url
stringlengths
61
61
repository_url
stringclasses
1 value
labels_url
stringlengths
75
75
comments_url
stringlengths
70
70
events_url
stringlengths
68
68
html_url
stringlengths
49
51
id
int64
758M
1.95B
node_id
stringlengths
18
32
number
int64
1.2k
6.31k
title
stringlengths
1
290
user
dict
labels
listlengths
0
3
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
sequencelengths
0
30
created_at
unknown
updated_at
unknown
closed_at
unknown
author_association
stringclasses
3 values
active_lock_reason
float64
draft
float64
0
1
pull_request
dict
body
stringlengths
0
36.2k
reactions
dict
timeline_url
stringlengths
70
70
performed_via_github_app
float64
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/5798
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5798/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5798/comments
https://api.github.com/repos/huggingface/datasets/issues/5798/events
https://github.com/huggingface/datasets/issues/5798
1,685,904,526
I_kwDODunzps5kfNyO
5,798
Support parallelized downloading and processing in load_dataset with Spark
{ "avatar_url": "https://avatars.githubusercontent.com/u/12763339?v=4", "events_url": "https://api.github.com/users/es94129/events{/privacy}", "followers_url": "https://api.github.com/users/es94129/followers", "following_url": "https://api.github.com/users/es94129/following{/other_user}", "gists_url": "https://api.github.com/users/es94129/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/es94129", "id": 12763339, "login": "es94129", "node_id": "MDQ6VXNlcjEyNzYzMzM5", "organizations_url": "https://api.github.com/users/es94129/orgs", "received_events_url": "https://api.github.com/users/es94129/received_events", "repos_url": "https://api.github.com/users/es94129/repos", "site_admin": false, "starred_url": "https://api.github.com/users/es94129/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/es94129/subscriptions", "type": "User", "url": "https://api.github.com/users/es94129" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! We're using process pools for parallelism right now. I was wondering if there's a package that implements the same API as a process pool but runs with Spark under the hood ? That or something similar would be cool because users could use whatever distributed framework they want this way.\r\n\r\nFeel free to ping us when you'd like to open PRs for this kind of things, so that we can discuss this before you start working on it ^^", "Hi, thanks for taking a look and providing your input! I don't know of such packages, and even it exists, I don't think with the process pool API it's possible to run Spark as backend properly; otherwise I understand a unified API would be preferable.\r\n\r\nThe process pool API requires splitting the workload to a fixed number parts for multiprocessing; meanwhile distributed framework such as Spark has sophisticated scheduler to distribute the workload to the processes on multiple machines in a cluster, so the way of splitting things for `multiprocessing.pool` would not suit / be as flexible as directly calling the `sparkContext.parallelize` API.\r\n\r\nI think this could be a good addition to scale the `datasets` implementation to distributed workers, and from my benchmark results so far it looks promising compared with multiprocessing.", "I see ! I think we only need an equivalent of `pool.map`. We use it to run download and conversion of data files on disk. That would require less changes in the internal code - and therefore less tests to write ;)\r\n\r\nWe also use `pool.apply_async` in some places with a `Queue` to get progress updates of the running jobs. I'm mentioning this in case there's a way to get a python generator from a running spark job ? This is less important though", "For Spark, `rdd.map` (where `rdd` can be created by `sparkContext.parallelize`) is the most similar as `pool.map`, but it requires creating a Spark RDD first that is used for distributing the `iterable` and the actual parallelization is managed by the Spark framework; `pool.map` takes the splits of `iterable` that are split into `num_proc` parts by the Python code. You can also check my PR #5807 in the `src/datasets/utils/py_utils.py` file to compare the differences of the APIs, it might make more sense than the the above description.\r\n\r\nGiven the different inputs and mechanisms of calling the `map` functions, this is why I think it's not that feasible to reuse most of the `multiprocessing` code.\r\n\r\nProgress bar updating might be challenging with Spark, I'll consider it as a followup work.", "Indeed I think the current use of multiprocessing.Pool in `map_nested` can be rewritten to work like `sparkContext.parallelize` - without splitting the iterable.\r\n\r\nMaybe from the user's perspective it's ok to let multiprocessing.Pool or spark distribute the load on their own, as long as it takes a list and runs jobs in parallel in the end :)\r\n", "From your feedback, seems to me there are two paths to consider now for supporting spark's `map` function in `map_nested` now:\r\n1. Keep the current `pool.map` implementation, and add an if statement for the spark's `map` code (which is what I did in my current PR) -- the code change is just a few lines in the `map_nested` function, and it has been tested by unit tests + manual testing on real Spark clusters; if you have other concerns I'd also be happy to address them.\r\n2. Rewrite the current `pool.map` implementation to remove splitting the iterable, and we will still need to add an if statement to use either\r\n```python\r\nwith Pool(...) as pool:\r\n mapped = pool.map(_single_map_nested, iterable)\r\n```\r\nor\r\n```python\r\nrdd = spark.sparkContext.parallelize(iterable)\r\nmapped = rdd.map(lambda obj: _single_map_nested((function, obj, types, None, True, None))).collect()\r\n```\r\nbecause there is no unified API that supports both `pool.map` and `rdd.map`. This can be more unified and flexible in the long run, but might require more work, and it will change the existing multiprocessing behavior, which is why I'm not leaning towards this option.\r\n\r\nAm I understanding correctly?", "Yup correct ! I think it's a nice path because it would be possible for users to define whatever parallel processing backend they want. I think we still need to discuss how that would look like in the `datasets` API : how to specify it has to use the \"spark\" parallel backend ? And how to specify the spark session parameters (number of executors etc.) ? Maybe there is something more practical than `use_spark=True`\r\n\r\nI'll check with the team internally if they have some ideas, but feel free to share your thoughts here !", "Sure, please let me know if you have more updates regarding the API and implementation from the team.\r\n\r\nFor parameters we don't need to worry about setting them for Spark, because Spark will figure out the environment / number of worker nodes by itself, so it's preferable to just provide some parameter such as `use_spark` to use the RDD `map` function.", "Hi! I wanted to check in to see if there is any update from the team.\r\n\r\nA potential change of API I can think of is change the argument to `distributed_backend=...`, which accepts `str`, such as `load_dataset(..., distributed_backend=\"spark\")`.\r\n\r\nImplementation wise, we can add a class / function to abstract away the details of using multiprocessing vs. spark vs. other parallel processing frameworks in `map_nested` and `_prepare_split`.", "I found this quite interesting: https://github.com/joblib/joblib-spark with this syntax:\r\n\r\n```python\r\nwith parallel_backend('spark', n_jobs=3):\r\n ...\r\n```\r\n\r\ncc @lu-wang-dl who might know better", "Joblib spark is providing Spark backend for joblib. We can implement a general parallel backend like\r\n```\r\nwith parallel_backend(\"<parallel-backedn>\", n_jobs=..):\r\n```\r\n\r\nIt can support multiprocessing , spark, ray, and etc. https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend", "Thank you @lhoestq for finding this repo. I validated that it can distribute downloading jobs with Spark to arbitrary cluster worker nodes evenly with `n_jobs=-1`.\r\n\r\nFor the API, I think it makes sense to define it as\r\n```python\r\nload_dataset(..., parallel_backend=<str>)\r\n```\r\nwhere `parallel_backend` can be `spark`, `multiprocessing`, and potentially other supported joblib backends including `ray` and `dask`.\r\n\r\nImplementation-wise, do you think it is better to just use `joblib` for `spark` backend in `map_nested`, or also migrate the `multiprocessing.Pool` code to use `joblib`?", "Hello @lhoestq, I wanted to follow up on my previous comment with some prototyping code that demonstrates how `map_nested` would be like if we unify `multiprocessing` and `spark` with `joblib`. The snippet hasn't hashed out the details such as dealing with `tqdm` yet.\r\n\r\nIn terms of API, the way of using multiprocessing is still the same; for Spark, the user sets `parallel_backend='spark'` can reuse the `num_proc` argument to pass in the number of executors, or preferably, just set `num_proc=-1` and joblib is able to decide it (I've validated it by running it on a Spark cluster).\r\n\r\n```python\r\ndef map_nested(\r\n # ... same args\r\n parallel_backend: Optional[str] = None, # proposed new argument\r\n):\r\n\r\n # ... same code\r\n\r\n # allow user to specify num_proc=-1, so that joblib will optimize it\r\n if (num_proc <= 1 and num_proc != -1) or len(iterable) < parallel_min_length:\r\n # same code\r\n mapped = [\r\n _single_map_nested((function, obj, types, None, True, None))\r\n for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n ]\r\n else:\r\n if not parallel_backend:\r\n parallel_backend = 'loky' # 'loky' is joblib's own implementation of robust multiprocessing\r\n \r\n n_jobs = min(num_proc, len(iterable))\r\n\r\n if parallel_backend == 'spark':\r\n n_jobs = -1 # 'loky' is joblib's own implementation of robust multiprocessing\r\n from joblibspark import register_spark\r\n register_spark()\r\n\r\n # parallelized with the same API\r\n with joblib.parallel_backend(parallel_backend, n_jobs=n_jobs):\r\n mapped = joblib.Parallel()(\r\n joblib.delayed(\r\n _single_map_nested((function, obj, types, None, True, None))\r\n )(obj) for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n )\r\n \r\n # ... same code\r\n```\r\nWe can always `joblib` for Spark and other distributed backends such as Ray if people want to support them later. It's worth noting that some distributed backends do not currently have `joblib` implementations.\r\n\r\nI would appreciate your thoughts on this proposed new API. We can also discuss the pros and cons of migrating the `multiprocessing` code to `joblib` later.", "Nice ! It should be quite easy to make the change then :)\r\n\r\nI think adding spark support can actually be less than 20 lines of code and would roughly require one line of code to change in map_nested:\r\n\r\nMaybe we can define a new `datasets.parallel` submodule that has the `parallel_backend()` context manager and a `parallel_map()` function that uses `Pool.map` by default and `joblib` otherwise.\r\n\r\n`joblib` would be an optional dependency, and `joblib-spark` as well.\r\n\r\nThen whenever someone wants to use Spark, they can do something like this (similar to scikit-learn parallel_backend):\r\n\r\n```python\r\nfrom datasets.parallel import parallel_backend\r\n\r\nwith parallel_backend(\"spark\"):\r\n ds = load_dataset(...)\r\n```\r\n\r\nWhat do you think ?", "Although until we've switched to all the steps in `load_dataset` to use `datasets.parallel`, I would require the user to explicitly say which step should use Spark. Maybe something like this, but I'm not sure yet:\r\n\r\n```python\r\nfrom datasets.parallel import parallel_backend\r\n\r\nwith parallel_backend(\"spark\", steps=[\"download\"]):\r\n ds = load_dataset(...)\r\n```\r\nfor now some steps can be NotImplemented:\r\n```python\r\nfrom datasets.parallel import parallel_backend\r\n\r\nwith parallel_backend(\"spark\", steps=[\"download\", \"prepare\"]):\r\n# NotImplementedError: the \"prepare\" step that converts the raw data files to Arrow is not compatible with the \"spark\" backend yet\r\n```\r\n\r\nThis way we can progressively roll out Spark support for the other data loading/processing steps without breaking changes between `datasets` versions", "Sounds good! I like the partial rollout idea.\r\nSo for example `map_nested` would call `parallel_map` under the hood if `num_proc != 1` or `parallel_backend` is specified right?\r\nI would be happy to start a PR next week to explore this path.", "Awesome ! I think map_nested can call `parallel_map()` if num_proc > 1, and `parallel_map` can be responsible to use Pool.map by default or joblib." ]
"2023-04-27T00:16:11Z"
"2023-05-25T14:11:41Z"
null
CONTRIBUTOR
null
null
null
### Feature request When calling `load_dataset` for datasets that have multiple files, support using Spark to distribute the downloading and processing job to worker nodes when `cache_dir` is a cloud file system shared among nodes. ```python load_dataset(..., use_spark=True) ``` ### Motivation Further speed up `dl_manager.download` and `_prepare_split` by distributing the workloads to worker nodes. ### Your contribution I can submit a PR to support this.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5798/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5798/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/4934
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4934/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4934/comments
https://api.github.com/repos/huggingface/datasets/issues/4934/events
https://github.com/huggingface/datasets/issues/4934
1,363,034,253
I_kwDODunzps5RPkCN
4,934
Dataset Viewer issue for indonesian-nlp/librivox-indonesia
{ "avatar_url": "https://avatars.githubusercontent.com/u/7669893?v=4", "events_url": "https://api.github.com/users/cahya-wirawan/events{/privacy}", "followers_url": "https://api.github.com/users/cahya-wirawan/followers", "following_url": "https://api.github.com/users/cahya-wirawan/following{/other_user}", "gists_url": "https://api.github.com/users/cahya-wirawan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cahya-wirawan", "id": 7669893, "login": "cahya-wirawan", "node_id": "MDQ6VXNlcjc2Njk4OTM=", "organizations_url": "https://api.github.com/users/cahya-wirawan/orgs", "received_events_url": "https://api.github.com/users/cahya-wirawan/received_events", "repos_url": "https://api.github.com/users/cahya-wirawan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cahya-wirawan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cahya-wirawan/subscriptions", "type": "User", "url": "https://api.github.com/users/cahya-wirawan" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "The error is not related to the dataset viewer. I'm having a look...", "Thanks @albertvillanova for checking the issue. Actually, I can use the dataset like following:\r\n```\r\n>>> from datasets import load_dataset\r\n>>> ds=load_dataset(\"indonesian-nlp/librivox-indonesia\")\r\nNo config specified, defaulting to: librivox-indonesia/all\r\nReusing dataset librivox-indonesia (/root/.cache/huggingface/datasets/indonesian-nlp___librivox-indonesia/all/1.0.0/9a934a42bfb53dc103003d191618443b8a786bea2bd7bb0bc2d9454b8494521e)\r\n100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 500.87it/s]\r\n>>> ds\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['path', 'language', 'reader', 'sentence', 'audio'],\r\n num_rows: 7815\r\n })\r\n})\r\n>>> ds[\"train\"][0]\r\n{'path': '/root/.cache/huggingface/datasets/downloads/extracted/c8ead52370fa28feb64643ea9d05cd7d820192dc8a1700d665ec45ec7624f5a3/librivox-indonesia/sundanese/universal-declaration-of-human-rights/human_rights_un_sun_brc_0000.mp3', 'language': 'sun', 'reader': '3174', 'sentence': 'pernyataan umum ngeunaan hak hak asasi manusa sakabeh manusa', 'audio': {'path': '/root/.cache/huggingface/datasets/downloads/extracted/c8ead52370fa28feb64643ea9d05cd7d820192dc8a1700d665ec45ec7624f5a3/librivox-indonesia/sundanese/universal-declaration-of-human-rights/human_rights_un_sun_brc_0000.mp3', 'array': array([ 0. , 0. , 0. , ..., -0.02419001,\r\n -0.01957154, -0.01502833], dtype=float32), 'sampling_rate': 44100}}\r\n\r\n```\r\nIt would be just nice if I also can see it using dataset viewer.", "Yes, the issue arises when streaming (that is used by the viewer): your script does not support streaming and to support it in this case there are some subtleties that we are explaining better in our docs in a work-in progress pull request:\r\n- #4872\r\n\r\nJust note that when streaming, `local_extracted_archive` is None, and this code line generates the error:\r\n```python\r\nfilepath = local_extracted_archive + \"/librivox-indonesia/audio_transcription.csv\"\r\n```\r\n\r\nFor a proper implementation, you could have a look at: https://huggingface.co/datasets/common_voice/blob/main/common_voice.py\r\n\r\nYou can test your script locally by passing `streaming=True` to `load_dataset`:\r\n```python\r\nds = load_dataset(\"indonesian-nlp/librivox-indonesia\", split=\"train\", streaming=True); item = next(iter(ds)); item\r\n```", "Great, I will have a look and update the script. Thanks.", "Hi @albertvillanova , I just add the streaming functionality and it works in the first try :-) Thanks a lot!", "Awesome!!! :hugs: " ]
"2022-09-06T10:03:23Z"
"2022-09-06T12:46:40Z"
"2022-09-06T12:46:40Z"
CONTRIBUTOR
null
null
null
### Link https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia ### Description I created a new speech dataset https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia, but the dataset preview doesn't work with following error message: ``` Server error Status code: 400 Exception: TypeError Message: unsupported operand type(s) for +: 'NoneType' and 'str' ``` Please help, I am not sure what the problem here is. Thanks a lot. ### Owner Yes
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4934/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4934/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5455
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5455/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5455/comments
https://api.github.com/repos/huggingface/datasets/issues/5455/events
https://github.com/huggingface/datasets/pull/5455
1,553,040,080
PR_kwDODunzps5IUvAZ
5,455
Single TQDM bar in multi-proc map
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008372 / 0.011353 (-0.002981) | 0.004658 / 0.011008 (-0.006350) | 0.102005 / 0.038508 (0.063497) | 0.029030 / 0.023109 (0.005920) | 0.296968 / 0.275898 (0.021070) | 0.364898 / 0.323480 (0.041418) | 0.006899 / 0.007986 (-0.001087) | 0.003410 / 0.004328 (-0.000919) | 0.079705 / 0.004250 (0.075455) | 0.034265 / 0.037052 (-0.002787) | 0.305695 / 0.258489 (0.047206) | 0.343275 / 0.293841 (0.049434) | 0.033783 / 0.128546 (-0.094763) | 0.011604 / 0.075646 (-0.064042) | 0.322577 / 0.419271 (-0.096694) | 0.040540 / 0.043533 (-0.002993) | 0.299176 / 0.255139 (0.044037) | 0.333157 / 0.283200 (0.049957) | 0.087460 / 0.141683 (-0.054223) | 1.494392 / 1.452155 (0.042237) | 1.539580 / 1.492716 (0.046863) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.176206 / 0.018006 (0.158200) | 0.413702 / 0.000490 (0.413212) | 0.002625 / 0.000200 (0.002425) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023886 / 0.037411 (-0.013525) | 0.099758 / 0.014526 (0.085232) | 0.104349 / 0.176557 (-0.072208) | 0.147138 / 0.737135 (-0.589998) | 0.108682 / 0.296338 (-0.187657) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411957 / 0.215209 (0.196748) | 4.110004 / 2.077655 (2.032349) | 1.820951 / 1.504120 (0.316831) | 1.629726 / 1.541195 (0.088532) | 1.672573 / 1.468490 (0.204083) | 0.686627 / 4.584777 (-3.898150) | 3.382665 / 3.745712 (-0.363047) | 2.875908 / 5.269862 (-2.393954) | 1.475331 / 4.565676 (-3.090345) | 0.081353 / 0.424275 (-0.342922) | 0.012521 / 0.007607 (0.004914) | 0.516226 / 0.226044 (0.290182) | 5.157658 / 2.268929 (2.888729) | 2.302012 / 55.444624 (-53.142612) | 1.950831 / 6.876477 (-4.925646) | 1.962081 / 2.142072 (-0.179992) | 0.800007 / 4.805227 (-4.005221) | 0.148462 / 6.500664 (-6.352202) | 0.064448 / 0.075469 (-0.011021) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.227977 / 1.841788 (-0.613810) | 13.776087 / 8.074308 (5.701779) | 13.749825 / 10.191392 (3.558433) | 0.137034 / 0.680424 (-0.543390) | 0.028461 / 0.534201 (-0.505740) | 0.392335 / 0.579283 (-0.186948) | 0.397404 / 0.434364 (-0.036960) | 0.450831 / 0.540337 (-0.089507) | 0.533716 / 1.386936 (-0.853220) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006883 / 0.011353 (-0.004470) | 0.004625 / 0.011008 (-0.006383) | 0.099039 / 0.038508 (0.060531) | 0.028068 / 0.023109 (0.004958) | 0.419988 / 0.275898 (0.144090) | 0.449543 / 0.323480 (0.126063) | 0.005232 / 0.007986 (-0.002753) | 0.003527 / 0.004328 (-0.000801) | 0.076308 / 0.004250 (0.072057) | 0.040523 / 0.037052 (0.003471) | 0.420165 / 0.258489 (0.161676) | 0.463220 / 0.293841 (0.169379) | 0.032368 / 0.128546 (-0.096178) | 0.011784 / 0.075646 (-0.063863) | 0.320675 / 0.419271 (-0.098597) | 0.041861 / 0.043533 (-0.001672) | 0.424903 / 0.255139 (0.169764) | 0.443528 / 0.283200 (0.160328) | 0.090869 / 0.141683 (-0.050814) | 1.504757 / 1.452155 (0.052602) | 1.557824 / 1.492716 (0.065108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224020 / 0.018006 (0.206014) | 0.404090 / 0.000490 (0.403601) | 0.000403 / 0.000200 (0.000203) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024556 / 0.037411 (-0.012855) | 0.101280 / 0.014526 (0.086754) | 0.108017 / 0.176557 (-0.068540) | 0.146679 / 0.737135 (-0.590456) | 0.111468 / 0.296338 (-0.184870) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478955 / 0.215209 (0.263746) | 4.769628 / 2.077655 (2.691973) | 2.473238 / 1.504120 (0.969118) | 2.263588 / 1.541195 (0.722393) | 2.285425 / 1.468490 (0.816935) | 0.699051 / 4.584777 (-3.885726) | 3.390495 / 3.745712 (-0.355217) | 1.858569 / 5.269862 (-3.411293) | 1.162081 / 4.565676 (-3.403596) | 0.083294 / 0.424275 (-0.340981) | 0.012410 / 0.007607 (0.004803) | 0.580786 / 0.226044 (0.354741) | 5.866868 / 2.268929 (3.597940) | 2.944358 / 55.444624 (-52.500266) | 2.596241 / 6.876477 (-4.280235) | 2.664464 / 2.142072 (0.522392) | 0.806751 / 4.805227 (-3.998476) | 0.152389 / 6.500664 (-6.348275) | 0.066945 / 0.075469 (-0.008524) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290545 / 1.841788 (-0.551243) | 14.005727 / 8.074308 (5.931419) | 14.478951 / 10.191392 (4.287559) | 0.127488 / 0.680424 (-0.552935) | 0.016929 / 0.534201 (-0.517272) | 0.378380 / 0.579283 (-0.200904) | 0.387499 / 0.434364 (-0.046865) | 0.440816 / 0.540337 (-0.099522) | 0.525794 / 1.386936 (-0.861142) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#07549c6fcb2dced59d7614b4b8264d54ef573407 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008704 / 0.011353 (-0.002649) | 0.004474 / 0.011008 (-0.006534) | 0.101720 / 0.038508 (0.063212) | 0.030426 / 0.023109 (0.007317) | 0.298944 / 0.275898 (0.023046) | 0.371491 / 0.323480 (0.048011) | 0.007042 / 0.007986 (-0.000944) | 0.003479 / 0.004328 (-0.000850) | 0.078086 / 0.004250 (0.073835) | 0.037014 / 0.037052 (-0.000038) | 0.312964 / 0.258489 (0.054475) | 0.351251 / 0.293841 (0.057410) | 0.033286 / 0.128546 (-0.095260) | 0.011468 / 0.075646 (-0.064179) | 0.321784 / 0.419271 (-0.097488) | 0.040700 / 0.043533 (-0.002832) | 0.303799 / 0.255139 (0.048660) | 0.336982 / 0.283200 (0.053782) | 0.089448 / 0.141683 (-0.052235) | 1.462430 / 1.452155 (0.010275) | 1.524448 / 1.492716 (0.031732) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178390 / 0.018006 (0.160384) | 0.402474 / 0.000490 (0.401984) | 0.002697 / 0.000200 (0.002497) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022679 / 0.037411 (-0.014733) | 0.097759 / 0.014526 (0.083234) | 0.105102 / 0.176557 (-0.071454) | 0.140720 / 0.737135 (-0.596415) | 0.109119 / 0.296338 (-0.187219) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414153 / 0.215209 (0.198944) | 4.131799 / 2.077655 (2.054144) | 1.852325 / 1.504120 (0.348205) | 1.646955 / 1.541195 (0.105760) | 1.662880 / 1.468490 (0.194390) | 0.693823 / 4.584777 (-3.890954) | 3.378843 / 3.745712 (-0.366869) | 1.861324 / 5.269862 (-3.408538) | 1.156916 / 4.565676 (-3.408761) | 0.082385 / 0.424275 (-0.341890) | 0.012166 / 0.007607 (0.004559) | 0.528690 / 0.226044 (0.302646) | 5.286388 / 2.268929 (3.017459) | 2.319941 / 55.444624 (-53.124684) | 1.959462 / 6.876477 (-4.917014) | 1.995102 / 2.142072 (-0.146970) | 0.817158 / 4.805227 (-3.988069) | 0.149479 / 6.500664 (-6.351185) | 0.065668 / 0.075469 (-0.009801) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.240228 / 1.841788 (-0.601560) | 13.770357 / 8.074308 (5.696048) | 13.940638 / 10.191392 (3.749246) | 0.152589 / 0.680424 (-0.527835) | 0.028498 / 0.534201 (-0.505703) | 0.392579 / 0.579283 (-0.186704) | 0.402843 / 0.434364 (-0.031521) | 0.455429 / 0.540337 (-0.084909) | 0.541090 / 1.386936 (-0.845846) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006692 / 0.011353 (-0.004661) | 0.004514 / 0.011008 (-0.006495) | 0.097058 / 0.038508 (0.058550) | 0.027780 / 0.023109 (0.004671) | 0.415806 / 0.275898 (0.139908) | 0.443079 / 0.323480 (0.119599) | 0.005181 / 0.007986 (-0.002805) | 0.003408 / 0.004328 (-0.000921) | 0.075263 / 0.004250 (0.071013) | 0.038169 / 0.037052 (0.001116) | 0.417292 / 0.258489 (0.158803) | 0.461875 / 0.293841 (0.168034) | 0.032280 / 0.128546 (-0.096266) | 0.011571 / 0.075646 (-0.064075) | 0.319091 / 0.419271 (-0.100181) | 0.048295 / 0.043533 (0.004762) | 0.423619 / 0.255139 (0.168480) | 0.435064 / 0.283200 (0.151864) | 0.094869 / 0.141683 (-0.046814) | 1.523000 / 1.452155 (0.070846) | 1.583097 / 1.492716 (0.090381) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214326 / 0.018006 (0.196320) | 0.391623 / 0.000490 (0.391134) | 0.004602 / 0.000200 (0.004403) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024306 / 0.037411 (-0.013106) | 0.101178 / 0.014526 (0.086652) | 0.108504 / 0.176557 (-0.068053) | 0.144114 / 0.737135 (-0.593022) | 0.111088 / 0.296338 (-0.185250) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472573 / 0.215209 (0.257364) | 4.748929 / 2.077655 (2.671274) | 2.441602 / 1.504120 (0.937482) | 2.238841 / 1.541195 (0.697647) | 2.303303 / 1.468490 (0.834813) | 0.696618 / 4.584777 (-3.888159) | 3.373867 / 3.745712 (-0.371845) | 2.809009 / 5.269862 (-2.460852) | 1.337240 / 4.565676 (-3.228437) | 0.082682 / 0.424275 (-0.341593) | 0.012834 / 0.007607 (0.005227) | 0.569686 / 0.226044 (0.343642) | 5.723407 / 2.268929 (3.454478) | 2.882944 / 55.444624 (-52.561680) | 2.543530 / 6.876477 (-4.332947) | 2.581856 / 2.142072 (0.439784) | 0.802353 / 4.805227 (-4.002874) | 0.149947 / 6.500664 (-6.350717) | 0.065865 / 0.075469 (-0.009604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.282146 / 1.841788 (-0.559642) | 13.831344 / 8.074308 (5.757036) | 14.081550 / 10.191392 (3.890157) | 0.141735 / 0.680424 (-0.538689) | 0.016677 / 0.534201 (-0.517524) | 0.378967 / 0.579283 (-0.200316) | 0.383775 / 0.434364 (-0.050589) | 0.432892 / 0.540337 (-0.107446) | 0.518042 / 1.386936 (-0.868894) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#01b4a5a18b56fa7b648b0f131f6b5568b1fd436a \"CML watermark\")\n", "Omg I love this ! cc @TevenLeScao @thomasw21 this will save your terminals from infinite streams of progress bars", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008680 / 0.011353 (-0.002673) | 0.004597 / 0.011008 (-0.006411) | 0.101154 / 0.038508 (0.062646) | 0.029831 / 0.023109 (0.006722) | 0.300619 / 0.275898 (0.024721) | 0.358259 / 0.323480 (0.034779) | 0.007284 / 0.007986 (-0.000701) | 0.003511 / 0.004328 (-0.000817) | 0.078805 / 0.004250 (0.074555) | 0.037192 / 0.037052 (0.000140) | 0.307241 / 0.258489 (0.048752) | 0.354648 / 0.293841 (0.060807) | 0.033696 / 0.128546 (-0.094851) | 0.011660 / 0.075646 (-0.063986) | 0.324266 / 0.419271 (-0.095006) | 0.043393 / 0.043533 (-0.000140) | 0.297503 / 0.255139 (0.042364) | 0.326037 / 0.283200 (0.042838) | 0.091165 / 0.141683 (-0.050517) | 1.479970 / 1.452155 (0.027816) | 1.508507 / 1.492716 (0.015791) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.179995 / 0.018006 (0.161989) | 0.464282 / 0.000490 (0.463793) | 0.003953 / 0.000200 (0.003753) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022696 / 0.037411 (-0.014715) | 0.099510 / 0.014526 (0.084984) | 0.103741 / 0.176557 (-0.072816) | 0.137837 / 0.737135 (-0.599299) | 0.108776 / 0.296338 (-0.187563) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417034 / 0.215209 (0.201825) | 4.183479 / 2.077655 (2.105824) | 1.855329 / 1.504120 (0.351209) | 1.660675 / 1.541195 (0.119481) | 1.723936 / 1.468490 (0.255446) | 0.687815 / 4.584777 (-3.896962) | 3.331280 / 3.745712 (-0.414432) | 2.821430 / 5.269862 (-2.448432) | 1.542394 / 4.565676 (-3.023283) | 0.081665 / 0.424275 (-0.342610) | 0.012483 / 0.007607 (0.004875) | 0.524758 / 0.226044 (0.298713) | 5.277285 / 2.268929 (3.008357) | 2.278067 / 55.444624 (-53.166557) | 1.923232 / 6.876477 (-4.953245) | 1.978645 / 2.142072 (-0.163428) | 0.806225 / 4.805227 (-3.999002) | 0.147568 / 6.500664 (-6.353096) | 0.064206 / 0.075469 (-0.011263) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.175079 / 1.841788 (-0.666708) | 13.677443 / 8.074308 (5.603135) | 14.064103 / 10.191392 (3.872711) | 0.167462 / 0.680424 (-0.512962) | 0.028677 / 0.534201 (-0.505524) | 0.399090 / 0.579283 (-0.180193) | 0.398930 / 0.434364 (-0.035433) | 0.461604 / 0.540337 (-0.078733) | 0.540978 / 1.386936 (-0.845958) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006846 / 0.011353 (-0.004507) | 0.004452 / 0.011008 (-0.006556) | 0.076169 / 0.038508 (0.037661) | 0.028290 / 0.023109 (0.005181) | 0.341105 / 0.275898 (0.065207) | 0.381465 / 0.323480 (0.057986) | 0.005038 / 0.007986 (-0.002948) | 0.003298 / 0.004328 (-0.001031) | 0.075794 / 0.004250 (0.071544) | 0.039225 / 0.037052 (0.002173) | 0.342995 / 0.258489 (0.084506) | 0.384878 / 0.293841 (0.091037) | 0.031766 / 0.128546 (-0.096780) | 0.011597 / 0.075646 (-0.064049) | 0.084849 / 0.419271 (-0.334423) | 0.041795 / 0.043533 (-0.001737) | 0.341770 / 0.255139 (0.086631) | 0.383142 / 0.283200 (0.099942) | 0.088854 / 0.141683 (-0.052829) | 1.465116 / 1.452155 (0.012961) | 1.566888 / 1.492716 (0.074171) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225129 / 0.018006 (0.207123) | 0.394290 / 0.000490 (0.393801) | 0.000397 / 0.000200 (0.000197) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025492 / 0.037411 (-0.011919) | 0.100494 / 0.014526 (0.085968) | 0.110587 / 0.176557 (-0.065969) | 0.142715 / 0.737135 (-0.594420) | 0.110962 / 0.296338 (-0.185376) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437240 / 0.215209 (0.222031) | 4.379191 / 2.077655 (2.301536) | 2.055059 / 1.504120 (0.550939) | 1.844643 / 1.541195 (0.303448) | 1.914678 / 1.468490 (0.446188) | 0.695607 / 4.584777 (-3.889170) | 3.353845 / 3.745712 (-0.391867) | 1.837403 / 5.269862 (-3.432459) | 1.155518 / 4.565676 (-3.410158) | 0.082753 / 0.424275 (-0.341523) | 0.012812 / 0.007607 (0.005205) | 0.537304 / 0.226044 (0.311260) | 5.387425 / 2.268929 (3.118497) | 2.506986 / 55.444624 (-52.937638) | 2.159031 / 6.876477 (-4.717445) | 2.187844 / 2.142072 (0.045772) | 0.796880 / 4.805227 (-4.008347) | 0.151850 / 6.500664 (-6.348815) | 0.067577 / 0.075469 (-0.007892) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257779 / 1.841788 (-0.584009) | 13.968842 / 8.074308 (5.894534) | 13.544220 / 10.191392 (3.352828) | 0.149962 / 0.680424 (-0.530462) | 0.016875 / 0.534201 (-0.517326) | 0.394714 / 0.579283 (-0.184570) | 0.387845 / 0.434364 (-0.046519) | 0.481674 / 0.540337 (-0.058664) | 0.569820 / 1.386936 (-0.817116) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#71e50283422a93e805ea76722ce2520d1aae39c2 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009745 / 0.011353 (-0.001607) | 0.005307 / 0.011008 (-0.005702) | 0.104230 / 0.038508 (0.065722) | 0.039745 / 0.023109 (0.016635) | 0.306102 / 0.275898 (0.030204) | 0.384390 / 0.323480 (0.060910) | 0.008265 / 0.007986 (0.000279) | 0.005516 / 0.004328 (0.001187) | 0.076023 / 0.004250 (0.071772) | 0.048266 / 0.037052 (0.011213) | 0.315380 / 0.258489 (0.056891) | 0.365735 / 0.293841 (0.071895) | 0.038222 / 0.128546 (-0.090324) | 0.012397 / 0.075646 (-0.063249) | 0.348964 / 0.419271 (-0.070307) | 0.047668 / 0.043533 (0.004135) | 0.301037 / 0.255139 (0.045898) | 0.322982 / 0.283200 (0.039783) | 0.109307 / 0.141683 (-0.032376) | 1.420777 / 1.452155 (-0.031378) | 1.468290 / 1.492716 (-0.024426) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.262386 / 0.018006 (0.244380) | 0.557151 / 0.000490 (0.556661) | 0.000352 / 0.000200 (0.000152) | 0.000062 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029508 / 0.037411 (-0.007903) | 0.113960 / 0.014526 (0.099434) | 0.123176 / 0.176557 (-0.053381) | 0.161928 / 0.737135 (-0.575207) | 0.129196 / 0.296338 (-0.167142) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407051 / 0.215209 (0.191842) | 4.072550 / 2.077655 (1.994895) | 1.899809 / 1.504120 (0.395689) | 1.751981 / 1.541195 (0.210786) | 1.841361 / 1.468490 (0.372871) | 0.713908 / 4.584777 (-3.870869) | 3.703339 / 3.745712 (-0.042373) | 2.091283 / 5.269862 (-3.178578) | 1.323810 / 4.565676 (-3.241866) | 0.084691 / 0.424275 (-0.339584) | 0.012685 / 0.007607 (0.005078) | 0.511301 / 0.226044 (0.285257) | 5.109741 / 2.268929 (2.840813) | 2.315073 / 55.444624 (-53.129551) | 2.012746 / 6.876477 (-4.863731) | 2.160074 / 2.142072 (0.018002) | 0.853025 / 4.805227 (-3.952202) | 0.165301 / 6.500664 (-6.335363) | 0.062244 / 0.075469 (-0.013225) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.219727 / 1.841788 (-0.622061) | 15.319675 / 8.074308 (7.245367) | 13.100883 / 10.191392 (2.909491) | 0.173451 / 0.680424 (-0.506973) | 0.029173 / 0.534201 (-0.505028) | 0.440162 / 0.579283 (-0.139122) | 0.429771 / 0.434364 (-0.004593) | 0.518689 / 0.540337 (-0.021648) | 0.608590 / 1.386936 (-0.778346) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007839 / 0.011353 (-0.003514) | 0.005409 / 0.011008 (-0.005599) | 0.076468 / 0.038508 (0.037960) | 0.036568 / 0.023109 (0.013459) | 0.337568 / 0.275898 (0.061670) | 0.379353 / 0.323480 (0.055873) | 0.006208 / 0.007986 (-0.001778) | 0.005971 / 0.004328 (0.001643) | 0.073765 / 0.004250 (0.069514) | 0.056609 / 0.037052 (0.019556) | 0.344578 / 0.258489 (0.086089) | 0.405249 / 0.293841 (0.111408) | 0.037652 / 0.128546 (-0.090894) | 0.012549 / 0.075646 (-0.063097) | 0.087086 / 0.419271 (-0.332186) | 0.056669 / 0.043533 (0.013136) | 0.334121 / 0.255139 (0.078983) | 0.354582 / 0.283200 (0.071383) | 0.113293 / 0.141683 (-0.028390) | 1.437327 / 1.452155 (-0.014828) | 1.574400 / 1.492716 (0.081684) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.325235 / 0.018006 (0.307229) | 0.535405 / 0.000490 (0.534915) | 0.014119 / 0.000200 (0.013919) | 0.000278 / 0.000054 (0.000224) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030826 / 0.037411 (-0.006585) | 0.114077 / 0.014526 (0.099552) | 0.128799 / 0.176557 (-0.047758) | 0.172164 / 0.737135 (-0.564971) | 0.133665 / 0.296338 (-0.162673) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430898 / 0.215209 (0.215689) | 4.285507 / 2.077655 (2.207853) | 2.089767 / 1.504120 (0.585647) | 1.899457 / 1.541195 (0.358262) | 2.042875 / 1.468490 (0.574385) | 0.690575 / 4.584777 (-3.894202) | 3.815905 / 3.745712 (0.070192) | 3.371085 / 5.269862 (-1.898776) | 1.865748 / 4.565676 (-2.699929) | 0.086678 / 0.424275 (-0.337597) | 0.013172 / 0.007607 (0.005565) | 0.552038 / 0.226044 (0.325994) | 5.275093 / 2.268929 (3.006165) | 2.561102 / 55.444624 (-52.883522) | 2.224235 / 6.876477 (-4.652242) | 2.330315 / 2.142072 (0.188243) | 0.845163 / 4.805227 (-3.960064) | 0.170675 / 6.500664 (-6.329989) | 0.068446 / 0.075469 (-0.007023) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.261213 / 1.841788 (-0.580575) | 15.354959 / 8.074308 (7.280651) | 15.034302 / 10.191392 (4.842910) | 0.146704 / 0.680424 (-0.533720) | 0.017986 / 0.534201 (-0.516215) | 0.425978 / 0.579283 (-0.153305) | 0.421806 / 0.434364 (-0.012558) | 0.494844 / 0.540337 (-0.045493) | 0.587870 / 1.386936 (-0.799066) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0933901bb757e9a386095aef0fb11de9f9a04085 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012765 / 0.011353 (0.001412) | 0.006429 / 0.011008 (-0.004579) | 0.133669 / 0.038508 (0.095161) | 0.041420 / 0.023109 (0.018311) | 0.419990 / 0.275898 (0.144092) | 0.505218 / 0.323480 (0.181738) | 0.010189 / 0.007986 (0.002204) | 0.005134 / 0.004328 (0.000805) | 0.100890 / 0.004250 (0.096640) | 0.045639 / 0.037052 (0.008587) | 0.440593 / 0.258489 (0.182103) | 0.476966 / 0.293841 (0.183125) | 0.059270 / 0.128546 (-0.069276) | 0.018625 / 0.075646 (-0.057021) | 0.444957 / 0.419271 (0.025686) | 0.060669 / 0.043533 (0.017136) | 0.415373 / 0.255139 (0.160234) | 0.461810 / 0.283200 (0.178610) | 0.116119 / 0.141683 (-0.025564) | 1.873691 / 1.452155 (0.421536) | 1.939891 / 1.492716 (0.447175) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259529 / 0.018006 (0.241523) | 0.587213 / 0.000490 (0.586723) | 0.003729 / 0.000200 (0.003529) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032064 / 0.037411 (-0.005347) | 0.140228 / 0.014526 (0.125702) | 0.147139 / 0.176557 (-0.029417) | 0.193731 / 0.737135 (-0.543405) | 0.162126 / 0.296338 (-0.134213) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639262 / 0.215209 (0.424053) | 6.496491 / 2.077655 (4.418836) | 2.602044 / 1.504120 (1.097924) | 2.245891 / 1.541195 (0.704696) | 2.301321 / 1.468490 (0.832831) | 1.234088 / 4.584777 (-3.350689) | 5.883315 / 3.745712 (2.137603) | 3.166902 / 5.269862 (-2.102959) | 2.258279 / 4.565676 (-2.307398) | 0.146203 / 0.424275 (-0.278072) | 0.015490 / 0.007607 (0.007883) | 0.800188 / 0.226044 (0.574144) | 8.150866 / 2.268929 (5.881938) | 3.419508 / 55.444624 (-52.025117) | 2.712174 / 6.876477 (-4.164302) | 2.805059 / 2.142072 (0.662987) | 1.421047 / 4.805227 (-3.384180) | 0.254274 / 6.500664 (-6.246390) | 0.083886 / 0.075469 (0.008417) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.651962 / 1.841788 (-0.189826) | 19.453202 / 8.074308 (11.378894) | 24.643881 / 10.191392 (14.452489) | 0.263612 / 0.680424 (-0.416812) | 0.046913 / 0.534201 (-0.487288) | 0.579861 / 0.579283 (0.000578) | 0.695137 / 0.434364 (0.260773) | 0.705479 / 0.540337 (0.165142) | 0.806073 / 1.386936 (-0.580863) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010384 / 0.011353 (-0.000969) | 0.007460 / 0.011008 (-0.003548) | 0.107830 / 0.038508 (0.069322) | 0.036792 / 0.023109 (0.013682) | 0.469585 / 0.275898 (0.193687) | 0.521278 / 0.323480 (0.197798) | 0.007472 / 0.007986 (-0.000513) | 0.007774 / 0.004328 (0.003446) | 0.105405 / 0.004250 (0.101154) | 0.053732 / 0.037052 (0.016680) | 0.486299 / 0.258489 (0.227810) | 0.537067 / 0.293841 (0.243226) | 0.053378 / 0.128546 (-0.075168) | 0.022018 / 0.075646 (-0.053628) | 0.127765 / 0.419271 (-0.291507) | 0.063844 / 0.043533 (0.020311) | 0.479724 / 0.255139 (0.224585) | 0.511243 / 0.283200 (0.228043) | 0.123223 / 0.141683 (-0.018460) | 1.934167 / 1.452155 (0.482013) | 2.003168 / 1.492716 (0.510451) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227670 / 0.018006 (0.209664) | 0.609125 / 0.000490 (0.608635) | 0.004408 / 0.000200 (0.004208) | 0.000147 / 0.000054 (0.000092) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035905 / 0.037411 (-0.001506) | 0.142207 / 0.014526 (0.127681) | 0.154749 / 0.176557 (-0.021808) | 0.216191 / 0.737135 (-0.520944) | 0.156577 / 0.296338 (-0.139761) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.665085 / 0.215209 (0.449876) | 6.510923 / 2.077655 (4.433269) | 2.902438 / 1.504120 (1.398318) | 2.561427 / 1.541195 (1.020232) | 2.669556 / 1.468490 (1.201066) | 1.190340 / 4.584777 (-3.394437) | 5.933066 / 3.745712 (2.187354) | 5.627784 / 5.269862 (0.357922) | 2.971922 / 4.565676 (-1.593755) | 0.140884 / 0.424275 (-0.283391) | 0.015382 / 0.007607 (0.007775) | 0.810441 / 0.226044 (0.584396) | 8.255538 / 2.268929 (5.986609) | 3.819014 / 55.444624 (-51.625611) | 3.222479 / 6.876477 (-3.653998) | 3.181700 / 2.142072 (1.039627) | 1.483403 / 4.805227 (-3.321824) | 0.262726 / 6.500664 (-6.237939) | 0.090252 / 0.075469 (0.014783) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748566 / 1.841788 (-0.093222) | 19.566894 / 8.074308 (11.492586) | 24.382155 / 10.191392 (14.190763) | 0.260118 / 0.680424 (-0.420305) | 0.028725 / 0.534201 (-0.505476) | 0.564875 / 0.579283 (-0.014408) | 0.666708 / 0.434364 (0.232344) | 0.691165 / 0.540337 (0.150827) | 0.837061 / 1.386936 (-0.549875) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fe6bf908e9f12e0b69b4059c392da8264881525d \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010098 / 0.011353 (-0.001255) | 0.005797 / 0.011008 (-0.005211) | 0.111262 / 0.038508 (0.072754) | 0.039687 / 0.023109 (0.016578) | 0.331081 / 0.275898 (0.055183) | 0.395878 / 0.323480 (0.072398) | 0.009244 / 0.007986 (0.001259) | 0.004498 / 0.004328 (0.000170) | 0.086129 / 0.004250 (0.081879) | 0.046662 / 0.037052 (0.009610) | 0.361926 / 0.258489 (0.103437) | 0.386155 / 0.293841 (0.092314) | 0.043657 / 0.128546 (-0.084889) | 0.013545 / 0.075646 (-0.062101) | 0.383735 / 0.419271 (-0.035537) | 0.055727 / 0.043533 (0.012194) | 0.355356 / 0.255139 (0.100217) | 0.358749 / 0.283200 (0.075550) | 0.123219 / 0.141683 (-0.018463) | 1.707982 / 1.452155 (0.255828) | 1.773342 / 1.492716 (0.280626) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238902 / 0.018006 (0.220896) | 0.495525 / 0.000490 (0.495036) | 0.001742 / 0.000200 (0.001542) | 0.000096 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031276 / 0.037411 (-0.006135) | 0.124286 / 0.014526 (0.109760) | 0.136236 / 0.176557 (-0.040321) | 0.180257 / 0.737135 (-0.556879) | 0.141047 / 0.296338 (-0.155292) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465075 / 0.215209 (0.249865) | 4.543997 / 2.077655 (2.466342) | 2.036632 / 1.504120 (0.532512) | 1.820356 / 1.541195 (0.279161) | 1.860692 / 1.468490 (0.392202) | 0.807549 / 4.584777 (-3.777227) | 4.400369 / 3.745712 (0.654657) | 2.423372 / 5.269862 (-2.846490) | 1.741338 / 4.565676 (-2.824339) | 0.099457 / 0.424275 (-0.324818) | 0.014464 / 0.007607 (0.006857) | 0.599442 / 0.226044 (0.373398) | 5.867798 / 2.268929 (3.598870) | 2.641859 / 55.444624 (-52.802766) | 2.294246 / 6.876477 (-4.582231) | 2.329639 / 2.142072 (0.187567) | 0.981897 / 4.805227 (-3.823331) | 0.189278 / 6.500664 (-6.311386) | 0.071868 / 0.075469 (-0.003601) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.471800 / 1.841788 (-0.369988) | 17.149150 / 8.074308 (9.074841) | 15.818942 / 10.191392 (5.627550) | 0.174760 / 0.680424 (-0.505664) | 0.033507 / 0.534201 (-0.500694) | 0.511055 / 0.579283 (-0.068228) | 0.517107 / 0.434364 (0.082743) | 0.650813 / 0.540337 (0.110476) | 0.752515 / 1.386936 (-0.634421) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008651 / 0.011353 (-0.002702) | 0.005935 / 0.011008 (-0.005073) | 0.088589 / 0.038508 (0.050081) | 0.038796 / 0.023109 (0.015687) | 0.415430 / 0.275898 (0.139532) | 0.443693 / 0.323480 (0.120213) | 0.006631 / 0.007986 (-0.001354) | 0.004638 / 0.004328 (0.000309) | 0.085779 / 0.004250 (0.081529) | 0.053994 / 0.037052 (0.016942) | 0.408349 / 0.258489 (0.149860) | 0.475441 / 0.293841 (0.181600) | 0.042792 / 0.128546 (-0.085754) | 0.013938 / 0.075646 (-0.061709) | 0.102173 / 0.419271 (-0.317098) | 0.057940 / 0.043533 (0.014407) | 0.408967 / 0.255139 (0.153828) | 0.422741 / 0.283200 (0.139541) | 0.121844 / 0.141683 (-0.019839) | 1.772779 / 1.452155 (0.320625) | 1.837706 / 1.492716 (0.344989) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228896 / 0.018006 (0.210890) | 0.497964 / 0.000490 (0.497475) | 0.004402 / 0.000200 (0.004202) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035626 / 0.037411 (-0.001786) | 0.132021 / 0.014526 (0.117495) | 0.145599 / 0.176557 (-0.030957) | 0.192317 / 0.737135 (-0.544818) | 0.150165 / 0.296338 (-0.146174) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.500216 / 0.215209 (0.285007) | 5.002916 / 2.077655 (2.925262) | 2.502439 / 1.504120 (0.998319) | 2.353019 / 1.541195 (0.811825) | 2.485082 / 1.468490 (1.016592) | 0.827694 / 4.584777 (-3.757083) | 4.569319 / 3.745712 (0.823607) | 3.739820 / 5.269862 (-1.530042) | 2.097857 / 4.565676 (-2.467819) | 0.098636 / 0.424275 (-0.325639) | 0.014608 / 0.007607 (0.007001) | 0.604411 / 0.226044 (0.378366) | 6.131702 / 2.268929 (3.862774) | 3.043988 / 55.444624 (-52.400637) | 2.642427 / 6.876477 (-4.234050) | 2.687223 / 2.142072 (0.545151) | 0.968808 / 4.805227 (-3.836419) | 0.193876 / 6.500664 (-6.306788) | 0.076931 / 0.075469 (0.001462) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.511820 / 1.841788 (-0.329968) | 17.971574 / 8.074308 (9.897265) | 16.512738 / 10.191392 (6.321346) | 0.223702 / 0.680424 (-0.456722) | 0.020191 / 0.534201 (-0.514010) | 0.511045 / 0.579283 (-0.068238) | 0.499813 / 0.434364 (0.065449) | 0.642147 / 0.540337 (0.101810) | 0.756029 / 1.386936 (-0.630907) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1f6c7b9eb4bca89ec90c465623f7a2e6f5251062 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008909 / 0.011353 (-0.002444) | 0.005096 / 0.011008 (-0.005912) | 0.098568 / 0.038508 (0.060060) | 0.034548 / 0.023109 (0.011438) | 0.294762 / 0.275898 (0.018864) | 0.366093 / 0.323480 (0.042613) | 0.007476 / 0.007986 (-0.000510) | 0.003982 / 0.004328 (-0.000347) | 0.075975 / 0.004250 (0.071725) | 0.040499 / 0.037052 (0.003446) | 0.315050 / 0.258489 (0.056561) | 0.351273 / 0.293841 (0.057433) | 0.038327 / 0.128546 (-0.090219) | 0.011943 / 0.075646 (-0.063703) | 0.332148 / 0.419271 (-0.087124) | 0.047648 / 0.043533 (0.004115) | 0.295817 / 0.255139 (0.040678) | 0.322704 / 0.283200 (0.039504) | 0.100830 / 0.141683 (-0.040853) | 1.422162 / 1.452155 (-0.029993) | 1.468972 / 1.492716 (-0.023744) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201164 / 0.018006 (0.183158) | 0.435425 / 0.000490 (0.434935) | 0.001576 / 0.000200 (0.001376) | 0.000218 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026667 / 0.037411 (-0.010744) | 0.106161 / 0.014526 (0.091636) | 0.115836 / 0.176557 (-0.060720) | 0.151511 / 0.737135 (-0.585624) | 0.122248 / 0.296338 (-0.174091) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395974 / 0.215209 (0.180765) | 3.952958 / 2.077655 (1.875303) | 1.772111 / 1.504120 (0.267991) | 1.581370 / 1.541195 (0.040175) | 1.602811 / 1.468490 (0.134321) | 0.694072 / 4.584777 (-3.890705) | 3.640238 / 3.745712 (-0.105474) | 2.028865 / 5.269862 (-3.240997) | 1.419182 / 4.565676 (-3.146495) | 0.084078 / 0.424275 (-0.340197) | 0.012248 / 0.007607 (0.004641) | 0.499768 / 0.226044 (0.273723) | 4.997449 / 2.268929 (2.728521) | 2.280711 / 55.444624 (-53.163913) | 1.971701 / 6.876477 (-4.904776) | 1.983248 / 2.142072 (-0.158824) | 0.831030 / 4.805227 (-3.974198) | 0.163008 / 6.500664 (-6.337656) | 0.061887 / 0.075469 (-0.013582) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.191744 / 1.841788 (-0.650043) | 14.424546 / 8.074308 (6.350238) | 14.530127 / 10.191392 (4.338735) | 0.165793 / 0.680424 (-0.514631) | 0.029099 / 0.534201 (-0.505102) | 0.447830 / 0.579283 (-0.131453) | 0.441036 / 0.434364 (0.006672) | 0.554697 / 0.540337 (0.014360) | 0.668854 / 1.386936 (-0.718082) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006825 / 0.011353 (-0.004528) | 0.004998 / 0.011008 (-0.006010) | 0.074197 / 0.038508 (0.035689) | 0.032381 / 0.023109 (0.009272) | 0.335745 / 0.275898 (0.059847) | 0.360474 / 0.323480 (0.036994) | 0.005420 / 0.007986 (-0.002566) | 0.005121 / 0.004328 (0.000792) | 0.074980 / 0.004250 (0.070730) | 0.046392 / 0.037052 (0.009340) | 0.338693 / 0.258489 (0.080204) | 0.383679 / 0.293841 (0.089838) | 0.035380 / 0.128546 (-0.093166) | 0.012197 / 0.075646 (-0.063449) | 0.085738 / 0.419271 (-0.333533) | 0.049990 / 0.043533 (0.006458) | 0.342640 / 0.255139 (0.087501) | 0.355139 / 0.283200 (0.071939) | 0.102992 / 0.141683 (-0.038690) | 1.451900 / 1.452155 (-0.000254) | 1.550919 / 1.492716 (0.058202) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223241 / 0.018006 (0.205235) | 0.436954 / 0.000490 (0.436464) | 0.003319 / 0.000200 (0.003120) | 0.000088 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028042 / 0.037411 (-0.009370) | 0.106079 / 0.014526 (0.091554) | 0.122713 / 0.176557 (-0.053843) | 0.156543 / 0.737135 (-0.580593) | 0.122424 / 0.296338 (-0.173914) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439482 / 0.215209 (0.224273) | 4.283112 / 2.077655 (2.205457) | 2.139705 / 1.504120 (0.635585) | 1.940898 / 1.541195 (0.399703) | 2.003906 / 1.468490 (0.535416) | 0.703269 / 4.584777 (-3.881508) | 3.780391 / 3.745712 (0.034679) | 2.079963 / 5.269862 (-3.189898) | 1.330669 / 4.565676 (-3.235007) | 0.086582 / 0.424275 (-0.337693) | 0.012497 / 0.007607 (0.004890) | 0.519329 / 0.226044 (0.293284) | 5.218117 / 2.268929 (2.949189) | 2.635982 / 55.444624 (-52.808643) | 2.301111 / 6.876477 (-4.575366) | 2.341312 / 2.142072 (0.199239) | 0.840157 / 4.805227 (-3.965070) | 0.166174 / 6.500664 (-6.334490) | 0.062890 / 0.075469 (-0.012579) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257672 / 1.841788 (-0.584116) | 14.983374 / 8.074308 (6.909066) | 14.284441 / 10.191392 (4.093049) | 0.176077 / 0.680424 (-0.504347) | 0.017544 / 0.534201 (-0.516657) | 0.429619 / 0.579283 (-0.149664) | 0.426371 / 0.434364 (-0.007993) | 0.534832 / 0.540337 (-0.005506) | 0.643322 / 1.386936 (-0.743614) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0409b1435876fa97b3674b0275285e84b49d83f8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010622 / 0.011353 (-0.000731) | 0.005856 / 0.011008 (-0.005152) | 0.108608 / 0.038508 (0.070100) | 0.039868 / 0.023109 (0.016759) | 0.327853 / 0.275898 (0.051955) | 0.396721 / 0.323480 (0.073241) | 0.008916 / 0.007986 (0.000930) | 0.004590 / 0.004328 (0.000261) | 0.085020 / 0.004250 (0.080770) | 0.046608 / 0.037052 (0.009555) | 0.356369 / 0.258489 (0.097880) | 0.391142 / 0.293841 (0.097301) | 0.040579 / 0.128546 (-0.087967) | 0.012249 / 0.075646 (-0.063397) | 0.387740 / 0.419271 (-0.031532) | 0.057794 / 0.043533 (0.014262) | 0.335763 / 0.255139 (0.080624) | 0.369847 / 0.283200 (0.086647) | 0.121276 / 0.141683 (-0.020407) | 1.605406 / 1.452155 (0.153251) | 1.709524 / 1.492716 (0.216808) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226688 / 0.018006 (0.208681) | 0.493320 / 0.000490 (0.492831) | 0.002825 / 0.000200 (0.002626) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031874 / 0.037411 (-0.005538) | 0.117365 / 0.014526 (0.102840) | 0.127697 / 0.176557 (-0.048859) | 0.175589 / 0.737135 (-0.561546) | 0.137731 / 0.296338 (-0.158608) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472563 / 0.215209 (0.257354) | 4.744383 / 2.077655 (2.666728) | 2.152015 / 1.504120 (0.647895) | 1.925398 / 1.541195 (0.384203) | 2.054613 / 1.468490 (0.586123) | 0.821703 / 4.584777 (-3.763074) | 4.468177 / 3.745712 (0.722465) | 4.687682 / 5.269862 (-0.582179) | 2.379674 / 4.565676 (-2.186003) | 0.101325 / 0.424275 (-0.322950) | 0.014891 / 0.007607 (0.007284) | 0.593161 / 0.226044 (0.367117) | 5.641670 / 2.268929 (3.372741) | 2.460206 / 55.444624 (-52.984419) | 2.131148 / 6.876477 (-4.745329) | 2.351067 / 2.142072 (0.208994) | 0.997634 / 4.805227 (-3.807593) | 0.195338 / 6.500664 (-6.305326) | 0.075540 / 0.075469 (0.000071) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.411585 / 1.841788 (-0.430203) | 17.055689 / 8.074308 (8.981381) | 16.544028 / 10.191392 (6.352636) | 0.180840 / 0.680424 (-0.499584) | 0.034549 / 0.534201 (-0.499652) | 0.510256 / 0.579283 (-0.069027) | 0.525632 / 0.434364 (0.091268) | 0.601206 / 0.540337 (0.060868) | 0.668468 / 1.386936 (-0.718469) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008989 / 0.011353 (-0.002364) | 0.006065 / 0.011008 (-0.004943) | 0.088294 / 0.038508 (0.049786) | 0.040404 / 0.023109 (0.017295) | 0.405622 / 0.275898 (0.129724) | 0.454519 / 0.323480 (0.131039) | 0.006919 / 0.007986 (-0.001067) | 0.004545 / 0.004328 (0.000217) | 0.087023 / 0.004250 (0.082772) | 0.055962 / 0.037052 (0.018910) | 0.400942 / 0.258489 (0.142453) | 0.490670 / 0.293841 (0.196829) | 0.044086 / 0.128546 (-0.084461) | 0.014485 / 0.075646 (-0.061162) | 0.103333 / 0.419271 (-0.315938) | 0.059663 / 0.043533 (0.016130) | 0.404944 / 0.255139 (0.149805) | 0.425763 / 0.283200 (0.142563) | 0.123989 / 0.141683 (-0.017694) | 1.777244 / 1.452155 (0.325089) | 1.879884 / 1.492716 (0.387167) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226440 / 0.018006 (0.208434) | 0.492688 / 0.000490 (0.492198) | 0.004691 / 0.000200 (0.004491) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035123 / 0.037411 (-0.002288) | 0.134288 / 0.014526 (0.119762) | 0.145542 / 0.176557 (-0.031015) | 0.195372 / 0.737135 (-0.541764) | 0.152551 / 0.296338 (-0.143787) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468615 / 0.215209 (0.253406) | 4.813363 / 2.077655 (2.735708) | 2.333606 / 1.504120 (0.829486) | 2.107344 / 1.541195 (0.566149) | 2.109109 / 1.468490 (0.640619) | 0.783779 / 4.584777 (-3.800998) | 4.521448 / 3.745712 (0.775736) | 2.290532 / 5.269862 (-2.979329) | 1.553488 / 4.565676 (-3.012189) | 0.088786 / 0.424275 (-0.335489) | 0.013091 / 0.007607 (0.005484) | 0.567165 / 0.226044 (0.341120) | 5.974315 / 2.268929 (3.705386) | 2.815018 / 55.444624 (-52.629606) | 2.488954 / 6.876477 (-4.387522) | 2.461849 / 2.142072 (0.319776) | 0.934487 / 4.805227 (-3.870740) | 0.190209 / 6.500664 (-6.310455) | 0.074811 / 0.075469 (-0.000658) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.513476 / 1.841788 (-0.328311) | 17.902599 / 8.074308 (9.828291) | 14.308027 / 10.191392 (4.116635) | 0.201992 / 0.680424 (-0.478432) | 0.018678 / 0.534201 (-0.515523) | 0.454707 / 0.579283 (-0.124576) | 0.470643 / 0.434364 (0.036279) | 0.612534 / 0.540337 (0.072197) | 0.685773 / 1.386936 (-0.701163) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4a66da3633a811eb8ea01d23469c41dfec0ffb8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009385 / 0.011353 (-0.001968) | 0.005220 / 0.011008 (-0.005788) | 0.098722 / 0.038508 (0.060214) | 0.035382 / 0.023109 (0.012273) | 0.297114 / 0.275898 (0.021216) | 0.371443 / 0.323480 (0.047963) | 0.008070 / 0.007986 (0.000084) | 0.004204 / 0.004328 (-0.000125) | 0.075621 / 0.004250 (0.071370) | 0.046015 / 0.037052 (0.008963) | 0.304569 / 0.258489 (0.046080) | 0.345598 / 0.293841 (0.051757) | 0.037946 / 0.128546 (-0.090600) | 0.011972 / 0.075646 (-0.063674) | 0.331993 / 0.419271 (-0.087279) | 0.047250 / 0.043533 (0.003717) | 0.296588 / 0.255139 (0.041449) | 0.316070 / 0.283200 (0.032870) | 0.108211 / 0.141683 (-0.033472) | 1.447619 / 1.452155 (-0.004535) | 1.481243 / 1.492716 (-0.011473) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274860 / 0.018006 (0.256854) | 0.503139 / 0.000490 (0.502649) | 0.003598 / 0.000200 (0.003398) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026752 / 0.037411 (-0.010660) | 0.109008 / 0.014526 (0.094482) | 0.119109 / 0.176557 (-0.057448) | 0.158462 / 0.737135 (-0.578673) | 0.126171 / 0.296338 (-0.170168) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396396 / 0.215209 (0.181187) | 3.963055 / 2.077655 (1.885400) | 1.796308 / 1.504120 (0.292188) | 1.600565 / 1.541195 (0.059370) | 1.742409 / 1.468490 (0.273919) | 0.690942 / 4.584777 (-3.893835) | 3.713343 / 3.745712 (-0.032369) | 2.066804 / 5.269862 (-3.203058) | 1.292946 / 4.565676 (-3.272730) | 0.084344 / 0.424275 (-0.339931) | 0.012473 / 0.007607 (0.004865) | 0.513109 / 0.226044 (0.287065) | 5.175141 / 2.268929 (2.906213) | 2.266559 / 55.444624 (-53.178066) | 1.935737 / 6.876477 (-4.940740) | 2.028911 / 2.142072 (-0.113161) | 0.831191 / 4.805227 (-3.974036) | 0.163155 / 6.500664 (-6.337509) | 0.063414 / 0.075469 (-0.012055) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.195429 / 1.841788 (-0.646358) | 15.257933 / 8.074308 (7.183625) | 14.358815 / 10.191392 (4.167423) | 0.152677 / 0.680424 (-0.527747) | 0.028890 / 0.534201 (-0.505311) | 0.455342 / 0.579283 (-0.123941) | 0.442602 / 0.434364 (0.008238) | 0.526833 / 0.540337 (-0.013505) | 0.618296 / 1.386936 (-0.768640) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007613 / 0.011353 (-0.003740) | 0.005515 / 0.011008 (-0.005493) | 0.073759 / 0.038508 (0.035251) | 0.033944 / 0.023109 (0.010835) | 0.347764 / 0.275898 (0.071866) | 0.371143 / 0.323480 (0.047664) | 0.005997 / 0.007986 (-0.001988) | 0.004322 / 0.004328 (-0.000006) | 0.073002 / 0.004250 (0.068751) | 0.053051 / 0.037052 (0.015999) | 0.340345 / 0.258489 (0.081856) | 0.383761 / 0.293841 (0.089920) | 0.037734 / 0.128546 (-0.090813) | 0.012815 / 0.075646 (-0.062831) | 0.086998 / 0.419271 (-0.332273) | 0.050165 / 0.043533 (0.006632) | 0.343864 / 0.255139 (0.088725) | 0.356734 / 0.283200 (0.073534) | 0.108955 / 0.141683 (-0.032728) | 1.464558 / 1.452155 (0.012403) | 1.560084 / 1.492716 (0.067368) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.327885 / 0.018006 (0.309878) | 0.515515 / 0.000490 (0.515025) | 0.000439 / 0.000200 (0.000239) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030741 / 0.037411 (-0.006670) | 0.107634 / 0.014526 (0.093108) | 0.127121 / 0.176557 (-0.049436) | 0.164044 / 0.737135 (-0.573092) | 0.129097 / 0.296338 (-0.167242) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435690 / 0.215209 (0.220481) | 4.350705 / 2.077655 (2.273050) | 2.199597 / 1.504120 (0.695477) | 2.022715 / 1.541195 (0.481521) | 2.265907 / 1.468490 (0.797417) | 0.695817 / 4.584777 (-3.888960) | 3.795207 / 3.745712 (0.049494) | 3.061587 / 5.269862 (-2.208274) | 1.872213 / 4.565676 (-2.693463) | 0.085265 / 0.424275 (-0.339010) | 0.012243 / 0.007607 (0.004636) | 0.547209 / 0.226044 (0.321164) | 5.383626 / 2.268929 (3.114698) | 2.707439 / 55.444624 (-52.737185) | 2.393773 / 6.876477 (-4.482703) | 2.481385 / 2.142072 (0.339312) | 0.826169 / 4.805227 (-3.979059) | 0.166643 / 6.500664 (-6.334021) | 0.065817 / 0.075469 (-0.009652) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274469 / 1.841788 (-0.567318) | 15.565025 / 8.074308 (7.490717) | 14.254192 / 10.191392 (4.062800) | 0.166785 / 0.680424 (-0.513639) | 0.017830 / 0.534201 (-0.516371) | 0.430406 / 0.579283 (-0.148877) | 0.435655 / 0.434364 (0.001292) | 0.530605 / 0.540337 (-0.009732) | 0.636355 / 1.386936 (-0.750581) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#146983fdc70b9fe2cc38109368e185b6ffa7a05e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008466 / 0.011353 (-0.002887) | 0.004679 / 0.011008 (-0.006329) | 0.100534 / 0.038508 (0.062025) | 0.029513 / 0.023109 (0.006403) | 0.302866 / 0.275898 (0.026968) | 0.352816 / 0.323480 (0.029336) | 0.006912 / 0.007986 (-0.001074) | 0.003513 / 0.004328 (-0.000815) | 0.078625 / 0.004250 (0.074375) | 0.036725 / 0.037052 (-0.000327) | 0.312135 / 0.258489 (0.053646) | 0.344579 / 0.293841 (0.050738) | 0.033870 / 0.128546 (-0.094677) | 0.011563 / 0.075646 (-0.064083) | 0.318982 / 0.419271 (-0.100290) | 0.043002 / 0.043533 (-0.000531) | 0.301956 / 0.255139 (0.046817) | 0.330798 / 0.283200 (0.047599) | 0.091755 / 0.141683 (-0.049927) | 1.458577 / 1.452155 (0.006422) | 1.532642 / 1.492716 (0.039926) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194853 / 0.018006 (0.176847) | 0.396844 / 0.000490 (0.396354) | 0.004401 / 0.000200 (0.004201) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022971 / 0.037411 (-0.014441) | 0.096595 / 0.014526 (0.082069) | 0.106104 / 0.176557 (-0.070452) | 0.144815 / 0.737135 (-0.592320) | 0.110036 / 0.296338 (-0.186303) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415025 / 0.215209 (0.199816) | 4.138136 / 2.077655 (2.060481) | 1.861253 / 1.504120 (0.357133) | 1.653420 / 1.541195 (0.112226) | 1.703784 / 1.468490 (0.235294) | 0.698261 / 4.584777 (-3.886516) | 3.357240 / 3.745712 (-0.388472) | 3.025790 / 5.269862 (-2.244072) | 1.637191 / 4.565676 (-2.928485) | 0.085620 / 0.424275 (-0.338655) | 0.012454 / 0.007607 (0.004846) | 0.524708 / 0.226044 (0.298663) | 5.269234 / 2.268929 (3.000306) | 2.290612 / 55.444624 (-53.154012) | 1.936107 / 6.876477 (-4.940370) | 1.968216 / 2.142072 (-0.173856) | 0.810438 / 4.805227 (-3.994789) | 0.154133 / 6.500664 (-6.346531) | 0.064978 / 0.075469 (-0.010491) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231782 / 1.841788 (-0.610006) | 13.545573 / 8.074308 (5.471264) | 14.558765 / 10.191392 (4.367373) | 0.140763 / 0.680424 (-0.539661) | 0.029259 / 0.534201 (-0.504942) | 0.407776 / 0.579283 (-0.171507) | 0.410244 / 0.434364 (-0.024120) | 0.477313 / 0.540337 (-0.063024) | 0.551465 / 1.386936 (-0.835471) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006272 / 0.011353 (-0.005081) | 0.004397 / 0.011008 (-0.006611) | 0.077496 / 0.038508 (0.038988) | 0.026946 / 0.023109 (0.003837) | 0.342992 / 0.275898 (0.067094) | 0.374407 / 0.323480 (0.050927) | 0.004849 / 0.007986 (-0.003136) | 0.004549 / 0.004328 (0.000220) | 0.076439 / 0.004250 (0.072189) | 0.035829 / 0.037052 (-0.001224) | 0.343483 / 0.258489 (0.084994) | 0.385581 / 0.293841 (0.091740) | 0.031745 / 0.128546 (-0.096801) | 0.011617 / 0.075646 (-0.064030) | 0.087207 / 0.419271 (-0.332064) | 0.042252 / 0.043533 (-0.001281) | 0.343223 / 0.255139 (0.088084) | 0.368707 / 0.283200 (0.085508) | 0.093259 / 0.141683 (-0.048424) | 1.506904 / 1.452155 (0.054750) | 1.567583 / 1.492716 (0.074867) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.158962 / 0.018006 (0.140955) | 0.395982 / 0.000490 (0.395492) | 0.003604 / 0.000200 (0.003404) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025003 / 0.037411 (-0.012408) | 0.101176 / 0.014526 (0.086650) | 0.104494 / 0.176557 (-0.072062) | 0.140414 / 0.737135 (-0.596722) | 0.108398 / 0.296338 (-0.187941) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436849 / 0.215209 (0.221640) | 4.369428 / 2.077655 (2.291774) | 2.070613 / 1.504120 (0.566493) | 1.867511 / 1.541195 (0.326317) | 1.866589 / 1.468490 (0.398099) | 0.700036 / 4.584777 (-3.884741) | 3.407513 / 3.745712 (-0.338199) | 3.022409 / 5.269862 (-2.247453) | 1.581423 / 4.565676 (-2.984253) | 0.083425 / 0.424275 (-0.340850) | 0.012380 / 0.007607 (0.004773) | 0.535087 / 0.226044 (0.309043) | 5.374814 / 2.268929 (3.105886) | 2.504841 / 55.444624 (-52.939784) | 2.166484 / 6.876477 (-4.709993) | 2.166363 / 2.142072 (0.024291) | 0.803692 / 4.805227 (-4.001535) | 0.150873 / 6.500664 (-6.349791) | 0.066253 / 0.075469 (-0.009216) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291256 / 1.841788 (-0.550532) | 13.827843 / 8.074308 (5.753535) | 13.839334 / 10.191392 (3.647942) | 0.153530 / 0.680424 (-0.526894) | 0.016896 / 0.534201 (-0.517305) | 0.379937 / 0.579283 (-0.199346) | 0.396241 / 0.434364 (-0.038123) | 0.461808 / 0.540337 (-0.078530) | 0.553023 / 1.386936 (-0.833913) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#779ddc5c7ebbd406b2a6c9092c3f455a2cc7f5e7 \"CML watermark\")\n" ]
"2023-01-23T12:49:40Z"
"2023-02-13T20:23:34Z"
"2023-02-13T20:16:38Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5455.diff", "html_url": "https://github.com/huggingface/datasets/pull/5455", "merged_at": "2023-02-13T20:16:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/5455.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5455" }
Use the "shard generator approach with periodic progress updates" (used in `save_to_disk` and multi-proc `load_dataset`) in `Dataset.map` to enable having a single TQDM progress bar in the multi-proc mode. Closes https://github.com/huggingface/datasets/issues/771, closes https://github.com/huggingface/datasets/issues/3177 TODO: - [x] cleaner refactor of the `_map_single` decorators now that they also have to wrap generator functions (decorate `map` instead of `map_single` with the `transmit_` decorators and predict the shards' fingerprint in `map`)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 1, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5455/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5455/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1871
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1871/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1871/comments
https://api.github.com/repos/huggingface/datasets/issues/1871/events
https://github.com/huggingface/datasets/pull/1871
807,697,671
MDExOlB1bGxSZXF1ZXN0NTcyODk5Nzgz
1,871
Add newspop dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/299380?v=4", "events_url": "https://api.github.com/users/frankier/events{/privacy}", "followers_url": "https://api.github.com/users/frankier/followers", "following_url": "https://api.github.com/users/frankier/following{/other_user}", "gists_url": "https://api.github.com/users/frankier/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/frankier", "id": 299380, "login": "frankier", "node_id": "MDQ6VXNlcjI5OTM4MA==", "organizations_url": "https://api.github.com/users/frankier/orgs", "received_events_url": "https://api.github.com/users/frankier/received_events", "repos_url": "https://api.github.com/users/frankier/repos", "site_admin": false, "starred_url": "https://api.github.com/users/frankier/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/frankier/subscriptions", "type": "User", "url": "https://api.github.com/users/frankier" }
[]
closed
false
null
[]
null
[ "Thanks for the changes :)\r\nmerging" ]
"2021-02-13T07:31:23Z"
"2021-03-08T10:12:45Z"
"2021-03-08T10:12:45Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1871.diff", "html_url": "https://github.com/huggingface/datasets/pull/1871", "merged_at": "2021-03-08T10:12:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/1871.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1871" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1871/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1871/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3488
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3488/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3488/comments
https://api.github.com/repos/huggingface/datasets/issues/3488/events
https://github.com/huggingface/datasets/issues/3488
1,089,345,653
I_kwDODunzps5A7hh1
3,488
URL query parameters are set as path in the compression hop for fsspec
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "I think the test passes because it simply ignore what's after `gzip://`.\r\n\r\nThe returned urlpath is expected to look like `gzip://filename::url`, and the filename is currently considered to be what's after the final `/`, hence the result.\r\n\r\nWe can decide to change this and simply have `gzip://::url`, this way we don't need to guess the filename, what do you think ?" ]
"2021-12-27T16:29:00Z"
"2022-01-05T15:15:25Z"
null
MEMBER
null
null
null
## Describe the bug There is an ssue with `StreamingDownloadManager._extract`. I don't know how the test `test_streaming_gg_drive_gzipped` passes: For ```python TEST_GG_DRIVE_GZIPPED_URL = "https://drive.google.com/uc?export=download&id=1Bt4Garpf0QLiwkJhHJzXaVa0I0H5Qhwz" urlpath = StreamingDownloadManager().download_and_extract(TEST_GG_DRIVE_GZIPPED_URL) ``` gives `urlpath`: ```python 'gzip://uc?export=download&id=1Bt4Garpf0QLiwkJhHJzXaVa0I0H5Qhwz::https://drive.google.com/uc?export=download&id=1Bt4Garpf0QLiwkJhHJzXaVa0I0H5Qhwz' ``` The gzip path makes no sense: `gzip://uc?export=download&id=1Bt4Garpf0QLiwkJhHJzXaVa0I0H5Qhwz` ## Steps to reproduce the bug ```python from datasets.utils.streaming_download_manager import StreamingDownloadManager dl_manager = StreamingDownloadManager() urlpath = dl_manager.extract("https://drive.google.com/uc?export=download&id=1Bt4Garpf0QLiwkJhHJzXaVa0I0H5Qhwz") print(urlpath) ``` ## Expected results The query parameters should not be set as part of the path.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3488/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3488/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/3955
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3955/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3955/comments
https://api.github.com/repos/huggingface/datasets/issues/3955/events
https://github.com/huggingface/datasets/pull/3955
1,172,246,647
PR_kwDODunzps40l5kG
3,955
Remove unncessary 'pylint disable' message in ReadMe
{ "avatar_url": "https://avatars.githubusercontent.com/u/39181234?v=4", "events_url": "https://api.github.com/users/Datta0/events{/privacy}", "followers_url": "https://api.github.com/users/Datta0/followers", "following_url": "https://api.github.com/users/Datta0/following{/other_user}", "gists_url": "https://api.github.com/users/Datta0/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Datta0", "id": 39181234, "login": "Datta0", "node_id": "MDQ6VXNlcjM5MTgxMjM0", "organizations_url": "https://api.github.com/users/Datta0/orgs", "received_events_url": "https://api.github.com/users/Datta0/received_events", "repos_url": "https://api.github.com/users/Datta0/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Datta0/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Datta0/subscriptions", "type": "User", "url": "https://api.github.com/users/Datta0" }
[]
closed
false
null
[]
null
[]
"2022-03-17T11:16:55Z"
"2022-04-12T14:28:35Z"
"2022-04-12T14:28:35Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3955.diff", "html_url": "https://github.com/huggingface/datasets/pull/3955", "merged_at": "2022-04-12T14:28:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/3955.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3955" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3955/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3955/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4022
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4022/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4022/comments
https://api.github.com/repos/huggingface/datasets/issues/4022/events
https://github.com/huggingface/datasets/pull/4022
1,180,816,682
PR_kwDODunzps41BNeA
4,022
Replace dbpedia_14 data url
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-03-25T13:47:21Z"
"2022-03-25T15:03:37Z"
"2022-03-25T14:58:49Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4022.diff", "html_url": "https://github.com/huggingface/datasets/pull/4022", "merged_at": "2022-03-25T14:58:49Z", "patch_url": "https://github.com/huggingface/datasets/pull/4022.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4022" }
I replaced the Google Drive URL of the dataset by the FastAI one, since we've had some issues with Google Drive.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4022/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4022/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1333
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1333/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1333/comments
https://api.github.com/repos/huggingface/datasets/issues/1333/events
https://github.com/huggingface/datasets/pull/1333
759,687,836
MDExOlB1bGxSZXF1ZXN0NTM0NjQ4OTI4
1,333
Add Tanzil Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/1183441?v=4", "events_url": "https://api.github.com/users/abhishekkrthakur/events{/privacy}", "followers_url": "https://api.github.com/users/abhishekkrthakur/followers", "following_url": "https://api.github.com/users/abhishekkrthakur/following{/other_user}", "gists_url": "https://api.github.com/users/abhishekkrthakur/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/abhishekkrthakur", "id": 1183441, "login": "abhishekkrthakur", "node_id": "MDQ6VXNlcjExODM0NDE=", "organizations_url": "https://api.github.com/users/abhishekkrthakur/orgs", "received_events_url": "https://api.github.com/users/abhishekkrthakur/received_events", "repos_url": "https://api.github.com/users/abhishekkrthakur/repos", "site_admin": false, "starred_url": "https://api.github.com/users/abhishekkrthakur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abhishekkrthakur/subscriptions", "type": "User", "url": "https://api.github.com/users/abhishekkrthakur" }
[]
closed
false
null
[]
null
[]
"2020-12-08T18:45:15Z"
"2020-12-10T11:17:56Z"
"2020-12-10T11:14:43Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1333.diff", "html_url": "https://github.com/huggingface/datasets/pull/1333", "merged_at": "2020-12-10T11:14:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/1333.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1333" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1333/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1333/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2634
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2634/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2634/comments
https://api.github.com/repos/huggingface/datasets/issues/2634/events
https://github.com/huggingface/datasets/pull/2634
942,805,621
MDExOlB1bGxSZXF1ZXN0Njg4NDk2Mzc2
2,634
Inject ASR template for lj_speech dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
{ "closed_at": "2021-07-21T15:36:49Z", "closed_issues": 29, "created_at": "2021-06-08T18:48:33Z", "creator": { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }, "description": "Next minor release", "due_on": "2021-08-05T07:00:00Z", "html_url": "https://github.com/huggingface/datasets/milestone/6", "id": 6836458, "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/6/labels", "node_id": "MDk6TWlsZXN0b25lNjgzNjQ1OA==", "number": 6, "open_issues": 0, "state": "closed", "title": "1.10", "updated_at": "2021-07-21T15:36:49Z", "url": "https://api.github.com/repos/huggingface/datasets/milestones/6" }
[]
"2021-07-13T06:04:54Z"
"2021-07-13T09:05:09Z"
"2021-07-13T09:05:09Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2634.diff", "html_url": "https://github.com/huggingface/datasets/pull/2634", "merged_at": "2021-07-13T09:05:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/2634.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2634" }
Related to: #2565, #2633. cc: @lewtun
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2634/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2634/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4190
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4190/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4190/comments
https://api.github.com/repos/huggingface/datasets/issues/4190/events
https://github.com/huggingface/datasets/pull/4190
1,209,901,677
PR_kwDODunzps42gK3y
4,190
Deprecate `shard_size` in `push_to_hub` in favor of `max_shard_size`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-04-20T16:08:01Z"
"2022-04-22T13:58:25Z"
"2022-04-22T13:52:00Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4190.diff", "html_url": "https://github.com/huggingface/datasets/pull/4190", "merged_at": "2022-04-22T13:52:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/4190.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4190" }
This PR adds a `max_shard_size` param to `push_to_hub` and deprecates `shard_size` in favor of this new param to have a more descriptive name (a shard has at most the `shard_size` bytes in `push_to_hub`) for the param and to align the API with [Transformers](https://github.com/huggingface/transformers/blob/ff06b177917384137af2d9585697d2d76c40cdfc/src/transformers/modeling_utils.py#L1350).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4190/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4190/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5933
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5933/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5933/comments
https://api.github.com/repos/huggingface/datasets/issues/5933/events
https://github.com/huggingface/datasets/pull/5933
1,747,382,500
PR_kwDODunzps5Sfi5J
5,933
Fix `to_numpy` when None values in the sequence
{ "avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4", "events_url": "https://api.github.com/users/qgallouedec/events{/privacy}", "followers_url": "https://api.github.com/users/qgallouedec/followers", "following_url": "https://api.github.com/users/qgallouedec/following{/other_user}", "gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/qgallouedec", "id": 45557362, "login": "qgallouedec", "node_id": "MDQ6VXNlcjQ1NTU3MzYy", "organizations_url": "https://api.github.com/users/qgallouedec/orgs", "received_events_url": "https://api.github.com/users/qgallouedec/received_events", "repos_url": "https://api.github.com/users/qgallouedec/repos", "site_admin": false, "starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions", "type": "User", "url": "https://api.github.com/users/qgallouedec" }
[]
closed
false
null
[]
null
[ "I just added the same test with dynamic shape", "_The documentation is not available anymore as the PR was closed or merged._", "Awesome ! I'm merging now if you don't mind :)\r\nWe should probably give you permissions to merge your own PRs when you have an approval", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009980 / 0.011353 (-0.001373) | 0.005709 / 0.011008 (-0.005300) | 0.132185 / 0.038508 (0.093677) | 0.039299 / 0.023109 (0.016190) | 0.400168 / 0.275898 (0.124270) | 0.470582 / 0.323480 (0.147102) | 0.007753 / 0.007986 (-0.000233) | 0.005196 / 0.004328 (0.000868) | 0.093698 / 0.004250 (0.089448) | 0.052631 / 0.037052 (0.015579) | 0.430347 / 0.258489 (0.171858) | 0.460162 / 0.293841 (0.166321) | 0.057511 / 0.128546 (-0.071035) | 0.013944 / 0.075646 (-0.061702) | 0.459008 / 0.419271 (0.039737) | 0.075532 / 0.043533 (0.031999) | 0.405165 / 0.255139 (0.150026) | 0.456142 / 0.283200 (0.172942) | 0.117309 / 0.141683 (-0.024374) | 1.945787 / 1.452155 (0.493633) | 2.067162 / 1.492716 (0.574446) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.285755 / 0.018006 (0.267749) | 0.619965 / 0.000490 (0.619476) | 0.005071 / 0.000200 (0.004871) | 0.000114 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031112 / 0.037411 (-0.006299) | 0.128514 / 0.014526 (0.113988) | 0.137161 / 0.176557 (-0.039396) | 0.211363 / 0.737135 (-0.525772) | 0.151045 / 0.296338 (-0.145293) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.609361 / 0.215209 (0.394152) | 6.124844 / 2.077655 (4.047189) | 2.440757 / 1.504120 (0.936637) | 2.034495 / 1.541195 (0.493300) | 2.047192 / 1.468490 (0.578702) | 0.883171 / 4.584777 (-3.701606) | 5.470552 / 3.745712 (1.724840) | 4.401696 / 5.269862 (-0.868165) | 2.378674 / 4.565676 (-2.187003) | 0.108065 / 0.424275 (-0.316210) | 0.013239 / 0.007607 (0.005632) | 0.830957 / 0.226044 (0.604913) | 8.090659 / 2.268929 (5.821731) | 3.289203 / 55.444624 (-52.155422) | 2.500777 / 6.876477 (-4.375700) | 2.561440 / 2.142072 (0.419367) | 1.064893 / 4.805227 (-3.740334) | 0.220486 / 6.500664 (-6.280178) | 0.079507 / 0.075469 (0.004038) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.544334 / 1.841788 (-0.297454) | 17.878997 / 8.074308 (9.804689) | 18.952191 / 10.191392 (8.760799) | 0.245166 / 0.680424 (-0.435258) | 0.028022 / 0.534201 (-0.506179) | 0.517828 / 0.579283 (-0.061455) | 0.618988 / 0.434364 (0.184624) | 0.589742 / 0.540337 (0.049405) | 0.670902 / 1.386936 (-0.716034) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009616 / 0.011353 (-0.001737) | 0.006098 / 0.011008 (-0.004911) | 0.100301 / 0.038508 (0.061793) | 0.037792 / 0.023109 (0.014683) | 0.484667 / 0.275898 (0.208769) | 0.519286 / 0.323480 (0.195806) | 0.007427 / 0.007986 (-0.000558) | 0.007172 / 0.004328 (0.002844) | 0.104429 / 0.004250 (0.100179) | 0.056567 / 0.037052 (0.019515) | 0.502641 / 0.258489 (0.244152) | 0.549629 / 0.293841 (0.255788) | 0.049574 / 0.128546 (-0.078972) | 0.015223 / 0.075646 (-0.060424) | 0.113947 / 0.419271 (-0.305324) | 0.064585 / 0.043533 (0.021053) | 0.512962 / 0.255139 (0.257823) | 0.507218 / 0.283200 (0.224019) | 0.122194 / 0.141683 (-0.019488) | 1.927821 / 1.452155 (0.475667) | 2.051161 / 1.492716 (0.558445) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291350 / 0.018006 (0.273344) | 0.588099 / 0.000490 (0.587610) | 0.001368 / 0.000200 (0.001168) | 0.000153 / 0.000054 (0.000099) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030604 / 0.037411 (-0.006807) | 0.126810 / 0.014526 (0.112285) | 0.139309 / 0.176557 (-0.037248) | 0.208030 / 0.737135 (-0.529105) | 0.138985 / 0.296338 (-0.157353) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.681254 / 0.215209 (0.466045) | 6.753856 / 2.077655 (4.676201) | 2.780704 / 1.504120 (1.276585) | 2.475205 / 1.541195 (0.934010) | 2.486784 / 1.468490 (1.018294) | 0.879223 / 4.584777 (-3.705554) | 5.662294 / 3.745712 (1.916582) | 2.698705 / 5.269862 (-2.571156) | 1.660620 / 4.565676 (-2.905057) | 0.112218 / 0.424275 (-0.312057) | 0.014211 / 0.007607 (0.006604) | 0.796957 / 0.226044 (0.570913) | 8.180897 / 2.268929 (5.911969) | 3.540419 / 55.444624 (-51.904205) | 2.899467 / 6.876477 (-3.977010) | 2.870306 / 2.142072 (0.728233) | 1.069537 / 4.805227 (-3.735690) | 0.211281 / 6.500664 (-6.289383) | 0.078898 / 0.075469 (0.003429) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.666790 / 1.841788 (-0.174998) | 18.302127 / 8.074308 (10.227819) | 21.317546 / 10.191392 (11.126153) | 0.242795 / 0.680424 (-0.437629) | 0.026754 / 0.534201 (-0.507447) | 0.493375 / 0.579283 (-0.085908) | 0.605400 / 0.434364 (0.171036) | 0.586888 / 0.540337 (0.046550) | 0.722809 / 1.386936 (-0.664127) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce2328e7b1d62998b22510492530af55d4493b73 \"CML watermark\")\n" ]
"2023-06-08T08:38:56Z"
"2023-06-09T13:49:41Z"
"2023-06-09T13:23:48Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5933.diff", "html_url": "https://github.com/huggingface/datasets/pull/5933", "merged_at": "2023-06-09T13:23:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/5933.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5933" }
Closes #5927 I've realized that the error was overlooked during testing due to the presence of only one None value in the sequence. Unfortunately, it was the only case where the function works as expected. When the sequence contained more than one None value, the function failed. Consequently, I've updated the tests to include sequences with multiple None values.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5933/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5933/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6310
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6310/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6310/comments
https://api.github.com/repos/huggingface/datasets/issues/6310/events
https://github.com/huggingface/datasets/pull/6310
1,947,457,988
PR_kwDODunzps5dBPnY
6,310
Add return_file_name in load_dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/40604584?v=4", "events_url": "https://api.github.com/users/juliendenize/events{/privacy}", "followers_url": "https://api.github.com/users/juliendenize/followers", "following_url": "https://api.github.com/users/juliendenize/following{/other_user}", "gists_url": "https://api.github.com/users/juliendenize/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/juliendenize", "id": 40604584, "login": "juliendenize", "node_id": "MDQ6VXNlcjQwNjA0NTg0", "organizations_url": "https://api.github.com/users/juliendenize/orgs", "received_events_url": "https://api.github.com/users/juliendenize/received_events", "repos_url": "https://api.github.com/users/juliendenize/repos", "site_admin": false, "starred_url": "https://api.github.com/users/juliendenize/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/juliendenize/subscriptions", "type": "User", "url": "https://api.github.com/users/juliendenize" }
[]
open
false
null
[]
null
[]
"2023-10-17T13:36:57Z"
"2023-10-17T13:36:57Z"
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6310.diff", "html_url": "https://github.com/huggingface/datasets/pull/6310", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6310.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6310" }
Proposition to solve #5806. Added an optional parameter `return_file_name` in the dataset builder config. When set to `True`, the function will include the file name corresponding to the sample in the returned output. There is a difference between arrow-based and folder-based datasets - for arrow-based: a column is concatenated after the table is cast. - for folder-based: `dataset.info.features` has the entry `file_name` and the original file name is passed to the `sample_metadata` dictionary. The difference in behavior might be a concern, also I do not know whether the `file_name` should return the original file path or the downloaded one for folder-based datasets. I added some tests for the datasets that already had a test file.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6310/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6310/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4903
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4903/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4903/comments
https://api.github.com/repos/huggingface/datasets/issues/4903/events
https://github.com/huggingface/datasets/pull/4903
1,352,539,075
PR_kwDODunzps494aud
4,903
Fix CI reporting
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-08-26T17:16:30Z"
"2022-08-26T17:49:33Z"
"2022-08-26T17:46:59Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4903.diff", "html_url": "https://github.com/huggingface/datasets/pull/4903", "merged_at": "2022-08-26T17:46:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/4903.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4903" }
Fix CI so that it reports defaults (failed and error) besides the custom (xfailed and xpassed) in the test summary. This PR fixes a regression introduced by: - #4845 This introduced the reporting of xfailed and xpassed, but wrongly removed the reporting of the defaults failed and error.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4903/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4903/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3414
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3414/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3414/comments
https://api.github.com/repos/huggingface/datasets/issues/3414/events
https://github.com/huggingface/datasets/pull/3414
1,076,028,998
PR_kwDODunzps4voyaq
3,414
Skip None encoding (line deleted by accident in #3195)
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[]
"2021-12-09T21:17:33Z"
"2021-12-10T11:00:03Z"
"2021-12-10T11:00:02Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3414.diff", "html_url": "https://github.com/huggingface/datasets/pull/3414", "merged_at": "2021-12-10T11:00:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/3414.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3414" }
Return the line deleted by accident in #3195 while [resolving merge conflicts](https://github.com/huggingface/datasets/pull/3195/commits/8b0ed15be08559056b817836a07d47acda0c4510). Fix #3181 (finally :))
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3414/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3414/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4435
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4435/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4435/comments
https://api.github.com/repos/huggingface/datasets/issues/4435/events
https://github.com/huggingface/datasets/issues/4435
1,257,496,552
I_kwDODunzps5K89_o
4,435
Load a local cached dataset that has been modified
{ "avatar_url": "https://avatars.githubusercontent.com/u/2789441?v=4", "events_url": "https://api.github.com/users/mihail911/events{/privacy}", "followers_url": "https://api.github.com/users/mihail911/followers", "following_url": "https://api.github.com/users/mihail911/following{/other_user}", "gists_url": "https://api.github.com/users/mihail911/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mihail911", "id": 2789441, "login": "mihail911", "node_id": "MDQ6VXNlcjI3ODk0NDE=", "organizations_url": "https://api.github.com/users/mihail911/orgs", "received_events_url": "https://api.github.com/users/mihail911/received_events", "repos_url": "https://api.github.com/users/mihail911/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mihail911/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mihail911/subscriptions", "type": "User", "url": "https://api.github.com/users/mihail911" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi! `datasets` caches every modification/loading, so you can either rerun the pipeline up to the `map` call or use `Dataset.from_file(modified_dataset)` to load the dataset directly from the cache file.", "Awesome, hvala Mario! This works. " ]
"2022-06-02T01:51:49Z"
"2022-06-02T23:59:26Z"
"2022-06-02T23:59:18Z"
NONE
null
null
null
## Describe the bug I have loaded a dataset as follows: ``` d = load_dataset("emotion", split="validation") ``` Afterwards I make some modifications to the dataset via a `map` call: ``` d.map(some_update_func, cache_file_name=modified_dataset) ``` This generates a cached version of the dataset on my local system in the same directory as the original download of the data (/path/to/cache). Running an `ls` returns: ``` modified_dataset dataset_info.json emotion-test.arrow emotion-train.arrow emotion-validation.arrow ``` as expected. However, when I try to load up the modified cached dataset via a call to ``` modified = load_dataset("emotion", split="validation", data_files="/path/to/cache/modified_dataset") ``` it simply redownloads a new version of the dataset and dumps to a new cache rather than loading up the original modified dataset: ``` Using custom data configuration validation-cdbf51685638421b Downloading and preparing dataset emotion/validation to ... ``` How am I supposed to load the original modified local cache copy of the dataset? ## Environment info - `datasets` version: 2.2.2 - Platform: Linux-5.4.0-113-generic-x86_64-with-glibc2.17 - Python version: 3.8.13 - PyArrow version: 8.0.0 - Pandas version: 1.4.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4435/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4435/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5459
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5459/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5459/comments
https://api.github.com/repos/huggingface/datasets/issues/5459/events
https://github.com/huggingface/datasets/pull/5459
1,555,367,504
PR_kwDODunzps5Icjwe
5,459
Disable aiohttp requoting of redirection URL
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Comment by @lhoestq:\r\n> Do you think we need this in `datasets` if it's fixed on the moon landing side ? In the aiohttp doc they consider those symbols as \"non-safe\" ", "The lib `requests` does not perform that requote on redirect URLs.", "Indeed, the `requests` library does perform a requoting, but this does not unquote `%27`:\r\n```python\r\nIn [1]: from requests.utils import requote_uri\r\n\r\nIn [2]: url = \"https://netloc/path?param=param%27%27value\"\r\n\r\nIn [3]: url\r\nOut[3]: 'https://netloc/path?param=param%27%27value'\r\n\r\nIn [4]: requote_uri(url)\r\nOut[4]: 'https://netloc/path?param=param%27%27value'\r\n```\r\n\r\nHowever, the `aiohttp` library uses `yarl.ULR` and this does unquote `%27`:\r\n```python\r\nIn [5]: from yarl import URL\r\n\r\nIn [6]: url\r\nOut[6]: 'https://netloc/path?param=param%27%27value'\r\n\r\nIn [7]: str(URL(url))\r\nOut[7]: \"https://netloc/path?param=param''value\"\r\n```\r\n\r\nIf we pass `requote_redirect_url=False` to `aiohttp`, then it passes `encoded=True` to `yarl.ULR`: https://github.com/aio-libs/aiohttp/blob/4635161ee8e7ad321cca46e01ce5bfeb1ad8bf26/aiohttp/client.py#L578-L580\r\n```python\r\nparsed_url = URL(\r\n r_url, encoded=not self._requote_redirect_url\r\n)\r\n```\r\nwhich does not unquote `%27`:\r\n```python\r\nIn [8]: url\r\nOut[8]: 'https://netloc/path?param=param%27%27value'\r\n\r\nIn [9]: str(URL(url, encoded=True))\r\nOut[9]: 'https://netloc/path?param=param%27%27value'\r\n```", "See the issues we opened in the respective libraries:\r\n- aiohttp\r\n - aio-libs/aiohttp#7183\r\n- requests\r\n - psf/requests#6341", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012399 / 0.011353 (0.001047) | 0.006388 / 0.011008 (-0.004620) | 0.134173 / 0.038508 (0.095665) | 0.037059 / 0.023109 (0.013949) | 0.420697 / 0.275898 (0.144799) | 0.473981 / 0.323480 (0.150502) | 0.009857 / 0.007986 (0.001871) | 0.004791 / 0.004328 (0.000463) | 0.106886 / 0.004250 (0.102636) | 0.044871 / 0.037052 (0.007818) | 0.429843 / 0.258489 (0.171354) | 0.461569 / 0.293841 (0.167728) | 0.057285 / 0.128546 (-0.071261) | 0.018809 / 0.075646 (-0.056837) | 0.432613 / 0.419271 (0.013342) | 0.058086 / 0.043533 (0.014553) | 0.413064 / 0.255139 (0.157925) | 0.444407 / 0.283200 (0.161207) | 0.119102 / 0.141683 (-0.022581) | 1.875954 / 1.452155 (0.423799) | 1.916392 / 1.492716 (0.423676) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267489 / 0.018006 (0.249483) | 0.567554 / 0.000490 (0.567064) | 0.005901 / 0.000200 (0.005701) | 0.000134 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031248 / 0.037411 (-0.006164) | 0.123014 / 0.014526 (0.108489) | 0.140001 / 0.176557 (-0.036556) | 0.191476 / 0.737135 (-0.545659) | 0.141687 / 0.296338 (-0.154652) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.637481 / 0.215209 (0.422272) | 6.255969 / 2.077655 (4.178314) | 2.559811 / 1.504120 (1.055691) | 2.118154 / 1.541195 (0.576960) | 2.079487 / 1.468490 (0.610997) | 1.201079 / 4.584777 (-3.383698) | 5.592625 / 3.745712 (1.846913) | 5.143344 / 5.269862 (-0.126517) | 2.764716 / 4.565676 (-1.800960) | 0.142539 / 0.424275 (-0.281736) | 0.015541 / 0.007607 (0.007934) | 0.771407 / 0.226044 (0.545363) | 7.631657 / 2.268929 (5.362728) | 3.279684 / 55.444624 (-52.164940) | 2.587566 / 6.876477 (-4.288911) | 2.624622 / 2.142072 (0.482549) | 1.427878 / 4.805227 (-3.377350) | 0.257759 / 6.500664 (-6.242906) | 0.078616 / 0.075469 (0.003147) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.609305 / 1.841788 (-0.232483) | 18.258792 / 8.074308 (10.184484) | 20.345242 / 10.191392 (10.153850) | 0.267366 / 0.680424 (-0.413058) | 0.047035 / 0.534201 (-0.487166) | 0.568881 / 0.579283 (-0.010402) | 0.662763 / 0.434364 (0.228399) | 0.668927 / 0.540337 (0.128590) | 0.755766 / 1.386936 (-0.631170) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010017 / 0.011353 (-0.001336) | 0.006816 / 0.011008 (-0.004192) | 0.105038 / 0.038508 (0.066529) | 0.038689 / 0.023109 (0.015580) | 0.482113 / 0.275898 (0.206215) | 0.540072 / 0.323480 (0.216592) | 0.007738 / 0.007986 (-0.000248) | 0.005134 / 0.004328 (0.000806) | 0.102203 / 0.004250 (0.097953) | 0.054080 / 0.037052 (0.017028) | 0.501057 / 0.258489 (0.242568) | 0.567186 / 0.293841 (0.273345) | 0.060330 / 0.128546 (-0.068217) | 0.020059 / 0.075646 (-0.055587) | 0.123102 / 0.419271 (-0.296170) | 0.063426 / 0.043533 (0.019893) | 0.494171 / 0.255139 (0.239032) | 0.538238 / 0.283200 (0.255039) | 0.119613 / 0.141683 (-0.022069) | 1.853728 / 1.452155 (0.401574) | 1.984621 / 1.492716 (0.491904) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282511 / 0.018006 (0.264505) | 0.563190 / 0.000490 (0.562700) | 0.000465 / 0.000200 (0.000265) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029267 / 0.037411 (-0.008144) | 0.135618 / 0.014526 (0.121093) | 0.146286 / 0.176557 (-0.030271) | 0.188570 / 0.737135 (-0.548565) | 0.155839 / 0.296338 (-0.140499) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671660 / 0.215209 (0.456451) | 6.718775 / 2.077655 (4.641120) | 3.004601 / 1.504120 (1.500481) | 2.640504 / 1.541195 (1.099309) | 2.666788 / 1.468490 (1.198298) | 1.242655 / 4.584777 (-3.342122) | 5.780119 / 3.745712 (2.034407) | 3.247935 / 5.269862 (-2.021927) | 2.114007 / 4.565676 (-2.451669) | 0.147546 / 0.424275 (-0.276729) | 0.014408 / 0.007607 (0.006801) | 0.824407 / 0.226044 (0.598362) | 8.278185 / 2.268929 (6.009257) | 3.733463 / 55.444624 (-51.711161) | 2.976732 / 6.876477 (-3.899745) | 3.132758 / 2.142072 (0.990686) | 1.446095 / 4.805227 (-3.359132) | 0.258628 / 6.500664 (-6.242036) | 0.085513 / 0.075469 (0.010043) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.702681 / 1.841788 (-0.139106) | 18.725123 / 8.074308 (10.650815) | 19.622808 / 10.191392 (9.431416) | 0.215845 / 0.680424 (-0.464579) | 0.029246 / 0.534201 (-0.504955) | 0.554819 / 0.579283 (-0.024464) | 0.630926 / 0.434364 (0.196562) | 0.637663 / 0.540337 (0.097325) | 0.837948 / 1.386936 (-0.548988) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4a4f96ef0a4ec4b25f0872f160fa1eb9d2e711c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008540 / 0.011353 (-0.002813) | 0.004538 / 0.011008 (-0.006470) | 0.101507 / 0.038508 (0.062999) | 0.029751 / 0.023109 (0.006641) | 0.292608 / 0.275898 (0.016710) | 0.354734 / 0.323480 (0.031254) | 0.007430 / 0.007986 (-0.000556) | 0.003365 / 0.004328 (-0.000964) | 0.078703 / 0.004250 (0.074452) | 0.034858 / 0.037052 (-0.002194) | 0.303518 / 0.258489 (0.045029) | 0.336523 / 0.293841 (0.042682) | 0.033741 / 0.128546 (-0.094805) | 0.011460 / 0.075646 (-0.064186) | 0.319551 / 0.419271 (-0.099721) | 0.041102 / 0.043533 (-0.002431) | 0.295914 / 0.255139 (0.040775) | 0.322142 / 0.283200 (0.038943) | 0.084694 / 0.141683 (-0.056989) | 1.481308 / 1.452155 (0.029153) | 1.530271 / 1.492716 (0.037554) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.180516 / 0.018006 (0.162510) | 0.405741 / 0.000490 (0.405251) | 0.002806 / 0.000200 (0.002606) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023359 / 0.037411 (-0.014052) | 0.096950 / 0.014526 (0.082424) | 0.103991 / 0.176557 (-0.072566) | 0.143700 / 0.737135 (-0.593435) | 0.106764 / 0.296338 (-0.189575) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416966 / 0.215209 (0.201757) | 4.145601 / 2.077655 (2.067946) | 1.838258 / 1.504120 (0.334139) | 1.629396 / 1.541195 (0.088201) | 1.649707 / 1.468490 (0.181217) | 0.689624 / 4.584777 (-3.895153) | 3.414584 / 3.745712 (-0.331129) | 1.874295 / 5.269862 (-3.395566) | 1.251930 / 4.565676 (-3.313746) | 0.081782 / 0.424275 (-0.342493) | 0.012868 / 0.007607 (0.005261) | 0.523904 / 0.226044 (0.297859) | 5.251032 / 2.268929 (2.982104) | 2.301549 / 55.444624 (-53.143075) | 1.942110 / 6.876477 (-4.934367) | 2.023014 / 2.142072 (-0.119058) | 0.816492 / 4.805227 (-3.988736) | 0.150107 / 6.500664 (-6.350558) | 0.065118 / 0.075469 (-0.010351) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226433 / 1.841788 (-0.615355) | 13.852569 / 8.074308 (5.778261) | 13.862779 / 10.191392 (3.671387) | 0.146361 / 0.680424 (-0.534062) | 0.028652 / 0.534201 (-0.505549) | 0.398251 / 0.579283 (-0.181032) | 0.403590 / 0.434364 (-0.030774) | 0.492184 / 0.540337 (-0.048154) | 0.581040 / 1.386936 (-0.805896) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006859 / 0.011353 (-0.004494) | 0.004632 / 0.011008 (-0.006376) | 0.076653 / 0.038508 (0.038145) | 0.027865 / 0.023109 (0.004755) | 0.354472 / 0.275898 (0.078573) | 0.385462 / 0.323480 (0.061982) | 0.005125 / 0.007986 (-0.002861) | 0.003420 / 0.004328 (-0.000909) | 0.076018 / 0.004250 (0.071768) | 0.040197 / 0.037052 (0.003144) | 0.353675 / 0.258489 (0.095186) | 0.394911 / 0.293841 (0.101070) | 0.032909 / 0.128546 (-0.095637) | 0.011713 / 0.075646 (-0.063933) | 0.085921 / 0.419271 (-0.333350) | 0.044462 / 0.043533 (0.000929) | 0.349997 / 0.255139 (0.094858) | 0.375207 / 0.283200 (0.092008) | 0.091288 / 0.141683 (-0.050394) | 1.536515 / 1.452155 (0.084361) | 1.581878 / 1.492716 (0.089162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.273284 / 0.018006 (0.255277) | 0.424457 / 0.000490 (0.423967) | 0.044659 / 0.000200 (0.044459) | 0.000247 / 0.000054 (0.000192) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025473 / 0.037411 (-0.011938) | 0.100014 / 0.014526 (0.085488) | 0.108551 / 0.176557 (-0.068006) | 0.147913 / 0.737135 (-0.589223) | 0.112729 / 0.296338 (-0.183610) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448162 / 0.215209 (0.232953) | 4.472701 / 2.077655 (2.395046) | 2.078384 / 1.504120 (0.574264) | 1.861292 / 1.541195 (0.320097) | 1.920482 / 1.468490 (0.451991) | 0.706968 / 4.584777 (-3.877809) | 3.433109 / 3.745712 (-0.312603) | 1.898684 / 5.269862 (-3.371178) | 1.174375 / 4.565676 (-3.391302) | 0.083666 / 0.424275 (-0.340609) | 0.012388 / 0.007607 (0.004781) | 0.546011 / 0.226044 (0.319966) | 5.487514 / 2.268929 (3.218585) | 2.534124 / 55.444624 (-52.910500) | 2.168441 / 6.876477 (-4.708036) | 2.203458 / 2.142072 (0.061386) | 0.813333 / 4.805227 (-3.991894) | 0.153169 / 6.500664 (-6.347495) | 0.067151 / 0.075469 (-0.008318) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277815 / 1.841788 (-0.563972) | 13.920545 / 8.074308 (5.846237) | 13.473801 / 10.191392 (3.282409) | 0.129035 / 0.680424 (-0.551389) | 0.016737 / 0.534201 (-0.517464) | 0.388413 / 0.579283 (-0.190870) | 0.388785 / 0.434364 (-0.045579) | 0.481735 / 0.540337 (-0.058602) | 0.576390 / 1.386936 (-0.810546) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4a4f96ef0a4ec4b25f0872f160fa1eb9d2e711c \"CML watermark\")\n" ]
"2023-01-24T17:18:59Z"
"2023-02-01T08:45:33Z"
"2023-01-31T08:37:54Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5459.diff", "html_url": "https://github.com/huggingface/datasets/pull/5459", "merged_at": "2023-01-31T08:37:54Z", "patch_url": "https://github.com/huggingface/datasets/pull/5459.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5459" }
The library `aiohttp` performs a requoting of redirection URLs that unquotes the single quotation mark character: `%27` => `'` This is a problem for our Hugging Face Hub, which requires exact URL from location header. Specifically, in the query component of the URL (`https://netloc/path?query`), the value for `response-content-disposition` contains `%27`: ``` response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27sample.jsonl.gz%3B+filename%3D%22sample.jsonl.gz%22%3B ``` and after the requoting, the `%27` characters get unquoted to `'`: ``` response-content-disposition=attachment%3B+filename*%3DUTF-8''sample.jsonl.gz%3B+filename%3D%22sample.jsonl.gz%22%3B ``` This PR disables the `aiohttp` requoting of redirection URLs.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5459/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5459/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5285
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5285/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5285/comments
https://api.github.com/repos/huggingface/datasets/issues/5285/events
https://github.com/huggingface/datasets/pull/5285
1,461,521,215
PR_kwDODunzps5DjLgG
5,285
Save file name in embed_storage
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "I updated the tests, met le know if it sounds good to you now :)" ]
"2022-11-23T10:55:54Z"
"2022-11-24T14:11:41Z"
"2022-11-24T14:08:37Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5285.diff", "html_url": "https://github.com/huggingface/datasets/pull/5285", "merged_at": "2022-11-24T14:08:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/5285.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5285" }
Having the file name is useful in case we need to check the extension of the file (e.g. mp3), or in general in case it includes some metadata information (track id, image id etc.) Related to https://github.com/huggingface/datasets/issues/5276
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5285/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5285/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4615
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4615/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4615/comments
https://api.github.com/repos/huggingface/datasets/issues/4615/events
https://github.com/huggingface/datasets/pull/4615
1,291,307,428
PR_kwDODunzps46tADt
4,615
Fix `embed_storage` on features inside lists/sequences
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-07-01T11:52:08Z"
"2022-07-08T12:13:10Z"
"2022-07-08T12:01:36Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4615.diff", "html_url": "https://github.com/huggingface/datasets/pull/4615", "merged_at": "2022-07-08T12:01:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/4615.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4615" }
Add a dedicated function for embed_storage to always preserve the embedded/casted arrays (and to have more control over `embed_storage` in general). Fix #4591 ~~(Waiting for #4608 to be merged to mark this PR as ready for review - required for fixing `xgetsize` in private repos)~~ Done!
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4615/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4615/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3964
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3964/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3964/comments
https://api.github.com/repos/huggingface/datasets/issues/3964/events
https://github.com/huggingface/datasets/issues/3964
1,173,564,993
I_kwDODunzps5F8y5B
3,964
Add default Audio Loader
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna" } ]
null
[]
"2022-03-18T12:58:55Z"
"2022-08-22T14:20:46Z"
"2022-08-22T14:20:46Z"
CONTRIBUTOR
null
null
null
**Is your feature request related to a problem? Please describe.** Writing a custom loading dataset script might be a bit challenging for users. **Describe the solution you'd like** Add default Audio loader (analogous to ImageFolder) for small datasets with standard directory structure. **Describe alternatives you've considered** Create a custom loading script? that's what users doing now.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3964/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3964/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2887
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2887/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2887/comments
https://api.github.com/repos/huggingface/datasets/issues/2887/events
https://github.com/huggingface/datasets/pull/2887
992,576,305
MDExOlB1bGxSZXF1ZXN0NzMwODg4MTU3
2,887
#2837 Use cache folder for lockfile
{ "avatar_url": "https://avatars.githubusercontent.com/u/8976546?v=4", "events_url": "https://api.github.com/users/Dref360/events{/privacy}", "followers_url": "https://api.github.com/users/Dref360/followers", "following_url": "https://api.github.com/users/Dref360/following{/other_user}", "gists_url": "https://api.github.com/users/Dref360/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Dref360", "id": 8976546, "login": "Dref360", "node_id": "MDQ6VXNlcjg5NzY1NDY=", "organizations_url": "https://api.github.com/users/Dref360/orgs", "received_events_url": "https://api.github.com/users/Dref360/received_events", "repos_url": "https://api.github.com/users/Dref360/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Dref360/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Dref360/subscriptions", "type": "User", "url": "https://api.github.com/users/Dref360" }
[]
closed
false
null
[]
null
[ "The CI fail about the meteor metric is unrelated to this PR " ]
"2021-09-09T19:55:56Z"
"2021-10-05T17:58:22Z"
"2021-10-05T17:58:22Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2887.diff", "html_url": "https://github.com/huggingface/datasets/pull/2887", "merged_at": "2021-10-05T17:58:22Z", "patch_url": "https://github.com/huggingface/datasets/pull/2887.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2887" }
Fixes #2837 Use a cache folder directory to store the FileLock. The issue was that the lock file was in a readonly folder.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2887/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2887/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5696
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5696/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5696/comments
https://api.github.com/repos/huggingface/datasets/issues/5696/events
https://github.com/huggingface/datasets/issues/5696
1,651,707,008
I_kwDODunzps5icwyA
5,696
Shuffle a sharded iterable dataset without seed can lead to duplicate data
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
null
[]
"2023-04-03T09:40:03Z"
"2023-04-04T14:58:18Z"
"2023-04-04T14:58:18Z"
MEMBER
null
null
null
As reported in https://github.com/huggingface/datasets/issues/5360 If `seed=None` in `.shuffle()`, shuffled datasets don't use the same shuffling seed across nodes. Because of that, the lists of shards is not shuffled the same way across nodes, and therefore some shards may be assigned to multiple nodes instead of exactly one. This can happen only when you have a number of shards that is a factor of the number of nodes. The current workaround is to always set a `seed` in `.shuffle()`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5696/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5696/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3639
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3639/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3639/comments
https://api.github.com/repos/huggingface/datasets/issues/3639/events
https://github.com/huggingface/datasets/issues/3639
1,116,021,420
I_kwDODunzps5ChSKs
3,639
same value of precision, recall, f1 score at each epoch for classification task.
{ "avatar_url": "https://avatars.githubusercontent.com/u/10828657?v=4", "events_url": "https://api.github.com/users/Dhanachandra/events{/privacy}", "followers_url": "https://api.github.com/users/Dhanachandra/followers", "following_url": "https://api.github.com/users/Dhanachandra/following{/other_user}", "gists_url": "https://api.github.com/users/Dhanachandra/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Dhanachandra", "id": 10828657, "login": "Dhanachandra", "node_id": "MDQ6VXNlcjEwODI4NjU3", "organizations_url": "https://api.github.com/users/Dhanachandra/orgs", "received_events_url": "https://api.github.com/users/Dhanachandra/received_events", "repos_url": "https://api.github.com/users/Dhanachandra/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Dhanachandra/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Dhanachandra/subscriptions", "type": "User", "url": "https://api.github.com/users/Dhanachandra" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Hi @Dhanachandra, \r\n\r\nWe have tests for all our metrics and they work as expected: under the hood, we use scikit-learn implementations.\r\n\r\nMaybe the cause is somewhere else. For example:\r\n- Is it a binary or a multiclass or a multilabel classification? Default computation of these metrics is for binary classification; if you would like multiclass or multilabel, you should pass the corresponding parameters; see their documentation (e.g.: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html) or code below:\r\n\r\nhttps://huggingface.co/docs/datasets/using_metrics.html#computing-the-metric-scores\r\n\r\n```python\r\nIn [1]: from datasets import load_metric\r\n\r\nIn [2]: precision = load_metric(\"precision\")\r\n\r\nIn [3]: print(precision.inputs_description)\r\n\r\nArgs:\r\n predictions: Predicted labels, as returned by a model.\r\n references: Ground truth labels.\r\n labels: The set of labels to include when average != 'binary', and\r\n their order if average is None. Labels present in the data can\r\n be excluded, for example to calculate a multiclass average ignoring\r\n a majority negative class, while labels not present in the data will\r\n result in 0 components in a macro average. For multilabel targets,\r\n labels are column indices. By default, all labels in y_true and\r\n y_pred are used in sorted order.\r\n average: This parameter is required for multiclass/multilabel targets.\r\n If None, the scores for each class are returned. Otherwise, this\r\n determines the type of averaging performed on the data:\r\n binary: Only report results for the class specified by pos_label.\r\n This is applicable only if targets (y_{true,pred}) are binary.\r\n micro: Calculate metrics globally by counting the total true positives,\r\n false negatives and false positives.\r\n macro: Calculate metrics for each label, and find their unweighted mean.\r\n This does not take label imbalance into account.\r\n weighted: Calculate metrics for each label, and find their average\r\n weighted by support (the number of true instances for each label).\r\n This alters ‘macro’ to account for label imbalance; it can result\r\n in an F-score that is not between precision and recall.\r\n samples: Calculate metrics for each instance, and find their average\r\n (only meaningful for multilabel classification).\r\n sample_weight: Sample weights.\r\n\r\nReturns:\r\n precision: Precision score.\r\n\r\nExamples:\r\n\r\n >>> precision_metric = datasets.load_metric(\"precision\")\r\n >>> results = precision_metric.compute(references=[0, 1], predictions=[0, 1])\r\n >>> print(results)\r\n {'precision': 1.0}\r\n\r\n >>> predictions = [0, 2, 1, 0, 0, 1]\r\n >>> references = [0, 1, 2, 0, 1, 2]\r\n >>> results = precision_metric.compute(predictions=predictions, references=references, average='macro')\r\n >>> print(results)\r\n {'precision': 0.2222222222222222}\r\n >>> results = precision_metric.compute(predictions=predictions, references=references, average='micro')\r\n >>> print(results)\r\n {'precision': 0.3333333333333333}\r\n >>> results = precision_metric.compute(predictions=predictions, references=references, average='weighted')\r\n >>> print(results)\r\n {'precision': 0.2222222222222222}\r\n >>> results = precision_metric.compute(predictions=predictions, references=references, average=None)\r\n >>> print(results)\r\n {'precision': array([0.66666667, 0. , 0. ])}\r\n```\r\n" ]
"2022-01-27T10:14:16Z"
"2022-02-24T09:02:18Z"
"2022-02-24T09:02:17Z"
NONE
null
null
null
**1st Epoch:** 1/27/2022 09:30:48 - INFO - datasets.metric - Removing /home/ubuntu/.cache/huggingface/metrics/f1/default/default_experiment-1-0.arrow.59it/s] 01/27/2022 09:30:48 - INFO - datasets.metric - Removing /home/ubuntu/.cache/huggingface/metrics/precision/default/default_experiment-1-0.arrow 01/27/2022 09:30:49 - INFO - datasets.metric - Removing /home/ubuntu/.cache/huggingface/metrics/recall/default/default_experiment-1-0.arrow PRECISION: {'precision': 0.7612903225806451} RECALL: {'recall': 0.7612903225806451} F1: {'f1': 0.7612903225806451} {'eval_loss': 1.4658324718475342, 'eval_accuracy': 0.7612903118133545, 'eval_runtime': 30.0054, 'eval_samples_per_second': 46.492, 'eval_steps_per_second': 46.492, 'epoch': 3.0} **4th Epoch:** 1/27/2022 09:56:55 - INFO - datasets.metric - Removing /home/ubuntu/.cache/huggingface/metrics/f1/default/default_experiment-1-0.arrow.92it/s] 01/27/2022 09:56:56 - INFO - datasets.metric - Removing /home/ubuntu/.cache/huggingface/metrics/precision/default/default_experiment-1-0.arrow 01/27/2022 09:56:56 - INFO - datasets.metric - Removing /home/ubuntu/.cache/huggingface/metrics/recall/default/default_experiment-1-0.arrow PRECISION: {'precision': 0.7698924731182796} RECALL: {'recall': 0.7698924731182796} F1: {'f1': 0.7698924731182796} ## Environment info !git clone https://github.com/huggingface/transformers %cd transformers !pip install . !pip install -r /content/transformers/examples/pytorch/token-classification/requirements.txt !pip install datasets
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3639/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3639/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3819
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3819/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3819/comments
https://api.github.com/repos/huggingface/datasets/issues/3819/events
https://github.com/huggingface/datasets/pull/3819
1,158,848,288
PR_kwDODunzps4z6fvn
3,819
Fix typo in doc build yml
{ "avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4", "events_url": "https://api.github.com/users/mishig25/events{/privacy}", "followers_url": "https://api.github.com/users/mishig25/followers", "following_url": "https://api.github.com/users/mishig25/following{/other_user}", "gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mishig25", "id": 11827707, "login": "mishig25", "node_id": "MDQ6VXNlcjExODI3NzA3", "organizations_url": "https://api.github.com/users/mishig25/orgs", "received_events_url": "https://api.github.com/users/mishig25/received_events", "repos_url": "https://api.github.com/users/mishig25/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mishig25/subscriptions", "type": "User", "url": "https://api.github.com/users/mishig25" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3819). All of your documentation changes will be reflected on that endpoint." ]
"2022-03-03T20:08:44Z"
"2022-03-04T13:07:41Z"
"2022-03-04T13:07:41Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3819.diff", "html_url": "https://github.com/huggingface/datasets/pull/3819", "merged_at": "2022-03-04T13:07:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/3819.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3819" }
cc: @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3819/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3819/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3149
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3149/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3149/comments
https://api.github.com/repos/huggingface/datasets/issues/3149/events
https://github.com/huggingface/datasets/pull/3149
1,033,747,625
PR_kwDODunzps4tjuUt
3,149
Add CMU Hinglish DoG Dataset for MT
{ "avatar_url": "https://avatars.githubusercontent.com/u/46553104?v=4", "events_url": "https://api.github.com/users/Ishan-Kumar2/events{/privacy}", "followers_url": "https://api.github.com/users/Ishan-Kumar2/followers", "following_url": "https://api.github.com/users/Ishan-Kumar2/following{/other_user}", "gists_url": "https://api.github.com/users/Ishan-Kumar2/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Ishan-Kumar2", "id": 46553104, "login": "Ishan-Kumar2", "node_id": "MDQ6VXNlcjQ2NTUzMTA0", "organizations_url": "https://api.github.com/users/Ishan-Kumar2/orgs", "received_events_url": "https://api.github.com/users/Ishan-Kumar2/received_events", "repos_url": "https://api.github.com/users/Ishan-Kumar2/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Ishan-Kumar2/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Ishan-Kumar2/subscriptions", "type": "User", "url": "https://api.github.com/users/Ishan-Kumar2" }
[]
closed
false
null
[]
null
[ "Hi @lhoestq, thanks a lot for the help. I have moved the part as suggested. \r\nAlthough still while running the dummy data script, I face this issue\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/ishan/anaconda3/bin/datasets-cli\", line 8, in <module>\r\n sys.exit(main())\r\n File \"/home/ishan/anaconda3/lib/python3.8/site-packages/datasets/commands/datasets_cli.py\", line 33, in main\r\n service.run()\r\n File \"/home/ishan/anaconda3/lib/python3.8/site-packages/datasets/commands/dummy_data.py\", line 318, in run\r\n self._autogenerate_dummy_data(\r\n File \"/home/ishan/anaconda3/lib/python3.8/site-packages/datasets/commands/dummy_data.py\", line 363, in _autogenerate_dummy_data\r\n dataset_builder._prepare_split(split_generator)\r\n File \"/home/ishan/anaconda3/lib/python3.8/site-packages/datasets/builder.py\", line 1103, in _prepare_split\r\n example = self.info.features.encode_example(record)\r\n File \"/home/ishan/anaconda3/lib/python3.8/site-packages/datasets/features/features.py\", line 981, in encode_example\r\n return encode_nested_example(self, example)\r\n File \"/home/ishan/anaconda3/lib/python3.8/site-packages/datasets/features/features.py\", line 775, in encode_nested_example\r\n return {\r\n File \"/home/ishan/anaconda3/lib/python3.8/site-packages/datasets/features/features.py\", line 775, in <dictcomp>\r\n return {\r\n File \"/home/ishan/anaconda3/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 99, in zip_dict\r\n yield key, tuple(d[key] for d in dicts)\r\n File \"/home/ishan/anaconda3/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 99, in <genexpr>\r\n yield key, tuple(d[key] for d in dicts)\r\nKeyError: 'status'\r\n```\r\nThis KeyError is at times different from 'status' also.\r\nwhen I run \r\n```\r\ndatasets-cli dummy_data datasets/cmu_hinglish_dog --auto_generate --json_field='history'\r\n```\r\nI have tried removing unnecessary feature type definition, but that didn't help. Please let me know if I am missing something, thanks!", "The CI fail is unrelated to this PR and fixed on master. Merging !" ]
"2021-10-22T16:17:25Z"
"2021-11-15T11:36:42Z"
"2021-11-15T10:27:45Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3149.diff", "html_url": "https://github.com/huggingface/datasets/pull/3149", "merged_at": "2021-11-15T10:27:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/3149.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3149" }
Address part of #2841 Added the CMU Hinglish DoG Dataset as in GLUECoS. Added it as a seperate dataset as unlike other tasks of GLUE CoS this can't be evaluated for a BERT like model. Consists of parallel dataset between Hinglish (Hindi-English) and English, can be used for Machine Translation between the two. The data processing part is inspired from the GLUECoS repo [here](https://github.com/microsoft/GLUECoS/blob/7fdc51653e37a32aee17505c47b7d1da364fa77e/Data/Preprocess_Scripts/preprocess_mt_en_hi.py) The dummy data part is not working properly, it shows ``` UnboundLocalError: local variable 'generator_splits' referenced before assignment ``` when I run without ``--auto_generate``. Please let me know how I can fix that. Thanks
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3149/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3149/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2720
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2720/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2720/comments
https://api.github.com/repos/huggingface/datasets/issues/2720/events
https://github.com/huggingface/datasets/pull/2720
954,024,426
MDExOlB1bGxSZXF1ZXN0Njk3OTgxNjMx
2,720
fix: 🐛 fix two typos
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
closed
false
null
[]
null
[]
"2021-07-27T15:50:17Z"
"2021-07-27T18:38:17Z"
"2021-07-27T18:38:16Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2720.diff", "html_url": "https://github.com/huggingface/datasets/pull/2720", "merged_at": "2021-07-27T18:38:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/2720.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2720" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2720/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2720/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4197
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4197/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4197/comments
https://api.github.com/repos/huggingface/datasets/issues/4197/events
https://github.com/huggingface/datasets/pull/4197
1,211,342,558
PR_kwDODunzps42kyXD
4,197
Add remove_columns=True
{ "avatar_url": "https://avatars.githubusercontent.com/u/24695242?v=4", "events_url": "https://api.github.com/users/thomasw21/events{/privacy}", "followers_url": "https://api.github.com/users/thomasw21/followers", "following_url": "https://api.github.com/users/thomasw21/following{/other_user}", "gists_url": "https://api.github.com/users/thomasw21/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/thomasw21", "id": 24695242, "login": "thomasw21", "node_id": "MDQ6VXNlcjI0Njk1MjQy", "organizations_url": "https://api.github.com/users/thomasw21/orgs", "received_events_url": "https://api.github.com/users/thomasw21/received_events", "repos_url": "https://api.github.com/users/thomasw21/repos", "site_admin": false, "starred_url": "https://api.github.com/users/thomasw21/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thomasw21/subscriptions", "type": "User", "url": "https://api.github.com/users/thomasw21" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Any reason why we can't just do `[inputs.copy()]` in this line for in-place operations to not have effects anymore:\r\nhttps://github.com/huggingface/datasets/blob/bf432011ff9155a5bc16c03956bc63e514baf80d/src/datasets/arrow_dataset.py#L2232.\r\n\r\n(in the `batched` case, we can also copy the inputs' values (list objects) to ignore in-place modifications to the inputs' columns)\r\n\r\nI think `remove_columns=True` has no meaning, so I'm not a fan of this change.", "@mariosasko copy does have a cost associated with it ... and plus you'll have to consider `deepcopy` Imagine columnds that are list of list of list of list .... Though I have to agree that `remove_columns=True` doesn't make sense (but, IMO, neither does it in its current use-case as it should refer to `input_columns`) ", "Okay closing this PR for the following reasons:\r\n - `remove_columns=True` was expected to keep the `.update`-like operator for `.map`. I initially thought it would be a good way to ignore function side effects and only keep output of that function (cf. PR description).\r\n - expected `remove_columns=True` is a bad API according to @mariosasko and introduces unecessary changes for little gain (strictly equivalent to `remove_columns=dset.column_names`)" ]
"2022-04-21T17:28:13Z"
"2023-09-24T10:02:32Z"
"2022-04-22T14:45:30Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4197.diff", "html_url": "https://github.com/huggingface/datasets/pull/4197", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4197.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4197" }
This should fix all the issue we have with in place operations in mapping functions. This is crucial as where we do some weird things like: ``` def apply(batch): batch_size = len(batch["id"]) batch["text"] = ["potato" for _ range(batch_size)] return {} # Columns are: {"id": int} dset.map(apply, batched=True, remove_columns="text") # crashes because `text` is not in the original columns dset.map(apply, batched=True) # mapped datasets has `text` column ``` In this PR we suggest to have `remove_columns=True` so that we ignore the input completely, and just use the output to generate mapped dataset. This means that inplace operations won't have any effects anymore.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4197/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4197/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3174
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3174/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3174/comments
https://api.github.com/repos/huggingface/datasets/issues/3174/events
https://github.com/huggingface/datasets/pull/3174
1,038,427,245
PR_kwDODunzps4tyuQ_
3,174
Asserts replaced by exceptions (huggingface#3171)
{ "avatar_url": "https://avatars.githubusercontent.com/u/5772490?v=4", "events_url": "https://api.github.com/users/joseporiolayats/events{/privacy}", "followers_url": "https://api.github.com/users/joseporiolayats/followers", "following_url": "https://api.github.com/users/joseporiolayats/following{/other_user}", "gists_url": "https://api.github.com/users/joseporiolayats/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/joseporiolayats", "id": 5772490, "login": "joseporiolayats", "node_id": "MDQ6VXNlcjU3NzI0OTA=", "organizations_url": "https://api.github.com/users/joseporiolayats/orgs", "received_events_url": "https://api.github.com/users/joseporiolayats/received_events", "repos_url": "https://api.github.com/users/joseporiolayats/repos", "site_admin": false, "starred_url": "https://api.github.com/users/joseporiolayats/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/joseporiolayats/subscriptions", "type": "User", "url": "https://api.github.com/users/joseporiolayats" }
[]
closed
false
null
[]
null
[ "Your first PR went smoothly, well done!\r\nYou are welcome to continue contributing to this project.\r\nGràcies, @joseporiolayats! 😉 " ]
"2021-10-28T11:55:45Z"
"2021-11-06T06:35:32Z"
"2021-10-29T13:08:43Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3174.diff", "html_url": "https://github.com/huggingface/datasets/pull/3174", "merged_at": "2021-10-29T13:08:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/3174.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3174" }
I've replaced two asserts with their proper exceptions following the guidelines described in issue #3171 by following the contributing guidelines. PS: This is one of my first PRs, hoping I don't break anything!
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3174/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3174/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3380
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3380/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3380/comments
https://api.github.com/repos/huggingface/datasets/issues/3380/events
https://github.com/huggingface/datasets/issues/3380
1,071,166,270
I_kwDODunzps4_2LM-
3,380
[Quick poll] Give your opinion on the future of the Hugging Face Open Source ecosystem!
{ "avatar_url": "https://avatars.githubusercontent.com/u/30755778?v=4", "events_url": "https://api.github.com/users/LysandreJik/events{/privacy}", "followers_url": "https://api.github.com/users/LysandreJik/followers", "following_url": "https://api.github.com/users/LysandreJik/following{/other_user}", "gists_url": "https://api.github.com/users/LysandreJik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LysandreJik", "id": 30755778, "login": "LysandreJik", "node_id": "MDQ6VXNlcjMwNzU1Nzc4", "organizations_url": "https://api.github.com/users/LysandreJik/orgs", "received_events_url": "https://api.github.com/users/LysandreJik/received_events", "repos_url": "https://api.github.com/users/LysandreJik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LysandreJik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LysandreJik/subscriptions", "type": "User", "url": "https://api.github.com/users/LysandreJik" }
[]
closed
false
null
[]
null
[]
"2021-12-04T09:18:33Z"
"2022-01-11T12:29:53Z"
"2022-01-11T12:29:53Z"
MEMBER
null
null
null
Thanks to all of you, `datasets` will pass 11.5k stars :star2: this week! If you have a couple of minutes and want to participate in shaping the future of the ecosystem, please share your thoughts: [**hf.co/oss-survey**](https://hf.co/oss-survey) (please reply in the above feedback form rather than to this thread) Thank you all on behalf of the HuggingFace team! 🤗
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 3, "hooray": 0, "laugh": 0, "rocket": 2, "total_count": 5, "url": "https://api.github.com/repos/huggingface/datasets/issues/3380/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3380/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4372
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4372/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4372/comments
https://api.github.com/repos/huggingface/datasets/issues/4372/events
https://github.com/huggingface/datasets/pull/4372
1,241,703,826
PR_kwDODunzps44HeYC
4,372
Check if dataset features match before push in `DatasetDict.push_to_hub`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-05-19T12:32:30Z"
"2022-05-20T15:23:36Z"
"2022-05-20T15:15:30Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4372.diff", "html_url": "https://github.com/huggingface/datasets/pull/4372", "merged_at": "2022-05-20T15:15:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/4372.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4372" }
Fix #4211
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4372/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4372/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3602
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3602/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3602/comments
https://api.github.com/repos/huggingface/datasets/issues/3602/events
https://github.com/huggingface/datasets/pull/3602
1,108,247,870
PR_kwDODunzps4xRXVm
3,602
Update url for conll2003
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "Hi. lhoestq \r\n\r\n![image](https://user-images.githubusercontent.com/21982975/150345097-154f2b1a-bb12-47af-bddf-40eec0a0dadb.png)\r\nWhat is the solution for it?\r\nyou can see it is still doesn't work here.\r\nhttps://colab.research.google.com/drive/1l52FGWuSaOaGYchit4CbmtUSuzNDx_Ok?usp=sharing\r\nThank you.\r\n", "For now you can specify `load_dataset(..., revision=\"master\")` to use the fix on `master`.\r\n\r\nWe'll also do a new release of `datasets` tomorrow I think" ]
"2022-01-19T15:35:04Z"
"2022-01-20T16:23:03Z"
"2022-01-19T15:43:53Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3602.diff", "html_url": "https://github.com/huggingface/datasets/pull/3602", "merged_at": "2022-01-19T15:43:53Z", "patch_url": "https://github.com/huggingface/datasets/pull/3602.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3602" }
Following https://github.com/huggingface/datasets/issues/3582 I'm changing the download URL of the conll2003 data files, since the previous host doesn't have the authorization to redistribute the data
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3602/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3602/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2160
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2160/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2160/comments
https://api.github.com/repos/huggingface/datasets/issues/2160/events
https://github.com/huggingface/datasets/issues/2160
849,052,921
MDU6SXNzdWU4NDkwNTI5MjE=
2,160
data_args.preprocessing_num_workers almost freezes
{ "avatar_url": "https://avatars.githubusercontent.com/u/79165106?v=4", "events_url": "https://api.github.com/users/dorost1234/events{/privacy}", "followers_url": "https://api.github.com/users/dorost1234/followers", "following_url": "https://api.github.com/users/dorost1234/following{/other_user}", "gists_url": "https://api.github.com/users/dorost1234/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dorost1234", "id": 79165106, "login": "dorost1234", "node_id": "MDQ6VXNlcjc5MTY1MTA2", "organizations_url": "https://api.github.com/users/dorost1234/orgs", "received_events_url": "https://api.github.com/users/dorost1234/received_events", "repos_url": "https://api.github.com/users/dorost1234/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dorost1234/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dorost1234/subscriptions", "type": "User", "url": "https://api.github.com/users/dorost1234" }
[]
closed
false
null
[]
null
[ "Hi.\r\nI cannot always reproduce this issue, and on later runs I did not see it so far. Sometimes also I set 8 processes but I see less being showed, is this normal, here only 5 are shown for 8 being set, thanks\r\n\r\n```\r\n#3: 11%|███████████████▊ | 172/1583 [00:46<06:21, 3.70ba/s]\r\n#4: 9%|█████████████▏ | 143/1583 [00:46<07:46, 3.09ba/s]\r\n#7: 6%|█████████ | 98/1583 [00:45<11:34, 2.14ba/s]\r\n#5: 8%|███████████▍ | 124/1583 [00:46<09:03, 2.68ba/s]\r\n#6: 7%|██████████▏ \r\n```", "closing since I cannot reproduce it again, thanks " ]
"2021-04-02T07:56:13Z"
"2021-04-02T10:14:32Z"
"2021-04-02T10:14:31Z"
NONE
null
null
null
Hi @lhoestq I am running this code from huggingface transformers https://github.com/huggingface/transformers/blob/master/examples/language-modeling/run_mlm.py to speed up tokenization, since I am running on multiple datasets, I am using data_args.preprocessing_num_workers = 4 with opus100 corpus but this moves on till a point and then this freezes almost for sometime during tokenization steps and then this is back again, overall to me taking more time than normal case, I appreciate your advice on how I can use this option properly to speed up. thanks
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2160/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2160/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3564
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3564/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3564/comments
https://api.github.com/repos/huggingface/datasets/issues/3564/events
https://github.com/huggingface/datasets/pull/3564
1,099,214,403
PR_kwDODunzps4wzSOL
3,564
Add the KMWP & DKTC dataset.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42150335?v=4", "events_url": "https://api.github.com/users/sooftware/events{/privacy}", "followers_url": "https://api.github.com/users/sooftware/followers", "following_url": "https://api.github.com/users/sooftware/following{/other_user}", "gists_url": "https://api.github.com/users/sooftware/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sooftware", "id": 42150335, "login": "sooftware", "node_id": "MDQ6VXNlcjQyMTUwMzM1", "organizations_url": "https://api.github.com/users/sooftware/orgs", "received_events_url": "https://api.github.com/users/sooftware/received_events", "repos_url": "https://api.github.com/users/sooftware/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sooftware/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sooftware/subscriptions", "type": "User", "url": "https://api.github.com/users/sooftware" }
[]
closed
false
null
[]
null
[ "I reflect your review. cc. @lhoestq ", "Ah sorry, I missed KMWP comment, wait.", "I request 2 new pull requests. #3569 #3570" ]
"2022-01-11T14:14:08Z"
"2022-01-12T15:33:49Z"
"2022-01-12T15:33:28Z"
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3564.diff", "html_url": "https://github.com/huggingface/datasets/pull/3564", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/3564.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3564" }
Add the DKTC dataset. - https://github.com/tunib-ai/DKTC
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3564/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3564/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1861
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1861/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1861/comments
https://api.github.com/repos/huggingface/datasets/issues/1861/events
https://github.com/huggingface/datasets/pull/1861
805,631,215
MDExOlB1bGxSZXF1ZXN0NTcxMjAwNjA1
1,861
Fix Limit url
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-02-10T15:44:56Z"
"2021-02-10T16:15:00Z"
"2021-02-10T16:14:59Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1861.diff", "html_url": "https://github.com/huggingface/datasets/pull/1861", "merged_at": "2021-02-10T16:14:58Z", "patch_url": "https://github.com/huggingface/datasets/pull/1861.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1861" }
The test.json file of the Literal-Motion-in-Text (LiMiT) dataset was removed recently on the master branch of the repo at https://github.com/ilmgut/limit_dataset This PR uses the previous commit sha to download the file instead, as suggested by @Paethon Close #1836
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/1861/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1861/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5574
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5574/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5574/comments
https://api.github.com/repos/huggingface/datasets/issues/5574/events
https://github.com/huggingface/datasets/issues/5574
1,598,104,691
I_kwDODunzps5fQSRz
5,574
c4 dataset streaming fails with `FileNotFoundError`
{ "avatar_url": "https://avatars.githubusercontent.com/u/202907?v=4", "events_url": "https://api.github.com/users/krasserm/events{/privacy}", "followers_url": "https://api.github.com/users/krasserm/followers", "following_url": "https://api.github.com/users/krasserm/following{/other_user}", "gists_url": "https://api.github.com/users/krasserm/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/krasserm", "id": 202907, "login": "krasserm", "node_id": "MDQ6VXNlcjIwMjkwNw==", "organizations_url": "https://api.github.com/users/krasserm/orgs", "received_events_url": "https://api.github.com/users/krasserm/received_events", "repos_url": "https://api.github.com/users/krasserm/repos", "site_admin": false, "starred_url": "https://api.github.com/users/krasserm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/krasserm/subscriptions", "type": "User", "url": "https://api.github.com/users/krasserm" }
[]
closed
false
null
[]
null
[ "Also encountering this issue for every dataset I try to stream! Installed datasets from main:\r\n```\r\n- `datasets` version: 2.10.1.dev0\r\n- Platform: macOS-13.1-arm64-arm-64bit\r\n- Python version: 3.9.13\r\n- PyArrow version: 10.0.1\r\n- Pandas version: 1.5.2\r\n```\r\n\r\nRepro:\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nspigi = load_dataset(\"kensho/spgispeech\", \"dev\", split=\"validation\", streaming=True, use_auth_token=True)\r\nsample = next(iter(spigi))\r\n```\r\n\r\n<details>\r\n<summary> Traceback </summary>\r\n\r\n```python\r\n---------------------------------------------------------------------------\r\nClientResponseError Traceback (most recent call last)\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/implementations/http.py:407, in HTTPFileSystem._info(self, url, **kwargs)\r\n 405 try:\r\n 406 info.update(\r\n--> 407 await _file_info(\r\n 408 self.encode_url(url),\r\n 409 size_policy=policy,\r\n 410 session=session,\r\n 411 **self.kwargs,\r\n 412 **kwargs,\r\n 413 )\r\n 414 )\r\n 415 if info.get(\"size\") is not None:\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/implementations/http.py:792, in _file_info(url, session, size_policy, **kwargs)\r\n 791 async with r:\r\n--> 792 r.raise_for_status()\r\n 794 # TODO:\r\n 795 # recognise lack of 'Accept-Ranges',\r\n 796 # or 'Accept-Ranges': 'none' (not 'bytes')\r\n 797 # to mean streaming only, no random access => return None\r\n\r\nFile ~/venv/lib/python3.9/site-packages/aiohttp/client_reqrep.py:1005, in ClientResponse.raise_for_status(self)\r\n 1004 self.release()\r\n-> 1005 raise ClientResponseError(\r\n 1006 self.request_info,\r\n 1007 self.history,\r\n 1008 status=self.status,\r\n 1009 message=self.reason,\r\n 1010 headers=self.headers,\r\n 1011 )\r\n\r\nClientResponseError: 403, message='Forbidden', url=URL('[https://cdn-lfs.huggingface.co/repos/e2/89/e28905247d6f48bb4edad5baf9b1bb4158e897a13fdf18bf3b8ee89ff8387ab8/46eca7431a7b6bad344bf451800e5b10cea1dd168f26d1027a6d9eb374b7fac3?response-content-disposition=attachment%3B+filename*%3DUTF-8''dev.csv%3B+filename%3D%22dev.csv%22%3B&response-content-type=text/csv&Expires=1677494732&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2UyLzg5L2UyODkwNTI0N2Q2ZjQ4YmI0ZWRhZDViYWY5YjFiYjQxNThlODk3YTEzZmRmMThiZjNiOGVlODlmZjgzODdhYjgvNDZlY2E3NDMxYTdiNmJhZDM0NGJmNDUxODAwZTViMTBjZWExZGQxNjhmMjZkMTAyN2E2ZDllYjM3NGI3ZmFjMz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPXRleHQlMkZjc3YiLCJDb25kaXRpb24iOnsiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE2Nzc0OTQ3MzJ9fX1dfQ__&Signature=EzQB9f7xPckvqfFB6LzcyR-wzTnQCqtPDdWtQUzZ3QJ-gY-IHG5mxQITJgMr1nVTbJZrPmGAaDngMcPFUfSQa8RmCqYH~dZl-UGE8CO4neKNUT1DvA2WEvLDS4WaAJ3SN-9rX0uFb03~c1QS78cIgIRboYvf6ugKiJz86Bd7Vs~tcp201JFR0A6jIMseqApOnkb9d8dHMP3Ny~F6gO3Qf2QpEWM-QsDIyw2Kz2QV55nq8TsDpRYZCZo50~WwD~73Hej0PoDhEA1K37d19pa0CQhkaN-gjCrbT9xLabbvhJWa~ZkWcMdD0teCgjYqv1wKyvFXDAxukxLGEc7OBXVbYw__&Key-Pair-Id=KVTP0A1DKRTAX](https://cdn-lfs.huggingface.co/repos/e2/89/e28905247d6f48bb4edad5baf9b1bb4158e897a13fdf18bf3b8ee89ff8387ab8/46eca7431a7b6bad344bf451800e5b10cea1dd168f26d1027a6d9eb374b7fac3?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27dev.csv%3B+filename%3D%22dev.csv%22%3B&response-content-type=text/csv&Expires=1677494732&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2UyLzg5L2UyODkwNTI0N2Q2ZjQ4YmI0ZWRhZDViYWY5YjFiYjQxNThlODk3YTEzZmRmMThiZjNiOGVlODlmZjgzODdhYjgvNDZlY2E3NDMxYTdiNmJhZDM0NGJmNDUxODAwZTViMTBjZWExZGQxNjhmMjZkMTAyN2E2ZDllYjM3NGI3ZmFjMz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPXRleHQlMkZjc3YiLCJDb25kaXRpb24iOnsiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE2Nzc0OTQ3MzJ9fX1dfQ__&Signature=EzQB9f7xPckvqfFB6LzcyR-wzTnQCqtPDdWtQUzZ3QJ-gY-IHG5mxQITJgMr1nVTbJZrPmGAaDngMcPFUfSQa8RmCqYH~dZl-UGE8CO4neKNUT1DvA2WEvLDS4WaAJ3SN-9rX0uFb03~c1QS78cIgIRboYvf6ugKiJz86Bd7Vs~tcp201JFR0A6jIMseqApOnkb9d8dHMP3Ny~F6gO3Qf2QpEWM-QsDIyw2Kz2QV55nq8TsDpRYZCZo50~WwD~73Hej0PoDhEA1K37d19pa0CQhkaN-gjCrbT9xLabbvhJWa~ZkWcMdD0teCgjYqv1wKyvFXDAxukxLGEc7OBXVbYw__&Key-Pair-Id=KVTP0A1DKRTAX)')\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nFileNotFoundError Traceback (most recent call last)\r\nCell In[5], line 4\r\n 1 from datasets import load_dataset\r\n 3 spigi = load_dataset(\"kensho/spgispeech\", \"dev\", split=\"validation\", streaming=True)\r\n----> 4 sample = next(iter(spigi))\r\n\r\nFile ~/datasets/src/datasets/iterable_dataset.py:937, in IterableDataset.__iter__(self)\r\n 934 yield from self._iter_pytorch(ex_iterable)\r\n 935 return\r\n--> 937 for key, example in ex_iterable:\r\n 938 if self.features:\r\n 939 # `IterableDataset` automatically fills missing columns with None.\r\n 940 # This is done with `_apply_feature_types_on_example`.\r\n 941 yield _apply_feature_types_on_example(\r\n 942 example, self.features, token_per_repo_id=self._token_per_repo_id\r\n 943 )\r\n\r\nFile ~/datasets/src/datasets/iterable_dataset.py:113, in ExamplesIterable.__iter__(self)\r\n 112 def __iter__(self):\r\n--> 113 yield from self.generate_examples_fn(**self.kwargs)\r\n\r\nFile ~/.cache/huggingface/modules/datasets_modules/datasets/kensho--spgispeech/5fbf75dd9ef795a9b5a673457d2cbaf0b8fa0de8fb62acbd1da338d83a41e2f0/spgispeech.py:186, in Spgispeech._generate_examples(self, local_extracted_archive_paths, archives, meta_path)\r\n 183 dict_keys = [\"wav_filename\", \"wav_filesize\", \"transcript\"]\r\n 185 logging.info(\"Reading metadata...\")\r\n--> 186 with open(meta_path, encoding=\"utf-8\") as f:\r\n 187 csvreader = csv.DictReader(f, delimiter=\"|\")\r\n 188 metadata = {x[\"wav_filename\"]: dict((k, x[k]) for k in dict_keys) for x in csvreader}\r\n\r\nFile ~/datasets/src/datasets/streaming.py:70, in extend_module_for_streaming.<locals>.wrap_auth.<locals>.wrapper(*args, **kwargs)\r\n 68 @wraps(function)\r\n 69 def wrapper(*args, **kwargs):\r\n---> 70 return function(*args, use_auth_token=use_auth_token, **kwargs)\r\n\r\nFile ~/datasets/src/datasets/download/streaming_download_manager.py:495, in xopen(file, mode, use_auth_token, *args, **kwargs)\r\n 493 kwargs = {**kwargs, **new_kwargs}\r\n 494 try:\r\n--> 495 file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open()\r\n 496 except ValueError as e:\r\n 497 if str(e) == \"Cannot seek streaming HTTP file\":\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/core.py:135, in OpenFile.open(self)\r\n 128 def open(self):\r\n 129 \"\"\"Materialise this as a real open file without context\r\n 130 \r\n 131 The OpenFile object should be explicitly closed to avoid enclosed file\r\n 132 instances persisting. You must, therefore, keep a reference to the OpenFile\r\n 133 during the life of the file-like it generates.\r\n 134 \"\"\"\r\n--> 135 return self.__enter__()\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/core.py:103, in OpenFile.__enter__(self)\r\n 100 def __enter__(self):\r\n 101 mode = self.mode.replace(\"t\", \"\").replace(\"b\", \"\") + \"b\"\r\n--> 103 f = self.fs.open(self.path, mode=mode)\r\n 105 self.fobjects = [f]\r\n 107 if self.compression is not None:\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/spec.py:1106, in AbstractFileSystem.open(self, path, mode, block_size, cache_options, compression, **kwargs)\r\n 1104 else:\r\n 1105 ac = kwargs.pop(\"autocommit\", not self._intrans)\r\n-> 1106 f = self._open(\r\n 1107 path,\r\n 1108 mode=mode,\r\n 1109 block_size=block_size,\r\n 1110 autocommit=ac,\r\n 1111 cache_options=cache_options,\r\n 1112 **kwargs,\r\n 1113 )\r\n 1114 if compression is not None:\r\n 1115 from fsspec.compression import compr\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/implementations/http.py:346, in HTTPFileSystem._open(self, path, mode, block_size, autocommit, cache_type, cache_options, size, **kwargs)\r\n 344 kw[\"asynchronous\"] = self.asynchronous\r\n 345 kw.update(kwargs)\r\n--> 346 size = size or self.info(path, **kwargs)[\"size\"]\r\n 347 session = sync(self.loop, self.set_session)\r\n 348 if block_size and size:\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/asyn.py:113, in sync_wrapper.<locals>.wrapper(*args, **kwargs)\r\n 110 @functools.wraps(func)\r\n 111 def wrapper(*args, **kwargs):\r\n 112 self = obj or args[0]\r\n--> 113 return sync(self.loop, func, *args, **kwargs)\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/asyn.py:98, in sync(loop, func, timeout, *args, **kwargs)\r\n 96 raise FSTimeoutError from return_result\r\n 97 elif isinstance(return_result, BaseException):\r\n---> 98 raise return_result\r\n 99 else:\r\n 100 return return_result\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/asyn.py:53, in _runner(event, coro, result, timeout)\r\n 51 coro = asyncio.wait_for(coro, timeout=timeout)\r\n 52 try:\r\n---> 53 result[0] = await coro\r\n 54 except Exception as ex:\r\n 55 result[0] = ex\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/implementations/http.py:420, in HTTPFileSystem._info(self, url, **kwargs)\r\n 417 except Exception as exc:\r\n 418 if policy == \"get\":\r\n 419 # If get failed, then raise a FileNotFoundError\r\n--> 420 raise FileNotFoundError(url) from exc\r\n 421 logger.debug(str(exc))\r\n 423 return {\"name\": url, \"size\": None, **info, \"type\": \"file\"}\r\n\r\nFileNotFoundError: https://huggingface.co/datasets/kensho/spgispeech/resolve/main/data/meta/dev.csv\r\n```\r\n</details>", "Hi ! We're investigating this issue, sorry for the inconvenience", "This has been resolved ! Thanks for reporting", "Wow, thanks for the very quick fix!", "This problem now appears again, this time with an underlying HTTP 502 status code:\r\n\r\n```\r\naiohttp.client_exceptions.ClientResponseError: 502, message='Bad Gateway', url=URL('https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/en/c4-validation.00002-of-00008.json.gz')\r\n```", "Re-executing a minute later, the underlying cause is an HTTP 403 status code, as reported yesterday:\r\n\r\n```\r\naiohttp.client_exceptions.ClientResponseError: 403, message='Forbidden', url=URL('https://cdn-lfs.huggingface.co/datasets/allenai/c4/4bf6b248b0f910dcde2cdf2118d6369d8208c8f9515ec29ab73e531f380b18e2?response-content-disposition=attachment%3B+filename*%3DUTF-8''c4-validation.00002-of-00008.json.gz%3B+filename%3D%22c4-validation.00002-of-00008.json.gz%22%3B&response-content-type=application/gzip&Expires=1677571273&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL2RhdGFzZXRzL2FsbGVuYWkvYzQvNGJmNmIyNDhiMGY5MTBkY2RlMmNkZjIxMThkNjM2OWQ4MjA4YzhmOTUxNWVjMjlhYjczZTUzMWYzODBiMThlMj9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPWFwcGxpY2F0aW9uJTJGZ3ppcCIsIkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTY3NzU3MTI3M319fV19&Signature=WW42NOKkLuX~xVB1QfbkqzdvGo2AOXpgbF3PjTXy6iKd~ffilr1N9ScPXfvTXqy5yvdhJg1G0xJy1zYtUjGAL8GEx3Av-0vIhpWMGYTM8XKEU5gYA9qt30oVtNph6TkTYSABrsYTaj-hzQL9WCgyapmjvG69ETMh4wj44r2rcbk4T3j0l6l4u76Gh~lyRSll3aK4qycdUwcyL7FECDu~0W1mJIJwKkCrWHhSpHJSshb-0ElwG71pq4eyQ5g2uxHdK6JbRF7loxUpRQQJ1vlk0EHXdw0wTMaQ9tqHy6xcrQd8Ep0Yvx3tUD8MR0vWOcbQKnL6LwPQByc8tkChlpjnig__&Key-Pair-Id=KVTP0A1DKRTAX')\r\n```", "I'm facing the same problem. Interestingly using `wget` I can download the file. ", "It's been resolved again ;)", "> It's been resolved again ;)\r\n\r\nI'm experiencing the same issue when trying to load this dataset, `FileNotFoundError: https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/realnewslike/c4-train.00000-of-00512.json.gz`" ]
"2023-02-24T07:57:32Z"
"2023-03-06T13:14:11Z"
"2023-02-27T04:03:38Z"
NONE
null
null
null
### Describe the bug Loading the `c4` dataset in streaming mode with `load_dataset("c4", "en", split="validation", streaming=True)` and then using it fails with a `FileNotFoundException`. ### Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("c4", "en", split="train", streaming=True) next(iter(dataset)) ``` causes a ``` FileNotFoundError: https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/en/c4-train.00000-of-01024.json.gz ``` I can download this file manually though e.g. by entering this URL in a browser. There is an underlying HTTP 403 status code: ``` aiohttp.client_exceptions.ClientResponseError: 403, message='Forbidden', url=URL('https://cdn-lfs.huggingface.co/datasets/allenai/c4/8ef8d75b0e045dec4aa5123a671b4564466b0707086a7ed1ba8721626dfffbc9?response-content-disposition=attachment%3B+filename*%3DUTF-8''c4-train.00000-of-01024.json.gz%3B+filename%3D%22c4-train.00000-of-01024.json.gz%22%3B&response-content-type=application/gzip&Expires=1677483770&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL2RhdGFzZXRzL2FsbGVuYWkvYzQvOGVmOGQ3NWIwZTA0NWRlYzRhYTUxMjNhNjcxYjQ1NjQ0NjZiMDcwNzA4NmE3ZWQxYmE4NzIxNjI2ZGZmZmJjOT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPWFwcGxpY2F0aW9uJTJGZ3ppcCIsIkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTY3NzQ4Mzc3MH19fV19&Signature=yjL3UeY72cf2xpnvPvD68eAYOEe2qtaUJV55sB-jnPskBJEMwpMJcBZvg2~GqXZdM3O-GWV-Z3CI~d4u5VCb4YZ-HlmOjr3VBYkvox2EKiXnBIhjMecf2UVUPtxhTa9kBVlWjqu4qKzB9gKXZF2Cwpp5ctLzapEaT2nnqF84RAL-rsqMA3I~M8vWWfivQsbBK63hMfgZqqKMgdWM0iKMaItveDl0ufQ29azMFmsR7qd8V7sU2Z-F1fAeohS8HpN9OOnClW34yi~YJ2AbgZJJBXA~qsylfVA0Qp7Q~yX~q4P8JF1vmJ2BjkiSbGrj3bAXOGugpOVU5msI52DT88yMdA__&Key-Pair-Id=KVTP0A1DKRTAX') ``` ### Expected behavior This should retrieve the first example from the C4 validation set. This worked a few days ago but stopped working now. ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.31 - Python version: 3.9.16 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5574/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5574/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3679
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3679/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3679/comments
https://api.github.com/repos/huggingface/datasets/issues/3679/events
https://github.com/huggingface/datasets/issues/3679
1,124,062,133
I_kwDODunzps5C_9O1
3,679
Download datasets from a private hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/3436143?v=4", "events_url": "https://api.github.com/users/juliensimon/events{/privacy}", "followers_url": "https://api.github.com/users/juliensimon/followers", "following_url": "https://api.github.com/users/juliensimon/following{/other_user}", "gists_url": "https://api.github.com/users/juliensimon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/juliensimon", "id": 3436143, "login": "juliensimon", "node_id": "MDQ6VXNlcjM0MzYxNDM=", "organizations_url": "https://api.github.com/users/juliensimon/orgs", "received_events_url": "https://api.github.com/users/juliensimon/received_events", "repos_url": "https://api.github.com/users/juliensimon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/juliensimon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/juliensimon/subscriptions", "type": "User", "url": "https://api.github.com/users/juliensimon" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "A929D8", "default": false, "description": "", "id": 3814924348, "name": "private-hub", "node_id": "LA_kwDODunzps7jYyA8", "url": "https://api.github.com/repos/huggingface/datasets/labels/private-hub" } ]
closed
false
null
[]
null
[ "For reference:\r\nhttps://github.com/huggingface/transformers/issues/15514\r\nhttps://github.com/huggingface/huggingface_hub/issues/650", "Hi ! For information one can set the environment variable `HF_ENDPOINT` (default is `https://huggingface.co`) if they want to use a private hub.\r\n\r\nWe may need to coordinate with the other libraries to have a consistent way of changing the hub endpoint", "Yes, I tested it successfully this morning. Thanks." ]
"2022-02-04T10:49:06Z"
"2022-02-22T11:08:07Z"
"2022-02-22T11:08:07Z"
NONE
null
null
null
In the context of a private hub deployment, customers would like to use load_dataset() to load datasets from their hub, not from the public hub. This doesn't seem to be configurable at the moment and it would be nice to add this feature. The obvious workaround is to clone the repo first and then load it from local storage, but this adds an extra step. It'd be great to have the same experience regardless of where the hub is hosted. The same issue exists with the transformers library and the CLI. I'm going to create issues there as well, and I'll reference them below.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3679/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3679/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5661
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5661/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5661/comments
https://api.github.com/repos/huggingface/datasets/issues/5661/events
https://github.com/huggingface/datasets/issues/5661
1,637,129,445
I_kwDODunzps5hlJzl
5,661
CI is broken: Unnecessary `dict` comprehension
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[]
"2023-03-23T09:13:01Z"
"2023-03-23T09:37:51Z"
"2023-03-23T09:37:51Z"
MEMBER
null
null
null
CI check_code_quality is broken: ``` src/datasets/arrow_dataset.py:3267:35: C416 [*] Unnecessary `dict` comprehension (rewrite using `dict()`) Found 1 error. ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5661/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5661/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2658
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2658/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2658/comments
https://api.github.com/repos/huggingface/datasets/issues/2658/events
https://github.com/huggingface/datasets/issues/2658
946,139,532
MDU6SXNzdWU5NDYxMzk1MzI=
2,658
Can't pass `sep=None` to load_dataset("csv", ...) to infer the separator via pandas.read_csv
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
null
[]
"2021-07-16T10:05:44Z"
"2021-07-16T12:46:06Z"
"2021-07-16T12:46:06Z"
MEMBER
null
null
null
When doing `load_dataset("csv", sep=None)`, the `sep` passed to `pd.read_csv` is still the default `sep=","` instead, which makes it impossible to make the csv loader infer the separator. Related to https://github.com/huggingface/datasets/pull/2656 cc @SBrandeis
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2658/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2658/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3932
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3932/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3932/comments
https://api.github.com/repos/huggingface/datasets/issues/3932/events
https://github.com/huggingface/datasets/pull/3932
1,170,221,773
PR_kwDODunzps40fd0T
3,932
Create SARI metric card
{ "avatar_url": "https://avatars.githubusercontent.com/u/14205986?v=4", "events_url": "https://api.github.com/users/sashavor/events{/privacy}", "followers_url": "https://api.github.com/users/sashavor/followers", "following_url": "https://api.github.com/users/sashavor/following{/other_user}", "gists_url": "https://api.github.com/users/sashavor/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sashavor", "id": 14205986, "login": "sashavor", "node_id": "MDQ6VXNlcjE0MjA1OTg2", "organizations_url": "https://api.github.com/users/sashavor/orgs", "received_events_url": "https://api.github.com/users/sashavor/received_events", "repos_url": "https://api.github.com/users/sashavor/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sashavor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sashavor/subscriptions", "type": "User", "url": "https://api.github.com/users/sashavor" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-03-15T20:37:23Z"
"2022-03-18T17:37:01Z"
"2022-03-18T17:32:55Z"
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3932.diff", "html_url": "https://github.com/huggingface/datasets/pull/3932", "merged_at": "2022-03-18T17:32:55Z", "patch_url": "https://github.com/huggingface/datasets/pull/3932.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3932" }
SARI metric card! (do we have an expert in text simplification to validate?.. :sweat_smile: )
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3932/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3932/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1720
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1720/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1720/comments
https://api.github.com/repos/huggingface/datasets/issues/1720/events
https://github.com/huggingface/datasets/pull/1720
783,721,833
MDExOlB1bGxSZXF1ZXN0NTUzMDM0MzYx
1,720
Adding the NorNE dataset for NER
{ "avatar_url": "https://avatars.githubusercontent.com/u/173537?v=4", "events_url": "https://api.github.com/users/versae/events{/privacy}", "followers_url": "https://api.github.com/users/versae/followers", "following_url": "https://api.github.com/users/versae/following{/other_user}", "gists_url": "https://api.github.com/users/versae/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/versae", "id": 173537, "login": "versae", "node_id": "MDQ6VXNlcjE3MzUzNw==", "organizations_url": "https://api.github.com/users/versae/orgs", "received_events_url": "https://api.github.com/users/versae/received_events", "repos_url": "https://api.github.com/users/versae/repos", "site_admin": false, "starred_url": "https://api.github.com/users/versae/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/versae/subscriptions", "type": "User", "url": "https://api.github.com/users/versae" }
[]
closed
false
null
[]
null
[ "Quick question, @lhoestq. In this specific dataset, two special types `GPE_LOC` and `GPE_ORG` can easily be altered depending on the task, choosing either the more general `GPE` tag or the more specific `LOC`/`ORG` tags, conflating them with the other annotations of the same type. However, I have not found an easy way to implement that. Using splits or configs does not seem appropriate.\r\n", "About the `GPE_LOC` and `GPE_ORG`. The original NorNE paper in which they published the dataset, does an evaluation on three different NER tag sets, one considering `GPE_LOC` and `GPE_ORG` as they are, another changing them to be just `GPE`, and another one by changing it to become `LOC` and `ORG`. The called these sets, `norne-full`, `norne-7`, and `norne-9`. What I would like is to provide a way for the user of this dataset to get `norne-7` and `norne-9` without having to duplicate the code.", "Ok I see !\r\nI guess you can have three configurations `norne-full`, `norne-7` and `norne-9`.\r\nEach config can have different feature types. You can simply check for the `self.config.name` in the `_info(self)` method and pick the right ClassLabel names accordingly. And then in `_generate_examples` as well you can check for `self.config.name` to know how to process the labels to yield either GPE_LOC/GPE_ORG, GPE or LOC/ORG", "But I'm already using the configurations for the different language\nvarieties. So you propose having something like `bokmaal`, `bokmaal-7`,\netc? Would there be a different way? If not, I'd be fine the corpus as it\nis until we come up with a solution. Thanks in any case.\n\n--\nSent using a cell-phone, so sorry for the typos and wrong auto-corrections.\n\nOn Tue, Jan 19, 2021, 4:56 PM Quentin Lhoest <notifications@github.com>\nwrote:\n\n> Ok I see !\n> I guess you can have three configurations norne-full, norne-7 and norne-9.\n> Each config can have different feature types. You can simply check for the\n> self.config.name in the _info(self) method and pick the right ClassLabel\n> names accordingly. And then in _generate_examples as well you can check\n> for self.config.name to know how to process the labels to yield either\n> GPE_LOC/GPE_ORG, GPE or LOC/ORG\n>\n> —\n> You are receiving this because you authored the thread.\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/pull/1720#issuecomment-762936612>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AABKLYOWNDBD76WZPJHFCWLS2WTTHANCNFSM4V6GSUQA>\n> .\n>\n", "The first option about having configurations like `bokmaal-7`, `bokmaal-9` etc. would definitely work.\r\n\r\nA second option would be to add a parameter `ner_tags_set` to `NorneConfig` and then one could load them with\r\n```python\r\nbokmaal_full = load_dataset(\"norne\", \"bokmaal\", ner_tags_set=\"norne-full\")\r\n```\r\nfor example.\r\n\r\nWhat do you think ?", "Hi @versae have you had a chance to consider one of the two options for the config ?\r\nI think both are ok but I have a small preference for the first one since it's simpler to implement.\r\n\r\nFeel free to ping me if you have questions or if I can help :) ", "Hi @lhoestq. Agree, option 1 seems easier to implement. Just haven't had bandwidth to get to it yet. Hopefully starting next week I'll be able to update the PR.", "Hi @versae ! Did you manage to add the configurations ? Let me know if we can help you on this", "Hi @lhoestq, I do actually have to code ready, just need to generate the dummy data for it. ", "One thing I don't know how to do is to make `_info(self)` return the different NER tags in its `DatasetInfo` object depending on the specific config.", "OK, I think it's ready now.", "Closing this one and opening a new one with a cleaner commit log.", "All set now in #2154." ]
"2021-01-11T21:34:13Z"
"2021-03-31T14:23:49Z"
"2021-03-31T14:13:17Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1720.diff", "html_url": "https://github.com/huggingface/datasets/pull/1720", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1720.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1720" }
NorNE is a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokmål and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons, organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1720/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1720/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4829
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4829/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4829/comments
https://api.github.com/repos/huggingface/datasets/issues/4829/events
https://github.com/huggingface/datasets/issues/4829
1,336,068,068
I_kwDODunzps5Posfk
4,829
Misalignment between card tag validation and docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "(Note that the doc is aligned with the hub validation rules, and the \"ground truth\" is the hub validation rules given that they apply to all datasets, not just the canonical ones)", "Instead of our own implementation, we now use `huggingface_hub`'s `DatasetCardData`, which has the correct type hint, so I think we can close this issue." ]
"2022-08-11T14:44:45Z"
"2023-07-21T15:38:02Z"
null
MEMBER
null
null
null
## Describe the bug As pointed out in other issue: https://github.com/huggingface/datasets/pull/4827#discussion_r943536284 the validation of the dataset card tags is not aligned with its documentation: e.g. - implementation: `license: List[str]` - docs: `license: Union[str, List[str]]` They should be aligned. CC: @julien-c
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4829/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4829/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5539
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5539/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5539/comments
https://api.github.com/repos/huggingface/datasets/issues/5539/events
https://github.com/huggingface/datasets/issues/5539
1,587,970,083
I_kwDODunzps5epoAj
5,539
IndexError: invalid index of a 0-dim tensor. Use `tensor.item()` in Python or `tensor.item<T>()` in C++ to convert a 0-dim tensor to a number
{ "avatar_url": "https://avatars.githubusercontent.com/u/41912135?v=4", "events_url": "https://api.github.com/users/aalbersk/events{/privacy}", "followers_url": "https://api.github.com/users/aalbersk/followers", "following_url": "https://api.github.com/users/aalbersk/following{/other_user}", "gists_url": "https://api.github.com/users/aalbersk/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/aalbersk", "id": 41912135, "login": "aalbersk", "node_id": "MDQ6VXNlcjQxOTEyMTM1", "organizations_url": "https://api.github.com/users/aalbersk/orgs", "received_events_url": "https://api.github.com/users/aalbersk/received_events", "repos_url": "https://api.github.com/users/aalbersk/repos", "site_admin": false, "starred_url": "https://api.github.com/users/aalbersk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aalbersk/subscriptions", "type": "User", "url": "https://api.github.com/users/aalbersk" }
[ { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
null
[]
null
[ "Hi! The `set_transform` does not apply a custom formatting transform on a single example but the entire batch, so the fixed version of your transform would look as follows:\r\n```python\r\nfrom datasets import load_dataset\r\nimport torch\r\n\r\ndataset = load_dataset(\"lambdalabs/pokemon-blip-captions\", split='train')\r\ndef t(batch):\r\n return {\"test\": torch.tensor([1] * len(batch[next(iter(batch))]))}\r\n \r\ndataset.set_transform(t)\r\nd_0 = dataset[0]\r\n```\r\n\r\nStill, the formatter's error message should mention that a dict of **sequences** is expected as the returned value (not just a dict) to make debugging easier.", "I can take this", "Fixed in #5553 ", "> Hi! The `set_transform` does not apply a custom formatting transform on a single example but the entire batch, so the fixed version of your transform would look as follows:\r\n> \r\n> ```python\r\n> from datasets import load_dataset\r\n> import torch\r\n> \r\n> dataset = load_dataset(\"lambdalabs/pokemon-blip-captions\", split='train')\r\n> def t(batch):\r\n> return {\"test\": torch.tensor([1] * len(batch[next(iter(batch))]))}\r\n> \r\n> dataset.set_transform(t)\r\n> d_0 = dataset[0]\r\n> ```\r\n> \r\n> Still, the formatter's error message should mention that a dict of **sequences** is expected as the returned value (not just a dict) to make debugging easier.\r\n\r\nok, will change it according to suggestion. Thanks for the reply!" ]
"2023-02-16T16:08:51Z"
"2023-02-22T10:30:30Z"
"2023-02-21T13:03:57Z"
NONE
null
null
null
### Describe the bug When dataset contains a 0-dim tensor, formatting.py raises a following error and fails. ```bash Traceback (most recent call last): File "<path>/lib/python3.8/site-packages/datasets/formatting/formatting.py", line 501, in format_row return _unnest(formatted_batch) File "<path>/lib/python3.8/site-packages/datasets/formatting/formatting.py", line 137, in _unnest return {key: array[0] for key, array in py_dict.items()} File "<path>/lib/python3.8/site-packages/datasets/formatting/formatting.py", line 137, in <dictcomp> return {key: array[0] for key, array in py_dict.items()} IndexError: invalid index of a 0-dim tensor. Use `tensor.item()` in Python or `tensor.item<T>()` in C++ to convert a 0-dim tensor to a number ``` ### Steps to reproduce the bug Load whichever dataset and add transform method to add 0-dim tensor. Or create/find a dataset containing 0-dim tensor. E.g. ```python from datasets import load_dataset import torch dataset = load_dataset("lambdalabs/pokemon-blip-captions", split='train') def t(batch): return {"test": torch.tensor(1)} dataset.set_transform(t) d_0 = dataset[0] ``` ### Expected behavior Extractor will correctly get a row from the dataset, even if it contains 0-dim tensor. ### Environment info `datasets==2.8.0`, but it looks like it is also applicable to main branch version (as of 16th February)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5539/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5539/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2164
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2164/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2164/comments
https://api.github.com/repos/huggingface/datasets/issues/2164/events
https://github.com/huggingface/datasets/pull/2164
849,739,759
MDExOlB1bGxSZXF1ZXN0NjA4NDQ0MTE3
2,164
Replace assertTrue(isinstance with assertIsInstance in tests
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[]
"2021-04-03T21:07:02Z"
"2021-04-06T14:41:09Z"
"2021-04-06T14:41:08Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2164.diff", "html_url": "https://github.com/huggingface/datasets/pull/2164", "merged_at": "2021-04-06T14:41:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/2164.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2164" }
Replaces all the occurrences of the `assertTrue(isinstance(` pattern with `assertIsInstance`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2164/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2164/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4414
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4414/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4414/comments
https://api.github.com/repos/huggingface/datasets/issues/4414/events
https://github.com/huggingface/datasets/pull/4414
1,250,546,888
PR_kwDODunzps44klhY
4,414
Rename DatasetBuilder config_name
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-05-27T09:28:02Z"
"2022-05-31T15:07:21Z"
"2022-05-31T14:58:51Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4414.diff", "html_url": "https://github.com/huggingface/datasets/pull/4414", "merged_at": "2022-05-31T14:58:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/4414.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4414" }
This PR renames the DatasetBuilder keyword argument `name` to `config_name` so that: - it avoids confusion with the attribute `DatasetBuilder.name`, which is different - it aligns with the Dataset property name `config_name`, defined in `DatasetInfoMixin.config_name` Other simpler possibility could be to rename it to just `config` instead. Please note I have only renamed this argument of DatasetBuilder because I think this refactoring has a low impact on users: we can assume this is not a public facing parameter, but private or related to the inners of our library. It would have a major impact to rename it also in: - load_dataset - load_dataset_builder: although this could also be assumed as inners... - in our CLI commands Besides the naming of `name`, I also find really confusing the naming of `path` in `load_dataset`. IMHO, they should have a more simpler and precise meaning (currently, they are too vague). I would propose (maybe for next major release): ``` load_dataset(dataset, config,... ``` instead of ``` load_dataset(path, name,... ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4414/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4414/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1219
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1219/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1219/comments
https://api.github.com/repos/huggingface/datasets/issues/1219/events
https://github.com/huggingface/datasets/pull/1219
758,013,368
MDExOlB1bGxSZXF1ZXN0NTMzMjU5NzMw
1,219
Add Korean NER dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/25360440?v=4", "events_url": "https://api.github.com/users/jaketae/events{/privacy}", "followers_url": "https://api.github.com/users/jaketae/followers", "following_url": "https://api.github.com/users/jaketae/following{/other_user}", "gists_url": "https://api.github.com/users/jaketae/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jaketae", "id": 25360440, "login": "jaketae", "node_id": "MDQ6VXNlcjI1MzYwNDQw", "organizations_url": "https://api.github.com/users/jaketae/orgs", "received_events_url": "https://api.github.com/users/jaketae/received_events", "repos_url": "https://api.github.com/users/jaketae/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jaketae/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jaketae/subscriptions", "type": "User", "url": "https://api.github.com/users/jaketae" }
[]
closed
false
null
[]
null
[]
"2020-12-06T20:19:06Z"
"2021-12-29T00:50:59Z"
"2020-12-08T10:25:33Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1219.diff", "html_url": "https://github.com/huggingface/datasets/pull/1219", "merged_at": "2020-12-08T10:25:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/1219.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1219" }
Supersedes #1177 > This PR adds the [Korean named entity recognition dataset](https://github.com/kmounlp/NER). This dataset has been used in many downstream tasks, such as training [KoBERT](https://github.com/SKTBrain/KoBERT) for NER, as seen in this [KoBERT-CRF implementation](https://github.com/eagle705/pytorch-bert-crf-ner).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1219/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1219/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6294
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6294/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6294/comments
https://api.github.com/repos/huggingface/datasets/issues/6294/events
https://github.com/huggingface/datasets/issues/6294
1,937,359,605
I_kwDODunzps5zecL1
6,294
IndexError: Invalid key is out of bounds for size 0 despite having a populated dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/61892155?v=4", "events_url": "https://api.github.com/users/ZYM66/events{/privacy}", "followers_url": "https://api.github.com/users/ZYM66/followers", "following_url": "https://api.github.com/users/ZYM66/following{/other_user}", "gists_url": "https://api.github.com/users/ZYM66/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ZYM66", "id": 61892155, "login": "ZYM66", "node_id": "MDQ6VXNlcjYxODkyMTU1", "organizations_url": "https://api.github.com/users/ZYM66/orgs", "received_events_url": "https://api.github.com/users/ZYM66/received_events", "repos_url": "https://api.github.com/users/ZYM66/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ZYM66/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ZYM66/subscriptions", "type": "User", "url": "https://api.github.com/users/ZYM66" }
[]
closed
false
null
[]
null
[ "It looks to be the same issue as the one reported in https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0.\r\n\r\nCan you check the length of `train_dataset` before the `train_sampler = self._get_train_sampler()` (and after `_remove_unused_columns`) line?" ]
"2023-10-11T09:59:38Z"
"2023-10-17T11:24:06Z"
"2023-10-17T11:24:06Z"
NONE
null
null
null
### Describe the bug I am encountering an `IndexError` when trying to access data from a DataLoader which wraps around a dataset I've loaded using the `datasets` library. The error suggests that the dataset size is `0`, but when I check the length and print the dataset, it's clear that it has `1166` entries. ### Steps to reproduce the bug 1. Load a dataset with `1166` entries. 2. Create a DataLoader using this dataset. 3. Try iterating over the DataLoader. code: ```python def get_train_dataloader(self) -> DataLoader: if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_dataset = self.train_dataset data_collator = self.data_collator print(len(train_dataset)) print(train_dataset) if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description="training") else: data_collator = self._get_collator_with_removed_columns(data_collator, description="training") train_sampler = self._get_train_sampler() dl = DataLoader( train_dataset, batch_size=self._train_batch_size, sampler=train_sampler, collate_fn=data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, worker_init_fn=seed_worker, ) print(dl) print(len(dl)) for i in dl: print(i) break return dl ``` output : ``` 1166 Dataset({ features: ['input_ids', 'special_tokens_mask'], num_rows: 1166 }) <torch.utils.data.dataloader.DataLoader object ...> 146 ``` Error: ``` Traceback (most recent call last): File "/home/dl/zym/llamaJP/TestUseContinuePretrainLlama.py", line 266, in <module> train() File "/home/dl/zym/llamaJP/TestUseContinuePretrainLlama.py", line 260, in train trainer.train() File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/transformers/trainer.py", line 1506, in train return inner_training_loop( File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/transformers/trainer.py", line 1520, in _inner_training_loop train_dataloader = self.get_train_dataloader() File "/home/dl/zym/llamaJP/TestUseContinuePretrainLlama.py", line 80, in get_train_dataloader for i in dl: File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 630, in __next__ data = self._next_data() File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 674, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch data = self.dataset.__getitems__(possibly_batched_index) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2807, in __getitems__ batch = self.__getitem__(keys) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2803, in __getitem__ return self._getitem(key) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2787, in _getitem pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 583, in query_table _check_valid_index_key(key, size) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 536, in _check_valid_index_key _check_valid_index_key(int(max(key)), size=size) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 526, in _check_valid_index_key raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") IndexError: Invalid key: 1116 is out of bounds for size 0 ``` ### Expected behavior I expect to be able to iterate over the DataLoader without encountering an IndexError since the dataset is populated. ### Environment info - `datasets` library version: [2.14.5] - Platform: [Linux] - Python version: 3.10 - Other libraries involved: HuggingFace Transformers
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6294/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6294/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2189
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2189/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2189/comments
https://api.github.com/repos/huggingface/datasets/issues/2189/events
https://github.com/huggingface/datasets/issues/2189
853,052,891
MDU6SXNzdWU4NTMwNTI4OTE=
2,189
save_to_disk doesn't work when we use concatenate_datasets function before creating the final dataset_object.
{ "avatar_url": "https://avatars.githubusercontent.com/u/16892570?v=4", "events_url": "https://api.github.com/users/shamanez/events{/privacy}", "followers_url": "https://api.github.com/users/shamanez/followers", "following_url": "https://api.github.com/users/shamanez/following{/other_user}", "gists_url": "https://api.github.com/users/shamanez/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shamanez", "id": 16892570, "login": "shamanez", "node_id": "MDQ6VXNlcjE2ODkyNTcw", "organizations_url": "https://api.github.com/users/shamanez/orgs", "received_events_url": "https://api.github.com/users/shamanez/received_events", "repos_url": "https://api.github.com/users/shamanez/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shamanez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shamanez/subscriptions", "type": "User", "url": "https://api.github.com/users/shamanez" }
[]
closed
false
null
[]
null
[ "Hi ! We refactored save_to_disk in #2025 so this doesn't happen.\r\nFeel free to try it on master for now\r\nWe'll do a new release soon" ]
"2021-04-08T04:42:53Z"
"2022-06-01T16:32:15Z"
"2022-06-01T16:32:15Z"
NONE
null
null
null
As you can see, it saves the entire dataset. @lhoestq You can check by going through the following example, ``` from datasets import load_from_disk,concatenate_datasets loaded_data=load_from_disk('/home/gsir059/HNSW-ori/my_knowledge_dataset') n=20 kb_list=[loaded_data.shard(n, i, contiguous=True) for i in range(n)] final_dataset=concatenate_datasets([kb_list[1],kb_list[2]]) final_dataset.save_to_disk('/home/gsir059/haha/k.arrow') ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2189/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2189/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4504
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4504/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4504/comments
https://api.github.com/repos/huggingface/datasets/issues/4504/events
https://github.com/huggingface/datasets/issues/4504
1,272,418,480
I_kwDODunzps5L15Cw
4,504
Can you please add the Stanford dog dataset?
{ "avatar_url": "https://avatars.githubusercontent.com/u/69434832?v=4", "events_url": "https://api.github.com/users/dgrnd4/events{/privacy}", "followers_url": "https://api.github.com/users/dgrnd4/followers", "following_url": "https://api.github.com/users/dgrnd4/following{/other_user}", "gists_url": "https://api.github.com/users/dgrnd4/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dgrnd4", "id": 69434832, "login": "dgrnd4", "node_id": "MDQ6VXNlcjY5NDM0ODMy", "organizations_url": "https://api.github.com/users/dgrnd4/orgs", "received_events_url": "https://api.github.com/users/dgrnd4/received_events", "repos_url": "https://api.github.com/users/dgrnd4/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dgrnd4/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dgrnd4/subscriptions", "type": "User", "url": "https://api.github.com/users/dgrnd4" }
[ { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" }, { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8711912?v=4", "events_url": "https://api.github.com/users/khushmeeet/events{/privacy}", "followers_url": "https://api.github.com/users/khushmeeet/followers", "following_url": "https://api.github.com/users/khushmeeet/following{/other_user}", "gists_url": "https://api.github.com/users/khushmeeet/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/khushmeeet", "id": 8711912, "login": "khushmeeet", "node_id": "MDQ6VXNlcjg3MTE5MTI=", "organizations_url": "https://api.github.com/users/khushmeeet/orgs", "received_events_url": "https://api.github.com/users/khushmeeet/received_events", "repos_url": "https://api.github.com/users/khushmeeet/repos", "site_admin": false, "starred_url": "https://api.github.com/users/khushmeeet/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/khushmeeet/subscriptions", "type": "User", "url": "https://api.github.com/users/khushmeeet" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8711912?v=4", "events_url": "https://api.github.com/users/khushmeeet/events{/privacy}", "followers_url": "https://api.github.com/users/khushmeeet/followers", "following_url": "https://api.github.com/users/khushmeeet/following{/other_user}", "gists_url": "https://api.github.com/users/khushmeeet/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/khushmeeet", "id": 8711912, "login": "khushmeeet", "node_id": "MDQ6VXNlcjg3MTE5MTI=", "organizations_url": "https://api.github.com/users/khushmeeet/orgs", "received_events_url": "https://api.github.com/users/khushmeeet/received_events", "repos_url": "https://api.github.com/users/khushmeeet/repos", "site_admin": false, "starred_url": "https://api.github.com/users/khushmeeet/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/khushmeeet/subscriptions", "type": "User", "url": "https://api.github.com/users/khushmeeet" } ]
null
[ "would you like to give it a try, @dgrnd4? (maybe with the help of the dataset author?)", "@julien-c i am sorry but I have no idea about how it works: can I add the dataset by myself, following \"instructions to add a new dataset\"?\r\nCan I add a dataset even if it's not mine? (it's public in the link that I wrote on the post)\r\n", "Hi! The [ADD NEW DATASET](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md) instructions are indeed the best place to start. It's also perfectly fine to add a dataset if it's public, even if it's not yours. Let me know if you need some additional pointers.", "If no one is working on this, I could take this up!", "@khushmeeet this is the [link](https://huggingface.co/datasets/dgrnd4/stanford_dog_dataset) where I added the dataset already. If you can I would ask you to do this:\r\n1) The dataset it's all in TRAINING SET: can you please divide it in Training,Test and Validation Set? If you can for each class, take the 80% for the Training set and the 10% for Test and 10% Validation\r\n2) The images has different size, can you please resize all the images in 224,224,3? Look even at the last dimension \"3\" because some images has dimension 4!\r\n\r\nThank you!!", "Hi @khushmeeet! Thanks for the interest. You can self-assign the issue by commenting `#self-assign` on it. \r\n\r\nAlso, I think we can skip @dgrnd4's steps as we try to avoid any custom processing on top of raw data. One can later copy the script and override `_post_process` in it to perform such processing on the generated dataset.", "Thanks @mariosasko \r\n\r\n@dgrnd4 As dataset is there on Hub, and preprocessing is not recommended. I am not sure if there is any other task to do. However, I can't seem to find relevant `.py` files for this dataset in GitHub repo.", "@khushmeeet @mariosasko The point is that the images must be processed and must have the same size in order to can be used for things for example \"Training\". ", "@dgrnd4 Yes, but this can be done after loading (`map` to resize images and `train_test_split` to create extra splits)\r\n\r\n@khushmeeet The linked version is implemented as a no-code dataset and is generated directly from the ZIP archive, but our \"GitHub\" datasets (these are datasets without a user/org namespace on the Hub) need a generation script, and you can find one [here](https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/image_classification/stanford_dogs.py). `datasets` started as a fork of TFDS, so we share similar script structure, which makes it trivial to adapt it.", "@mariosasko The point is that if I use something like this:\r\nx_train, x_test = train_test_split(dataset, test_size=0.1) \r\n\r\nto get Train 90% and Test 10%, and then to get the Validation Set (10% of the whole 100%):\r\n\r\n```\r\ntrain_ratio = 0.80\r\nvalidation_ratio = 0.10\r\ntest_ratio = 0.10\r\n\r\nx_train, x_test, y_train, y_test = train_test_split(dataX, dataY, test_size=1 - train_ratio)\r\nx_val, x_test, y_val, y_test = train_test_split(x_test, y_test, test_size=test_ratio/(test_ratio + validation_ratio)) \r\n\r\n```\r\n\r\nThe point is that the structure of the data is:\r\n```\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['image', 'label'],\r\n num_rows: 20580\r\n })\r\n})\r\n\r\n```\r\n\r\nSo how to extract images and labels?\r\n\r\nEDIT --> Split of the dataset in Train-Test-Validation:\r\n```\r\nimport datasets\r\nfrom datasets.dataset_dict import DatasetDict\r\nfrom datasets import Dataset\r\n\r\npercentage_divison_test = int(len(dataset['train'])/100 *10) # 10% --> 2058 \r\npercentage_divison_validation = int(len(dataset['train'])/100 *20) # 20% --> 4116\r\n\r\ndataset_ = datasets.DatasetDict({\"train\": Dataset.from_dict({\r\n\r\n 'image': dataset['train'][0 : len(dataset['train']) ]['image'], \r\n 'labels': dataset['train'][0 : len(dataset['train']) ]['label'] }), \r\n \r\n \"test\": Dataset.from_dict({ #20580-4116 (validation) ,20580-2058 (test)\r\n 'image': dataset['train'][len(dataset['train']) - percentage_divison_validation : len(dataset['train']) - percentage_divison_test]['image'], \r\n 'labels': dataset['train'][len(dataset['train']) - percentage_divison_validation : len(dataset['train']) - percentage_divison_test]['label'] }), \r\n \r\n \"validation\": Dataset.from_dict({ # 20580-2058 (test)\r\n 'image': dataset['train'][len(dataset['train']) - percentage_divison_test : len(dataset['train'])]['image'], \r\n 'labels': dataset['train'][len(dataset['train']) - percentage_divison_test : len(dataset['train'])]['label'] }), \r\n })\r\n```", "@mariosasko in order to resize images I'm trying this method: \r\n```\r\nfor i in range(0,len(dataset['train'])): #len(dataset['train'])\r\n\r\n ex = dataset['train'][i] #i\r\n image = ex['image']\r\n image = image.convert(\"RGB\") # <class 'PIL.Image.Image'> <PIL.Image.Image image mode=RGB size=500x333 at 0x7F84F1948150>\r\n image_resized = image.resize(size_to_resize) # <PIL.Image.Image image mode=RGB size=224x224 at 0x7F84F17885D0>\r\n\r\n dataset['train'][i]['image'] = image_resized \r\n```\r\n\r\nBecause the DatasetDict is formed by arrows that are immutable, the changing assignment in the last line of code, doesn't work!\r\nDo you have any idea in order to get a valid result?", "#self-assign", "I have raised PR for adding stanford-dog dataset. I have not added any data preprocessing code. Only dataset generation script is there. Let me know any changes required, or anything to add to README.", "Is this issue still open, i am new to open source thus want to take this one as my start.", "@zutarich This issue should have been closed since the dataset in question is available on the Hub [here](https://huggingface.co/datasets/dgrnd4/stanford_dog_dataset)." ]
"2022-06-15T15:39:35Z"
"2023-10-09T06:53:08Z"
null
NONE
null
null
null
## Adding a Dataset - **Name:** *Stanford dog dataset* - **Description:** *The dataset is about 120 classes for a total of 20.580 images. You can find the dataset here http://vision.stanford.edu/aditya86/ImageNetDogs/* - **Paper:** *http://vision.stanford.edu/aditya86/ImageNetDogs/* - **Data:** *[link to the Github repository or current dataset location](http://vision.stanford.edu/aditya86/ImageNetDogs/)* - **Motivation:** *The dataset has been built using images and annotation from ImageNet for the task of fine-grained image categorization. It is useful for fine-grain purpose * Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4504/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4504/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5813
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5813/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5813/comments
https://api.github.com/repos/huggingface/datasets/issues/5813/events
https://github.com/huggingface/datasets/pull/5813
1,691,908,535
PR_kwDODunzps5Pj0_E
5,813
[DO-NOT-MERGE] Debug Windows issue at #3
{ "avatar_url": "https://avatars.githubusercontent.com/u/6477701?v=4", "events_url": "https://api.github.com/users/HyukjinKwon/events{/privacy}", "followers_url": "https://api.github.com/users/HyukjinKwon/followers", "following_url": "https://api.github.com/users/HyukjinKwon/following{/other_user}", "gists_url": "https://api.github.com/users/HyukjinKwon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HyukjinKwon", "id": 6477701, "login": "HyukjinKwon", "node_id": "MDQ6VXNlcjY0Nzc3MDE=", "organizations_url": "https://api.github.com/users/HyukjinKwon/orgs", "received_events_url": "https://api.github.com/users/HyukjinKwon/received_events", "repos_url": "https://api.github.com/users/HyukjinKwon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HyukjinKwon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HyukjinKwon/subscriptions", "type": "User", "url": "https://api.github.com/users/HyukjinKwon" }
[]
closed
false
null
[]
null
[]
"2023-05-02T07:19:34Z"
"2023-05-02T07:21:30Z"
"2023-05-02T07:21:30Z"
NONE
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/5813.diff", "html_url": "https://github.com/huggingface/datasets/pull/5813", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5813.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5813" }
TBD
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5813/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5813/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6026
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6026/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6026/comments
https://api.github.com/repos/huggingface/datasets/issues/6026/events
https://github.com/huggingface/datasets/pull/6026
1,802,929,222
PR_kwDODunzps5VanI8
6,026
Fix style with ruff 0.0.278
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6026). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006444 / 0.011353 (-0.004909) | 0.003768 / 0.011008 (-0.007240) | 0.079625 / 0.038508 (0.041117) | 0.064490 / 0.023109 (0.041381) | 0.313858 / 0.275898 (0.037960) | 0.350810 / 0.323480 (0.027330) | 0.004804 / 0.007986 (-0.003182) | 0.002904 / 0.004328 (-0.001425) | 0.061728 / 0.004250 (0.057477) | 0.052265 / 0.037052 (0.015213) | 0.321246 / 0.258489 (0.062757) | 0.353873 / 0.293841 (0.060032) | 0.027510 / 0.128546 (-0.101036) | 0.007942 / 0.075646 (-0.067704) | 0.260518 / 0.419271 (-0.158754) | 0.045686 / 0.043533 (0.002153) | 0.316821 / 0.255139 (0.061682) | 0.337086 / 0.283200 (0.053886) | 0.022188 / 0.141683 (-0.119495) | 1.427345 / 1.452155 (-0.024810) | 1.476059 / 1.492716 (-0.016657) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189640 / 0.018006 (0.171634) | 0.429724 / 0.000490 (0.429235) | 0.005314 / 0.000200 (0.005114) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024412 / 0.037411 (-0.013000) | 0.073488 / 0.014526 (0.058962) | 0.083843 / 0.176557 (-0.092714) | 0.147849 / 0.737135 (-0.589286) | 0.085465 / 0.296338 (-0.210873) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405314 / 0.215209 (0.190105) | 4.071471 / 2.077655 (1.993816) | 1.916252 / 1.504120 (0.412132) | 1.721616 / 1.541195 (0.180422) | 1.807187 / 1.468490 (0.338697) | 0.498045 / 4.584777 (-4.086732) | 3.057526 / 3.745712 (-0.688187) | 4.451424 / 5.269862 (-0.818437) | 2.764020 / 4.565676 (-1.801656) | 0.057665 / 0.424275 (-0.366610) | 0.006679 / 0.007607 (-0.000928) | 0.485733 / 0.226044 (0.259688) | 4.844367 / 2.268929 (2.575438) | 2.435359 / 55.444624 (-53.009265) | 2.111478 / 6.876477 (-4.764999) | 2.377448 / 2.142072 (0.235375) | 0.587997 / 4.805227 (-4.217230) | 0.125545 / 6.500664 (-6.375120) | 0.061509 / 0.075469 (-0.013960) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.229210 / 1.841788 (-0.612577) | 18.553994 / 8.074308 (10.479686) | 14.037877 / 10.191392 (3.846485) | 0.144230 / 0.680424 (-0.536194) | 0.016891 / 0.534201 (-0.517310) | 0.329039 / 0.579283 (-0.250244) | 0.357269 / 0.434364 (-0.077095) | 0.384222 / 0.540337 (-0.156115) | 0.521292 / 1.386936 (-0.865644) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006359 / 0.011353 (-0.004994) | 0.003721 / 0.011008 (-0.007287) | 0.062047 / 0.038508 (0.023539) | 0.065267 / 0.023109 (0.042158) | 0.360164 / 0.275898 (0.084266) | 0.402292 / 0.323480 (0.078812) | 0.005603 / 0.007986 (-0.002382) | 0.002966 / 0.004328 (-0.001363) | 0.062580 / 0.004250 (0.058330) | 0.053634 / 0.037052 (0.016582) | 0.362210 / 0.258489 (0.103721) | 0.404285 / 0.293841 (0.110444) | 0.027567 / 0.128546 (-0.100979) | 0.008119 / 0.075646 (-0.067528) | 0.067577 / 0.419271 (-0.351694) | 0.042867 / 0.043533 (-0.000666) | 0.361576 / 0.255139 (0.106437) | 0.389061 / 0.283200 (0.105862) | 0.021923 / 0.141683 (-0.119760) | 1.446259 / 1.452155 (-0.005895) | 1.490724 / 1.492716 (-0.001992) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206433 / 0.018006 (0.188427) | 0.424178 / 0.000490 (0.423688) | 0.002340 / 0.000200 (0.002140) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024955 / 0.037411 (-0.012456) | 0.077446 / 0.014526 (0.062920) | 0.088540 / 0.176557 (-0.088017) | 0.141225 / 0.737135 (-0.595910) | 0.089747 / 0.296338 (-0.206592) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443738 / 0.215209 (0.228529) | 4.208887 / 2.077655 (2.131233) | 2.155127 / 1.504120 (0.651007) | 2.028178 / 1.541195 (0.486983) | 2.084903 / 1.468490 (0.616413) | 0.497530 / 4.584777 (-4.087247) | 3.069012 / 3.745712 (-0.676700) | 3.025184 / 5.269862 (-2.244678) | 1.904687 / 4.565676 (-2.660990) | 0.057526 / 0.424275 (-0.366749) | 0.006482 / 0.007607 (-0.001125) | 0.494692 / 0.226044 (0.268647) | 4.944437 / 2.268929 (2.675508) | 2.655989 / 55.444624 (-52.788635) | 2.331677 / 6.876477 (-4.544800) | 2.382396 / 2.142072 (0.240324) | 0.582019 / 4.805227 (-4.223209) | 0.125866 / 6.500664 (-6.374799) | 0.062908 / 0.075469 (-0.012561) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294612 / 1.841788 (-0.547176) | 19.016152 / 8.074308 (10.941844) | 14.088828 / 10.191392 (3.897436) | 0.160842 / 0.680424 (-0.519582) | 0.017054 / 0.534201 (-0.517146) | 0.333647 / 0.579283 (-0.245636) | 0.348094 / 0.434364 (-0.086270) | 0.394970 / 0.540337 (-0.145367) | 0.551141 / 1.386936 (-0.835795) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9e9cfe886792b30b5000808072a0f91ec8536749 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007442 / 0.011353 (-0.003911) | 0.004302 / 0.011008 (-0.006707) | 0.087159 / 0.038508 (0.048651) | 0.095094 / 0.023109 (0.071985) | 0.315422 / 0.275898 (0.039524) | 0.346672 / 0.323480 (0.023192) | 0.005811 / 0.007986 (-0.002174) | 0.003597 / 0.004328 (-0.000731) | 0.066400 / 0.004250 (0.062150) | 0.065947 / 0.037052 (0.028894) | 0.323269 / 0.258489 (0.064780) | 0.353309 / 0.293841 (0.059468) | 0.032268 / 0.128546 (-0.096278) | 0.008696 / 0.075646 (-0.066950) | 0.291486 / 0.419271 (-0.127786) | 0.054609 / 0.043533 (0.011076) | 0.321061 / 0.255139 (0.065922) | 0.336907 / 0.283200 (0.053707) | 0.027338 / 0.141683 (-0.114345) | 1.496442 / 1.452155 (0.044287) | 1.576946 / 1.492716 (0.084229) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229140 / 0.018006 (0.211134) | 0.487500 / 0.000490 (0.487010) | 0.002425 / 0.000200 (0.002225) | 0.000089 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029351 / 0.037411 (-0.008060) | 0.089610 / 0.014526 (0.075084) | 0.097880 / 0.176557 (-0.078676) | 0.155947 / 0.737135 (-0.581189) | 0.098593 / 0.296338 (-0.197745) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382911 / 0.215209 (0.167702) | 3.820363 / 2.077655 (1.742708) | 1.866385 / 1.504120 (0.362265) | 1.712910 / 1.541195 (0.171716) | 1.813863 / 1.468490 (0.345373) | 0.484884 / 4.584777 (-4.099893) | 3.678911 / 3.745712 (-0.066801) | 5.249908 / 5.269862 (-0.019953) | 3.099614 / 4.565676 (-1.466063) | 0.057449 / 0.424275 (-0.366826) | 0.007728 / 0.007607 (0.000120) | 0.462123 / 0.226044 (0.236078) | 4.603942 / 2.268929 (2.335014) | 2.380957 / 55.444624 (-53.063668) | 2.059621 / 6.876477 (-4.816856) | 2.293764 / 2.142072 (0.151691) | 0.636471 / 4.805227 (-4.168756) | 0.150112 / 6.500664 (-6.350552) | 0.063705 / 0.075469 (-0.011764) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.358099 / 1.841788 (-0.483689) | 20.193750 / 8.074308 (12.119442) | 14.297350 / 10.191392 (4.105958) | 0.164477 / 0.680424 (-0.515947) | 0.018259 / 0.534201 (-0.515942) | 0.399010 / 0.579283 (-0.180273) | 0.417306 / 0.434364 (-0.017058) | 0.456961 / 0.540337 (-0.083377) | 0.631068 / 1.386936 (-0.755868) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007324 / 0.011353 (-0.004028) | 0.004463 / 0.011008 (-0.006545) | 0.066148 / 0.038508 (0.027640) | 0.093909 / 0.023109 (0.070799) | 0.399122 / 0.275898 (0.123224) | 0.430226 / 0.323480 (0.106746) | 0.005505 / 0.007986 (-0.002481) | 0.003579 / 0.004328 (-0.000749) | 0.066529 / 0.004250 (0.062278) | 0.063471 / 0.037052 (0.026418) | 0.406351 / 0.258489 (0.147862) | 0.439987 / 0.293841 (0.146146) | 0.032640 / 0.128546 (-0.095906) | 0.008770 / 0.075646 (-0.066877) | 0.072592 / 0.419271 (-0.346680) | 0.050429 / 0.043533 (0.006896) | 0.390873 / 0.255139 (0.135734) | 0.412438 / 0.283200 (0.129239) | 0.027113 / 0.141683 (-0.114570) | 1.458281 / 1.452155 (0.006126) | 1.536819 / 1.492716 (0.044103) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228309 / 0.018006 (0.210303) | 0.454042 / 0.000490 (0.453552) | 0.000387 / 0.000200 (0.000187) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029573 / 0.037411 (-0.007838) | 0.086433 / 0.014526 (0.071907) | 0.097992 / 0.176557 (-0.078565) | 0.152464 / 0.737135 (-0.584671) | 0.099901 / 0.296338 (-0.196437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413807 / 0.215209 (0.198598) | 4.126395 / 2.077655 (2.048740) | 2.113544 / 1.504120 (0.609424) | 1.967829 / 1.541195 (0.426635) | 2.037123 / 1.468490 (0.568633) | 0.489403 / 4.584777 (-4.095374) | 3.689508 / 3.745712 (-0.056204) | 3.503909 / 5.269862 (-1.765952) | 2.113812 / 4.565676 (-2.451864) | 0.057988 / 0.424275 (-0.366287) | 0.007336 / 0.007607 (-0.000271) | 0.490840 / 0.226044 (0.264795) | 4.885040 / 2.268929 (2.616112) | 2.627864 / 55.444624 (-52.816760) | 2.231467 / 6.876477 (-4.645010) | 2.251307 / 2.142072 (0.109235) | 0.577370 / 4.805227 (-4.227857) | 0.131770 / 6.500664 (-6.368895) | 0.061313 / 0.075469 (-0.014156) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.362052 / 1.841788 (-0.479735) | 21.332694 / 8.074308 (13.258386) | 15.562019 / 10.191392 (5.370627) | 0.170874 / 0.680424 (-0.509550) | 0.019226 / 0.534201 (-0.514975) | 0.400311 / 0.579283 (-0.178972) | 0.423060 / 0.434364 (-0.011304) | 0.469946 / 0.540337 (-0.070391) | 0.647745 / 1.386936 (-0.739191) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aec567c2f224f192e6e1f9799e3afc755eb517b2 \"CML watermark\")\n" ]
"2023-07-13T12:34:24Z"
"2023-07-13T12:46:26Z"
"2023-07-13T12:37:01Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6026.diff", "html_url": "https://github.com/huggingface/datasets/pull/6026", "merged_at": "2023-07-13T12:37:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/6026.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6026" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6026/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6026/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5663
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5663/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5663/comments
https://api.github.com/repos/huggingface/datasets/issues/5663/events
https://github.com/huggingface/datasets/issues/5663
1,637,173,248
I_kwDODunzps5hlUgA
5,663
CI is broken: ModuleNotFoundError: jax requires jaxlib to be installed
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[]
"2023-03-23T09:39:43Z"
"2023-03-23T10:09:55Z"
"2023-03-23T10:09:55Z"
MEMBER
null
null
null
CI test_py310 is broken: see https://github.com/huggingface/datasets/actions/runs/4498945505/jobs/7916194236?pr=5662 ``` FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_jax_in_memory - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_jax_on_disk - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_audio - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_device - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_image - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_jnp_array_kwargs - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/features/test_features.py::CastToPythonObjectsTest::test_cast_to_python_objects_jax - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. ===== 8 failed, 2147 passed, 10 skipped, 37 warnings in 228.69s (0:03:48) ====== ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5663/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5663/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3724
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3724/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3724/comments
https://api.github.com/repos/huggingface/datasets/issues/3724/events
https://github.com/huggingface/datasets/issues/3724
1,138,827,681
I_kwDODunzps5D4SGh
3,724
Bug while streaming CSV dataset with pandas 1.4
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[]
"2022-02-15T15:16:19Z"
"2022-02-15T16:55:44Z"
"2022-02-15T16:55:44Z"
MEMBER
null
null
null
## Describe the bug If we upgrade to pandas `1.4`, the patching of the pandas module is no longer working ``` AttributeError: '_PatchedModuleObj' object has no attribute '__version__' ``` ## Steps to reproduce the bug ``` pip install pandas==1.4 ``` ```python from datasets import load_dataset ds = load_dataset("lvwerra/red-wine", split="train", streaming=True) item = next(iter(ds)) item ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3724/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3724/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5183
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5183/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5183/comments
https://api.github.com/repos/huggingface/datasets/issues/5183/events
https://github.com/huggingface/datasets/issues/5183
1,431,418,066
I_kwDODunzps5VUbTS
5,183
Loading an external dataset in a format similar to conll2003
{ "avatar_url": "https://avatars.githubusercontent.com/u/112555442?v=4", "events_url": "https://api.github.com/users/Taghreed7878/events{/privacy}", "followers_url": "https://api.github.com/users/Taghreed7878/followers", "following_url": "https://api.github.com/users/Taghreed7878/following{/other_user}", "gists_url": "https://api.github.com/users/Taghreed7878/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Taghreed7878", "id": 112555442, "login": "Taghreed7878", "node_id": "U_kgDOBrV1sg", "organizations_url": "https://api.github.com/users/Taghreed7878/orgs", "received_events_url": "https://api.github.com/users/Taghreed7878/received_events", "repos_url": "https://api.github.com/users/Taghreed7878/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Taghreed7878/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Taghreed7878/subscriptions", "type": "User", "url": "https://api.github.com/users/Taghreed7878" }
[]
closed
false
null
[]
null
[]
"2022-11-01T13:18:29Z"
"2022-11-02T11:57:50Z"
"2022-11-02T11:57:50Z"
NONE
null
null
null
I'm trying to load a custom dataset in a Dataset object, it's similar to conll2003 but with 2 columns only (word entity), I used the following script: features = datasets.Features( {"tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=["B-PER", .... etc.]))} ) from datasets import Dataset INPUT_COLUMNS = "tokens ner_tags".split(" ") def read_conll(file): #all_labels = [] example = {col: [] for col in INPUT_COLUMNS} idx = 0 with open(file) as f: for line in f: if line: if line.startswith("-DOCSTART-") and example["tokens"] != []: print(idx, example) yield idx, example idx += 1 example = {col: [] for col in INPUT_COLUMNS} elif line == "\n" or (line.startswith("-DOCSTART-") and example["tokens"] == []): continue else: row_cols = line.split(" ") for i, col in enumerate(example): example[col] = row_cols[i].rstrip() dset = Dataset.from_generator(read_conll, gen_kwargs={"file": "/content/new_train.txt"}, features = features) The following error happened: [/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in <genexpr>(.0) 285 for key in unique_values(itertools.chain(*dicts)): # set merge all keys 286 # Will raise KeyError if the dict don't have the same keys --> 287 yield key, tuple(d[key] for d in dicts) 288 TypeError: tuple indices must be integers or slices, not str What does this mean and what should I modify?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5183/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5183/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5656
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5656/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5656/comments
https://api.github.com/repos/huggingface/datasets/issues/5656/events
https://github.com/huggingface/datasets/pull/5656
1,634,156,563
PR_kwDODunzps5Mjxoo
5,656
Fix `fsspec.open` when using an HTTP proxy
{ "avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4", "events_url": "https://api.github.com/users/bryant1410/events{/privacy}", "followers_url": "https://api.github.com/users/bryant1410/followers", "following_url": "https://api.github.com/users/bryant1410/following{/other_user}", "gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bryant1410", "id": 3905501, "login": "bryant1410", "node_id": "MDQ6VXNlcjM5MDU1MDE=", "organizations_url": "https://api.github.com/users/bryant1410/orgs", "received_events_url": "https://api.github.com/users/bryant1410/received_events", "repos_url": "https://api.github.com/users/bryant1410/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions", "type": "User", "url": "https://api.github.com/users/bryant1410" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007980 / 0.011353 (-0.003373) | 0.005351 / 0.011008 (-0.005657) | 0.096325 / 0.038508 (0.057817) | 0.034204 / 0.023109 (0.011095) | 0.328080 / 0.275898 (0.052182) | 0.361519 / 0.323480 (0.038039) | 0.005954 / 0.007986 (-0.002032) | 0.004106 / 0.004328 (-0.000222) | 0.072827 / 0.004250 (0.068576) | 0.050522 / 0.037052 (0.013470) | 0.326975 / 0.258489 (0.068486) | 0.373180 / 0.293841 (0.079339) | 0.037024 / 0.128546 (-0.091522) | 0.012347 / 0.075646 (-0.063299) | 0.332341 / 0.419271 (-0.086931) | 0.050695 / 0.043533 (0.007162) | 0.328298 / 0.255139 (0.073159) | 0.352808 / 0.283200 (0.069608) | 0.101637 / 0.141683 (-0.040046) | 1.435172 / 1.452155 (-0.016982) | 1.529797 / 1.492716 (0.037080) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.305727 / 0.018006 (0.287721) | 0.583951 / 0.000490 (0.583462) | 0.011699 / 0.000200 (0.011499) | 0.000345 / 0.000054 (0.000290) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027917 / 0.037411 (-0.009495) | 0.107698 / 0.014526 (0.093173) | 0.120572 / 0.176557 (-0.055985) | 0.176066 / 0.737135 (-0.561069) | 0.125348 / 0.296338 (-0.170991) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411980 / 0.215209 (0.196771) | 4.113135 / 2.077655 (2.035480) | 1.868725 / 1.504120 (0.364605) | 1.677422 / 1.541195 (0.136227) | 1.796759 / 1.468490 (0.328269) | 0.701957 / 4.584777 (-3.882820) | 3.830742 / 3.745712 (0.085030) | 2.170444 / 5.269862 (-3.099418) | 1.345097 / 4.565676 (-3.220580) | 0.086661 / 0.424275 (-0.337614) | 0.013073 / 0.007607 (0.005466) | 0.519150 / 0.226044 (0.293106) | 5.193447 / 2.268929 (2.924518) | 2.391155 / 55.444624 (-53.053470) | 2.076610 / 6.876477 (-4.799867) | 2.245557 / 2.142072 (0.103484) | 0.846496 / 4.805227 (-3.958731) | 0.169246 / 6.500664 (-6.331418) | 0.066360 / 0.075469 (-0.009109) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196344 / 1.841788 (-0.645444) | 15.640363 / 8.074308 (7.566055) | 14.936144 / 10.191392 (4.744752) | 0.163613 / 0.680424 (-0.516811) | 0.017900 / 0.534201 (-0.516301) | 0.425377 / 0.579283 (-0.153906) | 0.431119 / 0.434364 (-0.003245) | 0.513669 / 0.540337 (-0.026669) | 0.592970 / 1.386936 (-0.793966) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007958 / 0.011353 (-0.003395) | 0.005707 / 0.011008 (-0.005301) | 0.075377 / 0.038508 (0.036869) | 0.037126 / 0.023109 (0.014016) | 0.344589 / 0.275898 (0.068691) | 0.381060 / 0.323480 (0.057580) | 0.006592 / 0.007986 (-0.001393) | 0.004479 / 0.004328 (0.000151) | 0.074456 / 0.004250 (0.070206) | 0.054087 / 0.037052 (0.017035) | 0.344942 / 0.258489 (0.086453) | 0.393174 / 0.293841 (0.099333) | 0.037926 / 0.128546 (-0.090620) | 0.012638 / 0.075646 (-0.063009) | 0.087743 / 0.419271 (-0.331529) | 0.050081 / 0.043533 (0.006548) | 0.340406 / 0.255139 (0.085267) | 0.361487 / 0.283200 (0.078287) | 0.108546 / 0.141683 (-0.033137) | 1.424626 / 1.452155 (-0.027529) | 1.553958 / 1.492716 (0.061242) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.329922 / 0.018006 (0.311916) | 0.523239 / 0.000490 (0.522749) | 0.012164 / 0.000200 (0.011964) | 0.000137 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031935 / 0.037411 (-0.005477) | 0.115680 / 0.014526 (0.101154) | 0.130062 / 0.176557 (-0.046494) | 0.180679 / 0.737135 (-0.556457) | 0.135548 / 0.296338 (-0.160790) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429648 / 0.215209 (0.214439) | 4.303342 / 2.077655 (2.225687) | 1.999395 / 1.504120 (0.495275) | 1.810354 / 1.541195 (0.269160) | 1.963132 / 1.468490 (0.494642) | 0.701654 / 4.584777 (-3.883122) | 3.844687 / 3.745712 (0.098975) | 2.153425 / 5.269862 (-3.116436) | 1.351541 / 4.565676 (-3.214135) | 0.086292 / 0.424275 (-0.337983) | 0.012491 / 0.007607 (0.004883) | 0.523144 / 0.226044 (0.297099) | 5.243283 / 2.268929 (2.974355) | 2.465849 / 55.444624 (-52.978775) | 2.154505 / 6.876477 (-4.721972) | 2.245500 / 2.142072 (0.103428) | 0.838902 / 4.805227 (-3.966326) | 0.169441 / 6.500664 (-6.331223) | 0.065631 / 0.075469 (-0.009838) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262175 / 1.841788 (-0.579612) | 15.424650 / 8.074308 (7.350342) | 15.000718 / 10.191392 (4.809326) | 0.186328 / 0.680424 (-0.494096) | 0.018076 / 0.534201 (-0.516125) | 0.433458 / 0.579283 (-0.145825) | 0.424213 / 0.434364 (-0.010151) | 0.546568 / 0.540337 (0.006231) | 0.643529 / 1.386936 (-0.743407) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ea7298bf121d7ae8079f0a59deb67c2fa1d4df6a \"CML watermark\")\n" ]
"2023-03-21T15:23:29Z"
"2023-03-23T14:14:50Z"
"2023-03-23T13:15:46Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5656.diff", "html_url": "https://github.com/huggingface/datasets/pull/5656", "merged_at": "2023-03-23T13:15:46Z", "patch_url": "https://github.com/huggingface/datasets/pull/5656.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5656" }
Most HTTP(S) downloads from this library support proxy automatically by reading the `HTTP_PROXY` environment variable (et al.) because `requests` is widely used. However, in some parts of the code, `fsspec` is used, which in turn uses `aiohttp` for HTTP(S) requests (as opposed to `requests`), which in turn doesn't support reading proxy env variables by default. This PR enables reading them automatically. Read [aiohttp docs on using proxies](https://docs.aiohttp.org/en/stable/client_advanced.html?highlight=trust_env#proxy-support). For context, [the Python library requests](https://requests.readthedocs.io/en/latest/user/advanced/?highlight=http_proxy#proxies) and [the official Python library via `urllib.urlopen` support this automatically by default](https://docs.python.org/3/library/urllib.request.html#urllib.request.urlopen). Many (most common ones?) programs also do the same, including cURL, APT, Wget, and many others.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5656/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5656/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5045
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5045/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5045/comments
https://api.github.com/repos/huggingface/datasets/issues/5045/events
https://github.com/huggingface/datasets/issues/5045
1,391,287,609
I_kwDODunzps5S7V05
5,045
Automatically revert to last successful commit to hub when a push_to_hub is interrupted
{ "avatar_url": "https://avatars.githubusercontent.com/u/13120204?v=4", "events_url": "https://api.github.com/users/jorahn/events{/privacy}", "followers_url": "https://api.github.com/users/jorahn/followers", "following_url": "https://api.github.com/users/jorahn/following{/other_user}", "gists_url": "https://api.github.com/users/jorahn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jorahn", "id": 13120204, "login": "jorahn", "node_id": "MDQ6VXNlcjEzMTIwMjA0", "organizations_url": "https://api.github.com/users/jorahn/orgs", "received_events_url": "https://api.github.com/users/jorahn/received_events", "repos_url": "https://api.github.com/users/jorahn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jorahn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jorahn/subscriptions", "type": "User", "url": "https://api.github.com/users/jorahn" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Could you share the error you got please ? Maybe the full stack trace if you have it ?\r\n\r\nMaybe `push_to_hub` be implemented as a single commit @Wauplin ? This way if it fails, the repo is still at the previous (valid) state instead of ending-up in an invalid/incimplete state.", "> Maybe push_to_hub be implemented as a single commit ? \r\n\r\nI think that would definitely be the way to go. Do you know the reasons why not implementing it like this in the first place ? I guess it is because of not been able to upload all at once with `huggingface_hub` but if there was another reason, please let me know.\r\nAbout pushing all at once, it seems to be a more and more requested feature. I have created this issue https://github.com/huggingface/huggingface_hub/issues/1085 recently but other discussions already happened in the past. The `moon-landing` team is working on it (cc @coyotte508). The `huggingface_hub` integration will come afterwards.\r\n\r\nFor now, maybe it's best to wait for a proper implementation instead of creating a temporary workaround :)\r\n", "> I think that would definitely be the way to go. Do you know the reasons why not implementing it like this in the first place ? I guess it is because of not been able to upload all at once with huggingface_hub but if there was another reason, please let me know.\r\n\r\nIdeally we would want to upload the files iteratively - and then once everything is uploaded we proceed to commit. When we implemented `push_to_hub`, using `upload_file` for each shard was the only option.\r\n\r\nFor more context: for each shard to upload we do:\r\n1. load the arrow shard in memory\r\n2. convert to parquet\r\n3. upload\r\n\r\nSo to avoid OOM we need to upload the files iteratively.\r\n\r\n> For now, maybe it's best to wait for a proper implementation instead of creating a temporary workaround :)\r\n\r\nLet us know if we can help !", "> Ideally we would want to upload the files iteratively - and then once everything is uploaded we proceed to commit. \r\n\r\nOh I see. So maybe this has to be done in an implementation specific to `datasets/` as it is not a very common case (upload a bunch of files on the fly).\r\n\r\nYou can maybe have a look at how `huggingface_hub` is implemented for LFS files (arrow shards are LFS anyway, right?).\r\nIn [`upload_lfs_files`](https://github.com/huggingface/huggingface_hub/blob/e28646c977fc9304a4c3576ce61ff07f9778950b/src/huggingface_hub/_commit_api.py#L164) LFS files are uploaded 1 by 1 (multithreaded) and then [the commit is pushed](https://github.com/huggingface/huggingface_hub/blob/e28646c977fc9304a4c3576ce61ff07f9778950b/src/huggingface_hub/hf_api.py#L1926) to the Hub once all files have been uploaded. This is pretty much what you need, right ?\r\n\r\nI can help you if you have questions how to do it in `datasets`. If that makes sense we could then move the implementation from `datasets` to `huggingface_hub` once it's mature. Next week I'm on holidays but feel free to start without my input.\r\n\r\n(also cc @coyotte508 and @SBrandeis who implemented LFS upload in `hfh`)", "> Could you share the error you got please ? Maybe the full stack trace if you have it ?\r\n\r\nHere’s part of the stack trace, that I can reproduce at the moment from a photo I took (potential typos from OCR):\r\n```\r\nValueError\r\nTraceback (most recent call last)\r\n<ipython-input-4-274613b7d3f5> in <module>\r\nfrom datasets import load dataset\r\nds = load_dataset('jrahn/chessv6', use_auth_token-True)\r\n\r\n/us/local/1ib/python3.7/dist-packages/datasets/table.py in cast_table _to_schema (table, schema)\r\nLine 2005 raise ValueError()\r\n\r\nValueError: Couldn't cast \r\nfen: string \r\nmove: string \r\nres: string \r\neco: string \r\nmove_id: int64\r\nres_num: int64 to\r\n{ 'fen': Value(dtype='string', id=None), \r\n'move': Value(dtype=' string', id=None),\r\n'res': Value(dtype='string', id=None),\r\n'eco': Value(dtype='string', id=None), \r\n'hc': Value(dtype='string', id=None), \r\n'move_ id': Value(dtype='int64', id=None),\r\n'res_num': Value(dtype= 'int64' , id=None) }\r\nbecause column names don't match \r\n```\r\n\r\nThe column 'hc' was removed before the interrupted push_to_hub(). It appears in the column list in curly brackets but not in the column list above.\r\n\r\nLet me know, if I can be of any help." ]
"2022-09-29T18:08:12Z"
"2023-10-16T13:30:49Z"
"2023-10-16T13:30:49Z"
NONE
null
null
null
**Is your feature request related to a problem? Please describe.** I pushed a modification of a large dataset (remove a column) to the hub. The push was interrupted after some files were committed to the repo. This left the dataset to raise an error on load_dataset() (ValueError couldn’t cast … because column names don’t match). Only by specifying the previous (complete) commit as revision=commit_hash in load_data(), I was able to repair this and after a successful, complete push, the dataset loads without error again. **Describe the solution you'd like** Would it make sense to detect an incomplete push_to_hub() and automatically revert to the previous commit/revision? **Describe alternatives you've considered** Leave everything as is, the revision parameter in load_dataset() allows to manually fix this problem. **Additional context** Provide useful defaults
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5045/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5045/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1860
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1860/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1860/comments
https://api.github.com/repos/huggingface/datasets/issues/1860/events
https://github.com/huggingface/datasets/pull/1860
805,510,037
MDExOlB1bGxSZXF1ZXN0NTcxMDk4OTIz
1,860
Add loading from the Datasets Hub + add relative paths in download manager
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "I just added the steps to share a dataset on the datasets hub. It's highly inspired by the steps to share a model in the `transformers` doc.\r\n\r\nMoreover once the new huggingface_hub is released we can update the version in the setup.py. We also need to update the command to create a dataset repo in the documentation\r\n\r\nI added a few more tests with the \"lhoestq/test\" dataset I added on the hub and it works fine :) ", "Here is the PR adding support for datasets repos in `huggingface_hub`: https://github.com/huggingface/huggingface_hub/pull/14" ]
"2021-02-10T13:24:11Z"
"2021-02-12T19:13:30Z"
"2021-02-12T19:13:29Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1860.diff", "html_url": "https://github.com/huggingface/datasets/pull/1860", "merged_at": "2021-02-12T19:13:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/1860.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1860" }
With the new Datasets Hub on huggingface.co it's now possible to have a dataset repo with your own script and data. For example: https://huggingface.co/datasets/lhoestq/custom_squad/tree/main contains one script and two json files. You can load it using ```python from datasets import load_dataset d = load_dataset("lhoestq/custom_squad") ``` To be able to use the data files that live right next to the dataset script on the repo in the hub, I added relative paths support for the DownloadManager. For example in the repo mentioned above, there are two json files that can be downloaded via ```python _URLS = { "train": "train-v1.1.json", "dev": "dev-v1.1.json", } downloaded_files = dl_manager.download_and_extract(_URLS) ``` To make it work, I set the `base_path` of the DownloadManager to be the parent path of the dataset script (which comes from either a local path or a remote url). I also had to add the auth header of the requests to huggingface.co for private datasets repos. The token is fetched from [huggingface_hub](https://github.com/huggingface/huggingface_hub).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1860/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1860/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1346
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1346/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1346/comments
https://api.github.com/repos/huggingface/datasets/issues/1346/events
https://github.com/huggingface/datasets/pull/1346
759,844,137
MDExOlB1bGxSZXF1ZXN0NTM0Nzc2ODE5
1,346
Add MultiBooked dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "There' still an issue with the dummy data, let me take a look" ]
"2020-12-08T22:49:36Z"
"2020-12-15T17:02:09Z"
"2020-12-15T17:02:09Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1346.diff", "html_url": "https://github.com/huggingface/datasets/pull/1346", "merged_at": "2020-12-15T17:02:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/1346.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1346" }
Add dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1346/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1346/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5784
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5784/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5784/comments
https://api.github.com/repos/huggingface/datasets/issues/5784/events
https://github.com/huggingface/datasets/pull/5784
1,680,950,726
PR_kwDODunzps5O_G9S
5,784
Raise subprocesses traceback when interrupting
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008959 / 0.011353 (-0.002394) | 0.005804 / 0.011008 (-0.005204) | 0.112663 / 0.038508 (0.074155) | 0.043406 / 0.023109 (0.020297) | 0.348582 / 0.275898 (0.072684) | 0.382332 / 0.323480 (0.058852) | 0.007469 / 0.007986 (-0.000517) | 0.006211 / 0.004328 (0.001883) | 0.086576 / 0.004250 (0.082326) | 0.059223 / 0.037052 (0.022170) | 0.361051 / 0.258489 (0.102562) | 0.411359 / 0.293841 (0.117518) | 0.043640 / 0.128546 (-0.084906) | 0.014239 / 0.075646 (-0.061408) | 0.389729 / 0.419271 (-0.029542) | 0.072319 / 0.043533 (0.028786) | 0.351025 / 0.255139 (0.095886) | 0.371893 / 0.283200 (0.088693) | 0.125994 / 0.141683 (-0.015688) | 1.675249 / 1.452155 (0.223094) | 1.808740 / 1.492716 (0.316024) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255172 / 0.018006 (0.237166) | 0.536003 / 0.000490 (0.535514) | 0.000365 / 0.000200 (0.000165) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031989 / 0.037411 (-0.005423) | 0.126854 / 0.014526 (0.112328) | 0.142458 / 0.176557 (-0.034098) | 0.207821 / 0.737135 (-0.529314) | 0.145610 / 0.296338 (-0.150728) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468924 / 0.215209 (0.253715) | 4.696677 / 2.077655 (2.619023) | 2.183133 / 1.504120 (0.679013) | 1.994219 / 1.541195 (0.453024) | 2.101375 / 1.468490 (0.632885) | 0.827168 / 4.584777 (-3.757609) | 4.710167 / 3.745712 (0.964455) | 2.377062 / 5.269862 (-2.892800) | 1.712245 / 4.565676 (-2.853431) | 0.100620 / 0.424275 (-0.323655) | 0.014302 / 0.007607 (0.006695) | 0.590813 / 0.226044 (0.364769) | 5.871991 / 2.268929 (3.603063) | 2.722229 / 55.444624 (-52.722395) | 2.323585 / 6.876477 (-4.552892) | 2.503289 / 2.142072 (0.361217) | 0.983644 / 4.805227 (-3.821583) | 0.193942 / 6.500664 (-6.306722) | 0.076493 / 0.075469 (0.001024) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.463107 / 1.841788 (-0.378681) | 17.876918 / 8.074308 (9.802610) | 16.755740 / 10.191392 (6.564348) | 0.167556 / 0.680424 (-0.512868) | 0.020514 / 0.534201 (-0.513687) | 0.508385 / 0.579283 (-0.070898) | 0.505873 / 0.434364 (0.071509) | 0.603630 / 0.540337 (0.063293) | 0.708856 / 1.386936 (-0.678080) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008504 / 0.011353 (-0.002849) | 0.005894 / 0.011008 (-0.005114) | 0.085523 / 0.038508 (0.047015) | 0.038780 / 0.023109 (0.015671) | 0.402869 / 0.275898 (0.126971) | 0.423819 / 0.323480 (0.100339) | 0.006427 / 0.007986 (-0.001559) | 0.004598 / 0.004328 (0.000269) | 0.079807 / 0.004250 (0.075556) | 0.050852 / 0.037052 (0.013799) | 0.403232 / 0.258489 (0.144743) | 0.452489 / 0.293841 (0.158648) | 0.041501 / 0.128546 (-0.087045) | 0.014996 / 0.075646 (-0.060650) | 0.101548 / 0.419271 (-0.317724) | 0.056993 / 0.043533 (0.013461) | 0.403153 / 0.255139 (0.148014) | 0.424587 / 0.283200 (0.141388) | 0.114507 / 0.141683 (-0.027176) | 1.707098 / 1.452155 (0.254943) | 1.799008 / 1.492716 (0.306291) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288003 / 0.018006 (0.269996) | 0.496526 / 0.000490 (0.496036) | 0.010923 / 0.000200 (0.010723) | 0.000159 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033948 / 0.037411 (-0.003463) | 0.142343 / 0.014526 (0.127817) | 0.143862 / 0.176557 (-0.032695) | 0.202655 / 0.737135 (-0.534480) | 0.151177 / 0.296338 (-0.145162) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.508003 / 0.215209 (0.292794) | 5.320394 / 2.077655 (3.242740) | 2.409854 / 1.504120 (0.905734) | 2.190656 / 1.541195 (0.649462) | 2.272171 / 1.468490 (0.803681) | 0.809492 / 4.584777 (-3.775285) | 4.554412 / 3.745712 (0.808699) | 4.413643 / 5.269862 (-0.856218) | 2.374034 / 4.565676 (-2.191642) | 0.099458 / 0.424275 (-0.324817) | 0.014553 / 0.007607 (0.006946) | 0.613916 / 0.226044 (0.387871) | 6.121430 / 2.268929 (3.852502) | 2.945661 / 55.444624 (-52.498964) | 2.595247 / 6.876477 (-4.281230) | 2.734047 / 2.142072 (0.591975) | 0.952217 / 4.805227 (-3.853010) | 0.196933 / 6.500664 (-6.303731) | 0.073391 / 0.075469 (-0.002078) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.475666 / 1.841788 (-0.366122) | 18.564281 / 8.074308 (10.489973) | 16.865259 / 10.191392 (6.673867) | 0.166494 / 0.680424 (-0.513930) | 0.020655 / 0.534201 (-0.513546) | 0.495120 / 0.579283 (-0.084163) | 0.502602 / 0.434364 (0.068238) | 0.622448 / 0.540337 (0.082110) | 0.721036 / 1.386936 (-0.665900) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#40c204c777793d64e8bb8ce357e9c07b3b303e41 \"CML watermark\")\n", "Whoops mario you're off this week sorry. I'm taking the liberty to merge this one", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009079 / 0.011353 (-0.002274) | 0.005960 / 0.011008 (-0.005049) | 0.116530 / 0.038508 (0.078022) | 0.046649 / 0.023109 (0.023540) | 0.391906 / 0.275898 (0.116008) | 0.438892 / 0.323480 (0.115412) | 0.007134 / 0.007986 (-0.000851) | 0.004997 / 0.004328 (0.000668) | 0.085947 / 0.004250 (0.081697) | 0.059814 / 0.037052 (0.022762) | 0.396423 / 0.258489 (0.137934) | 0.455941 / 0.293841 (0.162100) | 0.042535 / 0.128546 (-0.086011) | 0.014667 / 0.075646 (-0.060980) | 0.402023 / 0.419271 (-0.017249) | 0.060381 / 0.043533 (0.016848) | 0.393829 / 0.255139 (0.138690) | 0.426557 / 0.283200 (0.143358) | 0.131519 / 0.141683 (-0.010163) | 1.758098 / 1.452155 (0.305943) | 1.848194 / 1.492716 (0.355478) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236405 / 0.018006 (0.218399) | 0.611442 / 0.000490 (0.610952) | 0.005143 / 0.000200 (0.004943) | 0.000146 / 0.000054 (0.000092) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034317 / 0.037411 (-0.003094) | 0.182485 / 0.014526 (0.167959) | 0.183149 / 0.176557 (0.006592) | 0.293592 / 0.737135 (-0.443543) | 0.197137 / 0.296338 (-0.099202) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.475690 / 0.215209 (0.260481) | 4.757344 / 2.077655 (2.679690) | 2.184079 / 1.504120 (0.679959) | 1.956599 / 1.541195 (0.415404) | 2.043041 / 1.468490 (0.574551) | 0.817602 / 4.584777 (-3.767175) | 6.432267 / 3.745712 (2.686555) | 5.999402 / 5.269862 (0.729541) | 3.095970 / 4.565676 (-1.469706) | 0.181589 / 0.424275 (-0.242686) | 0.023286 / 0.007607 (0.015679) | 1.090318 / 0.226044 (0.864274) | 7.919330 / 2.268929 (5.650401) | 2.702821 / 55.444624 (-52.741804) | 2.375442 / 6.876477 (-4.501034) | 2.543075 / 2.142072 (0.401003) | 1.011763 / 4.805227 (-3.793464) | 0.203676 / 6.500664 (-6.296988) | 0.080075 / 0.075469 (0.004606) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.875420 / 1.841788 (0.033632) | 23.059278 / 8.074308 (14.984970) | 19.250807 / 10.191392 (9.059415) | 0.323678 / 0.680424 (-0.356746) | 0.028682 / 0.534201 (-0.505519) | 0.698231 / 0.579283 (0.118948) | 0.668129 / 0.434364 (0.233765) | 0.831218 / 0.540337 (0.290880) | 0.941191 / 1.386936 (-0.445745) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.013122 / 0.011353 (0.001769) | 0.006123 / 0.011008 (-0.004886) | 0.090493 / 0.038508 (0.051985) | 0.070660 / 0.023109 (0.047551) | 0.413486 / 0.275898 (0.137588) | 0.450364 / 0.323480 (0.126884) | 0.010288 / 0.007986 (0.002302) | 0.006590 / 0.004328 (0.002261) | 0.087174 / 0.004250 (0.082923) | 0.077304 / 0.037052 (0.040252) | 0.428480 / 0.258489 (0.169991) | 0.459872 / 0.293841 (0.166032) | 0.060477 / 0.128546 (-0.068069) | 0.014859 / 0.075646 (-0.060788) | 0.103915 / 0.419271 (-0.315356) | 0.087466 / 0.043533 (0.043933) | 0.418644 / 0.255139 (0.163505) | 0.433409 / 0.283200 (0.150209) | 0.166716 / 0.141683 (0.025033) | 1.712068 / 1.452155 (0.259914) | 1.827869 / 1.492716 (0.335153) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.372491 / 0.018006 (0.354484) | 0.493426 / 0.000490 (0.492937) | 0.005497 / 0.000200 (0.005297) | 0.000129 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036531 / 0.037411 (-0.000880) | 0.142152 / 0.014526 (0.127626) | 0.148183 / 0.176557 (-0.028373) | 0.212918 / 0.737135 (-0.524217) | 0.154092 / 0.296338 (-0.142246) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.551733 / 0.215209 (0.336524) | 5.421498 / 2.077655 (3.343843) | 2.418848 / 1.504120 (0.914728) | 2.213185 / 1.541195 (0.671991) | 2.294881 / 1.468490 (0.826391) | 0.827031 / 4.584777 (-3.757746) | 6.365622 / 3.745712 (2.619910) | 4.927996 / 5.269862 (-0.341866) | 2.756133 / 4.565676 (-1.809544) | 0.101474 / 0.424275 (-0.322801) | 0.014523 / 0.007607 (0.006916) | 0.619082 / 0.226044 (0.393037) | 6.200132 / 2.268929 (3.931204) | 3.015590 / 55.444624 (-52.429034) | 2.711181 / 6.876477 (-4.165296) | 2.857157 / 2.142072 (0.715084) | 0.993329 / 4.805227 (-3.811898) | 0.203364 / 6.500664 (-6.297301) | 0.079167 / 0.075469 (0.003698) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.709881 / 1.841788 (-0.131907) | 24.867536 / 8.074308 (16.793228) | 21.755361 / 10.191392 (11.563969) | 0.295837 / 0.680424 (-0.384586) | 0.031934 / 0.534201 (-0.502267) | 0.709994 / 0.579283 (0.130711) | 0.779656 / 0.434364 (0.345293) | 0.780669 / 0.540337 (0.240331) | 0.712808 / 1.386936 (-0.674128) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cf4a1951bdca7175adac9c8b85550e89dcceb6fa \"CML watermark\")\n" ]
"2023-04-24T10:34:03Z"
"2023-04-26T16:04:42Z"
"2023-04-26T15:54:44Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5784.diff", "html_url": "https://github.com/huggingface/datasets/pull/5784", "merged_at": "2023-04-26T15:54:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/5784.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5784" }
When a subprocess hangs in `filter` or `map`, one should be able to get the subprocess' traceback when interrupting the main process. Right now it shows nothing. To do so I `.get()` the subprocesses async results even the main process is stopped with e.g. `KeyboardInterrupt`. I added a timeout in case the subprocess is hanging or crashed.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5784/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5784/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1654
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1654/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1654/comments
https://api.github.com/repos/huggingface/datasets/issues/1654/events
https://github.com/huggingface/datasets/pull/1654
775,640,729
MDExOlB1bGxSZXF1ZXN0NTQ2MjgwODIy
1,654
lener_br dataset: add instances and data splits info
{ "avatar_url": "https://avatars.githubusercontent.com/u/5097052?v=4", "events_url": "https://api.github.com/users/jonatasgrosman/events{/privacy}", "followers_url": "https://api.github.com/users/jonatasgrosman/followers", "following_url": "https://api.github.com/users/jonatasgrosman/following{/other_user}", "gists_url": "https://api.github.com/users/jonatasgrosman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonatasgrosman", "id": 5097052, "login": "jonatasgrosman", "node_id": "MDQ6VXNlcjUwOTcwNTI=", "organizations_url": "https://api.github.com/users/jonatasgrosman/orgs", "received_events_url": "https://api.github.com/users/jonatasgrosman/received_events", "repos_url": "https://api.github.com/users/jonatasgrosman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonatasgrosman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonatasgrosman/subscriptions", "type": "User", "url": "https://api.github.com/users/jonatasgrosman" }
[]
closed
false
null
[]
null
[]
"2020-12-29T00:35:12Z"
"2020-12-30T16:49:32Z"
"2020-12-30T16:49:32Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1654.diff", "html_url": "https://github.com/huggingface/datasets/pull/1654", "merged_at": "2020-12-30T16:49:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/1654.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1654" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1654/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1654/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4407
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4407/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4407/comments
https://api.github.com/repos/huggingface/datasets/issues/4407/events
https://github.com/huggingface/datasets/issues/4407
1,248,671,778
I_kwDODunzps5KbTgi
4,407
Dataset Viewer issue for conll2012_ontonotesv5
{ "avatar_url": "https://avatars.githubusercontent.com/u/39762734?v=4", "events_url": "https://api.github.com/users/jiangwangyi/events{/privacy}", "followers_url": "https://api.github.com/users/jiangwangyi/followers", "following_url": "https://api.github.com/users/jiangwangyi/following{/other_user}", "gists_url": "https://api.github.com/users/jiangwangyi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jiangwangyi", "id": 39762734, "login": "jiangwangyi", "node_id": "MDQ6VXNlcjM5NzYyNzM0", "organizations_url": "https://api.github.com/users/jiangwangyi/orgs", "received_events_url": "https://api.github.com/users/jiangwangyi/received_events", "repos_url": "https://api.github.com/users/jiangwangyi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jiangwangyi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jiangwangyi/subscriptions", "type": "User", "url": "https://api.github.com/users/jiangwangyi" }
[ { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" } ]
null
[ "Thanks for reporting, @jiangwy99.\r\n\r\nI guess this could be addressed only once we fix our issue with irresponsive backend endpoint.\r\n\r\nCC: @severo ", "I've just sent the forcing of the refresh of the preview to the new endpoint.", "Fixed, thanks for the patience. The issue was the amount of RAM allowed to extract the first rows of the dataset was not sufficient." ]
"2022-05-25T20:18:33Z"
"2022-06-07T18:39:16Z"
"2022-06-07T18:39:16Z"
NONE
null
null
null
### Link https://huggingface.co/datasets/conll2012_ontonotesv5 ### Description Dataset viewer outage. ### Owner No
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4407/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4407/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2355
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2355/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2355/comments
https://api.github.com/repos/huggingface/datasets/issues/2355/events
https://github.com/huggingface/datasets/pull/2355
890,484,408
MDExOlB1bGxSZXF1ZXN0NjQzNDk5NTIz
2,355
normalized TOCs and titles in data cards
{ "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yjernite", "id": 10469459, "login": "yjernite", "node_id": "MDQ6VXNlcjEwNDY5NDU5", "organizations_url": "https://api.github.com/users/yjernite/orgs", "received_events_url": "https://api.github.com/users/yjernite/received_events", "repos_url": "https://api.github.com/users/yjernite/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "type": "User", "url": "https://api.github.com/users/yjernite" }
[]
closed
false
null
[]
null
[ "Oh right! I'd be in favor of still having the same TOC across the board, we can either leave it as is or add a `[More Info Needed]` `Contributions` Section wherever it's currently missing, wdyt?", "(I thought those were programmatically updated based on git history :D )", "Merging for now to avoid conflict since there are so many changes but let's figure out the contributions section next ;) " ]
"2021-05-12T20:59:59Z"
"2021-05-14T13:23:12Z"
"2021-05-14T13:23:12Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2355.diff", "html_url": "https://github.com/huggingface/datasets/pull/2355", "merged_at": "2021-05-14T13:23:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/2355.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2355" }
I started fixing some of the READMEs that were failing the tests introduced by @gchhablani but then realized that there were some consistent differences between earlier and newer versions of some of the titles (e.g. Data Splits vs Data Splits Sample Size, Supported Tasks vs Supported Tasks and Leaderboards). We also had different versions of the Table of Content This PR normalizes all of them to the newer version
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 1, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2355/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2355/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5746
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5746/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5746/comments
https://api.github.com/repos/huggingface/datasets/issues/5746/events
https://github.com/huggingface/datasets/pull/5746
1,667,102,459
PR_kwDODunzps5ORIUU
5,746
Fix link in docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/7485661?v=4", "events_url": "https://api.github.com/users/bbbxyz/events{/privacy}", "followers_url": "https://api.github.com/users/bbbxyz/followers", "following_url": "https://api.github.com/users/bbbxyz/following{/other_user}", "gists_url": "https://api.github.com/users/bbbxyz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bbbxyz", "id": 7485661, "login": "bbbxyz", "node_id": "MDQ6VXNlcjc0ODU2NjE=", "organizations_url": "https://api.github.com/users/bbbxyz/orgs", "received_events_url": "https://api.github.com/users/bbbxyz/received_events", "repos_url": "https://api.github.com/users/bbbxyz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bbbxyz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bbbxyz/subscriptions", "type": "User", "url": "https://api.github.com/users/bbbxyz" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006461 / 0.011353 (-0.004892) | 0.004671 / 0.011008 (-0.006337) | 0.097329 / 0.038508 (0.058821) | 0.028380 / 0.023109 (0.005270) | 0.369892 / 0.275898 (0.093994) | 0.398244 / 0.323480 (0.074764) | 0.004795 / 0.007986 (-0.003190) | 0.004866 / 0.004328 (0.000538) | 0.075060 / 0.004250 (0.070809) | 0.035678 / 0.037052 (-0.001374) | 0.372197 / 0.258489 (0.113708) | 0.407509 / 0.293841 (0.113668) | 0.031557 / 0.128546 (-0.096989) | 0.011608 / 0.075646 (-0.064038) | 0.325467 / 0.419271 (-0.093805) | 0.042590 / 0.043533 (-0.000943) | 0.373738 / 0.255139 (0.118599) | 0.395793 / 0.283200 (0.112593) | 0.082335 / 0.141683 (-0.059348) | 1.471582 / 1.452155 (0.019427) | 1.535834 / 1.492716 (0.043117) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192432 / 0.018006 (0.174426) | 0.404423 / 0.000490 (0.403933) | 0.003252 / 0.000200 (0.003052) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025312 / 0.037411 (-0.012099) | 0.099964 / 0.014526 (0.085438) | 0.108779 / 0.176557 (-0.067777) | 0.170438 / 0.737135 (-0.566697) | 0.110116 / 0.296338 (-0.186223) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420402 / 0.215209 (0.205193) | 4.179142 / 2.077655 (2.101487) | 1.858114 / 1.504120 (0.353994) | 1.674452 / 1.541195 (0.133257) | 1.697839 / 1.468490 (0.229349) | 0.694707 / 4.584777 (-3.890070) | 3.394321 / 3.745712 (-0.351391) | 1.918437 / 5.269862 (-3.351425) | 1.277954 / 4.565676 (-3.287723) | 0.082357 / 0.424275 (-0.341918) | 0.012206 / 0.007607 (0.004598) | 0.522093 / 0.226044 (0.296049) | 5.239604 / 2.268929 (2.970675) | 2.347764 / 55.444624 (-53.096860) | 1.996864 / 6.876477 (-4.879613) | 2.050820 / 2.142072 (-0.091253) | 0.806110 / 4.805227 (-3.999118) | 0.151061 / 6.500664 (-6.349603) | 0.066438 / 0.075469 (-0.009031) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.211233 / 1.841788 (-0.630554) | 14.054422 / 8.074308 (5.980114) | 14.110141 / 10.191392 (3.918749) | 0.129962 / 0.680424 (-0.550462) | 0.017271 / 0.534201 (-0.516930) | 0.386410 / 0.579283 (-0.192873) | 0.392648 / 0.434364 (-0.041716) | 0.444940 / 0.540337 (-0.095398) | 0.533535 / 1.386936 (-0.853401) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006865 / 0.011353 (-0.004488) | 0.004662 / 0.011008 (-0.006346) | 0.077837 / 0.038508 (0.039329) | 0.028258 / 0.023109 (0.005149) | 0.346136 / 0.275898 (0.070238) | 0.380414 / 0.323480 (0.056934) | 0.005039 / 0.007986 (-0.002947) | 0.004967 / 0.004328 (0.000638) | 0.077774 / 0.004250 (0.073523) | 0.037504 / 0.037052 (0.000452) | 0.341550 / 0.258489 (0.083061) | 0.382494 / 0.293841 (0.088653) | 0.031881 / 0.128546 (-0.096665) | 0.011746 / 0.075646 (-0.063901) | 0.087087 / 0.419271 (-0.332185) | 0.043108 / 0.043533 (-0.000425) | 0.344103 / 0.255139 (0.088964) | 0.366613 / 0.283200 (0.083413) | 0.090399 / 0.141683 (-0.051284) | 1.492675 / 1.452155 (0.040520) | 1.588666 / 1.492716 (0.095950) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191859 / 0.018006 (0.173853) | 0.412514 / 0.000490 (0.412025) | 0.001953 / 0.000200 (0.001753) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025159 / 0.037411 (-0.012252) | 0.100125 / 0.014526 (0.085599) | 0.106000 / 0.176557 (-0.070556) | 0.160710 / 0.737135 (-0.576425) | 0.110449 / 0.296338 (-0.185889) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436636 / 0.215209 (0.221427) | 4.364597 / 2.077655 (2.286942) | 2.077492 / 1.504120 (0.573372) | 1.868248 / 1.541195 (0.327053) | 1.911218 / 1.468490 (0.442728) | 0.700306 / 4.584777 (-3.884471) | 3.385428 / 3.745712 (-0.360284) | 2.965384 / 5.269862 (-2.304478) | 1.522093 / 4.565676 (-3.043583) | 0.082805 / 0.424275 (-0.341470) | 0.012432 / 0.007607 (0.004825) | 0.538478 / 0.226044 (0.312433) | 5.383207 / 2.268929 (3.114278) | 2.525177 / 55.444624 (-52.919447) | 2.179632 / 6.876477 (-4.696845) | 2.280768 / 2.142072 (0.138695) | 0.805869 / 4.805227 (-3.999358) | 0.152716 / 6.500664 (-6.347948) | 0.067848 / 0.075469 (-0.007621) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.318899 / 1.841788 (-0.522889) | 14.416310 / 8.074308 (6.342002) | 14.172804 / 10.191392 (3.981412) | 0.141729 / 0.680424 (-0.538695) | 0.016785 / 0.534201 (-0.517416) | 0.378626 / 0.579283 (-0.200657) | 0.387153 / 0.434364 (-0.047211) | 0.439950 / 0.540337 (-0.100388) | 0.523958 / 1.386936 (-0.862978) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7c3a9b057c476c40d157bd7a5d57f49066239df0 \"CML watermark\")\n" ]
"2023-04-13T20:45:19Z"
"2023-04-14T13:15:38Z"
"2023-04-14T13:08:42Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5746.diff", "html_url": "https://github.com/huggingface/datasets/pull/5746", "merged_at": "2023-04-14T13:08:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/5746.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5746" }
Fixes a broken link in the use_with_pytorch docs
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5746/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5746/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1635
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1635/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1635/comments
https://api.github.com/repos/huggingface/datasets/issues/1635/events
https://github.com/huggingface/datasets/issues/1635
774,524,492
MDU6SXNzdWU3NzQ1MjQ0OTI=
1,635
Persian Abstractive/Extractive Text Summarization
{ "avatar_url": "https://avatars.githubusercontent.com/u/2601833?v=4", "events_url": "https://api.github.com/users/m3hrdadfi/events{/privacy}", "followers_url": "https://api.github.com/users/m3hrdadfi/followers", "following_url": "https://api.github.com/users/m3hrdadfi/following{/other_user}", "gists_url": "https://api.github.com/users/m3hrdadfi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/m3hrdadfi", "id": 2601833, "login": "m3hrdadfi", "node_id": "MDQ6VXNlcjI2MDE4MzM=", "organizations_url": "https://api.github.com/users/m3hrdadfi/orgs", "received_events_url": "https://api.github.com/users/m3hrdadfi/received_events", "repos_url": "https://api.github.com/users/m3hrdadfi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/m3hrdadfi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/m3hrdadfi/subscriptions", "type": "User", "url": "https://api.github.com/users/m3hrdadfi" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
[]
null
[]
"2020-12-24T17:47:12Z"
"2021-01-04T15:11:04Z"
"2021-01-04T15:11:04Z"
CONTRIBUTOR
null
null
null
Assembling datasets tailored to different tasks and languages is a precious target. This would be great to have this dataset included. ## Adding a Dataset - **Name:** *pn-summary* - **Description:** *A well-structured summarization dataset for the Persian language consists of 93,207 records. It is prepared for Abstractive/Extractive tasks (like cnn_dailymail for English). It can also be used in other scopes like Text Generation, Title Generation, and News Category Classification.* - **Paper:** *https://arxiv.org/abs/2012.11204* - **Data:** *https://github.com/hooshvare/pn-summary/#download* - **Motivation:** *It is the first Persian abstractive/extractive Text summarization dataset (like cnn_dailymail for English)!* Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1635/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1635/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5182
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5182/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5182/comments
https://api.github.com/repos/huggingface/datasets/issues/5182/events
https://github.com/huggingface/datasets/issues/5182
1,431,029,547
I_kwDODunzps5VS8cr
5,182
Add notebook / other resource links to the task-specific data loading guides
{ "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sayakpaul", "id": 22957388, "login": "sayakpaul", "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "repos_url": "https://api.github.com/users/sayakpaul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "type": "User", "url": "https://api.github.com/users/sayakpaul" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sayakpaul", "id": 22957388, "login": "sayakpaul", "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "repos_url": "https://api.github.com/users/sayakpaul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "type": "User", "url": "https://api.github.com/users/sayakpaul" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sayakpaul", "id": 22957388, "login": "sayakpaul", "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "repos_url": "https://api.github.com/users/sayakpaul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "type": "User", "url": "https://api.github.com/users/sayakpaul" } ]
null
[ "Yea this would be great! We would need an object detection tutorial notebook too if it doesn't already exist there. ", "There is one: https://huggingface.co/docs/datasets/object_detection.\r\n\r\nI will start the work. " ]
"2022-11-01T07:57:26Z"
"2022-11-03T01:49:57Z"
"2022-11-03T01:49:57Z"
MEMBER
null
null
null
Does it make sense to include links to notebooks / scripts that show how to use a dataset for training / fine-tuning a model? For example, here in [https://huggingface.co/docs/datasets/image_classification] we could include a mention of https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb. Applies to https://huggingface.co/docs/datasets/object_detection as well. Cc: @osanseviero @nateraw
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5182/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5182/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4328
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4328/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4328/comments
https://api.github.com/repos/huggingface/datasets/issues/4328/events
https://github.com/huggingface/datasets/pull/4328
1,233,856,690
PR_kwDODunzps43trrd
4,328
Fix and clean Apache Beam functionality
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-05-12T11:41:07Z"
"2022-05-24T13:43:11Z"
"2022-05-24T13:34:32Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4328.diff", "html_url": "https://github.com/huggingface/datasets/pull/4328", "merged_at": "2022-05-24T13:34:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/4328.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4328" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4328/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4328/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5732
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5732/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5732/comments
https://api.github.com/repos/huggingface/datasets/issues/5732/events
https://github.com/huggingface/datasets/issues/5732
1,662,020,571
I_kwDODunzps5jEGvb
5,732
Enwik8 should support the standard split
{ "avatar_url": "https://avatars.githubusercontent.com/u/10287371?v=4", "events_url": "https://api.github.com/users/lucaslingle/events{/privacy}", "followers_url": "https://api.github.com/users/lucaslingle/followers", "following_url": "https://api.github.com/users/lucaslingle/following{/other_user}", "gists_url": "https://api.github.com/users/lucaslingle/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lucaslingle", "id": 10287371, "login": "lucaslingle", "node_id": "MDQ6VXNlcjEwMjg3Mzcx", "organizations_url": "https://api.github.com/users/lucaslingle/orgs", "received_events_url": "https://api.github.com/users/lucaslingle/received_events", "repos_url": "https://api.github.com/users/lucaslingle/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lucaslingle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lucaslingle/subscriptions", "type": "User", "url": "https://api.github.com/users/lucaslingle" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/10287371?v=4", "events_url": "https://api.github.com/users/lucaslingle/events{/privacy}", "followers_url": "https://api.github.com/users/lucaslingle/followers", "following_url": "https://api.github.com/users/lucaslingle/following{/other_user}", "gists_url": "https://api.github.com/users/lucaslingle/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lucaslingle", "id": 10287371, "login": "lucaslingle", "node_id": "MDQ6VXNlcjEwMjg3Mzcx", "organizations_url": "https://api.github.com/users/lucaslingle/orgs", "received_events_url": "https://api.github.com/users/lucaslingle/received_events", "repos_url": "https://api.github.com/users/lucaslingle/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lucaslingle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lucaslingle/subscriptions", "type": "User", "url": "https://api.github.com/users/lucaslingle" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/10287371?v=4", "events_url": "https://api.github.com/users/lucaslingle/events{/privacy}", "followers_url": "https://api.github.com/users/lucaslingle/followers", "following_url": "https://api.github.com/users/lucaslingle/following{/other_user}", "gists_url": "https://api.github.com/users/lucaslingle/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lucaslingle", "id": 10287371, "login": "lucaslingle", "node_id": "MDQ6VXNlcjEwMjg3Mzcx", "organizations_url": "https://api.github.com/users/lucaslingle/orgs", "received_events_url": "https://api.github.com/users/lucaslingle/received_events", "repos_url": "https://api.github.com/users/lucaslingle/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lucaslingle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lucaslingle/subscriptions", "type": "User", "url": "https://api.github.com/users/lucaslingle" } ]
null
[ "#self-assign", "The Enwik8 pipeline is not present in this codebase, and is hosted elsewhere. I have opened a PR [there](https://huggingface.co/datasets/enwik8/discussions/4) instead. " ]
"2023-04-11T08:38:53Z"
"2023-04-11T09:28:17Z"
"2023-04-11T09:28:16Z"
NONE
null
null
null
### Feature request The HuggingFace Datasets library currently supports two BuilderConfigs for Enwik8. One config yields individual lines as examples, while the other config yields the entire dataset as a single example. Both support only a monolithic split: it is all grouped as "train". The HuggingFace Datasets library should include a BuilderConfig for Enwik8 with train, validation, and test sets derived from the first 90 million bytes, next 5 million bytes, and last 5 million bytes, respectively. This Enwik8 split is standard practice in LM papers, as elaborated and motivated below. ### Motivation Enwik8 is commonly split into 90M, 5M, 5M consecutive bytes. This is done in the Transformer-XL [codebase](https://github.com/kimiyoung/transformer-xl/blob/44781ed21dbaec88b280f74d9ae2877f52b492a5/getdata.sh#L34), and is additionally mentioned in the Sparse Transformers [paper](https://arxiv.org/abs/1904.10509) and the Compressive Transformers [paper](https://arxiv.org/abs/1911.05507). This split is pretty much universal among language modeling papers. One may obtain the splits by manual wrangling, using the data yielded by the ```enwik8-raw``` BuilderConfig. However, this undermines the seamless functionality of the library: one must slice the single raw example, extract it into three tensors, and wrap each in a separate dataset. This becomes even more of a nuisance if using the current Enwik8 HuggingFace dataset as a TfdsDataSource with [SeqIO](https://github.com/google/seqio), where a pipeline of preprocessors is typically included in a SeqIO Task definition, to be applied immediately after loading the data with TFDS. ### Your contribution Supporting this functionality in HuggingFace Datasets will only require an additional BuilderConfig for Enwik8 and a few additional lines of code. I will submit a PR.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5732/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5732/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4124
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4124/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4124/comments
https://api.github.com/repos/huggingface/datasets/issues/4124/events
https://github.com/huggingface/datasets/issues/4124
1,196,469,842
I_kwDODunzps5HUK5S
4,124
Image decoding often fails when transforming Image datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/17025191?v=4", "events_url": "https://api.github.com/users/RafayAK/events{/privacy}", "followers_url": "https://api.github.com/users/RafayAK/followers", "following_url": "https://api.github.com/users/RafayAK/following{/other_user}", "gists_url": "https://api.github.com/users/RafayAK/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/RafayAK", "id": 17025191, "login": "RafayAK", "node_id": "MDQ6VXNlcjE3MDI1MTkx", "organizations_url": "https://api.github.com/users/RafayAK/orgs", "received_events_url": "https://api.github.com/users/RafayAK/received_events", "repos_url": "https://api.github.com/users/RafayAK/repos", "site_admin": false, "starred_url": "https://api.github.com/users/RafayAK/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/RafayAK/subscriptions", "type": "User", "url": "https://api.github.com/users/RafayAK" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "A quick hack I have found is that we can call the image first before running the transforms and it makes sure the image is decoded before being passed on.\r\n\r\nFor this I just needed to add `example['img'] = example['img']` to the top of my `generate_flipped_data` function, defined above, so that image decode in invoked.\r\n\r\nAfter this minor change this function works:\r\n```python\r\ndef generate_flipped_data(example, p=0.5):\r\n \"\"\"\r\n A Dataset mapping functions that transforms some of the image up-side-down.\r\n If the probability value (p) is 0.5 approximately half the images will be flipped upside-down\r\n Args:\r\n example: An example from the dataset containing a Python dictionary with \"img\" and \"is_flipped\" key-value pair\r\n p: probability of flipping the image up-side-down, Default 0.5\r\n\r\n Returns:\r\n example: A Dataset object\r\n\r\n \"\"\"\r\n example['img'] = example['img'] # <<< This is the only change\r\n if rng.random() > p: # the flip the image and set is_flipped column to 1\r\n example['img'] = example['img'].transpose(\r\n 1) # ImageOps.flip(example['img']) #example['img'].transpose(Image.FLIP_TOP_BOTTOM)\r\n example['is_flipped'] = 1\r\n\r\n return example\r\n```", "Hi @RafayAK, thanks for reporting.\r\n\r\nCurrent implementation of the Image feature performs the decoding only if the \"img\" field is accessed by the mapped function.\r\n\r\nIn your original `generate_flipped_data` function:\r\n- it only accesses the \"img\" field (and thus performs decoding) if `rng.random() > p`;\r\n- on the other hand, for the cases where `rng.random() <= p`, the \"img\" field is not accessed and thus no decoding is performed for those examples\r\n\r\nBy adding the code line `example['img'] = example['img']`, you make sure the \"img\" field is accessed in all cases, and the decoding is done for all examples.\r\n\r\nAlso note that there is a little bug in your implementation: `p` is not the probability of flipping, but the probability of not-flipping; the larger is `p`, the smaller is the probability of flipping.\r\n\r\nSome refactoring (fixing also `p`):\r\n```python\r\ndef generate_flipped_data(example, p=0.5):\r\n \"\"\"\r\n A Dataset mapping functions that transforms some of the image up-side-down.\r\n If the probability value (p) is 0.5 approximately half the images will be flipped upside-down.\r\n\r\n Args:\r\n example: An example from the dataset containing a Python dictionary with \"img\" and \"is_flipped\" key-value pair\r\n p: probability of flipping the image up-side-down, Default 0.5\r\n\r\n Returns:\r\n example: A Dataset object\r\n\r\n \"\"\"\r\n do_flip = rng.random() < p # Note the \"<\" sign here instead of \">\"\r\n example['img'] = example['img'].transpose(1) if do_flip else example['img'] # Note \"img\" is always accessed\r\n example['is_flipped'] = 1 if do_flip else 0\r\n return example", "@albertvillanova Thanks for letting me know this is intended behavior. The docs are severely lacking on this, if I hadn't posted this here I would have never found out how I'm actually supposed to modify images in a Dataset object.", "@albertvillanova Secondly if you check the error message it shows that around 1999 images were successfully created, I'm pretty sure some of them were also flipped during the process. Back to my main contention, sometimes the decoding takes place other times it fails. \r\n\r\nI suppose to run `map` on any dataset all the examples should be invoked even if on some of them we end up doing nothing, is that right?", "Hi @RafayAK! I've opened a PR with the fix, which adds a fallback to reattempt casting to PyArrow format with a more robust (but more expensive) procedure if the first attempt fails. Feel free to test it by installing `datasets` from the PR branch with the following command:\r\n```\r\npip install git+https://github.com/huggingface/datasets.git@fix-4124\r\n```", "@mariosasko I'll try this right away and report back.", "@mariosasko Thanks a lot for looking into this, now the `map` function at least behaves as one would expect a function to behave. \r\n\r\nLooking forward to exploring Hugging Face more and even contributing 😃.\r\n\r\n```bash\r\n $ conda list | grep datasets\r\ndatasets 2.0.1.dev0 pypi_0 pypi\r\n\r\n```\r\n\r\n```python\r\ndef preprocess_data(dataset):\r\n \"\"\"\r\n Helper funtion to pre-process HuggingFace Cifar-100 Dataset to remove fine_label and coarse_label columns and\r\n add is_flipped column\r\n Args:\r\n dataset: HuggingFace CIFAR-100 Dataset Object\r\n\r\n Returns:\r\n new_dataset: A Dataset object with \"img\" and \"is_flipped\" columns only\r\n\r\n \"\"\"\r\n # remove fine_label and coarse_label columns\r\n new_dataset = dataset.remove_columns(['fine_label', 'coarse_label'])\r\n # add the column for is_flipped\r\n new_dataset = new_dataset.add_column(name=\"is_flipped\", column=np.zeros((len(new_dataset)), dtype=np.uint8))\r\n\r\n return new_dataset\r\n\r\n\r\ndef generate_flipped_data(example, p=0.5):\r\n \"\"\"\r\n A Dataset mapping functions that transforms some of the image up-side-down.\r\n If the probability value (p) is 0.5 approximately half the images will be flipped upside-down\r\n Args:\r\n example: An example from the dataset containing a Python dictionary with \"img\" and \"is_flipped\" key-value pair\r\n p: probability of flipping the image up-side-down, Default 0.5\r\n\r\n Returns:\r\n example: A Dataset object\r\n\r\n \"\"\"\r\n # example['img'] = example['img']\r\n if rng.random() > p: # the flip the image and set is_flipped column to 1\r\n example['img'] = example['img'].transpose(\r\n 1) # ImageOps.flip(example['img']) #example['img'].transpose(Image.FLIP_TOP_BOTTOM)\r\n example['is_flipped'] = 1\r\n\r\n return example\r\n\r\nmy_test = preprocess_data(test_dataset)\r\nmy_test = my_test.map(generate_flipped_data)\r\n```\r\n\r\nThe output now show the function was applied successfully:\r\n``` bash\r\n/home/rafay/anaconda3/envs/pytorch_new/bin/python /home/rafay/Documents/you_only_live_once/upside_down_detector/create_dataset.py\r\nDownloading builder script: 5.61kB [00:00, 3.16MB/s] \r\nDownloading metadata: 4.21kB [00:00, 2.56MB/s] \r\nReusing dataset cifar100 (/home/rafay/.cache/huggingface/datasets/cifar100/cifar100/1.0.0/f365c8b725c23e8f0f8d725c3641234d9331cd2f62919d1381d1baa5b3ba3142)\r\nReusing dataset cifar100 (/home/rafay/.cache/huggingface/datasets/cifar100/cifar100/1.0.0/f365c8b725c23e8f0f8d725c3641234d9331cd2f62919d1381d1baa5b3ba3142)\r\n100%|██████████| 10000/10000 [00:01<00:00, 5149.15ex/s]\r\n```\r\n" ]
"2022-04-07T19:17:25Z"
"2022-04-13T14:01:16Z"
"2022-04-13T14:01:16Z"
NONE
null
null
null
## Describe the bug When transforming/modifying images in an image dataset using the `map` function the PIL images often fail to decode in time for the image transforms, causing errors. Using a debugger it is easy to see what the problem is, the Image decode invocation does not take place and the resulting image passed around is still raw bytes: ``` [{'bytes': b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00 \x00\x00\x00 \x08\x02\x00\x00\x00\xfc\x18\xed\xa3\x00\x00\x08\x02IDATx\x9cEVIs[\xc7\x11\xeemf\xde\x82\x8d\x80\x08\x89"\xb5V\\\xb6\x94(\xe5\x9f\x90\xca5\x7f$\xa7T\xe5\x9f&9\xd9\x8a\\.\xdb\xa4$J\xa4\x00\x02x\xc0{\xb3t\xe7\x00\xca\x99\xd3\\f\xba\xba\xbf\xa5?|\xfa\xf4\xa2\xeb\xba\xedv\xa3f^\xf8\xd5\x0bY\xb6\x10\xb3\xaaDq\xcd\x83\x87\xdf5\xf3gZ\x1a\x04\x0f\xa0fp\xfa\xe0\xd4\x07?\x9dN\xc4\xb1\x99\xfd\xf2\xcb/\x97\x97\x97H\xa2\xaaf\x16\x82\xaf\xeb\xca{\xbf\xd9l.\xdf\x7f\xfa\xcb_\xff&\x88\x08\x00\x80H\xc0\x80@.;\x0f\x8c@#v\xe3\xe5\xfc\xd1\x9f\xee6q\xbf\xdf\xa6\x14\'\x93\xf1\xc3\xe5\xe3\xd1x\x14c\x8c1\xa5\x1c\x9dsM\xd3\xb4\xed\x08\x89SJ)\xa5\xedv\xbb^\xafNO\x97D\x84Hf .... ``` ## Steps to reproduce the bug ```python from datasets import load_dataset, Dataset import numpy as np # seeded NumPy random number generator for reprodducinble results. rng = np.random.default_rng(seed=0) test_dataset = load_dataset('cifar100', split="test") def preprocess_data(dataset): """ Helper function to pre-process HuggingFace Cifar-100 Dataset to remove fine_label and coarse_label columns and add is_flipped column Args: dataset: HuggingFace CIFAR-100 Dataset Object Returns: new_dataset: A Dataset object with "img" and "is_flipped" columns only """ # remove fine_label and coarse_label columns new_dataset = dataset.remove_columns(['fine_label', 'coarse_label']) # add the column for is_flipped new_dataset = new_dataset.add_column(name="is_flipped", column=np.zeros((len(new_dataset)), dtype=np.uint8)) return new_dataset def generate_flipped_data(example, p=0.5): """ A Dataset mapping function that transforms some of the images up-side-down. If the probability value (p) is 0.5 approximately half the images will be flipped upside-down Args: example: An example from the dataset containing a Python dictionary with "img" and "is_flipped" key-value pair p: the probability of flipping the image up-side-down, Default 0.5 Returns: example: A Dataset object """ # example['img'] = example['img'] if rng.random() > p: # the flip the image and set is_flipped column to 1 example['img'] = example['img'].transpose( 1) # ImageOps.flip(example['img']) #example['img'].transpose(Image.FLIP_TOP_BOTTOM) example['is_flipped'] = 1 return example my_test = preprocess_data(test_dataset) my_test = my_test.map(generate_flipped_data) ``` ## Expected results The dataset should be transformed without problems. ## Actual results ``` /home/rafay/anaconda3/envs/pytorch_new/bin/python /home/rafay/Documents/you_only_live_once/upside_down_detector/create_dataset.py Reusing dataset cifar100 (/home/rafay/.cache/huggingface/datasets/cifar100/cifar100/1.0.0/f365c8b725c23e8f0f8d725c3641234d9331cd2f62919d1381d1baa5b3ba3142) Reusing dataset cifar100 (/home/rafay/.cache/huggingface/datasets/cifar100/cifar100/1.0.0/f365c8b725c23e8f0f8d725c3641234d9331cd2f62919d1381d1baa5b3ba3142) 20%|█▉ | 1999/10000 [00:00<00:01, 5560.44ex/s] Traceback (most recent call last): File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2326, in _map_single writer.write(example) File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_writer.py", line 441, in write self.write_examples_on_file() File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_writer.py", line 399, in write_examples_on_file self.write_batch(batch_examples=batch_examples) File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_writer.py", line 492, in write_batch arrays.append(pa.array(typed_sequence)) File "pyarrow/array.pxi", line 230, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_writer.py", line 185, in __arrow_array__ out = pa.array(cast_to_python_objects(data, only_1d_for_numpy=True)) File "pyarrow/array.pxi", line 316, in pyarrow.lib.array File "pyarrow/array.pxi", line 39, in pyarrow.lib._sequence_to_array File "pyarrow/error.pxi", line 143, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Could not convert <PIL.Image.Image image mode=RGB size=32x32 at 0x7F56AEE61DE0> with type Image: did not recognize Python value type when inferring an Arrow data type During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/rafay/Documents/you_only_live_once/upside_down_detector/create_dataset.py", line 55, in <module> my_test = my_test.map(generate_flipped_data) File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 1953, in map return self._map_single( File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 519, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 486, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/fingerprint.py", line 458, in wrapper out = func(self, *args, **kwargs) File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2360, in _map_single writer.finalize() File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_writer.py", line 522, in finalize self.write_examples_on_file() File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_writer.py", line 399, in write_examples_on_file self.write_batch(batch_examples=batch_examples) File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_writer.py", line 492, in write_batch arrays.append(pa.array(typed_sequence)) File "pyarrow/array.pxi", line 230, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/rafay/anaconda3/envs/pytorch_new/lib/python3.10/site-packages/datasets/arrow_writer.py", line 185, in __arrow_array__ out = pa.array(cast_to_python_objects(data, only_1d_for_numpy=True)) File "pyarrow/array.pxi", line 316, in pyarrow.lib.array File "pyarrow/array.pxi", line 39, in pyarrow.lib._sequence_to_array File "pyarrow/error.pxi", line 143, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Could not convert <PIL.Image.Image image mode=RGB size=32x32 at 0x7F56AEE61DE0> with type Image: did not recognize Python value type when inferring an Arrow data type Process finished with exit code 1 ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.0 - Platform: Linux(Fedora 35) - Python version: 3.10 - PyArrow version: 7.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4124/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4124/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1787
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1787/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1787/comments
https://api.github.com/repos/huggingface/datasets/issues/1787/events
https://github.com/huggingface/datasets/pull/1787
795,485,842
MDExOlB1bGxSZXF1ZXN0NTYyODI1NTI3
1,787
Update the CommonGen citation information
{ "avatar_url": "https://avatars.githubusercontent.com/u/10104354?v=4", "events_url": "https://api.github.com/users/yuchenlin/events{/privacy}", "followers_url": "https://api.github.com/users/yuchenlin/followers", "following_url": "https://api.github.com/users/yuchenlin/following{/other_user}", "gists_url": "https://api.github.com/users/yuchenlin/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yuchenlin", "id": 10104354, "login": "yuchenlin", "node_id": "MDQ6VXNlcjEwMTA0MzU0", "organizations_url": "https://api.github.com/users/yuchenlin/orgs", "received_events_url": "https://api.github.com/users/yuchenlin/received_events", "repos_url": "https://api.github.com/users/yuchenlin/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yuchenlin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yuchenlin/subscriptions", "type": "User", "url": "https://api.github.com/users/yuchenlin" }
[]
closed
false
null
[]
null
[]
"2021-01-27T22:12:47Z"
"2021-01-28T13:56:29Z"
"2021-01-28T13:56:29Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1787.diff", "html_url": "https://github.com/huggingface/datasets/pull/1787", "merged_at": "2021-01-28T13:56:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/1787.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1787" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1787/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1787/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5956
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5956/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5956/comments
https://api.github.com/repos/huggingface/datasets/issues/5956/events
https://github.com/huggingface/datasets/pull/5956
1,756,959,367
PR_kwDODunzps5S_1o2
5,956
Fix ArrowExamplesIterable.shard_data_sources
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005893 / 0.011353 (-0.005460) | 0.003682 / 0.011008 (-0.007327) | 0.098358 / 0.038508 (0.059850) | 0.028130 / 0.023109 (0.005020) | 0.305960 / 0.275898 (0.030062) | 0.334869 / 0.323480 (0.011390) | 0.003522 / 0.007986 (-0.004463) | 0.003683 / 0.004328 (-0.000645) | 0.079418 / 0.004250 (0.075168) | 0.037662 / 0.037052 (0.000609) | 0.310893 / 0.258489 (0.052404) | 0.341347 / 0.293841 (0.047506) | 0.027450 / 0.128546 (-0.101096) | 0.008381 / 0.075646 (-0.067265) | 0.316020 / 0.419271 (-0.103252) | 0.045079 / 0.043533 (0.001546) | 0.307806 / 0.255139 (0.052667) | 0.331804 / 0.283200 (0.048604) | 0.091806 / 0.141683 (-0.049877) | 1.492611 / 1.452155 (0.040457) | 1.551762 / 1.492716 (0.059046) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201640 / 0.018006 (0.183634) | 0.422776 / 0.000490 (0.422286) | 0.003734 / 0.000200 (0.003535) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025429 / 0.037411 (-0.011982) | 0.104699 / 0.014526 (0.090173) | 0.110505 / 0.176557 (-0.066051) | 0.171252 / 0.737135 (-0.565883) | 0.113131 / 0.296338 (-0.183208) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419914 / 0.215209 (0.204705) | 4.184414 / 2.077655 (2.106760) | 1.999263 / 1.504120 (0.495143) | 1.828669 / 1.541195 (0.287474) | 1.940366 / 1.468490 (0.471876) | 0.556939 / 4.584777 (-4.027838) | 3.389164 / 3.745712 (-0.356548) | 1.796323 / 5.269862 (-3.473538) | 1.048843 / 4.565676 (-3.516833) | 0.067315 / 0.424275 (-0.356960) | 0.011531 / 0.007607 (0.003923) | 0.517226 / 0.226044 (0.291182) | 5.167255 / 2.268929 (2.898326) | 2.431129 / 55.444624 (-53.013495) | 2.133913 / 6.876477 (-4.742564) | 2.359021 / 2.142072 (0.216948) | 0.666390 / 4.805227 (-4.138838) | 0.135147 / 6.500664 (-6.365517) | 0.064855 / 0.075469 (-0.010614) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.166530 / 1.841788 (-0.675258) | 14.060551 / 8.074308 (5.986242) | 14.171663 / 10.191392 (3.980271) | 0.285821 / 0.680424 (-0.394603) | 0.016867 / 0.534201 (-0.517334) | 0.369102 / 0.579283 (-0.210181) | 0.393580 / 0.434364 (-0.040784) | 0.423721 / 0.540337 (-0.116616) | 0.512559 / 1.386936 (-0.874377) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006674 / 0.011353 (-0.004679) | 0.004006 / 0.011008 (-0.007002) | 0.080160 / 0.038508 (0.041652) | 0.032508 / 0.023109 (0.009399) | 0.378168 / 0.275898 (0.102270) | 0.417796 / 0.323480 (0.094316) | 0.003706 / 0.007986 (-0.004280) | 0.002995 / 0.004328 (-0.001333) | 0.079275 / 0.004250 (0.075025) | 0.043690 / 0.037052 (0.006638) | 0.377717 / 0.258489 (0.119228) | 0.439801 / 0.293841 (0.145961) | 0.028438 / 0.128546 (-0.100108) | 0.008661 / 0.075646 (-0.066985) | 0.085280 / 0.419271 (-0.333991) | 0.043716 / 0.043533 (0.000183) | 0.370086 / 0.255139 (0.114947) | 0.403763 / 0.283200 (0.120563) | 0.095022 / 0.141683 (-0.046661) | 1.534376 / 1.452155 (0.082221) | 1.597658 / 1.492716 (0.104942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240229 / 0.018006 (0.222223) | 0.496281 / 0.000490 (0.495792) | 0.002165 / 0.000200 (0.001965) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025330 / 0.037411 (-0.012081) | 0.102414 / 0.014526 (0.087888) | 0.112733 / 0.176557 (-0.063824) | 0.161181 / 0.737135 (-0.575955) | 0.114196 / 0.296338 (-0.182143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456808 / 0.215209 (0.241599) | 4.534937 / 2.077655 (2.457283) | 2.318834 / 1.504120 (0.814714) | 2.074085 / 1.541195 (0.532890) | 2.117409 / 1.468490 (0.648919) | 0.559110 / 4.584777 (-4.025667) | 3.371695 / 3.745712 (-0.374017) | 2.543154 / 5.269862 (-2.726708) | 1.360552 / 4.565676 (-3.205125) | 0.067602 / 0.424275 (-0.356674) | 0.011396 / 0.007607 (0.003789) | 0.561666 / 0.226044 (0.335622) | 5.607666 / 2.268929 (3.338737) | 2.802775 / 55.444624 (-52.641849) | 2.486162 / 6.876477 (-4.390315) | 2.390885 / 2.142072 (0.248813) | 0.667407 / 4.805227 (-4.137820) | 0.135948 / 6.500664 (-6.364717) | 0.067272 / 0.075469 (-0.008197) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.279664 / 1.841788 (-0.562124) | 15.188099 / 8.074308 (7.113791) | 14.380355 / 10.191392 (4.188963) | 0.140344 / 0.680424 (-0.540080) | 0.016832 / 0.534201 (-0.517369) | 0.364631 / 0.579283 (-0.214652) | 0.400306 / 0.434364 (-0.034058) | 0.430793 / 0.540337 (-0.109545) | 0.525923 / 1.386936 (-0.861013) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#48ca19cf1f4d1c99765a1f847c1f6b849496d99d \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008502 / 0.011353 (-0.002851) | 0.005946 / 0.011008 (-0.005062) | 0.131279 / 0.038508 (0.092771) | 0.035400 / 0.023109 (0.012291) | 0.423240 / 0.275898 (0.147342) | 0.470248 / 0.323480 (0.146768) | 0.004949 / 0.007986 (-0.003037) | 0.004544 / 0.004328 (0.000215) | 0.106856 / 0.004250 (0.102605) | 0.046579 / 0.037052 (0.009527) | 0.441135 / 0.258489 (0.182646) | 0.470401 / 0.293841 (0.176561) | 0.047231 / 0.128546 (-0.081315) | 0.017278 / 0.075646 (-0.058368) | 0.401937 / 0.419271 (-0.017335) | 0.067151 / 0.043533 (0.023619) | 0.453908 / 0.255139 (0.198769) | 0.422171 / 0.283200 (0.138971) | 0.123583 / 0.141683 (-0.018100) | 1.852895 / 1.452155 (0.400740) | 1.827282 / 1.492716 (0.334566) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246419 / 0.018006 (0.228413) | 0.576930 / 0.000490 (0.576440) | 0.007511 / 0.000200 (0.007312) | 0.000165 / 0.000054 (0.000111) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032732 / 0.037411 (-0.004680) | 0.130266 / 0.014526 (0.115740) | 0.150537 / 0.176557 (-0.026019) | 0.218554 / 0.737135 (-0.518582) | 0.148572 / 0.296338 (-0.147766) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.598611 / 0.215209 (0.383402) | 6.181219 / 2.077655 (4.103564) | 2.473468 / 1.504120 (0.969348) | 2.206374 / 1.541195 (0.665179) | 2.216707 / 1.468490 (0.748217) | 0.981295 / 4.584777 (-3.603482) | 5.716384 / 3.745712 (1.970672) | 5.882327 / 5.269862 (0.612466) | 2.761081 / 4.565676 (-1.804595) | 0.113544 / 0.424275 (-0.310731) | 0.015131 / 0.007607 (0.007524) | 0.850939 / 0.226044 (0.624894) | 8.046611 / 2.268929 (5.777682) | 3.340542 / 55.444624 (-52.104083) | 2.673692 / 6.876477 (-4.202785) | 2.926330 / 2.142072 (0.784257) | 1.176164 / 4.805227 (-3.629064) | 0.226745 / 6.500664 (-6.273919) | 0.085910 / 0.075469 (0.010441) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.483792 / 1.841788 (-0.357995) | 18.895009 / 8.074308 (10.820701) | 20.982461 / 10.191392 (10.791069) | 0.253085 / 0.680424 (-0.427339) | 0.031284 / 0.534201 (-0.502917) | 0.516569 / 0.579283 (-0.062714) | 0.635781 / 0.434364 (0.201417) | 0.604359 / 0.540337 (0.064022) | 0.725278 / 1.386936 (-0.661658) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009220 / 0.011353 (-0.002133) | 0.005792 / 0.011008 (-0.005216) | 0.099795 / 0.038508 (0.061287) | 0.033812 / 0.023109 (0.010703) | 0.459386 / 0.275898 (0.183488) | 0.518067 / 0.323480 (0.194587) | 0.005083 / 0.007986 (-0.002902) | 0.004145 / 0.004328 (-0.000183) | 0.103506 / 0.004250 (0.099255) | 0.050429 / 0.037052 (0.013377) | 0.478149 / 0.258489 (0.219660) | 0.531280 / 0.293841 (0.237440) | 0.047373 / 0.128546 (-0.081173) | 0.013647 / 0.075646 (-0.061999) | 0.115174 / 0.419271 (-0.304098) | 0.061099 / 0.043533 (0.017566) | 0.455002 / 0.255139 (0.199863) | 0.507765 / 0.283200 (0.224565) | 0.112219 / 0.141683 (-0.029464) | 1.873591 / 1.452155 (0.421436) | 1.952061 / 1.492716 (0.459345) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.283587 / 0.018006 (0.265581) | 0.587562 / 0.000490 (0.587073) | 0.001252 / 0.000200 (0.001052) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032706 / 0.037411 (-0.004705) | 0.137715 / 0.014526 (0.123189) | 0.131932 / 0.176557 (-0.044625) | 0.200042 / 0.737135 (-0.537094) | 0.159327 / 0.296338 (-0.137011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.624061 / 0.215209 (0.408852) | 6.386235 / 2.077655 (4.308580) | 2.908786 / 1.504120 (1.404666) | 2.589855 / 1.541195 (1.048660) | 2.387988 / 1.468490 (0.919498) | 0.952625 / 4.584777 (-3.632152) | 5.571641 / 3.745712 (1.825929) | 2.711154 / 5.269862 (-2.558708) | 1.788015 / 4.565676 (-2.777662) | 0.104488 / 0.424275 (-0.319787) | 0.015213 / 0.007607 (0.007606) | 0.798446 / 0.226044 (0.572401) | 8.011614 / 2.268929 (5.742686) | 3.711951 / 55.444624 (-51.732673) | 2.896881 / 6.876477 (-3.979595) | 3.172116 / 2.142072 (1.030043) | 1.136816 / 4.805227 (-3.668411) | 0.239254 / 6.500664 (-6.261410) | 0.081136 / 0.075469 (0.005667) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.798246 / 1.841788 (-0.043542) | 19.497108 / 8.074308 (11.422800) | 23.450258 / 10.191392 (13.258866) | 0.250021 / 0.680424 (-0.430403) | 0.029138 / 0.534201 (-0.505063) | 0.532984 / 0.579283 (-0.046299) | 0.638161 / 0.434364 (0.203797) | 0.615720 / 0.540337 (0.075382) | 0.770621 / 1.386936 (-0.616315) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7d8345c5f8a844ff44cfbb30cbda514ffe89bfd7 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009120 / 0.011353 (-0.002233) | 0.005381 / 0.011008 (-0.005627) | 0.139719 / 0.038508 (0.101211) | 0.037229 / 0.023109 (0.014120) | 0.414633 / 0.275898 (0.138734) | 0.480313 / 0.323480 (0.156833) | 0.005027 / 0.007986 (-0.002959) | 0.005015 / 0.004328 (0.000687) | 0.108513 / 0.004250 (0.104263) | 0.056167 / 0.037052 (0.019115) | 0.407588 / 0.258489 (0.149099) | 0.518899 / 0.293841 (0.225058) | 0.048857 / 0.128546 (-0.079689) | 0.013694 / 0.075646 (-0.061952) | 0.418035 / 0.419271 (-0.001237) | 0.067755 / 0.043533 (0.024222) | 0.417740 / 0.255139 (0.162601) | 0.478622 / 0.283200 (0.195422) | 0.118290 / 0.141683 (-0.023393) | 1.901473 / 1.452155 (0.449319) | 1.978126 / 1.492716 (0.485409) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271960 / 0.018006 (0.253954) | 0.602745 / 0.000490 (0.602255) | 0.005371 / 0.000200 (0.005171) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029620 / 0.037411 (-0.007791) | 0.122402 / 0.014526 (0.107877) | 0.132645 / 0.176557 (-0.043911) | 0.212635 / 0.737135 (-0.524500) | 0.136901 / 0.296338 (-0.159438) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.644017 / 0.215209 (0.428808) | 6.597151 / 2.077655 (4.519496) | 2.454471 / 1.504120 (0.950351) | 2.151357 / 1.541195 (0.610163) | 2.290748 / 1.468490 (0.822258) | 0.970194 / 4.584777 (-3.614583) | 5.475275 / 3.745712 (1.729563) | 2.772658 / 5.269862 (-2.497204) | 1.785311 / 4.565676 (-2.780366) | 0.114503 / 0.424275 (-0.309772) | 0.015374 / 0.007607 (0.007767) | 0.768413 / 0.226044 (0.542368) | 7.956219 / 2.268929 (5.687290) | 3.272138 / 55.444624 (-52.172486) | 2.539638 / 6.876477 (-4.336839) | 2.713526 / 2.142072 (0.571454) | 1.181221 / 4.805227 (-3.624006) | 0.236327 / 6.500664 (-6.264337) | 0.089815 / 0.075469 (0.014345) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.521805 / 1.841788 (-0.319983) | 18.196529 / 8.074308 (10.122221) | 20.287324 / 10.191392 (10.095932) | 0.256959 / 0.680424 (-0.423465) | 0.028846 / 0.534201 (-0.505355) | 0.522354 / 0.579283 (-0.056929) | 0.600216 / 0.434364 (0.165852) | 0.607668 / 0.540337 (0.067331) | 0.762101 / 1.386936 (-0.624835) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009227 / 0.011353 (-0.002126) | 0.005398 / 0.011008 (-0.005610) | 0.094998 / 0.038508 (0.056490) | 0.036633 / 0.023109 (0.013524) | 0.493317 / 0.275898 (0.217419) | 0.517216 / 0.323480 (0.193736) | 0.005510 / 0.007986 (-0.002476) | 0.004249 / 0.004328 (-0.000079) | 0.107936 / 0.004250 (0.103685) | 0.050223 / 0.037052 (0.013171) | 0.580275 / 0.258489 (0.321786) | 0.551477 / 0.293841 (0.257636) | 0.048758 / 0.128546 (-0.079788) | 0.013954 / 0.075646 (-0.061692) | 0.107021 / 0.419271 (-0.312250) | 0.064416 / 0.043533 (0.020884) | 0.485225 / 0.255139 (0.230086) | 0.513862 / 0.283200 (0.230663) | 0.118848 / 0.141683 (-0.022835) | 1.755396 / 1.452155 (0.303241) | 1.970349 / 1.492716 (0.477633) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290743 / 0.018006 (0.272737) | 0.603293 / 0.000490 (0.602803) | 0.006814 / 0.000200 (0.006614) | 0.000156 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029862 / 0.037411 (-0.007550) | 0.136530 / 0.014526 (0.122005) | 0.133728 / 0.176557 (-0.042829) | 0.194709 / 0.737135 (-0.542427) | 0.151080 / 0.296338 (-0.145258) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.649202 / 0.215209 (0.433993) | 6.637578 / 2.077655 (4.559923) | 3.040135 / 1.504120 (1.536015) | 2.671308 / 1.541195 (1.130113) | 2.722412 / 1.468490 (1.253922) | 0.953029 / 4.584777 (-3.631748) | 5.805002 / 3.745712 (2.059290) | 5.049939 / 5.269862 (-0.219922) | 2.284053 / 4.565676 (-2.281623) | 0.130399 / 0.424275 (-0.293876) | 0.014726 / 0.007607 (0.007119) | 0.932570 / 0.226044 (0.706526) | 8.576693 / 2.268929 (6.307765) | 4.032738 / 55.444624 (-51.411886) | 3.274715 / 6.876477 (-3.601762) | 3.513788 / 2.142072 (1.371716) | 1.130624 / 4.805227 (-3.674603) | 0.219597 / 6.500664 (-6.281067) | 0.081425 / 0.075469 (0.005956) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.735312 / 1.841788 (-0.106476) | 18.438587 / 8.074308 (10.364279) | 21.582310 / 10.191392 (11.390918) | 0.224040 / 0.680424 (-0.456384) | 0.027590 / 0.534201 (-0.506611) | 0.503598 / 0.579283 (-0.075685) | 0.624379 / 0.434364 (0.190015) | 0.571911 / 0.540337 (0.031574) | 0.723215 / 1.386936 (-0.663721) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9e40d28f2b0060a429c70827191fa5ff3ce8cf27 \"CML watermark\")\n" ]
"2023-06-14T13:50:38Z"
"2023-06-14T14:43:12Z"
"2023-06-14T14:33:45Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5956.diff", "html_url": "https://github.com/huggingface/datasets/pull/5956", "merged_at": "2023-06-14T14:33:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/5956.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5956" }
ArrowExamplesIterable.shard_data_sources was outdated I also fixed a warning message by not using format_type= in with_format()
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5956/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5956/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5527
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5527/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5527/comments
https://api.github.com/repos/huggingface/datasets/issues/5527/events
https://github.com/huggingface/datasets/pull/5527
1,581,228,531
PR_kwDODunzps5JysSM
5,527
Fix benchmarks CI - pin protobuf
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011142 / 0.011353 (-0.000211) | 0.005885 / 0.011008 (-0.005123) | 0.115374 / 0.038508 (0.076866) | 0.041704 / 0.023109 (0.018594) | 0.356996 / 0.275898 (0.081098) | 0.395076 / 0.323480 (0.071596) | 0.008726 / 0.007986 (0.000740) | 0.005528 / 0.004328 (0.001199) | 0.087817 / 0.004250 (0.083566) | 0.049273 / 0.037052 (0.012221) | 0.363778 / 0.258489 (0.105289) | 0.408801 / 0.293841 (0.114960) | 0.045232 / 0.128546 (-0.083314) | 0.013788 / 0.075646 (-0.061859) | 0.395634 / 0.419271 (-0.023637) | 0.056583 / 0.043533 (0.013051) | 0.360779 / 0.255139 (0.105640) | 0.386843 / 0.283200 (0.103643) | 0.116632 / 0.141683 (-0.025051) | 1.830020 / 1.452155 (0.377865) | 1.808720 / 1.492716 (0.316003) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221029 / 0.018006 (0.203023) | 0.489463 / 0.000490 (0.488973) | 0.002104 / 0.000200 (0.001904) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032873 / 0.037411 (-0.004539) | 0.129526 / 0.014526 (0.115000) | 0.141446 / 0.176557 (-0.035111) | 0.189222 / 0.737135 (-0.547913) | 0.149329 / 0.296338 (-0.147010) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471389 / 0.215209 (0.256180) | 4.710174 / 2.077655 (2.632519) | 2.239122 / 1.504120 (0.735002) | 1.977789 / 1.541195 (0.436595) | 2.107336 / 1.468490 (0.638846) | 0.816852 / 4.584777 (-3.767925) | 4.944056 / 3.745712 (1.198344) | 4.637939 / 5.269862 (-0.631922) | 2.355546 / 4.565676 (-2.210131) | 0.099324 / 0.424275 (-0.324951) | 0.014529 / 0.007607 (0.006922) | 0.596322 / 0.226044 (0.370277) | 5.972216 / 2.268929 (3.703287) | 2.697281 / 55.444624 (-52.747344) | 2.293836 / 6.876477 (-4.582641) | 2.380271 / 2.142072 (0.238199) | 1.001307 / 4.805227 (-3.803920) | 0.196981 / 6.500664 (-6.303683) | 0.074390 / 0.075469 (-0.001079) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.482915 / 1.841788 (-0.358872) | 18.739511 / 8.074308 (10.665202) | 16.768191 / 10.191392 (6.576799) | 0.203163 / 0.680424 (-0.477261) | 0.037514 / 0.534201 (-0.496687) | 0.529017 / 0.579283 (-0.050266) | 0.577591 / 0.434364 (0.143227) | 0.634057 / 0.540337 (0.093720) | 0.759812 / 1.386936 (-0.627124) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008815 / 0.011353 (-0.002537) | 0.005956 / 0.011008 (-0.005052) | 0.087912 / 0.038508 (0.049404) | 0.040291 / 0.023109 (0.017182) | 0.404079 / 0.275898 (0.128181) | 0.447309 / 0.323480 (0.123829) | 0.006515 / 0.007986 (-0.001471) | 0.005917 / 0.004328 (0.001588) | 0.085560 / 0.004250 (0.081310) | 0.057077 / 0.037052 (0.020025) | 0.403349 / 0.258489 (0.144860) | 0.465644 / 0.293841 (0.171803) | 0.043530 / 0.128546 (-0.085016) | 0.014234 / 0.075646 (-0.061412) | 0.102203 / 0.419271 (-0.317068) | 0.058335 / 0.043533 (0.014802) | 0.398488 / 0.255139 (0.143349) | 0.424127 / 0.283200 (0.140927) | 0.119058 / 0.141683 (-0.022625) | 1.748748 / 1.452155 (0.296593) | 1.822190 / 1.492716 (0.329474) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255782 / 0.018006 (0.237776) | 0.496665 / 0.000490 (0.496176) | 0.000471 / 0.000200 (0.000271) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034111 / 0.037411 (-0.003301) | 0.131442 / 0.014526 (0.116917) | 0.144660 / 0.176557 (-0.031897) | 0.188156 / 0.737135 (-0.548979) | 0.149875 / 0.296338 (-0.146463) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.502218 / 0.215209 (0.287009) | 5.004486 / 2.077655 (2.926832) | 2.420379 / 1.504120 (0.916259) | 2.194671 / 1.541195 (0.653476) | 2.306376 / 1.468490 (0.837886) | 0.856623 / 4.584777 (-3.728154) | 4.963211 / 3.745712 (1.217499) | 2.517965 / 5.269862 (-2.751896) | 1.743880 / 4.565676 (-2.821797) | 0.105270 / 0.424275 (-0.319005) | 0.014725 / 0.007607 (0.007118) | 0.621934 / 0.226044 (0.395890) | 6.183827 / 2.268929 (3.914898) | 2.945868 / 55.444624 (-52.498757) | 2.557676 / 6.876477 (-4.318801) | 2.622282 / 2.142072 (0.480210) | 1.011647 / 4.805227 (-3.793580) | 0.199573 / 6.500664 (-6.301091) | 0.076283 / 0.075469 (0.000814) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.518813 / 1.841788 (-0.322975) | 18.833017 / 8.074308 (10.758709) | 16.095249 / 10.191392 (5.903857) | 0.196667 / 0.680424 (-0.483757) | 0.022060 / 0.534201 (-0.512141) | 0.537802 / 0.579283 (-0.041481) | 0.523676 / 0.434364 (0.089312) | 0.629387 / 0.540337 (0.089049) | 0.738042 / 1.386936 (-0.648894) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#813712c3cd133f72f496d279e02344d6ee743fdf \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008608 / 0.011353 (-0.002745) | 0.004553 / 0.011008 (-0.006455) | 0.100031 / 0.038508 (0.061523) | 0.029498 / 0.023109 (0.006389) | 0.306913 / 0.275898 (0.031015) | 0.367369 / 0.323480 (0.043889) | 0.006883 / 0.007986 (-0.001103) | 0.004768 / 0.004328 (0.000440) | 0.077424 / 0.004250 (0.073173) | 0.034005 / 0.037052 (-0.003047) | 0.317772 / 0.258489 (0.059283) | 0.356859 / 0.293841 (0.063018) | 0.033717 / 0.128546 (-0.094829) | 0.011386 / 0.075646 (-0.064260) | 0.322832 / 0.419271 (-0.096439) | 0.043930 / 0.043533 (0.000397) | 0.308087 / 0.255139 (0.052948) | 0.338349 / 0.283200 (0.055149) | 0.094780 / 0.141683 (-0.046903) | 1.463454 / 1.452155 (0.011300) | 1.495055 / 1.492716 (0.002338) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191039 / 0.018006 (0.173033) | 0.414650 / 0.000490 (0.414160) | 0.002435 / 0.000200 (0.002235) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023871 / 0.037411 (-0.013540) | 0.097140 / 0.014526 (0.082614) | 0.105914 / 0.176557 (-0.070643) | 0.147375 / 0.737135 (-0.589760) | 0.107985 / 0.296338 (-0.188354) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420174 / 0.215209 (0.204965) | 4.208354 / 2.077655 (2.130700) | 1.904568 / 1.504120 (0.400448) | 1.687406 / 1.541195 (0.146212) | 1.723901 / 1.468490 (0.255411) | 0.693554 / 4.584777 (-3.891223) | 3.445474 / 3.745712 (-0.300238) | 1.904919 / 5.269862 (-3.364943) | 1.284378 / 4.565676 (-3.281298) | 0.082539 / 0.424275 (-0.341736) | 0.012490 / 0.007607 (0.004883) | 0.527778 / 0.226044 (0.301733) | 5.300766 / 2.268929 (3.031838) | 2.324666 / 55.444624 (-53.119958) | 1.977166 / 6.876477 (-4.899311) | 2.054396 / 2.142072 (-0.087677) | 0.820966 / 4.805227 (-3.984261) | 0.148584 / 6.500664 (-6.352080) | 0.063618 / 0.075469 (-0.011851) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.188075 / 1.841788 (-0.653712) | 13.706950 / 8.074308 (5.632642) | 13.725122 / 10.191392 (3.533730) | 0.167379 / 0.680424 (-0.513045) | 0.028729 / 0.534201 (-0.505472) | 0.395373 / 0.579283 (-0.183910) | 0.403604 / 0.434364 (-0.030760) | 0.464290 / 0.540337 (-0.076047) | 0.553792 / 1.386936 (-0.833144) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006565 / 0.011353 (-0.004787) | 0.004588 / 0.011008 (-0.006420) | 0.077312 / 0.038508 (0.038804) | 0.027348 / 0.023109 (0.004239) | 0.367753 / 0.275898 (0.091855) | 0.403250 / 0.323480 (0.079770) | 0.005201 / 0.007986 (-0.002785) | 0.004695 / 0.004328 (0.000366) | 0.076203 / 0.004250 (0.071953) | 0.039388 / 0.037052 (0.002336) | 0.374418 / 0.258489 (0.115929) | 0.413623 / 0.293841 (0.119782) | 0.031731 / 0.128546 (-0.096815) | 0.011644 / 0.075646 (-0.064002) | 0.086339 / 0.419271 (-0.332932) | 0.048902 / 0.043533 (0.005369) | 0.352064 / 0.255139 (0.096925) | 0.386637 / 0.283200 (0.103437) | 0.093662 / 0.141683 (-0.048021) | 1.479863 / 1.452155 (0.027709) | 1.562475 / 1.492716 (0.069758) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231874 / 0.018006 (0.213867) | 0.402185 / 0.000490 (0.401695) | 0.005252 / 0.000200 (0.005052) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025402 / 0.037411 (-0.012010) | 0.099896 / 0.014526 (0.085370) | 0.106365 / 0.176557 (-0.070192) | 0.143309 / 0.737135 (-0.593827) | 0.112311 / 0.296338 (-0.184027) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447637 / 0.215209 (0.232428) | 4.469337 / 2.077655 (2.391682) | 2.164332 / 1.504120 (0.660212) | 1.957826 / 1.541195 (0.416631) | 1.984580 / 1.468490 (0.516090) | 0.702909 / 4.584777 (-3.881868) | 3.361725 / 3.745712 (-0.383987) | 2.818102 / 5.269862 (-2.451760) | 1.589815 / 4.565676 (-2.975862) | 0.083647 / 0.424275 (-0.340628) | 0.012502 / 0.007607 (0.004895) | 0.545578 / 0.226044 (0.319534) | 5.480894 / 2.268929 (3.211966) | 2.605599 / 55.444624 (-52.839026) | 2.253444 / 6.876477 (-4.623032) | 2.289818 / 2.142072 (0.147746) | 0.803680 / 4.805227 (-4.001547) | 0.151870 / 6.500664 (-6.348794) | 0.066610 / 0.075469 (-0.008859) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.327390 / 1.841788 (-0.514398) | 14.046936 / 8.074308 (5.972628) | 13.643169 / 10.191392 (3.451777) | 0.128223 / 0.680424 (-0.552201) | 0.016941 / 0.534201 (-0.517260) | 0.383887 / 0.579283 (-0.195396) | 0.383891 / 0.434364 (-0.050473) | 0.440191 / 0.540337 (-0.100146) | 0.525357 / 1.386936 (-0.861579) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1575be339bc14a12229d782e2788746f27aeeb2a \"CML watermark\")\n", "Yea there must have been an update in another package that unconstrained the protobuf dependency - idk which one though", "It is `tensorboard`. I have reported the issue to `tensorflow`:\r\n- https://github.com/tensorflow/tensorflow/issues/59665" ]
"2023-02-12T11:51:25Z"
"2023-02-13T10:29:03Z"
"2023-02-13T09:24:16Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5527.diff", "html_url": "https://github.com/huggingface/datasets/pull/5527", "merged_at": "2023-02-13T09:24:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/5527.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5527" }
fix https://github.com/huggingface/datasets/actions/runs/4156059127/jobs/7189576331
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5527/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5527/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5998
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5998/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5998/comments
https://api.github.com/repos/huggingface/datasets/issues/5998/events
https://github.com/huggingface/datasets/issues/5998
1,781,805,018
I_kwDODunzps5qNC_a
5,998
The current implementation has a potential bug in the sort method
{ "avatar_url": "https://avatars.githubusercontent.com/u/22192665?v=4", "events_url": "https://api.github.com/users/wangyuxinwhy/events{/privacy}", "followers_url": "https://api.github.com/users/wangyuxinwhy/followers", "following_url": "https://api.github.com/users/wangyuxinwhy/following{/other_user}", "gists_url": "https://api.github.com/users/wangyuxinwhy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wangyuxinwhy", "id": 22192665, "login": "wangyuxinwhy", "node_id": "MDQ6VXNlcjIyMTkyNjY1", "organizations_url": "https://api.github.com/users/wangyuxinwhy/orgs", "received_events_url": "https://api.github.com/users/wangyuxinwhy/received_events", "repos_url": "https://api.github.com/users/wangyuxinwhy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wangyuxinwhy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wangyuxinwhy/subscriptions", "type": "User", "url": "https://api.github.com/users/wangyuxinwhy" }
[]
closed
false
null
[]
null
[ "Thanks for reporting, @wangyuxinwhy. " ]
"2023-06-30T03:16:57Z"
"2023-06-30T14:21:03Z"
"2023-06-30T14:11:25Z"
NONE
null
null
null
### Describe the bug In the sort method,here's a piece of code ```python # column_names: Union[str, Sequence_[str]] # Check proper format of and for duplicates in column_names if not isinstance(column_names, list): column_names = [column_names] ``` I get an error when I pass in a tuple based on the column_names type annotation, it will raise an errror.As in the example below, while the type annotation implies that a tuple can be passed. ```python from datasets import load_dataset dataset = load_dataset('glue', 'ax')['test'] dataset.sort(column_names=('premise', 'hypothesis')) # Raise ValueError: Column '('premise', 'hypothesis')' not found in the dataset. ``` Of course, after I modified the tuple into a list, everything worked fine Change the code to the following so there will be no problem ```python # Check proper format of and for duplicates in column_names if not isinstance(column_names, list): if isinstance(column_names, str): column_names = [column_names] else: column_names = list(column_names) ``` ### Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset('glue', 'ax')['test'] dataset.sort(column_names=('premise', 'hypothesis')) # Raise ValueError: Column '('premise', 'hypothesis')' not found in the dataset. ``` ### Expected behavior Passing tuple into column_names should be equivalent to passing list ### Environment info - `datasets` version: 2.13.0 - Platform: macOS-13.1-arm64-arm-64bit - Python version: 3.10.11 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.1 - Pandas version: 2.0.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5998/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5998/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5605
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5605/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5605/comments
https://api.github.com/repos/huggingface/datasets/issues/5605/events
https://github.com/huggingface/datasets/pull/5605
1,608,865,460
PR_kwDODunzps5LPPf5
5,605
Update README logo
{ "avatar_url": "https://avatars.githubusercontent.com/u/3841370?v=4", "events_url": "https://api.github.com/users/gary149/events{/privacy}", "followers_url": "https://api.github.com/users/gary149/followers", "following_url": "https://api.github.com/users/gary149/following{/other_user}", "gists_url": "https://api.github.com/users/gary149/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gary149", "id": 3841370, "login": "gary149", "node_id": "MDQ6VXNlcjM4NDEzNzA=", "organizations_url": "https://api.github.com/users/gary149/orgs", "received_events_url": "https://api.github.com/users/gary149/received_events", "repos_url": "https://api.github.com/users/gary149/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gary149/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gary149/subscriptions", "type": "User", "url": "https://api.github.com/users/gary149" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Are you sure it's safe to remove? https://github.com/huggingface/datasets/pull/3866", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009520 / 0.011353 (-0.001833) | 0.005319 / 0.011008 (-0.005690) | 0.099372 / 0.038508 (0.060863) | 0.036173 / 0.023109 (0.013064) | 0.295752 / 0.275898 (0.019853) | 0.362882 / 0.323480 (0.039402) | 0.008442 / 0.007986 (0.000456) | 0.004225 / 0.004328 (-0.000103) | 0.076645 / 0.004250 (0.072394) | 0.044198 / 0.037052 (0.007146) | 0.311948 / 0.258489 (0.053459) | 0.342963 / 0.293841 (0.049122) | 0.038613 / 0.128546 (-0.089933) | 0.012127 / 0.075646 (-0.063519) | 0.334427 / 0.419271 (-0.084844) | 0.048309 / 0.043533 (0.004776) | 0.297046 / 0.255139 (0.041907) | 0.314562 / 0.283200 (0.031363) | 0.105797 / 0.141683 (-0.035886) | 1.460967 / 1.452155 (0.008812) | 1.500907 / 1.492716 (0.008190) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216185 / 0.018006 (0.198179) | 0.438924 / 0.000490 (0.438435) | 0.001210 / 0.000200 (0.001011) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026193 / 0.037411 (-0.011219) | 0.105888 / 0.014526 (0.091363) | 0.115812 / 0.176557 (-0.060744) | 0.158748 / 0.737135 (-0.578387) | 0.121514 / 0.296338 (-0.174824) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399837 / 0.215209 (0.184628) | 3.996992 / 2.077655 (1.919338) | 1.784964 / 1.504120 (0.280844) | 1.591078 / 1.541195 (0.049883) | 1.666424 / 1.468490 (0.197934) | 0.711450 / 4.584777 (-3.873327) | 3.787814 / 3.745712 (0.042102) | 2.056776 / 5.269862 (-3.213085) | 1.332163 / 4.565676 (-3.233514) | 0.085755 / 0.424275 (-0.338520) | 0.012033 / 0.007607 (0.004426) | 0.511500 / 0.226044 (0.285455) | 5.098999 / 2.268929 (2.830071) | 2.288261 / 55.444624 (-53.156364) | 1.947483 / 6.876477 (-4.928994) | 1.987838 / 2.142072 (-0.154234) | 0.852241 / 4.805227 (-3.952986) | 0.164781 / 6.500664 (-6.335883) | 0.061825 / 0.075469 (-0.013644) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.202253 / 1.841788 (-0.639534) | 14.632608 / 8.074308 (6.558300) | 13.331320 / 10.191392 (3.139928) | 0.157944 / 0.680424 (-0.522480) | 0.029284 / 0.534201 (-0.504917) | 0.446636 / 0.579283 (-0.132647) | 0.437009 / 0.434364 (0.002645) | 0.521883 / 0.540337 (-0.018455) | 0.606687 / 1.386936 (-0.780249) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007528 / 0.011353 (-0.003825) | 0.005274 / 0.011008 (-0.005734) | 0.073524 / 0.038508 (0.035016) | 0.033893 / 0.023109 (0.010784) | 0.335432 / 0.275898 (0.059534) | 0.379981 / 0.323480 (0.056501) | 0.005954 / 0.007986 (-0.002031) | 0.004126 / 0.004328 (-0.000203) | 0.072891 / 0.004250 (0.068641) | 0.046517 / 0.037052 (0.009465) | 0.337241 / 0.258489 (0.078752) | 0.385562 / 0.293841 (0.091721) | 0.036410 / 0.128546 (-0.092136) | 0.012246 / 0.075646 (-0.063401) | 0.085974 / 0.419271 (-0.333298) | 0.049665 / 0.043533 (0.006133) | 0.330919 / 0.255139 (0.075780) | 0.352041 / 0.283200 (0.068841) | 0.103751 / 0.141683 (-0.037931) | 1.468851 / 1.452155 (0.016696) | 1.565380 / 1.492716 (0.072663) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260431 / 0.018006 (0.242425) | 0.444554 / 0.000490 (0.444064) | 0.016055 / 0.000200 (0.015855) | 0.000283 / 0.000054 (0.000228) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029130 / 0.037411 (-0.008281) | 0.112002 / 0.014526 (0.097476) | 0.120769 / 0.176557 (-0.055788) | 0.169345 / 0.737135 (-0.567790) | 0.129609 / 0.296338 (-0.166730) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432211 / 0.215209 (0.217002) | 4.293008 / 2.077655 (2.215353) | 2.071291 / 1.504120 (0.567171) | 1.859322 / 1.541195 (0.318127) | 1.971434 / 1.468490 (0.502943) | 0.704042 / 4.584777 (-3.880735) | 3.791696 / 3.745712 (0.045983) | 3.142632 / 5.269862 (-2.127230) | 1.735151 / 4.565676 (-2.830525) | 0.086203 / 0.424275 (-0.338072) | 0.012542 / 0.007607 (0.004935) | 0.534870 / 0.226044 (0.308826) | 5.326042 / 2.268929 (3.057113) | 2.547960 / 55.444624 (-52.896664) | 2.212730 / 6.876477 (-4.663747) | 2.296177 / 2.142072 (0.154105) | 0.840311 / 4.805227 (-3.964917) | 0.168353 / 6.500664 (-6.332311) | 0.065949 / 0.075469 (-0.009520) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255589 / 1.841788 (-0.586199) | 14.947344 / 8.074308 (6.873036) | 13.253721 / 10.191392 (3.062329) | 0.162349 / 0.680424 (-0.518075) | 0.017579 / 0.534201 (-0.516622) | 0.420758 / 0.579283 (-0.158525) | 0.430030 / 0.434364 (-0.004334) | 0.524669 / 0.540337 (-0.015669) | 0.623920 / 1.386936 (-0.763016) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#35b789e8f6826b6b5a6b48fcc2416c890a1f326a \"CML watermark\")\n" ]
"2023-03-03T15:46:31Z"
"2023-03-03T21:57:18Z"
"2023-03-03T21:50:17Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5605.diff", "html_url": "https://github.com/huggingface/datasets/pull/5605", "merged_at": "2023-03-03T21:50:17Z", "patch_url": "https://github.com/huggingface/datasets/pull/5605.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5605" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5605/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5605/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2125
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2125/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2125/comments
https://api.github.com/repos/huggingface/datasets/issues/2125/events
https://github.com/huggingface/datasets/issues/2125
842,690,570
MDU6SXNzdWU4NDI2OTA1NzA=
2,125
Is dataset timit_asr broken?
{ "avatar_url": "https://avatars.githubusercontent.com/u/42398050?v=4", "events_url": "https://api.github.com/users/kosuke-kitahara/events{/privacy}", "followers_url": "https://api.github.com/users/kosuke-kitahara/followers", "following_url": "https://api.github.com/users/kosuke-kitahara/following{/other_user}", "gists_url": "https://api.github.com/users/kosuke-kitahara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kosuke-kitahara", "id": 42398050, "login": "kosuke-kitahara", "node_id": "MDQ6VXNlcjQyMzk4MDUw", "organizations_url": "https://api.github.com/users/kosuke-kitahara/orgs", "received_events_url": "https://api.github.com/users/kosuke-kitahara/received_events", "repos_url": "https://api.github.com/users/kosuke-kitahara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kosuke-kitahara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kosuke-kitahara/subscriptions", "type": "User", "url": "https://api.github.com/users/kosuke-kitahara" }
[]
closed
false
null
[]
null
[ "Hi,\r\n\r\nthanks for the report, but this is a duplicate of #2052. ", "@mariosasko \r\nThank you for your quick response! Following #2052, I've fixed the problem." ]
"2021-03-28T08:30:18Z"
"2021-03-28T12:29:25Z"
"2021-03-28T12:29:25Z"
NONE
null
null
null
Using `timit_asr` dataset, I saw all records are the same. ``` python from datasets import load_dataset, load_metric timit = load_dataset("timit_asr") from datasets import ClassLabel import random import pandas as pd from IPython.display import display, HTML def show_random_elements(dataset, num_examples=10): assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset)-1) while pick in picks: pick = random.randint(0, len(dataset)-1) picks.append(pick) df = pd.DataFrame(dataset[picks]) display(HTML(df.to_html())) show_random_elements(timit['train'].remove_columns(["file", "phonetic_detail", "word_detail", "dialect_region", "id", "sentence_type", "speaker_id"]), num_examples=20) ``` `output` <img width="312" alt="Screen Shot 2021-03-28 at 17 29 04" src="https://user-images.githubusercontent.com/42398050/112746646-21acee80-8feb-11eb-84f3-dbb5d4269724.png"> I double-checked it [here](https://huggingface.co/datasets/viewer/), and met the same problem. <img width="1374" alt="Screen Shot 2021-03-28 at 17 32 07" src="https://user-images.githubusercontent.com/42398050/112746698-9bdd7300-8feb-11eb-97ed-5babead385f4.png">
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2125/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2125/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3997
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3997/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3997/comments
https://api.github.com/repos/huggingface/datasets/issues/3997/events
https://github.com/huggingface/datasets/pull/3997
1,178,566,568
PR_kwDODunzps4058xr
3,997
Sync Features dictionaries
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-03-23T19:23:51Z"
"2022-04-13T15:52:27Z"
"2022-04-13T15:46:19Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3997.diff", "html_url": "https://github.com/huggingface/datasets/pull/3997", "merged_at": "2022-04-13T15:46:19Z", "patch_url": "https://github.com/huggingface/datasets/pull/3997.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3997" }
This PR adds a wrapper to the `Features` class to keep the secondary dict, `_column_requires_decoding`, aligned with the main dict (as discussed in https://github.com/huggingface/datasets/pull/3723#discussion_r806912731). A more elegant approach would be to subclass `UserDict` and override `__setitem__` and `__delitem__`, but this PR doesn't implement it for the following reasons: * it requires replacing all occurrences of `isinstance(obj, dict)` with `isinstance(obj, Mapping)`, which is five times slower than `isinstance(obj, dict)` on my machine, in `features.py` * is a breaking change, i.e., `isinstance(Features(...), dict)` would return `False` after it * IMO, it makes sense to be consistent in the user-facing API and subclass either `dict` or `UserDict`. The problem with the latter is that it can't be used for `DatasetDict` because `DatasetDict` exposes the `data` property, which is also used by `UserDict`, so this would result in a collision.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3997/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3997/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5619
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5619/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5619/comments
https://api.github.com/repos/huggingface/datasets/issues/5619/events
https://github.com/huggingface/datasets/pull/5619
1,613,439,709
PR_kwDODunzps5LeaYP
5,619
unpin fsspec
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009954 / 0.011353 (-0.001398) | 0.005468 / 0.011008 (-0.005541) | 0.101228 / 0.038508 (0.062720) | 0.037878 / 0.023109 (0.014769) | 0.305635 / 0.275898 (0.029737) | 0.391672 / 0.323480 (0.068192) | 0.008893 / 0.007986 (0.000908) | 0.005861 / 0.004328 (0.001533) | 0.076940 / 0.004250 (0.072689) | 0.046242 / 0.037052 (0.009190) | 0.324033 / 0.258489 (0.065544) | 0.383306 / 0.293841 (0.089465) | 0.039298 / 0.128546 (-0.089249) | 0.012187 / 0.075646 (-0.063459) | 0.336774 / 0.419271 (-0.082498) | 0.053493 / 0.043533 (0.009960) | 0.303381 / 0.255139 (0.048242) | 0.323494 / 0.283200 (0.040295) | 0.118613 / 0.141683 (-0.023070) | 1.463430 / 1.452155 (0.011275) | 1.549856 / 1.492716 (0.057139) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289264 / 0.018006 (0.271258) | 0.520348 / 0.000490 (0.519858) | 0.004543 / 0.000200 (0.004343) | 0.000090 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028183 / 0.037411 (-0.009229) | 0.107869 / 0.014526 (0.093343) | 0.124019 / 0.176557 (-0.052537) | 0.167769 / 0.737135 (-0.569367) | 0.130304 / 0.296338 (-0.166034) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402296 / 0.215209 (0.187087) | 4.018884 / 2.077655 (1.941229) | 1.834050 / 1.504120 (0.329930) | 1.649974 / 1.541195 (0.108779) | 1.741697 / 1.468490 (0.273207) | 0.684354 / 4.584777 (-3.900423) | 3.778213 / 3.745712 (0.032501) | 2.158086 / 5.269862 (-3.111775) | 1.472671 / 4.565676 (-3.093006) | 0.083912 / 0.424275 (-0.340363) | 0.012285 / 0.007607 (0.004678) | 0.501689 / 0.226044 (0.275645) | 5.014722 / 2.268929 (2.745794) | 2.310722 / 55.444624 (-53.133902) | 1.983214 / 6.876477 (-4.893262) | 2.154518 / 2.142072 (0.012446) | 0.821277 / 4.805227 (-3.983950) | 0.164434 / 6.500664 (-6.336231) | 0.062568 / 0.075469 (-0.012901) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224338 / 1.841788 (-0.617450) | 14.981623 / 8.074308 (6.907315) | 14.296356 / 10.191392 (4.104964) | 0.193554 / 0.680424 (-0.486870) | 0.028511 / 0.534201 (-0.505690) | 0.437649 / 0.579283 (-0.141634) | 0.448934 / 0.434364 (0.014570) | 0.552624 / 0.540337 (0.012287) | 0.654268 / 1.386936 (-0.732668) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007772 / 0.011353 (-0.003581) | 0.005534 / 0.011008 (-0.005474) | 0.074347 / 0.038508 (0.035839) | 0.034486 / 0.023109 (0.011376) | 0.343430 / 0.275898 (0.067532) | 0.385778 / 0.323480 (0.062298) | 0.006424 / 0.007986 (-0.001562) | 0.004241 / 0.004328 (-0.000087) | 0.072839 / 0.004250 (0.068589) | 0.055523 / 0.037052 (0.018471) | 0.342778 / 0.258489 (0.084289) | 0.389961 / 0.293841 (0.096120) | 0.037238 / 0.128546 (-0.091308) | 0.012450 / 0.075646 (-0.063197) | 0.085282 / 0.419271 (-0.333990) | 0.049678 / 0.043533 (0.006146) | 0.345300 / 0.255139 (0.090161) | 0.365220 / 0.283200 (0.082020) | 0.109257 / 0.141683 (-0.032426) | 1.480284 / 1.452155 (0.028129) | 1.627881 / 1.492716 (0.135165) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.323330 / 0.018006 (0.305324) | 0.530824 / 0.000490 (0.530334) | 0.000463 / 0.000200 (0.000263) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032398 / 0.037411 (-0.005013) | 0.115889 / 0.014526 (0.101363) | 0.131093 / 0.176557 (-0.045464) | 0.180757 / 0.737135 (-0.556379) | 0.134395 / 0.296338 (-0.161943) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423931 / 0.215209 (0.208722) | 4.238207 / 2.077655 (2.160553) | 2.075721 / 1.504120 (0.571602) | 1.887752 / 1.541195 (0.346557) | 2.055054 / 1.468490 (0.586564) | 0.703145 / 4.584777 (-3.881632) | 3.937120 / 3.745712 (0.191408) | 3.748550 / 5.269862 (-1.521311) | 1.562849 / 4.565676 (-3.002827) | 0.087695 / 0.424275 (-0.336580) | 0.012614 / 0.007607 (0.005007) | 0.523901 / 0.226044 (0.297856) | 5.230210 / 2.268929 (2.961282) | 2.592667 / 55.444624 (-52.851958) | 2.345662 / 6.876477 (-4.530815) | 2.475388 / 2.142072 (0.333316) | 0.836443 / 4.805227 (-3.968784) | 0.170304 / 6.500664 (-6.330360) | 0.067741 / 0.075469 (-0.007729) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255171 / 1.841788 (-0.586617) | 16.312856 / 8.074308 (8.238548) | 13.184770 / 10.191392 (2.993378) | 0.145557 / 0.680424 (-0.534867) | 0.017723 / 0.534201 (-0.516478) | 0.423447 / 0.579283 (-0.155836) | 0.423063 / 0.434364 (-0.011301) | 0.494159 / 0.540337 (-0.046179) | 0.589590 / 1.386936 (-0.797346) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4ea6f1db3f80eb3bb7ac6f252c2cd5bd97537c01 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012068 / 0.011353 (0.000715) | 0.006127 / 0.011008 (-0.004881) | 0.112550 / 0.038508 (0.074042) | 0.043201 / 0.023109 (0.020092) | 0.346666 / 0.275898 (0.070768) | 0.413852 / 0.323480 (0.090372) | 0.009342 / 0.007986 (0.001356) | 0.006302 / 0.004328 (0.001974) | 0.086901 / 0.004250 (0.082650) | 0.053992 / 0.037052 (0.016940) | 0.362192 / 0.258489 (0.103703) | 0.409867 / 0.293841 (0.116026) | 0.046124 / 0.128546 (-0.082422) | 0.014139 / 0.075646 (-0.061507) | 0.386386 / 0.419271 (-0.032886) | 0.058465 / 0.043533 (0.014932) | 0.344832 / 0.255139 (0.089693) | 0.370684 / 0.283200 (0.087485) | 0.122886 / 0.141683 (-0.018796) | 1.724013 / 1.452155 (0.271858) | 1.775756 / 1.492716 (0.283039) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220289 / 0.018006 (0.202283) | 0.493585 / 0.000490 (0.493096) | 0.001970 / 0.000200 (0.001770) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030763 / 0.037411 (-0.006649) | 0.128237 / 0.014526 (0.113711) | 0.138364 / 0.176557 (-0.038192) | 0.188115 / 0.737135 (-0.549021) | 0.145367 / 0.296338 (-0.150972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.452487 / 0.215209 (0.237277) | 4.592728 / 2.077655 (2.515074) | 2.075712 / 1.504120 (0.571592) | 1.845424 / 1.541195 (0.304229) | 1.956400 / 1.468490 (0.487910) | 0.808387 / 4.584777 (-3.776390) | 4.483678 / 3.745712 (0.737966) | 3.870287 / 5.269862 (-1.399574) | 2.151205 / 4.565676 (-2.414471) | 0.098123 / 0.424275 (-0.326152) | 0.014139 / 0.007607 (0.006531) | 0.577775 / 0.226044 (0.351730) | 5.785545 / 2.268929 (3.516616) | 2.614418 / 55.444624 (-52.830206) | 2.312136 / 6.876477 (-4.564341) | 2.364189 / 2.142072 (0.222117) | 0.970028 / 4.805227 (-3.835199) | 0.189592 / 6.500664 (-6.311072) | 0.072883 / 0.075469 (-0.002586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.414252 / 1.841788 (-0.427535) | 17.518307 / 8.074308 (9.443999) | 16.053748 / 10.191392 (5.862356) | 0.215297 / 0.680424 (-0.465127) | 0.033947 / 0.534201 (-0.500253) | 0.525794 / 0.579283 (-0.053489) | 0.514676 / 0.434364 (0.080312) | 0.595066 / 0.540337 (0.054728) | 0.689404 / 1.386936 (-0.697532) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008185 / 0.011353 (-0.003168) | 0.005776 / 0.011008 (-0.005232) | 0.084919 / 0.038508 (0.046411) | 0.037575 / 0.023109 (0.014466) | 0.401192 / 0.275898 (0.125294) | 0.443920 / 0.323480 (0.120440) | 0.006446 / 0.007986 (-0.001540) | 0.004428 / 0.004328 (0.000099) | 0.084013 / 0.004250 (0.079763) | 0.052013 / 0.037052 (0.014961) | 0.398429 / 0.258489 (0.139940) | 0.455676 / 0.293841 (0.161836) | 0.041568 / 0.128546 (-0.086978) | 0.013631 / 0.075646 (-0.062015) | 0.098709 / 0.419271 (-0.320563) | 0.055889 / 0.043533 (0.012356) | 0.402002 / 0.255139 (0.146863) | 0.424248 / 0.283200 (0.141049) | 0.113288 / 0.141683 (-0.028395) | 1.672214 / 1.452155 (0.220059) | 1.792940 / 1.492716 (0.300223) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211847 / 0.018006 (0.193841) | 0.486711 / 0.000490 (0.486221) | 0.002907 / 0.000200 (0.002707) | 0.000118 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032931 / 0.037411 (-0.004480) | 0.142073 / 0.014526 (0.127547) | 0.142872 / 0.176557 (-0.033685) | 0.202612 / 0.737135 (-0.534523) | 0.154390 / 0.296338 (-0.141949) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488682 / 0.215209 (0.273473) | 4.755805 / 2.077655 (2.678150) | 2.348778 / 1.504120 (0.844658) | 2.144992 / 1.541195 (0.603797) | 2.245654 / 1.468490 (0.777164) | 0.792690 / 4.584777 (-3.792087) | 4.569190 / 3.745712 (0.823478) | 3.919317 / 5.269862 (-1.350545) | 2.140302 / 4.565676 (-2.425374) | 0.096430 / 0.424275 (-0.327845) | 0.014551 / 0.007607 (0.006944) | 0.605138 / 0.226044 (0.379094) | 5.989470 / 2.268929 (3.720542) | 2.915525 / 55.444624 (-52.529099) | 2.516243 / 6.876477 (-4.360234) | 2.673114 / 2.142072 (0.531041) | 0.932330 / 4.805227 (-3.872897) | 0.191456 / 6.500664 (-6.309209) | 0.073887 / 0.075469 (-0.001582) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.455552 / 1.841788 (-0.386236) | 17.824864 / 8.074308 (9.750556) | 15.764150 / 10.191392 (5.572758) | 0.184935 / 0.680424 (-0.495489) | 0.020552 / 0.534201 (-0.513649) | 0.486816 / 0.579283 (-0.092467) | 0.489006 / 0.434364 (0.054642) | 0.609826 / 0.540337 (0.069488) | 0.721313 / 1.386936 (-0.665623) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a0a35c5fa84a8a7df656c1f5b0a7266126fa9b75 \"CML watermark\")\n" ]
"2023-03-07T13:22:41Z"
"2023-03-07T13:47:01Z"
"2023-03-07T13:39:02Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5619.diff", "html_url": "https://github.com/huggingface/datasets/pull/5619", "merged_at": "2023-03-07T13:39:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/5619.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5619" }
close https://github.com/huggingface/datasets/issues/5618
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5619/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5619/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2984
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2984/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2984/comments
https://api.github.com/repos/huggingface/datasets/issues/2984/events
https://github.com/huggingface/datasets/issues/2984
1,010,484,326
I_kwDODunzps48OsRm
2,984
Exceeded maximum rows when reading large files
{ "avatar_url": "https://avatars.githubusercontent.com/u/25057983?v=4", "events_url": "https://api.github.com/users/zijwang/events{/privacy}", "followers_url": "https://api.github.com/users/zijwang/followers", "following_url": "https://api.github.com/users/zijwang/following{/other_user}", "gists_url": "https://api.github.com/users/zijwang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zijwang", "id": 25057983, "login": "zijwang", "node_id": "MDQ6VXNlcjI1MDU3OTgz", "organizations_url": "https://api.github.com/users/zijwang/orgs", "received_events_url": "https://api.github.com/users/zijwang/received_events", "repos_url": "https://api.github.com/users/zijwang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zijwang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zijwang/subscriptions", "type": "User", "url": "https://api.github.com/users/zijwang" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Hi @zijwang, thanks for reporting this issue.\r\n\r\nYou did not mention which `datasets` version you are using, but looking at the code in the stack trace, it seems you are using an old version.\r\n\r\nCould you please update `datasets` (`pip install -U datasets`) and check if the problem persists?" ]
"2021-09-29T04:49:22Z"
"2021-10-12T06:05:42Z"
"2021-10-12T06:05:42Z"
NONE
null
null
null
## Describe the bug A clear and concise description of what the bug is. When using `load_dataset` with json files, if the files are too large, there will be "Exceeded maximum rows" error. ## Steps to reproduce the bug ```python dataset = load_dataset('json', data_files=data_files) # data files have 3M rows in a single file ``` ## Expected results No error ## Actual results ``` ~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py in _generate_tables(self, files) 134 with open(file, encoding="utf-8") as f: --> 135 dataset = json.load(f) 136 except json.JSONDecodeError: ~/anaconda3/envs/python/lib/python3.9/json/__init__.py in load(fp, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 292 """ --> 293 return loads(fp.read(), 294 cls=cls, object_hook=object_hook, ~/anaconda3/envs/python/lib/python3.9/json/__init__.py in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 345 parse_constant is None and object_pairs_hook is None and not kw): --> 346 return _default_decoder.decode(s) 347 if cls is None: ~/anaconda3/envs/python/lib/python3.9/json/decoder.py in decode(self, s, _w) 339 if end != len(s): --> 340 raise JSONDecodeError("Extra data", s, end) 341 return obj JSONDecodeError: Extra data: line 2 column 1 (char 20321) During handling of the above exception, another exception occurred: ArrowInvalid Traceback (most recent call last) <ipython-input-20-ab3718a6482f> in <module> ----> 1 dataset = load_dataset('json', data_files=data_files) ~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, task, streaming, **config_kwargs) 841 842 # Download and prepare data --> 843 builder_instance.download_and_prepare( 844 download_config=download_config, 845 download_mode=download_mode, ~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs) 606 logger.warning("HF google storage unreachable. Downloading and preparing it from source") 607 if not downloaded_from_gcs: --> 608 self._download_and_prepare( 609 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 610 ) ~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 684 try: 685 # Prepare split will record examples associated to the split --> 686 self._prepare_split(split_generator, **prepare_split_kwargs) 687 except OSError as e: 688 raise OSError( ~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/builder.py in _prepare_split(self, split_generator) 1153 generator = self._generate_tables(**split_generator.gen_kwargs) 1154 with ArrowWriter(features=self.info.features, path=fpath) as writer: -> 1155 for key, table in utils.tqdm( 1156 generator, unit=" tables", leave=False, disable=bool(logging.get_verbosity() == logging.NOTSET) 1157 ): ~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py in _generate_tables(self, files) 135 dataset = json.load(f) 136 except json.JSONDecodeError: --> 137 raise e 138 raise ValueError( 139 f"Not able to read records in the JSON file at {file}. " ~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py in _generate_tables(self, files) 114 while True: 115 try: --> 116 pa_table = paj.read_json( 117 BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size) 118 ) ~/anaconda3/envs/python/lib/python3.9/site-packages/pyarrow/_json.pyx in pyarrow._json.read_json() ~/anaconda3/envs/python/lib/python3.9/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status() ~/anaconda3/envs/python/lib/python3.9/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowInvalid: Exceeded maximum rows ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: - Platform: Linux - Python version: 3.9 - PyArrow version: 4.0.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2984/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2984/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4896
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4896/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4896/comments
https://api.github.com/repos/huggingface/datasets/issues/4896/events
https://github.com/huggingface/datasets/pull/4896
1,351,180,409
PR_kwDODunzps49z4fU
4,896
Fix missing tags in dataset cards
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-08-25T16:41:43Z"
"2022-09-22T14:37:16Z"
"2022-08-26T04:41:48Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4896.diff", "html_url": "https://github.com/huggingface/datasets/pull/4896", "merged_at": "2022-08-26T04:41:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/4896.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4896" }
Fix missing tags in dataset cards: - anli - coarse_discourse - commonsense_qa - cos_e - ilist - lc_quad - web_questions - xsum This PR partially fixes the missing tags in dataset cards. Subsequent PRs will follow to complete this task. Related to: - #4833 - #4891
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4896/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4896/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2669
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2669/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2669/comments
https://api.github.com/repos/huggingface/datasets/issues/2669/events
https://github.com/huggingface/datasets/issues/2669
946,982,998
MDU6SXNzdWU5NDY5ODI5OTg=
2,669
Metric kwargs are not passed to underlying external metric f1_score
{ "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BramVanroy", "id": 2779410, "login": "BramVanroy", "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "repos_url": "https://api.github.com/users/BramVanroy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "type": "User", "url": "https://api.github.com/users/BramVanroy" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Hi @BramVanroy, thanks for reporting.\r\n\r\nFirst, note that `\"min\"` is not an allowed value for `average`. According to scikit-learn [documentation](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html), `average` can only take the values: `{\"micro\", \"macro\", \"samples\", \"weighted\", \"binary\"} or None, default=\"binary\"`.\r\n\r\nSecond, you should take into account that all additional metric-specific argument should be passed in the method `compute` (and not in the method `load_metric`). You can find more information in our documentation: https://huggingface.co/docs/datasets/using_metrics.html#computing-the-metric-scores\r\n\r\nSo for example, if you would like to calculate the macro-averaged F1 score, you should use:\r\n```python\r\nimport datasets\r\n\r\nf1 = datasets.load_metric(\"f1\", keep_in_memory=True)\r\nf1.add_batch(predictions=[0,2,3], references=[1, 2, 3])\r\nf1.compute(average=\"macro\")\r\n```", "Thanks, that was it. A bit strange though, since `load_metric` had an argument `metric_init_kwargs`. I assume that that's for specific initialisation arguments whereas `average` is for the function itself." ]
"2021-07-18T08:32:31Z"
"2021-07-18T18:36:05Z"
"2021-07-18T11:19:04Z"
CONTRIBUTOR
null
null
null
## Describe the bug When I want to use F1 score with average="min", this keyword argument does not seem to be passed through to the underlying sklearn metric. This is evident because [sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html) throws an error telling me so. ## Steps to reproduce the bug ```python import datasets f1 = datasets.load_metric("f1", keep_in_memory=True, average="min") f1.add_batch(predictions=[0,2,3], references=[1, 2, 3]) f1.compute() ``` ## Expected results No error, because `average="min"` should be passed correctly to f1_score in sklearn. ## Actual results ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\bramv\.virtualenvs\pipeline-TpEsXVex\lib\site-packages\datasets\metric.py", line 402, in compute output = self._compute(predictions=predictions, references=references, **kwargs) File "C:\Users\bramv\.cache\huggingface\modules\datasets_modules\metrics\f1\82177930a325d4c28342bba0f116d73f6d92fb0c44cd67be32a07c1262b61cfe\f1.py", line 97, in _compute "f1": f1_score( File "C:\Users\bramv\.virtualenvs\pipeline-TpEsXVex\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f return f(*args, **kwargs) File "C:\Users\bramv\.virtualenvs\pipeline-TpEsXVex\lib\site-packages\sklearn\metrics\_classification.py", line 1071, in f1_score return fbeta_score(y_true, y_pred, beta=1, labels=labels, File "C:\Users\bramv\.virtualenvs\pipeline-TpEsXVex\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f return f(*args, **kwargs) File "C:\Users\bramv\.virtualenvs\pipeline-TpEsXVex\lib\site-packages\sklearn\metrics\_classification.py", line 1195, in fbeta_score _, _, f, _ = precision_recall_fscore_support(y_true, y_pred, File "C:\Users\bramv\.virtualenvs\pipeline-TpEsXVex\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f return f(*args, **kwargs) File "C:\Users\bramv\.virtualenvs\pipeline-TpEsXVex\lib\site-packages\sklearn\metrics\_classification.py", line 1464, in precision_recall_fscore_support labels = _check_set_wise_labels(y_true, y_pred, average, labels, File "C:\Users\bramv\.virtualenvs\pipeline-TpEsXVex\lib\site-packages\sklearn\metrics\_classification.py", line 1294, in _check_set_wise_labels raise ValueError("Target is %s but average='binary'. Please " ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted']. ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.9.0 - Platform: Windows-10-10.0.19041-SP0 - Python version: 3.9.2 - PyArrow version: 4.0.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2669/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2669/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6268
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6268/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6268/comments
https://api.github.com/repos/huggingface/datasets/issues/6268/events
https://github.com/huggingface/datasets/pull/6268
1,919,010,645
PR_kwDODunzps5bhgs7
6,268
Add repo_id to DatasetInfo
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6268). All of your documentation changes will be reflected on that endpoint.", "In https://github.com/huggingface/datasets/issues/4129 we want to track the origin of a dataset, e.g. if it comes from multiple datasets.\r\n\r\nI think it's out of scope of DatasetInfo alone, which has info for one dataset only.\r\nTherefore it makes sense to add repo_id, which is for one dataset only.\r\n\r\nIMO if we want to track multiple origins we will need a new DatasetInfo that would have fields relevant to a mix of datasets (out of scope of this PR)\r\n\r\ncc @mariosasko I'd like your opinion on this", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009009 / 0.011353 (-0.002344) | 0.004169 / 0.011008 (-0.006840) | 0.098634 / 0.038508 (0.060126) | 0.069526 / 0.023109 (0.046417) | 0.337963 / 0.275898 (0.062065) | 0.379737 / 0.323480 (0.056257) | 0.004318 / 0.007986 (-0.003668) | 0.005347 / 0.004328 (0.001019) | 0.069875 / 0.004250 (0.065624) | 0.055964 / 0.037052 (0.018912) | 0.340305 / 0.258489 (0.081816) | 0.429718 / 0.293841 (0.135877) | 0.045101 / 0.128546 (-0.083445) | 0.012610 / 0.075646 (-0.063036) | 0.312366 / 0.419271 (-0.106905) | 0.064711 / 0.043533 (0.021178) | 0.345216 / 0.255139 (0.090077) | 0.367245 / 0.283200 (0.084046) | 0.034638 / 0.141683 (-0.107045) | 1.541947 / 1.452155 (0.089793) | 1.645268 / 1.492716 (0.152551) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233501 / 0.018006 (0.215495) | 0.514207 / 0.000490 (0.513717) | 0.014271 / 0.000200 (0.014072) | 0.000366 / 0.000054 (0.000311) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026288 / 0.037411 (-0.011124) | 0.083206 / 0.014526 (0.068680) | 0.098172 / 0.176557 (-0.078385) | 0.158529 / 0.737135 (-0.578606) | 0.095183 / 0.296338 (-0.201155) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.538300 / 0.215209 (0.323091) | 5.486939 / 2.077655 (3.409285) | 2.321812 / 1.504120 (0.817692) | 2.002124 / 1.541195 (0.460929) | 2.045043 / 1.468490 (0.576553) | 0.852772 / 4.584777 (-3.732005) | 5.014897 / 3.745712 (1.269185) | 4.428115 / 5.269862 (-0.841746) | 2.750126 / 4.565676 (-1.815550) | 0.099028 / 0.424275 (-0.325247) | 0.007678 / 0.007607 (0.000070) | 0.664463 / 0.226044 (0.438418) | 6.617811 / 2.268929 (4.348883) | 2.888382 / 55.444624 (-52.556242) | 2.190753 / 6.876477 (-4.685724) | 2.414586 / 2.142072 (0.272513) | 1.010302 / 4.805227 (-3.794925) | 0.194925 / 6.500664 (-6.305739) | 0.063490 / 0.075469 (-0.011979) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.543464 / 1.841788 (-0.298323) | 20.566666 / 8.074308 (12.492358) | 19.410745 / 10.191392 (9.219353) | 0.207077 / 0.680424 (-0.473347) | 0.028895 / 0.534201 (-0.505306) | 0.427525 / 0.579283 (-0.151758) | 0.535450 / 0.434364 (0.101086) | 0.494632 / 0.540337 (-0.045705) | 0.723705 / 1.386936 (-0.663231) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008209 / 0.011353 (-0.003144) | 0.004184 / 0.011008 (-0.006824) | 0.072420 / 0.038508 (0.033912) | 0.066851 / 0.023109 (0.043742) | 0.424137 / 0.275898 (0.148239) | 0.473156 / 0.323480 (0.149676) | 0.005394 / 0.007986 (-0.002591) | 0.003898 / 0.004328 (-0.000430) | 0.069996 / 0.004250 (0.065746) | 0.053113 / 0.037052 (0.016061) | 0.453214 / 0.258489 (0.194725) | 0.495921 / 0.293841 (0.202080) | 0.043028 / 0.128546 (-0.085519) | 0.012320 / 0.075646 (-0.063326) | 0.080270 / 0.419271 (-0.339002) | 0.053337 / 0.043533 (0.009804) | 0.436604 / 0.255139 (0.181465) | 0.463422 / 0.283200 (0.180223) | 0.030277 / 0.141683 (-0.111406) | 1.560261 / 1.452155 (0.108106) | 1.647209 / 1.492716 (0.154493) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232556 / 0.018006 (0.214550) | 0.502387 / 0.000490 (0.501897) | 0.006688 / 0.000200 (0.006488) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030204 / 0.037411 (-0.007207) | 0.089438 / 0.014526 (0.074912) | 0.118939 / 0.176557 (-0.057617) | 0.160537 / 0.737135 (-0.576598) | 0.113432 / 0.296338 (-0.182906) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.586469 / 0.215209 (0.371260) | 5.916156 / 2.077655 (3.838502) | 2.904960 / 1.504120 (1.400840) | 2.346838 / 1.541195 (0.805644) | 2.373688 / 1.468490 (0.905198) | 0.829917 / 4.584777 (-3.754860) | 4.851283 / 3.745712 (1.105571) | 4.220103 / 5.269862 (-1.049758) | 2.706139 / 4.565676 (-1.859538) | 0.094095 / 0.424275 (-0.330180) | 0.008201 / 0.007607 (0.000594) | 0.699099 / 0.226044 (0.473054) | 7.046940 / 2.268929 (4.778011) | 3.374837 / 55.444624 (-52.069788) | 2.690839 / 6.876477 (-4.185638) | 2.845717 / 2.142072 (0.703645) | 0.989698 / 4.805227 (-3.815529) | 0.190413 / 6.500664 (-6.310251) | 0.066233 / 0.075469 (-0.009236) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.513607 / 1.841788 (-0.328180) | 21.544200 / 8.074308 (13.469892) | 20.297337 / 10.191392 (10.105945) | 0.216390 / 0.680424 (-0.464034) | 0.029962 / 0.534201 (-0.504239) | 0.451531 / 0.579283 (-0.127752) | 0.530147 / 0.434364 (0.095783) | 0.520739 / 0.540337 (-0.019598) | 0.716431 / 1.386936 (-0.670505) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fcaa9f218ad1505bb5474060889b4b9578e24423 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006509 / 0.011353 (-0.004844) | 0.003987 / 0.011008 (-0.007022) | 0.085233 / 0.038508 (0.046725) | 0.077765 / 0.023109 (0.054656) | 0.310467 / 0.275898 (0.034569) | 0.343363 / 0.323480 (0.019883) | 0.005557 / 0.007986 (-0.002429) | 0.003430 / 0.004328 (-0.000898) | 0.064948 / 0.004250 (0.060697) | 0.056864 / 0.037052 (0.019812) | 0.314005 / 0.258489 (0.055516) | 0.360638 / 0.293841 (0.066798) | 0.031134 / 0.128546 (-0.097412) | 0.008869 / 0.075646 (-0.066777) | 0.286409 / 0.419271 (-0.132862) | 0.051338 / 0.043533 (0.007805) | 0.311329 / 0.255139 (0.056190) | 0.334373 / 0.283200 (0.051174) | 0.024816 / 0.141683 (-0.116867) | 1.502872 / 1.452155 (0.050718) | 1.569941 / 1.492716 (0.077224) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269639 / 0.018006 (0.251633) | 0.558510 / 0.000490 (0.558020) | 0.011748 / 0.000200 (0.011548) | 0.000234 / 0.000054 (0.000180) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029139 / 0.037411 (-0.008272) | 0.083586 / 0.014526 (0.069060) | 0.102426 / 0.176557 (-0.074131) | 0.162398 / 0.737135 (-0.574737) | 0.101364 / 0.296338 (-0.194975) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382281 / 0.215209 (0.167072) | 3.826412 / 2.077655 (1.748758) | 1.815911 / 1.504120 (0.311791) | 1.644539 / 1.541195 (0.103344) | 1.688487 / 1.468490 (0.219996) | 0.482115 / 4.584777 (-4.102662) | 3.574773 / 3.745712 (-0.170939) | 3.262733 / 5.269862 (-2.007129) | 2.058115 / 4.565676 (-2.507562) | 0.056367 / 0.424275 (-0.367908) | 0.007233 / 0.007607 (-0.000374) | 0.456859 / 0.226044 (0.230815) | 4.565935 / 2.268929 (2.297006) | 2.311802 / 55.444624 (-53.132823) | 1.943936 / 6.876477 (-4.932541) | 2.129811 / 2.142072 (-0.012261) | 0.575098 / 4.805227 (-4.230129) | 0.130495 / 6.500664 (-6.370169) | 0.059757 / 0.075469 (-0.015712) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.238495 / 1.841788 (-0.603293) | 18.940000 / 8.074308 (10.865692) | 14.034240 / 10.191392 (3.842848) | 0.166418 / 0.680424 (-0.514006) | 0.018420 / 0.534201 (-0.515781) | 0.395330 / 0.579283 (-0.183953) | 0.413518 / 0.434364 (-0.020846) | 0.461499 / 0.540337 (-0.078838) | 0.661371 / 1.386936 (-0.725565) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006673 / 0.011353 (-0.004680) | 0.004335 / 0.011008 (-0.006673) | 0.064568 / 0.038508 (0.026060) | 0.072763 / 0.023109 (0.049653) | 0.429488 / 0.275898 (0.153590) | 0.456900 / 0.323480 (0.133420) | 0.005481 / 0.007986 (-0.002505) | 0.003649 / 0.004328 (-0.000680) | 0.064975 / 0.004250 (0.060724) | 0.056839 / 0.037052 (0.019786) | 0.439451 / 0.258489 (0.180962) | 0.461691 / 0.293841 (0.167850) | 0.031455 / 0.128546 (-0.097092) | 0.008848 / 0.075646 (-0.066798) | 0.071719 / 0.419271 (-0.347553) | 0.047116 / 0.043533 (0.003583) | 0.429055 / 0.255139 (0.173916) | 0.434204 / 0.283200 (0.151004) | 0.022594 / 0.141683 (-0.119089) | 1.539231 / 1.452155 (0.087077) | 1.568111 / 1.492716 (0.075394) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267374 / 0.018006 (0.249368) | 0.553202 / 0.000490 (0.552712) | 0.005410 / 0.000200 (0.005210) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031478 / 0.037411 (-0.005933) | 0.092438 / 0.014526 (0.077912) | 0.103874 / 0.176557 (-0.072682) | 0.158428 / 0.737135 (-0.578708) | 0.111617 / 0.296338 (-0.184721) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434783 / 0.215209 (0.219574) | 4.332536 / 2.077655 (2.254881) | 2.354522 / 1.504120 (0.850402) | 2.220271 / 1.541195 (0.679076) | 2.338524 / 1.468490 (0.870034) | 0.494508 / 4.584777 (-4.090269) | 3.619592 / 3.745712 (-0.126120) | 3.320897 / 5.269862 (-1.948964) | 2.107475 / 4.565676 (-2.458202) | 0.058479 / 0.424275 (-0.365796) | 0.007427 / 0.007607 (-0.000180) | 0.509298 / 0.226044 (0.283254) | 5.067940 / 2.268929 (2.799012) | 2.815336 / 55.444624 (-52.629288) | 2.470958 / 6.876477 (-4.405519) | 2.672801 / 2.142072 (0.530728) | 0.588199 / 4.805227 (-4.217028) | 0.134062 / 6.500664 (-6.366602) | 0.060951 / 0.075469 (-0.014518) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353955 / 1.841788 (-0.487832) | 20.386012 / 8.074308 (12.311704) | 15.032463 / 10.191392 (4.841071) | 0.167243 / 0.680424 (-0.513181) | 0.020426 / 0.534201 (-0.513775) | 0.396815 / 0.579283 (-0.182469) | 0.421806 / 0.434364 (-0.012558) | 0.471866 / 0.540337 (-0.068471) | 0.667206 / 1.386936 (-0.719730) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aade5a0c79398c84632a3ff253111e694c7b598b \"CML watermark\")\n", "Really happy to see this! It could also be helpful to track some other metadata about how the dataset was built in the future. i.e. for the Stack loaded like this:\r\n\r\n```\r\nds = load_dataset(\"bigcode/the-stack\", data_dir=\"data/dockerfile\", split=\"train\")\r\n```\r\nIt could be helpful to have easy access to the `data_dir` argument used during loading since that changes the training data quite a bit vs. loading the full dataset. You can also recover this from `download_checksums`, which seems a bit hacky. That is not necessary for this PR, though.\r\n", "Perhaps it is also interesting to track the revision? I suppose the version also kind of covers that.\r\n\r\nThat said, this is looking great already! I'm quite excited about this. Losing the `repo_id` after merging (different) datasets also makes sense to me, well done.", "One other thought. Is it worth tracking if a `token` was passed during loading? \r\n\r\nThe Hub ID for private datasets could in some cases contain information someone wouldn't want to make public i.e. `davanstrien/super_secret_dataset_using_GPT_created_data`. \r\n\r\nAdding a bool like `is_private` could then be used by another library to determine if the dataset ID should be shared or not (or default to not sharing the ID for private datasets). i.e. in SpanMarker @tomaarsen might do a check like \r\n\r\n```python\r\nif ds.is_private and not push_hub_id_for_private_ds:\r\n\tds_name = None\r\n```\r\nPotentially this is overkill but could be useful for downstream libraries who might use this information for creating automatic model cards. \r\n\r\n\r\n", "We should probably find a way to remove `DatasetInfo`, as (most of) its attributes are outdated (homepage, description, etc.), not introduce new ones :). But I guess storing `repo_id` there is the simplest solution for now, so I'm OK with it.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007757 / 0.011353 (-0.003595) | 0.004543 / 0.011008 (-0.006465) | 0.100193 / 0.038508 (0.061685) | 0.082333 / 0.023109 (0.059224) | 0.374586 / 0.275898 (0.098688) | 0.412617 / 0.323480 (0.089137) | 0.006148 / 0.007986 (-0.001838) | 0.003826 / 0.004328 (-0.000503) | 0.077077 / 0.004250 (0.072827) | 0.064057 / 0.037052 (0.027005) | 0.391435 / 0.258489 (0.132946) | 0.436439 / 0.293841 (0.142599) | 0.036534 / 0.128546 (-0.092012) | 0.009986 / 0.075646 (-0.065660) | 0.344243 / 0.419271 (-0.075028) | 0.062013 / 0.043533 (0.018480) | 0.378113 / 0.255139 (0.122974) | 0.398476 / 0.283200 (0.115276) | 0.026552 / 0.141683 (-0.115131) | 1.740505 / 1.452155 (0.288350) | 1.835684 / 1.492716 (0.342968) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267917 / 0.018006 (0.249911) | 0.510676 / 0.000490 (0.510186) | 0.010810 / 0.000200 (0.010610) | 0.000383 / 0.000054 (0.000328) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032113 / 0.037411 (-0.005299) | 0.097679 / 0.014526 (0.083153) | 0.113213 / 0.176557 (-0.063344) | 0.177897 / 0.737135 (-0.559238) | 0.111761 / 0.296338 (-0.184577) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450544 / 0.215209 (0.235335) | 4.476746 / 2.077655 (2.399091) | 2.205391 / 1.504120 (0.701271) | 2.006457 / 1.541195 (0.465262) | 2.058859 / 1.468490 (0.590369) | 0.571549 / 4.584777 (-4.013228) | 4.175039 / 3.745712 (0.429327) | 3.815445 / 5.269862 (-1.454416) | 2.376673 / 4.565676 (-2.189004) | 0.067048 / 0.424275 (-0.357227) | 0.008544 / 0.007607 (0.000937) | 0.536384 / 0.226044 (0.310340) | 5.386232 / 2.268929 (3.117304) | 2.825620 / 55.444624 (-52.619004) | 2.339821 / 6.876477 (-4.536656) | 2.535736 / 2.142072 (0.393663) | 0.679572 / 4.805227 (-4.125655) | 0.156799 / 6.500664 (-6.343865) | 0.071667 / 0.075469 (-0.003802) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.512198 / 1.841788 (-0.329590) | 21.786760 / 8.074308 (13.712452) | 16.386274 / 10.191392 (6.194882) | 0.169108 / 0.680424 (-0.511316) | 0.021312 / 0.534201 (-0.512889) | 0.466153 / 0.579283 (-0.113130) | 0.496192 / 0.434364 (0.061829) | 0.549420 / 0.540337 (0.009082) | 0.780974 / 1.386936 (-0.605962) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007644 / 0.011353 (-0.003709) | 0.004654 / 0.011008 (-0.006354) | 0.075280 / 0.038508 (0.036772) | 0.083044 / 0.023109 (0.059935) | 0.481704 / 0.275898 (0.205805) | 0.514828 / 0.323480 (0.191348) | 0.006245 / 0.007986 (-0.001740) | 0.003715 / 0.004328 (-0.000614) | 0.074498 / 0.004250 (0.070248) | 0.064406 / 0.037052 (0.027353) | 0.481874 / 0.258489 (0.223385) | 0.518527 / 0.293841 (0.224686) | 0.037549 / 0.128546 (-0.090997) | 0.010106 / 0.075646 (-0.065541) | 0.084266 / 0.419271 (-0.335006) | 0.056659 / 0.043533 (0.013126) | 0.497707 / 0.255139 (0.242568) | 0.503201 / 0.283200 (0.220001) | 0.027086 / 0.141683 (-0.114597) | 1.834715 / 1.452155 (0.382560) | 1.919927 / 1.492716 (0.427210) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249288 / 0.018006 (0.231282) | 0.500950 / 0.000490 (0.500460) | 0.005856 / 0.000200 (0.005656) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037674 / 0.037411 (0.000263) | 0.111141 / 0.014526 (0.096615) | 0.123408 / 0.176557 (-0.053149) | 0.186604 / 0.737135 (-0.550531) | 0.125360 / 0.296338 (-0.170979) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.520480 / 0.215209 (0.305271) | 5.171108 / 2.077655 (3.093453) | 2.812746 / 1.504120 (1.308626) | 2.602941 / 1.541195 (1.061746) | 2.666196 / 1.468490 (1.197706) | 0.578684 / 4.584777 (-4.006092) | 4.238722 / 3.745712 (0.493010) | 3.844361 / 5.269862 (-1.425501) | 2.369214 / 4.565676 (-2.196462) | 0.068543 / 0.424275 (-0.355732) | 0.008695 / 0.007607 (0.001088) | 0.621869 / 0.226044 (0.395825) | 6.200566 / 2.268929 (3.931637) | 3.340846 / 55.444624 (-52.103779) | 2.920691 / 6.876477 (-3.955786) | 3.132438 / 2.142072 (0.990366) | 0.697394 / 4.805227 (-4.107834) | 0.158385 / 6.500664 (-6.342280) | 0.072566 / 0.075469 (-0.002903) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.599070 / 1.841788 (-0.242717) | 22.767139 / 8.074308 (14.692831) | 17.053988 / 10.191392 (6.862596) | 0.188414 / 0.680424 (-0.492009) | 0.023409 / 0.534201 (-0.510792) | 0.472092 / 0.579283 (-0.107191) | 0.486107 / 0.434364 (0.051743) | 0.562190 / 0.540337 (0.021852) | 0.791606 / 1.386936 (-0.595330) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aacbaf45c93f88e8c95924f6224153fb37c3064a \"CML watermark\")\n" ]
"2023-09-29T10:24:55Z"
"2023-10-01T15:29:45Z"
null
MEMBER
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/6268.diff", "html_url": "https://github.com/huggingface/datasets/pull/6268", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6268.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6268" }
```python from datasets import load_dataset ds = load_dataset("lhoestq/demo1", split="train") ds = ds.map(lambda x: {}, num_proc=2).filter(lambda x: True).remove_columns(["id"]) print(ds.repo_id) # lhoestq/demo1 ``` - repo_id is None when the dataset doesn't come from the Hub, e.g. from Dataset.from_dict - repo_id is set to None when concatenating datasets with different repo ids related to https://github.com/huggingface/datasets/issues/4129 TODO: - [ ] discuss if it's ok for now - [ ] tests
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6268/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6268/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2872
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2872/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2872/comments
https://api.github.com/repos/huggingface/datasets/issues/2872/events
https://github.com/huggingface/datasets/pull/2872
989,453,069
MDExOlB1bGxSZXF1ZXN0NzI4MTkzMjkz
2,872
adding swedish_medical_ner
{ "avatar_url": "https://avatars.githubusercontent.com/u/6764450?v=4", "events_url": "https://api.github.com/users/bwang482/events{/privacy}", "followers_url": "https://api.github.com/users/bwang482/followers", "following_url": "https://api.github.com/users/bwang482/following{/other_user}", "gists_url": "https://api.github.com/users/bwang482/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bwang482", "id": 6764450, "login": "bwang482", "node_id": "MDQ6VXNlcjY3NjQ0NTA=", "organizations_url": "https://api.github.com/users/bwang482/orgs", "received_events_url": "https://api.github.com/users/bwang482/received_events", "repos_url": "https://api.github.com/users/bwang482/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bwang482/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bwang482/subscriptions", "type": "User", "url": "https://api.github.com/users/bwang482" }
[]
closed
false
null
[]
null
[]
"2021-09-06T22:00:52Z"
"2021-09-07T04:36:32Z"
"2021-09-07T04:36:32Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2872.diff", "html_url": "https://github.com/huggingface/datasets/pull/2872", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2872.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2872" }
Adding the Swedish Medical NER dataset, listed in "Biomedical Datasets - BigScience Workshop 2021"
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2872/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2872/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3332
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3332/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3332/comments
https://api.github.com/repos/huggingface/datasets/issues/3332/events
https://github.com/huggingface/datasets/pull/3332
1,065,345,853
PR_kwDODunzps4vGBig
3,332
Fix error message and add extension fallback
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[]
"2021-11-28T14:25:29Z"
"2021-11-29T13:34:15Z"
"2021-11-29T13:34:14Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3332.diff", "html_url": "https://github.com/huggingface/datasets/pull/3332", "merged_at": "2021-11-29T13:34:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/3332.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3332" }
Fix the error message raised if `infered_module_name` is `None` in `CommunityDatasetModuleFactoryWithoutScript.get_module` and make `infer_module_for_data_files` more robust. In the linked issue, `infer_module_for_data_files` returns `None` because `json` is the second most common extension due to the suffix ordering. Now, we go from the most common to the least common extension and try to map it or return `None`. Fix #3331
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3332/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3332/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3790
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3790/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3790/comments
https://api.github.com/repos/huggingface/datasets/issues/3790/events
https://github.com/huggingface/datasets/pull/3790
1,150,646,899
PR_kwDODunzps4zedMa
3,790
Add doc builder scripts
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "I think we're only missing the hosted runner to be configured for this repository and we should be good", "Regarding the self-hosted runner, I actually encourage using the approach defined here: https://github.com/huggingface/transformers/pull/15710, which doesn't leverage a self-hosted runner. This prevents queuing jobs, which is important when we expect several concurrent jobs.", "Opened a PR for that on your branch here: https://github.com/huggingface/datasets/pull/3793" ]
"2022-02-25T16:38:47Z"
"2022-03-01T15:55:42Z"
"2022-03-01T15:55:41Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3790.diff", "html_url": "https://github.com/huggingface/datasets/pull/3790", "merged_at": "2022-03-01T15:55:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/3790.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3790" }
I added the three scripts: - build_dev_documentation.yml - build_documentation.yml - delete_dev_documentation.yml I got them from `transformers` and did a few changes: - I removed the `transformers`-specific dependencies - I changed all the paths to be "datasets" instead of "transformers" - I passed the `--library_name datasets` arg to the `doc-builder build` command (according to https://github.com/huggingface/doc-builder/pull/94/files#diff-bcc33cf7c223511e498776684a9a433810b527a0a38f483b1487e8a42b6575d3R26) cc @LysandreJik @mishig25
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3790/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3790/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1673
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1673/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1673/comments
https://api.github.com/repos/huggingface/datasets/issues/1673/events
https://github.com/huggingface/datasets/issues/1673
777,263,651
MDU6SXNzdWU3NzcyNjM2NTE=
1,673
Unable to Download Hindi Wikipedia Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/30871963?v=4", "events_url": "https://api.github.com/users/aditya3498/events{/privacy}", "followers_url": "https://api.github.com/users/aditya3498/followers", "following_url": "https://api.github.com/users/aditya3498/following{/other_user}", "gists_url": "https://api.github.com/users/aditya3498/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/aditya3498", "id": 30871963, "login": "aditya3498", "node_id": "MDQ6VXNlcjMwODcxOTYz", "organizations_url": "https://api.github.com/users/aditya3498/orgs", "received_events_url": "https://api.github.com/users/aditya3498/received_events", "repos_url": "https://api.github.com/users/aditya3498/repos", "site_admin": false, "starred_url": "https://api.github.com/users/aditya3498/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aditya3498/subscriptions", "type": "User", "url": "https://api.github.com/users/aditya3498" }
[]
closed
false
null
[]
null
[ "Currently this dataset is only available when the library is installed from source since it was added after the last release.\r\n\r\nWe pin the dataset version with the library version so that people can have a reproducible dataset and processing when pinning the library.\r\n\r\nWe'll see if we can provide access to newer datasets with a warning that they are newer than your library version, that would help in cases like yours.", "So for now, should i try and install the library from source and then try out the same piece of code? Will it work then, considering both the versions will match then?", "Yes", "Hey, so i tried installing the library from source using the commands : **git clone https://github.com/huggingface/datasets**, **cd datasets** and then **pip3 install -e .**. But i still am facing the same error that file is not found. Please advise.\r\n\r\nThe Datasets library version now is 1.1.3 by installing from source as compared to the earlier 1.0.3 that i had loaded using pip command but I am still getting same error\r\n\r\n![Error](https://user-images.githubusercontent.com/30871963/103479005-69f3b080-4df0-11eb-83ae-58d7bb56a90e.png)\r\n", "Looks like the wikipedia dump for hindi at the date of 05/05/2020 is not available anymore.\r\nYou can try to load a more recent version of wikipedia\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nd = load_dataset(\"wikipedia\", language=\"hi\", date=\"20210101\", split=\"train\", beam_runner=\"DirectRunner\")\r\n```", "Okay, thank you so much" ]
"2021-01-01T10:52:53Z"
"2021-01-05T10:22:12Z"
"2021-01-05T10:22:12Z"
NONE
null
null
null
I used the Dataset Library in Python to load the wikipedia dataset with the Hindi Config 20200501.hi along with something called beam_runner='DirectRunner' and it keeps giving me the error that the file is not found. I have attached the screenshot of the error and the code both. Please help me to understand how to resolve this issue. ![Code](https://user-images.githubusercontent.com/30871963/103437466-1f3a3300-4c4e-11eb-9d54-fc9601abfeec.png) ![Error](https://user-images.githubusercontent.com/30871963/103437407-7ee40e80-4c4d-11eb-8151-a86eb664e6be.png)
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/1673/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1673/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5652
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5652/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5652/comments
https://api.github.com/repos/huggingface/datasets/issues/5652/events
https://github.com/huggingface/datasets/pull/5652
1,632,546,073
PR_kwDODunzps5MeVUR
5,652
Copy features
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007455 / 0.011353 (-0.003898) | 0.005278 / 0.011008 (-0.005731) | 0.098981 / 0.038508 (0.060473) | 0.029208 / 0.023109 (0.006099) | 0.304132 / 0.275898 (0.028234) | 0.340010 / 0.323480 (0.016530) | 0.005514 / 0.007986 (-0.002472) | 0.003636 / 0.004328 (-0.000692) | 0.076737 / 0.004250 (0.072486) | 0.041985 / 0.037052 (0.004933) | 0.314941 / 0.258489 (0.056452) | 0.346686 / 0.293841 (0.052845) | 0.032528 / 0.128546 (-0.096018) | 0.011795 / 0.075646 (-0.063851) | 0.322122 / 0.419271 (-0.097150) | 0.051548 / 0.043533 (0.008015) | 0.310561 / 0.255139 (0.055422) | 0.329443 / 0.283200 (0.046243) | 0.092820 / 0.141683 (-0.048863) | 1.495764 / 1.452155 (0.043609) | 1.586734 / 1.492716 (0.094018) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195830 / 0.018006 (0.177824) | 0.422075 / 0.000490 (0.421586) | 0.005483 / 0.000200 (0.005283) | 0.000133 / 0.000054 (0.000078) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023468 / 0.037411 (-0.013943) | 0.097713 / 0.014526 (0.083187) | 0.105331 / 0.176557 (-0.071225) | 0.166237 / 0.737135 (-0.570898) | 0.108924 / 0.296338 (-0.187415) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671901 / 0.215209 (0.456692) | 6.745691 / 2.077655 (4.668036) | 2.132508 / 1.504120 (0.628388) | 1.693808 / 1.541195 (0.152614) | 1.715282 / 1.468490 (0.246792) | 0.955354 / 4.584777 (-3.629422) | 3.810296 / 3.745712 (0.064584) | 2.214891 / 5.269862 (-3.054970) | 1.461513 / 4.565676 (-3.104164) | 0.109846 / 0.424275 (-0.314430) | 0.013546 / 0.007607 (0.005939) | 0.780046 / 0.226044 (0.554001) | 7.789020 / 2.268929 (5.520091) | 2.602411 / 55.444624 (-52.842213) | 1.995096 / 6.876477 (-4.881380) | 2.009022 / 2.142072 (-0.133051) | 1.069215 / 4.805227 (-3.736012) | 0.179812 / 6.500664 (-6.320852) | 0.068125 / 0.075469 (-0.007344) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.201866 / 1.841788 (-0.639921) | 13.878814 / 8.074308 (5.804506) | 14.179264 / 10.191392 (3.987872) | 0.128908 / 0.680424 (-0.551515) | 0.017257 / 0.534201 (-0.516944) | 0.379500 / 0.579283 (-0.199783) | 0.393308 / 0.434364 (-0.041056) | 0.444700 / 0.540337 (-0.095638) | 0.531043 / 1.386936 (-0.855893) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007413 / 0.011353 (-0.003940) | 0.005431 / 0.011008 (-0.005577) | 0.078158 / 0.038508 (0.039650) | 0.028837 / 0.023109 (0.005728) | 0.343635 / 0.275898 (0.067737) | 0.383041 / 0.323480 (0.059561) | 0.005283 / 0.007986 (-0.002703) | 0.003673 / 0.004328 (-0.000655) | 0.076461 / 0.004250 (0.072211) | 0.038625 / 0.037052 (0.001573) | 0.341109 / 0.258489 (0.082620) | 0.387027 / 0.293841 (0.093186) | 0.032512 / 0.128546 (-0.096034) | 0.011903 / 0.075646 (-0.063744) | 0.086340 / 0.419271 (-0.332931) | 0.043211 / 0.043533 (-0.000321) | 0.339994 / 0.255139 (0.084855) | 0.370868 / 0.283200 (0.087668) | 0.091679 / 0.141683 (-0.050004) | 1.547188 / 1.452155 (0.095033) | 1.578545 / 1.492716 (0.085829) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216981 / 0.018006 (0.198975) | 0.412206 / 0.000490 (0.411716) | 0.004243 / 0.000200 (0.004043) | 0.000130 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025392 / 0.037411 (-0.012020) | 0.102577 / 0.014526 (0.088051) | 0.107672 / 0.176557 (-0.068884) | 0.160657 / 0.737135 (-0.576478) | 0.111646 / 0.296338 (-0.184692) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.698815 / 0.215209 (0.483606) | 6.958931 / 2.077655 (4.881276) | 2.344216 / 1.504120 (0.840096) | 1.907752 / 1.541195 (0.366557) | 1.964251 / 1.468490 (0.495761) | 0.950754 / 4.584777 (-3.634023) | 3.829700 / 3.745712 (0.083988) | 3.055565 / 5.269862 (-2.214297) | 1.575851 / 4.565676 (-2.989825) | 0.109227 / 0.424275 (-0.315048) | 0.013163 / 0.007607 (0.005556) | 0.804613 / 0.226044 (0.578569) | 8.015035 / 2.268929 (5.746107) | 2.796358 / 55.444624 (-52.648266) | 2.212561 / 6.876477 (-4.663916) | 2.229918 / 2.142072 (0.087845) | 1.062041 / 4.805227 (-3.743186) | 0.181384 / 6.500664 (-6.319280) | 0.068564 / 0.075469 (-0.006905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.287904 / 1.841788 (-0.553884) | 14.539222 / 8.074308 (6.464914) | 14.232097 / 10.191392 (4.040705) | 0.130870 / 0.680424 (-0.549554) | 0.016710 / 0.534201 (-0.517491) | 0.384454 / 0.579283 (-0.194829) | 0.391750 / 0.434364 (-0.042614) | 0.443995 / 0.540337 (-0.096343) | 0.526255 / 1.386936 (-0.860681) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bd46874a580b888bdc82b53daace79884f04bc62 \"CML watermark\")\n", "Arf I need to fix some tests first - sorry", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008393 / 0.011353 (-0.002959) | 0.005635 / 0.011008 (-0.005373) | 0.114840 / 0.038508 (0.076332) | 0.039272 / 0.023109 (0.016163) | 0.352116 / 0.275898 (0.076218) | 0.386614 / 0.323480 (0.063134) | 0.006348 / 0.007986 (-0.001638) | 0.005872 / 0.004328 (0.001544) | 0.086437 / 0.004250 (0.082187) | 0.054003 / 0.037052 (0.016951) | 0.350302 / 0.258489 (0.091813) | 0.400148 / 0.293841 (0.106308) | 0.042436 / 0.128546 (-0.086111) | 0.013987 / 0.075646 (-0.061660) | 0.399434 / 0.419271 (-0.019837) | 0.059223 / 0.043533 (0.015690) | 0.354511 / 0.255139 (0.099372) | 0.377764 / 0.283200 (0.094564) | 0.112297 / 0.141683 (-0.029386) | 1.677483 / 1.452155 (0.225328) | 1.784942 / 1.492716 (0.292226) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233334 / 0.018006 (0.215328) | 0.450575 / 0.000490 (0.450085) | 0.000376 / 0.000200 (0.000176) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031995 / 0.037411 (-0.005416) | 0.126798 / 0.014526 (0.112272) | 0.138453 / 0.176557 (-0.038104) | 0.207360 / 0.737135 (-0.529775) | 0.147744 / 0.296338 (-0.148594) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.481496 / 0.215209 (0.266287) | 4.810495 / 2.077655 (2.732840) | 2.457917 / 1.504120 (0.953797) | 2.300073 / 1.541195 (0.758879) | 2.065595 / 1.468490 (0.597105) | 0.814589 / 4.584777 (-3.770188) | 4.566496 / 3.745712 (0.820784) | 2.386947 / 5.269862 (-2.882914) | 1.531639 / 4.565676 (-3.034037) | 0.099569 / 0.424275 (-0.324706) | 0.014971 / 0.007607 (0.007364) | 0.590359 / 0.226044 (0.364314) | 5.885250 / 2.268929 (3.616322) | 2.706799 / 55.444624 (-52.737826) | 2.324485 / 6.876477 (-4.551992) | 2.452751 / 2.142072 (0.310678) | 0.966955 / 4.805227 (-3.838272) | 0.198165 / 6.500664 (-6.302499) | 0.076877 / 0.075469 (0.001408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.499085 / 1.841788 (-0.342702) | 17.705516 / 8.074308 (9.631208) | 16.481174 / 10.191392 (6.289782) | 0.191832 / 0.680424 (-0.488592) | 0.021417 / 0.534201 (-0.512784) | 0.519647 / 0.579283 (-0.059636) | 0.498432 / 0.434364 (0.064068) | 0.598206 / 0.540337 (0.057868) | 0.700990 / 1.386936 (-0.685946) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008746 / 0.011353 (-0.002607) | 0.006052 / 0.011008 (-0.004956) | 0.092938 / 0.038508 (0.054430) | 0.038932 / 0.023109 (0.015823) | 0.406919 / 0.275898 (0.131021) | 0.444325 / 0.323480 (0.120845) | 0.006735 / 0.007986 (-0.001251) | 0.005972 / 0.004328 (0.001643) | 0.088152 / 0.004250 (0.083902) | 0.051009 / 0.037052 (0.013957) | 0.407415 / 0.258489 (0.148926) | 0.481048 / 0.293841 (0.187207) | 0.043268 / 0.128546 (-0.085278) | 0.014574 / 0.075646 (-0.061072) | 0.103555 / 0.419271 (-0.315716) | 0.058251 / 0.043533 (0.014719) | 0.406294 / 0.255139 (0.151155) | 0.429229 / 0.283200 (0.146029) | 0.116977 / 0.141683 (-0.024705) | 1.765885 / 1.452155 (0.313730) | 1.885557 / 1.492716 (0.392841) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284014 / 0.018006 (0.266008) | 0.458066 / 0.000490 (0.457576) | 0.022286 / 0.000200 (0.022086) | 0.000158 / 0.000054 (0.000104) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033971 / 0.037411 (-0.003440) | 0.132030 / 0.014526 (0.117504) | 0.141725 / 0.176557 (-0.034831) | 0.199818 / 0.737135 (-0.537318) | 0.149176 / 0.296338 (-0.147162) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.511463 / 0.215209 (0.296254) | 4.917921 / 2.077655 (2.840267) | 2.382377 / 1.504120 (0.878257) | 2.154599 / 1.541195 (0.613404) | 2.247858 / 1.468490 (0.779368) | 0.834524 / 4.584777 (-3.750253) | 4.560010 / 3.745712 (0.814297) | 2.403055 / 5.269862 (-2.866806) | 1.780784 / 4.565676 (-2.784893) | 0.101409 / 0.424275 (-0.322866) | 0.014657 / 0.007607 (0.007050) | 0.610137 / 0.226044 (0.384093) | 6.051011 / 2.268929 (3.782083) | 2.887357 / 55.444624 (-52.557267) | 2.518225 / 6.876477 (-4.358252) | 2.559654 / 2.142072 (0.417582) | 0.981226 / 4.805227 (-3.824001) | 0.197323 / 6.500664 (-6.303341) | 0.076851 / 0.075469 (0.001382) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.554662 / 1.841788 (-0.287126) | 18.038993 / 8.074308 (9.964685) | 16.719948 / 10.191392 (6.528556) | 0.195641 / 0.680424 (-0.484783) | 0.020699 / 0.534201 (-0.513502) | 0.498949 / 0.579283 (-0.080334) | 0.487775 / 0.434364 (0.053411) | 0.591413 / 0.540337 (0.051075) | 0.708520 / 1.386936 (-0.678416) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#39de0d78224c070be33d0820ec9203018fb721d1 \"CML watermark\")\n", "Ready for review @mariosasko :)", "Yea it does behave as expected, but modifying a dataset's features dict is not recommended and can lead to unpredictable behaviors. By copying the features, we make sure users don't modify the dataset's features dict.\r\n\r\nSince the attribute is public, users expect to be able to do whatever they want with it, without checking if they have to copy it or not", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008069 / 0.011353 (-0.003284) | 0.005051 / 0.011008 (-0.005958) | 0.096587 / 0.038508 (0.058079) | 0.032954 / 0.023109 (0.009844) | 0.317877 / 0.275898 (0.041979) | 0.328677 / 0.323480 (0.005197) | 0.005524 / 0.007986 (-0.002462) | 0.003958 / 0.004328 (-0.000370) | 0.072692 / 0.004250 (0.068441) | 0.044554 / 0.037052 (0.007502) | 0.311121 / 0.258489 (0.052632) | 0.355912 / 0.293841 (0.062071) | 0.035934 / 0.128546 (-0.092612) | 0.012056 / 0.075646 (-0.063590) | 0.332575 / 0.419271 (-0.086696) | 0.049788 / 0.043533 (0.006255) | 0.307918 / 0.255139 (0.052779) | 0.326757 / 0.283200 (0.043557) | 0.098671 / 0.141683 (-0.043012) | 1.424625 / 1.452155 (-0.027530) | 1.507944 / 1.492716 (0.015228) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207976 / 0.018006 (0.189970) | 0.439604 / 0.000490 (0.439114) | 0.000435 / 0.000200 (0.000235) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026961 / 0.037411 (-0.010451) | 0.106627 / 0.014526 (0.092101) | 0.115292 / 0.176557 (-0.061264) | 0.171901 / 0.737135 (-0.565234) | 0.123276 / 0.296338 (-0.173062) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407679 / 0.215209 (0.192469) | 4.071958 / 2.077655 (1.994303) | 1.854270 / 1.504120 (0.350151) | 1.678406 / 1.541195 (0.137211) | 1.715890 / 1.468490 (0.247400) | 0.705536 / 4.584777 (-3.879241) | 3.774198 / 3.745712 (0.028486) | 2.096429 / 5.269862 (-3.173432) | 1.431810 / 4.565676 (-3.133866) | 0.085557 / 0.424275 (-0.338718) | 0.012191 / 0.007607 (0.004584) | 0.502937 / 0.226044 (0.276893) | 5.034391 / 2.268929 (2.765463) | 2.393826 / 55.444624 (-53.050799) | 2.037383 / 6.876477 (-4.839094) | 2.192037 / 2.142072 (0.049964) | 0.829298 / 4.805227 (-3.975929) | 0.167781 / 6.500664 (-6.332883) | 0.063405 / 0.075469 (-0.012064) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.179189 / 1.841788 (-0.662599) | 14.464132 / 8.074308 (6.389824) | 14.869024 / 10.191392 (4.677632) | 0.172864 / 0.680424 (-0.507560) | 0.017817 / 0.534201 (-0.516384) | 0.427849 / 0.579283 (-0.151434) | 0.434447 / 0.434364 (0.000083) | 0.502077 / 0.540337 (-0.038260) | 0.599587 / 1.386936 (-0.787349) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007366 / 0.011353 (-0.003987) | 0.004939 / 0.011008 (-0.006069) | 0.074982 / 0.038508 (0.036474) | 0.032611 / 0.023109 (0.009501) | 0.340670 / 0.275898 (0.064772) | 0.372471 / 0.323480 (0.048991) | 0.005567 / 0.007986 (-0.002418) | 0.003956 / 0.004328 (-0.000372) | 0.074550 / 0.004250 (0.070300) | 0.047097 / 0.037052 (0.010045) | 0.337049 / 0.258489 (0.078560) | 0.391512 / 0.293841 (0.097671) | 0.035712 / 0.128546 (-0.092835) | 0.012040 / 0.075646 (-0.063606) | 0.087126 / 0.419271 (-0.332146) | 0.048290 / 0.043533 (0.004757) | 0.335069 / 0.255139 (0.079930) | 0.362080 / 0.283200 (0.078881) | 0.098606 / 0.141683 (-0.043077) | 1.456802 / 1.452155 (0.004647) | 1.554652 / 1.492716 (0.061936) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200015 / 0.018006 (0.182009) | 0.442772 / 0.000490 (0.442283) | 0.004594 / 0.000200 (0.004394) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028510 / 0.037411 (-0.008901) | 0.109654 / 0.014526 (0.095128) | 0.119921 / 0.176557 (-0.056636) | 0.170289 / 0.737135 (-0.566846) | 0.125288 / 0.296338 (-0.171051) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430919 / 0.215209 (0.215710) | 4.274132 / 2.077655 (2.196478) | 2.014385 / 1.504120 (0.510265) | 1.822094 / 1.541195 (0.280899) | 1.938188 / 1.468490 (0.469698) | 0.707812 / 4.584777 (-3.876965) | 3.925730 / 3.745712 (0.180018) | 2.117481 / 5.269862 (-3.152381) | 1.369521 / 4.565676 (-3.196155) | 0.088414 / 0.424275 (-0.335861) | 0.013101 / 0.007607 (0.005494) | 0.538468 / 0.226044 (0.312424) | 5.384614 / 2.268929 (3.115685) | 2.487709 / 55.444624 (-52.956915) | 2.152060 / 6.876477 (-4.724417) | 2.225777 / 2.142072 (0.083705) | 0.856749 / 4.805227 (-3.948479) | 0.173299 / 6.500664 (-6.327366) | 0.068872 / 0.075469 (-0.006597) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268009 / 1.841788 (-0.573778) | 15.102648 / 8.074308 (7.028340) | 14.216810 / 10.191392 (4.025418) | 0.163661 / 0.680424 (-0.516763) | 0.017394 / 0.534201 (-0.516807) | 0.418030 / 0.579283 (-0.161253) | 0.413717 / 0.434364 (-0.020647) | 0.487526 / 0.540337 (-0.052811) | 0.581499 / 1.386936 (-0.805437) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#46bb11e96d053c497035a2436702860de9960a65 \"CML watermark\")\n" ]
"2023-03-20T17:17:23Z"
"2023-03-23T13:19:19Z"
"2023-03-23T13:12:08Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5652.diff", "html_url": "https://github.com/huggingface/datasets/pull/5652", "merged_at": "2023-03-23T13:12:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/5652.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5652" }
Some users (even internally at HF) are doing ```python dset_features = dset.features dset_features.pop(col_to_remove) dset = dset.map(..., features=dset_features) ``` Right now this causes issues because it modifies the features dict in place before the map. In this PR I modified `dset.features` to return a copy of the features, so that users can modify it if they want.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5652/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5652/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1724
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1724/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1724/comments
https://api.github.com/repos/huggingface/datasets/issues/1724/events
https://github.com/huggingface/datasets/issues/1724
784,023,338
MDU6SXNzdWU3ODQwMjMzMzg=
1,724
could not run models on a offline server successfully
{ "avatar_url": "https://avatars.githubusercontent.com/u/49967236?v=4", "events_url": "https://api.github.com/users/lkcao/events{/privacy}", "followers_url": "https://api.github.com/users/lkcao/followers", "following_url": "https://api.github.com/users/lkcao/following{/other_user}", "gists_url": "https://api.github.com/users/lkcao/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lkcao", "id": 49967236, "login": "lkcao", "node_id": "MDQ6VXNlcjQ5OTY3MjM2", "organizations_url": "https://api.github.com/users/lkcao/orgs", "received_events_url": "https://api.github.com/users/lkcao/received_events", "repos_url": "https://api.github.com/users/lkcao/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lkcao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lkcao/subscriptions", "type": "User", "url": "https://api.github.com/users/lkcao" }
[]
closed
false
null
[]
null
[ "Transferred to `datasets` based on the stack trace.", "Hi @lkcao !\r\nYour issue is indeed related to `datasets`. In addition to installing the package manually, you will need to download the `text.py` script on your server. You'll find it (under `datasets/datasets/text`: https://github.com/huggingface/datasets/blob/master/datasets/text/text.py.\r\nThen you can change the line 221 of `run_mlm_new.py` into:\r\n```python\r\n datasets = load_dataset('/path/to/text.py', data_files=data_files)\r\n```\r\nWhere `/path/to/text.py` is the path on the server where you saved the `text.py` script.", "We're working on including the local dataset builders (csv, text, json etc.) directly in the `datasets` package so that they can be used offline", "The local dataset builders (csv, text , json and pandas) are now part of the `datasets` package since #1726 :)\r\nYou can now use them offline\r\n```python\r\ndatasets = load_dataset('text', data_files=data_files)\r\n```\r\n\r\nWe'll do a new release soon", "> The local dataset builders (csv, text , json and pandas) are now part of the `datasets` package since #1726 :)\r\n> You can now use them offline\r\n> \r\n> ```python\r\n> datasets = load_dataset('text', data_files=data_files)\r\n> ```\r\n> \r\n> We'll do a new release soon\r\n\r\nso the new version release now?", "Yes it's been available since datasets 1.3.0 !" ]
"2021-01-12T06:08:06Z"
"2022-10-05T12:39:07Z"
"2022-10-05T12:39:07Z"
NONE
null
null
null
Hi, I really need your help about this. I am trying to fine-tuning a RoBERTa on a remote server, which is strictly banning internet. I try to install all the packages by hand and try to run run_mlm.py on the server. It works well on colab, but when I try to run it on this offline server, it shows: ![image](https://user-images.githubusercontent.com/49967236/104276256-25a88600-546a-11eb-9776-8ec695dfa24e.png) is there anything I can do? Is it possible to download all the things in cache and upload it to the server? Please help me out...
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/1724/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1724/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3362
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3362/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3362/comments
https://api.github.com/repos/huggingface/datasets/issues/3362/events
https://github.com/huggingface/datasets/pull/3362
1,068,809,768
PR_kwDODunzps4vRR2r
3,362
Adapt image datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "This PR can be merged after #3163 is merged (this PR is pretty big because I was working on the forked branch).\r\n\r\n@lhoestq @albertvillanova Could you please take a look at the changes in `src/datasets/utils/streaming_download_manager.py`? These changes were required to support streaming of the `cats_vs_dogs` and the `beans` datasets.", "The CI failures are due to the missing fields in the README files.", "and thanks for adding support for Path.name and Path.parent for streaming :)" ]
"2021-12-01T19:52:01Z"
"2021-12-09T18:37:42Z"
"2021-12-09T18:37:41Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3362.diff", "html_url": "https://github.com/huggingface/datasets/pull/3362", "merged_at": "2021-12-09T18:37:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/3362.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3362" }
This PR: * adapts the ImageClassification template to use the new Image feature * adapts the following datasets to use the new Image feature: * beans (+ fixes streaming) * cast_vs_dogs (+ fixes streaming) * cifar10 * cifar100 * fashion_mnist * mnist * head_qa cc @nateraw
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3362/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3362/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1958
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1958/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1958/comments
https://api.github.com/repos/huggingface/datasets/issues/1958/events
https://github.com/huggingface/datasets/issues/1958
818,037,548
MDU6SXNzdWU4MTgwMzc1NDg=
1,958
XSum dataset download link broken
{ "avatar_url": "https://avatars.githubusercontent.com/u/1156974?v=4", "events_url": "https://api.github.com/users/himat/events{/privacy}", "followers_url": "https://api.github.com/users/himat/followers", "following_url": "https://api.github.com/users/himat/following{/other_user}", "gists_url": "https://api.github.com/users/himat/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/himat", "id": 1156974, "login": "himat", "node_id": "MDQ6VXNlcjExNTY5NzQ=", "organizations_url": "https://api.github.com/users/himat/orgs", "received_events_url": "https://api.github.com/users/himat/received_events", "repos_url": "https://api.github.com/users/himat/repos", "site_admin": false, "starred_url": "https://api.github.com/users/himat/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/himat/subscriptions", "type": "User", "url": "https://api.github.com/users/himat" }
[]
closed
false
null
[]
null
[ "Never mind, I ran it again and it worked this time. Strange." ]
"2021-02-27T21:47:56Z"
"2021-02-27T21:50:16Z"
"2021-02-27T21:50:16Z"
NONE
null
null
null
I did ``` from datasets import load_dataset dataset = load_dataset("xsum") ``` This returns `ConnectionError: Couldn't reach http://bollin.inf.ed.ac.uk/public/direct/XSUM-EMNLP18-Summary-Data-Original.tar.gz`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1958/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1958/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2621
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2621/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2621/comments
https://api.github.com/repos/huggingface/datasets/issues/2621/events
https://github.com/huggingface/datasets/pull/2621
940,916,446
MDExOlB1bGxSZXF1ZXN0Njg2OTE1Mzcw
2,621
Use prefix to allow exceed Windows MAX_PATH
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "Does this mean the `FileNotFoundError` that avoids infinite loop can be removed?", "Yes, I think so...", "Or maybe we could leave it in case a relative path exceeds the MAX_PATH limit?", " > Or maybe we could leave it in case a relative path exceeds the MAX_PATH limit?\r\n\r\nWhat about converting relative paths to absolute?", "Nice ! Have you had a chance to test it on a windows machine with the max path limit enabled ? Afaik the CI doesn't have the path limit", "Sure @lhoestq: I've tested on my machine... And this fixes most of the tests... 😅 " ]
"2021-07-09T16:39:53Z"
"2021-07-16T15:28:12Z"
"2021-07-16T15:28:11Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2621.diff", "html_url": "https://github.com/huggingface/datasets/pull/2621", "merged_at": "2021-07-16T15:28:11Z", "patch_url": "https://github.com/huggingface/datasets/pull/2621.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2621" }
By using this prefix, you can exceed the Windows MAX_PATH limit. See: https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#win32-file-namespaces Related to #2524, #2220.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2621/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2621/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6257
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6257/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6257/comments
https://api.github.com/repos/huggingface/datasets/issues/6257/events
https://github.com/huggingface/datasets/issues/6257
1,910,741,044
I_kwDODunzps5x45g0
6,257
HfHubHTTPError - exceeded our hourly quotas for action: commit
{ "avatar_url": "https://avatars.githubusercontent.com/u/57996478?v=4", "events_url": "https://api.github.com/users/yuvalkirstain/events{/privacy}", "followers_url": "https://api.github.com/users/yuvalkirstain/followers", "following_url": "https://api.github.com/users/yuvalkirstain/following{/other_user}", "gists_url": "https://api.github.com/users/yuvalkirstain/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yuvalkirstain", "id": 57996478, "login": "yuvalkirstain", "node_id": "MDQ6VXNlcjU3OTk2NDc4", "organizations_url": "https://api.github.com/users/yuvalkirstain/orgs", "received_events_url": "https://api.github.com/users/yuvalkirstain/received_events", "repos_url": "https://api.github.com/users/yuvalkirstain/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yuvalkirstain/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yuvalkirstain/subscriptions", "type": "User", "url": "https://api.github.com/users/yuvalkirstain" }
[]
closed
false
null
[]
null
[ "how is your dataset structured? (file types, how many commits and files are you trying to push, etc)", "I succeeded in uploading it after several attempts with an hour gap between each attempt (inconvenient but worked). The final dataset is [here](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2), code and context to the dataset can be found [here](https://github.com/yuvalkirstain/PickScore/).\r\nI can close the issue if this behavior is intended, as most users probably do not need to upload large-scale datasets.", "We could fix this by creating a single commit for all the (Parquet) shards in `push_to_hub` instead of one commit per shard, as we currently do. \r\n\r\n@Wauplin Any updates on the 2-step commit process suggested by you that we need to implement this?", "> Any updates on the 2-step commit process suggested by you that we need to implement this?\r\n\r\nRe-prioritizing this, sorry. Will let you know but probably can be done this week." ]
"2023-09-25T06:11:43Z"
"2023-10-16T13:30:49Z"
"2023-10-16T13:30:48Z"
NONE
null
null
null
### Describe the bug I try to upload a very large dataset of images, and get the following error: ``` File /fsx-multigen/yuvalkirstain/miniconda/envs/pickapic/lib/python3.10/site-packages/huggingface_hub/hf_api.py:2712, in HfApi.create_commit(self, repo_id, operations, commit_message, commit_description, token, repo_type, revision, create_pr, num_threads, parent_commit, run_as_future) 2710 try: 2711 commit_resp = get_session().post(url=commit_url, headers=headers, data=data, params=params) -> 2712 hf_raise_for_status(commit_resp, endpoint_name="commit") 2713 except RepositoryNotFoundError as e: 2714 e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE) File /fsx-multigen/yuvalkirstain/miniconda/envs/pickapic/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py:301, in hf_raise_for_status(response, endpoint_name) 297 raise BadRequestError(message, response=response) from e 299 # Convert `HTTPError` into a `HfHubHTTPError` to display request information 300 # as well (request id and/or server error message) --> 301 raise HfHubHTTPError(str(e), response=response) from e HfHubHTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co/api/datasets/yuvalkirstain/pickapic_v2/commit/main (Request ID: Root=1-65112399-12d63f7d7f28bfa40a36a0fd) You have exceeded our hourly quotas for action: commit. We invite you to retry later. ``` this makes it much less convenient to host large datasets on HF hub. ### Steps to reproduce the bug Upload a very large dataset of images ### Expected behavior the upload to work well ### Environment info - `datasets` version: 2.13.1 - Platform: Linux-5.15.0-1033-aws-x86_64-with-glibc2.31 - Python version: 3.10.11 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.1 - Pandas version: 1.5.3
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6257/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6257/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5260
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5260/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5260/comments
https://api.github.com/repos/huggingface/datasets/issues/5260/events
https://github.com/huggingface/datasets/issues/5260
1,453,921,697
I_kwDODunzps5WqRWh
5,260
consumer-finance-complaints dataset not loading
{ "avatar_url": "https://avatars.githubusercontent.com/u/8098496?v=4", "events_url": "https://api.github.com/users/adiprasad/events{/privacy}", "followers_url": "https://api.github.com/users/adiprasad/followers", "following_url": "https://api.github.com/users/adiprasad/following{/other_user}", "gists_url": "https://api.github.com/users/adiprasad/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/adiprasad", "id": 8098496, "login": "adiprasad", "node_id": "MDQ6VXNlcjgwOTg0OTY=", "organizations_url": "https://api.github.com/users/adiprasad/orgs", "received_events_url": "https://api.github.com/users/adiprasad/received_events", "repos_url": "https://api.github.com/users/adiprasad/repos", "site_admin": false, "starred_url": "https://api.github.com/users/adiprasad/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/adiprasad/subscriptions", "type": "User", "url": "https://api.github.com/users/adiprasad" }
[]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Thanks for reporting, @adiprasad.\r\n\r\nWe are having a look at it.", "I have opened an issue in that dataset Community tab on the Hub: https://huggingface.co/datasets/consumer-finance-complaints/discussions/1\r\n\r\nPlease note that in the meantime, you can load the dataset by passing `ignore_verifications=True`:\r\n```python\r\n>>> ds = load_dataset(\"consumer-finance-complaints\", ignore_verifications=True)\r\n>>> ds\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['Date Received', 'Product', 'Sub Product', 'Issue', 'Sub Issue', 'Complaint Text', 'Company Public Response', 'Company', 'State', 'Zip Code', 'Tags', 'Consumer Consent Provided', 'Submitted via', 'Date Sent To Company', 'Company Response To Consumer', 'Timely Response', 'Consumer Disputed', 'Complaint ID'],\r\n num_rows: 3079747\r\n })\r\n})\r\n```", "PR fixing this issue: https://huggingface.co/datasets/consumer-finance-complaints/discussions/2" ]
"2022-11-17T20:10:26Z"
"2022-11-18T10:16:53Z"
null
NONE
null
null
null
### Describe the bug Error during dataset loading ### Steps to reproduce the bug ``` >>> import datasets >>> cf_raw = datasets.load_dataset("consumer-finance-complaints") Downloading builder script: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8.42k/8.42k [00:00<00:00, 3.33MB/s] Downloading metadata: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5.60k/5.60k [00:00<00:00, 2.90MB/s] Downloading readme: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16.6k/16.6k [00:00<00:00, 510kB/s] Downloading and preparing dataset consumer-finance-complaints/default to /root/.cache/huggingface/datasets/consumer-finance-complaints/default/0.0.0/30e483d37fb4b25bb98cad1bfd2dc48f6ed6d1f3371eb4568c625a61d1a79b69... Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 511M/511M [00:04<00:00, 103MB/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset builder_instance.download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare super()._download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 931, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 74, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) datasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=1605177353, num_examples=2455765, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=2043641693, num_examples=3079747, shard_lengths=[721000, 656000, 788000, 846000, 68747], dataset_name='consumer-finance-complaints')}] ``` ### Expected behavior dataset should load ### Environment info >>> datasets.__version__ '2.7.0' Python 3.8.10 "Ubuntu 20.04.4 LTS"
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5260/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5260/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/2028
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2028/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2028/comments
https://api.github.com/repos/huggingface/datasets/issues/2028/events
https://github.com/huggingface/datasets/pull/2028
828,721,393
MDExOlB1bGxSZXF1ZXN0NTkwNDk1NzEx
2,028
Adding PersiNLU reading-comprehension
{ "avatar_url": "https://avatars.githubusercontent.com/u/2441454?v=4", "events_url": "https://api.github.com/users/danyaljj/events{/privacy}", "followers_url": "https://api.github.com/users/danyaljj/followers", "following_url": "https://api.github.com/users/danyaljj/following{/other_user}", "gists_url": "https://api.github.com/users/danyaljj/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/danyaljj", "id": 2441454, "login": "danyaljj", "node_id": "MDQ6VXNlcjI0NDE0NTQ=", "organizations_url": "https://api.github.com/users/danyaljj/orgs", "received_events_url": "https://api.github.com/users/danyaljj/received_events", "repos_url": "https://api.github.com/users/danyaljj/repos", "site_admin": false, "starred_url": "https://api.github.com/users/danyaljj/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/danyaljj/subscriptions", "type": "User", "url": "https://api.github.com/users/danyaljj" }
[]
closed
false
null
[]
null
[ "@lhoestq I think I have addressed all your comments. ", "Thanks! @lhoestq Let me know if you want me to address anything to get this merged. ", "It's all good thanks ;)\r\nmerging" ]
"2021-03-11T04:41:13Z"
"2021-03-15T09:39:57Z"
"2021-03-15T09:39:57Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2028.diff", "html_url": "https://github.com/huggingface/datasets/pull/2028", "merged_at": "2021-03-15T09:39:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/2028.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2028" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2028/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2028/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2112
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2112/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2112/comments
https://api.github.com/repos/huggingface/datasets/issues/2112/events
https://github.com/huggingface/datasets/pull/2112
841,098,008
MDExOlB1bGxSZXF1ZXN0NjAwODgyMjA0
2,112
Support for legal NLP datasets (EURLEX and ECtHR cases)
{ "avatar_url": "https://avatars.githubusercontent.com/u/1626984?v=4", "events_url": "https://api.github.com/users/iliaschalkidis/events{/privacy}", "followers_url": "https://api.github.com/users/iliaschalkidis/followers", "following_url": "https://api.github.com/users/iliaschalkidis/following{/other_user}", "gists_url": "https://api.github.com/users/iliaschalkidis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/iliaschalkidis", "id": 1626984, "login": "iliaschalkidis", "node_id": "MDQ6VXNlcjE2MjY5ODQ=", "organizations_url": "https://api.github.com/users/iliaschalkidis/orgs", "received_events_url": "https://api.github.com/users/iliaschalkidis/received_events", "repos_url": "https://api.github.com/users/iliaschalkidis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/iliaschalkidis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/iliaschalkidis/subscriptions", "type": "User", "url": "https://api.github.com/users/iliaschalkidis" }
[]
closed
false
null
[]
null
[]
"2021-03-25T16:24:17Z"
"2021-03-25T18:39:31Z"
"2021-03-25T18:34:31Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2112.diff", "html_url": "https://github.com/huggingface/datasets/pull/2112", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2112.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2112" }
Add support for two legal NLP datasets: - EURLEX (https://www.aclweb.org/anthology/P19-1636/) - ECtHR cases (https://arxiv.org/abs/2103.13084)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2112/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2112/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5308
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5308/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5308/comments
https://api.github.com/repos/huggingface/datasets/issues/5308/events
https://github.com/huggingface/datasets/pull/5308
1,466,552,281
PR_kwDODunzps5Dz0Tv
5,308
Support `topdown` parameter in `xwalk`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "I like the `kwargs` approach, thanks!" ]
"2022-11-28T14:42:41Z"
"2022-12-09T12:58:55Z"
"2022-12-09T12:55:59Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5308.diff", "html_url": "https://github.com/huggingface/datasets/pull/5308", "merged_at": "2022-12-09T12:55:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/5308.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5308" }
Add support for the `topdown` parameter in `xwalk` when `fsspec>=2022.11.0` is installed.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5308/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5308/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6211
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6211/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6211/comments
https://api.github.com/repos/huggingface/datasets/issues/6211/events
https://github.com/huggingface/datasets/pull/6211
1,880,265,906
PR_kwDODunzps5Ze-pv
6,211
Fix empty splitinfo json
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007756 / 0.011353 (-0.003597) | 0.004733 / 0.011008 (-0.006275) | 0.095874 / 0.038508 (0.057366) | 0.081957 / 0.023109 (0.058848) | 0.426430 / 0.275898 (0.150532) | 0.457670 / 0.323480 (0.134190) | 0.004448 / 0.007986 (-0.003537) | 0.004956 / 0.004328 (0.000627) | 0.074195 / 0.004250 (0.069945) | 0.061101 / 0.037052 (0.024048) | 0.435134 / 0.258489 (0.176645) | 0.457245 / 0.293841 (0.163404) | 0.034945 / 0.128546 (-0.093601) | 0.010028 / 0.075646 (-0.065618) | 0.350724 / 0.419271 (-0.068548) | 0.064433 / 0.043533 (0.020901) | 0.417882 / 0.255139 (0.162743) | 0.445087 / 0.283200 (0.161887) | 0.027576 / 0.141683 (-0.114107) | 1.824066 / 1.452155 (0.371912) | 1.957568 / 1.492716 (0.464852) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238568 / 0.018006 (0.220562) | 0.505289 / 0.000490 (0.504799) | 0.003527 / 0.000200 (0.003327) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032839 / 0.037411 (-0.004572) | 0.096708 / 0.014526 (0.082182) | 0.112100 / 0.176557 (-0.064456) | 0.177215 / 0.737135 (-0.559920) | 0.111273 / 0.296338 (-0.185066) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.475200 / 0.215209 (0.259991) | 4.725737 / 2.077655 (2.648082) | 2.414672 / 1.504120 (0.910552) | 2.196357 / 1.541195 (0.655162) | 2.329298 / 1.468490 (0.860808) | 0.575258 / 4.584777 (-4.009519) | 4.343630 / 3.745712 (0.597918) | 3.837665 / 5.269862 (-1.432196) | 2.497970 / 4.565676 (-2.067706) | 0.066467 / 0.424275 (-0.357808) | 0.008680 / 0.007607 (0.001073) | 0.569923 / 0.226044 (0.343878) | 5.634230 / 2.268929 (3.365302) | 2.959222 / 55.444624 (-52.485402) | 2.535954 / 6.876477 (-4.340523) | 2.804844 / 2.142072 (0.662771) | 0.682000 / 4.805227 (-4.123227) | 0.158193 / 6.500664 (-6.342471) | 0.072315 / 0.075469 (-0.003154) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.578148 / 1.841788 (-0.263639) | 22.993419 / 8.074308 (14.919110) | 16.524477 / 10.191392 (6.333085) | 0.169415 / 0.680424 (-0.511009) | 0.021520 / 0.534201 (-0.512681) | 0.455970 / 0.579283 (-0.123313) | 0.489022 / 0.434364 (0.054658) | 0.535656 / 0.540337 (-0.004682) | 0.802341 / 1.386936 (-0.584595) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008002 / 0.011353 (-0.003351) | 0.005577 / 0.011008 (-0.005431) | 0.087803 / 0.038508 (0.049295) | 0.091285 / 0.023109 (0.068176) | 0.500514 / 0.275898 (0.224616) | 0.549770 / 0.323480 (0.226290) | 0.006125 / 0.007986 (-0.001861) | 0.004031 / 0.004328 (-0.000297) | 0.077941 / 0.004250 (0.073691) | 0.071419 / 0.037052 (0.034367) | 0.497570 / 0.258489 (0.239081) | 0.542454 / 0.293841 (0.248613) | 0.040827 / 0.128546 (-0.087719) | 0.011029 / 0.075646 (-0.064617) | 0.088788 / 0.419271 (-0.330484) | 0.056970 / 0.043533 (0.013438) | 0.523934 / 0.255139 (0.268795) | 0.552507 / 0.283200 (0.269308) | 0.029794 / 0.141683 (-0.111889) | 1.817778 / 1.452155 (0.365623) | 1.955843 / 1.492716 (0.463126) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246992 / 0.018006 (0.228986) | 0.467879 / 0.000490 (0.467390) | 0.005439 / 0.000200 (0.005239) | 0.000110 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037774 / 0.037411 (0.000363) | 0.109332 / 0.014526 (0.094806) | 0.120103 / 0.176557 (-0.056454) | 0.185259 / 0.737135 (-0.551876) | 0.126189 / 0.296338 (-0.170149) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.492856 / 0.215209 (0.277646) | 5.033209 / 2.077655 (2.955554) | 2.885551 / 1.504120 (1.381431) | 2.480304 / 1.541195 (0.939109) | 2.579092 / 1.468490 (1.110602) | 0.557671 / 4.584777 (-4.027106) | 4.352765 / 3.745712 (0.607053) | 4.039124 / 5.269862 (-1.230738) | 2.534342 / 4.565676 (-2.031335) | 0.067267 / 0.424275 (-0.357008) | 0.008891 / 0.007607 (0.001284) | 0.591592 / 0.226044 (0.365547) | 5.939982 / 2.268929 (3.671053) | 3.258389 / 55.444624 (-52.186235) | 2.843899 / 6.876477 (-4.032578) | 3.074217 / 2.142072 (0.932144) | 0.695065 / 4.805227 (-4.110162) | 0.156917 / 6.500664 (-6.343747) | 0.070185 / 0.075469 (-0.005284) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.586716 / 1.841788 (-0.255072) | 23.405837 / 8.074308 (15.331529) | 17.200851 / 10.191392 (7.009459) | 0.170073 / 0.680424 (-0.510351) | 0.023345 / 0.534201 (-0.510856) | 0.459192 / 0.579283 (-0.120091) | 0.477419 / 0.434364 (0.043055) | 0.558581 / 0.540337 (0.018244) | 0.814373 / 1.386936 (-0.572563) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#28bbe5667e6eaa1bb21685791fcf1a4ed1ef1777 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006050 / 0.011353 (-0.005303) | 0.003661 / 0.011008 (-0.007348) | 0.081753 / 0.038508 (0.043245) | 0.061275 / 0.023109 (0.038166) | 0.316278 / 0.275898 (0.040380) | 0.350783 / 0.323480 (0.027303) | 0.004694 / 0.007986 (-0.003291) | 0.003003 / 0.004328 (-0.001326) | 0.062877 / 0.004250 (0.058627) | 0.046985 / 0.037052 (0.009933) | 0.315698 / 0.258489 (0.057208) | 0.364607 / 0.293841 (0.070766) | 0.027365 / 0.128546 (-0.101181) | 0.008016 / 0.075646 (-0.067631) | 0.261379 / 0.419271 (-0.157893) | 0.045173 / 0.043533 (0.001640) | 0.313499 / 0.255139 (0.058360) | 0.339383 / 0.283200 (0.056184) | 0.020855 / 0.141683 (-0.120828) | 1.429851 / 1.452155 (-0.022303) | 1.506112 / 1.492716 (0.013396) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194872 / 0.018006 (0.176866) | 0.451951 / 0.000490 (0.451462) | 0.002790 / 0.000200 (0.002590) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024331 / 0.037411 (-0.013081) | 0.073156 / 0.014526 (0.058630) | 0.084054 / 0.176557 (-0.092502) | 0.145656 / 0.737135 (-0.591480) | 0.084998 / 0.296338 (-0.211340) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.391324 / 0.215209 (0.176115) | 3.898406 / 2.077655 (1.820751) | 1.891175 / 1.504120 (0.387055) | 1.698738 / 1.541195 (0.157543) | 1.774324 / 1.468490 (0.305834) | 0.495129 / 4.584777 (-4.089648) | 3.027027 / 3.745712 (-0.718685) | 2.821423 / 5.269862 (-2.448439) | 1.870761 / 4.565676 (-2.694915) | 0.057029 / 0.424275 (-0.367246) | 0.006715 / 0.007607 (-0.000892) | 0.465801 / 0.226044 (0.239757) | 4.650891 / 2.268929 (2.381962) | 2.425097 / 55.444624 (-53.019527) | 2.134731 / 6.876477 (-4.741745) | 2.312854 / 2.142072 (0.170781) | 0.589668 / 4.805227 (-4.215559) | 0.124673 / 6.500664 (-6.375991) | 0.060887 / 0.075469 (-0.014582) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.243622 / 1.841788 (-0.598166) | 18.501640 / 8.074308 (10.427332) | 13.853099 / 10.191392 (3.661707) | 0.130255 / 0.680424 (-0.550168) | 0.016824 / 0.534201 (-0.517377) | 0.332297 / 0.579283 (-0.246986) | 0.360346 / 0.434364 (-0.074018) | 0.388598 / 0.540337 (-0.151739) | 0.527551 / 1.386936 (-0.859385) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006181 / 0.011353 (-0.005172) | 0.003688 / 0.011008 (-0.007320) | 0.063395 / 0.038508 (0.024887) | 0.062531 / 0.023109 (0.039422) | 0.446565 / 0.275898 (0.170667) | 0.485224 / 0.323480 (0.161744) | 0.004982 / 0.007986 (-0.003004) | 0.002961 / 0.004328 (-0.001367) | 0.063124 / 0.004250 (0.058874) | 0.050234 / 0.037052 (0.013182) | 0.449731 / 0.258489 (0.191242) | 0.487293 / 0.293841 (0.193452) | 0.028528 / 0.128546 (-0.100018) | 0.008210 / 0.075646 (-0.067436) | 0.069520 / 0.419271 (-0.349751) | 0.041026 / 0.043533 (-0.002507) | 0.451370 / 0.255139 (0.196231) | 0.469151 / 0.283200 (0.185951) | 0.021076 / 0.141683 (-0.120607) | 1.439185 / 1.452155 (-0.012970) | 1.492634 / 1.492716 (-0.000082) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235932 / 0.018006 (0.217926) | 0.430070 / 0.000490 (0.429581) | 0.007347 / 0.000200 (0.007147) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026102 / 0.037411 (-0.011309) | 0.081333 / 0.014526 (0.066807) | 0.090111 / 0.176557 (-0.086446) | 0.144578 / 0.737135 (-0.592557) | 0.091961 / 0.296338 (-0.204378) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455761 / 0.215209 (0.240552) | 4.536345 / 2.077655 (2.458690) | 2.496833 / 1.504120 (0.992713) | 2.323325 / 1.541195 (0.782130) | 2.388364 / 1.468490 (0.919873) | 0.512010 / 4.584777 (-4.072767) | 3.106268 / 3.745712 (-0.639444) | 2.879224 / 5.269862 (-2.390637) | 1.893859 / 4.565676 (-2.671818) | 0.059131 / 0.424275 (-0.365144) | 0.006763 / 0.007607 (-0.000844) | 0.528205 / 0.226044 (0.302161) | 5.296649 / 2.268929 (3.027720) | 2.933787 / 55.444624 (-52.510838) | 2.598258 / 6.876477 (-4.278218) | 2.768195 / 2.142072 (0.626123) | 0.597430 / 4.805227 (-4.207797) | 0.125865 / 6.500664 (-6.374799) | 0.061684 / 0.075469 (-0.013785) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.341194 / 1.841788 (-0.500594) | 18.948225 / 8.074308 (10.873917) | 14.912340 / 10.191392 (4.720948) | 0.146905 / 0.680424 (-0.533519) | 0.017952 / 0.534201 (-0.516249) | 0.332299 / 0.579283 (-0.246984) | 0.362733 / 0.434364 (-0.071631) | 0.388278 / 0.540337 (-0.152060) | 0.546436 / 1.386936 (-0.840500) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cb4f8357de001df656f2ea7af27625e189c3995b \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008314 / 0.011353 (-0.003038) | 0.004904 / 0.011008 (-0.006105) | 0.097486 / 0.038508 (0.058978) | 0.074627 / 0.023109 (0.051518) | 0.396395 / 0.275898 (0.120497) | 0.440519 / 0.323480 (0.117039) | 0.005964 / 0.007986 (-0.002022) | 0.004203 / 0.004328 (-0.000126) | 0.079998 / 0.004250 (0.075747) | 0.055158 / 0.037052 (0.018106) | 0.415439 / 0.258489 (0.156950) | 0.476101 / 0.293841 (0.182260) | 0.044761 / 0.128546 (-0.083785) | 0.013966 / 0.075646 (-0.061680) | 0.351279 / 0.419271 (-0.067993) | 0.067250 / 0.043533 (0.023717) | 0.414310 / 0.255139 (0.159171) | 0.458104 / 0.283200 (0.174904) | 0.033678 / 0.141683 (-0.108005) | 1.730539 / 1.452155 (0.278385) | 1.840013 / 1.492716 (0.347297) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272708 / 0.018006 (0.254702) | 0.593563 / 0.000490 (0.593074) | 0.005153 / 0.000200 (0.004953) | 0.000179 / 0.000054 (0.000125) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029595 / 0.037411 (-0.007816) | 0.087994 / 0.014526 (0.073469) | 0.106066 / 0.176557 (-0.070491) | 0.180491 / 0.737135 (-0.556644) | 0.103707 / 0.296338 (-0.192631) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.566711 / 0.215209 (0.351502) | 5.589034 / 2.077655 (3.511380) | 2.364034 / 1.504120 (0.859914) | 2.119050 / 1.541195 (0.577855) | 2.103823 / 1.468490 (0.635333) | 0.819906 / 4.584777 (-3.764871) | 5.178464 / 3.745712 (1.432752) | 4.433986 / 5.269862 (-0.835875) | 2.825470 / 4.565676 (-1.740207) | 0.096907 / 0.424275 (-0.327368) | 0.008573 / 0.007607 (0.000966) | 0.677607 / 0.226044 (0.451563) | 6.811090 / 2.268929 (4.542162) | 3.140923 / 55.444624 (-52.303701) | 2.492251 / 6.876477 (-4.384225) | 2.660231 / 2.142072 (0.518158) | 0.980573 / 4.805227 (-3.824655) | 0.209028 / 6.500664 (-6.291636) | 0.079413 / 0.075469 (0.003944) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.578861 / 1.841788 (-0.262926) | 22.518269 / 8.074308 (14.443961) | 21.335916 / 10.191392 (11.144524) | 0.211311 / 0.680424 (-0.469113) | 0.033216 / 0.534201 (-0.500985) | 0.473266 / 0.579283 (-0.106017) | 0.581650 / 0.434364 (0.147286) | 0.522442 / 0.540337 (-0.017895) | 0.729039 / 1.386936 (-0.657897) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008349 / 0.011353 (-0.003003) | 0.005856 / 0.011008 (-0.005152) | 0.077855 / 0.038508 (0.039347) | 0.080608 / 0.023109 (0.057499) | 0.512533 / 0.275898 (0.236635) | 0.551862 / 0.323480 (0.228382) | 0.007004 / 0.007986 (-0.000982) | 0.004147 / 0.004328 (-0.000181) | 0.086625 / 0.004250 (0.082374) | 0.065962 / 0.037052 (0.028910) | 0.545590 / 0.258489 (0.287101) | 0.586313 / 0.293841 (0.292472) | 0.048719 / 0.128546 (-0.079827) | 0.014997 / 0.075646 (-0.060649) | 0.089510 / 0.419271 (-0.329761) | 0.060936 / 0.043533 (0.017404) | 0.498455 / 0.255139 (0.243316) | 0.535460 / 0.283200 (0.252260) | 0.034624 / 0.141683 (-0.107059) | 1.717401 / 1.452155 (0.265246) | 1.808772 / 1.492716 (0.316056) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.379504 / 0.018006 (0.361497) | 0.601756 / 0.000490 (0.601266) | 0.061740 / 0.000200 (0.061540) | 0.000497 / 0.000054 (0.000442) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031215 / 0.037411 (-0.006196) | 0.097501 / 0.014526 (0.082975) | 0.117434 / 0.176557 (-0.059122) | 0.166014 / 0.737135 (-0.571121) | 0.116466 / 0.296338 (-0.179873) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.699444 / 0.215209 (0.484235) | 6.329332 / 2.077655 (4.251678) | 3.072812 / 1.504120 (1.568693) | 2.729878 / 1.541195 (1.188683) | 2.933785 / 1.468490 (1.465295) | 0.935858 / 4.584777 (-3.648919) | 5.532532 / 3.745712 (1.786820) | 4.677139 / 5.269862 (-0.592722) | 2.963527 / 4.565676 (-1.602149) | 0.099661 / 0.424275 (-0.324614) | 0.009095 / 0.007607 (0.001488) | 0.751158 / 0.226044 (0.525114) | 7.652588 / 2.268929 (5.383660) | 3.802005 / 55.444624 (-51.642619) | 3.163126 / 6.876477 (-3.713351) | 3.401125 / 2.142072 (1.259052) | 0.998627 / 4.805227 (-3.806600) | 0.203310 / 6.500664 (-6.297354) | 0.073827 / 0.075469 (-0.001642) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.662989 / 1.841788 (-0.178799) | 23.777818 / 8.074308 (15.703510) | 20.855378 / 10.191392 (10.663986) | 0.279892 / 0.680424 (-0.400532) | 0.029303 / 0.534201 (-0.504898) | 0.473681 / 0.579283 (-0.105602) | 0.579148 / 0.434364 (0.144784) | 0.546931 / 0.540337 (0.006593) | 0.769740 / 1.386936 (-0.617196) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#63114e9cb78fe02dc145f923dec13d545a8d0327 \"CML watermark\")\n" ]
"2023-09-04T13:13:53Z"
"2023-09-04T14:58:34Z"
"2023-09-04T14:47:17Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6211.diff", "html_url": "https://github.com/huggingface/datasets/pull/6211", "merged_at": "2023-09-04T14:47:17Z", "patch_url": "https://github.com/huggingface/datasets/pull/6211.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6211" }
If a split is empty, then the JSON split info should mention num_bytes = 0 and num_examples = 0. Until now they were omited because the JSON dumps ignore the fields that are equal to the default values. This is needed in datasets-server since we parse this information to the viewer
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6211/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6211/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1857
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1857/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1857/comments
https://api.github.com/repos/huggingface/datasets/issues/1857/events
https://github.com/huggingface/datasets/issues/1857
805,391,107
MDU6SXNzdWU4MDUzOTExMDc=
1,857
Unable to upload "community provided" dataset - 400 Client Error
{ "avatar_url": "https://avatars.githubusercontent.com/u/1376337?v=4", "events_url": "https://api.github.com/users/mwrzalik/events{/privacy}", "followers_url": "https://api.github.com/users/mwrzalik/followers", "following_url": "https://api.github.com/users/mwrzalik/following{/other_user}", "gists_url": "https://api.github.com/users/mwrzalik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mwrzalik", "id": 1376337, "login": "mwrzalik", "node_id": "MDQ6VXNlcjEzNzYzMzc=", "organizations_url": "https://api.github.com/users/mwrzalik/orgs", "received_events_url": "https://api.github.com/users/mwrzalik/received_events", "repos_url": "https://api.github.com/users/mwrzalik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mwrzalik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mwrzalik/subscriptions", "type": "User", "url": "https://api.github.com/users/mwrzalik" }
[]
closed
false
null
[]
null
[ "Hi ! We're in the process of switching the community datasets to git repos, exactly like what we're doing for models.\r\nYou can find an example here:\r\nhttps://huggingface.co/datasets/lhoestq/custom_squad/tree/main\r\n\r\nWe'll update the CLI in the coming days and do a new release :)\r\n\r\nAlso cc @julien-c maybe we can make improve the error message ?" ]
"2021-02-10T10:39:01Z"
"2021-08-03T05:06:13Z"
"2021-08-03T05:06:13Z"
CONTRIBUTOR
null
null
null
Hi, i'm trying to a upload a dataset as described [here](https://huggingface.co/docs/datasets/v1.2.0/share_dataset.html#sharing-a-community-provided-dataset). This is what happens: ``` $ datasets-cli login $ datasets-cli upload_dataset my_dataset About to upload file /path/to/my_dataset/dataset_infos.json to S3 under filename my_dataset/dataset_infos.json and namespace username About to upload file /path/to/my_dataset/my_dataset.py to S3 under filename my_dataset/my_dataset.py and namespace username Proceed? [Y/n] Y Uploading... This might take a while if files are large 400 Client Error: Bad Request for url: https://huggingface.co/api/datasets/presign huggingface.co migrated to a new model hosting system. You need to upgrade to transformers v3.5+ to upload new models. More info at https://discuss.hugginface.co or https://twitter.com/julien_c. Thank you! ``` I'm using the latest releases of datasets and transformers.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1857/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1857/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3108
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3108/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3108/comments
https://api.github.com/repos/huggingface/datasets/issues/3108/events
https://github.com/huggingface/datasets/pull/3108
1,030,405,618
PR_kwDODunzps4tY8ID
3,108
Add Google BLEU (aka GLEU) metric
{ "avatar_url": "https://avatars.githubusercontent.com/u/44175589?v=4", "events_url": "https://api.github.com/users/slowwavesleep/events{/privacy}", "followers_url": "https://api.github.com/users/slowwavesleep/followers", "following_url": "https://api.github.com/users/slowwavesleep/following{/other_user}", "gists_url": "https://api.github.com/users/slowwavesleep/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/slowwavesleep", "id": 44175589, "login": "slowwavesleep", "node_id": "MDQ6VXNlcjQ0MTc1NTg5", "organizations_url": "https://api.github.com/users/slowwavesleep/orgs", "received_events_url": "https://api.github.com/users/slowwavesleep/received_events", "repos_url": "https://api.github.com/users/slowwavesleep/repos", "site_admin": false, "starred_url": "https://api.github.com/users/slowwavesleep/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/slowwavesleep/subscriptions", "type": "User", "url": "https://api.github.com/users/slowwavesleep" }
[]
closed
false
null
[]
null
[]
"2021-10-19T14:48:38Z"
"2021-10-25T14:07:04Z"
"2021-10-25T14:07:04Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3108.diff", "html_url": "https://github.com/huggingface/datasets/pull/3108", "merged_at": "2021-10-25T14:07:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/3108.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3108" }
This PR adds the NLTK implementation of Google BLEU metric. This is also a part of an effort to resolve an unfortunate naming collision between GLEU for machine translation and GLEU for grammatical error correction. I used [this page](https://huggingface.co/docs/datasets/add_metric.html) for reference. Please, point me to the right direction if I missed anything.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3108/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3108/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3177
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3177/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3177/comments
https://api.github.com/repos/huggingface/datasets/issues/3177/events
https://github.com/huggingface/datasets/issues/3177
1,039,487,780
I_kwDODunzps499VMk
3,177
More control over TQDM when using map/filter with multiple processes
{ "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BramVanroy", "id": 2779410, "login": "BramVanroy", "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "repos_url": "https://api.github.com/users/BramVanroy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "type": "User", "url": "https://api.github.com/users/BramVanroy" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Hi,\r\n\r\nIt's hard to provide an API that would cover all use-cases with tqdm in this project.\r\n\r\nHowever, you can make it work by defining a custom decorator (a bit hacky tho) as follows:\r\n```python\r\nimport datasets\r\n\r\ndef progress_only_on_rank_0(func):\r\n def wrapper(*args, **kwargs):\r\n rank = kwargs.get(\"rank\")\r\n disable_tqdm = kwargs.get(\"disable_tqdm\", False)\r\n disable_tqdm = True if rank is not None and rank > 0 else disable_tqdm\r\n kwargs[\"disable_tqdm\"] = disable_tqdm\r\n return func(*args, **kwargs)\r\n return wrapper\r\n \r\ndatasets.Dataset._map_single = progress_only_on_rank_0(datasets.Dataset._map_single)\r\n``` \r\n\r\nEDIT: Ups, closed by accident.\r\n\r\nThanks for the provided links. `Trainer` requires this for training in multi-node distributed setting. However, `Dataset.map` doesn't support that yet.\r\n\r\nDo you have an API for this in mind? `Dataset.map` is already bloated with the arguments, so IMO it's not a good idea to add a new arg there.\r\n\r\n", "Inspiration may be found at `transformers`.\r\n\r\nhttps://github.com/huggingface/transformers/blob/4a394cf53f05e73ab9bbb4b179a40236a5ffe45a/src/transformers/trainer.py#L1231-L1233\r\n\r\nTo get unique IDs for each worker, see https://stackoverflow.com/a/10192611/1150683" ]
"2021-10-29T11:56:16Z"
"2023-02-13T20:16:40Z"
"2023-02-13T20:16:40Z"
CONTRIBUTOR
null
null
null
It would help with the clutter in my terminal if tqdm is only shown for rank 0 when using `num_proces>0` in the map and filter methods of datasets. ```python dataset.map(lambda examples: tokenize(examples["text"]), batched=True, num_proc=6) ``` The above snippet leads to a lot of TQDM bars and depending on your terminal, these will not overwrite but keep pushing each other down. ``` #0: 0%| | 0/13 [00:00<?, ?ba/s] #1: 0%| | 0/13 [00:00<?, ?ba/s] #2: 0%| | 0/13 [00:00<?, ?ba/s] #3: 0%| | 0/13 [00:00<?, ?ba/s] #4: 0%| | 0/13 [00:00<?, ?ba/s] #5: 0%| | 0/13 [00:00<?, ?ba/s] #0: 8%| | 1/13 [00:00<?, ?ba/s] #1: 8%| | 1/13 [00:00<?, ?ba/s] ... ``` Instead, it would be welcome if we had the option to only show the progress of rank 0.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3177/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3177/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4166
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4166/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4166/comments
https://api.github.com/repos/huggingface/datasets/issues/4166/events
https://github.com/huggingface/datasets/pull/4166
1,203,758,004
PR_kwDODunzps42M0dS
4,166
Fix exact match
{ "avatar_url": "https://avatars.githubusercontent.com/u/27527747?v=4", "events_url": "https://api.github.com/users/emibaylor/events{/privacy}", "followers_url": "https://api.github.com/users/emibaylor/followers", "following_url": "https://api.github.com/users/emibaylor/following{/other_user}", "gists_url": "https://api.github.com/users/emibaylor/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/emibaylor", "id": 27527747, "login": "emibaylor", "node_id": "MDQ6VXNlcjI3NTI3NzQ3", "organizations_url": "https://api.github.com/users/emibaylor/orgs", "received_events_url": "https://api.github.com/users/emibaylor/received_events", "repos_url": "https://api.github.com/users/emibaylor/repos", "site_admin": false, "starred_url": "https://api.github.com/users/emibaylor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/emibaylor/subscriptions", "type": "User", "url": "https://api.github.com/users/emibaylor" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-04-13T20:28:06Z"
"2022-05-03T12:23:31Z"
"2022-05-03T12:16:27Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4166.diff", "html_url": "https://github.com/huggingface/datasets/pull/4166", "merged_at": "2022-05-03T12:16:27Z", "patch_url": "https://github.com/huggingface/datasets/pull/4166.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4166" }
Clarify docs and add clarifying example to the exact_match metric
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4166/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4166/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2041
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2041/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2041/comments
https://api.github.com/repos/huggingface/datasets/issues/2041/events
https://github.com/huggingface/datasets/pull/2041
830,180,803
MDExOlB1bGxSZXF1ZXN0NTkxNzMyNzMw
2,041
Doc2dial update data_infos and data_loaders
{ "avatar_url": "https://avatars.githubusercontent.com/u/2062185?v=4", "events_url": "https://api.github.com/users/songfeng/events{/privacy}", "followers_url": "https://api.github.com/users/songfeng/followers", "following_url": "https://api.github.com/users/songfeng/following{/other_user}", "gists_url": "https://api.github.com/users/songfeng/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/songfeng", "id": 2062185, "login": "songfeng", "node_id": "MDQ6VXNlcjIwNjIxODU=", "organizations_url": "https://api.github.com/users/songfeng/orgs", "received_events_url": "https://api.github.com/users/songfeng/received_events", "repos_url": "https://api.github.com/users/songfeng/repos", "site_admin": false, "starred_url": "https://api.github.com/users/songfeng/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/songfeng/subscriptions", "type": "User", "url": "https://api.github.com/users/songfeng" }
[]
closed
false
null
[]
null
[]
"2021-03-12T14:39:29Z"
"2021-03-16T11:09:20Z"
"2021-03-16T11:09:20Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2041.diff", "html_url": "https://github.com/huggingface/datasets/pull/2041", "merged_at": "2021-03-16T11:09:20Z", "patch_url": "https://github.com/huggingface/datasets/pull/2041.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2041" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2041/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2041/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5162
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5162/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5162/comments
https://api.github.com/repos/huggingface/datasets/issues/5162/events
https://github.com/huggingface/datasets/issues/5162
1,422,461,112
I_kwDODunzps5UyQi4
5,162
Pip-compile: Could not find a version that matches dill<0.3.6,>=0.3.6
{ "avatar_url": "https://avatars.githubusercontent.com/u/8604946?v=4", "events_url": "https://api.github.com/users/Rijgersberg/events{/privacy}", "followers_url": "https://api.github.com/users/Rijgersberg/followers", "following_url": "https://api.github.com/users/Rijgersberg/following{/other_user}", "gists_url": "https://api.github.com/users/Rijgersberg/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Rijgersberg", "id": 8604946, "login": "Rijgersberg", "node_id": "MDQ6VXNlcjg2MDQ5NDY=", "organizations_url": "https://api.github.com/users/Rijgersberg/orgs", "received_events_url": "https://api.github.com/users/Rijgersberg/received_events", "repos_url": "https://api.github.com/users/Rijgersberg/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Rijgersberg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rijgersberg/subscriptions", "type": "User", "url": "https://api.github.com/users/Rijgersberg" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Thanks for reporting, @Rijgersberg.\r\n\r\nWe were waiting for the release of `dill` 0.3.6, that happened 2 days ago (24 Oct 2022): https://github.com/uqfoundation/dill/releases/tag/dill-0.3.6\r\n- See comment: https://github.com/huggingface/datasets/pull/4397#discussion_r880629543\r\n\r\nAlso `multiprocess` 0.70.14 was released 2 days ago: https://github.com/uqfoundation/multiprocess/releases/tag/multiprocess-0.70.14\r\n\r\nWe are addressing this issue to align dependencies.", "In your specific setup, I guess the compatible configuration is with `multiprocess` 0.70.13 (instead of 0.70.14).", "@Rijgersberg this issue is fixed. It will be available in our next `datasets` release.", "Thanks!", "> @Rijgersberg this issue is fixed. It will be available in our next `datasets` release.\n\nAny chance you have a eta? ", "@StefanSamba we are disussing about making a release early this week.", "@Rijgersberg, please also that you can make `pip-compile` work by using the backtracking resolver (instead of the legacy one): https://pip-tools.readthedocs.io/en/latest/#a-note-on-resolvers\r\n```\r\npip-compile --resolver=backtracking requirements.in\r\n```\r\nThis resolver will automatically use `multiprocess` 0.70.13 version. " ]
"2022-10-25T13:23:50Z"
"2022-11-14T08:25:37Z"
"2022-10-28T05:38:15Z"
NONE
null
null
null
### Describe the bug When using `pip-compile` (part of `pip-tools`) to generate a pinned requirements file that includes `datasets`, a version conflict of `dill` appears. It is caused by a transitive dependency conflict between `datasets` and `multiprocess`. ### Steps to reproduce the bug ```bash $ echo "datasets" > requirements.in $ pip install pip-tools $ pip-compile requirements.in Could not find a version that matches dill<0.3.6,>=0.3.6 (from datasets==2.6.1->-r requirements.in (line 1)) Tried: 0.2, 0.2, 0.2.1, 0.2.1, 0.2.2, 0.2.2, 0.2.3, 0.2.3, 0.2.4, 0.2.4, 0.2.5, 0.2.5, 0.2.6, 0.2.7, 0.2.7.1, 0.2.8, 0.2.8.1, 0.2.8.2, 0.2.9, 0.3.0, 0.3.1, 0.3.1.1, 0.3.2, 0.3.3, 0.3.3, 0.3.4, 0.3.4, 0.3.5, 0.3.5, 0.3.5.1, 0.3.5.1, 0.3.6, 0.3.6 Skipped pre-versions: 0.1a1, 0.2a1, 0.2a1, 0.2b1, 0.2b1 There are incompatible versions in the resolved dependencies: dill<0.3.6 (from datasets==2.6.1->-r requirements.in (line 1)) dill>=0.3.6 (from multiprocess==0.70.14->datasets==2.6.1->-r requirements.in (line 1)) ``` ### Expected behavior A correctly generated file `requirements.txt` with pinned dependencies ### Environment info Tested with versions `2.6.1, 2.6.0, 2.5.2` on Python 3.8 and 3.10 on Ubuntu 20.04LTS and Python 3.10 on MacOS 12.6 (M1).
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5162/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5162/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2228
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2228/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2228/comments
https://api.github.com/repos/huggingface/datasets/issues/2228/events
https://github.com/huggingface/datasets/pull/2228
859,795,563
MDExOlB1bGxSZXF1ZXN0NjE2ODE2MTQz
2,228
[WIP] Add ArrayXD support for fixed size list.
{ "avatar_url": "https://avatars.githubusercontent.com/u/22685854?v=4", "events_url": "https://api.github.com/users/jblemoine/events{/privacy}", "followers_url": "https://api.github.com/users/jblemoine/followers", "following_url": "https://api.github.com/users/jblemoine/following{/other_user}", "gists_url": "https://api.github.com/users/jblemoine/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jblemoine", "id": 22685854, "login": "jblemoine", "node_id": "MDQ6VXNlcjIyNjg1ODU0", "organizations_url": "https://api.github.com/users/jblemoine/orgs", "received_events_url": "https://api.github.com/users/jblemoine/received_events", "repos_url": "https://api.github.com/users/jblemoine/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jblemoine/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jblemoine/subscriptions", "type": "User", "url": "https://api.github.com/users/jblemoine" }
[]
open
false
null
[]
null
[ "Awesome thanks ! To fix the CI you just need to merge master into your branch.\r\nThe error is unrelated to your PR" ]
"2021-04-16T13:04:08Z"
"2022-07-06T15:19:48Z"
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2228.diff", "html_url": "https://github.com/huggingface/datasets/pull/2228", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2228.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2228" }
Add support for fixed size list for ArrayXD when shape is known . See https://github.com/huggingface/datasets/issues/2146 Since offset are not stored anymore, the file size is now roughly equal to the actual data size.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2228/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2228/timeline
null
null
true