "/home/ryanguo99/.conda/envs/comfyui/lib/python3.12/site-packag triton_heuristics.py:617] return semantic.dot(input, other, acc, input_precision, max_num_im triton_heuristics.py:617] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ triton_heuristics.py:617] File "/home/ryanguo99/.conda/envs/comfyui/lib/python3.12/site-packag triton_heuristics.py:617] assert lhs.shape[-2].value >= min_dot_size[0] and lhs.shape[-1].va triton_heuristics.py:617] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ triton_heuristics.py:617] AssertionError: Input shapes should have M >= 16, N >= 16 and K >= 16 triton_heuristics.py:617] triton_heuristics.py:617] The above exception was the direct cause of the following exception: triton_heuristics.py:617] triton_heuristics.py:617] Traceback (most recent call last): triton_heuristics.py:617] File "/home/ryanguo99/pt/pytorch/torch/_inductor/runtime/triton_heur triton_heuristics.py:617] binary = triton.compile(*compile_args, **compile_kwargs) triton_heuristics.py:617] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ triton_heuristics.py:617] File "/home/ryanguo99/.conda/envs/comfyui/lib/python3.12/site-packag triton_heuristics.py:617] module = src.make_ir(options, codegen_fns, module_map, context) triton_heuristics.py:617] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ triton_heuristics.py:617] File "/home/ryanguo99/.conda/envs/comfyui/lib/python3.12/site-packag triton_heuristics.py:617] return ast_to_ttir(self.fn, self, context=context, options=options triton_heuristics.py:617] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ triton_heuristics.py:617] triton.compiler.errors.CompilationError: at 67:15: triton_heuristics.py:617] idx_m = offs_a_m[:, None] triton_heuristics.py:617] idx_n = a_k_idx_vals triton_heuristics.py:617] xindex = idx_n triton_heuristics.py:617] a = tl.load(A + (xindex)) triton_heuristics.py:617] triton_heuristics.py:617] idx_m = b_k_idx_vals triton_heuristics.py:617] idx_n = offs_b_n[None, :] triton_heuristics.py:617] xindex = idx_m + 3072*idx_n triton_heuristics.py:617] b = tl.load(B + (xindex)) triton_heuristics.py:617] triton_heuristics.py:617] triton_heuristics.py:617] acc += tl.dot(a, b, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE) ``` ### Error logs 1. tlparse: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpYZ7xEV/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 2. `TORCH_LOGS="+inductor" logs: P1785426785 3. pdb log: P1785426374 ### Versions main 1a1a32ce5af, python 3.12, triton 3.2.0 cc @chauhang @penguinwu
true
2,993,923,961
[CUDA][CUTLASS] CUTLASS 3.9 submodule upgrade
eqy
closed
[ "oncall: distributed", "module: cuda", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
COLLABORATOR
Originally authored by Jack Kosaian, likely needs #ifdefs if we want to preserve compat with 3.8 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @ptrblck @msaroufim @jerryzh168
true
2,993,914,917
test_store: fix timeout for test_queues
d4l3k
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing" ]
7
MEMBER
Fixes #151216, #151215 Previously I forgot to revert the timeout after setting it for the timeout test. To prevent this in the future I split the test into 3 different tests so timeout testing is isolated. Test plan: Stress tested ``` pytest test/distributed/test_store.py -k queue -v -s --minutes 10 ``` cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab
true
2,993,899,910
Actually support LOAD_BUILD_CLASS
williamwen42
open
[ "feature", "triaged", "oncall: pt2", "module: dynamo", "module: graph breaks" ]
0
MEMBER
Actually implement tracing rules for `LOAD_BUILD_CLASS`. Followup to https://github.com/pytorch/pytorch/issues/128942, which was patched with a better error message in https://github.com/pytorch/pytorch/pull/150323. cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @guilhermeleobas
true
2,993,867,757
[provenance_tracking] Add node mapping support for ExternKernel type
YUNQIUGUO
closed
[ "fb-exported", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
30
CONTRIBUTOR
Summary: As title. Support on other case for ExternKernel type Test Plan: Test tlparse link output: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmptwbYfX/dedicated_log_torch_trace_opt1ka7p.log/-_0_0_0/inductor_triton_kernel_to_post_grad_nodes_15.json?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 Complete tlparse output link for test: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmptwbYfX/dedicated_log_torch_trace_opt1ka7p.log/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,993,804,144
update visualizer with compare two schedules method
H-Huang
open
[ "oncall: distributed" ]
2
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151249 * #151248 * #150359 * #150347 cc @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,993,803,706
Add get_pipeline_order() for Gpipe and 1F1B
H-Huang
open
[ "oncall: distributed" ]
2
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151249 * __->__ #151248 * #150359 * #150347
true
2,993,753,907
[c10d][fr] Enable FR analysis script for rest of all coalesce op
fduwjj
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "suppress-api-compatibility-check", "suppress-bc-linter" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151238 * __->__ #151247 * #151243 We revisited how coalesced collective is working in https://github.com/pytorch/pytorch/pull/151243 and we now want to enable the script to work for slow path. The change is indeed bc-breaking but this is needed to make it work and the API is an internal use API. It is not user facing. For slow path the individual has input-sizes and output sizes recorded but no state. The final one has the state ready. We check the correctness of each individual collective one by one but we don't check the state match for these collectives, we can only check the state match for the last one which is the work item with coalesced label. Added more unit test for slow path. cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k
true
2,993,748,670
[MPSInductor] Cast halfs to floats
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150821 * __->__ #151246 * #151224 To avoid accuracy issues when small reductions are unrolled, cast half to float during the `load` op As `op_math_t<half>` is indeed float This fixes `test_unroll_small_reduction` for reduced precision types cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,993,741,862
[c10d][fr] Record each individual collective being coalesced
fduwjj
closed
[ "oncall: distributed", "release notes: distributed (c10d)" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151245 * #151244 cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k
true
2,993,741,772
[c10d][fr] Enable FR analysis script for all fast-path coalesce op
fduwjj
closed
[ "oncall: distributed", "topic: not user facing" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151245 * __->__ #151244 cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k
true
2,993,718,822
[c10d][fr] Enable FR analysis script for all fast-path coalesce op
fduwjj
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151238 * #151247 * __->__ #151243 This PR is to enable FR for all coalesce ops for fast path. (batch p2p is enabled in the current script, so we will mainly focus on non-P2P ops). To explain what is fast path, let's revisit how coalesced collective is working today: For non-P2P coalesced ops, there are are several ways to call it (due to legendary reasons): - Way one: Directly call python api like all_reduce_coalesced in python, this will be deprecated soon. - Way two: Directly call api inside PGNCCL like allreduce_coalesced. The way case 1 will eventually call into this. This is not deprecated and will not be deprecated, IIUC. - Way three: Using _coalescing_manager in python, like: ``` with _coalescing_manager(): for i in range(num_colls): dist.all_reduce(tensors[i]) ``` This way has two path: - Fast path: when users call all-reduce, all-gather-into-tensor or reduce-scatter, we will only launch one big collective by calling the api from case 1. - Slow path: we call startCoalescing() in the beginning and then a bunch of collectives (each one will generate a FR entry) and then endCoalescing(). Inside startCoalescing(), groupStart() is called and inside endCoalescing(), groupEnd() is then called. So although this is going to be one collective, we call into PGNCCL for each collective coalesced in the slow path case. - For uneven all-gather (allgather_v) and reduce-scatter, it follows the pattern mention in slow path. It directly call cpp api inside PGNCCL. This PR addressed the fast path because this is just an easy case, we store the collectives info on the python side, and we will only call into PGNCCL once so there will only be one work and one FR entry. We can just treat them as regular coalesced collective. We add some e2e unit test for build_db function so that the change to FR is more thoroughly tested. cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k
true
2,993,717,540
[dynamic shapes] bound_sympy for size-oblivious min/max reasoning
pianpwk
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Differential Revision: D72978020 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,993,711,825
[BE][1/2] Move original_weights_lookup attribute to constant
bbeckca
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: quantization", "fx", "release notes: AO frontend" ]
7
CONTRIBUTOR
Summary: As title. Cleaning usages by using global constant. Test Plan: `buck test 'fbcode//mode/opt' fbcode//caffe2/test:quantization_fx -- --exact 'caffe2/test:quantization_fx - test_keep_original_weights (quantization.fx.test_quantize_fx.TestQuantizeFx)'` Differential Revision: D72892815 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,993,709,224
[funcol] wait() breaks the chain for backwards
wconstab
open
[ "oncall: distributed", "triaged" ]
3
CONTRIBUTOR
As reported by @lw, and captured by this repro, the wait() operation appears to 'detach' its waited output tensor and prevent gradients from flowing during backwards. The result is that any upstream paramters will not receive the expected grads. ```python import torch import torch.distributed import torch.distributed.tensor.parallel torch.distributed.init_process_group(backend="nccl", rank=0, world_size=1, device_id=torch.device("cuda", 0), init_method="tcp://127.0.0.1:2743") device_mesh = torch.distributed.device_mesh.DeviceMesh.from_group(torch.distributed.group.WORLD, "cuda") emb = torch.nn.Embedding(128, 64).cuda() emb = torch.distributed.tensor.parallel.parallelize_module( emb, device_mesh, torch.distributed.tensor.parallel.RowwiseParallel() ) w = torch.randn(64, device="cuda", requires_grad=True) a = emb(torch.randint(0, 128, (1024,), device="cuda")) b = a.wait() c = b + w c.pow(2).sum().backward() print(f"{a.requires_grad=}") print(f"{b.requires_grad=}") print(f"{emb.weight.grad is None=}") print(f"{w.grad is None=}") # Output: # a.requires_grad=True # b.requires_grad=False # emb.weight.grad is None=True # w.grad is None=False ``` cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @d4l3k
true
2,993,692,229
[inductor][take 2] Change minimum number of SMs to 58 to let L4 Ada use Triton GEMM backend
henrylhtsang
closed
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148622 * __->__ #151239 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,993,689,827
[c10d][fr] Record each individual collective being coalesced
fduwjj
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151238 * #151247 * #151243 During the record of FR for coalesced collectives we are not consistent. For P2P ops, we log individual collectives into FR but for non-p2p ops, we don't do that. This PR is trying to make non-P2P also log individual collective into FR so that we can use script to check correctness of ops for each one of collectives coalesced. Also the added unit test also address the unit test ask in the comment in https://github.com/pytorch/pytorch/pull/150863?fbclid=IwZXh0bgNhZW0CMTEAAR4a5Rd_JyJlrbKZcacbIv5WX5b4MqBRNn0hpgl-VTSD0eeXRlPZ9Ty_CPOYhQ_aem_ALEG1ibRajwie-rn1B4n5w#pullrequestreview-2751254224. cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k
true
2,993,689,389
[inductor][take 2] Change minimum number of SMs to 58 to let L4 Ada use Triton GEMM backend
henrylhtsang
closed
[ "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * (to be filled) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true