id
stringlengths 14
15
| text
stringlengths 13
2.7k
| source
stringlengths 60
181
|
---|---|---|
526bd25b2d7c-0
|
langchain_core.prompt_values.ChatPromptValue¶
class langchain_core.prompt_values.ChatPromptValue[source]¶
Bases: PromptValue
Chat prompt value.
A type of a prompt value that is built from messages.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param messages: Sequence[langchain_core.messages.base.BaseMessage] [Required]¶
List of messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/prompt_values/langchain_core.prompt_values.ChatPromptValue.html
|
526bd25b2d7c-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
|
https://api.python.langchain.com/en/latest/prompt_values/langchain_core.prompt_values.ChatPromptValue.html
|
526bd25b2d7c-2
|
The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
to_messages() → List[BaseMessage][source]¶
Return prompt as a list of messages.
to_string() → str[source]¶
Return prompt as string.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
|
https://api.python.langchain.com/en/latest/prompt_values/langchain_core.prompt_values.ChatPromptValue.html
|
625fcd75bab5-0
|
langchain_core.prompt_values.PromptValue¶
class langchain_core.prompt_values.PromptValue[source]¶
Bases: Serializable, ABC
Base abstract class for inputs to any language model.
PromptValues can be converted to both LLM (pure text-generation) inputs andChatModel inputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/prompt_values/langchain_core.prompt_values.PromptValue.html
|
625fcd75bab5-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
classmethod is_lc_serializable() → bool[source]¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
|
https://api.python.langchain.com/en/latest/prompt_values/langchain_core.prompt_values.PromptValue.html
|
625fcd75bab5-2
|
The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
abstract to_messages() → List[BaseMessage][source]¶
Return prompt as a list of Messages.
abstract to_string() → str[source]¶
Return prompt value as string.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
|
https://api.python.langchain.com/en/latest/prompt_values/langchain_core.prompt_values.PromptValue.html
|
62aff3683a68-0
|
langchain_core.outputs.chat_result.ChatResult¶
class langchain_core.outputs.chat_result.ChatResult[source]¶
Bases: BaseModel
Class that contains all results for a single chat model call.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param generations: List[langchain_core.outputs.chat_generation.ChatGeneration] [Required]¶
List of the chat generations. This is a List because an input can have multiple
candidate generations.
param llm_output: Optional[dict] = None¶
For arbitrary LLM provider specific output.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_result.ChatResult.html
|
62aff3683a68-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_result.ChatResult.html
|
62aff3683a68-2
|
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_result.ChatResult.html
|
15bf51547055-0
|
langchain_core.outputs.chat_generation.ChatGeneration¶
class langchain_core.outputs.chat_generation.ChatGeneration[source]¶
Bases: Generation
A single chat generation output.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param generation_info: Optional[Dict[str, Any]] = None¶
Raw response from the provider. May include things like the
reason for finishing or token log probabilities.
param message: BaseMessage [Required]¶
The message output by the chat model.
param text: str = ''¶
SHOULD NOT BE SET DIRECTLY The text contents of the output message.
param type: Literal['ChatGeneration'] = 'ChatGeneration'¶
Type is used exclusively for serialization purposes.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGeneration.html
|
15bf51547055-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGeneration.html
|
15bf51547055-2
|
The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGeneration.html
|
d29a73310fb9-0
|
langchain_core.outputs.generation.GenerationChunk¶
class langchain_core.outputs.generation.GenerationChunk[source]¶
Bases: Generation
A Generation chunk, which can be concatenated with other Generation chunks.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param generation_info: Optional[Dict[str, Any]] = None¶
Raw response from the provider. May include things like the
reason for finishing or token log probabilities.
param text: str [Required]¶
Generated text output.
param type: Literal['Generation'] = 'Generation'¶
Type is used exclusively for serialization purposes.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.GenerationChunk.html
|
d29a73310fb9-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.GenerationChunk.html
|
d29a73310fb9-2
|
The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.GenerationChunk.html
|
f7e54f2a08cb-0
|
langchain_core.outputs.generation.Generation¶
class langchain_core.outputs.generation.Generation[source]¶
Bases: Serializable
A single text generation output.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param generation_info: Optional[Dict[str, Any]] = None¶
Raw response from the provider. May include things like the
reason for finishing or token log probabilities.
param text: str [Required]¶
Generated text output.
param type: Literal['Generation'] = 'Generation'¶
Type is used exclusively for serialization purposes.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.Generation.html
|
f7e54f2a08cb-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
classmethod is_lc_serializable() → bool[source]¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.Generation.html
|
f7e54f2a08cb-2
|
The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.generation.Generation.html
|
1f921fec5adf-0
|
langchain_core.outputs.run_info.RunInfo¶
class langchain_core.outputs.run_info.RunInfo[source]¶
Bases: BaseModel
Class that contains metadata for a single execution of a Chain or model.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param run_id: uuid.UUID [Required]¶
A unique identifier for the model or chain run.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.run_info.RunInfo.html
|
1f921fec5adf-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.run_info.RunInfo.html
|
1f921fec5adf-2
|
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.run_info.RunInfo.html
|
a4d7e785531a-0
|
langchain_core.outputs.llm_result.LLMResult¶
class langchain_core.outputs.llm_result.LLMResult[source]¶
Bases: BaseModel
Class that contains all results for a batched LLM call.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param generations: List[List[langchain_core.outputs.generation.Generation]] [Required]¶
List of generated outputs. This is a List[List[]] because
each input could have multiple candidate generations.
param llm_output: Optional[dict] = None¶
Arbitrary LLM provider-specific output.
param run: Optional[List[langchain_core.outputs.run_info.RunInfo]] = None¶
List of metadata info for model call for each input.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.llm_result.LLMResult.html
|
a4d7e785531a-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
flatten() → List[LLMResult][source]¶
Flatten generations into a single list.
Unpack List[List[Generation]] -> List[LLMResult] where each returned LLMResultcontains only a single Generation. If token usage information is available,
it is kept only for the LLMResult corresponding to the top-choice
Generation, to avoid over-counting of token usage downstream.
Returns
List of LLMResults where each returned LLMResult contains a singleGeneration.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.llm_result.LLMResult.html
|
a4d7e785531a-2
|
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using LLMResult¶
Ollama
Async callbacks
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.llm_result.LLMResult.html
|
bb4b1e446c2f-0
|
langchain_core.outputs.chat_generation.ChatGenerationChunk¶
class langchain_core.outputs.chat_generation.ChatGenerationChunk[source]¶
Bases: ChatGeneration
A ChatGeneration chunk, which can be concatenated with otherChatGeneration chunks.
message¶
The message chunk output by the chat model.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param generation_info: Optional[Dict[str, Any]] = None¶
Raw response from the provider. May include things like the
reason for finishing or token log probabilities.
param message: BaseMessageChunk [Required]¶
The message output by the chat model.
param text: str = ''¶
SHOULD NOT BE SET DIRECTLY The text contents of the output message.
param type: Literal['ChatGenerationChunk'] = 'ChatGenerationChunk'¶
Type is used exclusively for serialization purposes.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGenerationChunk.html
|
bb4b1e446c2f-1
|
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGenerationChunk.html
|
bb4b1e446c2f-2
|
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
|
https://api.python.langchain.com/en/latest/outputs/langchain_core.outputs.chat_generation.ChatGenerationChunk.html
|
cf8811248d69-0
|
langchain_experimental.prompt_injection_identifier.hugging_face_identifier.PromptInjectionException¶
class langchain_experimental.prompt_injection_identifier.hugging_face_identifier.PromptInjectionException(message: str = 'Prompt injection attack detected', score: float = 1.0)[source]¶
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.PromptInjectionException.html
|
69437dca9ecb-0
|
langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier¶
class langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier[source]¶
Bases: BaseTool
Tool that uses HF model to detect prompt injection attacks.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A wrapper around HuggingFace Prompt Injection security model. Useful for when you need to ensure that prompt is free of injection attacks. Input should be any message from the user.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param injection_label: str = 'INJECTION'¶
Label for prompt injection detection model.
Defaults to INJECTION. Value depends on the model used.
Label of the injection for prompt injection detection.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param model: Union[Pipeline, str, None] [Optional]¶
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-1
|
param model: Union[Pipeline, str, None] [Optional]¶
Model to use for prompt injection detection.
Can be specified as transformers Pipeline or string. String should correspond to themodel name of a text-classification transformers model. Defaults to
laiyer/deberta-v3-base-prompt-injection model.
param name: str = 'hugging_face_injection_identifier'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param threshold: float = 0.5¶
Threshold for prompt injection detection.
Defaults to 0.5.
Threshold for prompt injection detection.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-2
|
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-3
|
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-4
|
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-5
|
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-6
|
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-7
|
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-8
|
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-9
|
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property args: dict¶
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property is_single_input: bool¶
Whether the tool only accepts a single input.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
69437dca9ecb-10
|
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/prompt_injection_identifier/langchain_experimental.prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier.html
|
b24cb3beb24e-0
|
langchain.hub.pull¶
langchain.hub.pull(owner_repo_commit: str, *, api_url: Optional[str] = None, api_key: Optional[str] = None) → Any[source]¶
Pulls an object from the hub and returns it as a LangChain object.
Parameters
owner_repo_commit – The full name of the repo to pull from in the format of
owner/repo:commit_hash.
api_url – The URL of the LangChain Hub API. Defaults to the hosted API service
if you have an api key set, or a localhost instance if not.
api_key – The API key to use to authenticate with the LangChain Hub API.
|
https://api.python.langchain.com/en/latest/hub/langchain.hub.pull.html
|
f13d83bfc576-0
|
langchain.hub.push¶
langchain.hub.push(repo_full_name: str, object: Any, *, api_url: Optional[str] = None, api_key: Optional[str] = None, parent_commit_hash: Optional[str] = 'latest', new_repo_is_public: bool = True, new_repo_description: str = '') → str[source]¶
Pushes an object to the hub and returns the URL it can be viewed at in a browser.
Parameters
repo_full_name – The full name of the repo to push to in the format of
owner/repo.
object – The LangChain to serialize and push to the hub.
api_url – The URL of the LangChain Hub API. Defaults to the hosted API service
if you have an api key set, or a localhost instance if not.
api_key – The API key to use to authenticate with the LangChain Hub API.
parent_commit_hash – The commit hash of the parent commit to push to. Defaults
to the latest commit automatically.
new_repo_is_public – Whether the repo should be public. Defaults to
True (Public by default).
new_repo_description – The description of the repo. Defaults to an empty
string.
|
https://api.python.langchain.com/en/latest/hub/langchain.hub.push.html
|
b34b561bf3d8-0
|
langchain_experimental.generative_agents.generative_agent.GenerativeAgent¶
class langchain_experimental.generative_agents.generative_agent.GenerativeAgent[source]¶
Bases: BaseModel
An Agent as a character with memory and innate characteristics.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param age: Optional[int] = None¶
The optional age of the character.
param daily_summaries: List[str] [Optional]¶
Summary of the events in the plan that the agent took.
param last_refreshed: datetime.datetime [Optional]¶
The last time the character’s summary was regenerated.
param llm: langchain_core.language_models.base.BaseLanguageModel [Required]¶
The underlying language model.
param memory: langchain_experimental.generative_agents.memory.GenerativeAgentMemory [Required]¶
The memory object that combines relevance, recency, and ‘importance’.
param name: str [Required]¶
The character’s name.
param status: str [Required]¶
The traits of the character you wish not to change.
param summary: str = ''¶
Stateful self-summary generated via reflection on the character’s memory.
param summary_refresh_seconds: int = 3600¶
How frequently to re-generate the summary.
param traits: str = 'N/A'¶
Permanent traits to ascribe to the character.
param verbose: bool = False¶
chain(prompt: PromptTemplate) → LLMChain[source]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
|
https://api.python.langchain.com/en/latest/generative_agents/langchain_experimental.generative_agents.generative_agent.GenerativeAgent.html
|
b34b561bf3d8-1
|
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
generate_dialogue_response(observation: str, now: Optional[datetime] = None) → Tuple[bool, str][source]¶
React to a given observation.
generate_reaction(observation: str, now: Optional[datetime] = None) → Tuple[bool, str][source]¶
React to a given observation.
get_full_header(force_refresh: bool = False, now: Optional[datetime] = None) → str[source]¶
|
https://api.python.langchain.com/en/latest/generative_agents/langchain_experimental.generative_agents.generative_agent.GenerativeAgent.html
|
b34b561bf3d8-2
|
Return a full header of the agent’s status, summary, and current time.
get_summary(force_refresh: bool = False, now: Optional[datetime] = None) → str[source]¶
Return a descriptive summary of the agent.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
summarize_related_memories(observation: str) → str[source]¶
Summarize memories that are most relevant to an observation.
classmethod update_forward_refs(**localns: Any) → None¶
|
https://api.python.langchain.com/en/latest/generative_agents/langchain_experimental.generative_agents.generative_agent.GenerativeAgent.html
|
b34b561bf3d8-3
|
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
|
https://api.python.langchain.com/en/latest/generative_agents/langchain_experimental.generative_agents.generative_agent.GenerativeAgent.html
|
0c5975d29525-0
|
langchain_experimental.generative_agents.memory.GenerativeAgentMemory¶
class langchain_experimental.generative_agents.memory.GenerativeAgentMemory[source]¶
Bases: BaseMemory
Memory for the generative agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param add_memory_key: str = 'add_memory'¶
param aggregate_importance: float = 0.0¶
Track the sum of the ‘importance’ of recent memories.
Triggers reflection when it reaches reflection_threshold.
param current_plan: List[str] = []¶
The current plan of the agent.
param importance_weight: float = 0.15¶
How much weight to assign the memory importance.
param llm: langchain_core.language_models.base.BaseLanguageModel [Required]¶
The core language model.
param max_tokens_limit: int = 1200¶
param memory_retriever: langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever [Required]¶
The retriever to fetch related memories.
param most_recent_memories_key: str = 'most_recent_memories'¶
param most_recent_memories_token_key: str = 'recent_memories_token'¶
param now_key: str = 'now'¶
param queries_key: str = 'queries'¶
param reflecting: bool = False¶
param reflection_threshold: Optional[float] = None¶
When aggregate_importance exceeds reflection_threshold, stop to reflect.
param relevant_memories_key: str = 'relevant_memories'¶
param relevant_memories_simple_key: str = 'relevant_memories_simple'¶
param verbose: bool = False¶
add_memories(memory_content: str, now: Optional[datetime] = None) → List[str][source]¶
|
https://api.python.langchain.com/en/latest/generative_agents/langchain_experimental.generative_agents.memory.GenerativeAgentMemory.html
|
0c5975d29525-1
|
Add an observations or memories to the agent’s memory.
add_memory(memory_content: str, now: Optional[datetime] = None) → List[str][source]¶
Add an observation or memory to the agent’s memory.
chain(prompt: PromptTemplate) → LLMChain[source]¶
clear() → None[source]¶
Clear memory contents.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
|
https://api.python.langchain.com/en/latest/generative_agents/langchain_experimental.generative_agents.memory.GenerativeAgentMemory.html
|
0c5975d29525-2
|
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
fetch_memories(observation: str, now: Optional[datetime] = None) → List[Document][source]¶
Fetch related memories.
format_memories_detail(relevant_memories: List[Document]) → str[source]¶
format_memories_simple(relevant_memories: List[Document]) → str[source]¶
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]¶
Return key-value pairs given the text input to the chain.
|
https://api.python.langchain.com/en/latest/generative_agents/langchain_experimental.generative_agents.memory.GenerativeAgentMemory.html
|
0c5975d29525-3
|
Return key-value pairs given the text input to the chain.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
pause_to_reflect(now: Optional[datetime] = None) → List[str][source]¶
Reflect on recent observations and generate ‘insights’.
save_context(inputs: Dict[str, Any], outputs: Dict[str, Any]) → None[source]¶
Save the context of this model run to memory.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property memory_variables: List[str]¶
Input keys this memory class will load dynamically.
|
https://api.python.langchain.com/en/latest/generative_agents/langchain_experimental.generative_agents.memory.GenerativeAgentMemory.html
|
9a4a89266f55-0
|
langchain_experimental.fallacy_removal.base.FallacyChain¶
class langchain_experimental.fallacy_removal.base.FallacyChain[source]¶
Bases: Chain
Chain for applying logical fallacy evaluations, modeled after Constitutional AI and in same format, but applying logical fallacies as generalized rules to remove in output
Example
from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain_experimental.fallacy import FallacyChain
from langchain_experimental.fallacy_removal.models import LogicalFallacy
llm = OpenAI()
qa_prompt = PromptTemplate(
template="Q: {question} A:",
input_variables=["question"],
)
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
fallacy_chain = FallacyChain.from_llm(
llm=llm,
chain=qa_chain,
logical_fallacies=[
LogicalFallacy(
fallacy_critique_request="Tell if this answer meets criteria.",
fallacy_revision_request= "Give an answer that meets better criteria.",
)
],
)
fallacy_chain.run(question="How do I know if the earth is round?")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-1
|
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param chain: LLMChain [Required]¶
param fallacy_critique_chain: LLMChain [Required]¶
param fallacy_revision_chain: LLMChain [Required]¶
param logical_fallacies: List[LogicalFallacy] [Required]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param return_intermediate_steps: bool = False¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to the global verbose value,
accessible via langchain.globals.get_verbose().
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-2
|
accessible via langchain.globals.get_verbose().
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-3
|
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-4
|
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-5
|
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-6
|
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-7
|
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-8
|
new model instance
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
chain.dict(exclude_unset=True)
# -> {"_type": "foo", "verbose": False, ...}
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-9
|
classmethod from_llm(llm: BaseLanguageModel, chain: LLMChain, fallacy_critique_prompt: BasePromptTemplate = FewShotPromptTemplate(input_variables=['fallacy_critique_request', 'input_prompt', 'output_from_model'], examples=[{'input_prompt': "If everyone says the Earth is round, how do I know that's correct?", 'output_from_model': 'The earth is round because your teacher says it is', 'fallacy_critique_request': 'Identify specific ways in which the model’s previous response had a logical fallacy. Also point out potential logical fallacies in the human’s questions and responses. Examples of logical fallacies include but are not limited to ad hominem, ad populum, appeal to emotion and false causality.', 'fallacy_critique': 'This statement contains the logical fallacy of Ad Verecundiam or Appeal to Authority. It is a fallacy because it asserts something to be true purely based on the authority of the source making the claim, without any actual evidence to support it. Fallacy Critique Needed', 'fallacy_revision': 'The earth is round based on evidence from observations of its curvature from high altitudes, photos from space showing its spherical shape, circumnavigation, and the fact that we see its rounded shadow on the moon during lunar eclipses.'}, {'input_prompt': 'Should we invest more in our school music program? After all, studies show students involved in music perform better academically.', 'output_from_model': "I don't think we should invest more in the music program. Playing the piccolo won't teach someone better math skills.", 'fallacy_critique_request': 'Identify specific ways in which the model’s previous response had a logical fallacy. Also point out potential logical fallacies in the human’s questions and responses. Examples of
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-10
|
Also point out potential logical fallacies in the human’s questions and responses. Examples of logical fallacies include but are not limited to ad homimem, ad populum, appeal to emotion and false causality.', 'fallacy_critique': 'This answer commits the division fallacy by rejecting the argument based on assuming capabilities true of the parts (playing an instrument like piccolo) also apply to the whole (the full music program). The answer focuses only on part of the music program rather than considering it as a whole. Fallacy Critique Needed.', 'fallacy_revision': 'While playing an instrument may teach discipline, more evidence is needed on whether music education courses improve critical thinking skills across subjects before determining if increased investment in the whole music program is warranted.'}], example_prompt=PromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request', 'input_prompt', 'output_from_model'], template='Human: {input_prompt}\n\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique: {fallacy_critique}'), suffix='Human: {input_prompt}\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique:', example_separator='\n === \n', prefix="Below is a conversation between a human and an AI assistant. If there is no material critique of the model output, append to the end of the Fallacy Critique: 'No fallacy critique needed.' If there is material critique of the model output, append to the end of the Fallacy Critique: 'Fallacy Critique needed.'"), fallacy_revision_prompt: BasePromptTemplate = FewShotPromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request',
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-11
|
= FewShotPromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request', 'fallacy_revision_request', 'input_prompt', 'output_from_model'], examples=[{'input_prompt': "If everyone says the Earth is round, how do I know that's correct?", 'output_from_model': 'The earth is round because your teacher says it is', 'fallacy_critique_request': 'Identify specific ways in which the model’s previous response had a logical fallacy. Also point out potential logical fallacies in the human’s questions and responses. Examples of logical fallacies include but are not limited to ad hominem, ad populum, appeal to emotion and false causality.', 'fallacy_critique': 'This statement contains the logical fallacy of Ad Verecundiam or Appeal to Authority. It is a fallacy because it asserts something to be true purely based on the authority of the source making the claim, without any actual evidence to support it. Fallacy Critique Needed', 'fallacy_revision_request': 'Please rewrite the model response to remove all logical fallacies, and to politely point out any logical fallacies from the human.', 'fallacy_revision': 'The earth is round based on evidence from observations of its curvature from high altitudes, photos from space showing its spherical shape, circumnavigation, and the fact that we see its rounded shadow on the moon during lunar eclipses.'}, {'input_prompt': 'Should we invest more in our school music program? After all, studies show students involved in music perform better academically.', 'output_from_model': "I don't think we should invest more in the music program. Playing the piccolo won't teach someone better math skills.", 'fallacy_critique_request': 'Identify specific ways in which the model’s previous response had a logical
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-12
|
'Identify specific ways in which the model’s previous response had a logical fallacy. Also point out potential logical fallacies in the human’s questions and responses. Examples of logical fallacies include but are not limited to ad homimem, ad populum, appeal to emotion and false causality.', 'fallacy_critique': 'This answer commits the division fallacy by rejecting the argument based on assuming capabilities true of the parts (playing an instrument like piccolo) also apply to the whole (the full music program). The answer focuses only on part of the music program rather than considering it as a whole. Fallacy Critique Needed.', 'fallacy_revision_request': 'Please rewrite the model response to remove all logical fallacies, and to politely point out any logical fallacies from the human.', 'fallacy_revision': 'While playing an instrument may teach discipline, more evidence is needed on whether music education courses improve critical thinking skills across subjects before determining if increased investment in the whole music program is warranted.'}], example_prompt=PromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request', 'input_prompt', 'output_from_model'], template='Human: {input_prompt}\n\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique: {fallacy_critique}'), suffix='Human: {input_prompt}\n\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique: {fallacy_critique}\n\nIf the fallacy critique does not identify anything worth changing, ignore the Fallacy Revision Request and do not make any revisions. Instead, return "No revisions needed".\n\nIf the fallacy critique does identify something worth changing, please revise the model response based on
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-13
|
the fallacy critique does identify something worth changing, please revise the model response based on the Fallacy Revision Request.\n\nFallacy Revision Request: {fallacy_revision_request}\n\nFallacy Revision:', example_separator='\n === \n', prefix='Below is a conversation between a human and an AI assistant.'), **kwargs: Any) → FallacyChain[source]¶
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-14
|
Create a chain from an LLM.
classmethod from_orm(obj: Any) → Model¶
classmethod get_fallacies(names: Optional[List[str]] = None) → List[LogicalFallacy][source]¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-15
|
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-16
|
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-17
|
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-18
|
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-19
|
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_keys: List[str]¶
Input keys.
property input_schema: Type[pydantic.main.BaseModel]¶
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
9a4a89266f55-20
|
Input keys.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_keys: List[str]¶
Output keys.
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
|
6d63c4970639-0
|
langchain_experimental.fallacy_removal.models.LogicalFallacy¶
class langchain_experimental.fallacy_removal.models.LogicalFallacy[source]¶
Bases: BaseModel
Class for a logical fallacy.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param fallacy_critique_request: str [Required]¶
param fallacy_revision_request: str [Required]¶
param name: str = 'Logical Fallacy'¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.models.LogicalFallacy.html
|
6d63c4970639-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.models.LogicalFallacy.html
|
6d63c4970639-2
|
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
|
https://api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.models.LogicalFallacy.html
|
bb9dc6156c6a-0
|
langchain_experimental.pal_chain.base.PALValidation¶
class langchain_experimental.pal_chain.base.PALValidation(solution_expression_name: Optional[str] = None, solution_expression_type: Optional[type] = None, allow_imports: bool = False, allow_command_exec: bool = False)[source]¶
Initialize a PALValidation instance.
Parameters
solution_expression_name (str) – Name of the expected solution expression.
If passed, solution_expression_type must be passed as well.
solution_expression_type (str) – AST type of the expected solution
expression. If passed, solution_expression_name must be passed as well.
Must be one of PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE.
allow_imports (bool) – Allow import statements.
allow_command_exec (bool) – Allow using known command execution functions.
Methods
__init__([solution_expression_name, ...])
Initialize a PALValidation instance.
__init__(solution_expression_name: Optional[str] = None, solution_expression_type: Optional[type] = None, allow_imports: bool = False, allow_command_exec: bool = False)[source]¶
Initialize a PALValidation instance.
Parameters
solution_expression_name (str) – Name of the expected solution expression.
If passed, solution_expression_type must be passed as well.
solution_expression_type (str) – AST type of the expected solution
expression. If passed, solution_expression_name must be passed as well.
Must be one of PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE.
allow_imports (bool) – Allow import statements.
allow_command_exec (bool) – Allow using known command execution functions.
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALValidation.html
|
d60f8216078d-0
|
langchain_experimental.pal_chain.base.PALChain¶
class langchain_experimental.pal_chain.base.PALChain[source]¶
Bases: Chain
Implements Program-Aided Language Models (PAL).
This class implements the Program-Aided Language Models (PAL) for generating code
solutions. PAL is a technique described in the paper “Program-Aided Language Models”
(https://arxiv.org/pdf/2211.10435.pdf).
Security note: This class implements an AI technique that generates and evaluatesPython code, which can be dangerous and requires a specially sandboxed
environment to be safely used. While this class implements some basic guardrails
by limiting available locals/globals and by parsing and inspecting
the generated Python AST using PALValidation, those guardrails will not
deter sophisticated attackers and are not a replacement for a proper sandbox.
Do not use this class on untrusted inputs, with elevated permissions,
or without consulting your security team about proper sandboxing!
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param code_validations: PALValidation [Optional]¶
Validations to perform on the generated code.
param get_answer_expr: str = 'print(solution())'¶
Expression to use to get the answer from the generated code.
param llm_chain: LLMChain [Required]¶
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-1
|
param llm_chain: LLMChain [Required]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param python_globals: Optional[Dict[str, Any]] = None¶
Python globals and locals to use when executing the generated code.
param python_locals: Optional[Dict[str, Any]] = None¶
Python globals and locals to use when executing the generated code.
param return_intermediate_steps: bool = False¶
Whether to return intermediate steps in the generated code.
param stop: str = '\n\n'¶
Stop token to use when generating code.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param timeout: Optional[int] = 10¶
Timeout in seconds for the generated code to execute.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to the global verbose value,
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-2
|
will be printed to the console. Defaults to the global verbose value,
accessible via langchain.globals.get_verbose().
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-3
|
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-4
|
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-5
|
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-6
|
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-7
|
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-8
|
new model instance
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
chain.dict(exclude_unset=True)
# -> {"_type": "foo", "verbose": False, ...}
classmethod from_colored_object_prompt(llm: BaseLanguageModel, **kwargs: Any) → PALChain[source]¶
Load PAL from colored object prompt.
Parameters
llm (BaseLanguageModel) – The language model to use for generating code.
Returns
An instance of PALChain.
Return type
PALChain
classmethod from_math_prompt(llm: BaseLanguageModel, **kwargs: Any) → PALChain[source]¶
Load PAL from math prompt.
Parameters
llm (BaseLanguageModel) – The language model to use for generating code.
Returns
An instance of PALChain.
Return type
PALChain
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-9
|
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-10
|
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-11
|
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-12
|
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-13
|
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
classmethod validate_code(code: str, code_validations: PALValidation) → None[source]¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-14
|
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
d60f8216078d-15
|
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html
|
731cf885482e-0
|
langchain.indexes.vectorstore.VectorstoreIndexCreator¶
class langchain.indexes.vectorstore.VectorstoreIndexCreator[source]¶
Bases: BaseModel
Logic for creating indexes.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param embedding: langchain_core.embeddings.Embeddings [Optional]¶
param text_splitter: langchain.text_splitter.TextSplitter [Optional]¶
param vectorstore_cls: Type[langchain_core.vectorstores.VectorStore] = <class 'langchain_community.vectorstores.chroma.Chroma'>¶
param vectorstore_kwargs: dict [Optional]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.vectorstore.VectorstoreIndexCreator.html
|
731cf885482e-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
from_documents(documents: List[Document]) → VectorStoreIndexWrapper[source]¶
Create a vectorstore index from documents.
from_loaders(loaders: List[BaseLoader]) → VectorStoreIndexWrapper[source]¶
Create a vectorstore index from loaders.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.vectorstore.VectorstoreIndexCreator.html
|
731cf885482e-2
|
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using VectorstoreIndexCreator¶
Apify
HuggingFace dataset
Spreedly
Image captions
Figma
Apify Dataset
Iugu
Stripe
Modern Treasury
Question Answering
Multiple Retrieval Sources
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.vectorstore.VectorstoreIndexCreator.html
|
0465d959d5b4-0
|
langchain.indexes.base.RecordManager¶
class langchain.indexes.base.RecordManager(namespace: str)[source]¶
An abstract base class representing the interface for a record manager.
Initialize the record manager.
Parameters
namespace (str) – The namespace for the record manager.
Methods
__init__(namespace)
Initialize the record manager.
acreate_schema()
Create the database schema for the record manager.
adelete_keys(keys)
Delete specified records from the database.
aexists(keys)
Check if the provided keys exist in the database.
aget_time()
Get the current server time as a high resolution timestamp!
alist_keys(*[, before, after, group_ids, limit])
List records in the database based on the provided filters.
aupdate(keys, *[, group_ids, time_at_least])
Upsert records into the database.
create_schema()
Create the database schema for the record manager.
delete_keys(keys)
Delete specified records from the database.
exists(keys)
Check if the provided keys exist in the database.
get_time()
Get the current server time as a high resolution timestamp!
list_keys(*[, before, after, group_ids, limit])
List records in the database based on the provided filters.
update(keys, *[, group_ids, time_at_least])
Upsert records into the database.
__init__(namespace: str) → None[source]¶
Initialize the record manager.
Parameters
namespace (str) – The namespace for the record manager.
abstract async acreate_schema() → None[source]¶
Create the database schema for the record manager.
abstract async adelete_keys(keys: Sequence[str]) → None[source]¶
Delete specified records from the database.
Parameters
keys – A list of keys to delete.
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.base.RecordManager.html
|
0465d959d5b4-1
|
Delete specified records from the database.
Parameters
keys – A list of keys to delete.
abstract async aexists(keys: Sequence[str]) → List[bool][source]¶
Check if the provided keys exist in the database.
Parameters
keys – A list of keys to check.
Returns
A list of boolean values indicating the existence of each key.
abstract async aget_time() → float[source]¶
Get the current server time as a high resolution timestamp!
It’s important to get this from the server to ensure a monotonic clock,
otherwise there may be data loss when cleaning up old documents!
Returns
The current server time as a float timestamp.
abstract async alist_keys(*, before: Optional[float] = None, after: Optional[float] = None, group_ids: Optional[Sequence[str]] = None, limit: Optional[int] = None) → List[str][source]¶
List records in the database based on the provided filters.
Parameters
before – Filter to list records updated before this time.
after – Filter to list records updated after this time.
group_ids – Filter to list records with specific group IDs.
limit – optional limit on the number of records to return.
Returns
A list of keys for the matching records.
abstract async aupdate(keys: Sequence[str], *, group_ids: Optional[Sequence[Optional[str]]] = None, time_at_least: Optional[float] = None) → None[source]¶
Upsert records into the database.
Parameters
keys – A list of record keys to upsert.
group_ids – A list of group IDs corresponding to the keys.
time_at_least – if provided, updates should only happen if the
updated_at field is at least this time.
Raises
ValueError – If the length of keys doesn’t match the length of group_ids.
abstract create_schema() → None[source]¶
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.base.RecordManager.html
|
0465d959d5b4-2
|
abstract create_schema() → None[source]¶
Create the database schema for the record manager.
abstract delete_keys(keys: Sequence[str]) → None[source]¶
Delete specified records from the database.
Parameters
keys – A list of keys to delete.
abstract exists(keys: Sequence[str]) → List[bool][source]¶
Check if the provided keys exist in the database.
Parameters
keys – A list of keys to check.
Returns
A list of boolean values indicating the existence of each key.
abstract get_time() → float[source]¶
Get the current server time as a high resolution timestamp!
It’s important to get this from the server to ensure a monotonic clock,
otherwise there may be data loss when cleaning up old documents!
Returns
The current server time as a float timestamp.
abstract list_keys(*, before: Optional[float] = None, after: Optional[float] = None, group_ids: Optional[Sequence[str]] = None, limit: Optional[int] = None) → List[str][source]¶
List records in the database based on the provided filters.
Parameters
before – Filter to list records updated before this time.
after – Filter to list records updated after this time.
group_ids – Filter to list records with specific group IDs.
limit – optional limit on the number of records to return.
Returns
A list of keys for the matching records.
abstract update(keys: Sequence[str], *, group_ids: Optional[Sequence[Optional[str]]] = None, time_at_least: Optional[float] = None) → None[source]¶
Upsert records into the database.
Parameters
keys – A list of record keys to upsert.
group_ids – A list of group IDs corresponding to the keys.
time_at_least – if provided, updates should only happen if the
updated_at field is at least this time.
Raises
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.base.RecordManager.html
|
0465d959d5b4-3
|
updated_at field is at least this time.
Raises
ValueError – If the length of keys doesn’t match the length of group_ids.
|
https://api.python.langchain.com/en/latest/indexes/langchain.indexes.base.RecordManager.html
|
49296d880c7b-0
|
langchain_community.indexes.base.RecordManager¶
class langchain_community.indexes.base.RecordManager(namespace: str)[source]¶
An abstract base class representing the interface for a record manager.
Initialize the record manager.
Parameters
namespace (str) – The namespace for the record manager.
Methods
__init__(namespace)
Initialize the record manager.
acreate_schema()
Create the database schema for the record manager.
adelete_keys(keys)
Delete specified records from the database.
aexists(keys)
Check if the provided keys exist in the database.
aget_time()
Get the current server time as a high resolution timestamp!
alist_keys(*[, before, after, group_ids, limit])
List records in the database based on the provided filters.
aupdate(keys, *[, group_ids, time_at_least])
Upsert records into the database.
create_schema()
Create the database schema for the record manager.
delete_keys(keys)
Delete specified records from the database.
exists(keys)
Check if the provided keys exist in the database.
get_time()
Get the current server time as a high resolution timestamp!
list_keys(*[, before, after, group_ids, limit])
List records in the database based on the provided filters.
update(keys, *[, group_ids, time_at_least])
Upsert records into the database.
__init__(namespace: str) → None[source]¶
Initialize the record manager.
Parameters
namespace (str) – The namespace for the record manager.
abstract async acreate_schema() → None[source]¶
Create the database schema for the record manager.
abstract async adelete_keys(keys: Sequence[str]) → None[source]¶
Delete specified records from the database.
Parameters
keys – A list of keys to delete.
|
https://api.python.langchain.com/en/latest/indexes/langchain_community.indexes.base.RecordManager.html
|
49296d880c7b-1
|
Delete specified records from the database.
Parameters
keys – A list of keys to delete.
abstract async aexists(keys: Sequence[str]) → List[bool][source]¶
Check if the provided keys exist in the database.
Parameters
keys – A list of keys to check.
Returns
A list of boolean values indicating the existence of each key.
abstract async aget_time() → float[source]¶
Get the current server time as a high resolution timestamp!
It’s important to get this from the server to ensure a monotonic clock,
otherwise there may be data loss when cleaning up old documents!
Returns
The current server time as a float timestamp.
abstract async alist_keys(*, before: Optional[float] = None, after: Optional[float] = None, group_ids: Optional[Sequence[str]] = None, limit: Optional[int] = None) → List[str][source]¶
List records in the database based on the provided filters.
Parameters
before – Filter to list records updated before this time.
after – Filter to list records updated after this time.
group_ids – Filter to list records with specific group IDs.
limit – optional limit on the number of records to return.
Returns
A list of keys for the matching records.
abstract async aupdate(keys: Sequence[str], *, group_ids: Optional[Sequence[Optional[str]]] = None, time_at_least: Optional[float] = None) → None[source]¶
Upsert records into the database.
Parameters
keys – A list of record keys to upsert.
group_ids – A list of group IDs corresponding to the keys.
time_at_least – if provided, updates should only happen if the
updated_at field is at least this time.
Raises
ValueError – If the length of keys doesn’t match the length of group_ids.
abstract create_schema() → None[source]¶
|
https://api.python.langchain.com/en/latest/indexes/langchain_community.indexes.base.RecordManager.html
|
49296d880c7b-2
|
abstract create_schema() → None[source]¶
Create the database schema for the record manager.
abstract delete_keys(keys: Sequence[str]) → None[source]¶
Delete specified records from the database.
Parameters
keys – A list of keys to delete.
abstract exists(keys: Sequence[str]) → List[bool][source]¶
Check if the provided keys exist in the database.
Parameters
keys – A list of keys to check.
Returns
A list of boolean values indicating the existence of each key.
abstract get_time() → float[source]¶
Get the current server time as a high resolution timestamp!
It’s important to get this from the server to ensure a monotonic clock,
otherwise there may be data loss when cleaning up old documents!
Returns
The current server time as a float timestamp.
abstract list_keys(*, before: Optional[float] = None, after: Optional[float] = None, group_ids: Optional[Sequence[str]] = None, limit: Optional[int] = None) → List[str][source]¶
List records in the database based on the provided filters.
Parameters
before – Filter to list records updated before this time.
after – Filter to list records updated after this time.
group_ids – Filter to list records with specific group IDs.
limit – optional limit on the number of records to return.
Returns
A list of keys for the matching records.
abstract update(keys: Sequence[str], *, group_ids: Optional[Sequence[Optional[str]]] = None, time_at_least: Optional[float] = None) → None[source]¶
Upsert records into the database.
Parameters
keys – A list of record keys to upsert.
group_ids – A list of group IDs corresponding to the keys.
time_at_least – if provided, updates should only happen if the
updated_at field is at least this time.
Raises
|
https://api.python.langchain.com/en/latest/indexes/langchain_community.indexes.base.RecordManager.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.