id
stringlengths 14
15
| text
stringlengths 13
2.7k
| source
stringlengths 60
181
|
---|---|---|
49296d880c7b-3
|
updated_at field is at least this time.
Raises
ValueError – If the length of keys doesn’t match the length of group_ids.
|
https://api.python.langchain.com/en/latest/indexes/langchain_community.indexes.base.RecordManager.html
|
9397ccbf9bee-0
|
langchain.indexes.graph.GraphIndexCreator¶
class langchain.indexes.graph.GraphIndexCreator[source]¶
Bases: BaseModel
Functionality to create graph index.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param graph_type: Type[langchain_community.graphs.networkx_graph.NetworkxEntityGraph] = <class 'langchain_community.graphs.networkx_graph.NetworkxEntityGraph'>¶
param llm: Optional[langchain_core.language_models.base.BaseLanguageModel] = None¶
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.graph.GraphIndexCreator.html
|
9397ccbf9bee-1
|
param llm: Optional[langchain_core.language_models.base.BaseLanguageModel] = None¶
async afrom_text(text: str, prompt: BasePromptTemplate = PromptTemplate(input_variables=['text'], template="You are a networked intelligence helping a human track knowledge triples about all relevant people, things, concepts, etc. and integrating them with your knowledge stored within your weights as well as that stored in a knowledge graph. Extract all of the knowledge triples from the text. A knowledge triple is a clause that contains a subject, a predicate, and an object. The subject is the entity being described, the predicate is the property of the subject that is being described, and the object is the value of the property.\n\nEXAMPLE\nIt's a state in the US. It's also the number 1 producer of gold in the US.\n\nOutput: (Nevada, is a, state)<|>(Nevada, is in, US)<|>(Nevada, is the number 1 producer of, gold)\nEND OF EXAMPLE\n\nEXAMPLE\nI'm going to the store.\n\nOutput: NONE\nEND OF EXAMPLE\n\nEXAMPLE\nOh huh. I know Descartes likes to drive antique scooters and play the mandolin.\nOutput: (Descartes, likes to drive, antique scooters)<|>(Descartes, plays, mandolin)\nEND OF EXAMPLE\n\nEXAMPLE\n{text}Output:")) → NetworkxEntityGraph[source]¶
Create graph index from text asynchronously.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.graph.GraphIndexCreator.html
|
9397ccbf9bee-2
|
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.graph.GraphIndexCreator.html
|
9397ccbf9bee-3
|
classmethod from_orm(obj: Any) → Model¶
from_text(text: str, prompt: BasePromptTemplate = PromptTemplate(input_variables=['text'], template="You are a networked intelligence helping a human track knowledge triples about all relevant people, things, concepts, etc. and integrating them with your knowledge stored within your weights as well as that stored in a knowledge graph. Extract all of the knowledge triples from the text. A knowledge triple is a clause that contains a subject, a predicate, and an object. The subject is the entity being described, the predicate is the property of the subject that is being described, and the object is the value of the property.\n\nEXAMPLE\nIt's a state in the US. It's also the number 1 producer of gold in the US.\n\nOutput: (Nevada, is a, state)<|>(Nevada, is in, US)<|>(Nevada, is the number 1 producer of, gold)\nEND OF EXAMPLE\n\nEXAMPLE\nI'm going to the store.\n\nOutput: NONE\nEND OF EXAMPLE\n\nEXAMPLE\nOh huh. I know Descartes likes to drive antique scooters and play the mandolin.\nOutput: (Descartes, likes to drive, antique scooters)<|>(Descartes, plays, mandolin)\nEND OF EXAMPLE\n\nEXAMPLE\n{text}Output:")) → NetworkxEntityGraph[source]¶
Create graph index from text.
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.graph.GraphIndexCreator.html
|
9397ccbf9bee-4
|
Create graph index from text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using GraphIndexCreator¶
Graph QA
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.graph.GraphIndexCreator.html
|
114fe4d5008e-0
|
langchain.indexes.vectorstore.VectorStoreIndexWrapper¶
class langchain.indexes.vectorstore.VectorStoreIndexWrapper[source]¶
Bases: BaseModel
Wrapper around a vectorstore for easy access.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param vectorstore: langchain_core.vectorstores.VectorStore [Required]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.vectorstore.VectorStoreIndexWrapper.html
|
114fe4d5008e-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.vectorstore.VectorStoreIndexWrapper.html
|
114fe4d5008e-2
|
query(question: str, llm: Optional[BaseLanguageModel] = None, retriever_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Any) → str[source]¶
Query the vectorstore.
query_with_sources(question: str, llm: Optional[BaseLanguageModel] = None, retriever_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Any) → dict[source]¶
Query the vectorstore and get back sources.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.vectorstore.VectorStoreIndexWrapper.html
|
82040ac9ae8d-0
|
langchain_core.caches.BaseCache¶
class langchain_core.caches.BaseCache[source]¶
Base interface for cache.
Methods
__init__()
clear(**kwargs)
Clear cache that can take additional keyword arguments.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update cache based on prompt and llm_string.
__init__()¶
abstract clear(**kwargs: Any) → None[source]¶
Clear cache that can take additional keyword arguments.
abstract lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
abstract update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update cache based on prompt and llm_string.
|
https://api.python.langchain.com/en/latest/caches/langchain_core.caches.BaseCache.html
|
71392697cf89-0
|
langchain_community.chat_message_histories.sql.SQLChatMessageHistory¶
class langchain_community.chat_message_histories.sql.SQLChatMessageHistory(session_id: str, connection_string: str, table_name: str = 'message_store', session_id_field_name: str = 'session_id', custom_message_converter: Optional[BaseMessageConverter] = None)[source]¶
Chat message history stored in an SQL database.
Attributes
messages
Retrieve all messages from db
Methods
__init__(session_id, connection_string[, ...])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the record in db
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from db
__init__(session_id: str, connection_string: str, table_name: str = 'message_store', session_id_field_name: str = 'session_id', custom_message_converter: Optional[BaseMessageConverter] = None)[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the record in db
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from db
Examples using SQLChatMessageHistory¶
SQL Chat Message History
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.sql.SQLChatMessageHistory.html
|
3b2c0ab2adf3-0
|
langchain_community.chat_message_histories.sql.BaseMessageConverter¶
class langchain_community.chat_message_histories.sql.BaseMessageConverter[source]¶
The class responsible for converting BaseMessage to your SQLAlchemy model.
Methods
__init__()
from_sql_model(sql_message)
Convert a SQLAlchemy model to a BaseMessage instance.
get_sql_model_class()
Get the SQLAlchemy model class.
to_sql_model(message, session_id)
Convert a BaseMessage instance to a SQLAlchemy model.
__init__()¶
abstract from_sql_model(sql_message: Any) → BaseMessage[source]¶
Convert a SQLAlchemy model to a BaseMessage instance.
abstract get_sql_model_class() → Any[source]¶
Get the SQLAlchemy model class.
abstract to_sql_model(message: BaseMessage, session_id: str) → Any[source]¶
Convert a BaseMessage instance to a SQLAlchemy model.
Examples using BaseMessageConverter¶
SQL Chat Message History
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.sql.BaseMessageConverter.html
|
aba64062dd13-0
|
langchain_community.chat_message_histories.file.FileChatMessageHistory¶
class langchain_community.chat_message_histories.file.FileChatMessageHistory(file_path: str)[source]¶
Chat message history that stores history in a local file.
Parameters
file_path – path of the local file to store the messages.
Attributes
messages
Retrieve the messages from the local file
Methods
__init__(file_path)
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the record in the local file
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from the local file
__init__(file_path: str)[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the record in the local file
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from the local file
Examples using FileChatMessageHistory¶
AutoGPT
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.file.FileChatMessageHistory.html
|
a56246fc509a-0
|
langchain_community.chat_message_histories.postgres.PostgresChatMessageHistory¶
class langchain_community.chat_message_histories.postgres.PostgresChatMessageHistory(session_id: str, connection_string: str = 'postgresql://postgres:mypassword@localhost/chat_history', table_name: str = 'message_store')[source]¶
Chat message history stored in a Postgres database.
Attributes
messages
Retrieve the messages from PostgreSQL
Methods
__init__(session_id[, connection_string, ...])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the record in PostgreSQL
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from PostgreSQL
__init__(session_id: str, connection_string: str = 'postgresql://postgres:mypassword@localhost/chat_history', table_name: str = 'message_store')[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the record in PostgreSQL
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from PostgreSQL
Examples using PostgresChatMessageHistory¶
Postgres Chat Message History
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.postgres.PostgresChatMessageHistory.html
|
0ef3f02ef1f3-0
|
langchain_community.chat_message_histories.neo4j.Neo4jChatMessageHistory¶
class langchain_community.chat_message_histories.neo4j.Neo4jChatMessageHistory(session_id: Union[str, int], url: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, database: str = 'neo4j', node_label: str = 'Session', window: int = 3)[source]¶
Chat message history stored in a Neo4j database.
Attributes
messages
Retrieve the messages from Neo4j
Methods
__init__(session_id[, url, username, ...])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the record in Neo4j
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from Neo4j
__init__(session_id: Union[str, int], url: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, database: str = 'neo4j', node_label: str = 'Session', window: int = 3)[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the record in Neo4j
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from Neo4j
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.neo4j.Neo4jChatMessageHistory.html
|
8c65ca8b9e7c-0
|
langchain_community.chat_message_histories.rocksetdb.RocksetChatMessageHistory¶
class langchain_community.chat_message_histories.rocksetdb.RocksetChatMessageHistory(session_id: str, client: ~typing.Any, collection: str, workspace: str = 'commons', messages_key: str = 'messages', sync: bool = False, message_uuid_method: ~typing.Callable[[], ~typing.Union[str, int]] = <function RocksetChatMessageHistory.<lambda>>)[source]¶
Uses Rockset to store chat messages.
To use, ensure that the rockset python package installed.
Example
from langchain_community.chat_message_histories import (
RocksetChatMessageHistory
)
from rockset import RocksetClient
history = RocksetChatMessageHistory(
session_id="MySession",
client=RocksetClient(),
collection="langchain_demo",
sync=True
)
history.add_user_message("hi!")
history.add_ai_message("whats up?")
print(history.messages)
Constructs a new RocksetChatMessageHistory.
Parameters
session_id (-) – The ID of the chat session
client (-) – The RocksetClient object to use to query
collection (-) – The name of the collection to use to store chat
messages. If a collection with the given name
does not exist in the workspace, it is created.
workspace (-) – The workspace containing collection. Defaults
to “commons”
messages_key (-) – The DB column containing message history.
Defaults to “messages”
sync (-) – Whether to wait for messages to be added. Defaults
to False. NOTE: setting this to True will slow
down performance.
message_uuid_method (-) – The method that generates message IDs.
If set, all messages will have an id field within the
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.rocksetdb.RocksetChatMessageHistory.html
|
8c65ca8b9e7c-1
|
If set, all messages will have an id field within the
additional_kwargs property. If this param is not set
and sync is False, message IDs will not be created.
If this param is not set and sync is True, the
uuid.uuid4 method will be used to create message IDs.
Attributes
ADD_TIMEOUT_MS
CREATE_TIMEOUT_MS
SLEEP_INTERVAL_MS
messages
Messages in this chat history.
Methods
__init__(session_id, client, collection[, ...])
Constructs a new RocksetChatMessageHistory.
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Add a Message object to the history.
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Removes all messages from the chat history
__init__(session_id: str, client: ~typing.Any, collection: str, workspace: str = 'commons', messages_key: str = 'messages', sync: bool = False, message_uuid_method: ~typing.Callable[[], ~typing.Union[str, int]] = <function RocksetChatMessageHistory.<lambda>>) → None[source]¶
Constructs a new RocksetChatMessageHistory.
Parameters
session_id (-) – The ID of the chat session
client (-) – The RocksetClient object to use to query
collection (-) – The name of the collection to use to store chat
messages. If a collection with the given name
does not exist in the workspace, it is created.
workspace (-) – The workspace containing collection. Defaults
to “commons”
messages_key (-) – The DB column containing message history.
Defaults to “messages”
sync (-) – Whether to wait for messages to be added. Defaults
to False. NOTE: setting this to True will slow
down performance.
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.rocksetdb.RocksetChatMessageHistory.html
|
8c65ca8b9e7c-2
|
to False. NOTE: setting this to True will slow
down performance.
message_uuid_method (-) – The method that generates message IDs.
If set, all messages will have an id field within the
additional_kwargs property. If this param is not set
and sync is False, message IDs will not be created.
If this param is not set and sync is True, the
uuid.uuid4 method will be used to create message IDs.
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Add a Message object to the history.
Parameters
message – A BaseMessage object to store.
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Removes all messages from the chat history
Examples using RocksetChatMessageHistory¶
Rockset Chat Message History
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.rocksetdb.RocksetChatMessageHistory.html
|
0b5c4d91e42c-0
|
langchain_community.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory¶
class langchain_community.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory(cosmos_endpoint: str, cosmos_database: str, cosmos_container: str, session_id: str, user_id: str, credential: Any = None, connection_string: Optional[str] = None, ttl: Optional[int] = None, cosmos_client_kwargs: Optional[dict] = None)[source]¶
Chat message history backed by Azure CosmosDB.
Initializes a new instance of the CosmosDBChatMessageHistory class.
Make sure to call prepare_cosmos or use the context manager to make
sure your database is ready.
Either a credential or a connection string must be provided.
Parameters
cosmos_endpoint – The connection endpoint for the Azure Cosmos DB account.
cosmos_database – The name of the database to use.
cosmos_container – The name of the container to use.
session_id – The session ID to use, can be overwritten while loading.
user_id – The user ID to use, can be overwritten while loading.
credential – The credential to use to authenticate to Azure Cosmos DB.
connection_string – The connection string to use to authenticate.
ttl – The time to live (in seconds) to use for documents in the container.
cosmos_client_kwargs – Additional kwargs to pass to the CosmosClient.
Attributes
messages
A list of Messages stored in-memory.
Methods
__init__(cosmos_endpoint, cosmos_database, ...)
Initializes a new instance of the CosmosDBChatMessageHistory class.
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Add a self-created message to the store
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory.html
|
0b5c4d91e42c-1
|
Convenience method for adding a human message string to the store.
clear()
Clear session memory from this memory and cosmos.
load_messages()
Retrieve the messages from Cosmos
prepare_cosmos()
Prepare the CosmosDB client.
upsert_messages()
Update the cosmosdb item.
__init__(cosmos_endpoint: str, cosmos_database: str, cosmos_container: str, session_id: str, user_id: str, credential: Any = None, connection_string: Optional[str] = None, ttl: Optional[int] = None, cosmos_client_kwargs: Optional[dict] = None)[source]¶
Initializes a new instance of the CosmosDBChatMessageHistory class.
Make sure to call prepare_cosmos or use the context manager to make
sure your database is ready.
Either a credential or a connection string must be provided.
Parameters
cosmos_endpoint – The connection endpoint for the Azure Cosmos DB account.
cosmos_database – The name of the database to use.
cosmos_container – The name of the container to use.
session_id – The session ID to use, can be overwritten while loading.
user_id – The user ID to use, can be overwritten while loading.
credential – The credential to use to authenticate to Azure Cosmos DB.
connection_string – The connection string to use to authenticate.
ttl – The time to live (in seconds) to use for documents in the container.
cosmos_client_kwargs – Additional kwargs to pass to the CosmosClient.
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Add a self-created message to the store
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory.html
|
0b5c4d91e42c-2
|
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from this memory and cosmos.
load_messages() → None[source]¶
Retrieve the messages from Cosmos
prepare_cosmos() → None[source]¶
Prepare the CosmosDB client.
Use this function or the context manager to make sure your database is ready.
upsert_messages() → None[source]¶
Update the cosmosdb item.
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory.html
|
742f84c58215-0
|
langchain_community.chat_message_histories.zep.ZepChatMessageHistory¶
class langchain_community.chat_message_histories.zep.ZepChatMessageHistory(session_id: str, url: str = 'http://localhost:8000', api_key: Optional[str] = None)[source]¶
Chat message history that uses Zep as a backend.
Recommended usage:
# Set up Zep Chat History
zep_chat_history = ZepChatMessageHistory(
session_id=session_id,
url=ZEP_API_URL,
api_key=<your_api_key>,
)
# Use a standard ConversationBufferMemory to encapsulate the Zep chat history
memory = ConversationBufferMemory(
memory_key="chat_history", chat_memory=zep_chat_history
)
Zep provides long-term conversation storage for LLM apps. The server stores,
summarizes, embeds, indexes, and enriches conversational AI chat
histories, and exposes them via simple, low-latency APIs.
For server installation instructions and more, see:
https://docs.getzep.com/deployment/quickstart/
This class is a thin wrapper around the zep-python package. Additional
Zep functionality is exposed via the zep_summary and zep_messages
properties.
For more information on the zep-python package, see:
https://github.com/getzep/zep-python
Attributes
messages
Retrieve messages from Zep memory
zep_messages
Retrieve summary from Zep memory
zep_summary
Retrieve summary from Zep memory
Methods
__init__(session_id[, url, api_key])
add_ai_message(message[, metadata])
Convenience method for adding an AI message string to the store.
add_message(message[, metadata])
Append the message to the Zep memory history
add_user_message(message[, metadata])
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.zep.ZepChatMessageHistory.html
|
742f84c58215-1
|
Append the message to the Zep memory history
add_user_message(message[, metadata])
Convenience method for adding a human message string to the store.
clear()
Clear session memory from Zep.
search(query[, metadata, limit])
Search Zep memory for messages matching the query
__init__(session_id: str, url: str = 'http://localhost:8000', api_key: Optional[str] = None) → None[source]¶
add_ai_message(message: str, metadata: Optional[Dict[str, Any]] = None) → None[source]¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
metadata – Optional metadata to attach to the message.
add_message(message: BaseMessage, metadata: Optional[Dict[str, Any]] = None) → None[source]¶
Append the message to the Zep memory history
add_user_message(message: str, metadata: Optional[Dict[str, Any]] = None) → None[source]¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
metadata – Optional metadata to attach to the message.
clear() → None[source]¶
Clear session memory from Zep. Note that Zep is long-term storage for memory
and this is not advised unless you have specific data retention requirements.
search(query: str, metadata: Optional[Dict] = None, limit: Optional[int] = None) → List[MemorySearchResult][source]¶
Search Zep memory for messages matching the query
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.zep.ZepChatMessageHistory.html
|
4db3c4276b9d-0
|
langchain_community.chat_message_histories.in_memory.ChatMessageHistory¶
class langchain_community.chat_message_histories.in_memory.ChatMessageHistory[source]¶
Bases: BaseChatMessageHistory, BaseModel
In memory implementation of chat message history.
Stores messages in an in memory list.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param messages: List[langchain_core.messages.base.BaseMessage] [Optional]¶
A list of Messages stored in-memory.
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Add a self-created message to the store
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Remove all messages from the store
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.in_memory.ChatMessageHistory.html
|
4db3c4276b9d-1
|
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.in_memory.ChatMessageHistory.html
|
4db3c4276b9d-2
|
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using ChatMessageHistory¶
Message Memory in Agent backed by a database
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.in_memory.ChatMessageHistory.html
|
6b1347999af3-0
|
langchain_community.chat_message_histories.redis.RedisChatMessageHistory¶
class langchain_community.chat_message_histories.redis.RedisChatMessageHistory(session_id: str, url: str = 'redis://localhost:6379/0', key_prefix: str = 'message_store:', ttl: Optional[int] = None)[source]¶
Chat message history stored in a Redis database.
Attributes
key
Construct the record key to use
messages
Retrieve the messages from Redis
Methods
__init__(session_id[, url, key_prefix, ttl])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the record in Redis
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from Redis
__init__(session_id: str, url: str = 'redis://localhost:6379/0', key_prefix: str = 'message_store:', ttl: Optional[int] = None)[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the record in Redis
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from Redis
Examples using RedisChatMessageHistory¶
Redis Chat Message History
Message Memory in Agent backed by a database
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.redis.RedisChatMessageHistory.html
|
5d010c539536-0
|
langchain_community.chat_message_histories.dynamodb.DynamoDBChatMessageHistory¶
class langchain_community.chat_message_histories.dynamodb.DynamoDBChatMessageHistory(table_name: str, session_id: str, endpoint_url: Optional[str] = None, primary_key_name: str = 'SessionId', key: Optional[Dict[str, str]] = None, boto3_session: Optional[Session] = None, kms_key_id: Optional[str] = None)[source]¶
Chat message history that stores history in AWS DynamoDB.
This class expects that a DynamoDB table exists with name table_name
Parameters
table_name – name of the DynamoDB table
session_id – arbitrary key that is used to store the messages
of a single chat session.
endpoint_url – URL of the AWS endpoint to connect to. This argument
is optional and useful for test purposes, like using Localstack.
If you plan to use AWS cloud service, you normally don’t have to
worry about setting the endpoint_url.
primary_key_name – name of the primary key of the DynamoDB table. This argument
is optional, defaulting to “SessionId”.
key – an optional dictionary with a custom primary and secondary key.
This argument is optional, but useful when using composite dynamodb keys, or
isolating records based off of application details such as a user id.
This may also contain global and local secondary index keys.
kms_key_id – an optional AWS KMS Key ID, AWS KMS Key ARN, or AWS KMS Alias for
client-side encryption
Attributes
messages
Retrieve the messages from DynamoDB
Methods
__init__(table_name, session_id[, ...])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the record in DynamoDB
add_user_message(message)
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.dynamodb.DynamoDBChatMessageHistory.html
|
5d010c539536-1
|
Append the message to the record in DynamoDB
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from DynamoDB
__init__(table_name: str, session_id: str, endpoint_url: Optional[str] = None, primary_key_name: str = 'SessionId', key: Optional[Dict[str, str]] = None, boto3_session: Optional[Session] = None, kms_key_id: Optional[str] = None)[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the record in DynamoDB
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from DynamoDB
Examples using DynamoDBChatMessageHistory¶
Dynamodb Chat Message History
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.dynamodb.DynamoDBChatMessageHistory.html
|
e24f8d1797d7-0
|
langchain_community.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory¶
class langchain_community.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory(session_id: str, url: str = '', token: str = '', key_prefix: str = 'message_store:', ttl: Optional[int] = None)[source]¶
Chat message history stored in an Upstash Redis database.
Attributes
key
Construct the record key to use
messages
Retrieve the messages from Upstash Redis
Methods
__init__(session_id[, url, token, ...])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the record in Upstash Redis
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from Upstash Redis
__init__(session_id: str, url: str = '', token: str = '', key_prefix: str = 'message_store:', ttl: Optional[int] = None)[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the record in Upstash Redis
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from Upstash Redis
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory.html
|
b1933275d4e9-0
|
langchain_community.chat_message_histories.momento.MomentoChatMessageHistory¶
class langchain_community.chat_message_histories.momento.MomentoChatMessageHistory(session_id: str, cache_client: momento.CacheClient, cache_name: str, *, key_prefix: str = 'message_store:', ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True)[source]¶
Chat message history cache that uses Momento as a backend.
See https://gomomento.com/
Instantiate a chat message history cache that uses Momento as a backend.
Note: to instantiate the cache client passed to MomentoChatMessageHistory,
you must have a Momento account at https://gomomento.com/.
Parameters
session_id (str) – The session ID to use for this chat session.
cache_client (CacheClient) – The Momento cache client.
cache_name (str) – The name of the cache to use to store the messages.
key_prefix (str, optional) – The prefix to apply to the cache key.
Defaults to “message_store:”.
ttl (Optional[timedelta], optional) – The TTL to use for the messages.
Defaults to None, ie the default TTL of the cache will be used.
ensure_cache_exists (bool, optional) – Create the cache if it doesn’t exist.
Defaults to True.
Raises
ImportError – Momento python package is not installed.
TypeError – cache_client is not of type momento.CacheClientObject
Attributes
messages
Retrieve the messages from Momento.
Methods
__init__(session_id, cache_client, cache_name, *)
Instantiate a chat message history cache that uses Momento as a backend.
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Store a message in the cache.
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.momento.MomentoChatMessageHistory.html
|
b1933275d4e9-1
|
add_message(message)
Store a message in the cache.
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Remove the session's messages from the cache.
from_client_params(session_id, cache_name, ...)
Construct cache from CacheClient parameters.
__init__(session_id: str, cache_client: momento.CacheClient, cache_name: str, *, key_prefix: str = 'message_store:', ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True)[source]¶
Instantiate a chat message history cache that uses Momento as a backend.
Note: to instantiate the cache client passed to MomentoChatMessageHistory,
you must have a Momento account at https://gomomento.com/.
Parameters
session_id (str) – The session ID to use for this chat session.
cache_client (CacheClient) – The Momento cache client.
cache_name (str) – The name of the cache to use to store the messages.
key_prefix (str, optional) – The prefix to apply to the cache key.
Defaults to “message_store:”.
ttl (Optional[timedelta], optional) – The TTL to use for the messages.
Defaults to None, ie the default TTL of the cache will be used.
ensure_cache_exists (bool, optional) – Create the cache if it doesn’t exist.
Defaults to True.
Raises
ImportError – Momento python package is not installed.
TypeError – cache_client is not of type momento.CacheClientObject
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Store a message in the cache.
Parameters
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.momento.MomentoChatMessageHistory.html
|
b1933275d4e9-2
|
Store a message in the cache.
Parameters
message (BaseMessage) – The message object to store.
Raises
SdkException – Momento service or network error.
Exception – Unexpected response.
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Remove the session’s messages from the cache.
Raises
SdkException – Momento service or network error.
Exception – Unexpected response.
classmethod from_client_params(session_id: str, cache_name: str, ttl: timedelta, *, configuration: Optional[momento.config.Configuration] = None, api_key: Optional[str] = None, auth_token: Optional[str] = None, **kwargs: Any) → MomentoChatMessageHistory[source]¶
Construct cache from CacheClient parameters.
Examples using MomentoChatMessageHistory¶
Momento Chat Message History
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.momento.MomentoChatMessageHistory.html
|
f86739c7d112-0
|
langchain_community.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory¶
class langchain_community.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory(index: str, session_id: str, *, es_connection: Optional[Elasticsearch] = None, es_url: Optional[str] = None, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_api_key: Optional[str] = None, es_password: Optional[str] = None)[source]¶
Chat message history that stores history in Elasticsearch.
Parameters
es_url – URL of the Elasticsearch instance to connect to.
es_cloud_id – Cloud ID of the Elasticsearch instance to connect to.
es_user – Username to use when connecting to Elasticsearch.
es_password – Password to use when connecting to Elasticsearch.
es_api_key – API key to use when connecting to Elasticsearch.
es_connection – Optional pre-existing Elasticsearch connection.
index – Name of the index to use.
session_id – Arbitrary key that is used to store the messages
of a single chat session.
Attributes
messages
Retrieve the messages from Elasticsearch
Methods
__init__(index, session_id, *[, ...])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Add a message to the chat session in Elasticsearch
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory in Elasticsearch
connect_to_elasticsearch(*[, es_url, ...])
get_user_agent()
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory.html
|
f86739c7d112-1
|
connect_to_elasticsearch(*[, es_url, ...])
get_user_agent()
__init__(index: str, session_id: str, *, es_connection: Optional[Elasticsearch] = None, es_url: Optional[str] = None, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_api_key: Optional[str] = None, es_password: Optional[str] = None)[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Add a message to the chat session in Elasticsearch
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory in Elasticsearch
static connect_to_elasticsearch(*, es_url: Optional[str] = None, cloud_id: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None) → Elasticsearch[source]¶
static get_user_agent() → str[source]¶
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory.html
|
faf7c56ee843-0
|
langchain_community.chat_message_histories.cassandra.CassandraChatMessageHistory¶
class langchain_community.chat_message_histories.cassandra.CassandraChatMessageHistory(session_id: str, session: Session, keyspace: str, table_name: str = 'message_store', ttl_seconds: Optional[int] = None)[source]¶
Chat message history that stores history in Cassandra.
Parameters
session_id – arbitrary key that is used to store the messages
of a single chat session.
session – a Cassandra Session object (an open DB connection)
keyspace – name of the keyspace to use.
table_name – name of the table to use.
ttl_seconds – time-to-live (seconds) for automatic expiration
of stored entries. None (default) for no expiration.
Attributes
messages
Retrieve all session messages from DB
Methods
__init__(session_id, session, keyspace[, ...])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Write a message to the table
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from DB
__init__(session_id: str, session: Session, keyspace: str, table_name: str = 'message_store', ttl_seconds: Optional[int] = None) → None[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Write a message to the table
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.cassandra.CassandraChatMessageHistory.html
|
faf7c56ee843-1
|
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from DB
Examples using CassandraChatMessageHistory¶
Cassandra Chat Message History
Cassandra
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.cassandra.CassandraChatMessageHistory.html
|
01598b519659-0
|
langchain_community.chat_message_histories.sql.create_message_model¶
langchain_community.chat_message_histories.sql.create_message_model(table_name, DynamicBase)[source]¶
Create a message model for a given table name.
Parameters
table_name – The name of the table to use.
DynamicBase – The base class to use for the model.
Returns
The model class.
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.sql.create_message_model.html
|
1100961c5b9f-0
|
langchain_community.chat_message_histories.sql.DefaultMessageConverter¶
class langchain_community.chat_message_histories.sql.DefaultMessageConverter(table_name: str)[source]¶
The default message converter for SQLChatMessageHistory.
Methods
__init__(table_name)
from_sql_model(sql_message)
Convert a SQLAlchemy model to a BaseMessage instance.
get_sql_model_class()
Get the SQLAlchemy model class.
to_sql_model(message, session_id)
Convert a BaseMessage instance to a SQLAlchemy model.
__init__(table_name: str)[source]¶
from_sql_model(sql_message: Any) → BaseMessage[source]¶
Convert a SQLAlchemy model to a BaseMessage instance.
get_sql_model_class() → Any[source]¶
Get the SQLAlchemy model class.
to_sql_model(message: BaseMessage, session_id: str) → Any[source]¶
Convert a BaseMessage instance to a SQLAlchemy model.
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.sql.DefaultMessageConverter.html
|
b44676bdd4b0-0
|
langchain_community.chat_message_histories.streamlit.StreamlitChatMessageHistory¶
class langchain_community.chat_message_histories.streamlit.StreamlitChatMessageHistory(key: str = 'langchain_messages')[source]¶
Chat message history that stores messages in Streamlit session state.
Parameters
key – The key to use in Streamlit session state for storing messages.
Attributes
messages
Retrieve the current list of messages
Methods
__init__([key])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Add a message to the session memory
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory
__init__(key: str = 'langchain_messages')[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Add a message to the session memory
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory
Examples using StreamlitChatMessageHistory¶
Streamlit Chat Message History
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.streamlit.StreamlitChatMessageHistory.html
|
410d4c1d23eb-0
|
langchain_community.chat_message_histories.astradb.AstraDBChatMessageHistory¶
class langchain_community.chat_message_histories.astradb.AstraDBChatMessageHistory(*, session_id: str, collection_name: str = 'langchain_message_store', token: Optional[str] = None, api_endpoint: Optional[str] = None, astra_db_client: Optional[LibAstraDB] = None, namespace: Optional[str] = None)[source]¶
Chat message history that stores history in Astra DB.
Args (only keyword-arguments accepted):
session_id: arbitrary key that is used to store the messagesof a single chat session.
collection_name (str): name of the Astra DB collection to create/use.
token (Optional[str]): API token for Astra DB usage.
api_endpoint (Optional[str]): full URL to the API endpoint,
such as “https://<DB-ID>-us-east1.apps.astra.datastax.com”.
astra_db_client (Optional[Any]): alternative to token+api_endpoint,you can pass an already-created ‘astrapy.db.AstraDB’ instance.
namespace (Optional[str]): namespace (aka keyspace) where thecollection is created. Defaults to the database’s “default namespace”.
Create an Astra DB chat message history.
Attributes
messages
Retrieve all session messages from DB
Methods
__init__(*, session_id[, collection_name, ...])
Create an Astra DB chat message history.
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Write a message to the table
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from DB
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.astradb.AstraDBChatMessageHistory.html
|
410d4c1d23eb-1
|
clear()
Clear session memory from DB
__init__(*, session_id: str, collection_name: str = 'langchain_message_store', token: Optional[str] = None, api_endpoint: Optional[str] = None, astra_db_client: Optional[LibAstraDB] = None, namespace: Optional[str] = None) → None[source]¶
Create an Astra DB chat message history.
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Write a message to the table
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from DB
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.astradb.AstraDBChatMessageHistory.html
|
f449802395d3-0
|
langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory¶
class langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory(session_id: str, *, table_name: str = 'message_store', id_field: str = 'id', session_id_field: str = 'session_id', message_field: str = 'message', pool_size: int = 5, max_overflow: int = 10, timeout: float = 30, **kwargs: Any)[source]¶
Chat message history stored in a SingleStoreDB database.
Initialize with necessary components.
Parameters
table_name (str, optional) – Specifies the name of the table in use.
Defaults to “message_store”.
id_field (str, optional) – Specifies the name of the id field in the table.
Defaults to “id”.
session_id_field (str, optional) – Specifies the name of the session_id
field in the table. Defaults to “session_id”.
message_field (str, optional) – Specifies the name of the message field
in the table. Defaults to “message”.
pool (Following arguments pertain to the connection) –
pool_size (int, optional) – Determines the number of active connections in
the pool. Defaults to 5.
max_overflow (int, optional) – Determines the maximum number of connections
allowed beyond the pool_size. Defaults to 10.
timeout (float, optional) – Specifies the maximum wait time in seconds for
establishing a connection. Defaults to 30.
connection (database) –
host (str, optional) – Specifies the hostname, IP address, or URL for the
database connection. The default scheme is “mysql”.
user (str, optional) – Database username.
password (str, optional) – Database password.
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
|
f449802395d3-1
|
password (str, optional) – Database password.
port (int, optional) – Database port. Defaults to 3306 for non-HTTP
connections, 80 for HTTP connections, and 443 for HTTPS connections.
database (str, optional) – Database name.
the (Additional optional arguments provide further customization over) –
connection –
pure_python (bool, optional) – Toggles the connector mode. If True,
operates in pure Python mode.
local_infile (bool, optional) – Allows local file uploads.
charset (str, optional) – Specifies the character set for string values.
ssl_key (str, optional) – Specifies the path of the file containing the SSL
key.
ssl_cert (str, optional) – Specifies the path of the file containing the SSL
certificate.
ssl_ca (str, optional) – Specifies the path of the file containing the SSL
certificate authority.
ssl_cipher (str, optional) – Sets the SSL cipher list.
ssl_disabled (bool, optional) – Disables SSL usage.
ssl_verify_cert (bool, optional) – Verifies the server’s certificate.
Automatically enabled if ssl_ca is specified.
ssl_verify_identity (bool, optional) – Verifies the server’s identity.
conv (dict[int, Callable], optional) – A dictionary of data conversion
functions.
credential_type (str, optional) – Specifies the type of authentication to
use: auth.PASSWORD, auth.JWT, or auth.BROWSER_SSO.
autocommit (bool, optional) – Enables autocommits.
results_type (str, optional) – Determines the structure of the query results:
tuples, namedtuples, dicts.
results_format (str, optional) – Deprecated. This option has been renamed to
results_type.
Examples
Basic Usage:
from langchain_community.chat_message_histories import (
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
|
f449802395d3-2
|
Examples
Basic Usage:
from langchain_community.chat_message_histories import (
SingleStoreDBChatMessageHistory
)
message_history = SingleStoreDBChatMessageHistory(
session_id="my-session",
host="https://user:password@127.0.0.1:3306/database"
)
Advanced Usage:
from langchain_community.chat_message_histories import (
SingleStoreDBChatMessageHistory
)
message_history = SingleStoreDBChatMessageHistory(
session_id="my-session",
host="127.0.0.1",
port=3306,
user="user",
password="password",
database="db",
table_name="my_custom_table",
pool_size=10,
timeout=60,
)
Using environment variables:
from langchain_community.chat_message_histories import (
SingleStoreDBChatMessageHistory
)
os.environ['SINGLESTOREDB_URL'] = 'me:p455w0rd@s2-host.com/my_db'
message_history = SingleStoreDBChatMessageHistory("my-session")
Attributes
messages
Retrieve the messages from SingleStoreDB
Methods
__init__(session_id, *[, table_name, ...])
Initialize with necessary components.
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the record in SingleStoreDB
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from SingleStoreDB
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
|
f449802395d3-3
|
clear()
Clear session memory from SingleStoreDB
__init__(session_id: str, *, table_name: str = 'message_store', id_field: str = 'id', session_id_field: str = 'session_id', message_field: str = 'message', pool_size: int = 5, max_overflow: int = 10, timeout: float = 30, **kwargs: Any)[source]¶
Initialize with necessary components.
Parameters
table_name (str, optional) – Specifies the name of the table in use.
Defaults to “message_store”.
id_field (str, optional) – Specifies the name of the id field in the table.
Defaults to “id”.
session_id_field (str, optional) – Specifies the name of the session_id
field in the table. Defaults to “session_id”.
message_field (str, optional) – Specifies the name of the message field
in the table. Defaults to “message”.
pool (Following arguments pertain to the connection) –
pool_size (int, optional) – Determines the number of active connections in
the pool. Defaults to 5.
max_overflow (int, optional) – Determines the maximum number of connections
allowed beyond the pool_size. Defaults to 10.
timeout (float, optional) – Specifies the maximum wait time in seconds for
establishing a connection. Defaults to 30.
connection (database) –
host (str, optional) – Specifies the hostname, IP address, or URL for the
database connection. The default scheme is “mysql”.
user (str, optional) – Database username.
password (str, optional) – Database password.
port (int, optional) – Database port. Defaults to 3306 for non-HTTP
connections, 80 for HTTP connections, and 443 for HTTPS connections.
database (str, optional) – Database name.
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
|
f449802395d3-4
|
database (str, optional) – Database name.
the (Additional optional arguments provide further customization over) –
connection –
pure_python (bool, optional) – Toggles the connector mode. If True,
operates in pure Python mode.
local_infile (bool, optional) – Allows local file uploads.
charset (str, optional) – Specifies the character set for string values.
ssl_key (str, optional) – Specifies the path of the file containing the SSL
key.
ssl_cert (str, optional) – Specifies the path of the file containing the SSL
certificate.
ssl_ca (str, optional) – Specifies the path of the file containing the SSL
certificate authority.
ssl_cipher (str, optional) – Sets the SSL cipher list.
ssl_disabled (bool, optional) – Disables SSL usage.
ssl_verify_cert (bool, optional) – Verifies the server’s certificate.
Automatically enabled if ssl_ca is specified.
ssl_verify_identity (bool, optional) – Verifies the server’s identity.
conv (dict[int, Callable], optional) – A dictionary of data conversion
functions.
credential_type (str, optional) – Specifies the type of authentication to
use: auth.PASSWORD, auth.JWT, or auth.BROWSER_SSO.
autocommit (bool, optional) – Enables autocommits.
results_type (str, optional) – Determines the structure of the query results:
tuples, namedtuples, dicts.
results_format (str, optional) – Deprecated. This option has been renamed to
results_type.
Examples
Basic Usage:
from langchain_community.chat_message_histories import (
SingleStoreDBChatMessageHistory
)
message_history = SingleStoreDBChatMessageHistory(
session_id="my-session",
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
|
f449802395d3-5
|
message_history = SingleStoreDBChatMessageHistory(
session_id="my-session",
host="https://user:password@127.0.0.1:3306/database"
)
Advanced Usage:
from langchain_community.chat_message_histories import (
SingleStoreDBChatMessageHistory
)
message_history = SingleStoreDBChatMessageHistory(
session_id="my-session",
host="127.0.0.1",
port=3306,
user="user",
password="password",
database="db",
table_name="my_custom_table",
pool_size=10,
timeout=60,
)
Using environment variables:
from langchain_community.chat_message_histories import (
SingleStoreDBChatMessageHistory
)
os.environ['SINGLESTOREDB_URL'] = 'me:p455w0rd@s2-host.com/my_db'
message_history = SingleStoreDBChatMessageHistory("my-session")
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the record in SingleStoreDB
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from SingleStoreDB
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory.html
|
6eaf9b68f242-0
|
langchain_community.chat_message_histories.xata.XataChatMessageHistory¶
class langchain_community.chat_message_histories.xata.XataChatMessageHistory(session_id: str, db_url: str, api_key: str, branch_name: str = 'main', table_name: str = 'messages', create_table: bool = True)[source]¶
Chat message history stored in a Xata database.
Initialize with Xata client.
Attributes
messages
Methods
__init__(session_id, db_url, api_key[, ...])
Initialize with Xata client.
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the Xata table
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Delete session from Xata table.
__init__(session_id: str, db_url: str, api_key: str, branch_name: str = 'main', table_name: str = 'messages', create_table: bool = True) → None[source]¶
Initialize with Xata client.
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the Xata table
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Delete session from Xata table.
Examples using XataChatMessageHistory¶
Xata chat memory
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.xata.XataChatMessageHistory.html
|
4015b56b1fa3-0
|
langchain_community.chat_message_histories.firestore.FirestoreChatMessageHistory¶
class langchain_community.chat_message_histories.firestore.FirestoreChatMessageHistory(collection_name: str, session_id: str, user_id: str, firestore_client: Optional[Client] = None)[source]¶
Chat message history backed by Google Firestore.
Initialize a new instance of the FirestoreChatMessageHistory class.
Parameters
collection_name – The name of the collection to use.
session_id – The session ID for the chat..
user_id – The user ID for the chat.
Attributes
messages
A list of Messages stored in-memory.
Methods
__init__(collection_name, session_id, user_id)
Initialize a new instance of the FirestoreChatMessageHistory class.
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Add a Message object to the store.
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from this memory and Firestore.
load_messages()
Retrieve the messages from Firestore
prepare_firestore()
Prepare the Firestore client.
upsert_messages([new_message])
Update the Firestore document.
__init__(collection_name: str, session_id: str, user_id: str, firestore_client: Optional[Client] = None)[source]¶
Initialize a new instance of the FirestoreChatMessageHistory class.
Parameters
collection_name – The name of the collection to use.
session_id – The session ID for the chat..
user_id – The user ID for the chat.
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Add a Message object to the store.
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.firestore.FirestoreChatMessageHistory.html
|
4015b56b1fa3-1
|
Add a Message object to the store.
Parameters
message – A BaseMessage object to store.
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from this memory and Firestore.
load_messages() → None[source]¶
Retrieve the messages from Firestore
prepare_firestore() → None[source]¶
Prepare the Firestore client.
Use this function to make sure your database is ready.
upsert_messages(new_message: Optional[BaseMessage] = None) → None[source]¶
Update the Firestore document.
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.firestore.FirestoreChatMessageHistory.html
|
d65891574857-0
|
langchain_community.chat_message_histories.mongodb.MongoDBChatMessageHistory¶
class langchain_community.chat_message_histories.mongodb.MongoDBChatMessageHistory(connection_string: str, session_id: str, database_name: str = 'chat_history', collection_name: str = 'message_store')[source]¶
Chat message history that stores history in MongoDB.
Parameters
connection_string – connection string to connect to MongoDB
session_id – arbitrary key that is used to store the messages
of a single chat session.
database_name – name of the database to use
collection_name – name of the collection to use
Attributes
messages
Retrieve the messages from MongoDB
Methods
__init__(connection_string, session_id[, ...])
add_ai_message(message)
Convenience method for adding an AI message string to the store.
add_message(message)
Append the message to the record in MongoDB
add_user_message(message)
Convenience method for adding a human message string to the store.
clear()
Clear session memory from MongoDB
__init__(connection_string: str, session_id: str, database_name: str = 'chat_history', collection_name: str = 'message_store')[source]¶
add_ai_message(message: str) → None¶
Convenience method for adding an AI message string to the store.
Parameters
message – The string contents of an AI message.
add_message(message: BaseMessage) → None[source]¶
Append the message to the record in MongoDB
add_user_message(message: str) → None¶
Convenience method for adding a human message string to the store.
Parameters
message – The string contents of a human message.
clear() → None[source]¶
Clear session memory from MongoDB
Examples using MongoDBChatMessageHistory¶
Mongodb Chat Message History
|
https://api.python.langchain.com/en/latest/chat_message_histories/langchain_community.chat_message_histories.mongodb.MongoDBChatMessageHistory.html
|
006c1a17fb1e-0
|
langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser¶
class langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser[source]¶
Bases: VectorSQLOutputParser
Based on VectorSQLOutputParser
It also modify the SQL to get all columns
param distance_func_name: str = 'distance'¶
Distance name for Vector SQL
param model: langchain_core.embeddings.Embeddings [Required]¶
Embedding model to extract embedding for entity
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: str | langchain_core.messages.base.BaseMessage, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → T¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async aparse(text: str) → T¶
Parse a single string model output into some structure.
Parameters
text – String output of a language model.
Returns
Structured output.
async aparse_result(result: List[Generation], *, partial: bool = False) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
006c1a17fb1e-1
|
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
006c1a17fb1e-2
|
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
006c1a17fb1e-3
|
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
classmethod from_embeddings(model: Embeddings, distance_func_name: str = 'distance', **kwargs: Any) → BaseOutputParser¶
classmethod from_orm(obj: Any) → Model¶
get_format_instructions() → str¶
Instructions on how the LLM output should be formatted.
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
006c1a17fb1e-4
|
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None) → T¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
006c1a17fb1e-5
|
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
parse(text: str) → str[source]¶
Parse a single string model output into some structure.
Parameters
text – String output of a language model.
Returns
Structured output.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
006c1a17fb1e-6
|
parse_result(result: List[Generation], *, partial: bool = False) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of a language model.
prompt – Input PromptValue.
Returns
Structured output
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
006c1a17fb1e-7
|
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
006c1a17fb1e-8
|
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Any¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.output_parsers.base.T]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
006c1a17fb1e-9
|
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLRetrieveAllOutputParser.html
|
be89f79a4358-0
|
langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain¶
class langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain[source]¶
Bases: SQLDatabaseChain
Chain for interacting with Vector SQL Database.
Example
from langchain_experimental.sql import SQLDatabaseChain
from langchain.llms import OpenAI, SQLDatabase, OpenAIEmbeddings
db = SQLDatabase(...)
db_chain = VectorSQLDatabaseChain.from_llm(OpenAI(), db, OpenAIEmbeddings())
Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include the permissions this chain needs.
Failure to do so may result in data corruption or loss, since this chain may
attempt commands like DROP TABLE or INSERT if appropriately prompted.
The best way to guard against such negative outcomes is to (as appropriate)
limit the permissions granted to the credentials used with this chain.
This issue shows an example negative outcome if these steps are not taken:
https://github.com/langchain-ai/langchain/issues/5923
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param database: SQLDatabase [Required]¶
SQL Database to connect to.
param llm: Optional[BaseLanguageModel] = None¶
[Deprecated] LLM wrapper to use.
param llm_chain: LLMChain [Required]¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-1
|
param llm_chain: LLMChain [Required]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param native_format: bool = False¶
If return_direct, controls whether to return in python native format
param prompt: Optional[BasePromptTemplate] = None¶
[Deprecated] Prompt to use to translate natural language to SQL.
param query_checker_prompt: Optional[BasePromptTemplate] = None¶
The prompt template that should be used by the query checker
param return_direct: bool = False¶
Whether or not to return the result of querying the SQL table directly.
param return_intermediate_steps: bool = False¶
Whether or not to return the intermediate steps along with the final answer.
param return_sql: bool = False¶
Will return sql-command directly without executing it
param sql_cmd_parser: VectorSQLOutputParser [Required]¶
Parser for Vector SQL
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-2
|
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param top_k: int = 5¶
Number of results to return from the query
param use_query_checker: bool = False¶
Whether or not the query checker tool should be used to attempt
to fix the initial SQL from the LLM.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to the global verbose value,
accessible via langchain.globals.get_verbose().
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-3
|
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-4
|
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-5
|
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-6
|
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-7
|
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-8
|
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
chain.dict(exclude_unset=True)
# -> {"_type": "foo", "verbose": False, ...}
classmethod from_llm(llm: BaseLanguageModel, db: SQLDatabase, prompt: Optional[BasePromptTemplate] = None, sql_cmd_parser: Optional[VectorSQLOutputParser] = None, **kwargs: Any) → VectorSQLDatabaseChain[source]¶
Create a SQLDatabaseChain from an LLM and a database connection.
Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include the permissions this chain needs.
Failure to do so may result in data corruption or loss, since this chain may
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-9
|
Failure to do so may result in data corruption or loss, since this chain may
attempt commands like DROP TABLE or INSERT if appropriately prompted.
The best way to guard against such negative outcomes is to (as appropriate)
limit the permissions granted to the credentials used with this chain.
This issue shows an example negative outcome if these steps are not taken:
https://github.com/langchain-ai/langchain/issues/5923
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-10
|
Returns
A pydantic model that can be used to validate output.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-11
|
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-12
|
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-13
|
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-14
|
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
be89f79a4358-15
|
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html
|
b8879f5b1ec7-0
|
langchain_experimental.sql.vector_sql.VectorSQLOutputParser¶
class langchain_experimental.sql.vector_sql.VectorSQLOutputParser[source]¶
Bases: BaseOutputParser[str]
Output Parser for Vector SQL
1. finds for NeuralArray() and replace it with the embedding
2. finds for DISTANCE() and replace it with the distance name in backend SQL
param distance_func_name: str = 'distance'¶
Distance name for Vector SQL
param model: langchain_core.embeddings.Embeddings [Required]¶
Embedding model to extract embedding for entity
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: str | langchain_core.messages.base.BaseMessage, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → T¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async aparse(text: str) → T¶
Parse a single string model output into some structure.
Parameters
text – String output of a language model.
Returns
Structured output.
async aparse_result(result: List[Generation], *, partial: bool = False) → T¶
Parse a list of candidate model Generations into a specific format.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
b8879f5b1ec7-1
|
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
b8879f5b1ec7-2
|
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
b8879f5b1ec7-3
|
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
classmethod from_embeddings(model: Embeddings, distance_func_name: str = 'distance', **kwargs: Any) → BaseOutputParser[source]¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
b8879f5b1ec7-4
|
classmethod from_orm(obj: Any) → Model¶
get_format_instructions() → str¶
Instructions on how the LLM output should be formatted.
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None) → T¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
b8879f5b1ec7-5
|
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
parse(text: str) → str[source]¶
Parse a single string model output into some structure.
Parameters
text – String output of a language model.
Returns
Structured output.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
b8879f5b1ec7-6
|
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
parse_result(result: List[Generation], *, partial: bool = False) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of a language model.
prompt – Input PromptValue.
Returns
Structured output
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
b8879f5b1ec7-7
|
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
b8879f5b1ec7-8
|
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Any¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.output_parsers.base.T]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
b8879f5b1ec7-9
|
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLOutputParser.html
|
c8ba1e27def1-0
|
langchain_experimental.sql.vector_sql.get_result_from_sqldb¶
langchain_experimental.sql.vector_sql.get_result_from_sqldb(db: SQLDatabase, cmd: str) → Sequence[Dict[str, Any]][source]¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.get_result_from_sqldb.html
|
d7e55d8ad23b-0
|
langchain_experimental.sql.base.SQLDatabaseSequentialChain¶
class langchain_experimental.sql.base.SQLDatabaseSequentialChain[source]¶
Bases: Chain
Chain for querying SQL database that is a sequential chain.
The chain is as follows:
1. Based on the query, determine which tables to use.
2. Based on those tables, call the normal SQL database chain.
This is useful in cases where the number of tables in the database is large.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param decider_chain: LLMChain [Required]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-1
|
You can use these to eg identify a specific instance of a chain with its use case.
param return_intermediate_steps: bool = False¶
param sql_chain: SQLDatabaseChain [Required]¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to the global verbose value,
accessible via langchain.globals.get_verbose().
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-2
|
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-3
|
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-4
|
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-5
|
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-6
|
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-7
|
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
chain.dict(exclude_unset=True)
# -> {"_type": "foo", "verbose": False, ...}
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-8
|
# -> {"_type": "foo", "verbose": False, ...}
classmethod from_llm(llm: BaseLanguageModel, db: SQLDatabase, query_prompt: BasePromptTemplate = PromptTemplate(input_variables=['dialect', 'input', 'table_info', 'top_k'], template='Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\n\nPay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\n\nUse the following format:\n\nQuestion: Question here\nSQLQuery: SQL Query to run\nSQLResult: Result of the SQLQuery\nAnswer: Final answer here\n\nOnly use the following tables:\n{table_info}\n\nQuestion: {input}'), decider_prompt: BasePromptTemplate = PromptTemplate(input_variables=['query', 'table_names'], output_parser=CommaSeparatedListOutputParser(), template='Given the below input question and list of potential tables, output a comma separated list of the table names that may be necessary to answer this question.\n\nQuestion: {query}\n\nTable Names: {table_names}\n\nRelevant Table Names:'), **kwargs: Any) → SQLDatabaseSequentialChain[source]¶
Load the necessary chains.
classmethod from_orm(obj: Any) → Model¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-9
|
Load the necessary chains.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
d7e55d8ad23b-10
|
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
|
https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.base.SQLDatabaseSequentialChain.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.