url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 758M
1.95B
| node_id
stringlengths 18
32
| number
int64 1.2k
6.31k
| title
stringlengths 1
290
| user
dict | labels
listlengths 0
3
| state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
listlengths 0
4
| milestone
dict | comments
sequencelengths 0
30
| created_at
unknown | updated_at
unknown | closed_at
unknown | author_association
stringclasses 3
values | active_lock_reason
float64 | draft
float64 0
1
⌀ | pull_request
dict | body
stringlengths 0
36.2k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
float64 | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/3799 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3799/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3799/comments | https://api.github.com/repos/huggingface/datasets/issues/3799/events | https://github.com/huggingface/datasets/pull/3799 | 1,155,356,102 | PR_kwDODunzps4zus9R | 3,799 | Xtreme-S Metrics | {
"avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4",
"events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}",
"followers_url": "https://api.github.com/users/patrickvonplaten/followers",
"following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}",
"gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/patrickvonplaten",
"id": 23423619,
"login": "patrickvonplaten",
"node_id": "MDQ6VXNlcjIzNDIzNjE5",
"organizations_url": "https://api.github.com/users/patrickvonplaten/orgs",
"received_events_url": "https://api.github.com/users/patrickvonplaten/received_events",
"repos_url": "https://api.github.com/users/patrickvonplaten/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions",
"type": "User",
"url": "https://api.github.com/users/patrickvonplaten"
} | [] | closed | false | null | [] | null | [
"@lhoestq - if you could take a final review here this would be great (if you have 5min :-) ) ",
"Don't think the failures are related but not 100% sure",
"Yes the CI fail is unrelated - you can ignore it"
] | "2022-03-01T13:42:28Z" | "2022-03-16T14:40:29Z" | "2022-03-16T14:40:26Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3799.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3799",
"merged_at": "2022-03-16T14:40:26Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3799.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3799"
} | **Added datasets (TODO)**:
- [x] MLS
- [x] Covost2
- [x] Minds-14
- [x] Voxpopuli
- [x] FLoRes (need data)
**Metrics**: Done | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3799/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3799/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3343 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3343/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3343/comments | https://api.github.com/repos/huggingface/datasets/issues/3343/events | https://github.com/huggingface/datasets/pull/3343 | 1,067,505,507 | PR_kwDODunzps4vM8yB | 3,343 | Better error message when download fails | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [] | "2021-11-30T17:38:50Z" | "2021-12-01T11:27:59Z" | "2021-12-01T11:27:58Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3343.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3343",
"merged_at": "2021-12-01T11:27:58Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3343.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3343"
} | From our discussions in https://github.com/huggingface/datasets/issues/3269 and https://github.com/huggingface/datasets/issues/3282 it would be nice to have better messages if a download fails.
In particular the error now shows:
- the error from the HEAD request if there's one
- otherwise the response code of the HEAD request
I also added an error to tell users to pass `use_auth_token` when the Hugging Face Hub returns 401 (Unauthorized).
While paying around with this I also fixed a minor issue with the `force_download` parameter that was not always taken into account | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3343/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3343/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4483 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4483/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4483/comments | https://api.github.com/repos/huggingface/datasets/issues/4483/events | https://github.com/huggingface/datasets/issues/4483 | 1,269,253,840 | I_kwDODunzps5Lp0bQ | 4,483 | Dataset.map throws pyarrow.lib.ArrowNotImplementedError when converting from list of empty lists | {
"avatar_url": "https://avatars.githubusercontent.com/u/48946947?v=4",
"events_url": "https://api.github.com/users/sanderland/events{/privacy}",
"followers_url": "https://api.github.com/users/sanderland/followers",
"following_url": "https://api.github.com/users/sanderland/following{/other_user}",
"gists_url": "https://api.github.com/users/sanderland/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sanderland",
"id": 48946947,
"login": "sanderland",
"node_id": "MDQ6VXNlcjQ4OTQ2OTQ3",
"organizations_url": "https://api.github.com/users/sanderland/orgs",
"received_events_url": "https://api.github.com/users/sanderland/received_events",
"repos_url": "https://api.github.com/users/sanderland/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sanderland/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanderland/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sanderland"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
}
] | null | [
"Hi @sanderland ! Thanks for reporting :) This is a bug, I opened a PR to fix it. We'll do a new release soon\r\n\r\nIn the meantime you can fix it by specifying in advance that the \"label\" are integers:\r\n```python\r\nimport numpy as np\r\n\r\nds = Dataset.from_dict(\r\n {\r\n \"text\": [\"the lazy dog jumps over the quick fox\", \"another sentence\"],\r\n \"label\": [[], []],\r\n }\r\n)\r\n# explicitly say that the \"label\" type is int64, even though it contains only null values\r\nds = ds.cast_column(\"label\", Sequence(Value(\"int64\")))\r\n\r\ndef mapper(features):\r\n features['label'] = [\r\n [0,0,0] for l in features['label']\r\n ]\r\n return features\r\n\r\nds_mapped = ds.map(mapper,batched=True)\r\n```"
] | "2022-06-13T10:47:52Z" | "2022-06-14T13:34:14Z" | "2022-06-14T13:34:14Z" | CONTRIBUTOR | null | null | null | ## Describe the bug
Dataset.map throws pyarrow.lib.ArrowNotImplementedError: Unsupported cast from int64 to null using function cast_null when converting from a type of 'empty lists' to 'lists with some type'.
This appears to be due to the interaction of arrow internals and some assumptions made by datasets.
The bug appeared when binarizing some labels, and then adding a dataset which had all these labels absent (to force the model to not label empty strings such with anything)
Particularly the fact that this only happens in batched mode is strange.
## Steps to reproduce the bug
```python
import numpy as np
ds = Dataset.from_dict(
{
"text": ["the lazy dog jumps over the quick fox", "another sentence"],
"label": [[], []],
}
)
def mapper(features):
features['label'] = [
[0,0,0] for l in features['label']
]
return features
ds_mapped = ds.map(mapper,batched=True)
```
## Expected results
Not crashing
## Actual results
```
../.venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:2346: in map
return self._map_single(
../.venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:532: in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
../.venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:499: in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
../.venv/lib/python3.8/site-packages/datasets/fingerprint.py:458: in wrapper
out = func(self, *args, **kwargs)
../.venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:2751: in _map_single
writer.write_batch(batch)
../.venv/lib/python3.8/site-packages/datasets/arrow_writer.py:503: in write_batch
arrays.append(pa.array(typed_sequence))
pyarrow/array.pxi:230: in pyarrow.lib.array
???
pyarrow/array.pxi:110: in pyarrow.lib._handle_arrow_array_protocol
???
../.venv/lib/python3.8/site-packages/datasets/arrow_writer.py:198: in __arrow_array__
out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type)
../.venv/lib/python3.8/site-packages/datasets/table.py:1675: in wrapper
return func(array, *args, **kwargs)
../.venv/lib/python3.8/site-packages/datasets/table.py:1812: in cast_array_to_feature
casted_values = _c(array.values, feature.feature)
../.venv/lib/python3.8/site-packages/datasets/table.py:1675: in wrapper
return func(array, *args, **kwargs)
../.venv/lib/python3.8/site-packages/datasets/table.py:1843: in cast_array_to_feature
return array_cast(array, feature(), allow_number_to_str=allow_number_to_str)
../.venv/lib/python3.8/site-packages/datasets/table.py:1675: in wrapper
return func(array, *args, **kwargs)
../.venv/lib/python3.8/site-packages/datasets/table.py:1752: in array_cast
return array.cast(pa_type)
pyarrow/array.pxi:915: in pyarrow.lib.Array.cast
???
../.venv/lib/python3.8/site-packages/pyarrow/compute.py:376: in cast
return call_function("cast", [arr], options)
pyarrow/_compute.pyx:542: in pyarrow._compute.call_function
???
pyarrow/_compute.pyx:341: in pyarrow._compute.Function.call
???
pyarrow/error.pxi:144: in pyarrow.lib.pyarrow_internal_check_status
???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
> ???
E pyarrow.lib.ArrowNotImplementedError: Unsupported cast from int64 to null using function cast_null
pyarrow/error.pxi:121: ArrowNotImplementedError
```
## Workarounds
* Not using batched=True
* Using an np.array([],dtype=float) or similar instead of [] in the input
* Naming the output column differently from the input column
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.2.2
- Platform: Ubuntu
- Python version: 3.8
- PyArrow version: 8.0.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4483/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4483/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/3005 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3005/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3005/comments | https://api.github.com/repos/huggingface/datasets/issues/3005/events | https://github.com/huggingface/datasets/issues/3005 | 1,014,615,420 | I_kwDODunzps48ec18 | 3,005 | DatasetDict.filter and Dataset.filter crashes with any "fn_kwargs" argument | {
"avatar_url": "https://avatars.githubusercontent.com/u/22641583?v=4",
"events_url": "https://api.github.com/users/DrMatters/events{/privacy}",
"followers_url": "https://api.github.com/users/DrMatters/followers",
"following_url": "https://api.github.com/users/DrMatters/following{/other_user}",
"gists_url": "https://api.github.com/users/DrMatters/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/DrMatters",
"id": 22641583,
"login": "DrMatters",
"node_id": "MDQ6VXNlcjIyNjQxNTgz",
"organizations_url": "https://api.github.com/users/DrMatters/orgs",
"received_events_url": "https://api.github.com/users/DrMatters/received_events",
"repos_url": "https://api.github.com/users/DrMatters/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/DrMatters/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/DrMatters/subscriptions",
"type": "User",
"url": "https://api.github.com/users/DrMatters"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [
"Hi @DrMatters, thanks for reporting.\r\n\r\nThis issue was fixed 14 days ago: #2950.\r\n\r\nCurrently, the fix is only in the master branch and will be made available in our next library release.\r\n\r\nIn the meantime, you can incorporate the fix by installing datasets from the master branch:\r\n```shell\r\npip install -U git+ssh://git@github.com/huggingface/datasets.git@master#egg=datasest\r\n```\r\nor\r\n```shell\r\npip install -U git+https://github.com/huggingface/datasets.git@master#egg=datasets\r\n```",
"Thanks, sorry for bothering"
] | "2021-10-04T00:49:29Z" | "2021-10-11T10:18:01Z" | "2021-10-04T08:46:13Z" | NONE | null | null | null | ## Describe the bug
The ".filter" method of DatasetDict or Dataset objects fails when passing any "fn_kwargs" argument
## Steps to reproduce the bug
```python
import datasets
example_dataset = datasets.Dataset.from_dict({"a": {1, 2, 3, 4}})
def filter_value(example, value):
return example['a'] == value
filtered = example_dataset.filter(filter_value, fn_kwargs={'value': 3})
```
## Expected results
`filtered` is a dataset containing {"a": {3}}
## Actual results
> Traceback (most recent call last):
> File "C:\Users\qsemi\Documents\git\nlp_experiments\gpt_celebrity\src\test_faulty_filter.py", line 8, in <module>
> filtered = example_dataset.filter(filter_value, fn_kwargs={'value': 3})
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 185, in wrapper
> out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\fingerprint.py", line 398, in wrapper
> out = func(self, *args, **kwargs)
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 2169, in filter
> indices = self.map(
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 1686, in map
> return self._map_single(
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 185, in wrapper
> out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\fingerprint.py", line 398, in wrapper
> out = func(self, *args, **kwargs)
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 2048, in _map_single
> batch = apply_function_on_filtered_inputs(
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 1939, in apply_function_on_filtered_inputs
> function(*fn_args, effective_indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs)
> TypeError: get_indices_from_mask_function() got an unexpected keyword argument 'value'
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: Windows-10-10.0.19042-SP0
- Python version: 3.9.7
- PyArrow version: 5.0.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3005/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3005/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4473 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4473/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4473/comments | https://api.github.com/repos/huggingface/datasets/issues/4473/events | https://github.com/huggingface/datasets/pull/4473 | 1,267,555,994 | PR_kwDODunzps45d5-R | 4,473 | Add SST-2 dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"on the hub this dataset is referenced as `sst-2` not `sst2` – is there a canonical orthography? If not, could we name it `sst-2`?",
"@julien-c, we normally do not use hyphens for dataset names: whenever the original dataset name contains a hyphen, we usually:\r\n- either suppress it: CoNLL-2000 (`conll2000`), CORD-19 (`cord19`)\r\n- or replace it with underscore: CC-News (`cc_news`), SQuAD-es (`squad_es`)\r\n\r\nThere are some exceptions though... (I wonder why)\r\n\r\nI think, the reason is there was a 1-to-1 relation with the corresponding Python module name.\r\n\r\nI personally find confusing not having a rule and using both hyphens and underscores indistinctly: you never know which is the right orthography.\r\n\r\nWhichever the decision we make, I would prefer to be applied consistently.\r\n\r\nAlso note that we already implemented this dataset as part of GLUE: https://github.com/huggingface/datasets/blob/master/datasets/glue/glue.py#L163\r\n- dataset name: `glue`\r\n- config name: `sst2`\r\n\r\nOn the other hand, let's see how other libraries name it:\r\n- torchtext: `SST2` https://pytorch.org/text/stable/datasets.html#sst2\r\n- OpenAI CLIP: `rendered-sst2` https://github.com/openai/CLIP/blob/main/data/rendered-sst2.md\r\n- Kaggle: `SST2` https://www.kaggle.com/datasets/atulanandjha/stanford-sentiment-treebank-v2-sst2/version/22\r\n- TensorFlow Datasets: `glue/sst2` https://www.tensorflow.org/datasets/catalog/glue#gluesst2",
"Ok, another option is to open PRs against the models in https://huggingface.co/models?datasets=sst-2 to change their dataset reference to `sst2`\r\n\r\n(BTW some models refer to `sst2` already – but they're less popular: https://huggingface.co/models?datasets=sst2)",
"OK, I'm taking care of the subsequent PRs on models to align with this dataset name."
] | "2022-06-10T13:37:26Z" | "2022-06-13T14:11:34Z" | "2022-06-13T14:01:09Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4473.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4473",
"merged_at": "2022-06-13T14:01:09Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4473.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4473"
} | Add SST-2 dataset.
Currently it is part of GLUE benchmark.
This PR adds it as a standalone dataset.
CC: @julien-c | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 1,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4473/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4473/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3726 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3726/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3726/comments | https://api.github.com/repos/huggingface/datasets/issues/3726/events | https://github.com/huggingface/datasets/pull/3726 | 1,138,870,362 | PR_kwDODunzps4y3iSv | 3,726 | Use config pandas version in CSV dataset builder | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [] | "2022-02-15T15:47:49Z" | "2022-02-15T16:55:45Z" | "2022-02-15T16:55:44Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3726.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3726",
"merged_at": "2022-02-15T16:55:44Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3726.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3726"
} | Fix #3724. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3726/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3726/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6214 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6214/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6214/comments | https://api.github.com/repos/huggingface/datasets/issues/6214/events | https://github.com/huggingface/datasets/issues/6214 | 1,881,736,469 | I_kwDODunzps5wKQUV | 6,214 | Unpin fsspec < 2023.9.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
}
] | null | [] | "2023-09-05T11:02:58Z" | "2023-09-26T15:32:52Z" | "2023-09-26T15:32:52Z" | MEMBER | null | null | null | Once root issue is fixed, remove temporary pin of fsspec < 2023.9.0 introduced by:
- #6210
Related to issue:
- #6209
After investigation, I think the root issue is related to the new glob behavior with double asterisk `**` they have introduced in:
- https://github.com/fsspec/filesystem_spec/pull/1329 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6214/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6214/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/1288 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1288/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1288/comments | https://api.github.com/repos/huggingface/datasets/issues/1288/events | https://github.com/huggingface/datasets/pull/1288 | 759,309,457 | MDExOlB1bGxSZXF1ZXN0NTM0MzM2Mzgz | 1,288 | Add CodeSearchNet corpus dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/33657802?v=4",
"events_url": "https://api.github.com/users/SBrandeis/events{/privacy}",
"followers_url": "https://api.github.com/users/SBrandeis/followers",
"following_url": "https://api.github.com/users/SBrandeis/following{/other_user}",
"gists_url": "https://api.github.com/users/SBrandeis/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/SBrandeis",
"id": 33657802,
"login": "SBrandeis",
"node_id": "MDQ6VXNlcjMzNjU3ODAy",
"organizations_url": "https://api.github.com/users/SBrandeis/orgs",
"received_events_url": "https://api.github.com/users/SBrandeis/received_events",
"repos_url": "https://api.github.com/users/SBrandeis/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/SBrandeis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SBrandeis/subscriptions",
"type": "User",
"url": "https://api.github.com/users/SBrandeis"
} | [] | closed | false | null | [] | null | [
"@lhoestq ready for a second review"
] | "2020-12-08T10:07:50Z" | "2020-12-09T17:05:28Z" | "2020-12-09T17:05:28Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1288.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1288",
"merged_at": "2020-12-09T17:05:27Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1288.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1288"
} | This PR adds the CodeSearchNet corpus proxy dataset for semantic code search: https://github.com/github/CodeSearchNet
I have had a few issues, mentioned below. Would appreciate some help on how to solve them.
## Issues generating dataset card
Is there something wrong with my declaration of the dataset features ?
```
features=datasets.Features(
{
"repository_name": datasets.Value("string"),
"func_path_in_repository": datasets.Value("string"),
"func_name": datasets.Value("string"),
"whole_func_string": datasets.Value("string"),
"language": datasets.Value("string"),
"func_code_string": datasets.Value("string"),
"func_code_tokens": datasets.Sequence(datasets.Value("string")),
"func_documentation_string": datasets.Value("string"),
"func_documentation_tokens": datasets.Sequence(datasets.Value("string")),
"split_name": datasets.Value("string"),
"func_code_url": datasets.Value("string"),
# TODO - add licensing info in the examples
}
),
```
When running the streamlite app for tagging the dataset on my machine, I get the following error :
![image](https://user-images.githubusercontent.com/33657802/101469132-9ed12c80-3944-11eb-94ff-2d9c1d0ea080.png)
## Issues with dummy data
Due to the unusual structure of the data, I have been unable to generate dummy data automatically.
I tried to generate it manually, but pytests fail when using the manually-generated dummy data ! Pytests work fine when using the real data.
```
============================================================================================== test session starts ==============================================================================================
platform linux -- Python 3.7.9, pytest-6.1.2, py-1.9.0, pluggy-0.13.1
plugins: xdist-2.1.0, forked-1.3.0
collected 1 item
tests/test_dataset_common.py F [100%]
=================================================================================================== FAILURES ====================================================================================================
________________________________________________________________________ LocalDatasetTest.test_load_dataset_all_configs_code_search_net _________________________________________________________________________
self = <tests.test_dataset_common.LocalDatasetTest testMethod=test_load_dataset_all_configs_code_search_net>, dataset_name = 'code_search_net'
@slow
def test_load_dataset_all_configs(self, dataset_name):
configs = self.dataset_tester.load_all_configs(dataset_name, is_local=True)
> self.dataset_tester.check_load_dataset(dataset_name, configs, is_local=True)
tests/test_dataset_common.py:237:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
tests/test_dataset_common.py:198: in check_load_dataset
self.parent.assertTrue(len(dataset[split]) > 0)
E AssertionError: False is not true
--------------------------------------------------------------------------------------------- Captured stdout call ----------------------------------------------------------------------------------------------
Downloading and preparing dataset code_search_net/all (download: 1.00 MiB, generated: 1.00 MiB, post-processed: Unknown size, total: 2.00 MiB) to /tmp/tmppx78sj24/code_search_net/all/1.0.0...
Dataset code_search_net downloaded and prepared to /tmp/tmppx78sj24/code_search_net/all/1.0.0. Subsequent calls will reuse this data.
--------------------------------------------------------------------------------------------- Captured stderr call ----------------------------------------------------------------------------------------------
... (irrelevant info - Deprecation warnings)
============================================================================================ short test summary info ============================================================================================
FAILED tests/test_dataset_common.py::LocalDatasetTest::test_load_dataset_all_configs_code_search_net - AssertionError: False is not true
========================================================================================= 1 failed, 4 warnings in 3.00s ========================================================================================
```
## Note : Data structure in S3
The data is stored on S3, and organized by programming languages.
It is stored in the following repository structure:
```
.
├── <language_name> # e.g. python
│ └── final
│ └── jsonl
│ ├── test
│ │ └── <language_name>_test_0.jsonl.gz
│ ├── train
│ │ ├── <language_name>_train_0.jsonl.gz
│ │ ├── <language_name>_train_1.jsonl.gz
│ │ ├── ...
│ │ └── <language_name>_train_n.jsonl.gz
│ └── valid
│ └── <language_name>_valid_0.jsonl.gz
├── <language_name>_dedupe_definitions_v2.pkl
└── <language_name>_licenses.pkl
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1288/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1288/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6257 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6257/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6257/comments | https://api.github.com/repos/huggingface/datasets/issues/6257/events | https://github.com/huggingface/datasets/issues/6257 | 1,910,741,044 | I_kwDODunzps5x45g0 | 6,257 | HfHubHTTPError - exceeded our hourly quotas for action: commit | {
"avatar_url": "https://avatars.githubusercontent.com/u/57996478?v=4",
"events_url": "https://api.github.com/users/yuvalkirstain/events{/privacy}",
"followers_url": "https://api.github.com/users/yuvalkirstain/followers",
"following_url": "https://api.github.com/users/yuvalkirstain/following{/other_user}",
"gists_url": "https://api.github.com/users/yuvalkirstain/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/yuvalkirstain",
"id": 57996478,
"login": "yuvalkirstain",
"node_id": "MDQ6VXNlcjU3OTk2NDc4",
"organizations_url": "https://api.github.com/users/yuvalkirstain/orgs",
"received_events_url": "https://api.github.com/users/yuvalkirstain/received_events",
"repos_url": "https://api.github.com/users/yuvalkirstain/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/yuvalkirstain/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yuvalkirstain/subscriptions",
"type": "User",
"url": "https://api.github.com/users/yuvalkirstain"
} | [] | closed | false | null | [] | null | [
"how is your dataset structured? (file types, how many commits and files are you trying to push, etc)",
"I succeeded in uploading it after several attempts with an hour gap between each attempt (inconvenient but worked). The final dataset is [here](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2), code and context to the dataset can be found [here](https://github.com/yuvalkirstain/PickScore/).\r\nI can close the issue if this behavior is intended, as most users probably do not need to upload large-scale datasets.",
"We could fix this by creating a single commit for all the (Parquet) shards in `push_to_hub` instead of one commit per shard, as we currently do. \r\n\r\n@Wauplin Any updates on the 2-step commit process suggested by you that we need to implement this?",
"> Any updates on the 2-step commit process suggested by you that we need to implement this?\r\n\r\nRe-prioritizing this, sorry. Will let you know but probably can be done this week."
] | "2023-09-25T06:11:43Z" | "2023-10-16T13:30:49Z" | "2023-10-16T13:30:48Z" | NONE | null | null | null | ### Describe the bug
I try to upload a very large dataset of images, and get the following error:
```
File /fsx-multigen/yuvalkirstain/miniconda/envs/pickapic/lib/python3.10/site-packages/huggingface_hub/hf_api.py:2712, in HfApi.create_commit(self, repo_id, operations, commit_message, commit_description, token, repo_type, revision, create_pr, num_threads, parent_commit, run_as_future)
2710 try:
2711 commit_resp = get_session().post(url=commit_url, headers=headers, data=data, params=params)
-> 2712 hf_raise_for_status(commit_resp, endpoint_name="commit")
2713 except RepositoryNotFoundError as e:
2714 e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE)
File /fsx-multigen/yuvalkirstain/miniconda/envs/pickapic/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py:301, in hf_raise_for_status(response, endpoint_name)
297 raise BadRequestError(message, response=response) from e
299 # Convert `HTTPError` into a `HfHubHTTPError` to display request information
300 # as well (request id and/or server error message)
--> 301 raise HfHubHTTPError(str(e), response=response) from e
HfHubHTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co/api/datasets/yuvalkirstain/pickapic_v2/commit/main (Request ID: Root=1-65112399-12d63f7d7f28bfa40a36a0fd)
You have exceeded our hourly quotas for action: commit. We invite you to retry later.
```
this makes it much less convenient to host large datasets on HF hub.
### Steps to reproduce the bug
Upload a very large dataset of images
### Expected behavior
the upload to work well
### Environment info
- `datasets` version: 2.13.1
- Platform: Linux-5.15.0-1033-aws-x86_64-with-glibc2.31
- Python version: 3.10.11
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 1.5.3 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6257/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6257/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5523 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5523/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5523/comments | https://api.github.com/repos/huggingface/datasets/issues/5523/events | https://github.com/huggingface/datasets/issues/5523 | 1,580,193,015 | I_kwDODunzps5eL9T3 | 5,523 | Checking that split name is correct happens only after the data is downloaded | {
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | open | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
}
] | null | [] | "2023-02-10T19:13:03Z" | "2023-02-10T19:14:50Z" | null | CONTRIBUTOR | null | null | null | ### Describe the bug
Verification of split names (=indexing data by split) happens after downloading the data. So when the split name is incorrect, users learn about that only after the data is fully downloaded, for large datasets it might take a lot of time.
### Steps to reproduce the bug
Load any dataset with random split name, for example:
```python
from datasets import load_dataset
load_dataset("mozilla-foundation/common_voice_11_0", "en", split="blabla")
```
and the download will start smoothly, despite there is no split named "blabla".
### Expected behavior
Raise error when split name is incorrect.
### Environment info
`datasets==2.9.1.dev0` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5523/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5523/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5512 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5512/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5512/comments | https://api.github.com/repos/huggingface/datasets/issues/5512/events | https://github.com/huggingface/datasets/pull/5512 | 1,576,142,432 | PR_kwDODunzps5JhtQy | 5,512 | Speed up batched PyTorch DataLoader | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008882 / 0.011353 (-0.002471) | 0.004562 / 0.011008 (-0.006446) | 0.100035 / 0.038508 (0.061527) | 0.030654 / 0.023109 (0.007545) | 0.298745 / 0.275898 (0.022847) | 0.356869 / 0.323480 (0.033389) | 0.007170 / 0.007986 (-0.000815) | 0.003471 / 0.004328 (-0.000858) | 0.077975 / 0.004250 (0.073725) | 0.037861 / 0.037052 (0.000809) | 0.311643 / 0.258489 (0.053154) | 0.343504 / 0.293841 (0.049663) | 0.033768 / 0.128546 (-0.094778) | 0.011342 / 0.075646 (-0.064304) | 0.323953 / 0.419271 (-0.095319) | 0.040818 / 0.043533 (-0.002715) | 0.298492 / 0.255139 (0.043353) | 0.327292 / 0.283200 (0.044092) | 0.088423 / 0.141683 (-0.053260) | 1.489520 / 1.452155 (0.037366) | 1.532962 / 1.492716 (0.040245) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223654 / 0.018006 (0.205647) | 0.415134 / 0.000490 (0.414644) | 0.007394 / 0.000200 (0.007194) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023616 / 0.037411 (-0.013795) | 0.096652 / 0.014526 (0.082126) | 0.105239 / 0.176557 (-0.071318) | 0.148637 / 0.737135 (-0.588498) | 0.107937 / 0.296338 (-0.188402) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426816 / 0.215209 (0.211607) | 4.241533 / 2.077655 (2.163878) | 1.946493 / 1.504120 (0.442373) | 1.735765 / 1.541195 (0.194570) | 1.781424 / 1.468490 (0.312934) | 0.688082 / 4.584777 (-3.896694) | 3.396444 / 3.745712 (-0.349268) | 1.920333 / 5.269862 (-3.349528) | 1.293833 / 4.565676 (-3.271843) | 0.081967 / 0.424275 (-0.342308) | 0.012911 / 0.007607 (0.005304) | 0.536928 / 0.226044 (0.310884) | 5.452327 / 2.268929 (3.183399) | 2.505785 / 55.444624 (-52.938840) | 2.173627 / 6.876477 (-4.702850) | 2.119978 / 2.142072 (-0.022095) | 0.809012 / 4.805227 (-3.996215) | 0.149124 / 6.500664 (-6.351540) | 0.066008 / 0.075469 (-0.009461) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215702 / 1.841788 (-0.626085) | 13.757525 / 8.074308 (5.683217) | 13.999208 / 10.191392 (3.807816) | 0.164875 / 0.680424 (-0.515549) | 0.028517 / 0.534201 (-0.505684) | 0.394829 / 0.579283 (-0.184454) | 0.404962 / 0.434364 (-0.029401) | 0.484455 / 0.540337 (-0.055882) | 0.575008 / 1.386936 (-0.811928) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006754 / 0.011353 (-0.004598) | 0.004579 / 0.011008 (-0.006430) | 0.076617 / 0.038508 (0.038109) | 0.027902 / 0.023109 (0.004793) | 0.346278 / 0.275898 (0.070380) | 0.398060 / 0.323480 (0.074580) | 0.004938 / 0.007986 (-0.003047) | 0.004681 / 0.004328 (0.000353) | 0.076336 / 0.004250 (0.072086) | 0.038018 / 0.037052 (0.000966) | 0.358701 / 0.258489 (0.100212) | 0.408413 / 0.293841 (0.114572) | 0.031772 / 0.128546 (-0.096774) | 0.011604 / 0.075646 (-0.064042) | 0.085964 / 0.419271 (-0.333308) | 0.042030 / 0.043533 (-0.001502) | 0.343568 / 0.255139 (0.088429) | 0.381805 / 0.283200 (0.098605) | 0.090759 / 0.141683 (-0.050924) | 1.504553 / 1.452155 (0.052398) | 1.594006 / 1.492716 (0.101289) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227395 / 0.018006 (0.209389) | 0.403097 / 0.000490 (0.402608) | 0.000413 / 0.000200 (0.000213) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024693 / 0.037411 (-0.012718) | 0.100470 / 0.014526 (0.085944) | 0.108481 / 0.176557 (-0.068076) | 0.142791 / 0.737135 (-0.594345) | 0.109949 / 0.296338 (-0.186389) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443674 / 0.215209 (0.228465) | 4.412207 / 2.077655 (2.334553) | 2.073752 / 1.504120 (0.569632) | 1.863153 / 1.541195 (0.321958) | 1.940063 / 1.468490 (0.471573) | 0.696456 / 4.584777 (-3.888321) | 3.422120 / 3.745712 (-0.323592) | 1.902579 / 5.269862 (-3.367282) | 1.184948 / 4.565676 (-3.380729) | 0.083079 / 0.424275 (-0.341196) | 0.012649 / 0.007607 (0.005042) | 0.542035 / 0.226044 (0.315991) | 5.421826 / 2.268929 (3.152897) | 2.525092 / 55.444624 (-52.919532) | 2.177144 / 6.876477 (-4.699332) | 2.225224 / 2.142072 (0.083151) | 0.804739 / 4.805227 (-4.000488) | 0.151000 / 6.500664 (-6.349664) | 0.066987 / 0.075469 (-0.008482) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277199 / 1.841788 (-0.564589) | 14.184146 / 8.074308 (6.109838) | 13.413348 / 10.191392 (3.221956) | 0.128551 / 0.680424 (-0.551872) | 0.016461 / 0.534201 (-0.517740) | 0.379963 / 0.579283 (-0.199320) | 0.381350 / 0.434364 (-0.053014) | 0.439044 / 0.540337 (-0.101293) | 0.521559 / 1.386936 (-0.865377) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4f3c152c1c35df250d2fbeb25d5823a65714f2d8 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008876 / 0.011353 (-0.002477) | 0.004629 / 0.011008 (-0.006379) | 0.101697 / 0.038508 (0.063189) | 0.030373 / 0.023109 (0.007264) | 0.302206 / 0.275898 (0.026308) | 0.365835 / 0.323480 (0.042355) | 0.007877 / 0.007986 (-0.000109) | 0.004473 / 0.004328 (0.000144) | 0.077334 / 0.004250 (0.073084) | 0.038066 / 0.037052 (0.001014) | 0.308064 / 0.258489 (0.049575) | 0.347329 / 0.293841 (0.053488) | 0.034478 / 0.128546 (-0.094068) | 0.011651 / 0.075646 (-0.063995) | 0.323481 / 0.419271 (-0.095791) | 0.043515 / 0.043533 (-0.000018) | 0.299885 / 0.255139 (0.044746) | 0.328959 / 0.283200 (0.045760) | 0.095308 / 0.141683 (-0.046375) | 1.474058 / 1.452155 (0.021903) | 1.535335 / 1.492716 (0.042619) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197416 / 0.018006 (0.179410) | 0.421935 / 0.000490 (0.421446) | 0.003490 / 0.000200 (0.003290) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024519 / 0.037411 (-0.012892) | 0.100710 / 0.014526 (0.086185) | 0.104520 / 0.176557 (-0.072036) | 0.142048 / 0.737135 (-0.595087) | 0.109274 / 0.296338 (-0.187064) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408766 / 0.215209 (0.193557) | 4.101720 / 2.077655 (2.024065) | 1.812375 / 1.504120 (0.308256) | 1.605819 / 1.541195 (0.064624) | 1.688923 / 1.468490 (0.220433) | 0.691198 / 4.584777 (-3.893579) | 3.422137 / 3.745712 (-0.323575) | 1.921318 / 5.269862 (-3.348544) | 1.168770 / 4.565676 (-3.396906) | 0.082840 / 0.424275 (-0.341435) | 0.012740 / 0.007607 (0.005133) | 0.524333 / 0.226044 (0.298289) | 5.258077 / 2.268929 (2.989149) | 2.273177 / 55.444624 (-53.171447) | 1.931919 / 6.876477 (-4.944558) | 1.988415 / 2.142072 (-0.153658) | 0.812227 / 4.805227 (-3.993000) | 0.150043 / 6.500664 (-6.350622) | 0.066422 / 0.075469 (-0.009047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.188069 / 1.841788 (-0.653718) | 13.942681 / 8.074308 (5.868373) | 14.104658 / 10.191392 (3.913266) | 0.151966 / 0.680424 (-0.528458) | 0.028833 / 0.534201 (-0.505368) | 0.395125 / 0.579283 (-0.184158) | 0.408512 / 0.434364 (-0.025852) | 0.487587 / 0.540337 (-0.052751) | 0.570023 / 1.386936 (-0.816913) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006860 / 0.011353 (-0.004493) | 0.004582 / 0.011008 (-0.006426) | 0.079902 / 0.038508 (0.041394) | 0.027565 / 0.023109 (0.004456) | 0.341393 / 0.275898 (0.065495) | 0.378911 / 0.323480 (0.055431) | 0.005847 / 0.007986 (-0.002138) | 0.004681 / 0.004328 (0.000353) | 0.079422 / 0.004250 (0.075171) | 0.039135 / 0.037052 (0.002083) | 0.342026 / 0.258489 (0.083537) | 0.387510 / 0.293841 (0.093669) | 0.031999 / 0.128546 (-0.096547) | 0.011782 / 0.075646 (-0.063865) | 0.088563 / 0.419271 (-0.330709) | 0.042435 / 0.043533 (-0.001098) | 0.343055 / 0.255139 (0.087916) | 0.367437 / 0.283200 (0.084237) | 0.091578 / 0.141683 (-0.050104) | 1.506828 / 1.452155 (0.054673) | 1.599590 / 1.492716 (0.106874) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217939 / 0.018006 (0.199932) | 0.408352 / 0.000490 (0.407863) | 0.000394 / 0.000200 (0.000194) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026344 / 0.037411 (-0.011067) | 0.102968 / 0.014526 (0.088442) | 0.110340 / 0.176557 (-0.066217) | 0.145696 / 0.737135 (-0.591439) | 0.111632 / 0.296338 (-0.184707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440764 / 0.215209 (0.225555) | 4.423179 / 2.077655 (2.345524) | 2.057016 / 1.504120 (0.552896) | 1.848741 / 1.541195 (0.307546) | 1.939827 / 1.468490 (0.471337) | 0.699370 / 4.584777 (-3.885407) | 3.472521 / 3.745712 (-0.273191) | 3.232557 / 5.269862 (-2.037305) | 1.755534 / 4.565676 (-2.810143) | 0.083469 / 0.424275 (-0.340807) | 0.012980 / 0.007607 (0.005373) | 0.557662 / 0.226044 (0.331618) | 5.435657 / 2.268929 (3.166729) | 2.545106 / 55.444624 (-52.899519) | 2.168047 / 6.876477 (-4.708430) | 2.234070 / 2.142072 (0.091997) | 0.804662 / 4.805227 (-4.000565) | 0.152832 / 6.500664 (-6.347833) | 0.069372 / 0.075469 (-0.006097) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.299189 / 1.841788 (-0.542598) | 14.752880 / 8.074308 (6.678572) | 13.607676 / 10.191392 (3.416284) | 0.150773 / 0.680424 (-0.529650) | 0.016701 / 0.534201 (-0.517500) | 0.379507 / 0.579283 (-0.199776) | 0.389401 / 0.434364 (-0.044963) | 0.444199 / 0.540337 (-0.096139) | 0.524264 / 1.386936 (-0.862672) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#12be850b36c0b9d4841af86c75e08c0a726ffb5c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008694 / 0.011353 (-0.002659) | 0.004549 / 0.011008 (-0.006459) | 0.101164 / 0.038508 (0.062656) | 0.029644 / 0.023109 (0.006535) | 0.294849 / 0.275898 (0.018950) | 0.366755 / 0.323480 (0.043275) | 0.007205 / 0.007986 (-0.000780) | 0.004255 / 0.004328 (-0.000074) | 0.077433 / 0.004250 (0.073183) | 0.038024 / 0.037052 (0.000972) | 0.310380 / 0.258489 (0.051891) | 0.347093 / 0.293841 (0.053252) | 0.033232 / 0.128546 (-0.095314) | 0.011404 / 0.075646 (-0.064242) | 0.323341 / 0.419271 (-0.095930) | 0.040586 / 0.043533 (-0.002946) | 0.296083 / 0.255139 (0.040944) | 0.321870 / 0.283200 (0.038671) | 0.087377 / 0.141683 (-0.054306) | 1.466869 / 1.452155 (0.014715) | 1.514763 / 1.492716 (0.022046) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010272 / 0.018006 (-0.007734) | 0.414645 / 0.000490 (0.414155) | 0.003730 / 0.000200 (0.003530) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024093 / 0.037411 (-0.013318) | 0.098718 / 0.014526 (0.084192) | 0.105526 / 0.176557 (-0.071030) | 0.141578 / 0.737135 (-0.595557) | 0.109679 / 0.296338 (-0.186660) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412907 / 0.215209 (0.197698) | 4.134934 / 2.077655 (2.057280) | 1.881180 / 1.504120 (0.377060) | 1.693207 / 1.541195 (0.152012) | 1.753725 / 1.468490 (0.285235) | 0.693077 / 4.584777 (-3.891700) | 3.367409 / 3.745712 (-0.378303) | 2.749035 / 5.269862 (-2.520827) | 1.565015 / 4.565676 (-3.000662) | 0.082609 / 0.424275 (-0.341666) | 0.012500 / 0.007607 (0.004892) | 0.523619 / 0.226044 (0.297575) | 5.250188 / 2.268929 (2.981259) | 2.314255 / 55.444624 (-53.130369) | 1.962357 / 6.876477 (-4.914120) | 2.020632 / 2.142072 (-0.121441) | 0.812504 / 4.805227 (-3.992724) | 0.149921 / 6.500664 (-6.350743) | 0.065816 / 0.075469 (-0.009653) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.230811 / 1.841788 (-0.610977) | 14.008566 / 8.074308 (5.934258) | 14.371285 / 10.191392 (4.179893) | 0.166323 / 0.680424 (-0.514101) | 0.029702 / 0.534201 (-0.504499) | 0.408629 / 0.579283 (-0.170654) | 0.410529 / 0.434364 (-0.023835) | 0.484482 / 0.540337 (-0.055855) | 0.572360 / 1.386936 (-0.814576) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006873 / 0.011353 (-0.004480) | 0.004609 / 0.011008 (-0.006400) | 0.075492 / 0.038508 (0.036984) | 0.028560 / 0.023109 (0.005450) | 0.340321 / 0.275898 (0.064423) | 0.376758 / 0.323480 (0.053278) | 0.005271 / 0.007986 (-0.002715) | 0.004786 / 0.004328 (0.000457) | 0.074843 / 0.004250 (0.070592) | 0.041072 / 0.037052 (0.004019) | 0.339952 / 0.258489 (0.081463) | 0.384375 / 0.293841 (0.090534) | 0.031771 / 0.128546 (-0.096775) | 0.011607 / 0.075646 (-0.064039) | 0.084338 / 0.419271 (-0.334933) | 0.042251 / 0.043533 (-0.001282) | 0.338904 / 0.255139 (0.083765) | 0.365360 / 0.283200 (0.082160) | 0.093151 / 0.141683 (-0.048532) | 1.449833 / 1.452155 (-0.002322) | 1.601946 / 1.492716 (0.109229) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225149 / 0.018006 (0.207142) | 0.409855 / 0.000490 (0.409365) | 0.000384 / 0.000200 (0.000184) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025914 / 0.037411 (-0.011497) | 0.100443 / 0.014526 (0.085917) | 0.108557 / 0.176557 (-0.067999) | 0.150338 / 0.737135 (-0.586798) | 0.111472 / 0.296338 (-0.184866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440221 / 0.215209 (0.225012) | 4.409268 / 2.077655 (2.331613) | 2.096008 / 1.504120 (0.591888) | 1.849443 / 1.541195 (0.308248) | 1.934901 / 1.468490 (0.466410) | 0.704072 / 4.584777 (-3.880705) | 3.371370 / 3.745712 (-0.374343) | 3.185478 / 5.269862 (-2.084384) | 1.514541 / 4.565676 (-3.051135) | 0.083724 / 0.424275 (-0.340551) | 0.012674 / 0.007607 (0.005067) | 0.542155 / 0.226044 (0.316111) | 5.413456 / 2.268929 (3.144528) | 2.508567 / 55.444624 (-52.936057) | 2.163235 / 6.876477 (-4.713242) | 2.193914 / 2.142072 (0.051842) | 0.810955 / 4.805227 (-3.994272) | 0.152769 / 6.500664 (-6.347895) | 0.068009 / 0.075469 (-0.007460) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272511 / 1.841788 (-0.569276) | 14.334861 / 8.074308 (6.260553) | 13.555445 / 10.191392 (3.364053) | 0.160520 / 0.680424 (-0.519904) | 0.018363 / 0.534201 (-0.515838) | 0.384937 / 0.579283 (-0.194346) | 0.409138 / 0.434364 (-0.025225) | 0.484037 / 0.540337 (-0.056300) | 0.565595 / 1.386936 (-0.821341) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#23f076ef0187a4009d3c62b14a02e146baf0e35f \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010077 / 0.011353 (-0.001276) | 0.005650 / 0.011008 (-0.005359) | 0.101285 / 0.038508 (0.062777) | 0.039571 / 0.023109 (0.016462) | 0.291855 / 0.275898 (0.015957) | 0.363582 / 0.323480 (0.040102) | 0.008513 / 0.007986 (0.000527) | 0.004472 / 0.004328 (0.000144) | 0.077314 / 0.004250 (0.073064) | 0.050707 / 0.037052 (0.013654) | 0.317282 / 0.258489 (0.058792) | 0.342348 / 0.293841 (0.048507) | 0.042951 / 0.128546 (-0.085595) | 0.012295 / 0.075646 (-0.063351) | 0.337269 / 0.419271 (-0.082003) | 0.048953 / 0.043533 (0.005420) | 0.292547 / 0.255139 (0.037408) | 0.325436 / 0.283200 (0.042236) | 0.111859 / 0.141683 (-0.029824) | 1.501958 / 1.452155 (0.049804) | 1.522281 / 1.492716 (0.029565) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011775 / 0.018006 (-0.006231) | 0.513283 / 0.000490 (0.512793) | 0.002941 / 0.000200 (0.002741) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028702 / 0.037411 (-0.008710) | 0.108465 / 0.014526 (0.093940) | 0.121806 / 0.176557 (-0.054750) | 0.158424 / 0.737135 (-0.578712) | 0.128077 / 0.296338 (-0.168262) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395392 / 0.215209 (0.180183) | 3.944138 / 2.077655 (1.866483) | 1.773698 / 1.504120 (0.269578) | 1.588907 / 1.541195 (0.047712) | 1.697794 / 1.468490 (0.229304) | 0.690281 / 4.584777 (-3.894496) | 3.819661 / 3.745712 (0.073948) | 3.228006 / 5.269862 (-2.041856) | 1.755625 / 4.565676 (-2.810052) | 0.083169 / 0.424275 (-0.341106) | 0.012337 / 0.007607 (0.004730) | 0.504730 / 0.226044 (0.278686) | 5.016916 / 2.268929 (2.747988) | 2.245484 / 55.444624 (-53.199141) | 1.911682 / 6.876477 (-4.964795) | 1.957659 / 2.142072 (-0.184413) | 0.818361 / 4.805227 (-3.986866) | 0.162386 / 6.500664 (-6.338279) | 0.062461 / 0.075469 (-0.013008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197654 / 1.841788 (-0.644134) | 15.465611 / 8.074308 (7.391303) | 14.409126 / 10.191392 (4.217734) | 0.171776 / 0.680424 (-0.508647) | 0.028749 / 0.534201 (-0.505452) | 0.439666 / 0.579283 (-0.139618) | 0.445159 / 0.434364 (0.010795) | 0.543992 / 0.540337 (0.003655) | 0.643911 / 1.386936 (-0.743025) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007036 / 0.011353 (-0.004317) | 0.005273 / 0.011008 (-0.005735) | 0.075314 / 0.038508 (0.036806) | 0.033075 / 0.023109 (0.009966) | 0.350133 / 0.275898 (0.074235) | 0.399366 / 0.323480 (0.075886) | 0.005945 / 0.007986 (-0.002041) | 0.004276 / 0.004328 (-0.000052) | 0.074975 / 0.004250 (0.070725) | 0.051758 / 0.037052 (0.014706) | 0.355077 / 0.258489 (0.096588) | 0.430296 / 0.293841 (0.136455) | 0.036257 / 0.128546 (-0.092290) | 0.012376 / 0.075646 (-0.063270) | 0.087441 / 0.419271 (-0.331830) | 0.049066 / 0.043533 (0.005534) | 0.339867 / 0.255139 (0.084728) | 0.384379 / 0.283200 (0.101179) | 0.104843 / 0.141683 (-0.036840) | 1.498897 / 1.452155 (0.046742) | 1.551400 / 1.492716 (0.058684) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.334504 / 0.018006 (0.316498) | 0.516551 / 0.000490 (0.516061) | 0.000450 / 0.000200 (0.000250) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029313 / 0.037411 (-0.008099) | 0.110667 / 0.014526 (0.096141) | 0.124001 / 0.176557 (-0.052556) | 0.159154 / 0.737135 (-0.577981) | 0.129503 / 0.296338 (-0.166836) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416749 / 0.215209 (0.201540) | 4.171163 / 2.077655 (2.093508) | 1.981071 / 1.504120 (0.476951) | 1.788303 / 1.541195 (0.247108) | 1.912118 / 1.468490 (0.443628) | 0.708764 / 4.584777 (-3.876013) | 3.815222 / 3.745712 (0.069510) | 2.121633 / 5.269862 (-3.148229) | 1.347866 / 4.565676 (-3.217811) | 0.086340 / 0.424275 (-0.337935) | 0.012646 / 0.007607 (0.005039) | 0.525286 / 0.226044 (0.299241) | 5.254922 / 2.268929 (2.985994) | 2.488743 / 55.444624 (-52.955881) | 2.128069 / 6.876477 (-4.748408) | 2.180358 / 2.142072 (0.038286) | 0.841011 / 4.805227 (-3.964216) | 0.168732 / 6.500664 (-6.331932) | 0.065559 / 0.075469 (-0.009910) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270518 / 1.841788 (-0.571270) | 15.557563 / 8.074308 (7.483255) | 13.660757 / 10.191392 (3.469365) | 0.185636 / 0.680424 (-0.494788) | 0.018152 / 0.534201 (-0.516049) | 0.423553 / 0.579283 (-0.155730) | 0.412718 / 0.434364 (-0.021646) | 0.528455 / 0.540337 (-0.011882) | 0.635274 / 1.386936 (-0.751662) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d40f05ef827c52344a2c6e83f7c8d13bb6b660d3 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011194 / 0.011353 (-0.000159) | 0.006344 / 0.011008 (-0.004664) | 0.122013 / 0.038508 (0.083505) | 0.044323 / 0.023109 (0.021214) | 0.356665 / 0.275898 (0.080767) | 0.439871 / 0.323480 (0.116391) | 0.010694 / 0.007986 (0.002709) | 0.004648 / 0.004328 (0.000320) | 0.091140 / 0.004250 (0.086890) | 0.052457 / 0.037052 (0.015404) | 0.369282 / 0.258489 (0.110793) | 0.403279 / 0.293841 (0.109438) | 0.054075 / 0.128546 (-0.074472) | 0.014484 / 0.075646 (-0.061162) | 0.407932 / 0.419271 (-0.011340) | 0.060681 / 0.043533 (0.017148) | 0.350889 / 0.255139 (0.095750) | 0.392041 / 0.283200 (0.108841) | 0.121252 / 0.141683 (-0.020431) | 1.809527 / 1.452155 (0.357373) | 1.835141 / 1.492716 (0.342425) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227372 / 0.018006 (0.209366) | 0.481908 / 0.000490 (0.481418) | 0.007262 / 0.000200 (0.007062) | 0.000148 / 0.000054 (0.000093) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031039 / 0.037411 (-0.006372) | 0.133947 / 0.014526 (0.119421) | 0.141935 / 0.176557 (-0.034622) | 0.197854 / 0.737135 (-0.539281) | 0.152393 / 0.296338 (-0.143945) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.517400 / 0.215209 (0.302191) | 4.899972 / 2.077655 (2.822317) | 2.171023 / 1.504120 (0.666903) | 2.008706 / 1.541195 (0.467511) | 1.988777 / 1.468490 (0.520287) | 0.859872 / 4.584777 (-3.724905) | 4.673923 / 3.745712 (0.928211) | 2.703189 / 5.269862 (-2.566672) | 1.891680 / 4.565676 (-2.673997) | 0.109601 / 0.424275 (-0.314674) | 0.014622 / 0.007607 (0.007015) | 0.618990 / 0.226044 (0.392946) | 6.255608 / 2.268929 (3.986679) | 2.822199 / 55.444624 (-52.622425) | 2.457684 / 6.876477 (-4.418793) | 2.500041 / 2.142072 (0.357968) | 1.054529 / 4.805227 (-3.750698) | 0.209501 / 6.500664 (-6.291163) | 0.074929 / 0.075469 (-0.000540) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.532780 / 1.841788 (-0.309008) | 19.159455 / 8.074308 (11.085147) | 17.817063 / 10.191392 (7.625671) | 0.194078 / 0.680424 (-0.486346) | 0.038211 / 0.534201 (-0.495990) | 0.537366 / 0.579283 (-0.041917) | 0.538995 / 0.434364 (0.104631) | 0.679431 / 0.540337 (0.139094) | 0.801960 / 1.386936 (-0.584976) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008729 / 0.011353 (-0.002624) | 0.005711 / 0.011008 (-0.005297) | 0.091570 / 0.038508 (0.053062) | 0.039805 / 0.023109 (0.016696) | 0.413507 / 0.275898 (0.137609) | 0.456342 / 0.323480 (0.132862) | 0.006201 / 0.007986 (-0.001785) | 0.009700 / 0.004328 (0.005372) | 0.089146 / 0.004250 (0.084896) | 0.057543 / 0.037052 (0.020490) | 0.420806 / 0.258489 (0.162317) | 0.471962 / 0.293841 (0.178121) | 0.043940 / 0.128546 (-0.084606) | 0.014457 / 0.075646 (-0.061190) | 0.106674 / 0.419271 (-0.312598) | 0.058930 / 0.043533 (0.015397) | 0.419111 / 0.255139 (0.163972) | 0.452974 / 0.283200 (0.169774) | 0.124573 / 0.141683 (-0.017110) | 1.864753 / 1.452155 (0.412599) | 1.935387 / 1.492716 (0.442670) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275657 / 0.018006 (0.257651) | 0.498096 / 0.000490 (0.497606) | 0.000480 / 0.000200 (0.000280) | 0.000066 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034377 / 0.037411 (-0.003035) | 0.138050 / 0.014526 (0.123524) | 0.153718 / 0.176557 (-0.022838) | 0.201445 / 0.737135 (-0.535690) | 0.160346 / 0.296338 (-0.135992) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.540670 / 0.215209 (0.325461) | 5.376291 / 2.077655 (3.298636) | 2.581799 / 1.504120 (1.077679) | 2.328858 / 1.541195 (0.787663) | 2.446458 / 1.468490 (0.977968) | 0.923005 / 4.584777 (-3.661772) | 4.815977 / 3.745712 (1.070265) | 4.205725 / 5.269862 (-1.064137) | 2.400466 / 4.565676 (-2.165211) | 0.107207 / 0.424275 (-0.317068) | 0.015427 / 0.007607 (0.007819) | 0.657267 / 0.226044 (0.431222) | 6.491256 / 2.268929 (4.222327) | 3.179099 / 55.444624 (-52.265525) | 2.722434 / 6.876477 (-4.154042) | 2.788202 / 2.142072 (0.646129) | 1.060016 / 4.805227 (-3.745211) | 0.206899 / 6.500664 (-6.293766) | 0.077868 / 0.075469 (0.002399) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.567894 / 1.841788 (-0.273893) | 19.314330 / 8.074308 (11.240022) | 17.597614 / 10.191392 (7.406222) | 0.195777 / 0.680424 (-0.484647) | 0.022160 / 0.534201 (-0.512041) | 0.530592 / 0.579283 (-0.048691) | 0.508591 / 0.434364 (0.074227) | 0.619794 / 0.540337 (0.079457) | 0.749773 / 1.386936 (-0.637163) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8637141a67639c510294620306c9bb25d31d34ef \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012431 / 0.011353 (0.001078) | 0.006526 / 0.011008 (-0.004482) | 0.132266 / 0.038508 (0.093757) | 0.043199 / 0.023109 (0.020089) | 0.405230 / 0.275898 (0.129332) | 0.494643 / 0.323480 (0.171163) | 0.009927 / 0.007986 (0.001941) | 0.005227 / 0.004328 (0.000899) | 0.110914 / 0.004250 (0.106664) | 0.047815 / 0.037052 (0.010763) | 0.419099 / 0.258489 (0.160610) | 0.463405 / 0.293841 (0.169564) | 0.057858 / 0.128546 (-0.070688) | 0.018918 / 0.075646 (-0.056728) | 0.450584 / 0.419271 (0.031313) | 0.060457 / 0.043533 (0.016924) | 0.408234 / 0.255139 (0.153095) | 0.433722 / 0.283200 (0.150523) | 0.119403 / 0.141683 (-0.022280) | 1.966742 / 1.452155 (0.514587) | 1.980685 / 1.492716 (0.487969) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292853 / 0.018006 (0.274847) | 0.619697 / 0.000490 (0.619207) | 0.002135 / 0.000200 (0.001935) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031283 / 0.037411 (-0.006129) | 0.128649 / 0.014526 (0.114123) | 0.150116 / 0.176557 (-0.026441) | 0.187605 / 0.737135 (-0.549530) | 0.153334 / 0.296338 (-0.143005) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.659660 / 0.215209 (0.444451) | 6.459749 / 2.077655 (4.382094) | 2.764566 / 1.504120 (1.260446) | 2.362630 / 1.541195 (0.821435) | 2.426421 / 1.468490 (0.957931) | 1.282407 / 4.584777 (-3.302370) | 5.668865 / 3.745712 (1.923153) | 3.236255 / 5.269862 (-2.033606) | 2.248836 / 4.565676 (-2.316841) | 0.145861 / 0.424275 (-0.278414) | 0.015707 / 0.007607 (0.008100) | 0.805218 / 0.226044 (0.579174) | 8.146831 / 2.268929 (5.877903) | 3.506283 / 55.444624 (-51.938341) | 2.736682 / 6.876477 (-4.139795) | 2.959039 / 2.142072 (0.816967) | 1.528428 / 4.805227 (-3.276799) | 0.270980 / 6.500664 (-6.229684) | 0.086824 / 0.075469 (0.011355) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.682506 / 1.841788 (-0.159282) | 18.844103 / 8.074308 (10.769795) | 21.008471 / 10.191392 (10.817079) | 0.258372 / 0.680424 (-0.422052) | 0.046505 / 0.534201 (-0.487696) | 0.574760 / 0.579283 (-0.004523) | 0.663745 / 0.434364 (0.229381) | 0.702411 / 0.540337 (0.162074) | 0.824024 / 1.386936 (-0.562912) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010016 / 0.011353 (-0.001337) | 0.007459 / 0.011008 (-0.003549) | 0.103954 / 0.038508 (0.065446) | 0.036363 / 0.023109 (0.013254) | 0.464079 / 0.275898 (0.188181) | 0.504730 / 0.323480 (0.181250) | 0.007865 / 0.007986 (-0.000121) | 0.005210 / 0.004328 (0.000882) | 0.105018 / 0.004250 (0.100767) | 0.062191 / 0.037052 (0.025139) | 0.483304 / 0.258489 (0.224815) | 0.547030 / 0.293841 (0.253189) | 0.055436 / 0.128546 (-0.073110) | 0.021073 / 0.075646 (-0.054573) | 0.120952 / 0.419271 (-0.298319) | 0.075593 / 0.043533 (0.032060) | 0.459930 / 0.255139 (0.204791) | 0.486924 / 0.283200 (0.203724) | 0.129465 / 0.141683 (-0.012218) | 1.902322 / 1.452155 (0.450167) | 1.980809 / 1.492716 (0.488092) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259263 / 0.018006 (0.241257) | 0.596703 / 0.000490 (0.596213) | 0.004520 / 0.000200 (0.004320) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032802 / 0.037411 (-0.004609) | 0.138751 / 0.014526 (0.124225) | 0.147106 / 0.176557 (-0.029451) | 0.194791 / 0.737135 (-0.542345) | 0.152643 / 0.296338 (-0.143696) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.678455 / 0.215209 (0.463246) | 6.673643 / 2.077655 (4.595989) | 2.943368 / 1.504120 (1.439248) | 2.591223 / 1.541195 (1.050029) | 2.741097 / 1.468490 (1.272607) | 1.261178 / 4.584777 (-3.323599) | 5.773853 / 3.745712 (2.028141) | 3.171559 / 5.269862 (-2.098303) | 2.124898 / 4.565676 (-2.440779) | 0.161849 / 0.424275 (-0.262426) | 0.015498 / 0.007607 (0.007891) | 0.857984 / 0.226044 (0.631940) | 8.456946 / 2.268929 (6.188018) | 3.818787 / 55.444624 (-51.625837) | 3.009953 / 6.876477 (-3.866523) | 3.113006 / 2.142072 (0.970934) | 1.477299 / 4.805227 (-3.327929) | 0.267207 / 6.500664 (-6.233457) | 0.087590 / 0.075469 (0.012121) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.757389 / 1.841788 (-0.084398) | 19.287690 / 8.074308 (11.213381) | 21.601991 / 10.191392 (11.410599) | 0.260464 / 0.680424 (-0.419960) | 0.028552 / 0.534201 (-0.505649) | 0.558934 / 0.579283 (-0.020349) | 0.673651 / 0.434364 (0.239287) | 0.714448 / 0.540337 (0.174111) | 0.857608 / 1.386936 (-0.529328) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2d3bd0134de444ffd10c4a39873dbf9aa3732c08 \"CML watermark\")\n",
"Ready for review @mariosasko, LMKWYT :)\r\n\r\nSorry it tooks me a few tries to fix the CI - I ended up not trying to use the latest `torch` version in the CI.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009474 / 0.011353 (-0.001878) | 0.005507 / 0.011008 (-0.005501) | 0.101219 / 0.038508 (0.062711) | 0.035591 / 0.023109 (0.012481) | 0.305841 / 0.275898 (0.029943) | 0.339135 / 0.323480 (0.015656) | 0.007920 / 0.007986 (-0.000066) | 0.004252 / 0.004328 (-0.000077) | 0.076912 / 0.004250 (0.072662) | 0.041923 / 0.037052 (0.004871) | 0.301405 / 0.258489 (0.042916) | 0.356488 / 0.293841 (0.062647) | 0.039342 / 0.128546 (-0.089204) | 0.012711 / 0.075646 (-0.062935) | 0.334193 / 0.419271 (-0.085079) | 0.049112 / 0.043533 (0.005579) | 0.301484 / 0.255139 (0.046345) | 0.315306 / 0.283200 (0.032106) | 0.102959 / 0.141683 (-0.038724) | 1.420677 / 1.452155 (-0.031478) | 1.549493 / 1.492716 (0.056777) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284639 / 0.018006 (0.266633) | 0.501226 / 0.000490 (0.500736) | 0.004328 / 0.000200 (0.004128) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027034 / 0.037411 (-0.010377) | 0.108066 / 0.014526 (0.093540) | 0.122106 / 0.176557 (-0.054451) | 0.162908 / 0.737135 (-0.574227) | 0.127233 / 0.296338 (-0.169105) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394023 / 0.215209 (0.178813) | 3.932729 / 2.077655 (1.855075) | 1.771195 / 1.504120 (0.267075) | 1.582788 / 1.541195 (0.041594) | 1.703219 / 1.468490 (0.234728) | 0.702629 / 4.584777 (-3.882148) | 3.780187 / 3.745712 (0.034475) | 2.180433 / 5.269862 (-3.089428) | 1.504806 / 4.565676 (-3.060871) | 0.085289 / 0.424275 (-0.338986) | 0.012580 / 0.007607 (0.004973) | 0.515408 / 0.226044 (0.289363) | 5.010613 / 2.268929 (2.741685) | 2.256648 / 55.444624 (-53.187976) | 1.914971 / 6.876477 (-4.961505) | 2.038436 / 2.142072 (-0.103636) | 0.846240 / 4.805227 (-3.958987) | 0.164920 / 6.500664 (-6.335744) | 0.063899 / 0.075469 (-0.011570) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224160 / 1.841788 (-0.617627) | 15.089995 / 8.074308 (7.015687) | 14.777003 / 10.191392 (4.585611) | 0.169873 / 0.680424 (-0.510551) | 0.029233 / 0.534201 (-0.504968) | 0.445424 / 0.579283 (-0.133859) | 0.439194 / 0.434364 (0.004830) | 0.536370 / 0.540337 (-0.003968) | 0.636694 / 1.386936 (-0.750242) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008230 / 0.011353 (-0.003122) | 0.005499 / 0.011008 (-0.005509) | 0.076108 / 0.038508 (0.037600) | 0.037444 / 0.023109 (0.014335) | 0.364420 / 0.275898 (0.088522) | 0.412308 / 0.323480 (0.088828) | 0.006704 / 0.007986 (-0.001282) | 0.004359 / 0.004328 (0.000031) | 0.075080 / 0.004250 (0.070830) | 0.057698 / 0.037052 (0.020646) | 0.366088 / 0.258489 (0.107599) | 0.409583 / 0.293841 (0.115742) | 0.037882 / 0.128546 (-0.090664) | 0.012421 / 0.075646 (-0.063225) | 0.087701 / 0.419271 (-0.331571) | 0.050669 / 0.043533 (0.007136) | 0.351139 / 0.255139 (0.096000) | 0.384340 / 0.283200 (0.101140) | 0.108097 / 0.141683 (-0.033586) | 1.445010 / 1.452155 (-0.007145) | 1.559570 / 1.492716 (0.066853) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.324114 / 0.018006 (0.306108) | 0.549134 / 0.000490 (0.548644) | 0.003544 / 0.000200 (0.003344) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030646 / 0.037411 (-0.006765) | 0.108573 / 0.014526 (0.094047) | 0.125291 / 0.176557 (-0.051266) | 0.174798 / 0.737135 (-0.562338) | 0.128000 / 0.296338 (-0.168338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428881 / 0.215209 (0.213672) | 4.282320 / 2.077655 (2.204665) | 2.061462 / 1.504120 (0.557342) | 1.858477 / 1.541195 (0.317283) | 1.971646 / 1.468490 (0.503156) | 0.723631 / 4.584777 (-3.861146) | 3.822376 / 3.745712 (0.076664) | 2.174427 / 5.269862 (-3.095434) | 1.386066 / 4.565676 (-3.179611) | 0.088391 / 0.424275 (-0.335884) | 0.012948 / 0.007607 (0.005341) | 0.524423 / 0.226044 (0.298378) | 5.249389 / 2.268929 (2.980460) | 2.528662 / 55.444624 (-52.915962) | 2.245329 / 6.876477 (-4.631147) | 2.402733 / 2.142072 (0.260660) | 0.868864 / 4.805227 (-3.936364) | 0.174066 / 6.500664 (-6.326598) | 0.066165 / 0.075469 (-0.009304) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.296922 / 1.841788 (-0.544865) | 15.814109 / 8.074308 (7.739801) | 14.086059 / 10.191392 (3.894667) | 0.190952 / 0.680424 (-0.489472) | 0.017679 / 0.534201 (-0.516522) | 0.428872 / 0.579283 (-0.150411) | 0.435399 / 0.434364 (0.001035) | 0.540856 / 0.540337 (0.000519) | 0.648904 / 1.386936 (-0.738032) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f401758c5019ede4404994d5d59220125984874d \"CML watermark\")\n"
] | "2023-02-08T13:38:59Z" | "2023-02-19T18:35:09Z" | "2023-02-19T18:27:29Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5512.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5512",
"merged_at": "2023-02-19T18:27:29Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5512.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5512"
} | I implemented `__getitems__` to speed up batched data loading in PyTorch
close https://github.com/huggingface/datasets/issues/5505 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5512/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5512/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2861 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2861/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2861/comments | https://api.github.com/repos/huggingface/datasets/issues/2861/events | https://github.com/huggingface/datasets/pull/2861 | 985,081,871 | MDExOlB1bGxSZXF1ZXN0NzI0NDM2OTcw | 2,861 | fix: 🐛 be more specific when catching exceptions | {
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo"
} | [] | closed | false | null | [] | null | [
"To give more context: after our discussion, if I understood properly, you are trying to fix a call to `datasets` that takes 15 minutes: https://github.com/huggingface/datasets-preview-backend/issues/17 Is this right?\r\n\r\n",
"Yes, that's it. And to do that I'm trying to use https://pypi.org/project/stopit/, which will raise a stopit.TimeoutException exception. But currently, if this exception is raised, it's caught and considered as a \"FileNotFoundError\" while it should not be caught. ",
"And what about passing the `timeout` parameter instead?",
"It might be a good idea, but I would have to add a timeout argument to several methods, I'm not sure we want that (I want to ensure all my queries in https://github.com/huggingface/datasets-preview-backend/tree/master/src/datasets_preview_backend/queries resolve in a given time, be it with an error in case of timeout, or with the successful response). The methods are `prepare_module`, `import_main_class`, *builder_cls.*`get_all_exported_dataset_infos`, `load_dataset_builder`, and `load_dataset`",
"I understand, you are trying to find a fix for your use case. OK.\r\n\r\nJust note that it is also an issue for `datasets` users. Once #2859 fixed in `datasets`, you will no longer have this issue...",
"Closing, since 1. my problem is more #2859, and I was asking for that change in order to make a hack work on my side, 2. if we want to change how exceptions are handled, we surely want to do it on all the codebase, not only in this particular case."
] | "2021-09-01T12:18:12Z" | "2021-09-02T09:53:36Z" | "2021-09-02T09:52:03Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2861.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2861",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/2861.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2861"
} | The same specific exception is catched in other parts of the same
function. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2861/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2861/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6062 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6062/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6062/comments | https://api.github.com/repos/huggingface/datasets/issues/6062/events | https://github.com/huggingface/datasets/pull/6062 | 1,818,341,584 | PR_kwDODunzps5WOj62 | 6,062 | Improve `Dataset.from_list` docstring | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008340 / 0.011353 (-0.003013) | 0.005053 / 0.011008 (-0.005955) | 0.103294 / 0.038508 (0.064786) | 0.069417 / 0.023109 (0.046308) | 0.436922 / 0.275898 (0.161024) | 0.461348 / 0.323480 (0.137868) | 0.006030 / 0.007986 (-0.001955) | 0.003727 / 0.004328 (-0.000601) | 0.076384 / 0.004250 (0.072134) | 0.056742 / 0.037052 (0.019689) | 0.439996 / 0.258489 (0.181507) | 0.469417 / 0.293841 (0.175577) | 0.044343 / 0.128546 (-0.084203) | 0.012634 / 0.075646 (-0.063013) | 0.359746 / 0.419271 (-0.059525) | 0.064842 / 0.043533 (0.021309) | 0.425960 / 0.255139 (0.170821) | 0.458568 / 0.283200 (0.175368) | 0.039802 / 0.141683 (-0.101881) | 1.687320 / 1.452155 (0.235165) | 1.806212 / 1.492716 (0.313496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255484 / 0.018006 (0.237478) | 0.563039 / 0.000490 (0.562549) | 0.000445 / 0.000200 (0.000245) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027511 / 0.037411 (-0.009900) | 0.089185 / 0.014526 (0.074659) | 0.098397 / 0.176557 (-0.078160) | 0.163897 / 0.737135 (-0.573238) | 0.099905 / 0.296338 (-0.196434) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.612737 / 0.215209 (0.397528) | 6.209948 / 2.077655 (4.132294) | 2.756060 / 1.504120 (1.251940) | 2.402115 / 1.541195 (0.860920) | 2.422665 / 1.468490 (0.954175) | 0.834799 / 4.584777 (-3.749977) | 5.251699 / 3.745712 (1.505986) | 5.554141 / 5.269862 (0.284280) | 3.254699 / 4.565676 (-1.310977) | 0.095697 / 0.424275 (-0.328578) | 0.009406 / 0.007607 (0.001799) | 0.729025 / 0.226044 (0.502980) | 7.195521 / 2.268929 (4.926593) | 3.360264 / 55.444624 (-52.084361) | 2.696764 / 6.876477 (-4.179713) | 2.702796 / 2.142072 (0.560724) | 0.974420 / 4.805227 (-3.830808) | 0.195215 / 6.500664 (-6.305450) | 0.069754 / 0.075469 (-0.005715) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.553458 / 1.841788 (-0.288330) | 21.972436 / 8.074308 (13.898128) | 20.027392 / 10.191392 (9.836000) | 0.216950 / 0.680424 (-0.463474) | 0.032196 / 0.534201 (-0.502005) | 0.449884 / 0.579283 (-0.129399) | 0.586213 / 0.434364 (0.151849) | 0.537227 / 0.540337 (-0.003111) | 0.751022 / 1.386936 (-0.635914) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007859 / 0.011353 (-0.003493) | 0.004762 / 0.011008 (-0.006246) | 0.086023 / 0.038508 (0.047515) | 0.069218 / 0.023109 (0.046109) | 0.449312 / 0.275898 (0.173414) | 0.481687 / 0.323480 (0.158207) | 0.006318 / 0.007986 (-0.001668) | 0.004063 / 0.004328 (-0.000266) | 0.076917 / 0.004250 (0.072667) | 0.058034 / 0.037052 (0.020981) | 0.474265 / 0.258489 (0.215775) | 0.497736 / 0.293841 (0.203895) | 0.044587 / 0.128546 (-0.083959) | 0.013880 / 0.075646 (-0.061766) | 0.089233 / 0.419271 (-0.330038) | 0.058760 / 0.043533 (0.015227) | 0.439515 / 0.255139 (0.184376) | 0.473246 / 0.283200 (0.190047) | 0.042968 / 0.141683 (-0.098715) | 1.802647 / 1.452155 (0.350493) | 1.778563 / 1.492716 (0.285847) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.343741 / 0.018006 (0.325735) | 0.567409 / 0.000490 (0.566919) | 0.029727 / 0.000200 (0.029527) | 0.000147 / 0.000054 (0.000092) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031021 / 0.037411 (-0.006390) | 0.096659 / 0.014526 (0.082133) | 0.103341 / 0.176557 (-0.073215) | 0.169893 / 0.737135 (-0.567242) | 0.103280 / 0.296338 (-0.193058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.584724 / 0.215209 (0.369515) | 5.792596 / 2.077655 (3.714941) | 2.683133 / 1.504120 (1.179013) | 2.367837 / 1.541195 (0.826643) | 2.378567 / 1.468490 (0.910076) | 0.803427 / 4.584777 (-3.781350) | 5.179017 / 3.745712 (1.433305) | 4.446323 / 5.269862 (-0.823538) | 2.771731 / 4.565676 (-1.793945) | 0.100943 / 0.424275 (-0.323332) | 0.009875 / 0.007607 (0.002268) | 0.725260 / 0.226044 (0.499216) | 7.149728 / 2.268929 (4.880800) | 3.646438 / 55.444624 (-51.798187) | 2.793858 / 6.876477 (-4.082618) | 2.971966 / 2.142072 (0.829894) | 0.998147 / 4.805227 (-3.807080) | 0.198004 / 6.500664 (-6.302660) | 0.072581 / 0.075469 (-0.002888) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.696737 / 1.841788 (-0.145051) | 22.615193 / 8.074308 (14.540884) | 20.272421 / 10.191392 (10.081029) | 0.237459 / 0.680424 (-0.442965) | 0.034774 / 0.534201 (-0.499427) | 0.484649 / 0.579283 (-0.094634) | 0.590263 / 0.434364 (0.155899) | 0.547833 / 0.540337 (0.007495) | 0.762109 / 1.386936 (-0.624827) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4bc3628b5a8f71ad7cfc014d8ba5e798f26becb7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011183 / 0.011353 (-0.000170) | 0.005267 / 0.011008 (-0.005741) | 0.108506 / 0.038508 (0.069997) | 0.083541 / 0.023109 (0.060431) | 0.452189 / 0.275898 (0.176291) | 0.496229 / 0.323480 (0.172749) | 0.004951 / 0.007986 (-0.003035) | 0.004452 / 0.004328 (0.000124) | 0.085133 / 0.004250 (0.080883) | 0.061291 / 0.037052 (0.024239) | 0.450453 / 0.258489 (0.191964) | 0.506456 / 0.293841 (0.212616) | 0.049784 / 0.128546 (-0.078762) | 0.014738 / 0.075646 (-0.060908) | 0.372603 / 0.419271 (-0.046669) | 0.065223 / 0.043533 (0.021690) | 0.467872 / 0.255139 (0.212733) | 0.500062 / 0.283200 (0.216862) | 0.040911 / 0.141683 (-0.100772) | 1.852970 / 1.452155 (0.400816) | 2.016996 / 1.492716 (0.524280) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.262620 / 0.018006 (0.244614) | 0.593925 / 0.000490 (0.593435) | 0.000413 / 0.000200 (0.000213) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035713 / 0.037411 (-0.001698) | 0.111403 / 0.014526 (0.096878) | 0.117259 / 0.176557 (-0.059298) | 0.201545 / 0.737135 (-0.535590) | 0.133111 / 0.296338 (-0.163228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.597318 / 0.215209 (0.382109) | 5.882691 / 2.077655 (3.805036) | 2.572203 / 1.504120 (1.068083) | 2.248016 / 1.541195 (0.706821) | 2.359103 / 1.468490 (0.890613) | 0.852023 / 4.584777 (-3.732754) | 5.270831 / 3.745712 (1.525119) | 4.712915 / 5.269862 (-0.556947) | 3.124295 / 4.565676 (-1.441381) | 0.092045 / 0.424275 (-0.332230) | 0.007834 / 0.007607 (0.000227) | 0.695711 / 0.226044 (0.469666) | 7.011760 / 2.268929 (4.742831) | 3.333300 / 55.444624 (-52.111325) | 2.745889 / 6.876477 (-4.130587) | 3.153458 / 2.142072 (1.011385) | 1.011089 / 4.805227 (-3.794139) | 0.207467 / 6.500664 (-6.293197) | 0.079802 / 0.075469 (0.004333) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.703784 / 1.841788 (-0.138003) | 24.414340 / 8.074308 (16.340032) | 22.534528 / 10.191392 (12.343136) | 0.276129 / 0.680424 (-0.404295) | 0.027954 / 0.534201 (-0.506247) | 0.484261 / 0.579283 (-0.095022) | 0.605316 / 0.434364 (0.170952) | 0.557219 / 0.540337 (0.016882) | 0.802209 / 1.386936 (-0.584727) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009109 / 0.011353 (-0.002244) | 0.005376 / 0.011008 (-0.005632) | 0.085141 / 0.038508 (0.046633) | 0.100560 / 0.023109 (0.077450) | 0.482673 / 0.275898 (0.206775) | 0.551582 / 0.323480 (0.228103) | 0.006756 / 0.007986 (-0.001229) | 0.004171 / 0.004328 (-0.000158) | 0.084184 / 0.004250 (0.079933) | 0.069283 / 0.037052 (0.032230) | 0.517722 / 0.258489 (0.259233) | 0.542641 / 0.293841 (0.248801) | 0.047790 / 0.128546 (-0.080756) | 0.014063 / 0.075646 (-0.061583) | 0.110591 / 0.419271 (-0.308680) | 0.064373 / 0.043533 (0.020840) | 0.496636 / 0.255139 (0.241497) | 0.551906 / 0.283200 (0.268707) | 0.046187 / 0.141683 (-0.095496) | 1.864836 / 1.452155 (0.412681) | 1.923765 / 1.492716 (0.431049) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286558 / 0.018006 (0.268552) | 0.610353 / 0.000490 (0.609863) | 0.012647 / 0.000200 (0.012447) | 0.000162 / 0.000054 (0.000107) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037099 / 0.037411 (-0.000313) | 0.108608 / 0.014526 (0.094082) | 0.120386 / 0.176557 (-0.056170) | 0.183450 / 0.737135 (-0.553686) | 0.124860 / 0.296338 (-0.171479) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.629006 / 0.215209 (0.413797) | 6.309206 / 2.077655 (4.231551) | 2.878558 / 1.504120 (1.374438) | 2.616093 / 1.541195 (1.074898) | 2.668096 / 1.468490 (1.199606) | 0.865732 / 4.584777 (-3.719045) | 5.312433 / 3.745712 (1.566721) | 4.799352 / 5.269862 (-0.470509) | 3.142207 / 4.565676 (-1.423469) | 0.099591 / 0.424275 (-0.324684) | 0.009159 / 0.007607 (0.001552) | 0.730999 / 0.226044 (0.504954) | 7.486442 / 2.268929 (5.217513) | 3.657699 / 55.444624 (-51.786925) | 3.080094 / 6.876477 (-3.796383) | 3.320976 / 2.142072 (1.178904) | 1.089324 / 4.805227 (-3.715904) | 0.222831 / 6.500664 (-6.277833) | 0.083976 / 0.075469 (0.008507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.793181 / 1.841788 (-0.048607) | 25.307444 / 8.074308 (17.233136) | 21.321713 / 10.191392 (11.130321) | 0.216326 / 0.680424 (-0.464098) | 0.034298 / 0.534201 (-0.499903) | 0.497173 / 0.579283 (-0.082110) | 0.643550 / 0.434364 (0.209186) | 0.581213 / 0.540337 (0.040876) | 0.830973 / 1.386936 (-0.555963) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#24875bb8494c3a7803182b08c70747b1b1a6bf4d \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006886 / 0.011353 (-0.004467) | 0.004267 / 0.011008 (-0.006741) | 0.086182 / 0.038508 (0.047674) | 0.083405 / 0.023109 (0.060296) | 0.313717 / 0.275898 (0.037819) | 0.351476 / 0.323480 (0.027996) | 0.005702 / 0.007986 (-0.002284) | 0.003802 / 0.004328 (-0.000526) | 0.065759 / 0.004250 (0.061508) | 0.060056 / 0.037052 (0.023003) | 0.315871 / 0.258489 (0.057382) | 0.364520 / 0.293841 (0.070679) | 0.032067 / 0.128546 (-0.096479) | 0.008679 / 0.075646 (-0.066967) | 0.294968 / 0.419271 (-0.124303) | 0.054684 / 0.043533 (0.011152) | 0.314124 / 0.255139 (0.058985) | 0.337312 / 0.283200 (0.054113) | 0.025051 / 0.141683 (-0.116632) | 1.505242 / 1.452155 (0.053087) | 1.608263 / 1.492716 (0.115547) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266562 / 0.018006 (0.248556) | 0.579887 / 0.000490 (0.579397) | 0.004161 / 0.000200 (0.003961) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031153 / 0.037411 (-0.006258) | 0.087703 / 0.014526 (0.073177) | 0.103864 / 0.176557 (-0.072693) | 0.159032 / 0.737135 (-0.578104) | 0.102482 / 0.296338 (-0.193857) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405805 / 0.215209 (0.190596) | 4.050669 / 2.077655 (1.973014) | 2.064384 / 1.504120 (0.560264) | 1.892825 / 1.541195 (0.351630) | 2.001083 / 1.468490 (0.532593) | 0.478174 / 4.584777 (-4.106603) | 3.542580 / 3.745712 (-0.203132) | 3.319205 / 5.269862 (-1.950656) | 2.075868 / 4.565676 (-2.489808) | 0.057345 / 0.424275 (-0.366930) | 0.007459 / 0.007607 (-0.000148) | 0.483564 / 0.226044 (0.257520) | 4.827746 / 2.268929 (2.558818) | 2.579541 / 55.444624 (-52.865083) | 2.205125 / 6.876477 (-4.671352) | 2.489206 / 2.142072 (0.347133) | 0.575843 / 4.805227 (-4.229384) | 0.133010 / 6.500664 (-6.367654) | 0.061082 / 0.075469 (-0.014387) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286059 / 1.841788 (-0.555729) | 20.575173 / 8.074308 (12.500865) | 14.351692 / 10.191392 (4.160300) | 0.150401 / 0.680424 (-0.530022) | 0.018678 / 0.534201 (-0.515523) | 0.397860 / 0.579283 (-0.181423) | 0.419474 / 0.434364 (-0.014890) | 0.474492 / 0.540337 (-0.065846) | 0.659510 / 1.386936 (-0.727426) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006948 / 0.011353 (-0.004405) | 0.004305 / 0.011008 (-0.006703) | 0.064220 / 0.038508 (0.025712) | 0.083251 / 0.023109 (0.060142) | 0.388148 / 0.275898 (0.112250) | 0.417834 / 0.323480 (0.094354) | 0.005762 / 0.007986 (-0.002224) | 0.003803 / 0.004328 (-0.000525) | 0.066365 / 0.004250 (0.062114) | 0.061808 / 0.037052 (0.024756) | 0.390889 / 0.258489 (0.132400) | 0.430619 / 0.293841 (0.136778) | 0.031777 / 0.128546 (-0.096770) | 0.008781 / 0.075646 (-0.066865) | 0.070844 / 0.419271 (-0.348427) | 0.050552 / 0.043533 (0.007019) | 0.378420 / 0.255139 (0.123281) | 0.403273 / 0.283200 (0.120074) | 0.024578 / 0.141683 (-0.117105) | 1.494790 / 1.452155 (0.042636) | 1.549408 / 1.492716 (0.056692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.302668 / 0.018006 (0.284662) | 0.542235 / 0.000490 (0.541746) | 0.001847 / 0.000200 (0.001647) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031947 / 0.037411 (-0.005465) | 0.092220 / 0.014526 (0.077694) | 0.104525 / 0.176557 (-0.072031) | 0.162000 / 0.737135 (-0.575135) | 0.106795 / 0.296338 (-0.189543) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412035 / 0.215209 (0.196826) | 4.106527 / 2.077655 (2.028872) | 2.111529 / 1.504120 (0.607409) | 1.953201 / 1.541195 (0.412006) | 2.079258 / 1.468490 (0.610768) | 0.479562 / 4.584777 (-4.105215) | 3.606256 / 3.745712 (-0.139456) | 5.175250 / 5.269862 (-0.094612) | 3.292465 / 4.565676 (-1.273212) | 0.057726 / 0.424275 (-0.366549) | 0.008247 / 0.007607 (0.000640) | 0.486143 / 0.226044 (0.260098) | 4.859051 / 2.268929 (2.590123) | 2.675629 / 55.444624 (-52.768995) | 2.267448 / 6.876477 (-4.609029) | 2.567639 / 2.142072 (0.425567) | 0.580822 / 4.805227 (-4.224406) | 0.134942 / 6.500664 (-6.365722) | 0.063825 / 0.075469 (-0.011644) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334421 / 1.841788 (-0.507367) | 20.481428 / 8.074308 (12.407120) | 14.227943 / 10.191392 (4.036551) | 0.170711 / 0.680424 (-0.509713) | 0.018212 / 0.534201 (-0.515989) | 0.397212 / 0.579283 (-0.182071) | 0.411934 / 0.434364 (-0.022430) | 0.478019 / 0.540337 (-0.062319) | 0.645434 / 1.386936 (-0.741502) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef3d3f10886e23a65cce3bfd939b8ec0d5a5c2c1 \"CML watermark\")\n"
] | "2023-07-24T12:36:38Z" | "2023-07-24T14:43:48Z" | "2023-07-24T14:34:43Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6062.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6062",
"merged_at": "2023-07-24T14:34:43Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6062.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6062"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6062/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6062/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2764 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2764/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2764/comments | https://api.github.com/repos/huggingface/datasets/issues/2764/events | https://github.com/huggingface/datasets/pull/2764 | 962,554,799 | MDExOlB1bGxSZXF1ZXN0NzA1MzI3MDQ5 | 2,764 | Add DER metric for SUPERB speaker diarization task | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"color": "E3165C",
"default": false,
"description": "",
"id": 4190228726,
"name": "transfer-to-evaluate",
"node_id": "LA_kwDODunzps75wdD2",
"url": "https://api.github.com/repos/huggingface/datasets/labels/transfer-to-evaluate"
}
] | closed | false | null | [] | null | [
"Metrics are deprecated in `datasets` and `evaluate` should be used instead: https://github.com/huggingface/evaluate"
] | "2021-08-06T09:12:36Z" | "2023-07-11T09:35:23Z" | "2023-07-11T09:35:23Z" | MEMBER | null | 1 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2764.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2764",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/2764.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2764"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2764/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2764/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1203 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1203/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1203/comments | https://api.github.com/repos/huggingface/datasets/issues/1203/events | https://github.com/huggingface/datasets/pull/1203 | 757,935,170 | MDExOlB1bGxSZXF1ZXN0NTMzMjAzMTc0 | 1,203 | Add Neural Code Search Dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/34424769?v=4",
"events_url": "https://api.github.com/users/vinaykudari/events{/privacy}",
"followers_url": "https://api.github.com/users/vinaykudari/followers",
"following_url": "https://api.github.com/users/vinaykudari/following{/other_user}",
"gists_url": "https://api.github.com/users/vinaykudari/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/vinaykudari",
"id": 34424769,
"login": "vinaykudari",
"node_id": "MDQ6VXNlcjM0NDI0NzY5",
"organizations_url": "https://api.github.com/users/vinaykudari/orgs",
"received_events_url": "https://api.github.com/users/vinaykudari/received_events",
"repos_url": "https://api.github.com/users/vinaykudari/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/vinaykudari/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vinaykudari/subscriptions",
"type": "User",
"url": "https://api.github.com/users/vinaykudari"
} | [] | closed | false | null | [] | null | [
"> Really good thanks !\r\n> \r\n> I left a few comments\r\n\r\nThanks, resolved them :) ",
"looks like this PR includes changes about many other files than the ones for Code Search\r\n\r\ncan you create another branch and another PR please ?",
"> looks like this PR includes changes about many other files than the ones for Code Search\r\n> \r\n> can you create another branch and another PR please ?\r\n\r\nOkay sure"
] | "2020-12-06T14:12:39Z" | "2020-12-09T16:40:15Z" | "2020-12-09T16:40:15Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1203.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1203",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/1203.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1203"
} | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1203/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1203/timeline | null | null | true |
|
https://api.github.com/repos/huggingface/datasets/issues/1899 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1899/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1899/comments | https://api.github.com/repos/huggingface/datasets/issues/1899/events | https://github.com/huggingface/datasets/pull/1899 | 810,308,332 | MDExOlB1bGxSZXF1ZXN0NTc1MDIxMjc4 | 1,899 | Fix: ALT - fix duplicated examples in alt-parallel | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [] | "2021-02-17T15:53:56Z" | "2021-02-17T17:20:49Z" | "2021-02-17T17:20:49Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1899.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1899",
"merged_at": "2021-02-17T17:20:49Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1899.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1899"
} | As noticed in #1898 by @10-zin the examples of the `alt-paralel` configurations have all the same values for the `translation` field.
This was due to a bad copy of a python dict.
This PR fixes that. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1899/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1899/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6243 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6243/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6243/comments | https://api.github.com/repos/huggingface/datasets/issues/6243/events | https://github.com/huggingface/datasets/pull/6243 | 1,898,532,784 | PR_kwDODunzps5aclIy | 6,243 | Fix cast from fixed size list to variable size list | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006784 / 0.011353 (-0.004569) | 0.004051 / 0.011008 (-0.006957) | 0.083790 / 0.038508 (0.045282) | 0.081219 / 0.023109 (0.058110) | 0.313195 / 0.275898 (0.037297) | 0.336954 / 0.323480 (0.013475) | 0.004324 / 0.007986 (-0.003662) | 0.004516 / 0.004328 (0.000188) | 0.065051 / 0.004250 (0.060801) | 0.057647 / 0.037052 (0.020595) | 0.316675 / 0.258489 (0.058186) | 0.357936 / 0.293841 (0.064095) | 0.030980 / 0.128546 (-0.097566) | 0.008844 / 0.075646 (-0.066802) | 0.287027 / 0.419271 (-0.132245) | 0.052130 / 0.043533 (0.008597) | 0.308125 / 0.255139 (0.052986) | 0.337345 / 0.283200 (0.054145) | 0.025781 / 0.141683 (-0.115902) | 1.466161 / 1.452155 (0.014006) | 1.565824 / 1.492716 (0.073108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.299112 / 0.018006 (0.281106) | 0.640520 / 0.000490 (0.640030) | 0.008846 / 0.000200 (0.008647) | 0.000273 / 0.000054 (0.000219) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029853 / 0.037411 (-0.007559) | 0.081697 / 0.014526 (0.067172) | 0.099110 / 0.176557 (-0.077447) | 0.155864 / 0.737135 (-0.581271) | 0.098749 / 0.296338 (-0.197590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.385722 / 0.215209 (0.170512) | 3.851490 / 2.077655 (1.773835) | 1.851995 / 1.504120 (0.347875) | 1.660398 / 1.541195 (0.119204) | 1.769370 / 1.468490 (0.300879) | 0.481523 / 4.584777 (-4.103254) | 3.550449 / 3.745712 (-0.195263) | 3.424782 / 5.269862 (-1.845079) | 2.106470 / 4.565676 (-2.459206) | 0.056500 / 0.424275 (-0.367775) | 0.007891 / 0.007607 (0.000284) | 0.465564 / 0.226044 (0.239520) | 4.662892 / 2.268929 (2.393964) | 2.305424 / 55.444624 (-53.139201) | 1.980524 / 6.876477 (-4.895953) | 2.218423 / 2.142072 (0.076350) | 0.584662 / 4.805227 (-4.220565) | 0.132325 / 6.500664 (-6.368340) | 0.060773 / 0.075469 (-0.014696) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254261 / 1.841788 (-0.587527) | 19.479805 / 8.074308 (11.405497) | 14.222687 / 10.191392 (4.031295) | 0.149829 / 0.680424 (-0.530595) | 0.018630 / 0.534201 (-0.515571) | 0.395284 / 0.579283 (-0.183999) | 0.413385 / 0.434364 (-0.020978) | 0.462931 / 0.540337 (-0.077406) | 0.645359 / 1.386936 (-0.741577) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006991 / 0.011353 (-0.004362) | 0.004306 / 0.011008 (-0.006702) | 0.065213 / 0.038508 (0.026705) | 0.082442 / 0.023109 (0.059332) | 0.411294 / 0.275898 (0.135396) | 0.452176 / 0.323480 (0.128696) | 0.005802 / 0.007986 (-0.002183) | 0.003556 / 0.004328 (-0.000772) | 0.066163 / 0.004250 (0.061913) | 0.060680 / 0.037052 (0.023628) | 0.416975 / 0.258489 (0.158486) | 0.456353 / 0.293841 (0.162512) | 0.033584 / 0.128546 (-0.094963) | 0.008687 / 0.075646 (-0.066959) | 0.071300 / 0.419271 (-0.347972) | 0.049382 / 0.043533 (0.005849) | 0.409329 / 0.255139 (0.154190) | 0.434829 / 0.283200 (0.151629) | 0.022966 / 0.141683 (-0.118716) | 1.493847 / 1.452155 (0.041692) | 1.582372 / 1.492716 (0.089656) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280578 / 0.018006 (0.262572) | 0.538122 / 0.000490 (0.537632) | 0.004515 / 0.000200 (0.004315) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033383 / 0.037411 (-0.004028) | 0.093426 / 0.014526 (0.078901) | 0.109314 / 0.176557 (-0.067242) | 0.162349 / 0.737135 (-0.574786) | 0.109849 / 0.296338 (-0.186490) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431073 / 0.215209 (0.215864) | 4.311942 / 2.077655 (2.234287) | 2.291170 / 1.504120 (0.787051) | 2.132266 / 1.541195 (0.591072) | 2.236526 / 1.468490 (0.768036) | 0.492001 / 4.584777 (-4.092776) | 3.523013 / 3.745712 (-0.222699) | 3.413481 / 5.269862 (-1.856381) | 2.112979 / 4.565676 (-2.452698) | 0.058654 / 0.424275 (-0.365621) | 0.007729 / 0.007607 (0.000121) | 0.512027 / 0.226044 (0.285982) | 5.125264 / 2.268929 (2.856336) | 2.836281 / 55.444624 (-52.608344) | 2.447253 / 6.876477 (-4.429224) | 2.711908 / 2.142072 (0.569835) | 0.592598 / 4.805227 (-4.212629) | 0.134837 / 6.500664 (-6.365827) | 0.059813 / 0.075469 (-0.015656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.373464 / 1.841788 (-0.468323) | 20.548983 / 8.074308 (12.474675) | 14.799833 / 10.191392 (4.608441) | 0.168601 / 0.680424 (-0.511823) | 0.020358 / 0.534201 (-0.513843) | 0.398790 / 0.579283 (-0.180494) | 0.416921 / 0.434364 (-0.017443) | 0.480542 / 0.540337 (-0.059795) | 0.645062 / 1.386936 (-0.741874) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#afd6fc193a91cb0461c8bf3b64db6943c23de846 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008616 / 0.011353 (-0.002737) | 0.004957 / 0.011008 (-0.006051) | 0.102629 / 0.038508 (0.064121) | 0.080492 / 0.023109 (0.057383) | 0.461817 / 0.275898 (0.185919) | 0.487964 / 0.323480 (0.164484) | 0.006336 / 0.007986 (-0.001649) | 0.004607 / 0.004328 (0.000278) | 0.074311 / 0.004250 (0.070061) | 0.060368 / 0.037052 (0.023315) | 0.458076 / 0.258489 (0.199587) | 0.493028 / 0.293841 (0.199187) | 0.044153 / 0.128546 (-0.084394) | 0.014066 / 0.075646 (-0.061581) | 0.369848 / 0.419271 (-0.049424) | 0.061690 / 0.043533 (0.018157) | 0.439728 / 0.255139 (0.184590) | 0.484706 / 0.283200 (0.201506) | 0.034657 / 0.141683 (-0.107026) | 1.710591 / 1.452155 (0.258437) | 1.900225 / 1.492716 (0.407509) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.308837 / 0.018006 (0.290831) | 0.579561 / 0.000490 (0.579072) | 0.010163 / 0.000200 (0.009963) | 0.000613 / 0.000054 (0.000558) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028108 / 0.037411 (-0.009303) | 0.085072 / 0.014526 (0.070546) | 0.103375 / 0.176557 (-0.073182) | 0.173765 / 0.737135 (-0.563371) | 0.102460 / 0.296338 (-0.193879) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602642 / 0.215209 (0.387433) | 5.582537 / 2.077655 (3.504882) | 2.405553 / 1.504120 (0.901434) | 2.057298 / 1.541195 (0.516103) | 2.223787 / 1.468490 (0.755297) | 0.846138 / 4.584777 (-3.738638) | 5.290306 / 3.745712 (1.544594) | 4.836066 / 5.269862 (-0.433795) | 2.951901 / 4.565676 (-1.613775) | 0.099432 / 0.424275 (-0.324843) | 0.009198 / 0.007607 (0.001591) | 0.731370 / 0.226044 (0.505325) | 6.663026 / 2.268929 (4.394098) | 3.200932 / 55.444624 (-52.243692) | 2.486654 / 6.876477 (-4.389823) | 2.833195 / 2.142072 (0.691123) | 0.989481 / 4.805227 (-3.815746) | 0.205176 / 6.500664 (-6.295488) | 0.073760 / 0.075469 (-0.001709) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.745494 / 1.841788 (-0.096294) | 24.649294 / 8.074308 (16.574986) | 22.312182 / 10.191392 (12.120790) | 0.245207 / 0.680424 (-0.435217) | 0.031971 / 0.534201 (-0.502230) | 0.495179 / 0.579283 (-0.084104) | 0.603233 / 0.434364 (0.168869) | 0.560906 / 0.540337 (0.020569) | 0.788292 / 1.386936 (-0.598644) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008922 / 0.011353 (-0.002431) | 0.005203 / 0.011008 (-0.005805) | 0.074414 / 0.038508 (0.035906) | 0.077552 / 0.023109 (0.054443) | 0.547217 / 0.275898 (0.271319) | 0.625298 / 0.323480 (0.301818) | 0.006135 / 0.007986 (-0.001851) | 0.004163 / 0.004328 (-0.000165) | 0.078014 / 0.004250 (0.073764) | 0.064484 / 0.037052 (0.027431) | 0.562356 / 0.258489 (0.303867) | 0.643613 / 0.293841 (0.349772) | 0.050155 / 0.128546 (-0.078391) | 0.013665 / 0.075646 (-0.061981) | 0.090224 / 0.419271 (-0.329048) | 0.063852 / 0.043533 (0.020319) | 0.560914 / 0.255139 (0.305775) | 0.591531 / 0.283200 (0.308331) | 0.036491 / 0.141683 (-0.105192) | 1.670898 / 1.452155 (0.218743) | 1.783924 / 1.492716 (0.291208) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.312764 / 0.018006 (0.294758) | 0.611116 / 0.000490 (0.610626) | 0.006367 / 0.000200 (0.006167) | 0.000130 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033967 / 0.037411 (-0.003445) | 0.101550 / 0.014526 (0.087025) | 0.116953 / 0.176557 (-0.059604) | 0.180061 / 0.737135 (-0.557075) | 0.115220 / 0.296338 (-0.181118) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.642110 / 0.215209 (0.426901) | 6.361381 / 2.077655 (4.283727) | 2.948175 / 1.504120 (1.444055) | 2.633935 / 1.541195 (1.092740) | 2.822150 / 1.468490 (1.353660) | 0.931412 / 4.584777 (-3.653365) | 5.428540 / 3.745712 (1.682828) | 4.672920 / 5.269862 (-0.596941) | 3.102046 / 4.565676 (-1.463630) | 0.100825 / 0.424275 (-0.323450) | 0.009464 / 0.007607 (0.001857) | 0.774102 / 0.226044 (0.548058) | 7.715003 / 2.268929 (5.446074) | 3.987807 / 55.444624 (-51.456817) | 3.089129 / 6.876477 (-3.787347) | 3.333247 / 2.142072 (1.191174) | 1.012427 / 4.805227 (-3.792800) | 0.200662 / 6.500664 (-6.300002) | 0.072422 / 0.075469 (-0.003047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.680364 / 1.841788 (-0.161424) | 24.484576 / 8.074308 (16.410268) | 21.920990 / 10.191392 (11.729598) | 0.218604 / 0.680424 (-0.461820) | 0.035818 / 0.534201 (-0.498383) | 0.470648 / 0.579283 (-0.108635) | 0.585108 / 0.434364 (0.150744) | 0.539152 / 0.540337 (-0.001185) | 0.763999 / 1.386936 (-0.622937) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cfed1d09ed6c680085624d96eb99bfb2b0b27599 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006304 / 0.011353 (-0.005049) | 0.003884 / 0.011008 (-0.007125) | 0.084847 / 0.038508 (0.046339) | 0.069372 / 0.023109 (0.046263) | 0.318876 / 0.275898 (0.042978) | 0.344733 / 0.323480 (0.021253) | 0.005139 / 0.007986 (-0.002847) | 0.003203 / 0.004328 (-0.001125) | 0.065758 / 0.004250 (0.061507) | 0.054189 / 0.037052 (0.017137) | 0.317475 / 0.258489 (0.058986) | 0.359310 / 0.293841 (0.065469) | 0.030639 / 0.128546 (-0.097908) | 0.008657 / 0.075646 (-0.066989) | 0.289127 / 0.419271 (-0.130144) | 0.052344 / 0.043533 (0.008811) | 0.316122 / 0.255139 (0.060983) | 0.338339 / 0.283200 (0.055140) | 0.022677 / 0.141683 (-0.119006) | 1.551629 / 1.452155 (0.099474) | 1.617917 / 1.492716 (0.125201) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231067 / 0.018006 (0.213061) | 0.450559 / 0.000490 (0.450070) | 0.008484 / 0.000200 (0.008284) | 0.000234 / 0.000054 (0.000179) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027054 / 0.037411 (-0.010357) | 0.081560 / 0.014526 (0.067034) | 0.094162 / 0.176557 (-0.082395) | 0.148583 / 0.737135 (-0.588552) | 0.093596 / 0.296338 (-0.202742) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.388616 / 0.215209 (0.173407) | 3.874905 / 2.077655 (1.797251) | 1.915845 / 1.504120 (0.411725) | 1.746410 / 1.541195 (0.205215) | 1.828789 / 1.468490 (0.360299) | 0.483270 / 4.584777 (-4.101506) | 3.489157 / 3.745712 (-0.256555) | 3.190086 / 5.269862 (-2.079776) | 1.978023 / 4.565676 (-2.587653) | 0.056290 / 0.424275 (-0.367985) | 0.007585 / 0.007607 (-0.000022) | 0.467051 / 0.226044 (0.241007) | 4.665971 / 2.268929 (2.397043) | 2.418550 / 55.444624 (-53.026075) | 2.048338 / 6.876477 (-4.828139) | 2.225275 / 2.142072 (0.083203) | 0.576601 / 4.805227 (-4.228626) | 0.131960 / 6.500664 (-6.368704) | 0.060177 / 0.075469 (-0.015292) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249797 / 1.841788 (-0.591991) | 18.552939 / 8.074308 (10.478631) | 14.016616 / 10.191392 (3.825224) | 0.162869 / 0.680424 (-0.517555) | 0.018105 / 0.534201 (-0.516096) | 0.394838 / 0.579283 (-0.184445) | 0.403378 / 0.434364 (-0.030986) | 0.460931 / 0.540337 (-0.079407) | 0.637365 / 1.386936 (-0.749571) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006497 / 0.011353 (-0.004856) | 0.003928 / 0.011008 (-0.007080) | 0.063958 / 0.038508 (0.025450) | 0.069609 / 0.023109 (0.046500) | 0.401599 / 0.275898 (0.125701) | 0.428128 / 0.323480 (0.104648) | 0.005296 / 0.007986 (-0.002689) | 0.003332 / 0.004328 (-0.000996) | 0.063903 / 0.004250 (0.059652) | 0.056303 / 0.037052 (0.019250) | 0.400704 / 0.258489 (0.142214) | 0.435982 / 0.293841 (0.142141) | 0.032434 / 0.128546 (-0.096112) | 0.008570 / 0.075646 (-0.067077) | 0.070788 / 0.419271 (-0.348483) | 0.048252 / 0.043533 (0.004719) | 0.403269 / 0.255139 (0.148130) | 0.419796 / 0.283200 (0.136596) | 0.022598 / 0.141683 (-0.119085) | 1.481627 / 1.452155 (0.029472) | 1.578388 / 1.492716 (0.085672) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224552 / 0.018006 (0.206546) | 0.444059 / 0.000490 (0.443570) | 0.003757 / 0.000200 (0.003557) | 0.000225 / 0.000054 (0.000171) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032173 / 0.037411 (-0.005239) | 0.092562 / 0.014526 (0.078036) | 0.104972 / 0.176557 (-0.071584) | 0.156467 / 0.737135 (-0.580669) | 0.104274 / 0.296338 (-0.192065) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441693 / 0.215209 (0.226484) | 4.400217 / 2.077655 (2.322562) | 2.393862 / 1.504120 (0.889742) | 2.281178 / 1.541195 (0.739983) | 2.339895 / 1.468490 (0.871405) | 0.488734 / 4.584777 (-4.096043) | 3.523352 / 3.745712 (-0.222360) | 3.216761 / 5.269862 (-2.053101) | 2.007553 / 4.565676 (-2.558123) | 0.058050 / 0.424275 (-0.366225) | 0.007566 / 0.007607 (-0.000041) | 0.515439 / 0.226044 (0.289394) | 5.155086 / 2.268929 (2.886157) | 2.864958 / 55.444624 (-52.579666) | 2.592460 / 6.876477 (-4.284016) | 2.800449 / 2.142072 (0.658376) | 0.588441 / 4.805227 (-4.216786) | 0.131589 / 6.500664 (-6.369075) | 0.059075 / 0.075469 (-0.016394) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353889 / 1.841788 (-0.487898) | 18.938285 / 8.074308 (10.863977) | 14.937141 / 10.191392 (4.745749) | 0.168811 / 0.680424 (-0.511613) | 0.020118 / 0.534201 (-0.514083) | 0.394791 / 0.579283 (-0.184492) | 0.414434 / 0.434364 (-0.019930) | 0.466821 / 0.540337 (-0.073517) | 0.629894 / 1.386936 (-0.757042) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#23921b08390db7dbb3186a8de40dc49a4066da76 \"CML watermark\")\n",
"CI failures are unrelated",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005959 / 0.011353 (-0.005394) | 0.004164 / 0.011008 (-0.006844) | 0.082336 / 0.038508 (0.043828) | 0.070344 / 0.023109 (0.047234) | 0.348032 / 0.275898 (0.072134) | 0.366328 / 0.323480 (0.042848) | 0.003882 / 0.007986 (-0.004104) | 0.003619 / 0.004328 (-0.000709) | 0.063343 / 0.004250 (0.059093) | 0.056617 / 0.037052 (0.019564) | 0.351625 / 0.258489 (0.093136) | 0.395839 / 0.293841 (0.101998) | 0.030842 / 0.128546 (-0.097704) | 0.008363 / 0.075646 (-0.067284) | 0.300535 / 0.419271 (-0.118737) | 0.053303 / 0.043533 (0.009770) | 0.354782 / 0.255139 (0.099643) | 0.364918 / 0.283200 (0.081719) | 0.025365 / 0.141683 (-0.116318) | 1.555009 / 1.452155 (0.102854) | 1.597443 / 1.492716 (0.104727) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239808 / 0.018006 (0.221801) | 0.488164 / 0.000490 (0.487675) | 0.013183 / 0.000200 (0.012983) | 0.000483 / 0.000054 (0.000429) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027938 / 0.037411 (-0.009473) | 0.078521 / 0.014526 (0.063995) | 0.095498 / 0.176557 (-0.081059) | 0.150884 / 0.737135 (-0.586251) | 0.097577 / 0.296338 (-0.198762) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384546 / 0.215209 (0.169337) | 4.037707 / 2.077655 (1.960053) | 1.940321 / 1.504120 (0.436201) | 1.716741 / 1.541195 (0.175546) | 1.837200 / 1.468490 (0.368710) | 0.502112 / 4.584777 (-4.082665) | 3.770452 / 3.745712 (0.024740) | 3.325691 / 5.269862 (-1.944171) | 2.015622 / 4.565676 (-2.550055) | 0.056246 / 0.424275 (-0.368029) | 0.007320 / 0.007607 (-0.000287) | 0.445553 / 0.226044 (0.219509) | 4.567233 / 2.268929 (2.298304) | 2.319531 / 55.444624 (-53.125093) | 1.968664 / 6.876477 (-4.907813) | 2.122349 / 2.142072 (-0.019724) | 0.573688 / 4.805227 (-4.231540) | 0.131410 / 6.500664 (-6.369254) | 0.062767 / 0.075469 (-0.012702) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255244 / 1.841788 (-0.586543) | 19.042480 / 8.074308 (10.968172) | 13.935342 / 10.191392 (3.743950) | 0.161259 / 0.680424 (-0.519165) | 0.020582 / 0.534201 (-0.513619) | 0.391365 / 0.579283 (-0.187918) | 0.417462 / 0.434364 (-0.016902) | 0.473121 / 0.540337 (-0.067216) | 0.674768 / 1.386936 (-0.712168) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006299 / 0.011353 (-0.005054) | 0.003969 / 0.011008 (-0.007040) | 0.063558 / 0.038508 (0.025050) | 0.073847 / 0.023109 (0.050738) | 0.407064 / 0.275898 (0.131166) | 0.440695 / 0.323480 (0.117215) | 0.005783 / 0.007986 (-0.002203) | 0.003517 / 0.004328 (-0.000812) | 0.065721 / 0.004250 (0.061470) | 0.056390 / 0.037052 (0.019338) | 0.419019 / 0.258489 (0.160530) | 0.450721 / 0.293841 (0.156880) | 0.034094 / 0.128546 (-0.094452) | 0.008594 / 0.075646 (-0.067052) | 0.069254 / 0.419271 (-0.350017) | 0.049218 / 0.043533 (0.005685) | 0.413312 / 0.255139 (0.158173) | 0.439454 / 0.283200 (0.156255) | 0.021481 / 0.141683 (-0.120202) | 1.517536 / 1.452155 (0.065382) | 1.530532 / 1.492716 (0.037815) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235392 / 0.018006 (0.217386) | 0.477371 / 0.000490 (0.476881) | 0.007070 / 0.000200 (0.006870) | 0.000132 / 0.000054 (0.000077) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031909 / 0.037411 (-0.005502) | 0.092459 / 0.014526 (0.077933) | 0.105795 / 0.176557 (-0.070761) | 0.157745 / 0.737135 (-0.579390) | 0.104187 / 0.296338 (-0.192152) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424385 / 0.215209 (0.209176) | 4.445371 / 2.077655 (2.367716) | 2.423639 / 1.504120 (0.919519) | 2.188167 / 1.541195 (0.646972) | 2.171023 / 1.468490 (0.702532) | 0.483566 / 4.584777 (-4.101211) | 3.825702 / 3.745712 (0.079990) | 3.276350 / 5.269862 (-1.993512) | 2.063075 / 4.565676 (-2.502602) | 0.061628 / 0.424275 (-0.362647) | 0.008176 / 0.007607 (0.000569) | 0.506697 / 0.226044 (0.280653) | 5.067924 / 2.268929 (2.798995) | 2.785567 / 55.444624 (-52.659057) | 2.457340 / 6.876477 (-4.419137) | 2.599646 / 2.142072 (0.457574) | 0.581550 / 4.805227 (-4.223677) | 0.131712 / 6.500664 (-6.368952) | 0.058776 / 0.075469 (-0.016693) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356639 / 1.841788 (-0.485148) | 20.103463 / 8.074308 (12.029155) | 14.481010 / 10.191392 (4.289618) | 0.162870 / 0.680424 (-0.517554) | 0.023197 / 0.534201 (-0.511004) | 0.413042 / 0.579283 (-0.166241) | 0.427494 / 0.434364 (-0.006870) | 0.508457 / 0.540337 (-0.031880) | 0.662412 / 1.386936 (-0.724524) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#05fe5c06d42f84408b933c2809acb9b7449cbbb3 \"CML watermark\")\n"
] | "2023-09-15T14:23:33Z" | "2023-09-19T18:02:21Z" | "2023-09-19T17:53:17Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6243.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6243",
"merged_at": "2023-09-19T17:53:17Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6243.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6243"
} | Fix #6242 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6243/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6243/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4603 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4603/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4603/comments | https://api.github.com/repos/huggingface/datasets/issues/4603/events | https://github.com/huggingface/datasets/issues/4603 | 1,289,963,331 | I_kwDODunzps5M40dD | 4,603 | CI fails recurrently and randomly on Windows | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [] | "2022-06-30T10:59:58Z" | "2022-06-30T13:22:25Z" | "2022-06-30T13:22:25Z" | MEMBER | null | null | null | As reported by @lhoestq,
The windows CI is currently flaky: some dependencies like `aiobotocore`, `multiprocess` and `seqeval` sometimes fail to install.
In particular it seems that building the wheels fail. Here is an example of logs:
```
Building wheel for seqeval (setup.py): started
Running command 'C:\tools\miniconda3\envs\py37\python.exe' -u -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\circleci\\AppData\\Local\\Temp\\pip-install-h55pfgbv\\seqeval_d6cdb9d23ff6490b98b6c4bcaecb516e\\setup.py'"'"'; __file__='"'"'C:\\Users\\circleci\\AppData\\Local\\Temp\\pip-install-h55pfgbv\\seqeval_d6cdb9d23ff6490b98b6c4bcaecb516e\\setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' bdist_wheel -d 'C:\Users\circleci\AppData\Local\Temp\pip-wheel-x3cc8ym6'
No parent package detected, impossible to derive `name`
running bdist_wheel
running build
running build_py
package init file 'seqeval\__init__.py' not found (or not a regular file)
package init file 'seqeval\metrics\__init__.py' not found (or not a regular file)
C:\tools\miniconda3\envs\py37\lib\site-packages\setuptools\command\install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
setuptools.SetuptoolsDeprecationWarning,
installing to build\bdist.win-amd64\wheel
running install
running install_lib
warning: install_lib: 'build\lib' does not exist -- no Python modules to install
running install_egg_info
running egg_info
creating UNKNOWN.egg-info
writing UNKNOWN.egg-info\PKG-INFO
writing dependency_links to UNKNOWN.egg-info\dependency_links.txt
writing top-level names to UNKNOWN.egg-info\top_level.txt
writing manifest file 'UNKNOWN.egg-info\SOURCES.txt'
reading manifest file 'UNKNOWN.egg-info\SOURCES.txt'
writing manifest file 'UNKNOWN.egg-info\SOURCES.txt'
Copying UNKNOWN.egg-info to build\bdist.win-amd64\wheel\.\UNKNOWN-0.0.0-py3.7.egg-info
running install_scripts
creating build\bdist.win-amd64\wheel\UNKNOWN-0.0.0.dist-info\WHEEL
creating 'C:\Users\circleci\AppData\Local\Temp\pip-wheel-x3cc8ym6\UNKNOWN-0.0.0-py3-none-any.whl' and adding 'build\bdist.win-amd64\wheel' to it
adding 'UNKNOWN-0.0.0.dist-info/METADATA'
adding 'UNKNOWN-0.0.0.dist-info/WHEEL'
adding 'UNKNOWN-0.0.0.dist-info/top_level.txt'
adding 'UNKNOWN-0.0.0.dist-info/RECORD'
removing build\bdist.win-amd64\wheel
Building wheel for seqeval (setup.py): finished with status 'done'
Created wheel for seqeval: filename=UNKNOWN-0.0.0-py3-none-any.whl size=963 sha256=67eb93a6e1ff4796c5882a13f9fa25bb0d3d103796e2525f9cecf3b2ef26d4b1
Stored in directory: c:\users\circleci\appdata\local\pip\cache\wheels\05\96\ee\7cac4e74f3b19e3158dce26a20a1c86b3533c43ec72a549fd7
WARNING: Built wheel for seqeval is invalid: Wheel has unexpected file name: expected 'seqeval', got 'UNKNOWN'
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4603/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4603/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5932 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5932/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5932/comments | https://api.github.com/repos/huggingface/datasets/issues/5932/events | https://github.com/huggingface/datasets/pull/5932 | 1,746,249,161 | PR_kwDODunzps5Sbrzo | 5,932 | [doc build] Use secrets | {
"avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4",
"events_url": "https://api.github.com/users/mishig25/events{/privacy}",
"followers_url": "https://api.github.com/users/mishig25/followers",
"following_url": "https://api.github.com/users/mishig25/following{/other_user}",
"gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mishig25",
"id": 11827707,
"login": "mishig25",
"node_id": "MDQ6VXNlcjExODI3NzA3",
"organizations_url": "https://api.github.com/users/mishig25/orgs",
"received_events_url": "https://api.github.com/users/mishig25/received_events",
"repos_url": "https://api.github.com/users/mishig25/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mishig25/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mishig25"
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008499 / 0.011353 (-0.002854) | 0.006155 / 0.011008 (-0.004853) | 0.124032 / 0.038508 (0.085524) | 0.037337 / 0.023109 (0.014228) | 0.389274 / 0.275898 (0.113376) | 0.427736 / 0.323480 (0.104257) | 0.006929 / 0.007986 (-0.001057) | 0.005017 / 0.004328 (0.000689) | 0.096356 / 0.004250 (0.092105) | 0.055694 / 0.037052 (0.018642) | 0.391417 / 0.258489 (0.132928) | 0.448098 / 0.293841 (0.154257) | 0.042442 / 0.128546 (-0.086105) | 0.013456 / 0.075646 (-0.062190) | 0.423502 / 0.419271 (0.004230) | 0.062919 / 0.043533 (0.019386) | 0.384317 / 0.255139 (0.129178) | 0.410851 / 0.283200 (0.127652) | 0.112807 / 0.141683 (-0.028875) | 1.746050 / 1.452155 (0.293895) | 1.977974 / 1.492716 (0.485257) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.306382 / 0.018006 (0.288375) | 0.620310 / 0.000490 (0.619820) | 0.009309 / 0.000200 (0.009109) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026900 / 0.037411 (-0.010511) | 0.140125 / 0.014526 (0.125599) | 0.136295 / 0.176557 (-0.040261) | 0.207721 / 0.737135 (-0.529414) | 0.146328 / 0.296338 (-0.150011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616712 / 0.215209 (0.401503) | 6.237820 / 2.077655 (4.160166) | 2.503809 / 1.504120 (0.999689) | 2.129739 / 1.541195 (0.588544) | 2.160768 / 1.468490 (0.692277) | 0.971273 / 4.584777 (-3.613504) | 5.687161 / 3.745712 (1.941449) | 2.738148 / 5.269862 (-2.531713) | 1.692695 / 4.565676 (-2.872981) | 0.113701 / 0.424275 (-0.310574) | 0.014809 / 0.007607 (0.007202) | 0.774795 / 0.226044 (0.548750) | 7.660012 / 2.268929 (5.391083) | 3.253036 / 55.444624 (-52.191588) | 2.607498 / 6.876477 (-4.268979) | 2.681678 / 2.142072 (0.539606) | 1.095275 / 4.805227 (-3.709952) | 0.239078 / 6.500664 (-6.261586) | 0.081034 / 0.075469 (0.005565) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.574547 / 1.841788 (-0.267240) | 18.323566 / 8.074308 (10.249258) | 19.274482 / 10.191392 (9.083090) | 0.210275 / 0.680424 (-0.470149) | 0.031843 / 0.534201 (-0.502358) | 0.514843 / 0.579283 (-0.064440) | 0.633782 / 0.434364 (0.199418) | 0.588569 / 0.540337 (0.048232) | 0.721401 / 1.386936 (-0.665535) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008866 / 0.011353 (-0.002487) | 0.006460 / 0.011008 (-0.004548) | 0.121337 / 0.038508 (0.082829) | 0.033896 / 0.023109 (0.010786) | 0.455702 / 0.275898 (0.179804) | 0.509685 / 0.323480 (0.186205) | 0.007650 / 0.007986 (-0.000336) | 0.005578 / 0.004328 (0.001250) | 0.098505 / 0.004250 (0.094255) | 0.056122 / 0.037052 (0.019069) | 0.478483 / 0.258489 (0.219994) | 0.560008 / 0.293841 (0.266167) | 0.044926 / 0.128546 (-0.083620) | 0.014562 / 0.075646 (-0.061085) | 0.115027 / 0.419271 (-0.304244) | 0.066494 / 0.043533 (0.022961) | 0.463434 / 0.255139 (0.208296) | 0.513856 / 0.283200 (0.230656) | 0.126436 / 0.141683 (-0.015247) | 1.874729 / 1.452155 (0.422575) | 1.925080 / 1.492716 (0.432364) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012672 / 0.018006 (-0.005334) | 0.615797 / 0.000490 (0.615307) | 0.001606 / 0.000200 (0.001406) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031104 / 0.037411 (-0.006307) | 0.130107 / 0.014526 (0.115581) | 0.140587 / 0.176557 (-0.035970) | 0.205081 / 0.737135 (-0.532054) | 0.144068 / 0.296338 (-0.152270) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.646549 / 0.215209 (0.431340) | 6.403962 / 2.077655 (4.326307) | 2.812594 / 1.504120 (1.308474) | 2.478480 / 1.541195 (0.937285) | 2.552385 / 1.468490 (1.083895) | 0.991987 / 4.584777 (-3.592790) | 5.777917 / 3.745712 (2.032205) | 5.697830 / 5.269862 (0.427969) | 2.370583 / 4.565676 (-2.195094) | 0.109905 / 0.424275 (-0.314370) | 0.013801 / 0.007607 (0.006193) | 0.799932 / 0.226044 (0.573888) | 8.155672 / 2.268929 (5.886743) | 3.711662 / 55.444624 (-51.732963) | 3.042164 / 6.876477 (-3.834312) | 3.073549 / 2.142072 (0.931477) | 1.137515 / 4.805227 (-3.667712) | 0.231266 / 6.500664 (-6.269398) | 0.080893 / 0.075469 (0.005424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.669210 / 1.841788 (-0.172577) | 18.747144 / 8.074308 (10.672836) | 21.084589 / 10.191392 (10.893197) | 0.241379 / 0.680424 (-0.439045) | 0.029473 / 0.534201 (-0.504728) | 0.524605 / 0.579283 (-0.054678) | 0.622852 / 0.434364 (0.188488) | 0.604941 / 0.540337 (0.064604) | 0.715978 / 1.386936 (-0.670958) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#142484a60b1330359d7713e906fc9e5e30aa9f64 \"CML watermark\")\n",
"Cool ! what about `.github/workflows/build_pr_documentation.yml` and `.github/workflows/delete_doc_comment.yml` ?",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005973 / 0.011353 (-0.005380) | 0.004389 / 0.011008 (-0.006620) | 0.096076 / 0.038508 (0.057568) | 0.031569 / 0.023109 (0.008460) | 0.328300 / 0.275898 (0.052402) | 0.359356 / 0.323480 (0.035876) | 0.005378 / 0.007986 (-0.002607) | 0.003703 / 0.004328 (-0.000625) | 0.075251 / 0.004250 (0.071000) | 0.042340 / 0.037052 (0.005287) | 0.346103 / 0.258489 (0.087614) | 0.379896 / 0.293841 (0.086055) | 0.027493 / 0.128546 (-0.101053) | 0.009033 / 0.075646 (-0.066613) | 0.327829 / 0.419271 (-0.091442) | 0.064074 / 0.043533 (0.020541) | 0.337703 / 0.255139 (0.082564) | 0.355335 / 0.283200 (0.072136) | 0.101179 / 0.141683 (-0.040504) | 1.471738 / 1.452155 (0.019584) | 1.539031 / 1.492716 (0.046315) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194097 / 0.018006 (0.176091) | 0.434190 / 0.000490 (0.433701) | 0.005730 / 0.000200 (0.005530) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025634 / 0.037411 (-0.011778) | 0.105080 / 0.014526 (0.090555) | 0.116508 / 0.176557 (-0.060049) | 0.173867 / 0.737135 (-0.563269) | 0.117749 / 0.296338 (-0.178590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401566 / 0.215209 (0.186357) | 4.003558 / 2.077655 (1.925903) | 1.802756 / 1.504120 (0.298636) | 1.604222 / 1.541195 (0.063027) | 1.656617 / 1.468490 (0.188127) | 0.523385 / 4.584777 (-4.061392) | 3.744292 / 3.745712 (-0.001420) | 1.794295 / 5.269862 (-3.475567) | 1.044690 / 4.565676 (-3.520987) | 0.064992 / 0.424275 (-0.359284) | 0.011542 / 0.007607 (0.003935) | 0.507830 / 0.226044 (0.281785) | 5.061574 / 2.268929 (2.792645) | 2.252896 / 55.444624 (-53.191729) | 1.912551 / 6.876477 (-4.963926) | 2.073510 / 2.142072 (-0.068562) | 0.642148 / 4.805227 (-4.163079) | 0.140151 / 6.500664 (-6.360513) | 0.062623 / 0.075469 (-0.012846) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180367 / 1.841788 (-0.661421) | 14.263475 / 8.074308 (6.189167) | 12.917251 / 10.191392 (2.725859) | 0.143815 / 0.680424 (-0.536608) | 0.017286 / 0.534201 (-0.516915) | 0.388411 / 0.579283 (-0.190872) | 0.430512 / 0.434364 (-0.003851) | 0.466595 / 0.540337 (-0.073742) | 0.564545 / 1.386936 (-0.822391) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006059 / 0.011353 (-0.005294) | 0.004419 / 0.011008 (-0.006590) | 0.074206 / 0.038508 (0.035697) | 0.031180 / 0.023109 (0.008071) | 0.380031 / 0.275898 (0.104133) | 0.410373 / 0.323480 (0.086893) | 0.005397 / 0.007986 (-0.002589) | 0.003952 / 0.004328 (-0.000376) | 0.074426 / 0.004250 (0.070176) | 0.046256 / 0.037052 (0.009203) | 0.385543 / 0.258489 (0.127054) | 0.430724 / 0.293841 (0.136883) | 0.028052 / 0.128546 (-0.100494) | 0.008810 / 0.075646 (-0.066836) | 0.080749 / 0.419271 (-0.338522) | 0.046746 / 0.043533 (0.003214) | 0.380325 / 0.255139 (0.125186) | 0.398901 / 0.283200 (0.115701) | 0.099607 / 0.141683 (-0.042076) | 1.433343 / 1.452155 (-0.018812) | 1.520447 / 1.492716 (0.027730) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202232 / 0.018006 (0.184225) | 0.431342 / 0.000490 (0.430852) | 0.001020 / 0.000200 (0.000820) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028762 / 0.037411 (-0.008649) | 0.111777 / 0.014526 (0.097251) | 0.119283 / 0.176557 (-0.057273) | 0.168151 / 0.737135 (-0.568985) | 0.126093 / 0.296338 (-0.170245) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442689 / 0.215209 (0.227480) | 4.369202 / 2.077655 (2.291547) | 2.167703 / 1.504120 (0.663583) | 1.960580 / 1.541195 (0.419385) | 2.001459 / 1.468490 (0.532969) | 0.527169 / 4.584777 (-4.057608) | 3.738987 / 3.745712 (-0.006726) | 1.819002 / 5.269862 (-3.450860) | 1.082786 / 4.565676 (-3.482891) | 0.066209 / 0.424275 (-0.358066) | 0.011549 / 0.007607 (0.003942) | 0.545959 / 0.226044 (0.319915) | 5.466655 / 2.268929 (3.197727) | 2.671448 / 55.444624 (-52.773176) | 2.340968 / 6.876477 (-4.535509) | 2.358805 / 2.142072 (0.216733) | 0.649456 / 4.805227 (-4.155771) | 0.142009 / 6.500664 (-6.358655) | 0.064199 / 0.075469 (-0.011270) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259819 / 1.841788 (-0.581969) | 14.456988 / 8.074308 (6.382680) | 14.478982 / 10.191392 (4.287590) | 0.163156 / 0.680424 (-0.517268) | 0.017090 / 0.534201 (-0.517111) | 0.391339 / 0.579283 (-0.187944) | 0.422021 / 0.434364 (-0.012343) | 0.465340 / 0.540337 (-0.074997) | 0.564517 / 1.386936 (-0.822419) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#97358c88f996a65f49923ec215358044e4146a95 \"CML watermark\")\n",
"> .github/workflows/delete_doc_comment.yml \r\n\r\nis already updated https://github.com/huggingface/datasets/pull/5932/files\r\n\r\n> .github/workflows/build_pr_documentation.yml\r\n\r\nindeed no changes are needed"
] | "2023-06-07T16:09:39Z" | "2023-06-09T10:16:58Z" | "2023-06-09T09:53:16Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5932.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5932",
"merged_at": "2023-06-09T09:53:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5932.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5932"
} | Companion pr to https://github.com/huggingface/doc-builder/pull/379 | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5932/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5932/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5056 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5056/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5056/comments | https://api.github.com/repos/huggingface/datasets/issues/5056/events | https://github.com/huggingface/datasets/pull/5056 | 1,394,713,173 | PR_kwDODunzps5ADfxN | 5,056 | Fix broken URL's (GEM) | {
"avatar_url": "https://avatars.githubusercontent.com/u/6687858?v=4",
"events_url": "https://api.github.com/users/manandey/events{/privacy}",
"followers_url": "https://api.github.com/users/manandey/followers",
"following_url": "https://api.github.com/users/manandey/following{/other_user}",
"gists_url": "https://api.github.com/users/manandey/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/manandey",
"id": 6687858,
"login": "manandey",
"node_id": "MDQ6VXNlcjY2ODc4NTg=",
"organizations_url": "https://api.github.com/users/manandey/orgs",
"received_events_url": "https://api.github.com/users/manandey/received_events",
"repos_url": "https://api.github.com/users/manandey/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/manandey/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/manandey/subscriptions",
"type": "User",
"url": "https://api.github.com/users/manandey"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5056). All of your documentation changes will be reflected on that endpoint.",
"Thanks, @manandey. We have removed all dataset scripts from this repo. Subsequent PRs should be opened directly on the Hugging Face Hub."
] | "2022-10-03T13:13:22Z" | "2022-10-04T13:49:00Z" | "2022-10-04T13:48:59Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5056.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5056",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/5056.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5056"
} | This PR fixes the broken URL's in GEM. cc. @lhoestq, @albertvillanova | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5056/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5056/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4535 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4535/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4535/comments | https://api.github.com/repos/huggingface/datasets/issues/4535/events | https://github.com/huggingface/datasets/pull/4535 | 1,278,365,039 | PR_kwDODunzps46BnXq | 4,535 | Add `batch_size` parameter when calling `add_faiss_index` and `add_faiss_index_from_external_arrays` | {
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/alvarobartt",
"id": 36760800,
"login": "alvarobartt",
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"type": "User",
"url": "https://api.github.com/users/alvarobartt"
} | [] | closed | false | null | [] | null | [
"Also, I had a doubt while checking the code related to the indices... \r\n\r\n@lhoestq, there's a value in `config.py` named `DATASET_INDICES_FILENAME` which has the arrow extension (which I assume it should be `indices.faiss`, as the Elastic Search indices are not stored in a file, but not sure), and it's just used before actually saving an `ArrowDataset` in disk, but since those indices are never stored AFAIK, is that actually required?\r\n\r\nhttps://github.com/huggingface/datasets/blob/aec86ea4b790ccccc9b2e0376a496728b1c914cc/src/datasets/config.py#L183\r\n\r\nhttps://github.com/huggingface/datasets/blob/aec86ea4b790ccccc9b2e0376a496728b1c914cc/src/datasets/arrow_dataset.py#L1079-L1092\r\n\r\nSo should I also remove that?\r\n\r\nP.S. I also edited the following code comment which I found misleading as it's not actually storing the indices.\r\n\r\nhttps://github.com/huggingface/datasets/blob/8ddc4bbeb1e2bd307b21f5d21f884649aa2bf640/src/datasets/arrow_dataset.py#L1122",
"_The documentation is not available anymore as the PR was closed or merged._",
"> @lhoestq, there's a value in config.py named DATASET_INDICES_FILENAME which has the arrow extension (which I assume it should be indices.faiss, as the Elastic Search indices are not stored in a file, but not sure), and it's just used before actually saving an ArrowDataset in disk, but since those indices are never stored AFAIK, is that actually required?\r\n\r\nThe arrow file is used to store an indices mapping (when you shuffle the dataset for example) - not for a faiss index ;)",
"Ok cool thanks a lot for the explanation @lhoestq I was not sure about that :+1: I'll also add it there as you suggested!",
"CI failures are unrelated to this PR and fixed on master, merging"
] | "2022-06-21T12:18:49Z" | "2022-06-27T16:25:09Z" | "2022-06-27T16:14:36Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4535.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4535",
"merged_at": "2022-06-27T16:14:36Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4535.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4535"
} | Currently, even though the `batch_size` when adding vectors to the FAISS index can be tweaked in `FaissIndex.add_vectors()`, the function `ArrowDataset.add_faiss_index` doesn't have either the parameter `batch_size` to be propagated to the nested `FaissIndex.add_vectors` function or `*args, **kwargs`, so on, this PR adds the `batch_size` parameter to both `ArrowDataset.add_faiss_index` and `ArrowDataset.add_faiss_index_from_external_arrays`.
This is useful so as to tweak the `batch_size` according to the VM specifications. | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4535/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4535/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3516 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3516/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3516/comments | https://api.github.com/repos/huggingface/datasets/issues/3516/events | https://github.com/huggingface/datasets/pull/3516 | 1,092,657,738 | PR_kwDODunzps4weYhE | 3,516 | dataset `asset` - change to raw.githubusercontent.com URLs | {
"avatar_url": "https://avatars.githubusercontent.com/u/16107619?v=4",
"events_url": "https://api.github.com/users/VictorSanh/events{/privacy}",
"followers_url": "https://api.github.com/users/VictorSanh/followers",
"following_url": "https://api.github.com/users/VictorSanh/following{/other_user}",
"gists_url": "https://api.github.com/users/VictorSanh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/VictorSanh",
"id": 16107619,
"login": "VictorSanh",
"node_id": "MDQ6VXNlcjE2MTA3NjE5",
"organizations_url": "https://api.github.com/users/VictorSanh/orgs",
"received_events_url": "https://api.github.com/users/VictorSanh/received_events",
"repos_url": "https://api.github.com/users/VictorSanh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/VictorSanh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/VictorSanh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/VictorSanh"
} | [] | closed | false | null | [] | null | [] | "2022-01-03T16:43:57Z" | "2022-01-03T17:39:02Z" | "2022-01-03T17:39:01Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3516.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3516",
"merged_at": "2022-01-03T17:39:01Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3516.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3516"
} | Changed the URLs to the ones it was automatically re-directing.
Before, the download was failing | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3516/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3516/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4183 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4183/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4183/comments | https://api.github.com/repos/huggingface/datasets/issues/4183/events | https://github.com/huggingface/datasets/pull/4183 | 1,208,449,335 | PR_kwDODunzps42bjXn | 4,183 | Document librispeech configs | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"I think the main purpose of #4179 was how to be able to load both configs into one, so should we maybe add this part of the code: https://github.com/huggingface/datasets/issues/4179#issuecomment-1102383717 \r\n\r\nto the doc? \r\n\r\nActually @lhoestq would this work given that they have different split names: https://huggingface.co/datasets/librispeech_asr#data-splits ? ",
"This doc extension does not explain why I can't simply load the whole dataset. Or what workaround I need to get the whole dataset, which is what people usually want for Librispeech.",
"_The documentation is not available anymore as the PR was closed or merged._",
"@lhoestq, I can add a `\"all\"` config to Librispeech have the datasets already cached somewhere ",
"I'm closing this PR then, feel free to continue the discussion in https://github.com/huggingface/datasets/issues/4179\r\n"
] | "2022-04-19T14:26:59Z" | "2023-09-24T10:02:24Z" | "2022-04-19T15:15:20Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4183.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4183",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/4183.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4183"
} | Added an example of how to load one config or the other | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4183/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4183/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6139 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6139/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6139/comments | https://api.github.com/repos/huggingface/datasets/issues/6139/events | https://github.com/huggingface/datasets/issues/6139 | 1,844,991,583 | I_kwDODunzps5t-FZf | 6,139 | Offline dataset viewer | {
"avatar_url": "https://avatars.githubusercontent.com/u/57996478?v=4",
"events_url": "https://api.github.com/users/yuvalkirstain/events{/privacy}",
"followers_url": "https://api.github.com/users/yuvalkirstain/followers",
"following_url": "https://api.github.com/users/yuvalkirstain/following{/other_user}",
"gists_url": "https://api.github.com/users/yuvalkirstain/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/yuvalkirstain",
"id": 57996478,
"login": "yuvalkirstain",
"node_id": "MDQ6VXNlcjU3OTk2NDc4",
"organizations_url": "https://api.github.com/users/yuvalkirstain/orgs",
"received_events_url": "https://api.github.com/users/yuvalkirstain/received_events",
"repos_url": "https://api.github.com/users/yuvalkirstain/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/yuvalkirstain/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yuvalkirstain/subscriptions",
"type": "User",
"url": "https://api.github.com/users/yuvalkirstain"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
},
{
"color": "E5583E",
"default": false,
"description": "Related to the dataset viewer on huggingface.co",
"id": 3470211881,
"name": "dataset-viewer",
"node_id": "LA_kwDODunzps7O1zsp",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer"
}
] | closed | false | null | [] | null | [
"Hi, thanks for the suggestion. It's not possible at the moment. The viewer is part of the Hub codebase and only works on public datasets. Also, it relies on [Datasets Server](https://github.com/huggingface/datasets-server/), which prepares the data and provides an API to access the rows, size, etc.\r\n\r\nIf you're interested in hosting your data as a private dataset on the Hub, you might want to look at https://github.com/huggingface/datasets-server/issues/39.",
"Hi, we are building an offline dataset viewer: https://github.com/Renumics/spotlight\r\nIt supports many HF datasets, but currently you have to use it via Pandas:\r\ndf=ds.to_pandas()\r\nspotlight.show(df)\r\n\r\nWould love to hear from you if that works for your use case. If not, feel free to open an issue on the repo: https://github.com/Renumics/spotlight/issues",
"@ssuwelack thank you! I will definitely try it out.",
"Related issues:\r\n- https://github.com/huggingface/datasets-server/issues/213\r\n- https://github.com/huggingface/datasets-server/issues/441\r\n- https://github.com/huggingface/datasets/issues/6014",
"Closing for now, as developing and maintaining an offline viewer is not planned."
] | "2023-08-10T11:30:00Z" | "2023-09-29T13:10:23Z" | "2023-09-29T13:10:22Z" | NONE | null | null | null | ### Feature request
The dataset viewer feature is very nice. It enables to the user to easily view the dataset. However, when working for private companies we cannot always upload the dataset to the hub. Is there a way to create dataset viewer offline? I.e. to run a code that will open some kind of html or something that makes it easy to view the dataset.
### Motivation
I want to easily view my dataset even when it is hosted locally.
### Your contribution
N.A. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6139/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6139/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/1907 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1907/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1907/comments | https://api.github.com/repos/huggingface/datasets/issues/1907/events | https://github.com/huggingface/datasets/issues/1907 | 811,520,569 | MDU6SXNzdWU4MTE1MjA1Njk= | 1,907 | DBPedia14 Dataset Checksum bug? | {
"avatar_url": "https://avatars.githubusercontent.com/u/918006?v=4",
"events_url": "https://api.github.com/users/francisco-perez-sorrosal/events{/privacy}",
"followers_url": "https://api.github.com/users/francisco-perez-sorrosal/followers",
"following_url": "https://api.github.com/users/francisco-perez-sorrosal/following{/other_user}",
"gists_url": "https://api.github.com/users/francisco-perez-sorrosal/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/francisco-perez-sorrosal",
"id": 918006,
"login": "francisco-perez-sorrosal",
"node_id": "MDQ6VXNlcjkxODAwNg==",
"organizations_url": "https://api.github.com/users/francisco-perez-sorrosal/orgs",
"received_events_url": "https://api.github.com/users/francisco-perez-sorrosal/received_events",
"repos_url": "https://api.github.com/users/francisco-perez-sorrosal/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/francisco-perez-sorrosal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/francisco-perez-sorrosal/subscriptions",
"type": "User",
"url": "https://api.github.com/users/francisco-perez-sorrosal"
} | [] | closed | false | null | [] | null | [
"Hi ! :)\r\n\r\nThis looks like the same issue as https://github.com/huggingface/datasets/issues/1856 \r\nBasically google drive has quota issues that makes it inconvenient for downloading files.\r\n\r\nIf the quota of a file is exceeded, you have to wait 24h for the quota to reset (which is painful).\r\n\r\nThe error says that the checksum of the downloaded file doesn't match because google drive returns a text file with the \"Quota Exceeded\" error instead of the actual data file.",
"Thanks @lhoestq! Yes, it seems back to normal after a couple of days."
] | "2021-02-18T22:25:48Z" | "2021-02-22T23:22:05Z" | "2021-02-22T23:22:04Z" | CONTRIBUTOR | null | null | null | Hi there!!!
I've been using successfully the DBPedia dataset (https://huggingface.co/datasets/dbpedia_14) with my codebase in the last couple of weeks, but in the last couple of days now I get this error:
```
Traceback (most recent call last):
File "./conditional_classification/basic_pipeline.py", line 178, in <module>
main()
File "./conditional_classification/basic_pipeline.py", line 128, in main
corpus.load_data(limit_train_examples_per_class=args.data_args.train_examples_per_class,
File "/home/fp/dev/conditional_classification/conditional_classification/datasets_base.py", line 83, in load_data
datasets = load_dataset(self.name, split=dataset_split)
File "/home/fp/anaconda3/envs/conditional/lib/python3.8/site-packages/datasets/load.py", line 609, in load_dataset
builder_instance.download_and_prepare(
File "/home/fp/anaconda3/envs/conditional/lib/python3.8/site-packages/datasets/builder.py", line 526, in download_and_prepare
self._download_and_prepare(
File "/home/fp/anaconda3/envs/conditional/lib/python3.8/site-packages/datasets/builder.py", line 586, in _download_and_prepare
verify_checksums(
File "/home/fp/anaconda3/envs/conditional/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 39, in verify_checksums
raise NonMatchingChecksumError(error_msg + str(bad_urls))
datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:
['https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbQ2Vic1kxMmZZQ1k']
```
I've seen this has happened before in other datasets as reported in #537.
I've tried clearing my cache and call again `load_dataset` but still is not working. My same codebase is successfully downloading and using other datasets (e.g. AGNews) without any problem, so I guess something has happened specifically to the DBPedia dataset in the last few days.
Can you please check if there's a problem with the checksums?
Or this is related to any other stuff? I've seen that the path in the cache for the dataset is `/home/fp/.cache/huggingface/datasets/d_bpedia14/dbpedia_14/2.0.0/a70413e39e7a716afd0e90c9e53cb053691f56f9ef5fe317bd07f2c368e8e897...` and includes `d_bpedia14` instead maybe of `dbpedia_14`. Was this maybe a bug introduced recently?
Thanks! | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1907/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1907/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/2152 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2152/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2152/comments | https://api.github.com/repos/huggingface/datasets/issues/2152/events | https://github.com/huggingface/datasets/pull/2152 | 845,751,273 | MDExOlB1bGxSZXF1ZXN0NjA0ODk0MDkz | 2,152 | Update README.md | {
"avatar_url": "https://avatars.githubusercontent.com/u/22306304?v=4",
"events_url": "https://api.github.com/users/JieyuZhao/events{/privacy}",
"followers_url": "https://api.github.com/users/JieyuZhao/followers",
"following_url": "https://api.github.com/users/JieyuZhao/following{/other_user}",
"gists_url": "https://api.github.com/users/JieyuZhao/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/JieyuZhao",
"id": 22306304,
"login": "JieyuZhao",
"node_id": "MDQ6VXNlcjIyMzA2MzA0",
"organizations_url": "https://api.github.com/users/JieyuZhao/orgs",
"received_events_url": "https://api.github.com/users/JieyuZhao/received_events",
"repos_url": "https://api.github.com/users/JieyuZhao/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/JieyuZhao/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JieyuZhao/subscriptions",
"type": "User",
"url": "https://api.github.com/users/JieyuZhao"
} | [] | closed | false | null | [] | null | [] | "2021-03-31T03:21:19Z" | "2021-04-01T10:20:37Z" | "2021-04-01T10:20:36Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2152.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2152",
"merged_at": "2021-04-01T10:20:36Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2152.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2152"
} | Updated some descriptions of Wino_Bias dataset. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2152/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2152/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4759 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4759/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4759/comments | https://api.github.com/repos/huggingface/datasets/issues/4759/events | https://github.com/huggingface/datasets/issues/4759 | 1,320,783,300 | I_kwDODunzps5OuY3E | 4,759 | Dataset Viewer issue for Toygar/turkish-offensive-language-detection | {
"avatar_url": "https://avatars.githubusercontent.com/u/44132720?v=4",
"events_url": "https://api.github.com/users/toygarr/events{/privacy}",
"followers_url": "https://api.github.com/users/toygarr/followers",
"following_url": "https://api.github.com/users/toygarr/following{/other_user}",
"gists_url": "https://api.github.com/users/toygarr/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/toygarr",
"id": 44132720,
"login": "toygarr",
"node_id": "MDQ6VXNlcjQ0MTMyNzIw",
"organizations_url": "https://api.github.com/users/toygarr/orgs",
"received_events_url": "https://api.github.com/users/toygarr/received_events",
"repos_url": "https://api.github.com/users/toygarr/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/toygarr/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/toygarr/subscriptions",
"type": "User",
"url": "https://api.github.com/users/toygarr"
} | [
{
"color": "E5583E",
"default": false,
"description": "Related to the dataset viewer on huggingface.co",
"id": 3470211881,
"name": "dataset-viewer",
"node_id": "LA_kwDODunzps7O1zsp",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo"
}
] | null | [
"I refreshed the dataset viewer manually, it's fixed now. Sorry for the inconvenience.\r\n<img width=\"1557\" alt=\"Capture d’écran 2022-07-28 à 09 17 39\" src=\"https://user-images.githubusercontent.com/1676121/181514666-92d7f8e1-ddc1-4769-84f3-f1edfdb902e8.png\">\r\n\r\n"
] | "2022-07-28T11:21:43Z" | "2022-07-28T13:17:56Z" | "2022-07-28T13:17:48Z" | NONE | null | null | null | ### Link
https://huggingface.co/datasets/Toygar/turkish-offensive-language-detection
### Description
Status code: 400
Exception: Status400Error
Message: The dataset does not exist.
Hi, I provided train.csv, test.csv and valid.csv files. However, viewer says dataset does not exist.
Should I need to do anything else?
### Owner
Yes | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4759/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4759/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/3856 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3856/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3856/comments | https://api.github.com/repos/huggingface/datasets/issues/3856/events | https://github.com/huggingface/datasets/pull/3856 | 1,162,522,034 | PR_kwDODunzps40GUSf | 3,856 | Fix push_to_hub with null images | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3856). All of your documentation changes will be reflected on that endpoint."
] | "2022-03-08T11:07:09Z" | "2022-03-08T15:22:17Z" | "2022-03-08T15:22:16Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3856.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3856",
"merged_at": "2022-03-08T15:22:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3856.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3856"
} | This code currently raises an error because of the null image:
```python
import datasets
dataset_dict = { 'name': ['image001.jpg', 'image002.jpg'], 'image': ['cat.jpg', None] }
features = datasets.Features({
'name': datasets.Value('string'),
'image': datasets.Image(),
})
dataset = datasets.Dataset.from_dict(dataset_dict, features)
dataset.push_to_hub("username/dataset") # this line produces an error: 'NoneType' object is not subscriptable
```
I fixed this in this PR
TODO:
- [x] add a test | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3856/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3856/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4856 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4856/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4856/comments | https://api.github.com/repos/huggingface/datasets/issues/4856/events | https://github.com/huggingface/datasets/issues/4856 | 1,339,779,957 | I_kwDODunzps5P22t1 | 4,856 | file missing when load_dataset with openwebtext on windows | {
"avatar_url": "https://avatars.githubusercontent.com/u/10361976?v=4",
"events_url": "https://api.github.com/users/kingstarcraft/events{/privacy}",
"followers_url": "https://api.github.com/users/kingstarcraft/followers",
"following_url": "https://api.github.com/users/kingstarcraft/following{/other_user}",
"gists_url": "https://api.github.com/users/kingstarcraft/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kingstarcraft",
"id": 10361976,
"login": "kingstarcraft",
"node_id": "MDQ6VXNlcjEwMzYxOTc2",
"organizations_url": "https://api.github.com/users/kingstarcraft/orgs",
"received_events_url": "https://api.github.com/users/kingstarcraft/received_events",
"repos_url": "https://api.github.com/users/kingstarcraft/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kingstarcraft/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kingstarcraft/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kingstarcraft"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"I have tried to extract ```0015896-b1054262f7da52a0518521e29c8e352c.txt``` from ```17ecf461bfccd469a1fbc264ccb03731f8606eea7b3e2e8b86e13d18040bf5b3/urlsf_subset00-16_data.xz``` with 7-zip\r\nand put the file into cache_path ```F://huggingface/datasets/downloads/extracted/0901d27f43b7e9ac0577da0d0061c8c632ba0b70ecd1b4bfb21562d9b7486faa```\r\nthere is still raise the same error and I find the file was removed from cache_path after I run the run_mlm.py with ```python run_mlm.py --model_type roberta --tokenizer_name roberta-base --dataset_name openwebtext --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --do_train --do_eval --output_dir F:/model/roberta-base```."
] | "2022-08-16T04:04:22Z" | "2023-01-04T03:39:12Z" | "2023-01-04T03:39:12Z" | NONE | null | null | null | ## Describe the bug
0015896-b1054262f7da52a0518521e29c8e352c.txt is missing when I run run_mlm.py with openwebtext. I check the cache_path and can not find 0015896-b1054262f7da52a0518521e29c8e352c.txt. but I can find this file in the 17ecf461bfccd469a1fbc264ccb03731f8606eea7b3e2e8b86e13d18040bf5b3/urlsf_subset00-16_data.xz with 7-zip.
## Steps to reproduce the bug
```sh
python run_mlm.py --model_type roberta --tokenizer_name roberta-base --dataset_name openwebtext --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --do_train --do_eval --output_dir F:/model/roberta-base
```
or
```python
from datasets import load_dataset
load_dataset("openwebtext", None, cache_dir=None, use_auth_token=None)
```
## Expected results
Loading is successful
## Actual results
Traceback (most recent call last):
File "D:\Python\v3.8.5\lib\site-packages\datasets\builder.py", line 704, in download_and_prepare
self._download_and_prepare(
File "D:\Python\v3.8.5\lib\site-packages\datasets\builder.py", line 1227, in _download_and_prepare
super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos)
File "D:\Python\v3.8.5\lib\site-packages\datasets\builder.py", line 795, in _download_and_prepare
raise OSError(
OSError: Cannot find data file.
Original error:
[Errno 22] Invalid argument: 'F://huggingface/datasets/downloads/extracted/0901d27f43b7e9ac0577da0d0061c8c632ba0b70ecd1b4bfb21562d9b7486faa/0015896-b1054262f7da52a0518521e29c8e352c.txt'
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.4.0
- Platform: windows
- Python version: 3.8.5
- PyArrow version: 9.0.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4856/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4856/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6293 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6293/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6293/comments | https://api.github.com/repos/huggingface/datasets/issues/6293/events | https://github.com/huggingface/datasets/issues/6293 | 1,937,238,047 | I_kwDODunzps5zd-gf | 6,293 | Choose columns to stream parquet data in streaming mode | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [] | "2023-10-11T08:59:36Z" | "2023-10-11T16:21:38Z" | "2023-10-11T16:21:38Z" | MEMBER | null | null | null | Currently passing columns= to load_dataset in streaming mode fails
```
Tried to load parquet data with columns '['link']' with mismatching features '{'caption': Value(dtype='string', id=None), 'image': {'bytes': Value(dtype='binary', id=None), 'path': Value(dtype='null', id=None)}, 'link': Value(dtype='string', id=None), 'message_id': Value(dtype='string', id=None), 'timestamp': Value(dtype='string', id=None)}'
```
similar to https://github.com/huggingface/datasets/issues/6039
reported at https://huggingface.co/datasets/laion/dalle-3-dataset/discussions/3#65259a09617407d4520f4ad9 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6293/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6293/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4432 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4432/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4432/comments | https://api.github.com/repos/huggingface/datasets/issues/4432/events | https://github.com/huggingface/datasets/pull/4432 | 1,255,523,720 | PR_kwDODunzps441JmK | 4,432 | Fix builder docstring | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | "2022-06-01T09:45:30Z" | "2022-06-02T17:43:47Z" | "2022-06-02T17:35:15Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4432.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4432",
"merged_at": "2022-06-02T17:35:15Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4432.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4432"
} | Currently, the args of `DatasetBuilder` do not appear in the docs: https://huggingface.co/docs/datasets/v2.1.0/en/package_reference/builder_classes#datasets.DatasetBuilder | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4432/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4432/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5982 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5982/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5982/comments | https://api.github.com/repos/huggingface/datasets/issues/5982/events | https://github.com/huggingface/datasets/issues/5982 | 1,770,333,296 | I_kwDODunzps5phSRw | 5,982 | 404 on Datasets Documentation Page | {
"avatar_url": "https://avatars.githubusercontent.com/u/118509387?v=4",
"events_url": "https://api.github.com/users/kmulka-bloomberg/events{/privacy}",
"followers_url": "https://api.github.com/users/kmulka-bloomberg/followers",
"following_url": "https://api.github.com/users/kmulka-bloomberg/following{/other_user}",
"gists_url": "https://api.github.com/users/kmulka-bloomberg/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kmulka-bloomberg",
"id": 118509387,
"login": "kmulka-bloomberg",
"node_id": "U_kgDOBxBPSw",
"organizations_url": "https://api.github.com/users/kmulka-bloomberg/orgs",
"received_events_url": "https://api.github.com/users/kmulka-bloomberg/received_events",
"repos_url": "https://api.github.com/users/kmulka-bloomberg/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kmulka-bloomberg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kmulka-bloomberg/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kmulka-bloomberg"
} | [] | closed | false | null | [] | null | [
"This wasn’t working for me a bit earlier, but it looks to be back up now",
"We had a minor issue updating the docs after the latest release. It should work now :)."
] | "2023-06-22T20:14:57Z" | "2023-06-26T15:45:03Z" | "2023-06-26T15:45:03Z" | NONE | null | null | null | ### Describe the bug
Getting a 404 from the Hugging Face Datasets docs page:
https://huggingface.co/docs/datasets/index
### Steps to reproduce the bug
1. Go to URL https://huggingface.co/docs/datasets/index
2. Notice 404 not found
### Expected behavior
URL should either show docs or redirect to new location
### Environment info
hugginface.co | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5982/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5982/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6117 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6117/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6117/comments | https://api.github.com/repos/huggingface/datasets/issues/6117/events | https://github.com/huggingface/datasets/pull/6117 | 1,835,213,848 | PR_kwDODunzps5XHktw | 6,117 | Set dev version | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6117). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012516 / 0.011353 (0.001163) | 0.004725 / 0.011008 (-0.006283) | 0.112245 / 0.038508 (0.073736) | 0.079146 / 0.023109 (0.056037) | 0.386415 / 0.275898 (0.110517) | 0.420441 / 0.323480 (0.096961) | 0.005682 / 0.007986 (-0.002304) | 0.004169 / 0.004328 (-0.000160) | 0.077847 / 0.004250 (0.073597) | 0.055763 / 0.037052 (0.018711) | 0.385529 / 0.258489 (0.127040) | 0.422711 / 0.293841 (0.128870) | 0.047212 / 0.128546 (-0.081334) | 0.013711 / 0.075646 (-0.061935) | 0.342856 / 0.419271 (-0.076416) | 0.066788 / 0.043533 (0.023255) | 0.380728 / 0.255139 (0.125589) | 0.416241 / 0.283200 (0.133041) | 0.034676 / 0.141683 (-0.107007) | 1.679661 / 1.452155 (0.227506) | 1.838014 / 1.492716 (0.345297) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219556 / 0.018006 (0.201550) | 0.524728 / 0.000490 (0.524238) | 0.005045 / 0.000200 (0.004845) | 0.000124 / 0.000054 (0.000069) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025475 / 0.037411 (-0.011936) | 0.085937 / 0.014526 (0.071412) | 0.099245 / 0.176557 (-0.077311) | 0.158995 / 0.737135 (-0.578141) | 0.101504 / 0.296338 (-0.194835) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.582200 / 0.215209 (0.366991) | 5.794340 / 2.077655 (3.716685) | 2.473635 / 1.504120 (0.969515) | 2.168135 / 1.541195 (0.626941) | 2.215886 / 1.468490 (0.747396) | 0.855599 / 4.584777 (-3.729178) | 5.003067 / 3.745712 (1.257354) | 4.503566 / 5.269862 (-0.766295) | 2.912248 / 4.565676 (-1.653428) | 0.103267 / 0.424275 (-0.321008) | 0.012114 / 0.007607 (0.004507) | 0.712240 / 0.226044 (0.486196) | 7.131946 / 2.268929 (4.863017) | 3.280052 / 55.444624 (-52.164573) | 2.583472 / 6.876477 (-4.293004) | 2.820758 / 2.142072 (0.678686) | 1.132097 / 4.805227 (-3.673131) | 0.232191 / 6.500664 (-6.268473) | 0.082966 / 0.075469 (0.007497) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.581125 / 1.841788 (-0.260662) | 22.723878 / 8.074308 (14.649570) | 19.969347 / 10.191392 (9.777955) | 0.234365 / 0.680424 (-0.446059) | 0.030245 / 0.534201 (-0.503956) | 0.470843 / 0.579283 (-0.108440) | 0.558069 / 0.434364 (0.123705) | 0.534878 / 0.540337 (-0.005460) | 0.801025 / 1.386936 (-0.585911) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008524 / 0.011353 (-0.002829) | 0.005083 / 0.011008 (-0.005925) | 0.078054 / 0.038508 (0.039546) | 0.082025 / 0.023109 (0.058915) | 0.458027 / 0.275898 (0.182129) | 0.498232 / 0.323480 (0.174752) | 0.005938 / 0.007986 (-0.002048) | 0.003776 / 0.004328 (-0.000553) | 0.080413 / 0.004250 (0.076163) | 0.060485 / 0.037052 (0.023433) | 0.462816 / 0.258489 (0.204327) | 0.513970 / 0.293841 (0.220129) | 0.047574 / 0.128546 (-0.080973) | 0.013424 / 0.075646 (-0.062222) | 0.087707 / 0.419271 (-0.331565) | 0.065007 / 0.043533 (0.021474) | 0.465844 / 0.255139 (0.210705) | 0.498474 / 0.283200 (0.215274) | 0.033518 / 0.141683 (-0.108164) | 1.737507 / 1.452155 (0.285352) | 1.848291 / 1.492716 (0.355574) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316710 / 0.018006 (0.298703) | 0.504415 / 0.000490 (0.503925) | 0.042128 / 0.000200 (0.041928) | 0.000171 / 0.000054 (0.000117) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032097 / 0.037411 (-0.005314) | 0.099371 / 0.014526 (0.084845) | 0.109311 / 0.176557 (-0.067246) | 0.177373 / 0.737135 (-0.559762) | 0.110753 / 0.296338 (-0.185585) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.688060 / 0.215209 (0.472851) | 6.255219 / 2.077655 (4.177564) | 2.696845 / 1.504120 (1.192725) | 2.395424 / 1.541195 (0.854230) | 2.414870 / 1.468490 (0.946380) | 0.865704 / 4.584777 (-3.719073) | 5.086828 / 3.745712 (1.341116) | 4.648107 / 5.269862 (-0.621754) | 3.091119 / 4.565676 (-1.474558) | 0.101787 / 0.424275 (-0.322489) | 0.008829 / 0.007607 (0.001222) | 0.772398 / 0.226044 (0.546354) | 7.700366 / 2.268929 (5.431438) | 3.608632 / 55.444624 (-51.835992) | 2.923309 / 6.876477 (-3.953168) | 2.952141 / 2.142072 (0.810069) | 1.093006 / 4.805227 (-3.712221) | 0.224363 / 6.500664 (-6.276301) | 0.074927 / 0.075469 (-0.000542) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.638414 / 1.841788 (-0.203374) | 23.486781 / 8.074308 (15.412473) | 21.129104 / 10.191392 (10.937712) | 0.259955 / 0.680424 (-0.420469) | 0.027305 / 0.534201 (-0.506895) | 0.464448 / 0.579283 (-0.114835) | 0.553737 / 0.434364 (0.119373) | 0.571318 / 0.540337 (0.030981) | 0.772917 / 1.386936 (-0.614019) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3ec5ee9e78b464364796651d995823c7ecb0f951 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009093 / 0.011353 (-0.002260) | 0.005283 / 0.011008 (-0.005725) | 0.112299 / 0.038508 (0.073791) | 0.081341 / 0.023109 (0.058232) | 0.363799 / 0.275898 (0.087901) | 0.409261 / 0.323480 (0.085781) | 0.006400 / 0.007986 (-0.001586) | 0.003965 / 0.004328 (-0.000363) | 0.074389 / 0.004250 (0.070139) | 0.060654 / 0.037052 (0.023602) | 0.391046 / 0.258489 (0.132557) | 0.430514 / 0.293841 (0.136673) | 0.054900 / 0.128546 (-0.073646) | 0.017972 / 0.075646 (-0.057675) | 0.410875 / 0.419271 (-0.008396) | 0.067405 / 0.043533 (0.023873) | 0.371468 / 0.255139 (0.116329) | 0.435061 / 0.283200 (0.151861) | 0.038063 / 0.141683 (-0.103620) | 1.733509 / 1.452155 (0.281354) | 1.833899 / 1.492716 (0.341182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243230 / 0.018006 (0.225224) | 0.605636 / 0.000490 (0.605146) | 0.004890 / 0.000200 (0.004690) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027624 / 0.037411 (-0.009787) | 0.084799 / 0.014526 (0.070273) | 0.104405 / 0.176557 (-0.072152) | 0.165383 / 0.737135 (-0.571752) | 0.102083 / 0.296338 (-0.194255) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578334 / 0.215209 (0.363125) | 5.369520 / 2.077655 (3.291866) | 2.294174 / 1.504120 (0.790055) | 2.054195 / 1.541195 (0.513000) | 2.007304 / 1.468490 (0.538814) | 0.839283 / 4.584777 (-3.745494) | 5.262288 / 3.745712 (1.516576) | 4.363346 / 5.269862 (-0.906516) | 2.854903 / 4.565676 (-1.710773) | 0.096975 / 0.424275 (-0.327300) | 0.008237 / 0.007607 (0.000630) | 0.646746 / 0.226044 (0.420702) | 6.250621 / 2.268929 (3.981693) | 2.900377 / 55.444624 (-52.544247) | 2.283238 / 6.876477 (-4.593239) | 2.443785 / 2.142072 (0.301713) | 0.991719 / 4.805227 (-3.813508) | 0.189755 / 6.500664 (-6.310909) | 0.067906 / 0.075469 (-0.007563) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.515563 / 1.841788 (-0.326225) | 21.956499 / 8.074308 (13.882191) | 19.161750 / 10.191392 (8.970358) | 0.238199 / 0.680424 (-0.442225) | 0.026771 / 0.534201 (-0.507430) | 0.450195 / 0.579283 (-0.129088) | 0.585168 / 0.434364 (0.150804) | 0.522945 / 0.540337 (-0.017393) | 0.776244 / 1.386936 (-0.610693) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007997 / 0.011353 (-0.003356) | 0.005021 / 0.011008 (-0.005988) | 0.087308 / 0.038508 (0.048800) | 0.077760 / 0.023109 (0.054650) | 0.425313 / 0.275898 (0.149415) | 0.451470 / 0.323480 (0.127990) | 0.006848 / 0.007986 (-0.001137) | 0.004812 / 0.004328 (0.000484) | 0.071198 / 0.004250 (0.066947) | 0.058325 / 0.037052 (0.021273) | 0.427411 / 0.258489 (0.168922) | 0.466069 / 0.293841 (0.172228) | 0.048686 / 0.128546 (-0.079861) | 0.011841 / 0.075646 (-0.063806) | 0.086225 / 0.419271 (-0.333047) | 0.060500 / 0.043533 (0.016967) | 0.435580 / 0.255139 (0.180441) | 0.456919 / 0.283200 (0.173719) | 0.035094 / 0.141683 (-0.106588) | 1.582805 / 1.452155 (0.130650) | 1.717838 / 1.492716 (0.225122) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.283967 / 0.018006 (0.265960) | 0.517496 / 0.000490 (0.517006) | 0.014747 / 0.000200 (0.014547) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027870 / 0.037411 (-0.009541) | 0.083835 / 0.014526 (0.069309) | 0.099157 / 0.176557 (-0.077400) | 0.173210 / 0.737135 (-0.563925) | 0.094212 / 0.296338 (-0.202127) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.535720 / 0.215209 (0.320511) | 5.273730 / 2.077655 (3.196075) | 2.422560 / 1.504120 (0.918440) | 2.131416 / 1.541195 (0.590222) | 2.192000 / 1.468490 (0.723510) | 0.708469 / 4.584777 (-3.876308) | 4.758092 / 3.745712 (1.012380) | 3.940729 / 5.269862 (-1.329133) | 2.553093 / 4.565676 (-2.012583) | 0.084895 / 0.424275 (-0.339380) | 0.008730 / 0.007607 (0.001123) | 0.646975 / 0.226044 (0.420930) | 6.294811 / 2.268929 (4.025883) | 3.293964 / 55.444624 (-52.150660) | 2.568985 / 6.876477 (-4.307492) | 2.743786 / 2.142072 (0.601713) | 0.899733 / 4.805227 (-3.905494) | 0.193484 / 6.500664 (-6.307181) | 0.070012 / 0.075469 (-0.005457) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.502255 / 1.841788 (-0.339532) | 20.690234 / 8.074308 (12.615926) | 18.375791 / 10.191392 (8.184399) | 0.200135 / 0.680424 (-0.480289) | 0.029434 / 0.534201 (-0.504767) | 0.477267 / 0.579283 (-0.102016) | 0.566869 / 0.434364 (0.132505) | 0.543756 / 0.540337 (0.003418) | 0.700476 / 1.386936 (-0.686460) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef17d9fd6c648bb41d43ba301c3de4d7b6f833d8 \"CML watermark\")\n"
] | "2023-08-03T14:46:04Z" | "2023-08-03T14:56:59Z" | "2023-08-03T14:46:18Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6117.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6117",
"merged_at": "2023-08-03T14:46:18Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6117.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6117"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6117/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6117/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4798 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4798/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4798/comments | https://api.github.com/repos/huggingface/datasets/issues/4798/events | https://github.com/huggingface/datasets/pull/4798 | 1,330,699,942 | PR_kwDODunzps48wVEG | 4,798 | Shard generator | {
"avatar_url": "https://avatars.githubusercontent.com/u/43296932?v=4",
"events_url": "https://api.github.com/users/marianna13/events{/privacy}",
"followers_url": "https://api.github.com/users/marianna13/followers",
"following_url": "https://api.github.com/users/marianna13/following{/other_user}",
"gists_url": "https://api.github.com/users/marianna13/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/marianna13",
"id": 43296932,
"login": "marianna13",
"node_id": "MDQ6VXNlcjQzMjk2OTMy",
"organizations_url": "https://api.github.com/users/marianna13/orgs",
"received_events_url": "https://api.github.com/users/marianna13/received_events",
"repos_url": "https://api.github.com/users/marianna13/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/marianna13/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/marianna13/subscriptions",
"type": "User",
"url": "https://api.github.com/users/marianna13"
} | [] | closed | false | null | [] | null | [
"Hi, thanks!\r\n\r\n> I was using Hugging Face datasets to process some very large datasets and found that it would be quite handy to have a feature that will allow to \"split\" these large datasets into chunks with equal size\r\n\r\n`map`, the method we use for processing in `datasets`, already does that if `batched=True`. And you can control the batch size with `batch_size`.\r\n\r\n> Even better - be able to run through these chunks one by one in simple and convenient way\r\n\r\nIt's not hard to do this \"manually\" with the existing API:\r\n```python\r\nbatch_size = <BATCH_SIZE>\r\nfor i in range(len(dset) // batch_size)\r\n shard = dset[i * batch_size:(i+1) * batch_size] # a dict of lists\r\n shard = Dataset.from_dict(shard)\r\n```\r\n(should be of similar performance to your implementation)\r\n\r\nStill, I think an API like that could be useful if implemented efficiently (see [this](https://discuss.huggingface.co/t/why-is-it-so-slow-to-access-data-through-iteration-with-hugginface-dataset/20385) discussion to understand what's the issue with `select`/`__getitem__` on which your implementation relies on), which can be done with `pa.Table.to_reader` in PyArrow 8.0.0+, .\r\n\r\n@lhoestq @albertvillanova wdyt? We could use such API to efficiently iterate over the batches in `map` before processing them.",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_4798). All of your documentation changes will be reflected on that endpoint.",
"This is more efficient since it doesn't bring the data in memory:\r\n```python\r\nfor i in range(len(dset) // batch_size)\r\n start = i * batch_size\r\n end = min((i+1) * batch_size, len(dset))\r\n shard = dset.select(range(start, end))\r\n```\r\n\r\n@marianna13 can you give more details on when it would be handy to have this shard generator ?",
"> This is more efficient since it doesn't bring the data in memory:\r\n> \r\n> ```python\r\n> for i in range(len(dset) // batch_size)\r\n> start = i * batch_size\r\n> end = min((i+1) * batch_size, len(dset))\r\n> shard = dset.select(range(start, end))\r\n> ```\r\n> \r\n> @marianna13 can you give more details on when it would be handy to have this shard generator ?\r\n\r\nSure! I used such generator when I needed to process a very large dataset (>1TB) in parallel, I've found out empirically that it's much more efficient to do that by processing only one part of the dataset with the shard generator. I tried to use a map with batching but it causesd oom errors, I tried to use the normal shard and here's what I came up with. So I thought it might be helpful to someone else!",
"I see thanks ! `map` should work just fine even at this scale, feel free to open an issue if you'd like to discuss your OOM issue.\r\n\r\nRegarding `shard_generator`, since it is pretty straightforward to get shards I'm not sure we need that extra Dataset method",
"Hi again! We've just added `_iter_batches(batch_size)` to the `Dataset` API for fast iteration over batches/chunks, so I think we can close this PR. Compared to this implementation, `_iter_batches` leverages `pa.Table.to_reader` for chunking, which makes it significantly faster."
] | "2022-08-06T09:14:06Z" | "2022-10-03T15:35:10Z" | "2022-10-03T15:35:10Z" | NONE | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4798.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4798",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/4798.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4798"
} | Hi everyone! I was using Hugging Face datasets to process some very large datasets and found that it would be quite handy to have a feature that will allow to "split" these large datasets into chunks with equal size. Even better - be able to run through these chunks one by one in simple and convenient way. So I decided to add the method called shard_generator() to the main Dataset class. It works similar to shard method but it returns a generator of datasets with equal size (defined by shard_size attribute).
Example:
```python
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="validation")
>>> ds
Dataset({
features: ['text', 'label'],
num_rows: 1066
})
>>> next(ds.shard_generator(300))
Dataset({
features: ['text', 'label'],
num_rows: 300
})
```
I hope it can be helpful to someone. Thanks! | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4798/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4798/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2990 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2990/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2990/comments | https://api.github.com/repos/huggingface/datasets/issues/2990/events | https://github.com/huggingface/datasets/pull/2990 | 1,012,097,418 | PR_kwDODunzps4sgLt5 | 2,990 | Make Dataset.map accept list of np.array | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [] | "2021-09-30T12:08:54Z" | "2021-10-01T13:57:46Z" | "2021-10-01T13:57:46Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2990.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2990",
"merged_at": "2021-10-01T13:57:45Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2990.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2990"
} | Fix #2987. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2990/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2990/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5967 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5967/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5967/comments | https://api.github.com/repos/huggingface/datasets/issues/5967/events | https://github.com/huggingface/datasets/issues/5967 | 1,763,926,520 | I_kwDODunzps5pI2H4 | 5,967 | Config name / split name lost after map with multiproc | {
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sanchit-gandhi",
"id": 93869735,
"login": "sanchit-gandhi",
"node_id": "U_kgDOBZhWpw",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sanchit-gandhi"
} | [] | open | false | null | [] | null | [
"This must be due to DatasetInfo.from_merge which drops them and is used in `concatenate_datasets`.\r\n\r\nAnd you're experiencing this issue because multiprocessing does concatenate the resulting datasets from each process.\r\n\r\nMaybe they should be kept if all the subdatasets share the same values for config_name and split",
"That sounds like a clean workaround!"
] | "2023-06-19T17:27:36Z" | "2023-06-28T08:55:25Z" | null | CONTRIBUTOR | null | null | null | ### Describe the bug
Performing a `.map` method on a dataset loses it's config name / split name only if run with multiproc
### Steps to reproduce the bug
```python
from datasets import Audio, load_dataset
from transformers import AutoFeatureExtractor
import numpy as np
# load dummy dataset
libri = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean")
# make train / test splits
libri = libri["validation"].train_test_split(seed=42, shuffle=True, test_size=0.1)
# example feature extractor
model_id = "ntu-spml/distilhubert"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id, do_normalize=True, return_attention_mask=True)
sampling_rate = feature_extractor.sampling_rate
libri = libri.cast_column("audio", Audio(sampling_rate=sampling_rate))
max_duration = 30.0
def preprocess_function(examples):
audio_arrays = [x["array"] for x in examples["audio"]]
inputs = feature_extractor(
audio_arrays,
sampling_rate=feature_extractor.sampling_rate,
max_length=int(feature_extractor.sampling_rate * max_duration),
truncation=True,
return_attention_mask=True,
)
return inputs
# single proc map
libri_encoded = libri.map(
preprocess_function, remove_columns=["audio", "file"], batched=True, num_proc=1
)
print(10 * "=" ,"Single processing", 10 * "=")
print("Config name before: ", libri["train"].config_name, " Split name before: ", libri["train"].split)
print("Config name after: ", libri_encoded["train"].config_name, " Split name after: ", libri_encoded["train"].split)
# multi proc map
libri_encoded = libri.map(
preprocess_function, remove_columns=["audio", "file"], batched=True, num_proc=2
)
print(10 * "=" ,"Multi processing", 10 * "=")
print("Config name before: ", libri["train"].config_name, " Split name before: ", libri["train"].split)
print("Config name after: ", libri_encoded["train"].config_name, " Split name after: ", libri_encoded["train"].split)
```
**Print Output:**
```
========== Single processing ==========
Config name before: clean Split name before: validation
Config name after: clean Split name after: validation
========== Multi processing ==========
Config name before: clean Split name before: validation
Config name after: None Split name after: None
```
=> we can see that the config/split names are lost in the multiprocessing setting
### Expected behavior
Should retain both config / split names in the multiproc setting
### Environment info
- `datasets` version: 2.13.1.dev0
- Platform: Linux-5.15.0-67-generic-x86_64-with-glibc2.35
- Python version: 3.10.6
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.2 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5967/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5967/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/3807 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3807/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3807/comments | https://api.github.com/repos/huggingface/datasets/issues/3807/events | https://github.com/huggingface/datasets/issues/3807 | 1,157,531,812 | I_kwDODunzps5E_oik | 3,807 | NonMatchingChecksumError in xcopa dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/93286455?v=4",
"events_url": "https://api.github.com/users/afcruzs-ms/events{/privacy}",
"followers_url": "https://api.github.com/users/afcruzs-ms/followers",
"following_url": "https://api.github.com/users/afcruzs-ms/following{/other_user}",
"gists_url": "https://api.github.com/users/afcruzs-ms/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/afcruzs-ms",
"id": 93286455,
"login": "afcruzs-ms",
"node_id": "U_kgDOBY9wNw",
"organizations_url": "https://api.github.com/users/afcruzs-ms/orgs",
"received_events_url": "https://api.github.com/users/afcruzs-ms/received_events",
"repos_url": "https://api.github.com/users/afcruzs-ms/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/afcruzs-ms/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/afcruzs-ms/subscriptions",
"type": "User",
"url": "https://api.github.com/users/afcruzs-ms"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [
"@albertvillanova here's a separate issue for a bug similar to #3792",
"Hi @afcruzs-ms, thanks for opening this separate issue for your problem.\r\n\r\nThe root problem in the other issue (#3792) was a change in the service of Google Drive.\r\n\r\nBut in your case, the `xcopa` dataset is not hosted on Google Drive. Therefore, the root cause should be a different one.\r\n\r\nLet me look at it... ",
"@afcruzs-ms, I'm not able to reproduce the issue you reported:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n ...: dataset = load_dataset(\"xcopa\", \"it\")\r\nDownloading builder script: 5.21kB [00:00, 2.75MB/s] \r\nDownloading metadata: 28.6kB [00:00, 14.5MB/s] \r\nDownloading and preparing dataset xcopa/it (download: 627.09 KiB, generated: 76.43 KiB, post-processed: Unknown size, total: 703.52 KiB) to .../.cache/huggingface/datasets/xcopa/it/1.0.0/e1fab65f984b24c8b66bcf7ac27a26a1182f84adfb2e74035861be65e214b9e6...\r\nDownloading data: 642kB [00:00, 5.42MB/s]\r\nDataset xcopa downloaded and prepared to .../.cache/huggingface/datasets/xcopa/it/1.0.0/e1fab65f984b24c8b66bcf7ac27a26a1182f84adfb2e74035861be65e214b9e6. Subsequent calls will reuse this data. \r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 733.27it/s]\r\n\r\nIn [2]: dataset\r\nOut[2]: \r\nDatasetDict({\r\n test: Dataset({\r\n features: ['premise', 'choice1', 'choice2', 'question', 'label', 'idx', 'changed'],\r\n num_rows: 500\r\n })\r\n validation: Dataset({\r\n features: ['premise', 'choice1', 'choice2', 'question', 'label', 'idx', 'changed'],\r\n num_rows: 100\r\n })\r\n})\r\n```\r\n\r\nMaybe you have some issue with your cached data... Could you please try to force the redownload of the data?\r\n```python\r\ndataset = load_dataset(\"xcopa\", \"it\", download_mode=\"force_redownload\")\r\n```",
"It works indeed, thanks! ",
"unfortunately, i am having a similar problem with the irc_disentaglement dataset :/\r\nmy code:\r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"irc_disentangle\", download_mode=\"force_redownload\")\r\n```\r\n\r\nhowever, it produces the same error as @afcruzs-ms \r\n```\r\n[38](file:///Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/datasets/utils/info_utils.py?line=37) if len(bad_urls) > 0:\r\n [39](file:///Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/datasets/utils/info_utils.py?line=38) error_msg = \"Checksums didn't match\" + for_verification_name + \":\\n\"\r\n---> [40](file:///Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/datasets/utils/info_utils.py?line=39) raise NonMatchingChecksumError(error_msg + str(bad_urls))\r\n [41](file:///Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/datasets/utils/info_utils.py?line=40) logger.info(\"All the checksums matched successfully\" + for_verification_name)\r\n\r\nNonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://github.com/jkkummerfeld/irc-disentanglement/tarball/master']\r\n```\r\n\r\nI attempted to use the `ignore_verifications' as such:\r\n```\r\nds = datasets.load_dataset('irc_disentangle', download_mode=\"force_redownload\", ignore_verifications=True)\r\n\r\n```\r\n```\r\nDownloading builder script: 12.0kB [00:00, 5.92MB/s] \r\nDownloading metadata: 7.58kB [00:00, 3.48MB/s] \r\nNo config specified, defaulting to: irc_disentangle/ubuntu\r\nDownloading and preparing dataset irc_disentangle/ubuntu (download: 112.98 MiB, generated: 60.05 MiB, post-processed: Unknown size, total: 173.03 MiB) to /Users/laylabouzoubaa/.cache/huggingface/datasets/irc_disentangle/ubuntu/1.0.0/0f24ab262a21d8c1d989fa53ed20caa928f5880be26c162bfbc02445dbade7e5...\r\nDownloading data: 118MB [00:09, 12.1MB/s] \r\n \r\nDataset irc_disentangle downloaded and prepared to /Users/laylabouzoubaa/.cache/huggingface/datasets/irc_disentangle/ubuntu/1.0.0/0f24ab262a21d8c1d989fa53ed20caa928f5880be26c162bfbc02445dbade7e5. Subsequent calls will reuse this data.\r\n100%|██████████| 3/3 [00:00<00:00, 675.38it/s]\r\n```\r\nbut, this returns an empty set?\r\n\r\n```\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['id', 'raw', 'ascii', 'tokenized', 'date', 'connections'],\r\n num_rows: 0\r\n })\r\n test: Dataset({\r\n features: ['id', 'raw', 'ascii', 'tokenized', 'date', 'connections'],\r\n num_rows: 0\r\n })\r\n validation: Dataset({\r\n features: ['id', 'raw', 'ascii', 'tokenized', 'date', 'connections'],\r\n num_rows: 0\r\n })\r\n})\r\n```\r\n\r\nnot sure what else to try at this point?\r\nThanks in advanced🤗",
"Thanks @labouz for reporting: yes, better opening a new GitHub issue as you did. I'm addressing it:\r\n- #4376"
] | "2022-03-02T18:10:19Z" | "2022-05-20T06:00:42Z" | "2022-03-03T17:40:31Z" | NONE | null | null | null | ## Describe the bug
Loading the xcopa dataset doesn't work, it fails due to a mismatch in the checksum.
## Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset("xcopa", "it")
```
## Expected results
The dataset should be loaded correctly.
## Actual results
Fails with:
```python
in verify_checksums(expected_checksums, recorded_checksums, verification_name)
38 if len(bad_urls) > 0:
39 error_msg = "Checksums didn't match" + for_verification_name + ":\n"
---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls))
41 logger.info("All the checksums matched successfully" + for_verification_name)
42
NonMatchingChecksumError: Checksums didn't match for dataset source files:
['https://github.com/cambridgeltl/xcopa/archive/master.zip']
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.18.3, and 1.18.4.dev0
- Platform:
- Python version: 3.8
- PyArrow version:
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3807/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3807/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4968 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4968/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4968/comments | https://api.github.com/repos/huggingface/datasets/issues/4968/events | https://github.com/huggingface/datasets/pull/4968 | 1,369,312,877 | PR_kwDODunzps4-wKkw | 4,968 | Support streaming compguesswhat dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | "2022-09-12T05:42:24Z" | "2022-09-12T08:00:06Z" | "2022-09-12T07:58:06Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4968.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4968",
"merged_at": "2022-09-12T07:58:06Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4968.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4968"
} | Support streaming `compguesswhat` dataset.
Fix #3191. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4968/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4968/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5190 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5190/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5190/comments | https://api.github.com/repos/huggingface/datasets/issues/5190/events | https://github.com/huggingface/datasets/issues/5190 | 1,433,014,626 | I_kwDODunzps5VahFi | 5,190 | `path` is `None` when downloading a custom audio dataset from the Hub | {
"avatar_url": "https://avatars.githubusercontent.com/u/26859204?v=4",
"events_url": "https://api.github.com/users/lewtun/events{/privacy}",
"followers_url": "https://api.github.com/users/lewtun/followers",
"following_url": "https://api.github.com/users/lewtun/following{/other_user}",
"gists_url": "https://api.github.com/users/lewtun/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lewtun",
"id": 26859204,
"login": "lewtun",
"node_id": "MDQ6VXNlcjI2ODU5MjA0",
"organizations_url": "https://api.github.com/users/lewtun/orgs",
"received_events_url": "https://api.github.com/users/lewtun/received_events",
"repos_url": "https://api.github.com/users/lewtun/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lewtun/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lewtun/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lewtun"
} | [] | closed | false | null | [] | null | [
"Hi! Yes, this is expected behavior - we do this as a security measure to not leak local paths (this info would be useless on other users' machines anyways) and only push audio bytes. \r\n"
] | "2022-11-02T11:51:25Z" | "2022-11-02T12:55:02Z" | "2022-11-02T12:55:02Z" | MEMBER | null | null | null | ### Describe the bug
I've created an [audio dataset](https://huggingface.co/datasets/lewtun/audio-test-push) using the `audiofolder` feature desribed in the [docs](https://huggingface.co/docs/datasets/audio_dataset#audiofolder) and then pushed it to the Hub.
Locally, I can see the `audio.path` feature is of the expected form `path/to/data_dir`, but when I download the dataset from the Hub, I see `audio.path` is `None`
Here's an example:
```python
from datasets import load_dataset
ds = load_dataset("lewtun/audio-test-push")
ds["train"][0]
# {
# "audio": {
# "path": None, <-- Is this expected?
# "array": array(
# [
# 3.97140226e-07,
# 7.30310290e-07,
# 7.56406735e-07,
# ...,
# -1.19636677e-01,
# -1.16811886e-01,
# -1.12441722e-01,
# ]
# ),
# "sampling_rate": 44100,
# },
# "song_id": 0,
# "genre_id": 0,
# "genre": "Electronic",
# }
```
Is this expected behaviour? If yes, feel free to close this issue as it's not a true bug then :)
### Steps to reproduce the bug
1. Create an audio dataset with the `audiofolder` feature
2. Push the dataset to the Hub with `push_to_hub()`
3. Download the Hub dataset and inspect the `audio.path` feature
### Expected behavior
`audio.path` points to the file associated with the audio data
### Environment info
- `datasets` version: 2.6.2.dev0
- Platform: macOS-10.16-x86_64-i386-64bit
- Python version: 3.8.13
- PyArrow version: 9.0.0
- Pandas version: 1.5.1 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5190/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5190/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5167 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5167/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5167/comments | https://api.github.com/repos/huggingface/datasets/issues/5167/events | https://github.com/huggingface/datasets/pull/5167 | 1,424,124,477 | PR_kwDODunzps5BljPw | 5,167 | Add ffmpeg4 installation instructions in warnings | {
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
} | [] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
}
] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"To make it warn only once, feel free to use a global counter in python - and if the warning has already been done, you don't do it again",
"> Added the same formatting for the error message :)\r\n\r\nnice!! thank you! \r\n\r\n> Oh and regarding the warning counter, you can do it in another PR maybe ?\r\n\r\nYes, more warnings is better then no warnings.... I'll merge when the CI passes"
] | "2022-10-26T14:21:14Z" | "2022-10-27T09:01:12Z" | "2022-10-27T08:58:58Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5167.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5167",
"merged_at": "2022-10-27T08:58:58Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5167.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5167"
} | Adds instructions on how to install `ffmpeg=4` on Linux (relevant for Colab users).
Looks pretty ugly because I didn't find a way to check `ffmpeg` version from python (without `subprocess.call()`; `ctypes.util.find_library` doesn't work`), so the warning is raised on each decoding. Any suggestions on how to make it look nice are welcome!
This is how it looks on Colab:
![image](https://user-images.githubusercontent.com/16348744/198052412-d48018d1-4416-4aa5-9114-f7f9b4af031f.png)
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5167/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5167/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5640 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5640/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5640/comments | https://api.github.com/repos/huggingface/datasets/issues/5640/events | https://github.com/huggingface/datasets/pull/5640 | 1,625,896,057 | PR_kwDODunzps5MID3I | 5,640 | Less zip false positives | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006998 / 0.011353 (-0.004355) | 0.005093 / 0.011008 (-0.005916) | 0.100490 / 0.038508 (0.061982) | 0.032736 / 0.023109 (0.009627) | 0.297738 / 0.275898 (0.021840) | 0.322255 / 0.323480 (-0.001225) | 0.005583 / 0.007986 (-0.002402) | 0.004007 / 0.004328 (-0.000321) | 0.075863 / 0.004250 (0.071613) | 0.044212 / 0.037052 (0.007159) | 0.300033 / 0.258489 (0.041544) | 0.341997 / 0.293841 (0.048156) | 0.036172 / 0.128546 (-0.092374) | 0.012176 / 0.075646 (-0.063471) | 0.356052 / 0.419271 (-0.063220) | 0.050438 / 0.043533 (0.006905) | 0.294677 / 0.255139 (0.039538) | 0.318050 / 0.283200 (0.034850) | 0.104733 / 0.141683 (-0.036950) | 1.435681 / 1.452155 (-0.016474) | 1.534793 / 1.492716 (0.042076) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242815 / 0.018006 (0.224809) | 0.565983 / 0.000490 (0.565494) | 0.006800 / 0.000200 (0.006600) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026548 / 0.037411 (-0.010863) | 0.104816 / 0.014526 (0.090290) | 0.116222 / 0.176557 (-0.060335) | 0.172143 / 0.737135 (-0.564992) | 0.121631 / 0.296338 (-0.174707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400126 / 0.215209 (0.184917) | 4.004538 / 2.077655 (1.926883) | 1.798822 / 1.504120 (0.294702) | 1.595191 / 1.541195 (0.053996) | 1.645777 / 1.468490 (0.177287) | 0.705643 / 4.584777 (-3.879134) | 3.750887 / 3.745712 (0.005175) | 2.136547 / 5.269862 (-3.133315) | 1.475881 / 4.565676 (-3.089795) | 0.086921 / 0.424275 (-0.337354) | 0.012379 / 0.007607 (0.004771) | 0.505824 / 0.226044 (0.279779) | 5.052364 / 2.268929 (2.783435) | 2.279983 / 55.444624 (-53.164641) | 1.932253 / 6.876477 (-4.944224) | 2.051359 / 2.142072 (-0.090714) | 0.851906 / 4.805227 (-3.953321) | 0.169566 / 6.500664 (-6.331098) | 0.064600 / 0.075469 (-0.010869) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.165859 / 1.841788 (-0.675929) | 15.049950 / 8.074308 (6.975642) | 14.095981 / 10.191392 (3.904589) | 0.151779 / 0.680424 (-0.528645) | 0.017537 / 0.534201 (-0.516664) | 0.420164 / 0.579283 (-0.159119) | 0.418932 / 0.434364 (-0.015432) | 0.488749 / 0.540337 (-0.051588) | 0.582359 / 1.386936 (-0.804577) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007426 / 0.011353 (-0.003927) | 0.005248 / 0.011008 (-0.005761) | 0.074118 / 0.038508 (0.035610) | 0.034223 / 0.023109 (0.011114) | 0.337780 / 0.275898 (0.061882) | 0.376300 / 0.323480 (0.052820) | 0.006142 / 0.007986 (-0.001843) | 0.004246 / 0.004328 (-0.000083) | 0.074177 / 0.004250 (0.069926) | 0.052698 / 0.037052 (0.015646) | 0.340229 / 0.258489 (0.081740) | 0.396172 / 0.293841 (0.102331) | 0.037293 / 0.128546 (-0.091253) | 0.012514 / 0.075646 (-0.063132) | 0.087144 / 0.419271 (-0.332128) | 0.051922 / 0.043533 (0.008390) | 0.333188 / 0.255139 (0.078049) | 0.355420 / 0.283200 (0.072220) | 0.110273 / 0.141683 (-0.031410) | 1.447826 / 1.452155 (-0.004329) | 1.561135 / 1.492716 (0.068419) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269203 / 0.018006 (0.251197) | 0.551997 / 0.000490 (0.551508) | 0.001558 / 0.000200 (0.001359) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029511 / 0.037411 (-0.007900) | 0.108614 / 0.014526 (0.094089) | 0.123438 / 0.176557 (-0.053118) | 0.171596 / 0.737135 (-0.565539) | 0.126828 / 0.296338 (-0.169511) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420520 / 0.215209 (0.205310) | 4.175672 / 2.077655 (2.098017) | 1.982220 / 1.504120 (0.478101) | 1.788575 / 1.541195 (0.247381) | 1.860840 / 1.468490 (0.392349) | 0.706730 / 4.584777 (-3.878047) | 3.858718 / 3.745712 (0.113005) | 3.069389 / 5.269862 (-2.200472) | 1.827603 / 4.565676 (-2.738073) | 0.087893 / 0.424275 (-0.336382) | 0.012613 / 0.007607 (0.005006) | 0.524177 / 0.226044 (0.298132) | 5.177077 / 2.268929 (2.908148) | 2.494397 / 55.444624 (-52.950227) | 2.189484 / 6.876477 (-4.686992) | 2.217626 / 2.142072 (0.075554) | 0.846326 / 4.805227 (-3.958901) | 0.176558 / 6.500664 (-6.324106) | 0.065018 / 0.075469 (-0.010451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268618 / 1.841788 (-0.573170) | 15.132711 / 8.074308 (7.058403) | 14.585530 / 10.191392 (4.394138) | 0.163454 / 0.680424 (-0.516970) | 0.017442 / 0.534201 (-0.516759) | 0.421746 / 0.579283 (-0.157537) | 0.425412 / 0.434364 (-0.008952) | 0.499178 / 0.540337 (-0.041159) | 0.595458 / 1.386936 (-0.791478) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ab77e58cd32413f4ef4828134a2470ebd53bb542 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007980 / 0.011353 (-0.003373) | 0.005414 / 0.011008 (-0.005594) | 0.099226 / 0.038508 (0.060718) | 0.035442 / 0.023109 (0.012332) | 0.304851 / 0.275898 (0.028952) | 0.337144 / 0.323480 (0.013664) | 0.006162 / 0.007986 (-0.001823) | 0.004151 / 0.004328 (-0.000177) | 0.074708 / 0.004250 (0.070458) | 0.049690 / 0.037052 (0.012638) | 0.307658 / 0.258489 (0.049168) | 0.358472 / 0.293841 (0.064631) | 0.037181 / 0.128546 (-0.091365) | 0.012259 / 0.075646 (-0.063387) | 0.335426 / 0.419271 (-0.083846) | 0.050790 / 0.043533 (0.007257) | 0.301715 / 0.255139 (0.046576) | 0.320834 / 0.283200 (0.037634) | 0.102357 / 0.141683 (-0.039326) | 1.454750 / 1.452155 (0.002596) | 1.571994 / 1.492716 (0.079278) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218708 / 0.018006 (0.200702) | 0.444391 / 0.000490 (0.443901) | 0.005717 / 0.000200 (0.005517) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028017 / 0.037411 (-0.009395) | 0.112753 / 0.014526 (0.098227) | 0.121003 / 0.176557 (-0.055554) | 0.181085 / 0.737135 (-0.556050) | 0.127211 / 0.296338 (-0.169127) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400803 / 0.215209 (0.185594) | 4.007315 / 2.077655 (1.929660) | 1.826911 / 1.504120 (0.322791) | 1.637799 / 1.541195 (0.096605) | 1.699754 / 1.468490 (0.231264) | 0.709413 / 4.584777 (-3.875364) | 4.008904 / 3.745712 (0.263192) | 3.916540 / 5.269862 (-1.353322) | 1.902102 / 4.565676 (-2.663575) | 0.089048 / 0.424275 (-0.335227) | 0.012763 / 0.007607 (0.005155) | 0.498957 / 0.226044 (0.272913) | 4.979865 / 2.268929 (2.710937) | 2.301987 / 55.444624 (-53.142637) | 1.929404 / 6.876477 (-4.947073) | 2.107839 / 2.142072 (-0.034233) | 0.857253 / 4.805227 (-3.947974) | 0.171935 / 6.500664 (-6.328729) | 0.066753 / 0.075469 (-0.008716) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.186811 / 1.841788 (-0.654977) | 15.866319 / 8.074308 (7.792011) | 14.738555 / 10.191392 (4.547163) | 0.142879 / 0.680424 (-0.537544) | 0.017679 / 0.534201 (-0.516522) | 0.422840 / 0.579283 (-0.156443) | 0.450307 / 0.434364 (0.015943) | 0.491802 / 0.540337 (-0.048536) | 0.588837 / 1.386936 (-0.798099) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007659 / 0.011353 (-0.003694) | 0.005331 / 0.011008 (-0.005678) | 0.075360 / 0.038508 (0.036852) | 0.034011 / 0.023109 (0.010902) | 0.354488 / 0.275898 (0.078590) | 0.401781 / 0.323480 (0.078301) | 0.005806 / 0.007986 (-0.002179) | 0.004029 / 0.004328 (-0.000300) | 0.073822 / 0.004250 (0.069572) | 0.049067 / 0.037052 (0.012015) | 0.364483 / 0.258489 (0.105994) | 0.405637 / 0.293841 (0.111796) | 0.037166 / 0.128546 (-0.091380) | 0.012397 / 0.075646 (-0.063249) | 0.087346 / 0.419271 (-0.331926) | 0.050888 / 0.043533 (0.007355) | 0.334796 / 0.255139 (0.079657) | 0.387681 / 0.283200 (0.104481) | 0.105056 / 0.141683 (-0.036627) | 1.471630 / 1.452155 (0.019475) | 1.554764 / 1.492716 (0.062047) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231825 / 0.018006 (0.213819) | 0.449746 / 0.000490 (0.449256) | 0.000888 / 0.000200 (0.000688) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030363 / 0.037411 (-0.007049) | 0.115234 / 0.014526 (0.100708) | 0.123005 / 0.176557 (-0.053551) | 0.172772 / 0.737135 (-0.564363) | 0.127818 / 0.296338 (-0.168520) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425761 / 0.215209 (0.210552) | 4.237950 / 2.077655 (2.160295) | 1.992045 / 1.504120 (0.487925) | 1.801622 / 1.541195 (0.260427) | 1.918477 / 1.468490 (0.449987) | 0.722730 / 4.584777 (-3.862047) | 4.015968 / 3.745712 (0.270256) | 3.720412 / 5.269862 (-1.549450) | 1.763111 / 4.565676 (-2.802566) | 0.089041 / 0.424275 (-0.335234) | 0.012608 / 0.007607 (0.005001) | 0.522645 / 0.226044 (0.296601) | 5.227108 / 2.268929 (2.958180) | 2.444714 / 55.444624 (-52.999910) | 2.109745 / 6.876477 (-4.766732) | 2.194042 / 2.142072 (0.051969) | 0.871781 / 4.805227 (-3.933447) | 0.173149 / 6.500664 (-6.327515) | 0.066192 / 0.075469 (-0.009277) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.312051 / 1.841788 (-0.529737) | 16.024315 / 8.074308 (7.950007) | 15.123823 / 10.191392 (4.932431) | 0.163997 / 0.680424 (-0.516427) | 0.017595 / 0.534201 (-0.516606) | 0.426379 / 0.579283 (-0.152904) | 0.467709 / 0.434364 (0.033345) | 0.498308 / 0.540337 (-0.042030) | 0.591426 / 1.386936 (-0.795510) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#13488cc110b67090289794f48d5c84a4fd0c063a \"CML watermark\")\n",
"CI is failing due to unrelated issues, hopefully https://github.com/huggingface/datasets/pull/5642 fixes it",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006478 / 0.011353 (-0.004875) | 0.004347 / 0.011008 (-0.006661) | 0.097103 / 0.038508 (0.058595) | 0.027650 / 0.023109 (0.004541) | 0.372355 / 0.275898 (0.096457) | 0.408794 / 0.323480 (0.085314) | 0.005034 / 0.007986 (-0.002952) | 0.003252 / 0.004328 (-0.001076) | 0.074068 / 0.004250 (0.069818) | 0.035542 / 0.037052 (-0.001510) | 0.367392 / 0.258489 (0.108903) | 0.409644 / 0.293841 (0.115803) | 0.031745 / 0.128546 (-0.096801) | 0.011501 / 0.075646 (-0.064145) | 0.323355 / 0.419271 (-0.095917) | 0.043065 / 0.043533 (-0.000467) | 0.377313 / 0.255139 (0.122174) | 0.395326 / 0.283200 (0.112127) | 0.087101 / 0.141683 (-0.054582) | 1.461228 / 1.452155 (0.009073) | 1.529413 / 1.492716 (0.036696) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199245 / 0.018006 (0.181239) | 0.409978 / 0.000490 (0.409488) | 0.002655 / 0.000200 (0.002455) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023903 / 0.037411 (-0.013508) | 0.097855 / 0.014526 (0.083330) | 0.106405 / 0.176557 (-0.070152) | 0.166889 / 0.737135 (-0.570247) | 0.110256 / 0.296338 (-0.186082) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440351 / 0.215209 (0.225142) | 4.382848 / 2.077655 (2.305194) | 2.049602 / 1.504120 (0.545482) | 1.824638 / 1.541195 (0.283443) | 1.850519 / 1.468490 (0.382029) | 0.702652 / 4.584777 (-3.882125) | 3.394571 / 3.745712 (-0.351141) | 1.940608 / 5.269862 (-3.329254) | 1.263961 / 4.565676 (-3.301716) | 0.083985 / 0.424275 (-0.340290) | 0.013046 / 0.007607 (0.005439) | 0.538272 / 0.226044 (0.312228) | 5.407563 / 2.268929 (3.138634) | 2.519207 / 55.444624 (-52.925418) | 2.153379 / 6.876477 (-4.723098) | 2.394512 / 2.142072 (0.252439) | 0.812840 / 4.805227 (-3.992387) | 0.152868 / 6.500664 (-6.347796) | 0.067823 / 0.075469 (-0.007646) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.220031 / 1.841788 (-0.621757) | 13.781237 / 8.074308 (5.706929) | 14.203975 / 10.191392 (4.012583) | 0.141077 / 0.680424 (-0.539347) | 0.016518 / 0.534201 (-0.517682) | 0.379079 / 0.579283 (-0.200204) | 0.378916 / 0.434364 (-0.055448) | 0.434589 / 0.540337 (-0.105749) | 0.521129 / 1.386936 (-0.865807) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006997 / 0.011353 (-0.004356) | 0.004599 / 0.011008 (-0.006410) | 0.078700 / 0.038508 (0.040192) | 0.027902 / 0.023109 (0.004793) | 0.344406 / 0.275898 (0.068508) | 0.392918 / 0.323480 (0.069438) | 0.005175 / 0.007986 (-0.002811) | 0.004755 / 0.004328 (0.000427) | 0.077707 / 0.004250 (0.073457) | 0.039409 / 0.037052 (0.002357) | 0.343250 / 0.258489 (0.084761) | 0.405544 / 0.293841 (0.111703) | 0.032286 / 0.128546 (-0.096260) | 0.011674 / 0.075646 (-0.063972) | 0.087633 / 0.419271 (-0.331639) | 0.043346 / 0.043533 (-0.000186) | 0.355076 / 0.255139 (0.099937) | 0.382155 / 0.283200 (0.098955) | 0.090914 / 0.141683 (-0.050769) | 1.518369 / 1.452155 (0.066215) | 1.583530 / 1.492716 (0.090813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.160369 / 0.018006 (0.142362) | 0.406844 / 0.000490 (0.406354) | 0.002651 / 0.000200 (0.002451) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025295 / 0.037411 (-0.012116) | 0.101490 / 0.014526 (0.086964) | 0.108825 / 0.176557 (-0.067732) | 0.161673 / 0.737135 (-0.575462) | 0.113610 / 0.296338 (-0.182729) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443514 / 0.215209 (0.228305) | 4.436722 / 2.077655 (2.359067) | 2.144008 / 1.504120 (0.639888) | 2.005324 / 1.541195 (0.464129) | 2.123356 / 1.468490 (0.654866) | 0.697217 / 4.584777 (-3.887560) | 3.401105 / 3.745712 (-0.344607) | 1.874621 / 5.269862 (-3.395240) | 1.165069 / 4.565676 (-3.400608) | 0.082799 / 0.424275 (-0.341476) | 0.012806 / 0.007607 (0.005199) | 0.542688 / 0.226044 (0.316644) | 5.420963 / 2.268929 (3.152034) | 2.579034 / 55.444624 (-52.865590) | 2.240201 / 6.876477 (-4.636276) | 2.261309 / 2.142072 (0.119237) | 0.800246 / 4.805227 (-4.004981) | 0.150380 / 6.500664 (-6.350285) | 0.066880 / 0.075469 (-0.008589) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281721 / 1.841788 (-0.560067) | 13.906361 / 8.074308 (5.832053) | 14.135336 / 10.191392 (3.943944) | 0.128865 / 0.680424 (-0.551559) | 0.016452 / 0.534201 (-0.517749) | 0.373563 / 0.579283 (-0.205720) | 0.385321 / 0.434364 (-0.049043) | 0.437198 / 0.540337 (-0.103139) | 0.530720 / 1.386936 (-0.856216) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e2f8e17f3c8f8d0cb77a4c566a78e31fab47108c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008099 / 0.011353 (-0.003254) | 0.005093 / 0.011008 (-0.005916) | 0.106258 / 0.038508 (0.067750) | 0.037051 / 0.023109 (0.013942) | 0.347960 / 0.275898 (0.072062) | 0.370849 / 0.323480 (0.047369) | 0.006122 / 0.007986 (-0.001863) | 0.004094 / 0.004328 (-0.000235) | 0.079549 / 0.004250 (0.075299) | 0.046563 / 0.037052 (0.009510) | 0.332735 / 0.258489 (0.074246) | 0.417061 / 0.293841 (0.123220) | 0.038105 / 0.128546 (-0.090441) | 0.011886 / 0.075646 (-0.063760) | 0.342103 / 0.419271 (-0.077169) | 0.053233 / 0.043533 (0.009700) | 0.344754 / 0.255139 (0.089615) | 0.355354 / 0.283200 (0.072155) | 0.101059 / 0.141683 (-0.040624) | 1.518561 / 1.452155 (0.066406) | 1.558652 / 1.492716 (0.065935) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225919 / 0.018006 (0.207913) | 0.518539 / 0.000490 (0.518049) | 0.006230 / 0.000200 (0.006030) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026782 / 0.037411 (-0.010629) | 0.108457 / 0.014526 (0.093931) | 0.125203 / 0.176557 (-0.051353) | 0.175726 / 0.737135 (-0.561409) | 0.127051 / 0.296338 (-0.169287) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416427 / 0.215209 (0.201217) | 4.168851 / 2.077655 (2.091196) | 1.962238 / 1.504120 (0.458118) | 1.825224 / 1.541195 (0.284029) | 1.831200 / 1.468490 (0.362710) | 0.765526 / 4.584777 (-3.819250) | 4.303957 / 3.745712 (0.558245) | 2.193467 / 5.269862 (-3.076395) | 1.654605 / 4.565676 (-2.911071) | 0.096709 / 0.424275 (-0.327566) | 0.013792 / 0.007607 (0.006185) | 0.537862 / 0.226044 (0.311818) | 5.152230 / 2.268929 (2.883302) | 2.520938 / 55.444624 (-52.923686) | 2.108422 / 6.876477 (-4.768054) | 2.214220 / 2.142072 (0.072147) | 0.834320 / 4.805227 (-3.970907) | 0.170635 / 6.500664 (-6.330029) | 0.063131 / 0.075469 (-0.012338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215767 / 1.841788 (-0.626020) | 15.254781 / 8.074308 (7.180473) | 14.360764 / 10.191392 (4.169372) | 0.172511 / 0.680424 (-0.507913) | 0.020161 / 0.534201 (-0.514040) | 0.426936 / 0.579283 (-0.152347) | 0.438771 / 0.434364 (0.004407) | 0.486973 / 0.540337 (-0.053364) | 0.584238 / 1.386936 (-0.802698) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006777 / 0.011353 (-0.004576) | 0.005304 / 0.011008 (-0.005704) | 0.073717 / 0.038508 (0.035209) | 0.033604 / 0.023109 (0.010494) | 0.340448 / 0.275898 (0.064550) | 0.351861 / 0.323480 (0.028381) | 0.005786 / 0.007986 (-0.002199) | 0.005013 / 0.004328 (0.000685) | 0.071263 / 0.004250 (0.067012) | 0.048189 / 0.037052 (0.011137) | 0.339457 / 0.258489 (0.080968) | 0.384383 / 0.293841 (0.090542) | 0.035563 / 0.128546 (-0.092983) | 0.011509 / 0.075646 (-0.064137) | 0.083722 / 0.419271 (-0.335550) | 0.048886 / 0.043533 (0.005353) | 0.350184 / 0.255139 (0.095045) | 0.361037 / 0.283200 (0.077837) | 0.105191 / 0.141683 (-0.036492) | 1.503247 / 1.452155 (0.051093) | 1.582298 / 1.492716 (0.089581) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221687 / 0.018006 (0.203681) | 0.466489 / 0.000490 (0.465999) | 0.000484 / 0.000200 (0.000284) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027978 / 0.037411 (-0.009434) | 0.119572 / 0.014526 (0.105047) | 0.133530 / 0.176557 (-0.043026) | 0.177892 / 0.737135 (-0.559243) | 0.127045 / 0.296338 (-0.169294) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430198 / 0.215209 (0.214989) | 4.435512 / 2.077655 (2.357858) | 2.007183 / 1.504120 (0.503063) | 1.799230 / 1.541195 (0.258036) | 1.884750 / 1.468490 (0.416260) | 0.745232 / 4.584777 (-3.839545) | 4.088069 / 3.745712 (0.342357) | 4.114669 / 5.269862 (-1.155193) | 2.374086 / 4.565676 (-2.191590) | 0.089154 / 0.424275 (-0.335121) | 0.012938 / 0.007607 (0.005331) | 0.505954 / 0.226044 (0.279909) | 5.194226 / 2.268929 (2.925298) | 2.487230 / 55.444624 (-52.957394) | 2.163353 / 6.876477 (-4.713124) | 2.177879 / 2.142072 (0.035807) | 0.828728 / 4.805227 (-3.976499) | 0.171157 / 6.500664 (-6.329507) | 0.062883 / 0.075469 (-0.012586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275906 / 1.841788 (-0.565882) | 15.235484 / 8.074308 (7.161176) | 14.467396 / 10.191392 (4.276004) | 0.198994 / 0.680424 (-0.481430) | 0.020203 / 0.534201 (-0.513998) | 0.447904 / 0.579283 (-0.131380) | 0.454210 / 0.434364 (0.019846) | 0.528062 / 0.540337 (-0.012275) | 0.619311 / 1.386936 (-0.767625) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#11cd0f73acbce1d16174f2555e56fda511d5a08b \"CML watermark\")\n"
] | "2023-03-15T16:48:59Z" | "2023-03-16T13:47:37Z" | "2023-03-16T13:40:12Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5640.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5640",
"merged_at": "2023-03-16T13:40:12Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5640.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5640"
} | `zipfile.is_zipfile` return false positives for some Parquet files. It causes errors when loading certain parquet datasets, where some files are considered ZIP files by `zipfile.is_zipfile`
This is a known issue: https://github.com/python/cpython/issues/72680
At first I wanted to rely only on magic numbers, but then I found that someone contributed a [fix to is_zipfile](https://github.com/python/cpython/pull/5053) - do you think we should use it @albertvillanova or not ?
IMO it's ok to rely on magic numbers only for now, since in streaming mode we've had no issue checking only the magic number so far.
Close https://github.com/huggingface/datasets/issues/5639 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5640/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5640/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3307 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3307/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3307/comments | https://api.github.com/repos/huggingface/datasets/issues/3307/events | https://github.com/huggingface/datasets/pull/3307 | 1,059,226,297 | PR_kwDODunzps4uzlWa | 3,307 | Add IndoNLI dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/6201626?v=4",
"events_url": "https://api.github.com/users/afaji/events{/privacy}",
"followers_url": "https://api.github.com/users/afaji/followers",
"following_url": "https://api.github.com/users/afaji/following{/other_user}",
"gists_url": "https://api.github.com/users/afaji/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/afaji",
"id": 6201626,
"login": "afaji",
"node_id": "MDQ6VXNlcjYyMDE2MjY=",
"organizations_url": "https://api.github.com/users/afaji/orgs",
"received_events_url": "https://api.github.com/users/afaji/received_events",
"repos_url": "https://api.github.com/users/afaji/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/afaji/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/afaji/subscriptions",
"type": "User",
"url": "https://api.github.com/users/afaji"
} | [] | closed | false | null | [] | null | [
"@lhoestq thanks for the review! I've modified the labels to follow other NLI datasets.\r\nPlease review my change and let me know if I miss anything."
] | "2021-11-20T20:46:03Z" | "2021-11-25T14:51:48Z" | "2021-11-25T14:51:48Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3307.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3307",
"merged_at": "2021-11-25T14:51:48Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3307.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3307"
} | This PR adds IndoNLI dataset, from https://aclanthology.org/2021.emnlp-main.821/ | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3307/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3307/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3700 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3700/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3700/comments | https://api.github.com/repos/huggingface/datasets/issues/3700/events | https://github.com/huggingface/datasets/issues/3700 | 1,130,252,496 | I_kwDODunzps5DXkjQ | 3,700 | Unable to load a dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/97964230?v=4",
"events_url": "https://api.github.com/users/PaulchauvinAI/events{/privacy}",
"followers_url": "https://api.github.com/users/PaulchauvinAI/followers",
"following_url": "https://api.github.com/users/PaulchauvinAI/following{/other_user}",
"gists_url": "https://api.github.com/users/PaulchauvinAI/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/PaulchauvinAI",
"id": 97964230,
"login": "PaulchauvinAI",
"node_id": "U_kgDOBdbQxg",
"organizations_url": "https://api.github.com/users/PaulchauvinAI/orgs",
"received_events_url": "https://api.github.com/users/PaulchauvinAI/received_events",
"repos_url": "https://api.github.com/users/PaulchauvinAI/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/PaulchauvinAI/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/PaulchauvinAI/subscriptions",
"type": "User",
"url": "https://api.github.com/users/PaulchauvinAI"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"Hi! `load_dataset` is intended to be used to load a canonical dataset (`wikipedia`), a packaged dataset (`csv`, `json`, ...) or a dataset hosted on the Hub. For local datasets saved with `save_to_disk(\"path/to/dataset\")`, use `load_from_disk(\"path/to/dataset\")`.",
"Maybe we should raise an informative error message in this case..."
] | "2022-02-10T15:05:53Z" | "2022-02-11T22:56:39Z" | "2022-02-11T22:56:39Z" | NONE | null | null | null | ## Describe the bug
Unable to load a dataset from Huggingface that I have just saved.
## Steps to reproduce the bug
On Google colab
`! pip install datasets `
`from datasets import load_dataset`
`my_path = "wiki_dataset"`
`dataset = load_dataset('wikipedia', "20200501.fr")`
`dataset.save_to_disk(my_path)`
`dataset = load_dataset(my_path)`
## Expected results
Loading the dataset
## Actual results
ValueError: Couldn't cast
_data_files: list<item: struct<filename: string>>
child 0, item: struct<filename: string>
child 0, filename: string
_fingerprint: string
_format_columns: null
_format_kwargs: struct<>
_format_type: null
_indexes: struct<>
_output_all_columns: bool
_split: string
to
{'builder_name': Value(dtype='string', id=None), 'citation': Value(dtype='string', id=None), 'config_name': Value(dtype='string', id=None), 'dataset_size': Value(dtype='int64', id=None), 'description': Value(dtype='string', id=None), 'download_checksums': {}, 'download_size': Value(dtype='int64', id=None), 'features': {'title': {'dtype': Value(dtype='string', id=None), 'id': Value(dtype='null', id=None), '_type': Value(dtype='string', id=None)}, 'text': {'dtype': Value(dtype='string', id=None), 'id': Value(dtype='null', id=None), '_type': Value(dtype='string', id=None)}}, 'homepage': Value(dtype='string', id=None), 'license': Value(dtype='string', id=None), 'post_processed': Value(dtype='null', id=None), 'post_processing_size': Value(dtype='null', id=None), 'size_in_bytes': Value(dtype='int64', id=None), 'splits': {'train': {'name': Value(dtype='string', id=None), 'num_bytes': Value(dtype='int64', id=None), 'num_examples': Value(dtype='int64', id=None), 'dataset_name': Value(dtype='string', id=None)}}, 'supervised_keys': Value(dtype='null', id=None), 'task_templates': Value(dtype='null', id=None), 'version': {'version_str': Value(dtype='string', id=None), 'description': Value(dtype='string', id=None), 'major': Value(dtype='int64', id=None), 'minor': Value(dtype='int64', id=None), 'patch': Value(dtype='int64', id=None)}}
because column names don't match
## Environment info
- `datasets` version: 1.18.3
- Platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.12
- PyArrow version: 6.0.1
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3700/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3700/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/3302 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3302/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3302/comments | https://api.github.com/repos/huggingface/datasets/issues/3302/events | https://github.com/huggingface/datasets/pull/3302 | 1,058,907,168 | PR_kwDODunzps4uynjc | 3,302 | fix old_val typo in f-string | {
"avatar_url": "https://avatars.githubusercontent.com/u/56029953?v=4",
"events_url": "https://api.github.com/users/Mehdi2402/events{/privacy}",
"followers_url": "https://api.github.com/users/Mehdi2402/followers",
"following_url": "https://api.github.com/users/Mehdi2402/following{/other_user}",
"gists_url": "https://api.github.com/users/Mehdi2402/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Mehdi2402",
"id": 56029953,
"login": "Mehdi2402",
"node_id": "MDQ6VXNlcjU2MDI5OTUz",
"organizations_url": "https://api.github.com/users/Mehdi2402/orgs",
"received_events_url": "https://api.github.com/users/Mehdi2402/received_events",
"repos_url": "https://api.github.com/users/Mehdi2402/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Mehdi2402/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Mehdi2402/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Mehdi2402"
} | [] | closed | false | null | [] | null | [] | "2021-11-19T20:51:08Z" | "2021-11-25T22:14:43Z" | "2021-11-22T17:04:19Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3302.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3302",
"merged_at": "2021-11-22T17:04:19Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3302.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3302"
} |
This PR is to correct a typo in #3277 that @Carlosbogo revieled in a comment.
Related closed issue : #3257
Sorry about that 😅. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3302/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3302/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4981 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4981/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4981/comments | https://api.github.com/repos/huggingface/datasets/issues/4981/events | https://github.com/huggingface/datasets/issues/4981 | 1,375,086,773 | I_kwDODunzps5R9ii1 | 4,981 | Can't create a dataset with `float16` features | {
"avatar_url": "https://avatars.githubusercontent.com/u/15098095?v=4",
"events_url": "https://api.github.com/users/dconathan/events{/privacy}",
"followers_url": "https://api.github.com/users/dconathan/followers",
"following_url": "https://api.github.com/users/dconathan/following{/other_user}",
"gists_url": "https://api.github.com/users/dconathan/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/dconathan",
"id": 15098095,
"login": "dconathan",
"node_id": "MDQ6VXNlcjE1MDk4MDk1",
"organizations_url": "https://api.github.com/users/dconathan/orgs",
"received_events_url": "https://api.github.com/users/dconathan/received_events",
"repos_url": "https://api.github.com/users/dconathan/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/dconathan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dconathan/subscriptions",
"type": "User",
"url": "https://api.github.com/users/dconathan"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | open | false | null | [] | null | [
"Hi @dconathan, thanks for reporting.\r\n\r\nWe rely on Arrow as a backend, and as far as I know currently support for `float16` in Arrow is not fully implemented in Python (C++), hence the `ArrowNotImplementedError` you get.\r\n\r\nSee, e.g.: https://arrow.apache.org/docs/status.html?highlight=float16#data-types",
"Thanks for the link…. didn’t realize arrow didn’t support it yet. Should it be removed from https://huggingface.co/docs/datasets/v2.4.0/en/package_reference/main_classes#datasets.Value until Arrow supports it?",
"Yes, you are right: maybe we should either remove it from our docs or add a comment explaining the issue.\r\n\r\nThe thing is that in Arrow it is partially supported: you can create `float16` values, but you can't cast them from/to other types. And current implementation of `Value` always tries to perform a cast from `float64` to `float16`.",
"Maybe we can just add a note in the `Value` documentation ?",
"Would you accept a PR to fix this? @lhoestq Do you have an idea of how hard it would be to fix?",
"I think the issue comes mostly from pyarrow not supporting `float16` completely.\r\n\r\nFor example you stil can't cast from/to `float16`\r\n```python\r\nimport numpy as np\r\nimport pyarrow as pa\r\n\r\npa.array(range(5)).cast(pa.float16())\r\n# ArrowNotImplementedError: Unsupported cast from int64 to halffloat using function cast_half_float\r\npa.array(range(5), pa.float32()).cast(pa.float16())\r\n# ArrowNotImplementedError: Unsupported cast from float to halffloat using function cast_half_float\r\npa.array(range(5), pa.float16())\r\n# ArrowTypeError: Expected np.float16 instance\r\npa.array(np.arange(5, dtype=np.float16())).cast(pa.float32())\r\n# ArrowNotImplementedError: Unsupported cast from halffloat to float using function cast_float\r\n```",
"Hmm it seems like we can either:\r\n1. try to fix pyarrow upstream\r\n2. half-support float16 with some workaround to make sure we don't ever do casting internally\r\n"
] | "2022-09-15T21:03:24Z" | "2023-03-22T21:40:09Z" | null | CONTRIBUTOR | null | null | null | ## Describe the bug
I can't create a dataset with `float16` features.
I understand from the traceback that this is a `pyarrow` error, but I don't see anywhere in the `datasets` documentation about how to successfully do this. Is it actually supported? I've tried older versions of `pyarrow` as well with the same exact error.
The bug seems to arise from `datasets` casting the values to `double` and then `pyarrow` doesn't know how to convert those back to `float16`... does that sound right? Is there a way to bypass this since it's not necessary in the `numpy` and `torch` cases?
Thanks!
## Steps to reproduce the bug
All of the following raise the following error with the same exact (as far as I can tell) traceback:
```python
ArrowNotImplementedError: Unsupported cast from double to halffloat using function cast_half_float
```
```python
from datasets import Dataset, Features, Value
Dataset.from_dict({"x": [0.0, 1.0, 2.0]}, features=Features(x=Value("float16")))
import numpy as np
Dataset.from_dict({"x": np.arange(3, dtype=np.float16)}, features=Features(x=Value("float16")))
import torch
Dataset.from_dict({"x": torch.arange(3).to(torch.float16)}, features=Features(x=Value("float16")))
```
## Expected results
A dataset with `float16` features is successfully created.
## Actual results
```python
---------------------------------------------------------------------------
ArrowNotImplementedError Traceback (most recent call last)
Cell In [14], line 1
----> 1 Dataset.from_dict({"x": [1.0, 2.0, 3.0]}, features=Features(x=Value("float16")))
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/arrow_dataset.py:870, in Dataset.from_dict(cls, mapping, features, info, split)
865 mapping = features.encode_batch(mapping)
866 mapping = {
867 col: OptimizedTypedSequence(data, type=features[col] if features is not None else None, col=col)
868 for col, data in mapping.items()
869 }
--> 870 pa_table = InMemoryTable.from_pydict(mapping=mapping)
871 if info.features is None:
872 info.features = Features({col: ts.get_inferred_type() for col, ts in mapping.items()})
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:750, in InMemoryTable.from_pydict(cls, *args, **kwargs)
734 @classmethod
735 def from_pydict(cls, *args, **kwargs):
736 """
737 Construct a Table from Arrow arrays or columns
738
(...)
748 :class:`datasets.table.Table`:
749 """
--> 750 return cls(pa.Table.from_pydict(*args, **kwargs))
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/table.pxi:3648, in pyarrow.lib.Table.from_pydict()
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/table.pxi:5174, in pyarrow.lib._from_pydict()
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/array.pxi:343, in pyarrow.lib.asarray()
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/array.pxi:231, in pyarrow.lib.array()
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/array.pxi:110, in pyarrow.lib._handle_arrow_array_protocol()
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py:197, in TypedSequence.__arrow_array__(self, type)
192 # otherwise we can finally use the user's type
193 elif type is not None:
194 # We use cast_array_to_feature to support casting to custom types like Audio and Image
195 # Also, when trying type "string", we don't want to convert integers or floats to "string".
196 # We only do it if trying_type is False - since this is what the user asks for.
--> 197 out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type)
198 return out
199 except (TypeError, pa.lib.ArrowInvalid) as e: # handle type errors and overflows
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:1683, in _wrap_for_chunked_arrays.<locals>.wrapper(array, *args, **kwargs)
1681 return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
1682 else:
-> 1683 return func(array, *args, **kwargs)
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:1853, in cast_array_to_feature(array, feature, allow_number_to_str)
1851 return array_cast(array, get_nested_type(feature), allow_number_to_str=allow_number_to_str)
1852 elif not isinstance(feature, (Sequence, dict, list, tuple)):
-> 1853 return array_cast(array, feature(), allow_number_to_str=allow_number_to_str)
1854 raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}")
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:1683, in _wrap_for_chunked_arrays.<locals>.wrapper(array, *args, **kwargs)
1681 return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
1682 else:
-> 1683 return func(array, *args, **kwargs)
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:1762, in array_cast(array, pa_type, allow_number_to_str)
1760 if pa.types.is_null(pa_type) and not pa.types.is_null(array.type):
1761 raise TypeError(f"Couldn't cast array of type {array.type} to {pa_type}")
-> 1762 return array.cast(pa_type)
1763 raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{pa_type}")
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/array.pxi:919, in pyarrow.lib.Array.cast()
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/compute.py:389, in cast(arr, target_type, safe, options)
387 else:
388 options = CastOptions.safe(target_type)
--> 389 return call_function("cast", [arr], options)
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/_compute.pyx:560, in pyarrow._compute.call_function()
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/_compute.pyx:355, in pyarrow._compute.Function.call()
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/error.pxi:144, in pyarrow.lib.pyarrow_internal_check_status()
File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/error.pxi:121, in pyarrow.lib.check_status()
ArrowNotImplementedError: Unsupported cast from double to halffloat using function cast_half_float
```
## Environment info
- `datasets` version: 2.4.0
- Platform: macOS-12.5.1-arm64-arm-64bit
- Python version: 3.9.13
- PyArrow version: 9.0.0
- Pandas version: 1.4.4
| {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4981/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4981/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/1393 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1393/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1393/comments | https://api.github.com/repos/huggingface/datasets/issues/1393/events | https://github.com/huggingface/datasets/pull/1393 | 760,436,267 | MDExOlB1bGxSZXF1ZXN0NTM1MjY4MjUx | 1,393 | Add script_version suggestion when dataset/metric not found | {
"avatar_url": "https://avatars.githubusercontent.com/u/9353833?v=4",
"events_url": "https://api.github.com/users/joeddav/events{/privacy}",
"followers_url": "https://api.github.com/users/joeddav/followers",
"following_url": "https://api.github.com/users/joeddav/following{/other_user}",
"gists_url": "https://api.github.com/users/joeddav/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/joeddav",
"id": 9353833,
"login": "joeddav",
"node_id": "MDQ6VXNlcjkzNTM4MzM=",
"organizations_url": "https://api.github.com/users/joeddav/orgs",
"received_events_url": "https://api.github.com/users/joeddav/received_events",
"repos_url": "https://api.github.com/users/joeddav/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/joeddav/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/joeddav/subscriptions",
"type": "User",
"url": "https://api.github.com/users/joeddav"
} | [] | closed | false | null | [] | null | [] | "2020-12-09T15:37:38Z" | "2020-12-10T18:17:05Z" | "2020-12-10T18:17:05Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1393.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1393",
"merged_at": "2020-12-10T18:17:05Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1393.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1393"
} | Adds a helpful prompt to the error message when a dataset/metric is not found, suggesting the user might need to pass `script_version="master"` if the dataset was added recently. The whole error looks like:
> Couldn't find file locally at blah/blah.py, or remotely at https://raw.githubusercontent.com/huggingface/datasets/1.1/metrics/blah/blah.py or https://s3.amazonaws.com/datasets.huggingface.co/datasets/met
rics/blah/blah.py.
If the dataset was added recently, you may need to to pass script_version="master" to find the loading script on the master branch. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1393/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1393/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6208 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6208/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6208/comments | https://api.github.com/repos/huggingface/datasets/issues/6208/events | https://github.com/huggingface/datasets/pull/6208 | 1,879,572,646 | PR_kwDODunzps5ZcnpJ | 6,208 | Do not filter out .zip extensions from no-script datasets | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006797 / 0.011353 (-0.004556) | 0.003966 / 0.011008 (-0.007042) | 0.085296 / 0.038508 (0.046788) | 0.076873 / 0.023109 (0.053764) | 0.355795 / 0.275898 (0.079897) | 0.397132 / 0.323480 (0.073652) | 0.005325 / 0.007986 (-0.002660) | 0.003343 / 0.004328 (-0.000986) | 0.064966 / 0.004250 (0.060716) | 0.054519 / 0.037052 (0.017467) | 0.357864 / 0.258489 (0.099374) | 0.409238 / 0.293841 (0.115397) | 0.031620 / 0.128546 (-0.096926) | 0.008529 / 0.075646 (-0.067117) | 0.288502 / 0.419271 (-0.130769) | 0.053260 / 0.043533 (0.009728) | 0.355245 / 0.255139 (0.100106) | 0.384139 / 0.283200 (0.100939) | 0.024507 / 0.141683 (-0.117176) | 1.494696 / 1.452155 (0.042541) | 1.579847 / 1.492716 (0.087130) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204011 / 0.018006 (0.186005) | 0.451729 / 0.000490 (0.451239) | 0.004628 / 0.000200 (0.004428) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028342 / 0.037411 (-0.009069) | 0.084647 / 0.014526 (0.070121) | 0.096174 / 0.176557 (-0.080383) | 0.151753 / 0.737135 (-0.585382) | 0.096347 / 0.296338 (-0.199991) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.387179 / 0.215209 (0.171970) | 3.861552 / 2.077655 (1.783898) | 1.844033 / 1.504120 (0.339913) | 1.678811 / 1.541195 (0.137616) | 1.793207 / 1.468490 (0.324717) | 0.485836 / 4.584777 (-4.098941) | 3.566274 / 3.745712 (-0.179438) | 3.269888 / 5.269862 (-1.999974) | 2.042850 / 4.565676 (-2.522827) | 0.057088 / 0.424275 (-0.367187) | 0.007627 / 0.007607 (0.000019) | 0.460510 / 0.226044 (0.234465) | 4.602019 / 2.268929 (2.333090) | 2.390984 / 55.444624 (-53.053641) | 1.976150 / 6.876477 (-4.900327) | 2.193394 / 2.142072 (0.051322) | 0.582775 / 4.805227 (-4.222453) | 0.133408 / 6.500664 (-6.367256) | 0.060577 / 0.075469 (-0.014893) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.248505 / 1.841788 (-0.593283) | 19.771301 / 8.074308 (11.696993) | 14.327871 / 10.191392 (4.136479) | 0.155288 / 0.680424 (-0.525136) | 0.018310 / 0.534201 (-0.515891) | 0.393664 / 0.579283 (-0.185619) | 0.410578 / 0.434364 (-0.023786) | 0.459301 / 0.540337 (-0.081037) | 0.631921 / 1.386936 (-0.755015) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006827 / 0.011353 (-0.004526) | 0.004094 / 0.011008 (-0.006915) | 0.065299 / 0.038508 (0.026791) | 0.079496 / 0.023109 (0.056387) | 0.403661 / 0.275898 (0.127763) | 0.434449 / 0.323480 (0.110969) | 0.005398 / 0.007986 (-0.002588) | 0.003410 / 0.004328 (-0.000919) | 0.064832 / 0.004250 (0.060582) | 0.056303 / 0.037052 (0.019250) | 0.397848 / 0.258489 (0.139359) | 0.438244 / 0.293841 (0.144403) | 0.032637 / 0.128546 (-0.095909) | 0.008584 / 0.075646 (-0.067063) | 0.071406 / 0.419271 (-0.347866) | 0.048265 / 0.043533 (0.004732) | 0.397814 / 0.255139 (0.142675) | 0.421601 / 0.283200 (0.138402) | 0.023815 / 0.141683 (-0.117868) | 1.504814 / 1.452155 (0.052659) | 1.577185 / 1.492716 (0.084469) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231775 / 0.018006 (0.213769) | 0.445437 / 0.000490 (0.444948) | 0.005252 / 0.000200 (0.005052) | 0.000093 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032777 / 0.037411 (-0.004634) | 0.095054 / 0.014526 (0.080528) | 0.106429 / 0.176557 (-0.070127) | 0.160111 / 0.737135 (-0.577024) | 0.108075 / 0.296338 (-0.188263) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426034 / 0.215209 (0.210825) | 4.244668 / 2.077655 (2.167013) | 2.257938 / 1.504120 (0.753818) | 2.087993 / 1.541195 (0.546798) | 2.170878 / 1.468490 (0.702387) | 0.485228 / 4.584777 (-4.099549) | 3.725912 / 3.745712 (-0.019800) | 3.286925 / 5.269862 (-1.982937) | 2.059929 / 4.565676 (-2.505748) | 0.057813 / 0.424275 (-0.366462) | 0.007518 / 0.007607 (-0.000089) | 0.506632 / 0.226044 (0.280588) | 5.048340 / 2.268929 (2.779411) | 2.744756 / 55.444624 (-52.699869) | 2.406636 / 6.876477 (-4.469841) | 2.617552 / 2.142072 (0.475480) | 0.588476 / 4.805227 (-4.216751) | 0.133518 / 6.500664 (-6.367146) | 0.060778 / 0.075469 (-0.014691) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356416 / 1.841788 (-0.485372) | 20.467516 / 8.074308 (12.393208) | 15.265443 / 10.191392 (5.074051) | 0.169201 / 0.680424 (-0.511223) | 0.020087 / 0.534201 (-0.514114) | 0.402332 / 0.579283 (-0.176951) | 0.414848 / 0.434364 (-0.019516) | 0.470422 / 0.540337 (-0.069916) | 0.647266 / 1.386936 (-0.739670) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#eb001b4cee7f1d71e393c3ad489a8a5cd8119df5 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005804 / 0.011353 (-0.005549) | 0.003519 / 0.011008 (-0.007489) | 0.080003 / 0.038508 (0.041495) | 0.055419 / 0.023109 (0.032309) | 0.395254 / 0.275898 (0.119356) | 0.432714 / 0.323480 (0.109234) | 0.004438 / 0.007986 (-0.003548) | 0.002832 / 0.004328 (-0.001496) | 0.062026 / 0.004250 (0.057775) | 0.044334 / 0.037052 (0.007282) | 0.401278 / 0.258489 (0.142789) | 0.451516 / 0.293841 (0.157675) | 0.026791 / 0.128546 (-0.101755) | 0.007946 / 0.075646 (-0.067700) | 0.265166 / 0.419271 (-0.154106) | 0.044119 / 0.043533 (0.000586) | 0.399621 / 0.255139 (0.144482) | 0.422808 / 0.283200 (0.139609) | 0.019998 / 0.141683 (-0.121685) | 1.433559 / 1.452155 (-0.018596) | 1.596902 / 1.492716 (0.104186) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195662 / 0.018006 (0.177656) | 0.423167 / 0.000490 (0.422677) | 0.003426 / 0.000200 (0.003227) | 0.000066 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023318 / 0.037411 (-0.014094) | 0.072532 / 0.014526 (0.058006) | 0.082181 / 0.176557 (-0.094375) | 0.142214 / 0.737135 (-0.594921) | 0.083423 / 0.296338 (-0.212915) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402270 / 0.215209 (0.187061) | 4.027607 / 2.077655 (1.949953) | 2.059803 / 1.504120 (0.555684) | 1.865115 / 1.541195 (0.323920) | 1.934976 / 1.468490 (0.466485) | 0.502145 / 4.584777 (-4.082632) | 2.970865 / 3.745712 (-0.774847) | 2.784155 / 5.269862 (-2.485707) | 1.822003 / 4.565676 (-2.743673) | 0.057699 / 0.424275 (-0.366576) | 0.006668 / 0.007607 (-0.000939) | 0.471164 / 0.226044 (0.245120) | 4.733079 / 2.268929 (2.464150) | 2.445119 / 55.444624 (-52.999505) | 2.132956 / 6.876477 (-4.743521) | 2.335998 / 2.142072 (0.193926) | 0.594881 / 4.805227 (-4.210347) | 0.125801 / 6.500664 (-6.374863) | 0.060780 / 0.075469 (-0.014689) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.233170 / 1.841788 (-0.608618) | 17.942205 / 8.074308 (9.867897) | 13.587020 / 10.191392 (3.395628) | 0.142110 / 0.680424 (-0.538314) | 0.016600 / 0.534201 (-0.517601) | 0.328659 / 0.579283 (-0.250624) | 0.347759 / 0.434364 (-0.086605) | 0.378651 / 0.540337 (-0.161687) | 0.523474 / 1.386936 (-0.863462) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006028 / 0.011353 (-0.005325) | 0.003552 / 0.011008 (-0.007456) | 0.062175 / 0.038508 (0.023667) | 0.057602 / 0.023109 (0.034493) | 0.444585 / 0.275898 (0.168687) | 0.471238 / 0.323480 (0.147758) | 0.004562 / 0.007986 (-0.003423) | 0.002871 / 0.004328 (-0.001457) | 0.063101 / 0.004250 (0.058851) | 0.046072 / 0.037052 (0.009020) | 0.448253 / 0.258489 (0.189764) | 0.478734 / 0.293841 (0.184893) | 0.028463 / 0.128546 (-0.100084) | 0.008090 / 0.075646 (-0.067557) | 0.068142 / 0.419271 (-0.351130) | 0.040517 / 0.043533 (-0.003016) | 0.447145 / 0.255139 (0.192006) | 0.469472 / 0.283200 (0.186273) | 0.019391 / 0.141683 (-0.122291) | 1.471195 / 1.452155 (0.019040) | 1.532966 / 1.492716 (0.040249) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259894 / 0.018006 (0.241888) | 0.412987 / 0.000490 (0.412497) | 0.020780 / 0.000200 (0.020580) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026352 / 0.037411 (-0.011060) | 0.080024 / 0.014526 (0.065498) | 0.088041 / 0.176557 (-0.088516) | 0.142987 / 0.737135 (-0.594148) | 0.090108 / 0.296338 (-0.206231) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458874 / 0.215209 (0.243665) | 4.573005 / 2.077655 (2.495351) | 2.507885 / 1.504120 (1.003765) | 2.335432 / 1.541195 (0.794238) | 2.379617 / 1.468490 (0.911126) | 0.503331 / 4.584777 (-4.081446) | 3.078284 / 3.745712 (-0.667428) | 2.750580 / 5.269862 (-2.519282) | 1.828100 / 4.565676 (-2.737577) | 0.057572 / 0.424275 (-0.366703) | 0.006553 / 0.007607 (-0.001054) | 0.532283 / 0.226044 (0.306239) | 5.310584 / 2.268929 (3.041656) | 2.943559 / 55.444624 (-52.501065) | 2.587544 / 6.876477 (-4.288932) | 2.718261 / 2.142072 (0.576188) | 0.590267 / 4.805227 (-4.214961) | 0.123229 / 6.500664 (-6.377435) | 0.060219 / 0.075469 (-0.015250) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340773 / 1.841788 (-0.501014) | 18.420766 / 8.074308 (10.346458) | 14.630550 / 10.191392 (4.439158) | 0.146666 / 0.680424 (-0.533758) | 0.017905 / 0.534201 (-0.516296) | 0.332483 / 0.579283 (-0.246801) | 0.355490 / 0.434364 (-0.078874) | 0.382618 / 0.540337 (-0.157720) | 0.531336 / 1.386936 (-0.855600) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d438617fc577bc0222527714edafea0c52ebf239 \"CML watermark\")\n",
"There were CI errors unrelated to this PR.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008702 / 0.011353 (-0.002651) | 0.005060 / 0.011008 (-0.005948) | 0.097017 / 0.038508 (0.058509) | 0.073740 / 0.023109 (0.050631) | 0.435138 / 0.275898 (0.159240) | 0.512776 / 0.323480 (0.189296) | 0.006186 / 0.007986 (-0.001800) | 0.003970 / 0.004328 (-0.000358) | 0.089523 / 0.004250 (0.085273) | 0.054441 / 0.037052 (0.017389) | 0.447415 / 0.258489 (0.188926) | 0.464851 / 0.293841 (0.171010) | 0.050264 / 0.128546 (-0.078283) | 0.016643 / 0.075646 (-0.059004) | 0.350565 / 0.419271 (-0.068707) | 0.071220 / 0.043533 (0.027687) | 0.432531 / 0.255139 (0.177392) | 0.472994 / 0.283200 (0.189795) | 0.040229 / 0.141683 (-0.101454) | 1.743431 / 1.452155 (0.291276) | 1.778653 / 1.492716 (0.285936) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261992 / 0.018006 (0.243986) | 0.571979 / 0.000490 (0.571489) | 0.006270 / 0.000200 (0.006071) | 0.000109 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027821 / 0.037411 (-0.009590) | 0.081874 / 0.014526 (0.067348) | 0.103725 / 0.176557 (-0.072831) | 0.170593 / 0.737135 (-0.566542) | 0.108749 / 0.296338 (-0.187590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.690774 / 0.215209 (0.475565) | 6.770902 / 2.077655 (4.693247) | 2.887218 / 1.504120 (1.383098) | 2.456226 / 1.541195 (0.915032) | 2.509422 / 1.468490 (1.040932) | 0.768451 / 4.584777 (-3.816326) | 4.988933 / 3.745712 (1.243221) | 4.151460 / 5.269862 (-1.118402) | 2.640472 / 4.565676 (-1.925205) | 0.093522 / 0.424275 (-0.330753) | 0.008614 / 0.007607 (0.001007) | 0.696281 / 0.226044 (0.470237) | 6.721077 / 2.268929 (4.452149) | 3.229760 / 55.444624 (-52.214864) | 2.668521 / 6.876477 (-4.207956) | 2.866420 / 2.142072 (0.724347) | 0.945328 / 4.805227 (-3.859899) | 0.197645 / 6.500664 (-6.303019) | 0.074442 / 0.075469 (-0.001027) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.630468 / 1.841788 (-0.211320) | 22.991661 / 8.074308 (14.917353) | 19.816919 / 10.191392 (9.625527) | 0.257410 / 0.680424 (-0.423014) | 0.027228 / 0.534201 (-0.506973) | 0.444515 / 0.579283 (-0.134768) | 0.597067 / 0.434364 (0.162703) | 0.528151 / 0.540337 (-0.012186) | 0.771276 / 1.386936 (-0.615660) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009154 / 0.011353 (-0.002199) | 0.004648 / 0.011008 (-0.006360) | 0.073054 / 0.038508 (0.034546) | 0.077146 / 0.023109 (0.054037) | 0.481659 / 0.275898 (0.205761) | 0.516985 / 0.323480 (0.193505) | 0.007447 / 0.007986 (-0.000538) | 0.003890 / 0.004328 (-0.000438) | 0.078701 / 0.004250 (0.074450) | 0.059183 / 0.037052 (0.022131) | 0.475350 / 0.258489 (0.216861) | 0.547834 / 0.293841 (0.253993) | 0.058440 / 0.128546 (-0.070106) | 0.013563 / 0.075646 (-0.062083) | 0.084320 / 0.419271 (-0.334951) | 0.065965 / 0.043533 (0.022433) | 0.483541 / 0.255139 (0.228402) | 0.513940 / 0.283200 (0.230740) | 0.042889 / 0.141683 (-0.098794) | 1.676050 / 1.452155 (0.223895) | 1.759206 / 1.492716 (0.266489) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274848 / 0.018006 (0.256841) | 0.588965 / 0.000490 (0.588475) | 0.006312 / 0.000200 (0.006112) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033871 / 0.037411 (-0.003540) | 0.104013 / 0.014526 (0.089487) | 0.118457 / 0.176557 (-0.058099) | 0.178268 / 0.737135 (-0.558868) | 0.116972 / 0.296338 (-0.179366) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.609952 / 0.215209 (0.394743) | 5.788754 / 2.077655 (3.711100) | 2.812166 / 1.504120 (1.308046) | 2.362861 / 1.541195 (0.821666) | 2.641295 / 1.468490 (1.172804) | 0.767601 / 4.584777 (-3.817176) | 5.027439 / 3.745712 (1.281727) | 4.612511 / 5.269862 (-0.657351) | 2.654364 / 4.565676 (-1.911312) | 0.103100 / 0.424275 (-0.321175) | 0.012233 / 0.007607 (0.004626) | 0.749283 / 0.226044 (0.523238) | 7.511093 / 2.268929 (5.242165) | 3.585867 / 55.444624 (-51.858757) | 3.255110 / 6.876477 (-3.621366) | 3.260174 / 2.142072 (1.118102) | 0.958422 / 4.805227 (-3.846806) | 0.209096 / 6.500664 (-6.291568) | 0.075014 / 0.075469 (-0.000455) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.728283 / 1.841788 (-0.113504) | 25.411147 / 8.074308 (17.336839) | 21.335202 / 10.191392 (11.143810) | 0.199090 / 0.680424 (-0.481334) | 0.031288 / 0.534201 (-0.502913) | 0.449226 / 0.579283 (-0.130057) | 0.555570 / 0.434364 (0.121206) | 0.570297 / 0.540337 (0.029960) | 0.758673 / 1.386936 (-0.628263) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fa696b4b4f0d11c5b8592eb31cb1d54a707e3d33 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006862 / 0.011353 (-0.004491) | 0.003959 / 0.011008 (-0.007049) | 0.087219 / 0.038508 (0.048711) | 0.078335 / 0.023109 (0.055226) | 0.319019 / 0.275898 (0.043121) | 0.342871 / 0.323480 (0.019391) | 0.004065 / 0.007986 (-0.003921) | 0.004346 / 0.004328 (0.000017) | 0.065243 / 0.004250 (0.060993) | 0.056698 / 0.037052 (0.019646) | 0.326906 / 0.258489 (0.068417) | 0.354323 / 0.293841 (0.060482) | 0.031252 / 0.128546 (-0.097295) | 0.008587 / 0.075646 (-0.067060) | 0.300323 / 0.419271 (-0.118948) | 0.052810 / 0.043533 (0.009277) | 0.323866 / 0.255139 (0.068727) | 0.346011 / 0.283200 (0.062811) | 0.025584 / 0.141683 (-0.116099) | 1.464475 / 1.452155 (0.012320) | 1.530868 / 1.492716 (0.038152) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208927 / 0.018006 (0.190921) | 0.454147 / 0.000490 (0.453657) | 0.003945 / 0.000200 (0.003746) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029901 / 0.037411 (-0.007511) | 0.088889 / 0.014526 (0.074363) | 0.098181 / 0.176557 (-0.078375) | 0.156787 / 0.737135 (-0.580349) | 0.099015 / 0.296338 (-0.197324) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384981 / 0.215209 (0.169772) | 3.831040 / 2.077655 (1.753386) | 1.858312 / 1.504120 (0.354192) | 1.686846 / 1.541195 (0.145651) | 1.771509 / 1.468490 (0.303019) | 0.485618 / 4.584777 (-4.099159) | 3.430961 / 3.745712 (-0.314751) | 3.264489 / 5.269862 (-2.005372) | 2.040125 / 4.565676 (-2.525551) | 0.057218 / 0.424275 (-0.367057) | 0.007640 / 0.007607 (0.000033) | 0.468072 / 0.226044 (0.242027) | 4.677214 / 2.268929 (2.408286) | 2.348425 / 55.444624 (-53.096199) | 1.994352 / 6.876477 (-4.882125) | 2.217020 / 2.142072 (0.074948) | 0.587467 / 4.805227 (-4.217760) | 0.133550 / 6.500664 (-6.367114) | 0.060571 / 0.075469 (-0.014898) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.271003 / 1.841788 (-0.570785) | 19.986365 / 8.074308 (11.912057) | 14.574046 / 10.191392 (4.382654) | 0.146212 / 0.680424 (-0.534212) | 0.018320 / 0.534201 (-0.515881) | 0.394524 / 0.579283 (-0.184759) | 0.399707 / 0.434364 (-0.034657) | 0.458965 / 0.540337 (-0.081372) | 0.619940 / 1.386936 (-0.766996) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006982 / 0.011353 (-0.004371) | 0.004061 / 0.011008 (-0.006947) | 0.064520 / 0.038508 (0.026012) | 0.076828 / 0.023109 (0.053719) | 0.402989 / 0.275898 (0.127090) | 0.439697 / 0.323480 (0.116217) | 0.005511 / 0.007986 (-0.002475) | 0.003378 / 0.004328 (-0.000950) | 0.064727 / 0.004250 (0.060477) | 0.058114 / 0.037052 (0.021062) | 0.402054 / 0.258489 (0.143565) | 0.442377 / 0.293841 (0.148536) | 0.032808 / 0.128546 (-0.095738) | 0.008604 / 0.075646 (-0.067043) | 0.070994 / 0.419271 (-0.348278) | 0.048738 / 0.043533 (0.005205) | 0.399786 / 0.255139 (0.144647) | 0.423537 / 0.283200 (0.140338) | 0.022397 / 0.141683 (-0.119286) | 1.504613 / 1.452155 (0.052458) | 1.571064 / 1.492716 (0.078348) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226876 / 0.018006 (0.208870) | 0.451477 / 0.000490 (0.450987) | 0.004511 / 0.000200 (0.004311) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032998 / 0.037411 (-0.004413) | 0.095843 / 0.014526 (0.081317) | 0.105684 / 0.176557 (-0.070873) | 0.158175 / 0.737135 (-0.578960) | 0.107297 / 0.296338 (-0.189041) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434912 / 0.215209 (0.219703) | 4.326394 / 2.077655 (2.248740) | 2.287310 / 1.504120 (0.783190) | 2.127987 / 1.541195 (0.586793) | 2.202485 / 1.468490 (0.733995) | 0.494305 / 4.584777 (-4.090472) | 3.575176 / 3.745712 (-0.170536) | 3.354358 / 5.269862 (-1.915504) | 2.074293 / 4.565676 (-2.491383) | 0.058967 / 0.424275 (-0.365308) | 0.007712 / 0.007607 (0.000105) | 0.513734 / 0.226044 (0.287690) | 5.107538 / 2.268929 (2.838610) | 2.776190 / 55.444624 (-52.668434) | 2.425051 / 6.876477 (-4.451426) | 2.666715 / 2.142072 (0.524643) | 0.598844 / 4.805227 (-4.206383) | 0.134186 / 6.500664 (-6.366478) | 0.062403 / 0.075469 (-0.013066) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346730 / 1.841788 (-0.495058) | 20.533190 / 8.074308 (12.458882) | 15.174443 / 10.191392 (4.983051) | 0.167204 / 0.680424 (-0.513219) | 0.020619 / 0.534201 (-0.513582) | 0.399033 / 0.579283 (-0.180250) | 0.394428 / 0.434364 (-0.039936) | 0.468792 / 0.540337 (-0.071545) | 0.640122 / 1.386936 (-0.746814) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2c4c2b529e2a262a5006e4caa55fbc003378006a \"CML watermark\")\n"
] | "2023-09-04T06:07:12Z" | "2023-09-04T09:22:19Z" | "2023-09-04T09:13:32Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6208.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6208",
"merged_at": "2023-09-04T09:13:32Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6208.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6208"
} | This PR is a hotfix of:
- #6207
That PR introduced the filtering out of `.zip` extensions. This PR reverts that.
Hot fix #6207.
Maybe we should do patch releases: the bug was introduced in 2.13.1.
CC: @lhoestq | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6208/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6208/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4576 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4576/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4576/comments | https://api.github.com/repos/huggingface/datasets/issues/4576/events | https://github.com/huggingface/datasets/pull/4576 | 1,285,698,576 | PR_kwDODunzps46aSN_ | 4,576 | Include `metadata.jsonl` in resolved data files | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I still don't know if the way we implemented data files resolution could support the metadata.jsonl file without bad side effects for the other packaged builders. In particular here if you have a folder of csv/parquet/whatever files and a metadata.jsonl file, it would return \r\n```\r\nsplit: patterns_dict[split] + [METADATA_PATTERN]\r\n```\r\nwhich is a bit unexpected and can lead to errors.\r\n\r\nMaybe this logic can be specific to imagefolder somehow ? This could be an additional pattern `[\"metadata.jsonl\", \"**/metadata.jsonl\"]` just for imagefolder, that is only used when `data_files=` is not specified by the user.\r\n\r\nI guess it's ok to have patterns that lead to duplicate metadata.jsonl files for imagefolder, since the imagefolder logic only considers the closest metadata file for each image.\r\n\r\nWhat do you think ?",
"Yes, that's indeed the problem. My solution in https://github.com/huggingface/datasets/commit/4d20618ea7a19bc143ddc5fdff9d79e671fcbb95 that accounts for that (include metadata files only if image files are present; not ideal): https://github.com/huggingface/datasets/blob/4d20618ea7a19bc143ddc5fdff9d79e671fcbb95/src/datasets/data_files.py#L119-L125.\r\nPerhaps a cleaner approach would be to check for metadata files after the packaged module type is inferred as `imagefolder` and append metadata files to already resolved data files (if there are any). WDYT?",
"@lhoestq \r\n\r\n> Perhaps a cleaner approach would be to check for metadata files after the packaged module type is inferred as imagefolder and append metadata files to already resolved data files (if there are any). WDYT?\r\n\r\nI decided to go with this approach.\r\n\r\n Not sure if you meant the same thing with this comment:\r\n\r\n> Maybe this logic can be specific to imagefolder somehow ? This could be an additional pattern [\"metadata.jsonl\", \"**/metadata.jsonl\"] just for imagefolder, that is only used when data_files= is not specified by the user.\r\n\r\n\r\nIt adds more code but is easy to follow IMO.\r\n",
"The CI still struggles but you can merge since at least one of the two WIN CI succeeded"
] | "2022-06-27T12:01:29Z" | "2022-07-01T12:44:55Z" | "2022-06-30T10:15:32Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4576.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4576",
"merged_at": "2022-06-30T10:15:31Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4576.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4576"
} | Include `metadata.jsonl` in resolved data files.
Fix #4548
@lhoestq ~~https://github.com/huggingface/datasets/commit/d94336d30eef17fc9abc67f67fa1c139661f4e75 adds support for metadata files placed at the root, and https://github.com/huggingface/datasets/commit/4d20618ea7a19bc143ddc5fdff9d79e671fcbb95 accounts for nested metadata files also, but this results in more complex code. Let me know which one of these two approaches you prefer.~~ Maybe https://github.com/huggingface/datasets/commit/d94336d30eef17fc9abc67f67fa1c139661f4e75 is good enough for now (for the sake of simplicity). https://github.com/huggingface/datasets/commit/4d20618ea7a19bc143ddc5fdff9d79e671fcbb95 breaks the imagefolder tests due to duplicates in the resolved metadata files. One way to fix this would be to resolve the metadata pattern only on parent directories, but this adds even more logic to `_get_data_files_patterns`, so not sure if this is what we should do. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4576/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4576/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3646 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3646/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3646/comments | https://api.github.com/repos/huggingface/datasets/issues/3646/events | https://github.com/huggingface/datasets/pull/3646 | 1,116,544,627 | PR_kwDODunzps4xsX66 | 3,646 | Fix streaming datasets that are not reset correctly | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"Works smoothly with the `transformers.Trainer` class now, thank you!"
] | "2022-01-27T17:21:02Z" | "2022-01-28T16:34:29Z" | "2022-01-28T16:34:28Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3646.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3646",
"merged_at": "2022-01-28T16:34:28Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3646.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3646"
} | Streaming datasets that use `StreamingDownloadManager.iter_archive` and `StreamingDownloadManager.iter_files` had some issues. Indeed if you try to iterate over such dataset twice, then the second time it will be empty.
This is because the two methods above are generator functions. I fixed this by making them return iterables that are reset properly instead.
Close https://github.com/huggingface/datasets/issues/3645
cc @anton-l | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3646/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3646/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5447 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5447/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5447/comments | https://api.github.com/repos/huggingface/datasets/issues/5447/events | https://github.com/huggingface/datasets/pull/5447 | 1,550,599,193 | PR_kwDODunzps5IM0Nu | 5,447 | Fix CI by temporarily pinning fsspec < 2023.1.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011875 / 0.011353 (0.000522) | 0.008188 / 0.011008 (-0.002821) | 0.131137 / 0.038508 (0.092629) | 0.038127 / 0.023109 (0.015018) | 0.383864 / 0.275898 (0.107966) | 0.458617 / 0.323480 (0.135137) | 0.010989 / 0.007986 (0.003003) | 0.004892 / 0.004328 (0.000563) | 0.101955 / 0.004250 (0.097704) | 0.045081 / 0.037052 (0.008029) | 0.409768 / 0.258489 (0.151279) | 0.446597 / 0.293841 (0.152756) | 0.058588 / 0.128546 (-0.069958) | 0.020872 / 0.075646 (-0.054774) | 0.432982 / 0.419271 (0.013711) | 0.075875 / 0.043533 (0.032342) | 0.380923 / 0.255139 (0.125784) | 0.432994 / 0.283200 (0.149795) | 0.122678 / 0.141683 (-0.019005) | 1.857865 / 1.452155 (0.405710) | 1.927801 / 1.492716 (0.435085) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212941 / 0.018006 (0.194935) | 0.527977 / 0.000490 (0.527488) | 0.002996 / 0.000200 (0.002797) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030046 / 0.037411 (-0.007366) | 0.126384 / 0.014526 (0.111858) | 0.138307 / 0.176557 (-0.038250) | 0.185338 / 0.737135 (-0.551797) | 0.144733 / 0.296338 (-0.151606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627096 / 0.215209 (0.411887) | 6.418014 / 2.077655 (4.340360) | 2.547675 / 1.504120 (1.043555) | 2.195552 / 1.541195 (0.654357) | 2.200377 / 1.468490 (0.731887) | 1.289935 / 4.584777 (-3.294842) | 5.670839 / 3.745712 (1.925127) | 5.252597 / 5.269862 (-0.017265) | 2.878470 / 4.565676 (-1.687207) | 0.143754 / 0.424275 (-0.280521) | 0.014814 / 0.007607 (0.007207) | 0.810073 / 0.226044 (0.584028) | 8.183757 / 2.268929 (5.914829) | 3.375525 / 55.444624 (-52.069099) | 2.594048 / 6.876477 (-4.282428) | 2.598095 / 2.142072 (0.456023) | 1.554493 / 4.805227 (-3.250734) | 0.263159 / 6.500664 (-6.237505) | 0.089822 / 0.075469 (0.014353) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.660847 / 1.841788 (-0.180941) | 18.434283 / 8.074308 (10.359975) | 21.764887 / 10.191392 (11.573495) | 0.264524 / 0.680424 (-0.415900) | 0.048519 / 0.534201 (-0.485682) | 0.587468 / 0.579283 (0.008185) | 0.634142 / 0.434364 (0.199778) | 0.675374 / 0.540337 (0.135037) | 0.777510 / 1.386936 (-0.609426) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010021 / 0.011353 (-0.001332) | 0.006207 / 0.011008 (-0.004801) | 0.130490 / 0.038508 (0.091982) | 0.037957 / 0.023109 (0.014848) | 0.489381 / 0.275898 (0.213483) | 0.536522 / 0.323480 (0.213042) | 0.008611 / 0.007986 (0.000626) | 0.004894 / 0.004328 (0.000565) | 0.101617 / 0.004250 (0.097367) | 0.052629 / 0.037052 (0.015577) | 0.509211 / 0.258489 (0.250721) | 0.545023 / 0.293841 (0.251182) | 0.057468 / 0.128546 (-0.071078) | 0.023393 / 0.075646 (-0.052253) | 0.431408 / 0.419271 (0.012137) | 0.064967 / 0.043533 (0.021434) | 0.495261 / 0.255139 (0.240122) | 0.527098 / 0.283200 (0.243898) | 0.113172 / 0.141683 (-0.028511) | 1.937072 / 1.452155 (0.484918) | 2.048413 / 1.492716 (0.555697) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245406 / 0.018006 (0.227399) | 0.526772 / 0.000490 (0.526283) | 0.004379 / 0.000200 (0.004179) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031785 / 0.037411 (-0.005626) | 0.130949 / 0.014526 (0.116424) | 0.145660 / 0.176557 (-0.030896) | 0.186991 / 0.737135 (-0.550144) | 0.151000 / 0.296338 (-0.145338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.708643 / 0.215209 (0.493434) | 7.179252 / 2.077655 (5.101597) | 3.143375 / 1.504120 (1.639255) | 2.714298 / 1.541195 (1.173103) | 2.773441 / 1.468490 (1.304951) | 1.312821 / 4.584777 (-3.271956) | 5.798396 / 3.745712 (2.052684) | 3.253215 / 5.269862 (-2.016646) | 2.147260 / 4.565676 (-2.418416) | 0.154673 / 0.424275 (-0.269602) | 0.014918 / 0.007607 (0.007311) | 0.860618 / 0.226044 (0.634573) | 8.774455 / 2.268929 (6.505527) | 3.925020 / 55.444624 (-51.519604) | 3.139361 / 6.876477 (-3.737115) | 3.208883 / 2.142072 (1.066810) | 1.547305 / 4.805227 (-3.257922) | 0.268814 / 6.500664 (-6.231850) | 0.084578 / 0.075469 (0.009109) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.694990 / 1.841788 (-0.146798) | 18.619183 / 8.074308 (10.544875) | 21.929886 / 10.191392 (11.738494) | 0.265763 / 0.680424 (-0.414661) | 0.028325 / 0.534201 (-0.505876) | 0.552910 / 0.579283 (-0.026373) | 0.616864 / 0.434364 (0.182500) | 0.637858 / 0.540337 (0.097521) | 0.744508 / 1.386936 (-0.642428) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f819ba3d0306748aaf9fd8ea040b981dd08e5e5 \"CML watermark\")\n"
] | "2023-01-20T10:11:02Z" | "2023-01-20T10:38:13Z" | "2023-01-20T10:28:43Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5447.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5447",
"merged_at": "2023-01-20T10:28:43Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5447.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5447"
} | Temporarily pin fsspec < 2023.1.0
Fix #5445. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5447/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5447/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3299 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3299/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3299/comments | https://api.github.com/repos/huggingface/datasets/issues/3299/events | https://github.com/huggingface/datasets/issues/3299 | 1,058,518,213 | I_kwDODunzps4_F7TF | 3,299 | Add option to find unique elements in nested sequences when calling `Dataset.unique` | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | open | false | null | [] | null | [
"Hi @mariosasko!\r\n\r\nHas this been patched into any of the releases?",
"Hi! Not yet, would you be interested in contributing a PR? I can give you some pointers if needed. ",
"@mariosasko did this ever get implemented? Willing to help if you are still up for it.",
"@dcruiz01 No, but here is an example of how to do this with the existing API:\r\n\r\n\r\n```python\r\nds = Dataset.from_dict({\"tokens\": [[\"a\", \"b\"], [\"c\", \"a\"], [\"c\", \"e\"]]})\r\n\r\ndef flatten_tokens(pa_table):\r\n return pa.table([pc.list_flatten(pa_table[\"tokens\"])], [\"flat_tokens\"])\r\n\r\nds = ds.with_format(\"arrow\")\r\nds = ds.map(flatten_tokens, batched=True)\r\nds = ds.with_format(None)\r\n\r\nunique_tokens = ds.unique(\"flat_tokens\")\r\n```\r\n\r\nWhen I think about it, `.unique` on `Sequence(Value(...))` should return unique sequences/arrays, not unique elements of these sequences..."
] | "2021-11-19T13:16:06Z" | "2023-05-19T14:45:40Z" | null | CONTRIBUTOR | null | null | null | It would be nice to have an option to flatten nested sequences to find unique elements stored in them when calling `Dataset.unique`. ~~Currently, `Dataset.unique` only supports finding unique sequences and not unique elements in that situation.~~ | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3299/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3299/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/1760 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1760/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1760/comments | https://api.github.com/repos/huggingface/datasets/issues/1760/events | https://github.com/huggingface/datasets/pull/1760 | 791,110,857 | MDExOlB1bGxSZXF1ZXN0NTU5MjE3MjY0 | 1,760 | More tags | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"Conll has `multilingual` but is only tagged as `en`",
"good catch, that was a bad copy paste x)"
] | "2021-01-21T13:50:10Z" | "2021-01-22T09:40:01Z" | "2021-01-22T09:40:00Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1760.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1760",
"merged_at": "2021-01-22T09:40:00Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1760.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1760"
} | Since the hub v2 is going to be released soon I figured it would be great to add the missing tags at least for some of the datasets of reference listed [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md#write-the-loadingprocessing-code) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1760/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1760/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5948 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5948/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5948/comments | https://api.github.com/repos/huggingface/datasets/issues/5948/events | https://github.com/huggingface/datasets/pull/5948 | 1,754,794,611 | PR_kwDODunzps5S4dUt | 5,948 | Fix sequence of array support for most dtype | {
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/qgallouedec",
"id": 45557362,
"login": "qgallouedec",
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"type": "User",
"url": "https://api.github.com/users/qgallouedec"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007220 / 0.011353 (-0.004133) | 0.004558 / 0.011008 (-0.006451) | 0.116647 / 0.038508 (0.078139) | 0.046845 / 0.023109 (0.023736) | 0.352429 / 0.275898 (0.076531) | 0.429739 / 0.323480 (0.106259) | 0.006620 / 0.007986 (-0.001366) | 0.003731 / 0.004328 (-0.000597) | 0.088683 / 0.004250 (0.084433) | 0.070583 / 0.037052 (0.033530) | 0.366699 / 0.258489 (0.108210) | 0.420730 / 0.293841 (0.126889) | 0.037342 / 0.128546 (-0.091204) | 0.010041 / 0.075646 (-0.065605) | 0.383477 / 0.419271 (-0.035795) | 0.060279 / 0.043533 (0.016746) | 0.349988 / 0.255139 (0.094849) | 0.371423 / 0.283200 (0.088224) | 0.026725 / 0.141683 (-0.114958) | 1.736886 / 1.452155 (0.284731) | 1.812874 / 1.492716 (0.320157) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253256 / 0.018006 (0.235250) | 0.563470 / 0.000490 (0.562980) | 0.010475 / 0.000200 (0.010275) | 0.000164 / 0.000054 (0.000110) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030518 / 0.037411 (-0.006893) | 0.133324 / 0.014526 (0.118798) | 0.137095 / 0.176557 (-0.039461) | 0.202227 / 0.737135 (-0.534909) | 0.144195 / 0.296338 (-0.152143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480870 / 0.215209 (0.265661) | 4.822713 / 2.077655 (2.745058) | 2.124183 / 1.504120 (0.620064) | 1.910733 / 1.541195 (0.369538) | 1.970266 / 1.468490 (0.501776) | 0.624695 / 4.584777 (-3.960082) | 4.459659 / 3.745712 (0.713947) | 2.210123 / 5.269862 (-3.059739) | 1.300520 / 4.565676 (-3.265157) | 0.077096 / 0.424275 (-0.347180) | 0.013333 / 0.007607 (0.005726) | 0.596841 / 0.226044 (0.370797) | 5.917397 / 2.268929 (3.648469) | 2.699397 / 55.444624 (-52.745228) | 2.274833 / 6.876477 (-4.601644) | 2.525376 / 2.142072 (0.383304) | 0.755718 / 4.805227 (-4.049510) | 0.163587 / 6.500664 (-6.337077) | 0.072817 / 0.075469 (-0.002653) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.524306 / 1.841788 (-0.317481) | 18.843312 / 8.074308 (10.769004) | 15.694644 / 10.191392 (5.503252) | 0.177400 / 0.680424 (-0.503024) | 0.020104 / 0.534201 (-0.514097) | 0.466421 / 0.579283 (-0.112862) | 0.537274 / 0.434364 (0.102910) | 0.576920 / 0.540337 (0.036583) | 0.718889 / 1.386936 (-0.668047) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007671 / 0.011353 (-0.003682) | 0.004850 / 0.011008 (-0.006158) | 0.090085 / 0.038508 (0.051576) | 0.052023 / 0.023109 (0.028914) | 0.508575 / 0.275898 (0.232677) | 0.590024 / 0.323480 (0.266544) | 0.004564 / 0.007986 (-0.003422) | 0.005345 / 0.004328 (0.001017) | 0.087904 / 0.004250 (0.083653) | 0.064446 / 0.037052 (0.027394) | 0.525625 / 0.258489 (0.267136) | 0.584307 / 0.293841 (0.290466) | 0.037221 / 0.128546 (-0.091325) | 0.010588 / 0.075646 (-0.065059) | 0.098612 / 0.419271 (-0.320659) | 0.059597 / 0.043533 (0.016064) | 0.488064 / 0.255139 (0.232925) | 0.522330 / 0.283200 (0.239131) | 0.030004 / 0.141683 (-0.111679) | 1.732512 / 1.452155 (0.280357) | 1.809027 / 1.492716 (0.316310) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218741 / 0.018006 (0.200735) | 0.494946 / 0.000490 (0.494456) | 0.004580 / 0.000200 (0.004380) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034916 / 0.037411 (-0.002495) | 0.133695 / 0.014526 (0.119169) | 0.147964 / 0.176557 (-0.028592) | 0.213210 / 0.737135 (-0.523926) | 0.148850 / 0.296338 (-0.147488) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.508855 / 0.215209 (0.293646) | 5.065088 / 2.077655 (2.987433) | 2.473110 / 1.504120 (0.968990) | 2.259765 / 1.541195 (0.718570) | 2.359189 / 1.468490 (0.890699) | 0.639082 / 4.584777 (-3.945695) | 4.768195 / 3.745712 (1.022482) | 2.253803 / 5.269862 (-3.016059) | 1.442996 / 4.565676 (-3.122680) | 0.078761 / 0.424275 (-0.345514) | 0.013936 / 0.007607 (0.006329) | 0.625977 / 0.226044 (0.399933) | 6.260817 / 2.268929 (3.991888) | 3.149640 / 55.444624 (-52.294985) | 2.753555 / 6.876477 (-4.122921) | 2.831872 / 2.142072 (0.689799) | 0.781294 / 4.805227 (-4.023933) | 0.169109 / 6.500664 (-6.331555) | 0.075810 / 0.075469 (0.000341) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.533282 / 1.841788 (-0.308506) | 19.460579 / 8.074308 (11.386271) | 17.250424 / 10.191392 (7.059032) | 0.193485 / 0.680424 (-0.486939) | 0.020650 / 0.534201 (-0.513551) | 0.472110 / 0.579283 (-0.107173) | 0.532276 / 0.434364 (0.097912) | 0.613152 / 0.540337 (0.072814) | 0.684684 / 1.386936 (-0.702252) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#650a86ee122209d4a8c8e8068c01ebfd3ba553f5 \"CML watermark\")\n"
] | "2023-06-13T12:38:59Z" | "2023-06-14T15:11:55Z" | "2023-06-14T15:03:33Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5948.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5948",
"merged_at": "2023-06-14T15:03:33Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5948.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5948"
} | Fixes #5936
Also, a related fix to #5927 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5948/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5948/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6288 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6288/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6288/comments | https://api.github.com/repos/huggingface/datasets/issues/6288/events | https://github.com/huggingface/datasets/issues/6288 | 1,935,005,457 | I_kwDODunzps5zVdcR | 6,288 | Dataset.from_pandas with a DataFrame of PIL.Images | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | open | false | null | [] | null | [
"A duplicate of https://github.com/huggingface/datasets/issues/4796.\r\n\r\nWe could get this for free by implementing the `Image` feature as an extension type, as shown in [this](https://colab.research.google.com/drive/1Uzm_tXVpGTwbzleDConWcNjacwO1yxE4?usp=sharing) Colab (example with UUIDs).\r\n",
"+1 to this\r\nCalling this line with a df that contains a PIL image (as they are returned from load_dataset)\r\n`ds = Dataset.from_pandas(df)`\r\nResults in this error:\r\n`ArrowInvalid: ('Could not convert <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1024x1024 at 0x2B41F2D70> with type PngImageFile: did not recognize Python value type when inferring an Arrow data type', 'Conversion failed for column image with type object')`"
] | "2023-10-10T10:29:16Z" | "2023-10-12T17:36:27Z" | null | MEMBER | null | null | null | Currently type inference doesn't know what to do with a Pandas Series of PIL.Image objects, though it would be nice to get a Dataset with the Image type this way | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6288/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6288/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/3216 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3216/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3216/comments | https://api.github.com/repos/huggingface/datasets/issues/3216/events | https://github.com/huggingface/datasets/pull/3216 | 1,045,027,733 | PR_kwDODunzps4uG1YS | 3,216 | Pin version exclusion for tensorflow incompatible with keras | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [] | "2021-11-04T17:38:06Z" | "2021-11-05T10:57:38Z" | "2021-11-05T10:57:37Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3216.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3216",
"merged_at": "2021-11-05T10:57:37Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3216.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3216"
} | Once `tensorflow` version 2.6.2 is released:
- https://github.com/tensorflow/tensorflow/commit/c1867f3bfdd1042f694df7a9870be51ba80543cb
- https://pypi.org/project/tensorflow/2.6.2/
with the patch:
- tensorflow/tensorflow#52927
we can remove the temporary fix we introduced in:
- #3208
Fix #3209. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3216/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3216/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5795 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5795/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5795/comments | https://api.github.com/repos/huggingface/datasets/issues/5795/events | https://github.com/huggingface/datasets/pull/5795 | 1,685,414,505 | PR_kwDODunzps5POJo8 | 5,795 | Fix spark imports | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010844 / 0.011353 (-0.000509) | 0.007329 / 0.011008 (-0.003680) | 0.133764 / 0.038508 (0.095256) | 0.040213 / 0.023109 (0.017103) | 0.413466 / 0.275898 (0.137568) | 0.452860 / 0.323480 (0.129380) | 0.008109 / 0.007986 (0.000123) | 0.005773 / 0.004328 (0.001444) | 0.109969 / 0.004250 (0.105718) | 0.053001 / 0.037052 (0.015949) | 0.416377 / 0.258489 (0.157888) | 0.477486 / 0.293841 (0.183645) | 0.056556 / 0.128546 (-0.071990) | 0.024322 / 0.075646 (-0.051324) | 0.437750 / 0.419271 (0.018479) | 0.087732 / 0.043533 (0.044199) | 0.421540 / 0.255139 (0.166401) | 0.429143 / 0.283200 (0.145944) | 0.144864 / 0.141683 (0.003181) | 1.882785 / 1.452155 (0.430631) | 1.980721 / 1.492716 (0.488005) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.285497 / 0.018006 (0.267491) | 0.601820 / 0.000490 (0.601331) | 0.005003 / 0.000200 (0.004804) | 0.000122 / 0.000054 (0.000067) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030673 / 0.037411 (-0.006739) | 0.126883 / 0.014526 (0.112357) | 0.137677 / 0.176557 (-0.038880) | 0.211504 / 0.737135 (-0.525632) | 0.144752 / 0.296338 (-0.151587) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.665845 / 0.215209 (0.450636) | 6.369040 / 2.077655 (4.291385) | 2.708979 / 1.504120 (1.204859) | 2.370842 / 1.541195 (0.829647) | 2.445987 / 1.468490 (0.977497) | 1.260806 / 4.584777 (-3.323971) | 5.979216 / 3.745712 (2.233504) | 3.334350 / 5.269862 (-1.935512) | 2.187298 / 4.565676 (-2.378379) | 0.155494 / 0.424275 (-0.268781) | 0.017351 / 0.007607 (0.009744) | 0.853626 / 0.226044 (0.627581) | 8.375001 / 2.268929 (6.106072) | 3.528312 / 55.444624 (-51.916313) | 2.890509 / 6.876477 (-3.985968) | 3.051016 / 2.142072 (0.908944) | 1.529811 / 4.805227 (-3.275416) | 0.273883 / 6.500664 (-6.226781) | 0.086617 / 0.075469 (0.011148) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.648231 / 1.841788 (-0.193557) | 19.487109 / 8.074308 (11.412801) | 23.474621 / 10.191392 (13.283229) | 0.221392 / 0.680424 (-0.459032) | 0.028878 / 0.534201 (-0.505323) | 0.582302 / 0.579283 (0.003019) | 0.615059 / 0.434364 (0.180695) | 0.656082 / 0.540337 (0.115745) | 0.740544 / 1.386936 (-0.646392) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010687 / 0.011353 (-0.000665) | 0.007114 / 0.011008 (-0.003894) | 0.135426 / 0.038508 (0.096918) | 0.041027 / 0.023109 (0.017918) | 0.466441 / 0.275898 (0.190543) | 0.503545 / 0.323480 (0.180065) | 0.009418 / 0.007986 (0.001432) | 0.004976 / 0.004328 (0.000647) | 0.101342 / 0.004250 (0.097092) | 0.058289 / 0.037052 (0.021237) | 0.473715 / 0.258489 (0.215226) | 0.539556 / 0.293841 (0.245715) | 0.063138 / 0.128546 (-0.065408) | 0.020429 / 0.075646 (-0.055217) | 0.124179 / 0.419271 (-0.295093) | 0.066400 / 0.043533 (0.022867) | 0.450793 / 0.255139 (0.195654) | 0.494163 / 0.283200 (0.210964) | 0.131179 / 0.141683 (-0.010504) | 1.876396 / 1.452155 (0.424241) | 1.974148 / 1.492716 (0.481432) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313362 / 0.018006 (0.295356) | 0.602618 / 0.000490 (0.602129) | 0.008279 / 0.000200 (0.008079) | 0.000155 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037250 / 0.037411 (-0.000161) | 0.144151 / 0.014526 (0.129625) | 0.155733 / 0.176557 (-0.020824) | 0.214334 / 0.737135 (-0.522801) | 0.167124 / 0.296338 (-0.129214) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.686471 / 0.215209 (0.471262) | 6.749174 / 2.077655 (4.671520) | 3.024941 / 1.504120 (1.520821) | 2.553363 / 1.541195 (1.012168) | 2.679107 / 1.468490 (1.210617) | 1.317212 / 4.584777 (-3.267565) | 5.917575 / 3.745712 (2.171862) | 3.412715 / 5.269862 (-1.857146) | 2.203478 / 4.565676 (-2.362198) | 0.150387 / 0.424275 (-0.273888) | 0.015977 / 0.007607 (0.008370) | 0.862999 / 0.226044 (0.636954) | 8.706459 / 2.268929 (6.437530) | 3.762648 / 55.444624 (-51.681977) | 2.992544 / 6.876477 (-3.883933) | 3.135796 / 2.142072 (0.993724) | 1.504140 / 4.805227 (-3.301088) | 0.268265 / 6.500664 (-6.232399) | 0.083297 / 0.075469 (0.007828) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.690193 / 1.841788 (-0.151594) | 19.912854 / 8.074308 (11.838546) | 23.568217 / 10.191392 (13.376825) | 0.285125 / 0.680424 (-0.395299) | 0.030593 / 0.534201 (-0.503608) | 0.565305 / 0.579283 (-0.013978) | 0.659283 / 0.434364 (0.224919) | 0.678864 / 0.540337 (0.138527) | 0.793634 / 1.386936 (-0.593302) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9d0edbe3f3258b7e580d1b58c0eea6637b5e22b2 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011615 / 0.011353 (0.000262) | 0.006716 / 0.011008 (-0.004292) | 0.146868 / 0.038508 (0.108360) | 0.037621 / 0.023109 (0.014512) | 0.425563 / 0.275898 (0.149664) | 0.483217 / 0.323480 (0.159737) | 0.007830 / 0.007986 (-0.000156) | 0.005940 / 0.004328 (0.001612) | 0.100771 / 0.004250 (0.096521) | 0.063907 / 0.037052 (0.026854) | 0.422993 / 0.258489 (0.164503) | 0.496514 / 0.293841 (0.202673) | 0.056004 / 0.128546 (-0.072542) | 0.021441 / 0.075646 (-0.054206) | 0.453589 / 0.419271 (0.034317) | 0.067555 / 0.043533 (0.024022) | 0.442490 / 0.255139 (0.187351) | 0.503941 / 0.283200 (0.220742) | 0.134023 / 0.141683 (-0.007660) | 1.886329 / 1.452155 (0.434175) | 2.030867 / 1.492716 (0.538150) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288063 / 0.018006 (0.270057) | 0.627177 / 0.000490 (0.626687) | 0.006335 / 0.000200 (0.006135) | 0.000171 / 0.000054 (0.000116) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032424 / 0.037411 (-0.004987) | 0.132749 / 0.014526 (0.118223) | 0.144727 / 0.176557 (-0.031829) | 0.232577 / 0.737135 (-0.504558) | 0.157315 / 0.296338 (-0.139024) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.623058 / 0.215209 (0.407849) | 6.272447 / 2.077655 (4.194792) | 2.506778 / 1.504120 (1.002658) | 2.203094 / 1.541195 (0.661899) | 2.346972 / 1.468490 (0.878482) | 1.358498 / 4.584777 (-3.226279) | 5.879670 / 3.745712 (2.133958) | 5.818406 / 5.269862 (0.548545) | 3.231936 / 4.565676 (-1.333741) | 0.154013 / 0.424275 (-0.270263) | 0.021541 / 0.007607 (0.013934) | 0.823746 / 0.226044 (0.597702) | 8.140304 / 2.268929 (5.871375) | 3.366911 / 55.444624 (-52.077714) | 2.696856 / 6.876477 (-4.179621) | 2.845743 / 2.142072 (0.703671) | 1.522363 / 4.805227 (-3.282864) | 0.278938 / 6.500664 (-6.221726) | 0.085044 / 0.075469 (0.009575) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.681348 / 1.841788 (-0.160440) | 19.686703 / 8.074308 (11.612395) | 22.995655 / 10.191392 (12.804263) | 0.218876 / 0.680424 (-0.461548) | 0.029334 / 0.534201 (-0.504867) | 0.560846 / 0.579283 (-0.018438) | 0.645210 / 0.434364 (0.210846) | 0.697842 / 0.540337 (0.157505) | 0.832875 / 1.386936 (-0.554061) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009509 / 0.011353 (-0.001844) | 0.006471 / 0.011008 (-0.004537) | 0.101477 / 0.038508 (0.062969) | 0.035281 / 0.023109 (0.012171) | 0.470032 / 0.275898 (0.194134) | 0.501475 / 0.323480 (0.177995) | 0.007641 / 0.007986 (-0.000344) | 0.006784 / 0.004328 (0.002455) | 0.096111 / 0.004250 (0.091861) | 0.055199 / 0.037052 (0.018146) | 0.470095 / 0.258489 (0.211606) | 0.530955 / 0.293841 (0.237114) | 0.056161 / 0.128546 (-0.072385) | 0.022055 / 0.075646 (-0.053591) | 0.121585 / 0.419271 (-0.297686) | 0.063736 / 0.043533 (0.020203) | 0.470771 / 0.255139 (0.215632) | 0.490546 / 0.283200 (0.207346) | 0.128825 / 0.141683 (-0.012858) | 1.898639 / 1.452155 (0.446484) | 2.052305 / 1.492716 (0.559589) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322526 / 0.018006 (0.304520) | 0.628096 / 0.000490 (0.627607) | 0.006837 / 0.000200 (0.006637) | 0.000199 / 0.000054 (0.000145) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033830 / 0.037411 (-0.003581) | 0.136217 / 0.014526 (0.121691) | 0.147006 / 0.176557 (-0.029551) | 0.203950 / 0.737135 (-0.533185) | 0.150327 / 0.296338 (-0.146011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.654287 / 0.215209 (0.439078) | 6.430306 / 2.077655 (4.352651) | 2.881750 / 1.504120 (1.377630) | 2.489505 / 1.541195 (0.948310) | 2.543037 / 1.468490 (1.074547) | 1.226682 / 4.584777 (-3.358094) | 5.902076 / 3.745712 (2.156364) | 3.335344 / 5.269862 (-1.934518) | 2.156738 / 4.565676 (-2.408939) | 0.151804 / 0.424275 (-0.272472) | 0.015238 / 0.007607 (0.007631) | 0.816364 / 0.226044 (0.590319) | 8.126367 / 2.268929 (5.857438) | 3.653222 / 55.444624 (-51.791402) | 2.886667 / 6.876477 (-3.989809) | 3.120852 / 2.142072 (0.978779) | 1.421423 / 4.805227 (-3.383804) | 0.264590 / 6.500664 (-6.236074) | 0.085716 / 0.075469 (0.010247) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.745258 / 1.841788 (-0.096530) | 19.379253 / 8.074308 (11.304945) | 23.827046 / 10.191392 (13.635654) | 0.267702 / 0.680424 (-0.412722) | 0.030253 / 0.534201 (-0.503948) | 0.542037 / 0.579283 (-0.037246) | 0.655946 / 0.434364 (0.221582) | 0.683525 / 0.540337 (0.143188) | 0.831333 / 1.386936 (-0.555603) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5b011a258329375aa4dc7b414bd4e7b6363c5357 \"CML watermark\")\n"
] | "2023-04-26T17:09:32Z" | "2023-04-26T17:49:03Z" | "2023-04-26T17:39:12Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5795.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5795",
"merged_at": "2023-04-26T17:39:12Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5795.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5795"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5795/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5795/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5322 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5322/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5322/comments | https://api.github.com/repos/huggingface/datasets/issues/5322/events | https://github.com/huggingface/datasets/pull/5322 | 1,471,502,162 | PR_kwDODunzps5EEeQP | 5,322 | Raise error for `.tar` archives in the same way as for `.tar.gz` and `.tgz` in `_get_extraction_protocol` | {
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | "2022-12-01T15:19:28Z" | "2022-12-14T16:37:16Z" | "2022-12-14T16:33:30Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5322.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5322",
"merged_at": "2022-12-14T16:33:30Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5322.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5322"
} | Currently `download_and_extract` doesn't throw an error when it is used with files with `.tar` extension in streaming mode because `_get_extraction_protocol` doesn't do it (like it does for `tar.gz` and `tgz`). `_get_extraction_protocol` returns formatted url as if we support tar protocol but we don't.
That means that in dataset scripts `.tar` files would be attempted to load and fail during examples generation (after `download_and_extract` execution). So this PR raises error for `tar` files too.
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5322/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5322/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3042 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3042/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3042/comments | https://api.github.com/repos/huggingface/datasets/issues/3042/events | https://github.com/huggingface/datasets/pull/3042 | 1,020,047,289 | PR_kwDODunzps4s5Lxo | 3,042 | Improving elasticsearch integration | {
"avatar_url": "https://avatars.githubusercontent.com/u/5583410?v=4",
"events_url": "https://api.github.com/users/ggdupont/events{/privacy}",
"followers_url": "https://api.github.com/users/ggdupont/followers",
"following_url": "https://api.github.com/users/ggdupont/following{/other_user}",
"gists_url": "https://api.github.com/users/ggdupont/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ggdupont",
"id": 5583410,
"login": "ggdupont",
"node_id": "MDQ6VXNlcjU1ODM0MTA=",
"organizations_url": "https://api.github.com/users/ggdupont/orgs",
"received_events_url": "https://api.github.com/users/ggdupont/received_events",
"repos_url": "https://api.github.com/users/ggdupont/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ggdupont/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ggdupont/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ggdupont"
} | [] | open | false | null | [] | null | [
"@lhoestq @albertvillanova Iwas trying to fix the failing tests in circleCI but is there a test elasticsearch instance somewhere? If not, can I launch a docker container to have one?"
] | "2021-10-07T13:28:35Z" | "2022-07-06T15:19:48Z" | null | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3042.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3042",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/3042.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3042"
} | - adding murmurhash signature to sample in index
- adding optional credentials for remote elasticsearch server
- enabling sample update in index
- upgrade the elasticsearch 7.10.1 python client
- adding ElasticsearchBulider to instantiate a dataset from an index and a filtering query | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3042/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3042/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2934 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2934/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2934/comments | https://api.github.com/repos/huggingface/datasets/issues/2934/events | https://github.com/huggingface/datasets/issues/2934 | 999,477,413 | I_kwDODunzps47ktCl | 2,934 | to_tf_dataset keeps a reference to the open data somewhere, causing issues on windows | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"I did some investigation and, as it seems, the bug stems from [this line](https://github.com/huggingface/datasets/blob/8004d7c3e1d74b29c3e5b0d1660331cd26758363/src/datasets/arrow_dataset.py#L325). The lifecycle of the dataset from the linked line is bound to one of the returned `tf.data.Dataset`. So my (hacky) solution involves wrapping the linked dataset with `weakref.proxy` and adding a custom `__del__` to `tf.python.data.ops.dataset_ops.TensorSliceDataset` (this is the type of a dataset that is returned by `tf.data.Dataset.from_tensor_slices`; this works for TF 2.x, but I'm not sure `tf.python.data.ops.dataset_ops` is a valid path for TF 1.x) that deletes the linked dataset, which is assigned to the dataset object as a property. Will open a draft PR soon!",
"Thanks a lot for investigating !"
] | "2021-09-17T15:26:53Z" | "2021-10-13T09:03:23Z" | "2021-10-13T09:03:23Z" | MEMBER | null | null | null | To reproduce:
```python
import datasets as ds
import weakref
import gc
d = ds.load_dataset("mnist", split="train")
ref = weakref.ref(d._data.table)
tfd = d.to_tf_dataset("image", batch_size=1, shuffle=False, label_cols="label")
del tfd, d
gc.collect()
assert ref() is None, "Error: there is at least one reference left"
```
This causes issues because the table holds a reference to an open arrow file that should be closed. So on windows it's not possible to delete or move the arrow file afterwards.
Moreover the CI test of the `to_tf_dataset` method isn't able to clean up the temporary arrow files because of this.
cc @Rocketknight1 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2934/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2934/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6261 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6261/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6261/comments | https://api.github.com/repos/huggingface/datasets/issues/6261/events | https://github.com/huggingface/datasets/issues/6261 | 1,913,813,178 | I_kwDODunzps5yEni6 | 6,261 | Can't load a dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/37955817?v=4",
"events_url": "https://api.github.com/users/joaopedrosdmm/events{/privacy}",
"followers_url": "https://api.github.com/users/joaopedrosdmm/followers",
"following_url": "https://api.github.com/users/joaopedrosdmm/following{/other_user}",
"gists_url": "https://api.github.com/users/joaopedrosdmm/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/joaopedrosdmm",
"id": 37955817,
"login": "joaopedrosdmm",
"node_id": "MDQ6VXNlcjM3OTU1ODE3",
"organizations_url": "https://api.github.com/users/joaopedrosdmm/orgs",
"received_events_url": "https://api.github.com/users/joaopedrosdmm/received_events",
"repos_url": "https://api.github.com/users/joaopedrosdmm/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/joaopedrosdmm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/joaopedrosdmm/subscriptions",
"type": "User",
"url": "https://api.github.com/users/joaopedrosdmm"
} | [] | closed | false | null | [] | null | [
"I believe is due to the fact that doesn't work with .tgz files.",
"`JourneyDB/JourneyDB` is a gated dataset, so this error means you are not authenticated to access it, either by using an invalid token or by not agreeing to the terms in the dialog on the dataset page.\r\n\r\n> I believe is due to the fact that doesn't work with .tgz files.\r\n\r\nIndeed, the dataset's data files structure is not supported natively by `datasets`. To load it, one option is to clone the repo (or download it with `huggingface_hub.snapshot_download`) and use `Dataset.from_generator` to process the files.",
"> JourneyDB/JourneyDB is a gated dataset, so this error means you are not authenticated to access it, either by using an invalid token or by not agreeing to the terms in the dialog on the dataset page.´\r\n\r\nI did authentication with:\r\n\r\n```\r\nfrom huggingface_hub import notebook_login\r\nnotebook_login()\r\n```\r\n\r\nIsn't that the correct way to do it?\r\n\r\n> Indeed, the dataset's data files structure is not supported natively by datasets. To load it, one option is to clone the repo (or download it with huggingface_hub.snapshot_download) and use Dataset.from_generator to process the files.\r\n\r\nGreat suggestion I will give it a try.",
"Have you accepted the terms in the dialog [here](https://huggingface.co/datasets/JourneyDB/JourneyDB)?\r\n\r\nIIRC Kaggle preinstalls an outdated `datasets` version, so it's also a good idea to update it before importing `datasets` (and do the same for `huggingface_hub`)",
"Sorry for the late reply. Yes, I did. Thanks for the tip!"
] | "2023-09-26T15:46:25Z" | "2023-10-05T10:23:23Z" | "2023-10-05T10:23:22Z" | NONE | null | null | null | ### Describe the bug
Can't seem to load the JourneyDB dataset.
It throws the following error:
```
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
Cell In[15], line 2
1 # If the dataset is gated/private, make sure you have run huggingface-cli login
----> 2 dataset = load_dataset("JourneyDB/JourneyDB", data_files="data", use_auth_token=True)
File /opt/conda/lib/python3.10/site-packages/datasets/load.py:1664, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)
1661 ignore_verifications = ignore_verifications or save_infos
1663 # Create a dataset builder
-> 1664 builder_instance = load_dataset_builder(
1665 path=path,
1666 name=name,
1667 data_dir=data_dir,
1668 data_files=data_files,
1669 cache_dir=cache_dir,
1670 features=features,
1671 download_config=download_config,
1672 download_mode=download_mode,
1673 revision=revision,
1674 use_auth_token=use_auth_token,
1675 **config_kwargs,
1676 )
1678 # Return iterable dataset in case of streaming
1679 if streaming:
File /opt/conda/lib/python3.10/site-packages/datasets/load.py:1490, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, **config_kwargs)
1488 download_config = download_config.copy() if download_config else DownloadConfig()
1489 download_config.use_auth_token = use_auth_token
-> 1490 dataset_module = dataset_module_factory(
1491 path,
1492 revision=revision,
1493 download_config=download_config,
1494 download_mode=download_mode,
1495 data_dir=data_dir,
1496 data_files=data_files,
1497 )
1499 # Get dataset builder class from the processing script
1500 builder_cls = import_main_class(dataset_module.module_path)
File /opt/conda/lib/python3.10/site-packages/datasets/load.py:1238, in dataset_module_factory(path, revision, download_config, download_mode, force_local_path, dynamic_modules_path, data_dir, data_files, **download_kwargs)
1236 raise ConnectionError(f"Couln't reach the Hugging Face Hub for dataset '{path}': {e1}") from None
1237 if isinstance(e1, FileNotFoundError):
-> 1238 raise FileNotFoundError(
1239 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. "
1240 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}"
1241 ) from None
1242 raise e1 from None
1243 else:
FileNotFoundError: Couldn't find a dataset script at /kaggle/working/JourneyDB/JourneyDB/JourneyDB.py or any data file in the same directory. Couldn't find 'JourneyDB/JourneyDB' on the Hugging Face Hub either: FileNotFoundError: Unable to find data in dataset repository JourneyDB/JourneyDB with any supported extension ['csv', 'tsv', 'json', 'jsonl', 'parquet', 'txt', 'blp', 'bmp', 'dib', 'bufr', 'cur', 'pcx', 'dcx', 'dds', 'ps', 'eps', 'fit', 'fits', 'fli', 'flc', 'ftc', 'ftu', 'gbr', 'gif', 'grib', 'h5', 'hdf', 'png', 'apng', 'jp2', 'j2k', 'jpc', 'jpf', 'jpx', 'j2c', 'icns', 'ico', 'im', 'iim', 'tif', 'tiff', 'jfif', 'jpe', 'jpg', 'jpeg', 'mpg', 'mpeg', 'msp', 'pcd', 'pxr', 'pbm', 'pgm', 'ppm', 'pnm', 'psd', 'bw', 'rgb', 'rgba', 'sgi', 'ras', 'tga', 'icb', 'vda', 'vst', 'webp', 'wmf', 'emf', 'xbm', 'xpm', 'zip']
```
### Steps to reproduce the bug
1)
```
from huggingface_hub import notebook_login
notebook_login()
```
2)
```
!pip install -q datasets
from datasets import load_dataset
```
3)
`dataset = load_dataset("JourneyDB/JourneyDB", data_files="data", use_auth_token=True)`
### Expected behavior
Load the dataset
### Environment info
Notebook | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6261/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6261/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6183 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6183/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6183/comments | https://api.github.com/repos/huggingface/datasets/issues/6183/events | https://github.com/huggingface/datasets/issues/6183 | 1,867,743,276 | I_kwDODunzps5vU4As | 6,183 | Load dataset with non-existent file | {
"avatar_url": "https://avatars.githubusercontent.com/u/64750224?v=4",
"events_url": "https://api.github.com/users/freQuensy23-coder/events{/privacy}",
"followers_url": "https://api.github.com/users/freQuensy23-coder/followers",
"following_url": "https://api.github.com/users/freQuensy23-coder/following{/other_user}",
"gists_url": "https://api.github.com/users/freQuensy23-coder/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/freQuensy23-coder",
"id": 64750224,
"login": "freQuensy23-coder",
"node_id": "MDQ6VXNlcjY0NzUwMjI0",
"organizations_url": "https://api.github.com/users/freQuensy23-coder/orgs",
"received_events_url": "https://api.github.com/users/freQuensy23-coder/received_events",
"repos_url": "https://api.github.com/users/freQuensy23-coder/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/freQuensy23-coder/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/freQuensy23-coder/subscriptions",
"type": "User",
"url": "https://api.github.com/users/freQuensy23-coder"
} | [] | closed | false | null | [] | null | [
"Same problem",
"This was fixed in https://github.com/huggingface/datasets/pull/6155, which will be included in the next release (or you can install `datasets` from source to use it immediately)."
] | "2023-08-25T22:21:22Z" | "2023-08-29T13:26:22Z" | "2023-08-29T13:26:22Z" | NONE | null | null | null | ### Describe the bug
When load a dataset from datasets and pass a wrong path to json with the data, error message does not contain something abount "wrong path" or "file do not exist" -
```SchemaInferenceError: Please pass `features` or at least one example when writing data```
### Steps to reproduce the bug
```python
from datasets import load_dataset
load_dataset('json', data_files='/home/alexey/unreal_file.json')
```
### Expected behavior
Raise os FileNotFound error or custom error with informative message
### Environment info
```
# packages in environment at /home/alexey/.conda/envs/alex_LoRA:
#
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
accelerate 0.21.0 pypi_0 pypi
aiohttp 3.8.5 pypi_0 pypi
aiosignal 1.3.1 pypi_0 pypi
antlr4-python3-runtime 4.9.3 pypi_0 pypi
appdirs 1.4.4 pypi_0 pypi
asttokens 2.0.5 pyhd3eb1b0_0
async-timeout 4.0.3 pypi_0 pypi
attrs 23.1.0 pypi_0 pypi
backcall 0.2.0 pyhd3eb1b0_0
bitsandbytes 0.41.1 pypi_0 pypi
bzip2 1.0.8 h7b6447c_0
ca-certificates 2023.05.30 h06a4308_0
certifi 2023.7.22 pypi_0 pypi
charset-normalizer 3.2.0 pypi_0 pypi
click 8.1.6 pypi_0 pypi
cmake 3.27.2 pypi_0 pypi
comm 0.1.2 py310h06a4308_0
contourpy 1.1.0 pypi_0 pypi
cycler 0.11.0 pypi_0 pypi
datasets 2.14.4 pypi_0 pypi
debugpy 1.6.7 py310h6a678d5_0
decorator 5.1.1 pyhd3eb1b0_0
dill 0.3.7 pypi_0 pypi
docker-pycreds 0.4.0 pypi_0 pypi
executing 0.8.3 pyhd3eb1b0_0
filelock 3.12.2 pypi_0 pypi
fire 0.5.0 pypi_0 pypi
fonttools 4.42.0 pypi_0 pypi
frozenlist 1.4.0 pypi_0 pypi
fsspec 2023.6.0 pypi_0 pypi
gitdb 4.0.10 pypi_0 pypi
gitpython 3.1.32 pypi_0 pypi
huggingface-hub 0.16.4 pypi_0 pypi
idna 3.4 pypi_0 pypi
ipykernel 6.25.0 py310h2f386ee_0
ipython 8.12.2 py310h06a4308_0
ipython-genutils 0.2.0 pypi_0 pypi
ipywidgets 8.0.4 py310h06a4308_0
jedi 0.18.1 py310h06a4308_1
jinja2 3.1.2 pypi_0 pypi
jsonschema 4.19.0 pypi_0 pypi
jsonschema-specifications 2023.7.1 pypi_0 pypi
jupyter_client 8.1.0 py310h06a4308_0
jupyter_core 5.3.0 py310h06a4308_0
jupyterlab_widgets 3.0.5 py310h06a4308_0
kiwisolver 1.4.4 pypi_0 pypi
ld_impl_linux-64 2.38 h1181459_1
libffi 3.3 he6710b0_2
libgcc-ng 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libsodium 1.0.18 h7b6447c_0
libstdcxx-ng 11.2.0 h1234567_1
libuuid 1.41.5 h5eee18b_0
lightning-utilities 0.9.0 pypi_0 pypi
lit 16.0.6 pypi_0 pypi
markupsafe 2.1.3 pypi_0 pypi
matplotlib 3.7.2 pypi_0 pypi
matplotlib-inline 0.1.6 py310h06a4308_0
mpmath 1.3.0 pypi_0 pypi
multidict 6.0.4 pypi_0 pypi
multiprocess 0.70.15 pypi_0 pypi
nbformat 4.2.0 pypi_0 pypi
ncurses 6.4 h6a678d5_0
nest-asyncio 1.5.6 py310h06a4308_0
networkx 3.1 pypi_0 pypi
numpy 1.25.2 pypi_0 pypi
nvidia-cublas-cu11 11.10.3.66 pypi_0 pypi
nvidia-cuda-cupti-cu11 11.7.101 pypi_0 pypi
nvidia-cuda-nvrtc-cu11 11.7.99 pypi_0 pypi
nvidia-cuda-runtime-cu11 11.7.99 pypi_0 pypi
nvidia-cudnn-cu11 8.5.0.96 pypi_0 pypi
nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi
nvidia-curand-cu11 10.2.10.91 pypi_0 pypi
nvidia-cusolver-cu11 11.4.0.1 pypi_0 pypi
nvidia-cusparse-cu11 11.7.4.91 pypi_0 pypi
nvidia-nccl-cu11 2.14.3 pypi_0 pypi
nvidia-nvtx-cu11 11.7.91 pypi_0 pypi
omegaconf 2.3.0 pypi_0 pypi
openssl 1.1.1v h7f8727e_0
packaging 23.0 py310h06a4308_0
pandas 2.0.3 pypi_0 pypi
parso 0.8.3 pyhd3eb1b0_0
pathtools 0.1.2 pypi_0 pypi
peft 0.4.0 pypi_0 pypi
pexpect 4.8.0 pyhd3eb1b0_3
pickleshare 0.7.5 pyhd3eb1b0_1003
pillow 10.0.0 pypi_0 pypi
pip 23.2.1 py310h06a4308_0
platformdirs 2.5.2 py310h06a4308_0
plotly 5.16.1 pypi_0 pypi
prompt-toolkit 3.0.36 py310h06a4308_0
protobuf 4.24.0 pypi_0 pypi
psutil 5.9.0 py310h5eee18b_0
ptyprocess 0.7.0 pyhd3eb1b0_2
pure_eval 0.2.2 pyhd3eb1b0_0
pyarrow 12.0.1 pypi_0 pypi
pygments 2.15.1 py310h06a4308_1
pyparsing 3.0.9 pypi_0 pypi
python 3.10.0 h12debd9_5
python-dateutil 2.8.2 pyhd3eb1b0_0
pytorch-lightning 2.0.6 pypi_0 pypi
pytz 2023.3 pypi_0 pypi
pyyaml 6.0.1 pypi_0 pypi
pyzmq 25.1.0 py310h6a678d5_0
readline 8.2 h5eee18b_0
referencing 0.30.2 pypi_0 pypi
regex 2023.8.8 pypi_0 pypi
requests 2.31.0 pypi_0 pypi
rpds-py 0.9.2 pypi_0 pypi
safetensors 0.3.2 pypi_0 pypi
scipy 1.11.1 pypi_0 pypi
sentencepiece 0.1.99 pypi_0 pypi
sentry-sdk 1.29.2 pypi_0 pypi
setproctitle 1.3.2 pypi_0 pypi
setuptools 68.0.0 py310h06a4308_0
six 1.16.0 pyhd3eb1b0_1
smmap 5.0.0 pypi_0 pypi
sqlite 3.41.2 h5eee18b_0
stack_data 0.2.0 pyhd3eb1b0_0
sympy 1.12 pypi_0 pypi
tenacity 8.2.3 pypi_0 pypi
termcolor 2.3.0 pypi_0 pypi
tk 8.6.12 h1ccaba5_0
tokenizers 0.13.3 pypi_0 pypi
torch 2.0.1 pypi_0 pypi
torchmetrics 1.0.3 pypi_0 pypi
tornado 6.3.2 py310h5eee18b_0
tqdm 4.66.1 pypi_0 pypi
traitlets 5.7.1 py310h06a4308_0
transformers 4.31.0 pypi_0 pypi
triton 2.0.0 pypi_0 pypi
typing-extensions 4.7.1 pypi_0 pypi
tzdata 2023.3 pypi_0 pypi
urllib3 2.0.4 pypi_0 pypi
wandb 0.15.8 pypi_0 pypi
wcwidth 0.2.5 pyhd3eb1b0_0
wheel 0.38.4 py310h06a4308_0
widgetsnbextension 4.0.5 py310h06a4308_0
xxhash 3.3.0 pypi_0 pypi
xz 5.4.2 h5eee18b_0
yarl 1.9.2 pypi_0 pypi
zeromq 4.3.4 h2531618_0
zlib 1.2.13 h5eee18b_0
active environment : None
user config file : /home/alexey/.condarc
populated config files :
conda version : 23.1.0
conda-build version : 3.22.0
python version : 3.9.13.final.0
virtual packages : __archspec=1=x86_64
__cuda=12.0=0
__glibc=2.35=0
__linux=5.19.0=0
__unix=0=0
base environment : /opt/anaconda/anaconda3 (read only)
conda av data dir : /opt/anaconda/anaconda3/etc/conda
conda av metadata url : None
channel URLs : https://repo.anaconda.com/pkgs/main/linux-64
https://repo.anaconda.com/pkgs/main/noarch
https://repo.anaconda.com/pkgs/r/linux-64
https://repo.anaconda.com/pkgs/r/noarch
package cache : /opt/anaconda/anaconda3/pkgs
/home/alexey/.conda/pkgs
envs directories : /home/alexey/.conda/envs
/opt/anaconda/anaconda3/envs
platform : linux-64
user-agent : conda/23.1.0 requests/2.31.0 CPython/3.9.13 Linux/5.19.0-46-generic ubuntu/22.04.2 glibc/2.35
UID:GID : 1009:1009
netrc file : /home/alexey/.netrc
offline mode : False
``` | {
"+1": 0,
"-1": 0,
"confused": 1,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6183/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6183/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5785 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5785/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5785/comments | https://api.github.com/repos/huggingface/datasets/issues/5785/events | https://github.com/huggingface/datasets/issues/5785 | 1,680,956,964 | I_kwDODunzps5kMV4k | 5,785 | Unsupported data files raise TypeError: 'NoneType' object is not iterable | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [] | "2023-04-24T10:38:03Z" | "2023-04-27T12:57:30Z" | "2023-04-27T12:57:30Z" | MEMBER | null | null | null | Currently, we raise a TypeError for unsupported data files:
```
TypeError: 'NoneType' object is not iterable
```
See:
- https://github.com/huggingface/datasets-server/issues/1073
We should give a more informative error message. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5785/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5785/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4299 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4299/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4299/comments | https://api.github.com/repos/huggingface/datasets/issues/4299/events | https://github.com/huggingface/datasets/pull/4299 | 1,230,236,782 | PR_kwDODunzps43h5RP | 4,299 | Remove manual download from imagenet-1k | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Thanks for the reviews @apsdehal and @lhoestq! As suggested by @lhoestq, I'll separate the train/val/test splits, apply the validation split fixes and shuffle the images files to simplify the script and make streaming faster.",
"@apsdehal I dismissed your review as it's no longer relevant after the data files changes suggested by @lhoestq. "
] | "2022-05-09T20:49:18Z" | "2022-05-25T14:54:59Z" | "2022-05-25T14:46:16Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4299.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4299",
"merged_at": "2022-05-25T14:46:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4299.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4299"
} | Remove the manual download code from `imagenet-1k` to make it a regular dataset. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4299/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4299/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3293 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3293/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3293/comments | https://api.github.com/repos/huggingface/datasets/issues/3293/events | https://github.com/huggingface/datasets/pull/3293 | 1,057,004,431 | PR_kwDODunzps4uslLN | 3,293 | Pin version exclusion for Markdown | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [] | "2021-11-18T06:56:01Z" | "2021-11-18T10:28:05Z" | "2021-11-18T10:28:04Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3293.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3293",
"merged_at": "2021-11-18T10:28:04Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3293.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3293"
} | As Markdown version 3.3.5 has a bug, it is better to exclude it in case the users have it previously installed in their environment.
Related to #3289, #3286. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3293/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3293/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6015 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6015/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6015/comments | https://api.github.com/repos/huggingface/datasets/issues/6015/events | https://github.com/huggingface/datasets/pull/6015 | 1,798,807,893 | PR_kwDODunzps5VMhgB | 6,015 | Add metadata ui screenshot in docs | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007633 / 0.011353 (-0.003720) | 0.004666 / 0.011008 (-0.006343) | 0.097768 / 0.038508 (0.059260) | 0.085153 / 0.023109 (0.062044) | 0.400315 / 0.275898 (0.124417) | 0.452903 / 0.323480 (0.129423) | 0.006227 / 0.007986 (-0.001759) | 0.003814 / 0.004328 (-0.000515) | 0.074586 / 0.004250 (0.070336) | 0.064295 / 0.037052 (0.027242) | 0.408082 / 0.258489 (0.149593) | 0.446921 / 0.293841 (0.153080) | 0.034593 / 0.128546 (-0.093953) | 0.009191 / 0.075646 (-0.066456) | 0.337099 / 0.419271 (-0.082173) | 0.075320 / 0.043533 (0.031787) | 0.403488 / 0.255139 (0.148349) | 0.435309 / 0.283200 (0.152109) | 0.035675 / 0.141683 (-0.106008) | 1.732642 / 1.452155 (0.280487) | 1.770238 / 1.492716 (0.277522) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235879 / 0.018006 (0.217873) | 0.500330 / 0.000490 (0.499841) | 0.005221 / 0.000200 (0.005021) | 0.000150 / 0.000054 (0.000096) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032479 / 0.037411 (-0.004933) | 0.095873 / 0.014526 (0.081348) | 0.107118 / 0.176557 (-0.069438) | 0.173809 / 0.737135 (-0.563326) | 0.109832 / 0.296338 (-0.186507) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444342 / 0.215209 (0.229133) | 4.459010 / 2.077655 (2.381355) | 2.209687 / 1.504120 (0.705567) | 2.007556 / 1.541195 (0.466362) | 2.113683 / 1.468490 (0.645193) | 0.544281 / 4.584777 (-4.040496) | 4.037151 / 3.745712 (0.291439) | 4.852644 / 5.269862 (-0.417217) | 3.134126 / 4.565676 (-1.431550) | 0.066815 / 0.424275 (-0.357460) | 0.008836 / 0.007607 (0.001229) | 0.560904 / 0.226044 (0.334859) | 5.302760 / 2.268929 (3.033832) | 2.750182 / 55.444624 (-52.694442) | 2.322595 / 6.876477 (-4.553882) | 2.547486 / 2.142072 (0.405414) | 0.665766 / 4.805227 (-4.139461) | 0.151613 / 6.500664 (-6.349051) | 0.071155 / 0.075469 (-0.004314) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.473717 / 1.841788 (-0.368071) | 22.584179 / 8.074308 (14.509871) | 15.888001 / 10.191392 (5.696609) | 0.181073 / 0.680424 (-0.499351) | 0.021395 / 0.534201 (-0.512806) | 0.452693 / 0.579283 (-0.126590) | 0.447709 / 0.434364 (0.013345) | 0.529599 / 0.540337 (-0.010738) | 0.699241 / 1.386936 (-0.687695) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007917 / 0.011353 (-0.003436) | 0.004544 / 0.011008 (-0.006464) | 0.074566 / 0.038508 (0.036058) | 0.087530 / 0.023109 (0.064421) | 0.419753 / 0.275898 (0.143854) | 0.452352 / 0.323480 (0.128872) | 0.005882 / 0.007986 (-0.002104) | 0.003904 / 0.004328 (-0.000425) | 0.073539 / 0.004250 (0.069289) | 0.071320 / 0.037052 (0.034267) | 0.432899 / 0.258489 (0.174409) | 0.470365 / 0.293841 (0.176524) | 0.036198 / 0.128546 (-0.092348) | 0.009342 / 0.075646 (-0.066304) | 0.080970 / 0.419271 (-0.338301) | 0.058769 / 0.043533 (0.015236) | 0.413397 / 0.255139 (0.158258) | 0.448362 / 0.283200 (0.165162) | 0.034177 / 0.141683 (-0.107506) | 1.706217 / 1.452155 (0.254063) | 1.776743 / 1.492716 (0.284026) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198779 / 0.018006 (0.180773) | 0.499862 / 0.000490 (0.499372) | 0.003891 / 0.000200 (0.003692) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034671 / 0.037411 (-0.002740) | 0.103165 / 0.014526 (0.088639) | 0.115813 / 0.176557 (-0.060744) | 0.177407 / 0.737135 (-0.559728) | 0.117733 / 0.296338 (-0.178606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.476859 / 0.215209 (0.261650) | 4.823063 / 2.077655 (2.745409) | 2.524133 / 1.504120 (1.020013) | 2.374482 / 1.541195 (0.833288) | 2.518047 / 1.468490 (1.049557) | 0.559131 / 4.584777 (-4.025646) | 4.126213 / 3.745712 (0.380501) | 6.488570 / 5.269862 (1.218708) | 3.816540 / 4.565676 (-0.749137) | 0.064742 / 0.424275 (-0.359533) | 0.008476 / 0.007607 (0.000869) | 0.576432 / 0.226044 (0.350387) | 5.835133 / 2.268929 (3.566205) | 3.237833 / 55.444624 (-52.206791) | 2.726596 / 6.876477 (-4.149880) | 2.799212 / 2.142072 (0.657139) | 0.661628 / 4.805227 (-4.143599) | 0.153997 / 6.500664 (-6.346667) | 0.070621 / 0.075469 (-0.004848) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.648505 / 1.841788 (-0.193282) | 22.454019 / 8.074308 (14.379711) | 16.077098 / 10.191392 (5.885706) | 0.217875 / 0.680424 (-0.462549) | 0.021285 / 0.534201 (-0.512916) | 0.459837 / 0.579283 (-0.119446) | 0.476211 / 0.434364 (0.041847) | 0.525903 / 0.540337 (-0.014435) | 0.717224 / 1.386936 (-0.669712) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b767e9c3ef30f9da30d47cfcaccf9a7ac2500c43 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008929 / 0.011353 (-0.002424) | 0.004188 / 0.011008 (-0.006820) | 0.097030 / 0.038508 (0.058522) | 0.071363 / 0.023109 (0.048254) | 0.333116 / 0.275898 (0.057218) | 0.371272 / 0.323480 (0.047792) | 0.006430 / 0.007986 (-0.001555) | 0.003689 / 0.004328 (-0.000639) | 0.068666 / 0.004250 (0.064416) | 0.057562 / 0.037052 (0.020510) | 0.347208 / 0.258489 (0.088719) | 0.390514 / 0.293841 (0.096673) | 0.050560 / 0.128546 (-0.077987) | 0.013372 / 0.075646 (-0.062275) | 0.311345 / 0.419271 (-0.107927) | 0.068990 / 0.043533 (0.025457) | 0.363026 / 0.255139 (0.107887) | 0.379793 / 0.283200 (0.096593) | 0.036891 / 0.141683 (-0.104792) | 1.583481 / 1.452155 (0.131327) | 1.688727 / 1.492716 (0.196011) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209777 / 0.018006 (0.191771) | 0.507267 / 0.000490 (0.506777) | 0.003637 / 0.000200 (0.003438) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029309 / 0.037411 (-0.008102) | 0.088386 / 0.014526 (0.073861) | 0.104974 / 0.176557 (-0.071582) | 0.171999 / 0.737135 (-0.565137) | 0.110797 / 0.296338 (-0.185542) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.543465 / 0.215209 (0.328256) | 5.361491 / 2.077655 (3.283836) | 2.348712 / 1.504120 (0.844592) | 2.012527 / 1.541195 (0.471332) | 2.069776 / 1.468490 (0.601286) | 0.874262 / 4.584777 (-3.710515) | 4.877317 / 3.745712 (1.131605) | 5.327459 / 5.269862 (0.057597) | 3.336823 / 4.565676 (-1.228854) | 0.100456 / 0.424275 (-0.323819) | 0.008503 / 0.007607 (0.000895) | 0.692009 / 0.226044 (0.465965) | 6.912731 / 2.268929 (4.643802) | 3.110548 / 55.444624 (-52.334076) | 2.443665 / 6.876477 (-4.432811) | 2.528713 / 2.142072 (0.386641) | 1.076358 / 4.805227 (-3.728869) | 0.220352 / 6.500664 (-6.280312) | 0.080293 / 0.075469 (0.004824) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.538444 / 1.841788 (-0.303344) | 21.121221 / 8.074308 (13.046913) | 19.810609 / 10.191392 (9.619216) | 0.225406 / 0.680424 (-0.455018) | 0.026652 / 0.534201 (-0.507549) | 0.430372 / 0.579283 (-0.148911) | 0.510722 / 0.434364 (0.076358) | 0.514347 / 0.540337 (-0.025991) | 0.686050 / 1.386936 (-0.700886) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007675 / 0.011353 (-0.003678) | 0.004542 / 0.011008 (-0.006466) | 0.069655 / 0.038508 (0.031147) | 0.069338 / 0.023109 (0.046229) | 0.436505 / 0.275898 (0.160607) | 0.481806 / 0.323480 (0.158326) | 0.005315 / 0.007986 (-0.002670) | 0.004455 / 0.004328 (0.000127) | 0.072674 / 0.004250 (0.068424) | 0.058088 / 0.037052 (0.021035) | 0.445825 / 0.258489 (0.187336) | 0.501706 / 0.293841 (0.207865) | 0.047123 / 0.128546 (-0.081424) | 0.012943 / 0.075646 (-0.062703) | 0.093491 / 0.419271 (-0.325780) | 0.060169 / 0.043533 (0.016637) | 0.436530 / 0.255139 (0.181391) | 0.466873 / 0.283200 (0.183674) | 0.040453 / 0.141683 (-0.101230) | 1.586438 / 1.452155 (0.134283) | 1.671081 / 1.492716 (0.178365) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.180607 / 0.018006 (0.162601) | 0.520145 / 0.000490 (0.519655) | 0.004824 / 0.000200 (0.004624) | 0.000116 / 0.000054 (0.000061) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029308 / 0.037411 (-0.008103) | 0.093652 / 0.014526 (0.079126) | 0.102332 / 0.176557 (-0.074224) | 0.162414 / 0.737135 (-0.574721) | 0.098017 / 0.296338 (-0.198321) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583949 / 0.215209 (0.368740) | 6.035191 / 2.077655 (3.957536) | 2.801274 / 1.504120 (1.297155) | 2.566150 / 1.541195 (1.024955) | 2.437122 / 1.468490 (0.968632) | 0.865038 / 4.584777 (-3.719739) | 4.841727 / 3.745712 (1.096015) | 4.683919 / 5.269862 (-0.585943) | 2.941240 / 4.565676 (-1.624437) | 0.104888 / 0.424275 (-0.319387) | 0.007747 / 0.007607 (0.000140) | 0.780041 / 0.226044 (0.553997) | 7.771314 / 2.268929 (5.502385) | 3.680814 / 55.444624 (-51.763811) | 2.938472 / 6.876477 (-3.938004) | 2.981740 / 2.142072 (0.839668) | 1.065411 / 4.805227 (-3.739816) | 0.222265 / 6.500664 (-6.278399) | 0.082428 / 0.075469 (0.006959) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.626774 / 1.841788 (-0.215014) | 21.618284 / 8.074308 (13.543976) | 20.596743 / 10.191392 (10.405351) | 0.240969 / 0.680424 (-0.439454) | 0.025630 / 0.534201 (-0.508570) | 0.481981 / 0.579283 (-0.097302) | 0.547914 / 0.434364 (0.113550) | 0.522296 / 0.540337 (-0.018041) | 0.729174 / 1.386936 (-0.657762) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b8067c0262073891180869f700ebef5ac3dc5cce \"CML watermark\")\n"
] | "2023-07-11T12:16:29Z" | "2023-07-11T16:07:28Z" | "2023-07-11T15:56:46Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6015.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6015",
"merged_at": "2023-07-11T15:56:46Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6015.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6015"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6015/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6015/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6104 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6104/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6104/comments | https://api.github.com/repos/huggingface/datasets/issues/6104/events | https://github.com/huggingface/datasets/issues/6104 | 1,828,959,107 | I_kwDODunzps5tA7OD | 6,104 | HF Datasets data access is extremely slow even when in memory | {
"avatar_url": "https://avatars.githubusercontent.com/u/36224762?v=4",
"events_url": "https://api.github.com/users/NightMachinery/events{/privacy}",
"followers_url": "https://api.github.com/users/NightMachinery/followers",
"following_url": "https://api.github.com/users/NightMachinery/following{/other_user}",
"gists_url": "https://api.github.com/users/NightMachinery/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/NightMachinery",
"id": 36224762,
"login": "NightMachinery",
"node_id": "MDQ6VXNlcjM2MjI0NzYy",
"organizations_url": "https://api.github.com/users/NightMachinery/orgs",
"received_events_url": "https://api.github.com/users/NightMachinery/received_events",
"repos_url": "https://api.github.com/users/NightMachinery/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/NightMachinery/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NightMachinery/subscriptions",
"type": "User",
"url": "https://api.github.com/users/NightMachinery"
} | [] | open | false | null | [] | null | [
"Possibly related:\r\n- https://github.com/pytorch/pytorch/issues/22462"
] | "2023-07-31T11:12:19Z" | "2023-08-01T11:22:43Z" | null | CONTRIBUTOR | null | null | null | ### Describe the bug
Doing a simple `some_dataset[:10]` can take more than a minute.
Profiling it:
<img width="1280" alt="image" src="https://github.com/huggingface/datasets/assets/36224762/e641fb95-ff02-4072-9016-5416a65f75ab">
`some_dataset` is completely in memory with no disk cache.
This is proving fatal to my usage of HF Datasets. Is there a way I can forgo the arrow format and store the dataset as PyTorch tensors so that `_tensorize` is not needed? And is `_consolidate` supposed to take this long?
It's faster to produce the dataset from scratch than to access it from HF Datasets!
### Steps to reproduce the bug
I have uploaded the dataset that causes this problem [here](https://huggingface.co/datasets/NightMachinery/hf_datasets_bug1).
```python
#!/usr/bin/env python3
import sys
import time
import torch
from datasets import load_dataset
def main(dataset_name):
# Start the timer
start_time = time.time()
# Load the dataset from Hugging Face Hub
dataset = load_dataset(dataset_name)
# Set the dataset format as torch
dataset.set_format(type="torch")
# Perform an identity map
dataset = dataset.map(lambda example: example, batched=True, batch_size=20)
# End the timer
end_time = time.time()
# Print the time taken
print(f"Time taken: {end_time - start_time:.2f} seconds")
if __name__ == "__main__":
dataset_name = "NightMachinery/hf_datasets_bug1"
print(f"dataset_name: {dataset_name}")
main(dataset_name)
```
### Expected behavior
_
### Environment info
- `datasets` version: 2.13.1
- Platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.35
- Python version: 3.10.12
- Huggingface_hub version: 0.16.4
- PyArrow version: 12.0.1
- Pandas version: 2.0.3 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6104/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6104/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/4594 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4594/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4594/comments | https://api.github.com/repos/huggingface/datasets/issues/4594/events | https://github.com/huggingface/datasets/issues/4594 | 1,288,070,023 | I_kwDODunzps5MxmOH | 4,594 | load_from_disk suggests incorrect fix when used to load DatasetDict | {
"avatar_url": "https://avatars.githubusercontent.com/u/11157811?v=4",
"events_url": "https://api.github.com/users/dvsth/events{/privacy}",
"followers_url": "https://api.github.com/users/dvsth/followers",
"following_url": "https://api.github.com/users/dvsth/following{/other_user}",
"gists_url": "https://api.github.com/users/dvsth/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/dvsth",
"id": 11157811,
"login": "dvsth",
"node_id": "MDQ6VXNlcjExMTU3ODEx",
"organizations_url": "https://api.github.com/users/dvsth/orgs",
"received_events_url": "https://api.github.com/users/dvsth/received_events",
"repos_url": "https://api.github.com/users/dvsth/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/dvsth/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dvsth/subscriptions",
"type": "User",
"url": "https://api.github.com/users/dvsth"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [] | "2022-06-29T01:40:01Z" | "2022-06-29T04:03:44Z" | "2022-06-29T04:03:44Z" | NONE | null | null | null | Edit: Please feel free to remove this issue. The problem was not the error message but the fact that the DatasetDict.load_from_disk does not support loading nested splits, i.e. if one of the splits is itself a DatasetDict. If nesting splits is an antipattern, perhaps the load_from_disk function can throw a warning indicating that? | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4594/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4594/timeline | null | not_planned | false |
https://api.github.com/repos/huggingface/datasets/issues/2214 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2214/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2214/comments | https://api.github.com/repos/huggingface/datasets/issues/2214/events | https://github.com/huggingface/datasets/issues/2214 | 856,333,657 | MDU6SXNzdWU4NTYzMzM2NTc= | 2,214 | load_metric error: module 'datasets.utils.file_utils' has no attribute 'add_start_docstrings' | {
"avatar_url": "https://avatars.githubusercontent.com/u/414788?v=4",
"events_url": "https://api.github.com/users/nsaphra/events{/privacy}",
"followers_url": "https://api.github.com/users/nsaphra/followers",
"following_url": "https://api.github.com/users/nsaphra/following{/other_user}",
"gists_url": "https://api.github.com/users/nsaphra/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/nsaphra",
"id": 414788,
"login": "nsaphra",
"node_id": "MDQ6VXNlcjQxNDc4OA==",
"organizations_url": "https://api.github.com/users/nsaphra/orgs",
"received_events_url": "https://api.github.com/users/nsaphra/received_events",
"repos_url": "https://api.github.com/users/nsaphra/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/nsaphra/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nsaphra/subscriptions",
"type": "User",
"url": "https://api.github.com/users/nsaphra"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"Hi @nsaphra, thanks for reporting.\r\n\r\nThis issue was fixed in `datasets` version 1.3.0. Could you please update `datasets` and tell me if the problem persists?\r\n```shell\r\npip install -U datasets\r\n```",
"There might be a bug in the conda version of `datasets` 1.2.1 where the datasets/metric scripts are downloaded from `master` instead of the `1.2.1` repo.\r\n\r\nYou can try setting the env var `HF_SCRIPTS_VERSION=\"1.2.1\"` as a workaround. Let me know if that helps.",
"I just faced the same issue. I was using 1.2.1 from conda and received the same AttributeError complaining about 'add_start_docstrings'. Uninstalling the conda installed datasets and then installing the latest datasets (version 1.5.0) using pip install solved the issue for me. I don't like mixing up conda and pip installs in the same environments but this will have to do for now, until 1.5.0 is made available through conda.",
"Yep, seems to have fixed things! The conda package could really do with an update. Thanks!"
] | "2021-04-12T20:26:01Z" | "2021-04-23T15:20:02Z" | "2021-04-23T15:20:02Z" | NONE | null | null | null | I'm having the same problem as [Notebooks issue 10](https://github.com/huggingface/notebooks/issues/10) on datasets 1.2.1, and it seems to be an issue with the datasets package.
```python
>>> from datasets import load_metric
>>> metric = load_metric("glue", "sst2")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/ext3/miniconda3/lib/python3.8/site-packages/datasets-1.2.1-py3.8.egg/datasets/load.py", line 502, in load_metric
File "/ext3/miniconda3/lib/python3.8/site-packages/datasets-1.2.1-py3.8.egg/datasets/load.py", line 66, in import_main_class
File "/ext3/miniconda3/lib/python3.8/importlib/__init__.py", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File "<frozen importlib._bootstrap>", line 1014, in _gcd_import
File "<frozen importlib._bootstrap>", line 991, in _find_and_load
File "<frozen importlib._bootstrap>", line 975, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 671, in _load_unlocked
File "<frozen importlib._bootstrap_external>", line 783, in exec_module
File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
File "/home/ns4008/.cache/huggingface/modules/datasets_modules/metrics/glue/e4606ab9804a36bcd5a9cebb2cb65bb14b6ac78ee9e6d5981fa679a495dd55de/glue.py", line 105, in <module>
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
AttributeError: module 'datasets.utils.file_utils' has no attribute 'add_start_docstrings'
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2214/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2214/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/3145 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3145/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3145/comments | https://api.github.com/repos/huggingface/datasets/issues/3145/events | https://github.com/huggingface/datasets/issues/3145 | 1,033,580,009 | I_kwDODunzps49my3p | 3,145 | [when Image type will exist] provide a way to get the data as binary + filename | {
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
},
{
"color": "E5583E",
"default": false,
"description": "Related to the dataset viewer on huggingface.co",
"id": 3470211881,
"name": "dataset-viewer",
"node_id": "LA_kwDODunzps7O1zsp",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer"
}
] | closed | false | null | [] | null | [
"@severo, maybe somehow related to this PR ?\r\n- #3129",
"@severo I'll keep that in mind.\r\n\r\nYou can track progress on the Image feature in #3163 (still in the early stage). ",
"Hi ! As discussed with @severo offline it looks like the dataset viewer already supports reading PIL images, so maybe the dataset viewer doesn't need to disable decoding after all",
"Fixed with https://github.com/huggingface/datasets/pull/3163"
] | "2021-10-22T13:23:49Z" | "2021-12-22T11:05:37Z" | "2021-12-22T11:05:36Z" | CONTRIBUTOR | null | null | null | **Is your feature request related to a problem? Please describe.**
When a dataset cell contains a value of type Image (be it from a remote URL, an Array2D/3D, or any other way to represent images), I want to be able to write the image to the disk, with the correct filename, and optionally to know its mimetype, in order to serve it on the web.
Note: this issue would apply exactly the same for the `Audio` type.
**Describe the solution you'd like**
If a "cell" has the type `Image`, provide a way to get the binary content of the file, and the filename, eg as:
```python
filename: str
data: bytes
```
**Describe alternatives you've considered**
A way to write the cell to the disk (passing a local directory), and then return the pathname, filename, and mimetype.
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3145/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3145/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5490 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5490/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5490/comments | https://api.github.com/repos/huggingface/datasets/issues/5490/events | https://github.com/huggingface/datasets/pull/5490 | 1,565,842,327 | PR_kwDODunzps5I_nz- | 5,490 | Do not add index column by default when exporting to CSV | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008581 / 0.011353 (-0.002772) | 0.004519 / 0.011008 (-0.006490) | 0.099721 / 0.038508 (0.061213) | 0.029217 / 0.023109 (0.006107) | 0.298229 / 0.275898 (0.022331) | 0.332605 / 0.323480 (0.009125) | 0.006880 / 0.007986 (-0.001106) | 0.003324 / 0.004328 (-0.001005) | 0.078143 / 0.004250 (0.073892) | 0.034262 / 0.037052 (-0.002790) | 0.304162 / 0.258489 (0.045673) | 0.342351 / 0.293841 (0.048510) | 0.033387 / 0.128546 (-0.095159) | 0.011397 / 0.075646 (-0.064249) | 0.321527 / 0.419271 (-0.097744) | 0.040886 / 0.043533 (-0.002647) | 0.299968 / 0.255139 (0.044829) | 0.322484 / 0.283200 (0.039285) | 0.083832 / 0.141683 (-0.057851) | 1.482241 / 1.452155 (0.030086) | 1.548438 / 1.492716 (0.055721) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191002 / 0.018006 (0.172996) | 0.403423 / 0.000490 (0.402933) | 0.002493 / 0.000200 (0.002293) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023720 / 0.037411 (-0.013691) | 0.100806 / 0.014526 (0.086281) | 0.105314 / 0.176557 (-0.071242) | 0.141490 / 0.737135 (-0.595645) | 0.108695 / 0.296338 (-0.187644) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412250 / 0.215209 (0.197041) | 4.124830 / 2.077655 (2.047175) | 1.851948 / 1.504120 (0.347828) | 1.651597 / 1.541195 (0.110403) | 1.712486 / 1.468490 (0.243996) | 0.696634 / 4.584777 (-3.888143) | 3.304220 / 3.745712 (-0.441492) | 1.862776 / 5.269862 (-3.407086) | 1.159452 / 4.565676 (-3.406224) | 0.082930 / 0.424275 (-0.341345) | 0.012586 / 0.007607 (0.004979) | 0.524499 / 0.226044 (0.298455) | 5.249235 / 2.268929 (2.980307) | 2.293187 / 55.444624 (-53.151437) | 1.950101 / 6.876477 (-4.926376) | 2.008274 / 2.142072 (-0.133799) | 0.811641 / 4.805227 (-3.993586) | 0.148785 / 6.500664 (-6.351879) | 0.064461 / 0.075469 (-0.011008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.232227 / 1.841788 (-0.609561) | 13.235896 / 8.074308 (5.161588) | 13.837420 / 10.191392 (3.646028) | 0.135586 / 0.680424 (-0.544838) | 0.028935 / 0.534201 (-0.505266) | 0.397064 / 0.579283 (-0.182220) | 0.393814 / 0.434364 (-0.040549) | 0.480450 / 0.540337 (-0.059887) | 0.561159 / 1.386936 (-0.825777) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006696 / 0.011353 (-0.004657) | 0.004528 / 0.011008 (-0.006480) | 0.077335 / 0.038508 (0.038827) | 0.027181 / 0.023109 (0.004072) | 0.345379 / 0.275898 (0.069481) | 0.372544 / 0.323480 (0.049064) | 0.006808 / 0.007986 (-0.001178) | 0.003284 / 0.004328 (-0.001045) | 0.077379 / 0.004250 (0.073129) | 0.039954 / 0.037052 (0.002901) | 0.348094 / 0.258489 (0.089605) | 0.382315 / 0.293841 (0.088474) | 0.031694 / 0.128546 (-0.096852) | 0.011714 / 0.075646 (-0.063933) | 0.086425 / 0.419271 (-0.332846) | 0.041778 / 0.043533 (-0.001754) | 0.342161 / 0.255139 (0.087022) | 0.363798 / 0.283200 (0.080599) | 0.091315 / 0.141683 (-0.050368) | 1.462066 / 1.452155 (0.009912) | 1.541417 / 1.492716 (0.048700) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235840 / 0.018006 (0.217834) | 0.397096 / 0.000490 (0.396606) | 0.004597 / 0.000200 (0.004397) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024296 / 0.037411 (-0.013115) | 0.099167 / 0.014526 (0.084641) | 0.108257 / 0.176557 (-0.068299) | 0.143434 / 0.737135 (-0.593701) | 0.111933 / 0.296338 (-0.184406) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440306 / 0.215209 (0.225096) | 4.374065 / 2.077655 (2.296410) | 2.072653 / 1.504120 (0.568533) | 1.864829 / 1.541195 (0.323635) | 1.927970 / 1.468490 (0.459479) | 0.710118 / 4.584777 (-3.874659) | 3.391216 / 3.745712 (-0.354496) | 1.888847 / 5.269862 (-3.381015) | 1.178740 / 4.565676 (-3.386936) | 0.083950 / 0.424275 (-0.340325) | 0.012567 / 0.007607 (0.004960) | 0.540557 / 0.226044 (0.314513) | 5.437621 / 2.268929 (3.168692) | 2.531165 / 55.444624 (-52.913460) | 2.181450 / 6.876477 (-4.695027) | 2.209108 / 2.142072 (0.067035) | 0.814236 / 4.805227 (-3.990991) | 0.153000 / 6.500664 (-6.347664) | 0.066769 / 0.075469 (-0.008700) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.301057 / 1.841788 (-0.540731) | 14.066786 / 8.074308 (5.992478) | 13.641455 / 10.191392 (3.450063) | 0.138838 / 0.680424 (-0.541586) | 0.016733 / 0.534201 (-0.517468) | 0.391823 / 0.579283 (-0.187460) | 0.390817 / 0.434364 (-0.043547) | 0.487682 / 0.540337 (-0.052656) | 0.581134 / 1.386936 (-0.805802) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b065547654efa0ec633cf373ac1512884c68b2e1 \"CML watermark\")\n"
] | "2023-02-01T10:20:55Z" | "2023-02-09T09:29:08Z" | "2023-02-09T09:22:23Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5490.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5490",
"merged_at": "2023-02-09T09:22:23Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5490.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5490"
} | As pointed out by @merveenoyan, default behavior of `Dataset.to_csv` adds the index as an additional column without name.
This PR changes the default behavior, so that now the index column is not written.
To add the index column, now you need to pass `index=True` and also `index_label=<name of the index colum>` to name that column.
CC: @merveenoyan | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 1,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5490/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5490/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4614 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4614/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4614/comments | https://api.github.com/repos/huggingface/datasets/issues/4614/events | https://github.com/huggingface/datasets/pull/4614 | 1,291,218,020 | PR_kwDODunzps46ssfw | 4,614 | Ensure ConcatenationTable.cast uses target_schema metadata | {
"avatar_url": "https://avatars.githubusercontent.com/u/8114067?v=4",
"events_url": "https://api.github.com/users/dtuit/events{/privacy}",
"followers_url": "https://api.github.com/users/dtuit/followers",
"following_url": "https://api.github.com/users/dtuit/following{/other_user}",
"gists_url": "https://api.github.com/users/dtuit/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/dtuit",
"id": 8114067,
"login": "dtuit",
"node_id": "MDQ6VXNlcjgxMTQwNjc=",
"organizations_url": "https://api.github.com/users/dtuit/orgs",
"received_events_url": "https://api.github.com/users/dtuit/received_events",
"repos_url": "https://api.github.com/users/dtuit/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/dtuit/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dtuit/subscriptions",
"type": "User",
"url": "https://api.github.com/users/dtuit"
} | [] | closed | false | null | [] | null | [
"Hi @lhoestq, Thanks for the detailed comment. I've tested the suggested approach and can confirm it works for the testcase outlined above! The PR is updated with the changes.",
"_The documentation is not available anymore as the PR was closed or merged._"
] | "2022-07-01T10:22:08Z" | "2022-07-19T13:48:45Z" | "2022-07-19T13:36:24Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4614.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4614",
"merged_at": "2022-07-19T13:36:24Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4614.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4614"
} | Currently, `ConcatenationTable.cast` does not use target_schema metadata when casting subtables. This causes an issue when using cast_column and the underlying table is a ConcatenationTable.
Code example of where issue arrises:
```
from datasets import Dataset, Image
column1 = [0, 1]
image_paths = ['/images/image1.jpg', '/images/image2.jpg']
ds = Dataset.from_dict({"column1": column1})
ds = ds.add_column("image", image_paths)
ds.cast_column("image", Image()) # Fails here
```
Output
```
...
TypeError: Couldn't cast array of type
string
to
{'bytes': Value(dtype='binary', id=None), 'path': Value(dtype='string', id=None)}
```
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4614/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4614/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1561 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1561/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1561/comments | https://api.github.com/repos/huggingface/datasets/issues/1561/events | https://github.com/huggingface/datasets/pull/1561 | 765,831,436 | MDExOlB1bGxSZXF1ZXN0NTM5MTAwNjAy | 1,561 | Lama | {
"avatar_url": "https://avatars.githubusercontent.com/u/8900094?v=4",
"events_url": "https://api.github.com/users/ontocord/events{/privacy}",
"followers_url": "https://api.github.com/users/ontocord/followers",
"following_url": "https://api.github.com/users/ontocord/following{/other_user}",
"gists_url": "https://api.github.com/users/ontocord/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ontocord",
"id": 8900094,
"login": "ontocord",
"node_id": "MDQ6VXNlcjg5MDAwOTQ=",
"organizations_url": "https://api.github.com/users/ontocord/orgs",
"received_events_url": "https://api.github.com/users/ontocord/received_events",
"repos_url": "https://api.github.com/users/ontocord/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ontocord/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ontocord/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ontocord"
} | [] | closed | false | null | [] | null | [
"Let me know why the pyarrow test is failing. For one of the config \"trex\", I had to load an initial datafile for a dictionary which is used to augment the rest of the datasets. In the dummy data, the dictionary file was truncated so I had to fudge that. I'm not sure if that is the issue.\r\n",
"@ontocord it just needs a rerun and it will be good to go.",
"THanks @tanmoyio. How do I do a rerun?",
"@ontocord contributor can’t rerun it, the maintainers will rerun it, it may take lil bit of time as there are so many PRs left to be reviewed and merged ",
"@lhoestq not sure why it is failing. i've made all modifications. ",
"merging since the CI is fixed on master"
] | "2020-12-14T03:27:10Z" | "2020-12-28T09:51:47Z" | "2020-12-28T09:51:47Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1561.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1561",
"merged_at": "2020-12-28T09:51:47Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1561.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1561"
} | This the LAMA dataset for probing facts and common sense from language models.
See https://github.com/facebookresearch/LAMA for more details. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1561/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1561/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2561 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2561/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2561/comments | https://api.github.com/repos/huggingface/datasets/issues/2561/events | https://github.com/huggingface/datasets/issues/2561 | 932,321,725 | MDU6SXNzdWU5MzIzMjE3MjU= | 2,561 | Existing cache for local dataset builder file updates is ignored with `ignore_verifications=True` | {
"avatar_url": "https://avatars.githubusercontent.com/u/3616806?v=4",
"events_url": "https://api.github.com/users/apsdehal/events{/privacy}",
"followers_url": "https://api.github.com/users/apsdehal/followers",
"following_url": "https://api.github.com/users/apsdehal/following{/other_user}",
"gists_url": "https://api.github.com/users/apsdehal/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/apsdehal",
"id": 3616806,
"login": "apsdehal",
"node_id": "MDQ6VXNlcjM2MTY4MDY=",
"organizations_url": "https://api.github.com/users/apsdehal/orgs",
"received_events_url": "https://api.github.com/users/apsdehal/received_events",
"repos_url": "https://api.github.com/users/apsdehal/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/apsdehal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/apsdehal/subscriptions",
"type": "User",
"url": "https://api.github.com/users/apsdehal"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"Hi ! I just tried to reproduce what you said:\r\n- create a local builder class\r\n- use `load_dataset`\r\n- update the builder class code\r\n- use `load_dataset` again (with or without `ignore_verifications=True`)\r\nAnd it creates a new cache, as expected.\r\n\r\nWhat modifications did you do to your builder's code ?",
"Hi @lhoestq. Thanks for your reply. I just did minor modifications for which it should not regenerate cache (for e.g. Adding a print statement). Overall, regardless of cache miss, there should be an explicit option to allow reuse of existing cache if author knows cache shouldn't be affected.",
"The cache is based on the hash of the dataset builder's code, so changing the code makes it recompute the cache.\r\n\r\nYou could still rename the cache directory of your previous computation to the new expected cache directory if you want to avoid having to recompute it and if you're sure that it would generate the exact same result.\r\n\r\nThe verifications are data integrity verifications: it checks the checksums of the downloaded files, as well as the size of the generated splits.",
"Hi @apsdehal,\r\n\r\nIf you decide to follow @lhoestq's suggestion to rename the cache directory of your previous computation to the new expected cache directory, you can do the following to get the name of the new expected cache directory once #2500 is merged:\r\n```python\r\nfrom datasets import load_dataset_builder\r\ndataset_builder = load_dataset_builder(\"path/to/your/dataset\")\r\nprint(dataset_builder.cache_dir)\r\n```\r\n\r\nThis way, you don't have to recompute the hash of the dataset script yourself each time you modify the script."
] | "2021-06-29T07:43:03Z" | "2022-08-04T11:58:36Z" | "2022-08-04T11:58:36Z" | CONTRIBUTOR | null | null | null | ## Describe the bug
If i have local file defining a dataset builder class and I load it using `load_dataset` functionality, the existing cache is ignored whenever the file is update even with `ignore_verifications=True`. This slows down debugging and cache generator for very large datasets.
## Steps to reproduce the bug
- Create a local dataset builder class
- load the local builder class file using `load_dataset` and let the cache build
- update the file's content
- The cache should rebuilt.
## Expected results
With `ignore_verifications=True`, `load_dataset` should pick up existing cache.
## Actual results
Creates new cache.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.8.0
- Platform: Linux-5.4.0-52-generic-x86_64-with-debian-bullseye-sid
- Python version: 3.7.7
- PyArrow version: 3.0.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2561/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2561/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4386 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4386/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4386/comments | https://api.github.com/repos/huggingface/datasets/issues/4386/events | https://github.com/huggingface/datasets/issues/4386 | 1,243,965,532 | I_kwDODunzps5KJWhc | 4,386 | Bug for wiki_auto_asset_turk from GEM | {
"avatar_url": "https://avatars.githubusercontent.com/u/37647985?v=4",
"events_url": "https://api.github.com/users/StevenTang1998/events{/privacy}",
"followers_url": "https://api.github.com/users/StevenTang1998/followers",
"following_url": "https://api.github.com/users/StevenTang1998/following{/other_user}",
"gists_url": "https://api.github.com/users/StevenTang1998/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/StevenTang1998",
"id": 37647985,
"login": "StevenTang1998",
"node_id": "MDQ6VXNlcjM3NjQ3OTg1",
"organizations_url": "https://api.github.com/users/StevenTang1998/orgs",
"received_events_url": "https://api.github.com/users/StevenTang1998/received_events",
"repos_url": "https://api.github.com/users/StevenTang1998/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/StevenTang1998/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/StevenTang1998/subscriptions",
"type": "User",
"url": "https://api.github.com/users/StevenTang1998"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [
"Thanks for reporting, @StevenTang1998.\r\n\r\nI'm looking into it. ",
"Hi @StevenTang1998,\r\n\r\nWe have fixed the issue:\r\n- #4389\r\n\r\nThe fix will be available in our next `datasets` library release. In the meantime, you can incorporate that fix by installing `datasets` from our GitHub repo:\r\n```\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```",
"Thanks for your reply!!\r\nAnd the totto dataset has the same problem. The url should be change to [https://storage.googleapis.com/totto-public/totto_data.zip](https://storage.googleapis.com/totto-public/totto_data.zip).",
"Hi again @StevenTang1998,\r\n\r\nI don't see any problem when loading `totto` dataset:\r\n```python\r\nIn [4]: import datasets\r\n ...: ds = datasets.load_dataset(\"totto\")\r\nDownloading builder script: 5.58kB [00:00, 5.33MB/s] \r\nDownloading metadata: 2.78kB [00:00, 2.96MB/s] \r\nUsing custom data configuration default\r\nDownloading and preparing dataset totto/default (download: 179.03 MiB, generated: 706.59 MiB, post-processed: Unknown size, total: 885.62 MiB) to .../.cache/huggingface/datasets/totto/default/1.0.0/263c85871e5451bc892c65ca0306c0629eb7beb161e0eb998f56231562335dd2...\r\nDownloading data: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 188M/188M [00:32<00:00, 5.77MB/s]\r\nDataset totto downloaded and prepared to .../.cache/huggingface/datasets/totto/default/1.0.0/263c85871e5451bc892c65ca0306c0629eb7beb161e0eb998f56231562335dd2. Subsequent calls will reuse this data.\r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 147.95it/s]\r\n\r\nIn [5]: ds\r\nOut[5]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['id', 'table_page_title', 'table_webpage_url', 'table_section_title', 'table_section_text', 'table', 'highlighted_cells', 'example_id', 'sentence_annotations', 'overlap_subset'],\r\n num_rows: 120761\r\n })\r\n validation: Dataset({\r\n features: ['id', 'table_page_title', 'table_webpage_url', 'table_section_title', 'table_section_text', 'table', 'highlighted_cells', 'example_id', 'sentence_annotations', 'overlap_subset'],\r\n num_rows: 7700\r\n })\r\n test: Dataset({\r\n features: ['id', 'table_page_title', 'table_webpage_url', 'table_section_title', 'table_section_text', 'table', 'highlighted_cells', 'example_id', 'sentence_annotations', 'overlap_subset'],\r\n num_rows: 7700\r\n })\r\n})\r\n```",
"Sorry, I didn't express it clearly. It's the totto dataset from gem.\r\ndatasets.load_dataset('gem', 'totto')\r\n",
"@StevenTang1998 fixed in:\r\n- #4396",
"Thanks!!"
] | "2022-05-21T12:31:30Z" | "2022-05-24T05:55:52Z" | "2022-05-23T10:29:55Z" | NONE | null | null | null | ## Describe the bug
The script of wiki_auto_asset_turk for GEM may be out of date.
## Steps to reproduce the bug
```python
import datasets
datasets.load_dataset('gem', 'wiki_auto_asset_turk')
```
## Actual results
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/load.py", line 1731, in load_dataset
builder_instance.download_and_prepare(
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/builder.py", line 640, in download_and_prepare
self._download_and_prepare(
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/builder.py", line 1158, in _download_and_prepare
super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos)
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/builder.py", line 707, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/home/tangtianyi/.cache/huggingface/modules/datasets_modules/datasets/gem/982a54473b12c6a6e40d4356e025fb7172a5bb2065e655e2c1af51f2b3cf4ca1/gem.py", line 538, in _split_generators
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name])
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/utils/download_manager.py", line 416, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/utils/download_manager.py", line 294, in download
downloaded_path_or_paths = map_nested(
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 351, in map_nested
mapped = [
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 352, in <listcomp>
_single_map_nested((function, obj, types, None, True, None))
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 288, in _single_map_nested
return function(data_struct)
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/utils/download_manager.py", line 320, in _download
return cached_path(url_or_filename, download_config=download_config)
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/utils/file_utils.py", line 234, in cached_path
output_path = get_from_cache(
File "/home/tangtianyi/miniconda3/lib/python3.8/site-packages/datasets/utils/file_utils.py", line 579, in get_from_cache
raise FileNotFoundError(f"Couldn't find file at {url}")
FileNotFoundError: Couldn't find file at https://github.com/facebookresearch/asset/raw/master/dataset/asset.test.orig
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4386/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4386/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4103 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4103/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4103/comments | https://api.github.com/repos/huggingface/datasets/issues/4103/events | https://github.com/huggingface/datasets/pull/4103 | 1,193,987,104 | PR_kwDODunzps41s3T4 | 4,103 | Add the `GSM8K` dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/41410219?v=4",
"events_url": "https://api.github.com/users/jon-tow/events{/privacy}",
"followers_url": "https://api.github.com/users/jon-tow/followers",
"following_url": "https://api.github.com/users/jon-tow/following{/other_user}",
"gists_url": "https://api.github.com/users/jon-tow/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/jon-tow",
"id": 41410219,
"login": "jon-tow",
"node_id": "MDQ6VXNlcjQxNDEwMjE5",
"organizations_url": "https://api.github.com/users/jon-tow/orgs",
"received_events_url": "https://api.github.com/users/jon-tow/received_events",
"repos_url": "https://api.github.com/users/jon-tow/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/jon-tow/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jon-tow/subscriptions",
"type": "User",
"url": "https://api.github.com/users/jon-tow"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"The CI is failing because it's outdated, but the task tags are updated on `master`, merging :)"
] | "2022-04-06T04:07:52Z" | "2022-04-12T15:38:28Z" | "2022-04-12T10:21:16Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4103.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4103",
"merged_at": "2022-04-12T10:21:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4103.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4103"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4103/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4103/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3913 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3913/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3913/comments | https://api.github.com/repos/huggingface/datasets/issues/3913/events | https://github.com/huggingface/datasets/pull/3913 | 1,168,723,950 | PR_kwDODunzps40afYJ | 3,913 | Deterministic split order in DatasetDict.map | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3913). All of your documentation changes will be reflected on that endpoint.",
"I'm surprised this is needed because the order of the `dict` keys is deterministic as of Python 3.6 (documented in 3.7). Is there a reproducer for this behavior? I wouldn't make this change unless it's absolutely needed because `sorted` modifies the initial order of the keys.",
"Indeed this doesn't fix the issue apparently. Actually this is probably because the tokenizer used to process the second split is in a state that has been modified by the first split.\r\n\r\nTherefore after reloading the first split from the cache, then the second split can't be reloaded since the tokenizer hasn't seen the first split (and therefore is considered a different tokenizer)."
] | "2022-03-14T17:58:37Z" | "2023-09-24T09:55:10Z" | "2022-03-15T10:45:15Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3913.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3913",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/3913.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3913"
} | The order in which the splits are processed by `map` is not deterministic in `DatasetDict.map`. This can cause caching issues when the processing function is stateful and sensible to the order in which examples are processed
Close https://github.com/huggingface/datasets/issues/3847 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3913/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3913/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6176 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6176/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6176/comments | https://api.github.com/repos/huggingface/datasets/issues/6176/events | https://github.com/huggingface/datasets/issues/6176 | 1,864,436,408 | I_kwDODunzps5vIQq4 | 6,176 | how to limit the size of memory mapped file? | {
"avatar_url": "https://avatars.githubusercontent.com/u/47763855?v=4",
"events_url": "https://api.github.com/users/williamium3000/events{/privacy}",
"followers_url": "https://api.github.com/users/williamium3000/followers",
"following_url": "https://api.github.com/users/williamium3000/following{/other_user}",
"gists_url": "https://api.github.com/users/williamium3000/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/williamium3000",
"id": 47763855,
"login": "williamium3000",
"node_id": "MDQ6VXNlcjQ3NzYzODU1",
"organizations_url": "https://api.github.com/users/williamium3000/orgs",
"received_events_url": "https://api.github.com/users/williamium3000/received_events",
"repos_url": "https://api.github.com/users/williamium3000/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/williamium3000/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/williamium3000/subscriptions",
"type": "User",
"url": "https://api.github.com/users/williamium3000"
} | [] | open | false | null | [] | null | [
"Hi! Can you share the error this reproducer throws in your environment? `streaming=True` streams the dataset as it's iterated over without creating a memory-map file.",
"The trace of the error. Streaming works but is slower.\r\n```\r\nRoot Cause (first observed failure):\r\n[0]:\r\n time : 2023-08-24_06:06:01\r\n host : compute-126.cm.cluster\r\n rank : 0 (local_rank: 0)\r\n exitcode : 1 (pid: 48442)\r\n error_file: /tmp/torchelastic_4fqzcuuz/none_rx2470jl/attempt_0/0/error.json\r\n traceback : Traceback (most recent call last):\r\n File \"/users/yli7/.conda/envs/pytorch2.0/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py\", line 346, in wrapper\r\n return f(*args, **kwargs)\r\n File \"Pretrain.py\", line 214, in main\r\n pair_dataset, c4_dataset = create_dataset('pretrain', config)\r\n File \"/dcs05/qiao/data/william/project/DaVinci/dataset/__init__.py\", line 109, in create_dataset\r\n c4_dataset = load_dataset(\"c4\", \"en\", split=\"train\").to_iterable_dataset(num_shards=1024).map(pre_caption_huggingface)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/load.py\", line 1810, in load_dataset\r\n ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/builder.py\", line 1145, in as_dataset\r\n datasets = map_nested(\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 436, in map_nested\r\n return function(data_struct)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/builder.py\", line 1175, in _build_single_dataset\r\n ds = self._as_dataset(\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/builder.py\", line 1246, in _as_dataset\r\n dataset_kwargs = ArrowReader(cache_dir, self.info).read(\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 244, in read\r\n return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 265, in read_files\r\n pa_table = self._read_files(files, in_memory=in_memory)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 200, in _read_files\r\n pa_table: Table = self._get_table_from_filename(f_dict, in_memory=in_memory)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 336, in _get_table_from_filename\r\n table = ArrowReader.read_table(filename, in_memory=in_memory)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 357, in read_table\r\n return table_cls.from_file(filename)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/table.py\", line 1059, in from_file\r\n table = _memory_mapped_arrow_table_from_file(filename)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/table.py\", line 65, in _memory_mapped_arrow_table_from_file\r\n opened_stream = _memory_mapped_record_batch_reader_from_file(filename)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/table.py\", line 50, in _memory_mapped_record_batch_reader_from_file\r\n memory_mapped_stream = pa.memory_map(filename)\r\n File \"pyarrow/io.pxi\", line 1009, in pyarrow.lib.memory_map\r\n File \"pyarrow/io.pxi\", line 956, in pyarrow.lib.MemoryMappedFile._open\r\n File \"pyarrow/error.pxi\", line 144, in pyarrow.lib.pyarrow_internal_check_status\r\n File \"pyarrow/error.pxi\", line 115, in pyarrow.lib.check_status\r\n OSError: Memory mapping file failed: Cannot allocate memory\r\n```",
"This issue has previously been reported here: https://github.com/huggingface/datasets/issues/5710. Reporting it in the Arrow repo makes more sense as they have control over memory mapping.\r\n\r\nPS: this is the API to reduce the size of the generated Arrow file:\r\n```python\r\nfrom datasets import load_dataset\r\nbuilder = load_dataset_builder(\"c4\", \"en\")\r\nbuilder.download_and_prepare(max_shard_size=\"5GB\")\r\ndataset = builder.as_dataset()\r\n```\r\n\r\nIf this resolves the issue, we can consider exposing `max_shard_size` in `load_dataset`.",
"Thanks for the response. The problem seems not resolved. The memory I allocated to the environment is 64G and the following error still occurs\r\n`Python 3.8.16 (default, Jun 12 2023, 18:09:05) \r\n[GCC 11.2.0] :: Anaconda, Inc. on linux\r\nType \"help\", \"copyright\", \"credits\" or \"license\" for more information.\r\n>>> from datasets import load_dataset_builder\r\n>>> builder = load_dataset_builder(\"c4\", \"en\")\r\n>>> builder.download_and_prepare(max_shard_size=\"5GB\")\r\nFound cached dataset c4 (/users/yli7/.cache/huggingface/datasets/c4/en/0.0.0/df532b158939272d032cc63ef19cd5b83e9b4d00c922b833e4cb18b2e9869b01)\r\n>>> dataset = builder.as_dataset()\r\n 0%| | 0/2 [00:00<?, ?it/s]Traceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/builder.py\", line 1145, in as_dataset\r\n datasets = map_nested(\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 444, in map_nested\r\n mapped = [\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 445, in <listcomp>\r\n _single_map_nested((function, obj, types, None, True, None))\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 347, in _single_map_nested\r\n return function(data_struct)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/builder.py\", line 1175, in _build_single_dataset\r\n ds = self._as_dataset(\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/builder.py\", line 1246, in _as_dataset\r\n dataset_kwargs = ArrowReader(cache_dir, self.info).read(\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 244, in read\r\n return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 265, in read_files\r\n pa_table = self._read_files(files, in_memory=in_memory)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 200, in _read_files\r\n pa_table: Table = self._get_table_from_filename(f_dict, in_memory=in_memory)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 336, in _get_table_from_filename\r\n table = ArrowReader.read_table(filename, in_memory=in_memory)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/arrow_reader.py\", line 357, in read_table\r\n return table_cls.from_file(filename)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/table.py\", line 1059, in from_file\r\n table = _memory_mapped_arrow_table_from_file(filename)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/table.py\", line 65, in _memory_mapped_arrow_table_from_file\r\n opened_stream = _memory_mapped_record_batch_reader_from_file(filename)\r\n File \"/users/yli7/.local/lib/python3.8/site-packages/datasets/table.py\", line 50, in _memory_mapped_record_batch_reader_from_file\r\n memory_mapped_stream = pa.memory_map(filename)\r\n File \"pyarrow/io.pxi\", line 1009, in pyarrow.lib.memory_map\r\n File \"pyarrow/io.pxi\", line 956, in pyarrow.lib.MemoryMappedFile._open\r\n File \"pyarrow/error.pxi\", line 144, in pyarrow.lib.pyarrow_internal_check_status\r\n File \"pyarrow/error.pxi\", line 115, in pyarrow.lib.check_status\r\nOSError: Memory mapping file failed: Cannot allocate memory`",
"Have you solved the problem?",
"Nope. Streaming works but is slower."
] | "2023-08-24T05:33:45Z" | "2023-10-11T06:00:10Z" | null | NONE | null | null | null | ### Describe the bug
Huggingface datasets use memory-mapped file to map large datasets in memory for fast access.
However, it seems like huggingface will occupy all the memory for memory-mapped files, which makes a troublesome situation since we cluster will distribute a small portion of memory to me (once it's over the limit, memory cannot be allocated), however, when the dataset checks the total memory, all of the memory will be taken into account which makes huggingface dataset try to allocate more memory than allowed.
So is there a way to explicitly limit the size of memory mapped file?
### Steps to reproduce the bug
python
>>> from datasets import load_dataset
>>> dataset = load_dataset("c4", "en", streaming=True)
### Expected behavior
In a normal environment, this will not have any problem.
However, when the system allocates a portion of the memory to the program and when the dataset checks the total memory, all of the memory will be taken into account which makes huggingface dataset try to allocate more memory than allowed.
### Environment info
linux cluster with SGE(Sun Grid Engine) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6176/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6176/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/3435 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3435/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3435/comments | https://api.github.com/repos/huggingface/datasets/issues/3435/events | https://github.com/huggingface/datasets/pull/3435 | 1,081,043,756 | PR_kwDODunzps4v4_-0 | 3,435 | Improve Wikipedia Loading Script | {
"avatar_url": "https://avatars.githubusercontent.com/u/45494522?v=4",
"events_url": "https://api.github.com/users/geohci/events{/privacy}",
"followers_url": "https://api.github.com/users/geohci/followers",
"following_url": "https://api.github.com/users/geohci/following{/other_user}",
"gists_url": "https://api.github.com/users/geohci/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/geohci",
"id": 45494522,
"login": "geohci",
"node_id": "MDQ6VXNlcjQ1NDk0NTIy",
"organizations_url": "https://api.github.com/users/geohci/orgs",
"received_events_url": "https://api.github.com/users/geohci/received_events",
"repos_url": "https://api.github.com/users/geohci/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/geohci/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/geohci/subscriptions",
"type": "User",
"url": "https://api.github.com/users/geohci"
} | [] | closed | false | null | [] | null | [
"I wanted to flag a change from since we discussed this: I initially wrote a function for using the Wikimedia APIs to collect namespace aliases, but decided that adding in more http requests to the script wasn't a great idea so instead used that code to build a static list that I just added directly to the code.\r\n\r\nAlso, an FYI that python library dependencies weren't working on my local end so I wasn't able to directly test the code. I tested a copy with the problematic elements stripped (beam etc.) that worked fine, but someone with a working local copy may want to test just to make sure I didn't accidentally break anything.",
"Also, while I would argue more strongly for some of the changes in this code, they are five distinct changes so not so hard to remove one or two if other folks think they aren't worth the overhead etc.",
"I also add a comment by @geohci in the Issue page:\r\n> See https://public.paws.wmcloud.org/User:Isaac_(WMF)/HuggingFace%20Wikipedia%20Processing.ipynb for more implementation details / some data around the overhead induced by adding the extra preprocessing steps (stripping link prefixes and magic words)",
"Hi ! Thanks a lot, this is very cool ! Note that unfortunately if we change the processing right now, users won't be able to load the \"big\" languages like english anymore, because it requires an Apache Beam runtime to process them. Some Wikipedia dumps have been processed by Hugging Face so that users don't need to run Apache Beam stuff.\r\n\r\nTherefore, we can merge this change after we have processed dumps using this new processing, and host them on the Hugging Face google storage.\r\n\r\nI think we can take care of this and let you know once this is ready ? What do you think @albertvillanova ?\r\n\r\nThis is also an opportunity to have the latest dumps ready, the current ones are from 2020",
"Related PR on updating to the latest dates: https://github.com/huggingface/datasets/pull/3612",
"@lhoestq if the additional processing steps are validated, we could go on generating the processed datasets for the big languages.\r\n\r\nThe only thing before doing that is that we should also validate other change (so that we include it also in the processed datasets):\r\n- #3398 ",
"> @lhoestq if the additional processing steps are validated, we could go on generating the processed datasets for the big languages.\r\n\r\nCool ! Looking forward to it :)\r\n\r\n> The only thing before doing that is that we should also validate other change (so that we include it also in the processed datasets):\r\n> \r\n> https://github.com/huggingface/datasets/issues/3398\r\n\r\nSounds good ! We can definitely add the URL as asked by the Wikipedia to provide credits to the authors.",
"@geohci I do not have push rights to this PR. See: [Enabling repository maintainer permissions on existing pull requests](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/allowing-changes-to-a-pull-request-branch-created-from-a-fork#enabling-repository-maintainer-permissions-on-existing-pull-requests).\r\n\r\nI would like to merge the master branch so that all tests pass. Once done, I will be able approve this PR.",
"> @geohci I do not have push rights to this PR. See: [Enabling repository maintainer permissions on existing pull requests](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/allowing-changes-to-a-pull-request-branch-created-from-a-fork#enabling-repository-maintainer-permissions-on-existing-pull-requests).\r\n> \r\n> I would like to merge the master branch so that all tests pass. Once done, I will be able approve this PR.\r\n\r\n@albertvillanova the `Allow edits by maintainers` box was already checked (what your instructions indicated) and indicates `If checked, users with write access to huggingface/datasets can add new commits to your wikipedia-updates branch. You can always change this setting later.` so you should have permissions already. If there's something else I'm missing or can do, please let me know. If it's not easy to resolve, I am plenty comfortable with you creating a new PR with these changes under your account too."
] | "2021-12-15T13:30:06Z" | "2022-03-04T08:16:00Z" | "2022-03-04T08:16:00Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3435.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3435",
"merged_at": "2022-03-04T08:16:00Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3435.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3435"
} | * More structured approach to detecting redirects
* Remove redundant template filter code (covered by strip_code)
* Add language-specific lists of additional media namespace aliases for filtering
* Add language-specific lists of category namespace aliases for new link text cleaning step
* Remove magic words (parser directions like __TOC__ that occasionally occur in text)
Fix #3400
With support from @albertvillanova
CC @yjernite | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3435/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3435/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1633 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1633/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1633/comments | https://api.github.com/repos/huggingface/datasets/issues/1633/events | https://github.com/huggingface/datasets/issues/1633 | 774,422,603 | MDU6SXNzdWU3NzQ0MjI2MDM= | 1,633 | social_i_qa wrong format of labels | {
"avatar_url": "https://avatars.githubusercontent.com/u/10137?v=4",
"events_url": "https://api.github.com/users/ghost/events{/privacy}",
"followers_url": "https://api.github.com/users/ghost/followers",
"following_url": "https://api.github.com/users/ghost/following{/other_user}",
"gists_url": "https://api.github.com/users/ghost/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ghost",
"id": 10137,
"login": "ghost",
"node_id": "MDQ6VXNlcjEwMTM3",
"organizations_url": "https://api.github.com/users/ghost/orgs",
"received_events_url": "https://api.github.com/users/ghost/received_events",
"repos_url": "https://api.github.com/users/ghost/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ghost/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ghost/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ghost"
} | [] | closed | false | null | [] | null | [
"@lhoestq, should I raise a PR for this? Just a minor change while reading labels text file",
"Sure feel free to open a PR thanks !"
] | "2020-12-24T13:11:54Z" | "2020-12-30T17:18:49Z" | "2020-12-30T17:18:49Z" | NONE | null | null | null | Hi,
there is extra "\n" in labels of social_i_qa datasets, no big deal, but I was wondering if you could remove it to make it consistent.
so label is 'label': '1\n', not '1'
thanks
```
>>> import datasets
>>> from datasets import load_dataset
>>> dataset = load_dataset(
... 'social_i_qa')
cahce dir /julia/cache/datasets
Downloading: 4.72kB [00:00, 3.52MB/s]
cahce dir /julia/cache/datasets
Downloading: 2.19kB [00:00, 1.81MB/s]
Using custom data configuration default
Reusing dataset social_i_qa (/julia/datasets/social_i_qa/default/0.1.0/4a4190cc2d2482d43416c2167c0c5dccdd769d4482e84893614bd069e5c3ba06)
>>> dataset['train'][0]
{'answerA': 'like attending', 'answerB': 'like staying home', 'answerC': 'a good friend to have', 'context': 'Cameron decided to have a barbecue and gathered her friends together.', 'label': '1\n', 'question': 'How would Others feel as a result?'}
```
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1633/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1633/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4439 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4439/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4439/comments | https://api.github.com/repos/huggingface/datasets/issues/4439/events | https://github.com/huggingface/datasets/issues/4439 | 1,258,434,111 | I_kwDODunzps5LAi4_ | 4,439 | TIMIT won't load after manual download: Errors about files that don't exist | {
"avatar_url": "https://avatars.githubusercontent.com/u/13925685?v=4",
"events_url": "https://api.github.com/users/drscotthawley/events{/privacy}",
"followers_url": "https://api.github.com/users/drscotthawley/followers",
"following_url": "https://api.github.com/users/drscotthawley/following{/other_user}",
"gists_url": "https://api.github.com/users/drscotthawley/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/drscotthawley",
"id": 13925685,
"login": "drscotthawley",
"node_id": "MDQ6VXNlcjEzOTI1Njg1",
"organizations_url": "https://api.github.com/users/drscotthawley/orgs",
"received_events_url": "https://api.github.com/users/drscotthawley/received_events",
"repos_url": "https://api.github.com/users/drscotthawley/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/drscotthawley/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/drscotthawley/subscriptions",
"type": "User",
"url": "https://api.github.com/users/drscotthawley"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"To have some context, please see:\r\n- #4145\r\n\r\nPlease, also note that we have recently made some fixes to the script, which are in our GitHub master branch but not yet released:\r\n- #4422\r\n- #4425 \r\n- #4436",
"Thanks Albert! I'll try pulling `datasets` from the git repo instead of PyPI, and/or just wait for the next release.\r\n",
"I'm closing this issue then. Please, feel free to reopen it again if the problem persists."
] | "2022-06-02T16:35:56Z" | "2022-06-03T08:44:17Z" | "2022-06-03T08:44:16Z" | NONE | null | null | null | ## Describe the bug
I get the message from HuggingFace that it must be downloaded manually. From the URL provided in the message, I got to UPenn page for manual download. (UPenn apparently want $250? for the dataset??) ...So, ok, I obtained a copy from a friend and also a smaller version from Kaggle. But in both cases the HF dataloader fails; it is looking for files that don't exist anywhere in the dataset: it is looking for files with lower-case letters like "**test*" (all the filenames in both my copies are uppercase) and certain file extensions that exclude the .DOC which is provided in TIMIT:
## Steps to reproduce the bug
```python
data = load_dataset('timit_asr', 'clean')['train']
```
## Expected results
The dataset should load with no errors.
## Actual results
This error message:
```
File "/home/ubuntu/envs/data2vec/lib/python3.9/site-packages/datasets/data_files.py", line 201, in resolve_patterns_locally_or_by_urls
raise FileNotFoundError(error_msg)
FileNotFoundError: Unable to resolve any data file that matches '['**test*', '**eval*']' at /home/ubuntu/datasets/timit with any supported extension ['csv', 'tsv', 'json', 'jsonl', 'parquet', 'txt', 'blp', 'bmp', 'dib', 'bufr', 'cur', 'pcx', 'dcx', 'dds', 'ps', 'eps', 'fit', 'fits', 'fli', 'flc', 'ftc', 'ftu', 'gbr', 'gif', 'grib', 'h5', 'hdf', 'png', 'apng', 'jp2', 'j2k', 'jpc', 'jpf', 'jpx', 'j2c', 'icns', 'ico', 'im', 'iim', 'tif', 'tiff', 'jfif', 'jpe', 'jpg', 'jpeg', 'mpg', 'mpeg', 'msp', 'pcd', 'pxr', 'pbm', 'pgm', 'ppm', 'pnm', 'psd', 'bw', 'rgb', 'rgba', 'sgi', 'ras', 'tga', 'icb', 'vda', 'vst', 'webp', 'wmf', 'emf', 'xbm', 'xpm', 'zip']
```
But this is a strange sort of error: why is it looking for lower-case file names when all the TIMIT dataset filenames are uppercase? Why does it exclude .DOC files when the only parts of the TIMIT data set with "TEST" in them have ".DOC" extensions? ...I wonder, how was anyone able to get this to work in the first place?
The files in the dataset look like the following:
```
³ PHONCODE.DOC
³ PROMPTS.TXT
³ SPKRINFO.TXT
³ SPKRSENT.TXT
³ TESTSET.DOC
```
...so why are these being excluded by the dataset loader?
## Environment info
- `datasets` version: 2.2.2
- Platform: Linux-5.4.0-1060-aws-x86_64-with-glibc2.27
- Python version: 3.9.9
- PyArrow version: 8.0.0
- Pandas version: 1.4.2
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4439/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4439/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/3382 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3382/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3382/comments | https://api.github.com/repos/huggingface/datasets/issues/3382/events | https://github.com/huggingface/datasets/pull/3382 | 1,071,293,299 | PR_kwDODunzps4vZT2K | 3,382 | #3337 Add typing overloads to Dataset.__getitem__ for mypy | {
"avatar_url": "https://avatars.githubusercontent.com/u/8976546?v=4",
"events_url": "https://api.github.com/users/Dref360/events{/privacy}",
"followers_url": "https://api.github.com/users/Dref360/followers",
"following_url": "https://api.github.com/users/Dref360/following{/other_user}",
"gists_url": "https://api.github.com/users/Dref360/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Dref360",
"id": 8976546,
"login": "Dref360",
"node_id": "MDQ6VXNlcjg5NzY1NDY=",
"organizations_url": "https://api.github.com/users/Dref360/orgs",
"received_events_url": "https://api.github.com/users/Dref360/received_events",
"repos_url": "https://api.github.com/users/Dref360/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Dref360/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Dref360/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Dref360"
} | [] | closed | false | null | [] | null | [
"Locally the `make quality` passes with the same dependencies. I would suggest upgrading flake8. (I can take care of it in another PR)\r\ncc @lhoestq ",
"Thank you for fixing flake8! I think we are ready to merge then. "
] | "2021-12-04T20:54:49Z" | "2021-12-14T10:28:55Z" | "2021-12-14T10:28:55Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3382.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3382",
"merged_at": "2021-12-14T10:28:54Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3382.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3382"
} | Add typing overloads to Dataset.__getitem__ for mypy
Fixes #3337
**Iterable**
Iterable from `collections` cannot have a type, so you can't do `Iterable[int]` for example. `typing` has a Generic version that builds upon the one from `collections`.
**Flake8**
I had to add `# noqa: F811`, this is a bug from Flake8.
datasets uses flake8==3.7.9 which released in October 2019 if I update flake8 (4.0.1), I no longer get these errors, but I did not want to make the update without your approval. (It also triggers other errors like no args in f-strings.) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3382/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3382/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5949 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5949/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5949/comments | https://api.github.com/repos/huggingface/datasets/issues/5949/events | https://github.com/huggingface/datasets/pull/5949 | 1,754,843,717 | PR_kwDODunzps5S4oPC | 5,949 | Replace metadata utils with `huggingface_hub`'s RepoCard API | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006635 / 0.011353 (-0.004718) | 0.004439 / 0.011008 (-0.006570) | 0.107831 / 0.038508 (0.069323) | 0.035664 / 0.023109 (0.012555) | 0.393733 / 0.275898 (0.117835) | 0.418336 / 0.323480 (0.094856) | 0.005739 / 0.007986 (-0.002247) | 0.005737 / 0.004328 (0.001408) | 0.079820 / 0.004250 (0.075569) | 0.045402 / 0.037052 (0.008349) | 0.396108 / 0.258489 (0.137619) | 0.422951 / 0.293841 (0.129110) | 0.030506 / 0.128546 (-0.098040) | 0.009785 / 0.075646 (-0.065861) | 0.375302 / 0.419271 (-0.043969) | 0.054355 / 0.043533 (0.010823) | 0.399652 / 0.255139 (0.144513) | 0.410825 / 0.283200 (0.127625) | 0.109238 / 0.141683 (-0.032445) | 1.687532 / 1.452155 (0.235378) | 1.736829 / 1.492716 (0.244113) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226514 / 0.018006 (0.208508) | 0.487010 / 0.000490 (0.486520) | 0.006436 / 0.000200 (0.006236) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029097 / 0.037411 (-0.008315) | 0.122979 / 0.014526 (0.108453) | 0.129454 / 0.176557 (-0.047103) | 0.194006 / 0.737135 (-0.543129) | 0.137968 / 0.296338 (-0.158370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.466425 / 0.215209 (0.251216) | 4.627307 / 2.077655 (2.549652) | 2.108840 / 1.504120 (0.604720) | 1.882547 / 1.541195 (0.341353) | 1.891077 / 1.468490 (0.422587) | 0.590646 / 4.584777 (-3.994131) | 4.176918 / 3.745712 (0.431205) | 2.071475 / 5.269862 (-3.198386) | 1.173815 / 4.565676 (-3.391862) | 0.075330 / 0.424275 (-0.348945) | 0.012944 / 0.007607 (0.005337) | 0.587080 / 0.226044 (0.361036) | 5.827053 / 2.268929 (3.558125) | 2.694258 / 55.444624 (-52.750366) | 2.276997 / 6.876477 (-4.599480) | 2.329678 / 2.142072 (0.187605) | 0.721860 / 4.805227 (-4.083367) | 0.159238 / 6.500664 (-6.341426) | 0.073013 / 0.075469 (-0.002456) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.345396 / 1.841788 (-0.496391) | 16.619283 / 8.074308 (8.544975) | 14.754754 / 10.191392 (4.563362) | 0.180784 / 0.680424 (-0.499639) | 0.020376 / 0.534201 (-0.513825) | 0.451010 / 0.579283 (-0.128273) | 0.481524 / 0.434364 (0.047160) | 0.564777 / 0.540337 (0.024440) | 0.683232 / 1.386936 (-0.703704) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007243 / 0.011353 (-0.004110) | 0.005262 / 0.011008 (-0.005746) | 0.084090 / 0.038508 (0.045581) | 0.037429 / 0.023109 (0.014320) | 0.404038 / 0.275898 (0.128140) | 0.445040 / 0.323480 (0.121560) | 0.006220 / 0.007986 (-0.001766) | 0.004256 / 0.004328 (-0.000072) | 0.083794 / 0.004250 (0.079544) | 0.052655 / 0.037052 (0.015603) | 0.414083 / 0.258489 (0.155594) | 0.458190 / 0.293841 (0.164349) | 0.032719 / 0.128546 (-0.095828) | 0.010063 / 0.075646 (-0.065583) | 0.092281 / 0.419271 (-0.326990) | 0.053888 / 0.043533 (0.010355) | 0.407813 / 0.255139 (0.152674) | 0.431692 / 0.283200 (0.148493) | 0.119799 / 0.141683 (-0.021884) | 1.709853 / 1.452155 (0.257698) | 1.771592 / 1.492716 (0.278876) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246540 / 0.018006 (0.228534) | 0.483199 / 0.000490 (0.482709) | 0.002514 / 0.000200 (0.002315) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031576 / 0.037411 (-0.005835) | 0.130020 / 0.014526 (0.115495) | 0.140285 / 0.176557 (-0.036272) | 0.196164 / 0.737135 (-0.540972) | 0.143924 / 0.296338 (-0.152414) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488549 / 0.215209 (0.273340) | 4.888055 / 2.077655 (2.810400) | 2.389163 / 1.504120 (0.885043) | 2.184626 / 1.541195 (0.643431) | 2.260227 / 1.468490 (0.791737) | 0.601331 / 4.584777 (-3.983446) | 4.386159 / 3.745712 (0.640447) | 3.345814 / 5.269862 (-1.924048) | 1.734360 / 4.565676 (-2.831317) | 0.073199 / 0.424275 (-0.351076) | 0.012397 / 0.007607 (0.004790) | 0.601411 / 0.226044 (0.375366) | 6.135000 / 2.268929 (3.866072) | 2.930169 / 55.444624 (-52.514456) | 2.532631 / 6.876477 (-4.343845) | 2.619351 / 2.142072 (0.477279) | 0.740954 / 4.805227 (-4.064274) | 0.162936 / 6.500664 (-6.337728) | 0.073885 / 0.075469 (-0.001585) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.502493 / 1.841788 (-0.339294) | 17.026756 / 8.074308 (8.952448) | 15.880958 / 10.191392 (5.689566) | 0.167261 / 0.680424 (-0.513163) | 0.020347 / 0.534201 (-0.513854) | 0.452902 / 0.579283 (-0.126381) | 0.481614 / 0.434364 (0.047250) | 0.539893 / 0.540337 (-0.000445) | 0.653401 / 1.386936 (-0.733535) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6a5781212e968e2515afdf29370a6eab6f657120 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008268 / 0.011353 (-0.003084) | 0.005538 / 0.011008 (-0.005470) | 0.126136 / 0.038508 (0.087628) | 0.046100 / 0.023109 (0.022991) | 0.366882 / 0.275898 (0.090984) | 0.408912 / 0.323480 (0.085432) | 0.007090 / 0.007986 (-0.000895) | 0.004820 / 0.004328 (0.000491) | 0.091432 / 0.004250 (0.087181) | 0.058390 / 0.037052 (0.021338) | 0.368787 / 0.258489 (0.110298) | 0.419429 / 0.293841 (0.125588) | 0.034958 / 0.128546 (-0.093588) | 0.010526 / 0.075646 (-0.065120) | 0.463063 / 0.419271 (0.043791) | 0.070544 / 0.043533 (0.027011) | 0.366182 / 0.255139 (0.111043) | 0.390851 / 0.283200 (0.107652) | 0.128377 / 0.141683 (-0.013306) | 1.819385 / 1.452155 (0.367231) | 1.928834 / 1.492716 (0.436117) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228413 / 0.018006 (0.210407) | 0.485511 / 0.000490 (0.485021) | 0.005395 / 0.000200 (0.005195) | 0.000119 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035209 / 0.037411 (-0.002203) | 0.144492 / 0.014526 (0.129967) | 0.150467 / 0.176557 (-0.026089) | 0.223861 / 0.737135 (-0.513274) | 0.156363 / 0.296338 (-0.139975) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.517751 / 0.215209 (0.302542) | 5.150438 / 2.077655 (3.072783) | 2.483601 / 1.504120 (0.979481) | 2.279786 / 1.541195 (0.738592) | 2.374510 / 1.468490 (0.906020) | 0.637547 / 4.584777 (-3.947230) | 4.845393 / 3.745712 (1.099681) | 2.241554 / 5.269862 (-3.028307) | 1.290105 / 4.565676 (-3.275572) | 0.079791 / 0.424275 (-0.344484) | 0.014915 / 0.007607 (0.007308) | 0.640468 / 0.226044 (0.414423) | 6.394810 / 2.268929 (4.125881) | 3.012748 / 55.444624 (-52.431876) | 2.625565 / 6.876477 (-4.250912) | 2.792435 / 2.142072 (0.650363) | 0.782284 / 4.805227 (-4.022944) | 0.171628 / 6.500664 (-6.329036) | 0.081714 / 0.075469 (0.006245) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.592411 / 1.841788 (-0.249377) | 18.999604 / 8.074308 (10.925295) | 18.469946 / 10.191392 (8.278554) | 0.200878 / 0.680424 (-0.479546) | 0.021595 / 0.534201 (-0.512606) | 0.519247 / 0.579283 (-0.060036) | 0.534940 / 0.434364 (0.100576) | 0.656325 / 0.540337 (0.115987) | 0.789658 / 1.386936 (-0.597278) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008093 / 0.011353 (-0.003260) | 0.005524 / 0.011008 (-0.005484) | 0.092339 / 0.038508 (0.053831) | 0.045619 / 0.023109 (0.022510) | 0.449376 / 0.275898 (0.173478) | 0.478587 / 0.323480 (0.155107) | 0.006978 / 0.007986 (-0.001007) | 0.004622 / 0.004328 (0.000294) | 0.090618 / 0.004250 (0.086368) | 0.059321 / 0.037052 (0.022269) | 0.450989 / 0.258489 (0.192500) | 0.491652 / 0.293841 (0.197811) | 0.033308 / 0.128546 (-0.095238) | 0.010677 / 0.075646 (-0.064969) | 0.099836 / 0.419271 (-0.319435) | 0.055937 / 0.043533 (0.012404) | 0.440560 / 0.255139 (0.185421) | 0.475305 / 0.283200 (0.192105) | 0.130829 / 0.141683 (-0.010854) | 1.857943 / 1.452155 (0.405789) | 1.989534 / 1.492716 (0.496818) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244715 / 0.018006 (0.226709) | 0.482866 / 0.000490 (0.482377) | 0.001100 / 0.000200 (0.000900) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036288 / 0.037411 (-0.001124) | 0.147903 / 0.014526 (0.133377) | 0.154141 / 0.176557 (-0.022416) | 0.221863 / 0.737135 (-0.515272) | 0.162319 / 0.296338 (-0.134019) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.536972 / 0.215209 (0.321763) | 5.382866 / 2.077655 (3.305211) | 2.719575 / 1.504120 (1.215456) | 2.516596 / 1.541195 (0.975401) | 2.699602 / 1.468490 (1.231112) | 0.639886 / 4.584777 (-3.944891) | 5.109746 / 3.745712 (1.364034) | 2.260206 / 5.269862 (-3.009656) | 1.305506 / 4.565676 (-3.260170) | 0.080262 / 0.424275 (-0.344013) | 0.014801 / 0.007607 (0.007194) | 0.661228 / 0.226044 (0.435184) | 6.596485 / 2.268929 (4.327557) | 3.226114 / 55.444624 (-52.218510) | 2.859776 / 6.876477 (-4.016701) | 3.059355 / 2.142072 (0.917282) | 0.793413 / 4.805227 (-4.011814) | 0.176521 / 6.500664 (-6.324143) | 0.084062 / 0.075469 (0.008593) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.642085 / 1.841788 (-0.199703) | 20.355459 / 8.074308 (12.281151) | 17.979620 / 10.191392 (7.788228) | 0.229329 / 0.680424 (-0.451094) | 0.025681 / 0.534201 (-0.508520) | 0.534142 / 0.579283 (-0.045141) | 0.623439 / 0.434364 (0.189075) | 0.621938 / 0.540337 (0.081601) | 0.759038 / 1.386936 (-0.627898) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6a98ff43225df344139023a5b7eb9caef610b677 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007703 / 0.011353 (-0.003649) | 0.005362 / 0.011008 (-0.005646) | 0.113111 / 0.038508 (0.074602) | 0.038891 / 0.023109 (0.015782) | 0.348938 / 0.275898 (0.073040) | 0.398079 / 0.323480 (0.074599) | 0.006707 / 0.007986 (-0.001278) | 0.004489 / 0.004328 (0.000160) | 0.087194 / 0.004250 (0.082943) | 0.054268 / 0.037052 (0.017216) | 0.359949 / 0.258489 (0.101460) | 0.402959 / 0.293841 (0.109118) | 0.032508 / 0.128546 (-0.096038) | 0.010224 / 0.075646 (-0.065422) | 0.387007 / 0.419271 (-0.032264) | 0.058971 / 0.043533 (0.015439) | 0.345085 / 0.255139 (0.089946) | 0.384306 / 0.283200 (0.101107) | 0.122253 / 0.141683 (-0.019430) | 1.706353 / 1.452155 (0.254199) | 1.840780 / 1.492716 (0.348063) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254374 / 0.018006 (0.236368) | 0.497387 / 0.000490 (0.496897) | 0.012294 / 0.000200 (0.012094) | 0.000108 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030902 / 0.037411 (-0.006509) | 0.132098 / 0.014526 (0.117573) | 0.140311 / 0.176557 (-0.036245) | 0.205887 / 0.737135 (-0.531249) | 0.143992 / 0.296338 (-0.152347) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.467367 / 0.215209 (0.252158) | 4.669936 / 2.077655 (2.592281) | 2.155358 / 1.504120 (0.651238) | 1.984132 / 1.541195 (0.442937) | 2.102352 / 1.468490 (0.633861) | 0.607014 / 4.584777 (-3.977763) | 4.396479 / 3.745712 (0.650767) | 4.666056 / 5.269862 (-0.603806) | 2.176649 / 4.565676 (-2.389028) | 0.072657 / 0.424275 (-0.351619) | 0.012367 / 0.007607 (0.004759) | 0.569706 / 0.226044 (0.343661) | 5.749083 / 2.268929 (3.480154) | 2.640824 / 55.444624 (-52.803801) | 2.310253 / 6.876477 (-4.566224) | 2.486748 / 2.142072 (0.344676) | 0.737891 / 4.805227 (-4.067336) | 0.163507 / 6.500664 (-6.337157) | 0.075776 / 0.075469 (0.000307) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.362710 / 1.841788 (-0.479078) | 17.010705 / 8.074308 (8.936396) | 15.084231 / 10.191392 (4.892839) | 0.218274 / 0.680424 (-0.462150) | 0.019555 / 0.534201 (-0.514646) | 0.456013 / 0.579283 (-0.123270) | 0.502772 / 0.434364 (0.068408) | 0.581480 / 0.540337 (0.041142) | 0.686952 / 1.386936 (-0.699984) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007976 / 0.011353 (-0.003377) | 0.005141 / 0.011008 (-0.005868) | 0.086629 / 0.038508 (0.048121) | 0.039553 / 0.023109 (0.016444) | 0.433028 / 0.275898 (0.157130) | 0.463444 / 0.323480 (0.139964) | 0.006967 / 0.007986 (-0.001018) | 0.005814 / 0.004328 (0.001485) | 0.086266 / 0.004250 (0.082015) | 0.055384 / 0.037052 (0.018332) | 0.428733 / 0.258489 (0.170243) | 0.475670 / 0.293841 (0.181829) | 0.032872 / 0.128546 (-0.095674) | 0.010664 / 0.075646 (-0.064983) | 0.094357 / 0.419271 (-0.324915) | 0.058386 / 0.043533 (0.014854) | 0.431114 / 0.255139 (0.175975) | 0.441728 / 0.283200 (0.158528) | 0.131942 / 0.141683 (-0.009740) | 1.782214 / 1.452155 (0.330060) | 1.843185 / 1.492716 (0.350469) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247047 / 0.018006 (0.229041) | 0.488931 / 0.000490 (0.488441) | 0.002657 / 0.000200 (0.002457) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033893 / 0.037411 (-0.003518) | 0.131021 / 0.014526 (0.116495) | 0.142892 / 0.176557 (-0.033665) | 0.200955 / 0.737135 (-0.536180) | 0.151329 / 0.296338 (-0.145010) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.521138 / 0.215209 (0.305929) | 5.085207 / 2.077655 (3.007552) | 2.652901 / 1.504120 (1.148781) | 2.401545 / 1.541195 (0.860350) | 2.553461 / 1.468490 (1.084971) | 0.615347 / 4.584777 (-3.969430) | 4.448038 / 3.745712 (0.702326) | 2.049997 / 5.269862 (-3.219865) | 1.190602 / 4.565676 (-3.375075) | 0.073356 / 0.424275 (-0.350919) | 0.013685 / 0.007607 (0.006078) | 0.626705 / 0.226044 (0.400660) | 6.391941 / 2.268929 (4.123012) | 3.218864 / 55.444624 (-52.225760) | 2.858808 / 6.876477 (-4.017669) | 3.005808 / 2.142072 (0.863736) | 0.740725 / 4.805227 (-4.064502) | 0.161904 / 6.500664 (-6.338760) | 0.073727 / 0.075469 (-0.001742) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.488623 / 1.841788 (-0.353164) | 17.584367 / 8.074308 (9.510059) | 16.281818 / 10.191392 (6.090426) | 0.164482 / 0.680424 (-0.515942) | 0.020197 / 0.534201 (-0.514003) | 0.456750 / 0.579283 (-0.122533) | 0.501156 / 0.434364 (0.066792) | 0.549779 / 0.540337 (0.009442) | 0.650156 / 1.386936 (-0.736780) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2b6cc63b868ea4ee60502845ebec68abb943958b \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008337 / 0.011353 (-0.003016) | 0.005911 / 0.011008 (-0.005097) | 0.129037 / 0.038508 (0.090529) | 0.046071 / 0.023109 (0.022962) | 0.418657 / 0.275898 (0.142759) | 0.490340 / 0.323480 (0.166860) | 0.006387 / 0.007986 (-0.001598) | 0.004724 / 0.004328 (0.000396) | 0.097953 / 0.004250 (0.093702) | 0.069025 / 0.037052 (0.031972) | 0.431178 / 0.258489 (0.172689) | 0.458363 / 0.293841 (0.164522) | 0.049341 / 0.128546 (-0.079205) | 0.014637 / 0.075646 (-0.061009) | 0.439800 / 0.419271 (0.020529) | 0.069905 / 0.043533 (0.026373) | 0.406775 / 0.255139 (0.151636) | 0.441989 / 0.283200 (0.158790) | 0.046009 / 0.141683 (-0.095674) | 1.847630 / 1.452155 (0.395475) | 1.904067 / 1.492716 (0.411351) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288305 / 0.018006 (0.270299) | 0.594547 / 0.000490 (0.594058) | 0.005600 / 0.000200 (0.005400) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033847 / 0.037411 (-0.003564) | 0.125139 / 0.014526 (0.110613) | 0.147982 / 0.176557 (-0.028574) | 0.208396 / 0.737135 (-0.528739) | 0.144005 / 0.296338 (-0.152334) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.669175 / 0.215209 (0.453966) | 6.605289 / 2.077655 (4.527634) | 2.720468 / 1.504120 (1.216348) | 2.341355 / 1.541195 (0.800160) | 2.402069 / 1.468490 (0.933578) | 0.939303 / 4.584777 (-3.645474) | 5.718545 / 3.745712 (1.972833) | 2.856235 / 5.269862 (-2.413627) | 1.821555 / 4.565676 (-2.744121) | 0.105473 / 0.424275 (-0.318802) | 0.014490 / 0.007607 (0.006883) | 0.774349 / 0.226044 (0.548305) | 8.065048 / 2.268929 (5.796120) | 3.508482 / 55.444624 (-51.936143) | 2.822881 / 6.876477 (-4.053596) | 2.962947 / 2.142072 (0.820875) | 1.138944 / 4.805227 (-3.666284) | 0.248414 / 6.500664 (-6.252250) | 0.095665 / 0.075469 (0.020196) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.688231 / 1.841788 (-0.153557) | 18.673305 / 8.074308 (10.598997) | 22.768663 / 10.191392 (12.577271) | 0.211238 / 0.680424 (-0.469186) | 0.031380 / 0.534201 (-0.502821) | 0.517175 / 0.579283 (-0.062108) | 0.626437 / 0.434364 (0.192073) | 0.624225 / 0.540337 (0.083888) | 0.743746 / 1.386936 (-0.643191) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008888 / 0.011353 (-0.002464) | 0.005491 / 0.011008 (-0.005517) | 0.105013 / 0.038508 (0.066505) | 0.049456 / 0.023109 (0.026347) | 0.528989 / 0.275898 (0.253091) | 0.651871 / 0.323480 (0.328391) | 0.006683 / 0.007986 (-0.001302) | 0.004365 / 0.004328 (0.000037) | 0.098161 / 0.004250 (0.093911) | 0.075615 / 0.037052 (0.038563) | 0.543746 / 0.258489 (0.285257) | 0.650855 / 0.293841 (0.357014) | 0.050220 / 0.128546 (-0.078327) | 0.014471 / 0.075646 (-0.061175) | 0.115903 / 0.419271 (-0.303368) | 0.065925 / 0.043533 (0.022392) | 0.527797 / 0.255139 (0.272658) | 0.543834 / 0.283200 (0.260634) | 0.043005 / 0.141683 (-0.098678) | 1.842846 / 1.452155 (0.390691) | 1.970615 / 1.492716 (0.477899) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287350 / 0.018006 (0.269343) | 0.591139 / 0.000490 (0.590649) | 0.006423 / 0.000200 (0.006223) | 0.000107 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034594 / 0.037411 (-0.002818) | 0.137155 / 0.014526 (0.122629) | 0.154662 / 0.176557 (-0.021894) | 0.217834 / 0.737135 (-0.519301) | 0.159642 / 0.296338 (-0.136696) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.664288 / 0.215209 (0.449079) | 6.926912 / 2.077655 (4.849257) | 3.028957 / 1.504120 (1.524837) | 2.625178 / 1.541195 (1.083983) | 2.725316 / 1.468490 (1.256826) | 1.015715 / 4.584777 (-3.569062) | 5.834694 / 3.745712 (2.088982) | 5.105269 / 5.269862 (-0.164593) | 2.316194 / 4.565676 (-2.249483) | 0.113802 / 0.424275 (-0.310473) | 0.014079 / 0.007607 (0.006472) | 0.893727 / 0.226044 (0.667683) | 8.577701 / 2.268929 (6.308772) | 3.706907 / 55.444624 (-51.737717) | 3.087530 / 6.876477 (-3.788947) | 3.295004 / 2.142072 (1.152931) | 1.204172 / 4.805227 (-3.601055) | 0.248720 / 6.500664 (-6.251944) | 0.107208 / 0.075469 (0.031739) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.800058 / 1.841788 (-0.041730) | 19.253646 / 8.074308 (11.179338) | 22.590804 / 10.191392 (12.399412) | 0.270687 / 0.680424 (-0.409737) | 0.028678 / 0.534201 (-0.505522) | 0.534670 / 0.579283 (-0.044613) | 0.642881 / 0.434364 (0.208518) | 0.615521 / 0.540337 (0.075184) | 0.723733 / 1.386936 (-0.663203) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2591cd45a002a06bd551343ec785abf16f1433e2 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.017236 / 0.011353 (0.005883) | 0.005341 / 0.011008 (-0.005667) | 0.131471 / 0.038508 (0.092963) | 0.048868 / 0.023109 (0.025758) | 0.448942 / 0.275898 (0.173044) | 0.498721 / 0.323480 (0.175241) | 0.006825 / 0.007986 (-0.001161) | 0.004587 / 0.004328 (0.000259) | 0.104142 / 0.004250 (0.099891) | 0.075521 / 0.037052 (0.038469) | 0.439538 / 0.258489 (0.181049) | 0.498720 / 0.293841 (0.204879) | 0.051352 / 0.128546 (-0.077194) | 0.015070 / 0.075646 (-0.060576) | 0.441752 / 0.419271 (0.022480) | 0.089166 / 0.043533 (0.045633) | 0.428909 / 0.255139 (0.173770) | 0.446648 / 0.283200 (0.163448) | 0.042371 / 0.141683 (-0.099312) | 1.993948 / 1.452155 (0.541793) | 2.065756 / 1.492716 (0.573039) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257279 / 0.018006 (0.239273) | 0.575453 / 0.000490 (0.574964) | 0.004120 / 0.000200 (0.003920) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034012 / 0.037411 (-0.003399) | 0.141737 / 0.014526 (0.127211) | 0.145241 / 0.176557 (-0.031316) | 0.226196 / 0.737135 (-0.510939) | 0.149526 / 0.296338 (-0.146813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.665762 / 0.215209 (0.450553) | 6.683737 / 2.077655 (4.606083) | 2.869485 / 1.504120 (1.365365) | 2.462808 / 1.541195 (0.921613) | 2.526808 / 1.468490 (1.058318) | 0.957518 / 4.584777 (-3.627259) | 5.926261 / 3.745712 (2.180548) | 5.027822 / 5.269862 (-0.242040) | 2.643185 / 4.565676 (-1.922491) | 0.117014 / 0.424275 (-0.307261) | 0.015142 / 0.007607 (0.007535) | 0.835694 / 0.226044 (0.609650) | 8.427356 / 2.268929 (6.158427) | 3.649597 / 55.444624 (-51.795027) | 2.989607 / 6.876477 (-3.886870) | 3.043160 / 2.142072 (0.901088) | 1.158872 / 4.805227 (-3.646355) | 0.240456 / 6.500664 (-6.260208) | 0.089196 / 0.075469 (0.013726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.689361 / 1.841788 (-0.152427) | 18.842158 / 8.074308 (10.767850) | 22.604249 / 10.191392 (12.412857) | 0.248487 / 0.680424 (-0.431936) | 0.029668 / 0.534201 (-0.504533) | 0.536283 / 0.579283 (-0.043001) | 0.663253 / 0.434364 (0.228890) | 0.622973 / 0.540337 (0.082635) | 0.735297 / 1.386936 (-0.651639) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009296 / 0.011353 (-0.002057) | 0.005955 / 0.011008 (-0.005053) | 0.105723 / 0.038508 (0.067215) | 0.051184 / 0.023109 (0.028074) | 0.527095 / 0.275898 (0.251197) | 0.631697 / 0.323480 (0.308217) | 0.006577 / 0.007986 (-0.001408) | 0.004452 / 0.004328 (0.000124) | 0.105921 / 0.004250 (0.101670) | 0.071951 / 0.037052 (0.034899) | 0.572518 / 0.258489 (0.314029) | 0.623957 / 0.293841 (0.330116) | 0.050861 / 0.128546 (-0.077686) | 0.014897 / 0.075646 (-0.060749) | 0.122013 / 0.419271 (-0.297258) | 0.067194 / 0.043533 (0.023661) | 0.530352 / 0.255139 (0.275213) | 0.563912 / 0.283200 (0.280712) | 0.034756 / 0.141683 (-0.106927) | 1.961580 / 1.452155 (0.509425) | 2.052412 / 1.492716 (0.559696) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304996 / 0.018006 (0.286990) | 0.584899 / 0.000490 (0.584409) | 0.010444 / 0.000200 (0.010244) | 0.000134 / 0.000054 (0.000080) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032540 / 0.037411 (-0.004871) | 0.137349 / 0.014526 (0.122823) | 0.146233 / 0.176557 (-0.030323) | 0.206978 / 0.737135 (-0.530157) | 0.154380 / 0.296338 (-0.141959) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.705438 / 0.215209 (0.490229) | 7.042159 / 2.077655 (4.964504) | 3.285501 / 1.504120 (1.781381) | 2.904710 / 1.541195 (1.363515) | 2.952838 / 1.468490 (1.484348) | 0.987784 / 4.584777 (-3.596993) | 5.949550 / 3.745712 (2.203838) | 2.927148 / 5.269862 (-2.342714) | 1.870054 / 4.565676 (-2.695622) | 0.119548 / 0.424275 (-0.304727) | 0.014565 / 0.007607 (0.006958) | 0.858311 / 0.226044 (0.632266) | 8.721679 / 2.268929 (6.452750) | 4.100825 / 55.444624 (-51.343800) | 3.358093 / 6.876477 (-3.518383) | 3.499637 / 2.142072 (1.357564) | 1.208932 / 4.805227 (-3.596295) | 0.232961 / 6.500664 (-6.267703) | 0.089727 / 0.075469 (0.014258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.780143 / 1.841788 (-0.061645) | 19.074991 / 8.074308 (11.000683) | 21.218487 / 10.191392 (11.027095) | 0.258690 / 0.680424 (-0.421734) | 0.029514 / 0.534201 (-0.504687) | 0.541764 / 0.579283 (-0.037519) | 0.640603 / 0.434364 (0.206239) | 0.635336 / 0.540337 (0.094999) | 0.756309 / 1.386936 (-0.630627) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1b525c199e6352aa8aac55f1dcddeb55a80db373 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009619 / 0.011353 (-0.001734) | 0.005683 / 0.011008 (-0.005325) | 0.136971 / 0.038508 (0.098463) | 0.051607 / 0.023109 (0.028497) | 0.439716 / 0.275898 (0.163818) | 0.486193 / 0.323480 (0.162713) | 0.006304 / 0.007986 (-0.001681) | 0.004489 / 0.004328 (0.000160) | 0.103837 / 0.004250 (0.099587) | 0.082954 / 0.037052 (0.045901) | 0.447286 / 0.258489 (0.188797) | 0.495434 / 0.293841 (0.201593) | 0.049244 / 0.128546 (-0.079302) | 0.015176 / 0.075646 (-0.060470) | 0.444406 / 0.419271 (0.025134) | 0.074766 / 0.043533 (0.031233) | 0.438585 / 0.255139 (0.183446) | 0.438232 / 0.283200 (0.155032) | 0.043372 / 0.141683 (-0.098311) | 2.057286 / 1.452155 (0.605131) | 2.049540 / 1.492716 (0.556824) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298038 / 0.018006 (0.280031) | 0.630771 / 0.000490 (0.630281) | 0.008287 / 0.000200 (0.008087) | 0.000123 / 0.000054 (0.000068) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033637 / 0.037411 (-0.003775) | 0.128327 / 0.014526 (0.113801) | 0.150672 / 0.176557 (-0.025885) | 0.228521 / 0.737135 (-0.508614) | 0.142733 / 0.296338 (-0.153606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.629072 / 0.215209 (0.413863) | 6.612047 / 2.077655 (4.534392) | 2.715594 / 1.504120 (1.211474) | 2.327823 / 1.541195 (0.786628) | 2.417508 / 1.468490 (0.949018) | 0.959134 / 4.584777 (-3.625643) | 5.669921 / 3.745712 (1.924209) | 2.977920 / 5.269862 (-2.291941) | 1.814564 / 4.565676 (-2.751112) | 0.120233 / 0.424275 (-0.304042) | 0.015859 / 0.007607 (0.008252) | 0.822618 / 0.226044 (0.596574) | 8.440306 / 2.268929 (6.171377) | 3.721611 / 55.444624 (-51.723013) | 2.954867 / 6.876477 (-3.921610) | 3.135364 / 2.142072 (0.993292) | 1.226475 / 4.805227 (-3.578752) | 0.246658 / 6.500664 (-6.254006) | 0.093920 / 0.075469 (0.018451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.665631 / 1.841788 (-0.176157) | 19.136369 / 8.074308 (11.062061) | 23.659564 / 10.191392 (13.468172) | 0.273430 / 0.680424 (-0.406994) | 0.028180 / 0.534201 (-0.506021) | 0.559588 / 0.579283 (-0.019695) | 0.649203 / 0.434364 (0.214840) | 0.647113 / 0.540337 (0.106776) | 0.737978 / 1.386936 (-0.648958) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009104 / 0.011353 (-0.002249) | 0.006838 / 0.011008 (-0.004171) | 0.104516 / 0.038508 (0.066008) | 0.047986 / 0.023109 (0.024877) | 0.521849 / 0.275898 (0.245951) | 0.586281 / 0.323480 (0.262801) | 0.006225 / 0.007986 (-0.001760) | 0.005713 / 0.004328 (0.001384) | 0.111507 / 0.004250 (0.107257) | 0.072320 / 0.037052 (0.035267) | 0.551061 / 0.258489 (0.292572) | 0.628034 / 0.293841 (0.334193) | 0.055417 / 0.128546 (-0.073129) | 0.019613 / 0.075646 (-0.056034) | 0.123958 / 0.419271 (-0.295314) | 0.066132 / 0.043533 (0.022600) | 0.504461 / 0.255139 (0.249322) | 0.560428 / 0.283200 (0.277229) | 0.036098 / 0.141683 (-0.105585) | 1.927398 / 1.452155 (0.475243) | 2.015952 / 1.492716 (0.523235) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313065 / 0.018006 (0.295059) | 0.609174 / 0.000490 (0.608684) | 0.008755 / 0.000200 (0.008555) | 0.000120 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.040042 / 0.037411 (0.002630) | 0.136053 / 0.014526 (0.121527) | 0.143406 / 0.176557 (-0.033150) | 0.213080 / 0.737135 (-0.524055) | 0.154730 / 0.296338 (-0.141609) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.692706 / 0.215209 (0.477497) | 6.952968 / 2.077655 (4.875314) | 3.232023 / 1.504120 (1.727903) | 2.835450 / 1.541195 (1.294256) | 2.933821 / 1.468490 (1.465331) | 0.984712 / 4.584777 (-3.600065) | 6.127651 / 3.745712 (2.381939) | 2.956781 / 5.269862 (-2.313081) | 1.879928 / 4.565676 (-2.685748) | 0.111069 / 0.424275 (-0.313206) | 0.014598 / 0.007607 (0.006991) | 0.871486 / 0.226044 (0.645442) | 8.588500 / 2.268929 (6.319572) | 3.910740 / 55.444624 (-51.533885) | 3.115781 / 6.876477 (-3.760695) | 3.222367 / 2.142072 (1.080294) | 1.229680 / 4.805227 (-3.575547) | 0.232092 / 6.500664 (-6.268572) | 0.097717 / 0.075469 (0.022248) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.774193 / 1.841788 (-0.067595) | 19.863087 / 8.074308 (11.788779) | 24.058856 / 10.191392 (13.867464) | 0.214917 / 0.680424 (-0.465507) | 0.028771 / 0.534201 (-0.505430) | 0.544548 / 0.579283 (-0.034735) | 0.655882 / 0.434364 (0.221518) | 0.629110 / 0.540337 (0.088773) | 0.749246 / 1.386936 (-0.637690) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f4a5ea6a42dcfef1577288b51beeccc0eb124cee \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007075 / 0.011353 (-0.004278) | 0.005195 / 0.011008 (-0.005813) | 0.113043 / 0.038508 (0.074535) | 0.038442 / 0.023109 (0.015333) | 0.336310 / 0.275898 (0.060412) | 0.381888 / 0.323480 (0.058409) | 0.005990 / 0.007986 (-0.001996) | 0.003893 / 0.004328 (-0.000435) | 0.093123 / 0.004250 (0.088872) | 0.058449 / 0.037052 (0.021397) | 0.359463 / 0.258489 (0.100974) | 0.427485 / 0.293841 (0.133644) | 0.041454 / 0.128546 (-0.087092) | 0.013016 / 0.075646 (-0.062630) | 0.372849 / 0.419271 (-0.046422) | 0.059386 / 0.043533 (0.015853) | 0.381398 / 0.255139 (0.126259) | 0.367603 / 0.283200 (0.084403) | 0.033907 / 0.141683 (-0.107775) | 1.628903 / 1.452155 (0.176749) | 1.764131 / 1.492716 (0.271415) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298329 / 0.018006 (0.280322) | 0.593030 / 0.000490 (0.592540) | 0.007653 / 0.000200 (0.007453) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025445 / 0.037411 (-0.011966) | 0.112062 / 0.014526 (0.097536) | 0.119863 / 0.176557 (-0.056693) | 0.178389 / 0.737135 (-0.558746) | 0.129934 / 0.296338 (-0.166404) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.532834 / 0.215209 (0.317625) | 5.250908 / 2.077655 (3.173253) | 2.086920 / 1.504120 (0.582800) | 1.799745 / 1.541195 (0.258550) | 1.909648 / 1.468490 (0.441158) | 0.825382 / 4.584777 (-3.759395) | 5.268304 / 3.745712 (1.522592) | 2.533347 / 5.269862 (-2.736515) | 1.730187 / 4.565676 (-2.835490) | 0.099824 / 0.424275 (-0.324451) | 0.012969 / 0.007607 (0.005362) | 0.732234 / 0.226044 (0.506189) | 6.989066 / 2.268929 (4.720138) | 2.873486 / 55.444624 (-52.571138) | 2.274351 / 6.876477 (-4.602125) | 2.311060 / 2.142072 (0.168987) | 1.125366 / 4.805227 (-3.679861) | 0.214522 / 6.500664 (-6.286142) | 0.077579 / 0.075469 (0.002110) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.670950 / 1.841788 (-0.170838) | 18.131528 / 8.074308 (10.057220) | 21.277823 / 10.191392 (11.086431) | 0.238807 / 0.680424 (-0.441617) | 0.032251 / 0.534201 (-0.501950) | 0.503859 / 0.579283 (-0.075424) | 0.604825 / 0.434364 (0.170461) | 0.555623 / 0.540337 (0.015286) | 0.647301 / 1.386936 (-0.739635) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010857 / 0.011353 (-0.000496) | 0.005581 / 0.011008 (-0.005427) | 0.094346 / 0.038508 (0.055838) | 0.053084 / 0.023109 (0.029975) | 0.457586 / 0.275898 (0.181688) | 0.545475 / 0.323480 (0.221995) | 0.006761 / 0.007986 (-0.001225) | 0.005094 / 0.004328 (0.000765) | 0.095509 / 0.004250 (0.091258) | 0.077182 / 0.037052 (0.040130) | 0.498717 / 0.258489 (0.240228) | 0.542433 / 0.293841 (0.248592) | 0.051547 / 0.128546 (-0.076999) | 0.014633 / 0.075646 (-0.061014) | 0.106843 / 0.419271 (-0.312428) | 0.068459 / 0.043533 (0.024926) | 0.435793 / 0.255139 (0.180654) | 0.475484 / 0.283200 (0.192285) | 0.039495 / 0.141683 (-0.102188) | 1.684906 / 1.452155 (0.232751) | 1.798693 / 1.492716 (0.305976) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.279853 / 0.018006 (0.261847) | 0.601016 / 0.000490 (0.600526) | 0.002055 / 0.000200 (0.001855) | 0.000219 / 0.000054 (0.000165) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030935 / 0.037411 (-0.006477) | 0.121197 / 0.014526 (0.106671) | 0.143360 / 0.176557 (-0.033197) | 0.200862 / 0.737135 (-0.536274) | 0.138656 / 0.296338 (-0.157683) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.613904 / 0.215209 (0.398695) | 6.155422 / 2.077655 (4.077767) | 2.777238 / 1.504120 (1.273118) | 2.473045 / 1.541195 (0.931851) | 2.604470 / 1.468490 (1.135980) | 0.898871 / 4.584777 (-3.685906) | 5.739666 / 3.745712 (1.993954) | 4.719822 / 5.269862 (-0.550040) | 2.727354 / 4.565676 (-1.838322) | 0.108232 / 0.424275 (-0.316043) | 0.013632 / 0.007607 (0.006025) | 0.771802 / 0.226044 (0.545757) | 7.987466 / 2.268929 (5.718537) | 3.609856 / 55.444624 (-51.834768) | 2.974421 / 6.876477 (-3.902056) | 2.956567 / 2.142072 (0.814495) | 1.093792 / 4.805227 (-3.711435) | 0.213369 / 6.500664 (-6.287295) | 0.084486 / 0.075469 (0.009017) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.693855 / 1.841788 (-0.147933) | 18.055027 / 8.074308 (9.980719) | 21.397964 / 10.191392 (11.206571) | 0.240549 / 0.680424 (-0.439875) | 0.031212 / 0.534201 (-0.502989) | 0.513657 / 0.579283 (-0.065626) | 0.651348 / 0.434364 (0.216985) | 0.603740 / 0.540337 (0.063402) | 0.752287 / 1.386936 (-0.634649) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6f3f38d00dd40a444ae54c18caa28304ae36b9c3 \"CML watermark\")\n"
] | "2023-06-13T13:03:19Z" | "2023-06-27T16:47:51Z" | "2023-06-27T16:38:32Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5949.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5949",
"merged_at": "2023-06-27T16:38:32Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5949.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5949"
} | Use `huggingface_hub`'s RepoCard API instead of `DatasetMetadata` for modifying the card's YAML, and deprecate `datasets.utils.metadata` and `datasets.utils.readme`.
After removing these modules, we can also delete `datasets.utils.resources` since the moon landing repo now stores its own version of these resources for the metadata UI.
PS: this change requires bumping `huggingface_hub` to 0.13.0 (Transformers requires 0.14.0, so should be ok) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5949/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5949/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2690 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2690/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2690/comments | https://api.github.com/repos/huggingface/datasets/issues/2690/events | https://github.com/huggingface/datasets/pull/2690 | 949,574,500 | MDExOlB1bGxSZXF1ZXN0Njk0MjU5MDc1 | 2,690 | Docs details | {
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo"
} | [] | closed | false | null | [] | null | [
"Thanks for all the comments and for the corrections in the docs !\r\n\r\nAbout all the points you mentioned:\r\n\r\n> * the code samples assume the expected libraries have already been installed. Maybe add a section at start, or add it to every code sample. Something like `pip install datasets transformers torch 'datasets[streaming]'` (maybe just link to https://huggingface.co/docs/datasets/installation.html + a one-liner that installs all the requirements / alternatively a requirements.txt file)\r\n\r\nYes good idea\r\n\r\n> * \"If you’d like to play with the examples, you must install it from source.\" in https://huggingface.co/docs/datasets/installation.html: it's not clear to me what this means (what are these \"examples\"?)\r\n\r\nIt refers to examples scripts inside the git repository of the library, see the `examples` folder in the `transformers` repo.\r\nWe don't have examples yet in the git repo of `datasets` as in transformers. So currently there are no examples. Maybe we can just remove this sentence from the docs for now\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html: \"or AWS bucket if it’s not already stored in the library\". It's the only place in the doc (aside from the docstring https://huggingface.co/docs/datasets/package_reference/loading_methods.html?highlight=aws bucket#datasets.list_datasets) where the \"AWS bucket\" is mentioned. It's not easy to understand what this means. Maybe explain more, and link to https://s3.amazonaws.com/datasets.huggingface.co and/or https://huggingface.co/docs/datasets/filesystems.html.\r\n\r\nThis is outdated and must be replaced by\r\n```\r\nor from the Hugging Face Hub if it’s not already stored in the library\r\n```\r\n\r\n> * example in https://huggingface.co/docs/datasets/loading_datasets.html#manually-downloading-files is obsoleted by [Enable auto-download for PAN-X / Wikiann domain in XTREME #2326](https://github.com/huggingface/datasets/pull/2326). Also: see [xtreme / pan-x cannot be downloaded #2691](https://github.com/huggingface/datasets/issues/2691) for a bug on this specific dataset.\r\n\r\nWe can replace the `XTREME` `PANX` dataste by `matinf` instead for example\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html#manually-downloading-files the doc says \"After you’ve downloaded the files, you can point to the folder hosting them locally with the data_dir argument as follows:\", but the following example does not show how to use `data_dir`\r\n\r\nLet's add `data_dir=\"path/to/your/downloaded/data\"` for example\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html#csv-files, it would be nice to have an URL to the csv loader reference (but I'm not sure there is one in the API reference). This comment applies in many places in the doc: I would want the API reference to contain doc for all the code/functions/classes... and I would want a lot more links inside the doc pointing to the API entries.\r\n\r\nCurrently there's no documentation for the CSV loader config. Maybe we can add the docstrings to the `CsvConfig` class to explain the parameters and how it works, and then redirect to the doc of this class in this section of the documentation.\r\n\r\n> * in the API reference (docstrings) I would prefer \"SOURCE\" to link to github instead of a copy of the code inside the docs site (eg. https://github.com/huggingface/datasets/blob/master/src/datasets/load.py#L711 instead of https://huggingface.co/docs/datasets/_modules/datasets/load.html#load_dataset)\r\n\r\nThis is the same as in `transformers`, not sure if this is a big issue\r\n\r\n> * it seems like not all the API is exposed in the doc. For example, there is no doc for [`disable_progress_bar`](https://github.com/huggingface/datasets/search?q=disable_progress_bar), see https://huggingface.co/docs/datasets/search.html?q=disable_progress_bar, even if the code contains docstrings. Does it mean that the function is not officially supported? (otherwise, maybe it also deserves a mention in https://huggingface.co/docs/datasets/package_reference/logging_methods.html)\r\n\r\nThe function `disable_progress_bar` should definitely be in the docs, thanks. We can add it to the logging methods\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html?highlight=most%20efficient%20format%20have%20json%20files%20consisting%20multiple%20json%20objects#json-files, \"The most efficient format is to have JSON files consisting of multiple JSON objects, one per line, representing individual data rows:\", maybe link to https://en.wikipedia.org/wiki/JSON_streaming#Line-delimited_JSON and give it a name (\"line-delimited JSON\"? \"JSON Lines\" as in https://huggingface.co/docs/datasets/processing.html#exporting-a-dataset-to-csv-json-parquet-or-to-python-objects ?)\r\n\r\nYes good idea !\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html, for the local files sections, it would be nice to provide sample csv / json / text files to download, so that it's easier for the reader to try to load them (instead: they won't try)\r\n\r\nSure why not. Moreover the csv loader now supports remote files so you could just run the code pass an an URL to the sample csv file.\r\n\r\n> * the doc explains how to shard a dataset, but does not explain why and when a dataset should be sharded (I have no idea... for [parallelizing](https://huggingface.co/docs/datasets/processing.html#multiprocessing)?). It does neither give an idea of the number of shards a dataset typically should have and why.\r\n\r\nThis can be used for distributed processing or just to use a percentage of the data. We can definitely give example of use cases\r\n\r\n> * the code example in https://huggingface.co/docs/datasets/processing.html#mapping-in-a-distributed-setting does not work, because `training_args` has not been defined before in the doc.\r\n\r\n`training_args` comes from `transformers`, it's a practical way to define all your arguments to train a model. Maybe we can just import it from `transformers` and use it with the default values\r\n\r\n"
] | "2021-07-21T10:43:14Z" | "2021-07-27T18:40:54Z" | "2021-07-27T18:40:54Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2690.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2690",
"merged_at": "2021-07-27T18:40:53Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2690.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2690"
} | Some comments here:
- the code samples assume the expected libraries have already been installed. Maybe add a section at start, or add it to every code sample. Something like `pip install datasets transformers torch 'datasets[streaming]'` (maybe just link to https://huggingface.co/docs/datasets/installation.html + a one-liner that installs all the requirements / alternatively a requirements.txt file)
- "If you’d like to play with the examples, you must install it from source." in https://huggingface.co/docs/datasets/installation.html: it's not clear to me what this means (what are these "examples"?)
- in https://huggingface.co/docs/datasets/loading_datasets.html: "or AWS bucket if it’s not already stored in the library". It's the only place in the doc (aside from the docstring https://huggingface.co/docs/datasets/package_reference/loading_methods.html?highlight=aws bucket#datasets.list_datasets) where the "AWS bucket" is mentioned. It's not easy to understand what this means. Maybe explain more, and link to https://s3.amazonaws.com/datasets.huggingface.co and/or https://huggingface.co/docs/datasets/filesystems.html.
- example in https://huggingface.co/docs/datasets/loading_datasets.html#manually-downloading-files is obsoleted by https://github.com/huggingface/datasets/pull/2326. Also: see https://github.com/huggingface/datasets/issues/2691 for a bug on this specific dataset.
- in https://huggingface.co/docs/datasets/loading_datasets.html#manually-downloading-files the doc says "After you’ve downloaded the files, you can point to the folder hosting them locally with the data_dir argument as follows:", but the following example does not show how to use `data_dir`
- in https://huggingface.co/docs/datasets/loading_datasets.html#csv-files, it would be nice to have an URL to the csv loader reference (but I'm not sure there is one in the API reference). This comment applies in many places in the doc: I would want the API reference to contain doc for all the code/functions/classes... and I would want a lot more links inside the doc pointing to the API entries.
- in the API reference (docstrings) I would prefer "SOURCE" to link to github instead of a copy of the code inside the docs site (eg. https://github.com/huggingface/datasets/blob/master/src/datasets/load.py#L711 instead of https://huggingface.co/docs/datasets/_modules/datasets/load.html#load_dataset)
- it seems like not all the API is exposed in the doc. For example, there is no doc for [`disable_progress_bar`](https://github.com/huggingface/datasets/search?q=disable_progress_bar), see https://huggingface.co/docs/datasets/search.html?q=disable_progress_bar, even if the code contains docstrings. Does it mean that the function is not officially supported? (otherwise, maybe it also deserves a mention in https://huggingface.co/docs/datasets/package_reference/logging_methods.html)
- in https://huggingface.co/docs/datasets/loading_datasets.html?highlight=most%20efficient%20format%20have%20json%20files%20consisting%20multiple%20json%20objects#json-files, "The most efficient format is to have JSON files consisting of multiple JSON objects, one per line, representing individual data rows:", maybe link to https://en.wikipedia.org/wiki/JSON_streaming#Line-delimited_JSON and give it a name ("line-delimited JSON"? "JSON Lines" as in https://huggingface.co/docs/datasets/processing.html#exporting-a-dataset-to-csv-json-parquet-or-to-python-objects ?)
- in https://huggingface.co/docs/datasets/loading_datasets.html, for the local files sections, it would be nice to provide sample csv / json / text files to download, so that it's easier for the reader to try to load them (instead: they won't try)
- the doc explains how to shard a dataset, but does not explain why and when a dataset should be sharded (I have no idea... for [parallelizing](https://huggingface.co/docs/datasets/processing.html#multiprocessing)?). It does neither give an idea of the number of shards a dataset typically should have and why.
- the code example in https://huggingface.co/docs/datasets/processing.html#mapping-in-a-distributed-setting does not work, because `training_args` has not been defined before in the doc. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2690/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2690/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4198 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4198/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4198/comments | https://api.github.com/repos/huggingface/datasets/issues/4198/events | https://github.com/huggingface/datasets/issues/4198 | 1,211,456,559 | I_kwDODunzps5INVwv | 4,198 | There is no dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/1625647?v=4",
"events_url": "https://api.github.com/users/wilfoderek/events{/privacy}",
"followers_url": "https://api.github.com/users/wilfoderek/followers",
"following_url": "https://api.github.com/users/wilfoderek/following{/other_user}",
"gists_url": "https://api.github.com/users/wilfoderek/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/wilfoderek",
"id": 1625647,
"login": "wilfoderek",
"node_id": "MDQ6VXNlcjE2MjU2NDc=",
"organizations_url": "https://api.github.com/users/wilfoderek/orgs",
"received_events_url": "https://api.github.com/users/wilfoderek/received_events",
"repos_url": "https://api.github.com/users/wilfoderek/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/wilfoderek/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wilfoderek/subscriptions",
"type": "User",
"url": "https://api.github.com/users/wilfoderek"
} | [] | closed | false | null | [] | null | [] | "2022-04-21T19:19:26Z" | "2022-05-03T11:29:05Z" | "2022-04-22T06:12:25Z" | NONE | null | null | null | ## Dataset viewer issue for '*name of the dataset*'
**Link:** *link to the dataset viewer page*
*short description of the issue*
Am I the one who added this dataset ? Yes-No
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4198/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4198/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/3158 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3158/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3158/comments | https://api.github.com/repos/huggingface/datasets/issues/3158/events | https://github.com/huggingface/datasets/pull/3158 | 1,035,158,070 | PR_kwDODunzps4toGpe | 3,158 | Fix string encoding for Value type | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"That was fast! \r\n"
] | "2021-10-25T13:44:13Z" | "2021-10-25T14:12:06Z" | "2021-10-25T14:12:05Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3158.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3158",
"merged_at": "2021-10-25T14:12:05Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3158.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3158"
} | Some metrics have `string` features but currently it fails if users pass integers instead. Indeed feature encoding that handles the conversion of the user's objects to the right python type is missing a case for `string`, while it already works as expected for integers, floats and booleans
Here is an example code that didn't work previously, but that works with this fix:
```python
import datasets
# Note that 'id' is an integer while the SQuAD metric uses strings
predictions = [{'prediction_text': '1976', 'id': 5}]
references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': 5}]
squad_metric = datasets.load_metric("squad")
squad_metric.add_batch(predictions=predictions, references=references)
results = squad_metric.compute()
# {'exact_match': 100.0, 'f1': 100.0}
```
cc @sgugger @philschmid | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 2,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3158/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3158/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3795 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3795/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3795/comments | https://api.github.com/repos/huggingface/datasets/issues/3795/events | https://github.com/huggingface/datasets/issues/3795 | 1,153,261,281 | I_kwDODunzps5EvV7h | 3,795 | can not flatten natural_questions dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/38466901?v=4",
"events_url": "https://api.github.com/users/Hannibal046/events{/privacy}",
"followers_url": "https://api.github.com/users/Hannibal046/followers",
"following_url": "https://api.github.com/users/Hannibal046/following{/other_user}",
"gists_url": "https://api.github.com/users/Hannibal046/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Hannibal046",
"id": 38466901,
"login": "Hannibal046",
"node_id": "MDQ6VXNlcjM4NDY2OTAx",
"organizations_url": "https://api.github.com/users/Hannibal046/orgs",
"received_events_url": "https://api.github.com/users/Hannibal046/received_events",
"repos_url": "https://api.github.com/users/Hannibal046/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Hannibal046/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Hannibal046/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Hannibal046"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
}
] | null | [
"same issue. downgrade it to a lower version.",
"Thanks for reporting, I'll take a look tomorrow :)"
] | "2022-02-27T13:57:40Z" | "2022-03-21T14:36:12Z" | "2022-03-21T14:36:12Z" | NONE | null | null | null | ## Describe the bug
after downloading the natural_questions dataset, can not flatten the dataset considering there are `long answer` and `short answer` in `annotations`.
## Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset('natural_questions',cache_dir = 'data/dataset_cache_dir')
dataset['train'].flatten()
```
## Expected results
a dataset with `long_answer` as features
## Actual results
Traceback (most recent call last):
File "temp.py", line 5, in <module>
dataset['train'].flatten()
File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/fingerprint.py", line 413, in wrapper
out = func(self, *args, **kwargs)
File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1296, in flatten
dataset._data = update_metadata_with_features(dataset._data, dataset.features)
File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 536, in update_metadata_with_features
features = Features({col_name: features[col_name] for col_name in table.column_names})
File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 536, in <dictcomp>
features = Features({col_name: features[col_name] for col_name in table.column_names})
KeyError: 'annotations.long_answer'
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.8.13
- Platform: MBP
- Python version: 3.8
- PyArrow version: 6.0.1
| {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3795/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3795/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4465 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4465/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4465/comments | https://api.github.com/repos/huggingface/datasets/issues/4465/events | https://github.com/huggingface/datasets/pull/4465 | 1,265,754,479 | PR_kwDODunzps45X0XY | 4,465 | Fix bigbench config names | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | "2022-06-09T08:06:19Z" | "2022-06-09T14:38:36Z" | "2022-06-09T14:29:19Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4465.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4465",
"merged_at": "2022-06-09T14:29:18Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4465.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4465"
} | Fix https://github.com/huggingface/datasets/issues/4462 in the case of bigbench | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4465/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4465/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3983 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3983/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3983/comments | https://api.github.com/repos/huggingface/datasets/issues/3983/events | https://github.com/huggingface/datasets/issues/3983 | 1,175,759,412 | I_kwDODunzps5GFKo0 | 3,983 | Infinitely attempting lock | {
"avatar_url": "https://avatars.githubusercontent.com/u/11869652?v=4",
"events_url": "https://api.github.com/users/jyrr/events{/privacy}",
"followers_url": "https://api.github.com/users/jyrr/followers",
"following_url": "https://api.github.com/users/jyrr/following{/other_user}",
"gists_url": "https://api.github.com/users/jyrr/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/jyrr",
"id": 11869652,
"login": "jyrr",
"node_id": "MDQ6VXNlcjExODY5NjUy",
"organizations_url": "https://api.github.com/users/jyrr/orgs",
"received_events_url": "https://api.github.com/users/jyrr/received_events",
"repos_url": "https://api.github.com/users/jyrr/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/jyrr/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jyrr/subscriptions",
"type": "User",
"url": "https://api.github.com/users/jyrr"
} | [] | closed | false | null | [] | null | [
"Hi ! Thanks for reporting. We're using `py-filelock` as our locking mechanism.\r\n\r\nCan you try deleting the .lock file mentioned in the logs and try again ? Make sure that no other process is generating the `cnn_dailymail` dataset.\r\n\r\nIf it doesn't work, could you try to set up a lock using the latest version of `py-filelock` and see if it works ?\r\n\r\n```\r\npip install filelock\r\n```\r\nhere is a code example from the `py-filelock` documentation that you can try:\r\n```python\r\nfrom filelock import Timeout, FileLock\r\n\r\nlock = FileLock(\"high_ground.txt.lock\")\r\nwith lock:\r\n with open(\"high_ground.txt\", \"a\") as f:\r\n f.write(\"You were the chosen one.\")\r\n```"
] | "2022-03-21T18:11:57Z" | "2022-05-06T16:12:18Z" | "2022-05-06T16:12:18Z" | NONE | null | null | null | I am trying to run one of the examples of the `transformers` repo, which makes use of `datasets`.
Important to note is that I am trying to run this via a Databricks notebook, and all the files reside in the Databricks Filesystem (DBFS).
```
%sh
python /dbfs/transformers/examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /dbfs/transformers/tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate \
--log_level debug \
--cache_dir /dbfs/transformers/cache
```
All goes well until acquiring a lock --
```
03/21/2022 17:53:19 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock
03/21/2022 17:53:19 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ...
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ...
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ...
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ...
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ...
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock
03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ...
```
and so on.
I imagine this has to do with DBFS -- is there a way to tackle this? | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3983/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3983/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4988 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4988/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4988/comments | https://api.github.com/repos/huggingface/datasets/issues/4988/events | https://github.com/huggingface/datasets/issues/4988 | 1,376,096,584 | I_kwDODunzps5SBZFI | 4,988 | Add `IterableDataset.from_generator` to the API | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
},
{
"color": "7057ff",
"default": true,
"description": "Good for newcomers",
"id": 1935892877,
"name": "good first issue",
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/56002455?v=4",
"events_url": "https://api.github.com/users/hamid-vakilzadeh/events{/privacy}",
"followers_url": "https://api.github.com/users/hamid-vakilzadeh/followers",
"following_url": "https://api.github.com/users/hamid-vakilzadeh/following{/other_user}",
"gists_url": "https://api.github.com/users/hamid-vakilzadeh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/hamid-vakilzadeh",
"id": 56002455,
"login": "hamid-vakilzadeh",
"node_id": "MDQ6VXNlcjU2MDAyNDU1",
"organizations_url": "https://api.github.com/users/hamid-vakilzadeh/orgs",
"received_events_url": "https://api.github.com/users/hamid-vakilzadeh/received_events",
"repos_url": "https://api.github.com/users/hamid-vakilzadeh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/hamid-vakilzadeh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hamid-vakilzadeh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/hamid-vakilzadeh"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/56002455?v=4",
"events_url": "https://api.github.com/users/hamid-vakilzadeh/events{/privacy}",
"followers_url": "https://api.github.com/users/hamid-vakilzadeh/followers",
"following_url": "https://api.github.com/users/hamid-vakilzadeh/following{/other_user}",
"gists_url": "https://api.github.com/users/hamid-vakilzadeh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/hamid-vakilzadeh",
"id": 56002455,
"login": "hamid-vakilzadeh",
"node_id": "MDQ6VXNlcjU2MDAyNDU1",
"organizations_url": "https://api.github.com/users/hamid-vakilzadeh/orgs",
"received_events_url": "https://api.github.com/users/hamid-vakilzadeh/received_events",
"repos_url": "https://api.github.com/users/hamid-vakilzadeh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/hamid-vakilzadeh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hamid-vakilzadeh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/hamid-vakilzadeh"
}
] | null | [
"#take",
"Thanks @hamid-vakilzadeh ! Let us know if you have some questions or if we can help",
"Thank you! I certainly will reach out if I need any help."
] | "2022-09-16T15:19:41Z" | "2022-10-05T12:10:49Z" | "2022-10-05T12:10:49Z" | CONTRIBUTOR | null | null | null | We've just added `Dataset.from_generator` to the API. It would also be cool to add `IterableDataset.from_generator` to support creating an iterable dataset from a generator.
cc @lhoestq | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4988/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4988/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5904 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5904/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5904/comments | https://api.github.com/repos/huggingface/datasets/issues/5904/events | https://github.com/huggingface/datasets/pull/5904 | 1,727,415,626 | PR_kwDODunzps5Rbfks | 5,904 | Validate name parameter in make_file_instructions | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007401 / 0.011353 (-0.003952) | 0.005198 / 0.011008 (-0.005810) | 0.112317 / 0.038508 (0.073809) | 0.038406 / 0.023109 (0.015297) | 0.358008 / 0.275898 (0.082110) | 0.395350 / 0.323480 (0.071870) | 0.006201 / 0.007986 (-0.001785) | 0.004368 / 0.004328 (0.000039) | 0.087718 / 0.004250 (0.083467) | 0.055299 / 0.037052 (0.018247) | 0.350481 / 0.258489 (0.091992) | 0.419876 / 0.293841 (0.126035) | 0.032459 / 0.128546 (-0.096087) | 0.010635 / 0.075646 (-0.065011) | 0.383282 / 0.419271 (-0.035989) | 0.059241 / 0.043533 (0.015708) | 0.365101 / 0.255139 (0.109962) | 0.378144 / 0.283200 (0.094944) | 0.114287 / 0.141683 (-0.027396) | 1.680870 / 1.452155 (0.228715) | 1.788183 / 1.492716 (0.295467) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242919 / 0.018006 (0.224913) | 0.489850 / 0.000490 (0.489360) | 0.011408 / 0.000200 (0.011208) | 0.000444 / 0.000054 (0.000389) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030742 / 0.037411 (-0.006669) | 0.123092 / 0.014526 (0.108566) | 0.138246 / 0.176557 (-0.038311) | 0.207299 / 0.737135 (-0.529836) | 0.142647 / 0.296338 (-0.153691) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472553 / 0.215209 (0.257344) | 4.671763 / 2.077655 (2.594108) | 2.119986 / 1.504120 (0.615866) | 1.891851 / 1.541195 (0.350656) | 1.979094 / 1.468490 (0.510604) | 0.617956 / 4.584777 (-3.966821) | 4.969418 / 3.745712 (1.223706) | 4.672083 / 5.269862 (-0.597779) | 2.119049 / 4.565676 (-2.446627) | 0.077466 / 0.424275 (-0.346809) | 0.014434 / 0.007607 (0.006827) | 0.580746 / 0.226044 (0.354701) | 5.805458 / 2.268929 (3.536530) | 2.622498 / 55.444624 (-52.822126) | 2.259499 / 6.876477 (-4.616978) | 2.362078 / 2.142072 (0.220006) | 0.719911 / 4.805227 (-4.085317) | 0.164939 / 6.500664 (-6.335725) | 0.074762 / 0.075469 (-0.000707) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.496709 / 1.841788 (-0.345079) | 18.247499 / 8.074308 (10.173191) | 15.397075 / 10.191392 (5.205683) | 0.181163 / 0.680424 (-0.499261) | 0.022604 / 0.534201 (-0.511597) | 0.462791 / 0.579283 (-0.116492) | 0.504473 / 0.434364 (0.070109) | 0.582254 / 0.540337 (0.041917) | 0.673849 / 1.386936 (-0.713087) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007633 / 0.011353 (-0.003720) | 0.004859 / 0.011008 (-0.006149) | 0.091194 / 0.038508 (0.052686) | 0.038255 / 0.023109 (0.015146) | 0.460972 / 0.275898 (0.185074) | 0.470441 / 0.323480 (0.146961) | 0.006482 / 0.007986 (-0.001504) | 0.004500 / 0.004328 (0.000172) | 0.089998 / 0.004250 (0.085748) | 0.055470 / 0.037052 (0.018418) | 0.459188 / 0.258489 (0.200699) | 0.491255 / 0.293841 (0.197414) | 0.032200 / 0.128546 (-0.096346) | 0.010372 / 0.075646 (-0.065274) | 0.097429 / 0.419271 (-0.321843) | 0.052469 / 0.043533 (0.008936) | 0.452492 / 0.255139 (0.197353) | 0.475210 / 0.283200 (0.192010) | 0.116976 / 0.141683 (-0.024707) | 1.752742 / 1.452155 (0.300587) | 1.849535 / 1.492716 (0.356819) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229822 / 0.018006 (0.211816) | 0.472259 / 0.000490 (0.471770) | 0.000455 / 0.000200 (0.000255) | 0.000067 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033796 / 0.037411 (-0.003615) | 0.136151 / 0.014526 (0.121625) | 0.144015 / 0.176557 (-0.032542) | 0.199337 / 0.737135 (-0.537798) | 0.150024 / 0.296338 (-0.146315) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.522737 / 0.215209 (0.307528) | 5.165223 / 2.077655 (3.087568) | 2.630334 / 1.504120 (1.126214) | 2.392383 / 1.541195 (0.851188) | 2.488966 / 1.468490 (1.020476) | 0.608981 / 4.584777 (-3.975796) | 4.711545 / 3.745712 (0.965833) | 2.121537 / 5.269862 (-3.148325) | 1.205477 / 4.565676 (-3.360199) | 0.078277 / 0.424275 (-0.345998) | 0.014175 / 0.007607 (0.006568) | 0.640720 / 0.226044 (0.414675) | 6.391173 / 2.268929 (4.122245) | 3.265131 / 55.444624 (-52.179493) | 2.939188 / 6.876477 (-3.937289) | 2.919217 / 2.142072 (0.777145) | 0.745095 / 4.805227 (-4.060132) | 0.164065 / 6.500664 (-6.336599) | 0.076993 / 0.075469 (0.001524) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.539971 / 1.841788 (-0.301817) | 18.597296 / 8.074308 (10.522988) | 16.899330 / 10.191392 (6.707938) | 0.169005 / 0.680424 (-0.511419) | 0.020447 / 0.534201 (-0.513754) | 0.465862 / 0.579283 (-0.113421) | 0.522819 / 0.434364 (0.088455) | 0.547111 / 0.540337 (0.006773) | 0.657777 / 1.386936 (-0.729159) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#56aff9ecb4e565eb95faad525558914648cc22f1 \"CML watermark\")\n"
] | "2023-05-26T11:12:46Z" | "2023-05-31T07:43:32Z" | "2023-05-31T07:34:57Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5904.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5904",
"merged_at": "2023-05-31T07:34:57Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5904.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5904"
} | Validate `name` parameter in `make_file_instructions`.
This way users get more informative error messages, instead of:
```stacktrace
.../huggingface/datasets/src/datasets/arrow_reader.py in make_file_instructions(name, split_infos, instruction, filetype_suffix, prefix_path)
110 name2len = {info.name: info.num_examples for info in split_infos}
111 name2shard_lengths = {info.name: info.shard_lengths for info in split_infos}
--> 112 name2filenames = {
113 info.name: filenames_for_dataset_split(
114 path=prefix_path,
.../huggingface/datasets/src/datasets/arrow_reader.py in <dictcomp>(.0)
111 name2shard_lengths = {info.name: info.shard_lengths for info in split_infos}
112 name2filenames = {
--> 113 info.name: filenames_for_dataset_split(
114 path=prefix_path,
115 dataset_name=name,
.../huggingface/datasets/src/datasets/naming.py in filenames_for_dataset_split(path, dataset_name, split, filetype_suffix, shard_lengths)
68
69 def filenames_for_dataset_split(path, dataset_name, split, filetype_suffix=None, shard_lengths=None):
---> 70 prefix = filename_prefix_for_split(dataset_name, split)
71 prefix = os.path.join(path, prefix)
72
.../huggingface/datasets/src/datasets/naming.py in filename_prefix_for_split(name, split)
52
53 def filename_prefix_for_split(name, split):
---> 54 if os.path.basename(name) != name:
55 raise ValueError(f"Should be a dataset name, not a path: {name}")
56 if not re.match(_split_re, split):
.../lib/python3.9/posixpath.py in basename(p)
140 def basename(p):
141 """Returns the final component of a pathname"""
--> 142 p = os.fspath(p)
143 sep = _get_sep(p)
144 i = p.rfind(sep) + 1
TypeError: expected str, bytes or os.PathLike object, not NoneType
```
Related to #5895. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5904/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5904/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3465 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3465/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3465/comments | https://api.github.com/repos/huggingface/datasets/issues/3465/events | https://github.com/huggingface/datasets/issues/3465 | 1,085,400,432 | I_kwDODunzps5AseVw | 3,465 | Unable to load 'cnn_dailymail' dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/42352729?v=4",
"events_url": "https://api.github.com/users/talha1503/events{/privacy}",
"followers_url": "https://api.github.com/users/talha1503/followers",
"following_url": "https://api.github.com/users/talha1503/following{/other_user}",
"gists_url": "https://api.github.com/users/talha1503/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/talha1503",
"id": 42352729,
"login": "talha1503",
"node_id": "MDQ6VXNlcjQyMzUyNzI5",
"organizations_url": "https://api.github.com/users/talha1503/orgs",
"received_events_url": "https://api.github.com/users/talha1503/received_events",
"repos_url": "https://api.github.com/users/talha1503/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/talha1503/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/talha1503/subscriptions",
"type": "User",
"url": "https://api.github.com/users/talha1503"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
},
{
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists",
"id": 1935892865,
"name": "duplicate",
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate"
},
{
"color": "2edb81",
"default": false,
"description": "A bug in a dataset script provided in the library",
"id": 2067388877,
"name": "dataset bug",
"node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug"
}
] | closed | false | null | [] | null | [
"Hi @talha1503, thanks for reporting.\r\n\r\nIt seems there is an issue with one of the data files hosted at Google Drive:\r\n```\r\nGoogle Drive - Quota exceeded\r\n\r\nSorry, you can't view or download this file at this time.\r\n\r\nToo many users have viewed or downloaded this file recently. Please try accessing the file again later. If the file you are trying to access is particularly large or is shared with many people, it may take up to 24 hours to be able to view or download the file. If you still can't access a file after 24 hours, contact your domain administrator.\r\n```\r\n\r\nAs you probably know, Hugging Face does not host the data, and in this case the data owner decided to host their data at Google Drive, which has quota limits.\r\n\r\nIs there anything we could do, @lhoestq @mariosasko?",
"This looks related to https://github.com/huggingface/datasets/issues/996",
"It seems that [this](https://huggingface.co/datasets/ccdv/cnn_dailymail) copy of the dataset has fixed the problem"
] | "2021-12-21T03:32:21Z" | "2022-02-17T14:13:57Z" | "2022-02-17T14:13:57Z" | NONE | null | null | null | ## Describe the bug
I wanted to load cnn_dailymail dataset from huggingface datasets on Google Colab, but I am getting an error while loading it.
## Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset('cnn_dailymail', '3.0.0', ignore_verifications = True)
```
## Expected results
Expecting to load 'cnn_dailymail' dataset.
## Actual results
`NotADirectoryError: [Errno 20] Not a directory: '/root/.cache/huggingface/datasets/downloads/1bc05d24fa6dda2468e83a73cf6dc207226e01e3c48a507ea716dc0421da583b/cnn/stories'`
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.16.1
- Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.12
- PyArrow version: 3.0.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3465/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3465/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6293 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6293/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6293/comments | https://api.github.com/repos/huggingface/datasets/issues/6293/events | https://github.com/huggingface/datasets/issues/6293 | 1,937,238,047 | I_kwDODunzps5zd-gf | 6,293 | Choose columns to stream parquet data in streaming mode | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [] | "2023-10-11T08:59:36Z" | "2023-10-11T16:21:38Z" | "2023-10-11T16:21:38Z" | MEMBER | null | null | null | Currently passing columns= to load_dataset in streaming mode fails
```
Tried to load parquet data with columns '['link']' with mismatching features '{'caption': Value(dtype='string', id=None), 'image': {'bytes': Value(dtype='binary', id=None), 'path': Value(dtype='null', id=None)}, 'link': Value(dtype='string', id=None), 'message_id': Value(dtype='string', id=None), 'timestamp': Value(dtype='string', id=None)}'
```
similar to https://github.com/huggingface/datasets/issues/6039
reported at https://huggingface.co/datasets/laion/dalle-3-dataset/discussions/3#65259a09617407d4520f4ad9 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6293/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6293/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5011 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5011/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5011/comments | https://api.github.com/repos/huggingface/datasets/issues/5011/events | https://github.com/huggingface/datasets/issues/5011 | 1,382,609,587 | I_kwDODunzps5SaPKz | 5,011 | Audio: `encode_example` fails with IndexError | {
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sanchit-gandhi",
"id": 93869735,
"login": "sanchit-gandhi",
"node_id": "U_kgDOBZhWpw",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sanchit-gandhi"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"Sorry bug on my part 😅 Closing "
] | "2022-09-22T15:07:27Z" | "2022-09-23T09:05:18Z" | "2022-09-23T09:05:18Z" | CONTRIBUTOR | null | null | null | ## Describe the bug
Loading the dataset [earnings-22](https://huggingface.co/datasets/sanchit-gandhi/earnings22_split) from the Hub yields an Index Error. I created this dataset locally and then pushed to hub at the specified URL. Thus, I expect the dataset should work out-of-the-box! Indeed, the dataset viewer functions correctly, and there were no issues when I had the dataset locally.
Don't think it's a sound file bug as the version matches what worked previously.
Update: the bug appeared for me on a GPU, mysteriously on a TPU I can't repro and it downloads correctly...
## Steps to reproduce the bug
```python
from datasets import load_dataset
earnings22 = load_dataset("sanchit-gandhi/earnings22_split")
```
## Expected results
```
>>> earnings22
DatasetDict({
validation: Dataset({
features: ['source_id', 'audio', 'segment_id', 'sentence', 'start_ts', 'end_ts', 'id'],
num_rows: 2650
})
train: Dataset({
features: ['source_id', 'audio', 'segment_id', 'sentence', 'start_ts', 'end_ts', 'id'],
num_rows: 52006
})
test: Dataset({
features: ['source_id', 'audio', 'segment_id', 'sentence', 'start_ts', 'end_ts', 'id'],
num_rows: 2735
})
})
```
## Actual results
```
Traceback (most recent call last):
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 2764, in _map_single
writer.write(example)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_writer.py", line 451, in write
self.write_examples_on_file()
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_writer.py", line 409, in write_examples_on_file
self.write_batch(batch_examples=batch_examples)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_writer.py", line 508, in write_batch
arrays.append(pa.array(typed_sequence))
File "pyarrow/array.pxi", line 231, in pyarrow.lib.array
File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_writer.py", line 197, in __arrow_array__
out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/table.py", line 1683, in wrapper
return func(array, *args, **kwargs)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/table.py", line 1795, in cast_array_to_feature
return feature.cast_storage(array)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/features/audio.py", line 190, in cast_storage
storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()])
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/features/audio.py", line 190, in <listcomp>
storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()])
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/features/audio.py", line 92, in encode_example
sf.write(buffer, value["array"], value["sampling_rate"], format="wav")
File "/opt/conda/envs/hf/lib/python3.8/site-packages/soundfile.py", line 313, in write
channels = data.shape[1]
IndexError: tuple index out of range
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.4.0
- Platform: Linux-4.19.0-21-cloud-amd64-x86_64-with-glibc2.10
- Python version: 3.8.13
- PyArrow version: 9.0.0
- Pandas version: 1.4.3
Plus:
- SoundFile version: 0.10.3.post1
cc @lhoestq @polinaeterna | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5011/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5011/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5273 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5273/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5273/comments | https://api.github.com/repos/huggingface/datasets/issues/5273/events | https://github.com/huggingface/datasets/issues/5273 | 1,458,018,050 | I_kwDODunzps5W55cC | 5,273 | download_mode="force_redownload" does not refresh cached dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/28439912?v=4",
"events_url": "https://api.github.com/users/nomisto/events{/privacy}",
"followers_url": "https://api.github.com/users/nomisto/followers",
"following_url": "https://api.github.com/users/nomisto/following{/other_user}",
"gists_url": "https://api.github.com/users/nomisto/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/nomisto",
"id": 28439912,
"login": "nomisto",
"node_id": "MDQ6VXNlcjI4NDM5OTEy",
"organizations_url": "https://api.github.com/users/nomisto/orgs",
"received_events_url": "https://api.github.com/users/nomisto/received_events",
"repos_url": "https://api.github.com/users/nomisto/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/nomisto/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nomisto/subscriptions",
"type": "User",
"url": "https://api.github.com/users/nomisto"
} | [] | open | false | null | [] | null | [] | "2022-11-21T14:12:43Z" | "2022-11-21T14:13:03Z" | null | NONE | null | null | null | ### Describe the bug
`load_datasets` does not refresh dataset when features are imported from external file, even with `download_mode="force_redownload"`. The bug is not limited to nested fields, however it is more likely to occur with nested fields.
### Steps to reproduce the bug
To reproduce the bug 3 files are needed: `dataset.py` (contains dataset loading script), `schema.py` (contains features of dataset) and `main.py` (to run `load_datasets`)
`dataset.py`
```python
import datasets
from schema import features
class NewDataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=features
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN
)
]
def _generate_examples(self):
data = [
{"id": 0, "nested": []},
{"id": 1, "nested": []}
]
for key, example in enumerate(data):
yield key, example
```
`schema.py`
```python
import datasets
features = datasets.Features(
{
"id": datasets.Value("int32"),
"nested": [
{"text": datasets.Value("string")}
]
}
)
```
`main.py`
```python
import datasets
a = datasets.load_dataset("dataset.py")
print(a["train"].info.features)
```
Now if `main.py` is run it prints the following correct output: `{'id': Value(dtype='int32', id=None), 'nested': [{'text': Value(dtype='string', id=None)}]}`. However, if f.e. the label of the feature "text" is changed to something else, f.e. to
`schema.py`
```python
import datasets
features = datasets.Features(
{
"id": datasets.Value("int32"),
"nested": [
{"textfoo": datasets.Value("string")}
]
}
)
```
`main.py` still prints `{'id': Value(dtype='int32', id=None), 'nested': [{'text': Value(dtype='string', id=None)}]}`, even if run with `download_mode="force_redownload"`. The only fix is to delete the folder in the cache.
### Expected behavior
The cached dataset is deleted and refreshed when using `load_datasets` with `download_mode="force_redownload"`.
### Environment info
- `datasets` version: 2.7.0
- Platform: Windows-10-10.0.19041-SP0
- Python version: 3.7.9
- PyArrow version: 10.0.0
- Pandas version: 1.3.5 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5273/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5273/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5726 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5726/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5726/comments | https://api.github.com/repos/huggingface/datasets/issues/5726/events | https://github.com/huggingface/datasets/issues/5726 | 1,660,944,807 | I_kwDODunzps5jAAGn | 5,726 | Fallback JSON Dataset loading does not load all values when features specified manually | {
"avatar_url": "https://avatars.githubusercontent.com/u/3610788?v=4",
"events_url": "https://api.github.com/users/myluki2000/events{/privacy}",
"followers_url": "https://api.github.com/users/myluki2000/followers",
"following_url": "https://api.github.com/users/myluki2000/following{/other_user}",
"gists_url": "https://api.github.com/users/myluki2000/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/myluki2000",
"id": 3610788,
"login": "myluki2000",
"node_id": "MDQ6VXNlcjM2MTA3ODg=",
"organizations_url": "https://api.github.com/users/myluki2000/orgs",
"received_events_url": "https://api.github.com/users/myluki2000/received_events",
"repos_url": "https://api.github.com/users/myluki2000/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/myluki2000/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/myluki2000/subscriptions",
"type": "User",
"url": "https://api.github.com/users/myluki2000"
} | [] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [
"Thanks for reporting, @myluki2000.\r\n\r\nI am working on a fix."
] | "2023-04-10T15:22:14Z" | "2023-04-21T06:35:28Z" | "2023-04-21T06:35:28Z" | NONE | null | null | null | ### Describe the bug
The fallback JSON dataset loader located here:
https://github.com/huggingface/datasets/blob/1c4ec00511868bd881e84a6f7e0333648d833b8e/src/datasets/packaged_modules/json/json.py#L130-L153
does not load the values of features correctly when features are specified manually and not all features have a value in the first entry of the dataset. I'm pretty sure this is not supposed to be expected bahavior?
To fix this you'd have to change this line:
https://github.com/huggingface/datasets/blob/1c4ec00511868bd881e84a6f7e0333648d833b8e/src/datasets/packaged_modules/json/json.py#L140
To pass a schema to pyarrow which has the same structure as the features argument passed to the load_dataset() method.
### Steps to reproduce the bug
Consider a dataset JSON like this:
```
[
{
"instruction": "Do stuff",
"output": "Answer stuff"
},
{
"instruction": "Do stuff2",
"input": "Additional Input2",
"output": "Answer stuff2"
}
]
```
Using this code to load the dataset:
```
from datasets import load_dataset, Features, Value
features = {
"instruction": Value("string"),
"input": Value("string"),
"output": Value("string")
}
features = Features(features)
ds = load_dataset("json", data_files="./ds.json", features=features)
for row in ds["train"]:
print(row)
```
we get a dataset that looks like this:
| **Instruction** | **Input** | **Output** |
|-----------------|--------------------|-----------------|
| "Do stuff" | None | "Answer Stuff" |
| "Do stuff2" | None | "Answer Stuff2" |
### Expected behavior
The input column should contain values other than None for dataset entries that have the "input" attribute set:
| **Instruction** | **Input** | **Output** |
|-----------------|--------------------|-----------------|
| "Do stuff" | None | "Answer Stuff" |
| "Do stuff2" | "Additional Input2" | "Answer Stuff2" |
### Environment info
Python 3.10.10
Datasets 2.11.0
Windows 10 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5726/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5726/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/2694 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2694/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2694/comments | https://api.github.com/repos/huggingface/datasets/issues/2694/events | https://github.com/huggingface/datasets/pull/2694 | 949,844,722 | MDExOlB1bGxSZXF1ZXN0Njk0NDg0NTcy | 2,694 | fix: 🐛 change string format to allow copy/paste to work in bash | {
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo"
} | [] | closed | false | null | [] | null | [] | "2021-07-21T15:30:40Z" | "2021-07-22T10:41:47Z" | "2021-07-22T10:41:47Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2694.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2694",
"merged_at": "2021-07-22T10:41:47Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2694.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2694"
} | Before: copy/paste resulted in an error because the square bracket
characters `[]` are special characters in bash | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2694/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2694/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1628 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1628/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1628/comments | https://api.github.com/repos/huggingface/datasets/issues/1628/events | https://github.com/huggingface/datasets/pull/1628 | 774,091,411 | MDExOlB1bGxSZXF1ZXN0NTQ1MDY5NTAy | 1,628 | made suggested changes to hate-speech-and-offensive-language | {
"avatar_url": "https://avatars.githubusercontent.com/u/15351802?v=4",
"events_url": "https://api.github.com/users/MisbahKhan789/events{/privacy}",
"followers_url": "https://api.github.com/users/MisbahKhan789/followers",
"following_url": "https://api.github.com/users/MisbahKhan789/following{/other_user}",
"gists_url": "https://api.github.com/users/MisbahKhan789/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/MisbahKhan789",
"id": 15351802,
"login": "MisbahKhan789",
"node_id": "MDQ6VXNlcjE1MzUxODAy",
"organizations_url": "https://api.github.com/users/MisbahKhan789/orgs",
"received_events_url": "https://api.github.com/users/MisbahKhan789/received_events",
"repos_url": "https://api.github.com/users/MisbahKhan789/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/MisbahKhan789/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MisbahKhan789/subscriptions",
"type": "User",
"url": "https://api.github.com/users/MisbahKhan789"
} | [] | closed | false | null | [] | null | [] | "2020-12-23T23:25:32Z" | "2020-12-28T10:11:20Z" | "2020-12-28T10:11:20Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1628.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1628",
"merged_at": "2020-12-28T10:11:20Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1628.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1628"
} | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1628/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1628/timeline | null | null | true |
|
https://api.github.com/repos/huggingface/datasets/issues/4944 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4944/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4944/comments | https://api.github.com/repos/huggingface/datasets/issues/4944/events | https://github.com/huggingface/datasets/issues/4944 | 1,364,313,569 | I_kwDODunzps5RUcXh | 4,944 | larger dataset, larger GPU memory in the training phase? Is that correct? | {
"avatar_url": "https://avatars.githubusercontent.com/u/38886373?v=4",
"events_url": "https://api.github.com/users/debby1103/events{/privacy}",
"followers_url": "https://api.github.com/users/debby1103/followers",
"following_url": "https://api.github.com/users/debby1103/following{/other_user}",
"gists_url": "https://api.github.com/users/debby1103/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/debby1103",
"id": 38886373,
"login": "debby1103",
"node_id": "MDQ6VXNlcjM4ODg2Mzcz",
"organizations_url": "https://api.github.com/users/debby1103/orgs",
"received_events_url": "https://api.github.com/users/debby1103/received_events",
"repos_url": "https://api.github.com/users/debby1103/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/debby1103/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/debby1103/subscriptions",
"type": "User",
"url": "https://api.github.com/users/debby1103"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"does the trainer save it in GPU? sooo curious... how to fix it",
"It's my bad. didn't limit the input length"
] | "2022-09-07T08:46:30Z" | "2022-09-07T12:34:58Z" | "2022-09-07T12:34:58Z" | NONE | null | null | null | from datasets import set_caching_enabled
set_caching_enabled(False)
for ds_name in ["squad","newsqa","nqopen","narrativeqa"]:
train_ds = load_from_disk("../../../dall/downstream/processedproqa/{}-train.hf".format(ds_name))
break
train_ds = concatenate_datasets([train_ds,train_ds,train_ds,train_ds]) #operation 1
trainer = QuestionAnsweringTrainer( #huggingface trainer
model=model,
args=training_args,
train_dataset=train_ds,
eval_dataset= None,
eval_examples=None,
answer_column_name=answer_column,
dataset_name="squad",
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
with operation 1, the GPU memory increases from 16G to 23G | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4944/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4944/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/1574 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1574/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1574/comments | https://api.github.com/repos/huggingface/datasets/issues/1574/events | https://github.com/huggingface/datasets/pull/1574 | 767,015,317 | MDExOlB1bGxSZXF1ZXN0NTM5ODY1Mzcy | 1,574 | Diplomacy detection 3 | {
"avatar_url": "https://avatars.githubusercontent.com/u/15351802?v=4",
"events_url": "https://api.github.com/users/MisbahKhan789/events{/privacy}",
"followers_url": "https://api.github.com/users/MisbahKhan789/followers",
"following_url": "https://api.github.com/users/MisbahKhan789/following{/other_user}",
"gists_url": "https://api.github.com/users/MisbahKhan789/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/MisbahKhan789",
"id": 15351802,
"login": "MisbahKhan789",
"node_id": "MDQ6VXNlcjE1MzUxODAy",
"organizations_url": "https://api.github.com/users/MisbahKhan789/orgs",
"received_events_url": "https://api.github.com/users/MisbahKhan789/received_events",
"repos_url": "https://api.github.com/users/MisbahKhan789/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/MisbahKhan789/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MisbahKhan789/subscriptions",
"type": "User",
"url": "https://api.github.com/users/MisbahKhan789"
} | [] | closed | false | null | [] | null | [] | "2020-12-14T23:28:51Z" | "2020-12-14T23:29:32Z" | "2020-12-14T23:29:32Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1574.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1574",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/1574.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1574"
} | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1574/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1574/timeline | null | null | true |
|
https://api.github.com/repos/huggingface/datasets/issues/3175 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3175/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3175/comments | https://api.github.com/repos/huggingface/datasets/issues/3175/events | https://github.com/huggingface/datasets/pull/3175 | 1,038,945,271 | PR_kwDODunzps4t0bXw | 3,175 | Add docs for `to_tf_dataset` | {
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/stevhliu",
"id": 59462357,
"login": "stevhliu",
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"type": "User",
"url": "https://api.github.com/users/stevhliu"
} | [
{
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation",
"id": 1935892861,
"name": "documentation",
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation"
}
] | closed | false | null | [] | null | [
"This looks great, thank you!",
"Thanks !\r\n\r\nFor some reason the new GIF is 6MB, which is a bit heavy for an image on a website. The previous one was around 200KB though which is perfect. For a good experience we usually expect images to be less than 500KB - otherwise for users with poor connection it takes too long to load. Could you try to reduce its size ? Than I think we can merge :)"
] | "2021-10-28T20:55:22Z" | "2021-11-03T15:39:36Z" | "2021-11-03T10:07:23Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3175.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3175",
"merged_at": "2021-11-03T10:07:23Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3175.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3175"
} | This PR adds some documentation for new features released in v1.13.0, with the main addition being `to_tf_dataset`:
- Show how to use `to_tf_dataset` in the tutorial, and move `set_format(type='tensorflow'...)` to the Process section (let me know if I'm missing anything @Rocketknight1 😅).
- Add an example for loading dataset from multiple zipped CSV files to the Load section.
- Add an example for removing columns for an `IterableDataset`.
- Add graphic for visualizing streaming. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3175/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3175/timeline | null | null | true |