code
stringlengths
22
1.05M
apis
sequencelengths
1
3.31k
extract_api
stringlengths
75
3.25M
from flask import Flask, flash def display_error(error,preface="",postface=""): flash(f"{preface} {error} {postface}")
[ "flask.flash" ]
[((85, 123), 'flask.flash', 'flash', (['f"""{preface} {error} {postface}"""'], {}), "(f'{preface} {error} {postface}')\n", (90, 123), False, 'from flask import Flask, flash\n')]
import sys import typing from collections import deque from typing import Callable, Optional import mypy.errorcodes import mypy.errors import mypy.nodes import mypy.options import mypy.plugin import mypy.types if sys.version_info >= (3, 10): # pragma: no cover from typing import TypeGuard else: # pragma: no cover from typing_extensions import TypeGuard SignatureContext = typing.Union[mypy.plugin.FunctionSigContext, mypy.plugin.MethodSigContext] class ProtocolIntersectionPlugin(mypy.plugin.Plugin): # pylint: disable=unused-argument def get_type_analyze_hook( self, fullname: str ) -> Optional[Callable[[mypy.plugin.AnalyzeTypeContext], mypy.types.Type]]: if fullname == "typing_protocol_intersection.types.ProtocolIntersection": return type_analyze_hook(fullname) return None def get_method_signature_hook( self, fullname: str ) -> Optional[Callable[[mypy.plugin.MethodSigContext], mypy.types.FunctionLike]]: return intersection_function_signature_hook def get_function_signature_hook( self, fullname: str ) -> Optional[Callable[[mypy.plugin.FunctionSigContext], mypy.types.FunctionLike]]: return intersection_function_signature_hook class TypeInfoWrapper(typing.NamedTuple): type_info: mypy.nodes.TypeInfo base_classes: typing.List[mypy.nodes.TypeInfo] class IncomparableTypeName(str): """A string that never returns True when compared (equality) with another instance of this type.""" def __eq__(self, x: object) -> bool: if isinstance(x, IncomparableTypeName): return False return super().__eq__(x) def __hash__(self) -> int: # pylint: disable=useless-super-delegation return super().__hash__() def mk_protocol_intersection_typeinfo( name: str, *, # For ProtocolIntersections to not be treated as the same type, but just as protocols, # their fullnames need to differ - that's it's an IncomparableTypeName. fullname: IncomparableTypeName, symbol_table: Optional[mypy.nodes.SymbolTable] = None, ) -> mypy.nodes.TypeInfo: defn = mypy.nodes.ClassDef( name=name, defs=mypy.nodes.Block([]), base_type_exprs=[ mypy.nodes.NameExpr("typing.Protocol"), # mypy expects object to be here at the last index ('we skip "object" since everyone implements it') mypy.nodes.NameExpr("builtins.object"), ], type_vars=[], ) defn.fullname = IncomparableTypeName(fullname) defn.info.is_protocol = True type_info = mypy.nodes.TypeInfo( names=symbol_table if symbol_table is not None else mypy.nodes.SymbolTable(), defn=defn, module_name="typing_protocol_intersection", ) type_info.mro = [type_info] type_info.is_protocol = True return type_info class ProtocolIntersectionResolver: def fold_intersection_and_its_args(self, type_: mypy.types.Type) -> mypy.types.Type: folded_type = self.fold_intersection(type_) if isinstance(folded_type, mypy.types.Instance): folded_type.args = tuple(self.fold_intersection(t) for t in folded_type.args) return folded_type def fold_intersection(self, type_: mypy.types.Type) -> mypy.types.Type: if not self._is_intersection(type_): return type_ type_info = mk_protocol_intersection_typeinfo( "ProtocolIntersection", fullname=IncomparableTypeName("typing_protocol_intersection.types.ProtocolIntersection"), ) type_info_wrapper = self._run_fold(type_, TypeInfoWrapper(type_info, [])) args = [mypy.types.Instance(ti, []) for ti in type_info_wrapper.base_classes] return mypy.types.Instance(type_info_wrapper.type_info, args=args) def _run_fold(self, type_: mypy.types.Instance, intersection_type_info_wrapper: TypeInfoWrapper) -> TypeInfoWrapper: intersections_to_process = deque([type_]) while intersections_to_process: intersection = intersections_to_process.popleft() for arg in intersection.args: if self._is_intersection(arg): intersections_to_process.append(arg) continue if isinstance(arg, mypy.types.Instance): self._add_type_to_intersection(intersection_type_info_wrapper, arg) return intersection_type_info_wrapper @staticmethod def _add_type_to_intersection(intersection_type_info_wrapper: TypeInfoWrapper, typ: mypy.types.Instance) -> None: name_expr = mypy.nodes.NameExpr(typ.type.name) name_expr.node = typ.type intersection_type_info_wrapper.type_info.defn.base_type_exprs.insert(0, name_expr) intersection_type_info_wrapper.type_info.mro.insert(0, typ.type) intersection_type_info_wrapper.base_classes.insert(0, typ.type) @staticmethod def _is_intersection(typ: mypy.types.Type) -> TypeGuard[mypy.types.Instance]: return isinstance(typ, mypy.types.Instance) and typ.type.fullname == ( "typing_protocol_intersection.types.ProtocolIntersection" ) def intersection_function_signature_hook(context: SignatureContext) -> mypy.types.FunctionLike: resolver = ProtocolIntersectionResolver() signature = context.default_signature signature.ret_type = resolver.fold_intersection_and_its_args(signature.ret_type) signature.arg_types = [resolver.fold_intersection_and_its_args(t) for t in signature.arg_types] return signature def type_analyze_hook(fullname: str) -> Callable[[mypy.plugin.AnalyzeTypeContext], mypy.types.Type]: def _type_analyze_hook(context: mypy.plugin.AnalyzeTypeContext) -> mypy.types.Type: args = tuple(context.api.analyze_type(arg_t) for arg_t in context.type.args) symbol_table = mypy.nodes.SymbolTable() for arg in args: if isinstance(arg, mypy.types.Instance): if not arg.type.is_protocol: context.api.fail( "Only Protocols can be used in ProtocolIntersection.", arg, code=mypy.errorcodes.VALID_TYPE ) symbol_table.update(arg.type.names) type_info = mk_protocol_intersection_typeinfo( context.type.name, fullname=IncomparableTypeName(fullname), symbol_table=symbol_table ) return mypy.types.Instance(type_info, args, line=context.type.line, column=context.type.column) return _type_analyze_hook def plugin(_version: str) -> typing.Type[mypy.plugin.Plugin]: # ignore version argument if the plugin works with all mypy versions. return ProtocolIntersectionPlugin
[ "collections.deque" ]
[((3972, 3986), 'collections.deque', 'deque', (['[type_]'], {}), '([type_])\n', (3977, 3986), False, 'from collections import deque\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-07-18 04:43 from __future__ import unicode_literals from django.db import migrations, models def update_names(apps, schema_editor): for x in apps.get_model('institutions', 'regon').objects.exclude(data=None).iterator(): x.name = x.data.get('nazwa', '') x.save() for x in apps.get_model('institutions', 'resp').objects.exclude(data=None).iterator(): x.name = x.data.get('name', '') x.save() class Migration(migrations.Migration): dependencies = [ ('institutions', '0013_auto_20170718_0256'), ] operations = [ migrations.AddField( model_name='regon', name='name', field=models.CharField(default='', max_length=200, verbose_name='Name'), preserve_default=False, ), migrations.AddField( model_name='resp', name='name', field=models.CharField(default='', max_length=200, verbose_name='Name'), preserve_default=False, ), migrations.RunPython(update_names) ]
[ "django.db.migrations.RunPython", "django.db.models.CharField" ]
[((1079, 1113), 'django.db.migrations.RunPython', 'migrations.RunPython', (['update_names'], {}), '(update_names)\n', (1099, 1113), False, 'from django.db import migrations, models\n'), ((740, 805), 'django.db.models.CharField', 'models.CharField', ([], {'default': '""""""', 'max_length': '(200)', 'verbose_name': '"""Name"""'}), "(default='', max_length=200, verbose_name='Name')\n", (756, 805), False, 'from django.db import migrations, models\n'), ((957, 1022), 'django.db.models.CharField', 'models.CharField', ([], {'default': '""""""', 'max_length': '(200)', 'verbose_name': '"""Name"""'}), "(default='', max_length=200, verbose_name='Name')\n", (973, 1022), False, 'from django.db import migrations, models\n')]
# coding: utf-8 # pylint: disable=missing-docstring, invalid-name import flask import auth import config from main import app import model.user as user #import User#, UserVdr github_config = dict( access_token_method='POST', access_token_url='https://github.com/login/oauth/access_token', authorize_url='https://github.com/login/oauth/authorize', base_url='https://api.github.com/', # consumer_key=config.CONFIG_DB.auth_github_id, # consumer_secret=config.CONFIG_DB.auth_github_secret, request_token_params={'scope': 'user:email'}, ) github = auth.create_oauth_app(github_config, 'github') @app.route('/_s/callback/github/oauth-authorized/') def github_authorized(): response = github.authorized_response() if response is None: flask.flash('You denied the request to sign in.') return flask.redirect(flask.url_for('index')) flask.session['oauth_token'] = (response['access_token'], '') me = github.get('user') usr = retrieve_user_from_github(me.data) return auth.signin_via_social(usr) @github.tokengetter def get_github_oauth_token(): return flask.session.get('oauth_token') @app.route('/signin/github/') def signin_github(): return auth.signin_oauth(github) def retrieve_user_from_github(response): auth_id = 'github_%s' % str(response['id']) usr = User.get_by('authIDs_', auth_id) bio = response['bio'][:user.bio_span[1]] if response['bio'] else '' location = response['location'][:user.location_span[1]] if response['location'] else '' return usr or auth.create_or_get_user_db( auth_id, response.get('name', ''), response.get('login'), response.get('email', ''), location=location, bio=bio, github=response.get('login') ) # Todo replace opaque and repeated code such as # bio = response['bio'][:UserVdr.bio_span[1]] if response['bio'] else '' # with # bio = getField(response, 'bio') def getField(response, name): field = response[name] if field: span = name + '_span' # depend on validators following this naming convention max = getattr(user, span)[1] return field [:max] return ''
[ "flask.flash", "auth.signin_oauth", "flask.session.get", "flask.url_for", "main.app.route", "auth.signin_via_social", "auth.create_oauth_app" ]
[((574, 620), 'auth.create_oauth_app', 'auth.create_oauth_app', (['github_config', '"""github"""'], {}), "(github_config, 'github')\n", (595, 620), False, 'import auth\n'), ((624, 674), 'main.app.route', 'app.route', (['"""/_s/callback/github/oauth-authorized/"""'], {}), "('/_s/callback/github/oauth-authorized/')\n", (633, 674), False, 'from main import app\n'), ((1158, 1186), 'main.app.route', 'app.route', (['"""/signin/github/"""'], {}), "('/signin/github/')\n", (1167, 1186), False, 'from main import app\n'), ((1031, 1058), 'auth.signin_via_social', 'auth.signin_via_social', (['usr'], {}), '(usr)\n', (1053, 1058), False, 'import auth\n'), ((1122, 1154), 'flask.session.get', 'flask.session.get', (['"""oauth_token"""'], {}), "('oauth_token')\n", (1139, 1154), False, 'import flask\n'), ((1219, 1244), 'auth.signin_oauth', 'auth.signin_oauth', (['github'], {}), '(github)\n', (1236, 1244), False, 'import auth\n'), ((777, 826), 'flask.flash', 'flask.flash', (['"""You denied the request to sign in."""'], {}), "('You denied the request to sign in.')\n", (788, 826), False, 'import flask\n'), ((857, 879), 'flask.url_for', 'flask.url_for', (['"""index"""'], {}), "('index')\n", (870, 879), False, 'import flask\n')]
from pages.service_page.models import ServicePage from pages.topic_page.factories import JanisBasePageWithTopicsFactory from pages.base_page.fixtures.helpers.streamfieldify import streamfieldify class ServicePageFactory(JanisBasePageWithTopicsFactory): @classmethod def create(cls, *args, **kwargs): if 'dynamic_content' in kwargs: kwargs['dynamic_content'] = streamfieldify(kwargs['dynamic_content']) step_keywords = ['steps', 'steps_es'] for step_keyword in step_keywords: if step_keyword in kwargs: kwargs[step_keyword] = streamfieldify(kwargs[step_keyword]) return super(ServicePageFactory, cls).create(*args, **kwargs) class Meta: model = ServicePage
[ "pages.base_page.fixtures.helpers.streamfieldify.streamfieldify" ]
[((390, 431), 'pages.base_page.fixtures.helpers.streamfieldify.streamfieldify', 'streamfieldify', (["kwargs['dynamic_content']"], {}), "(kwargs['dynamic_content'])\n", (404, 431), False, 'from pages.base_page.fixtures.helpers.streamfieldify import streamfieldify\n'), ((600, 636), 'pages.base_page.fixtures.helpers.streamfieldify.streamfieldify', 'streamfieldify', (['kwargs[step_keyword]'], {}), '(kwargs[step_keyword])\n', (614, 636), False, 'from pages.base_page.fixtures.helpers.streamfieldify import streamfieldify\n')]
# (c) Copyright [2017] Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Two classes are define here :py:class:`dlbs.IOUtils` and :py:class:`dlbs.DictUtils`. """ import os import copy import json import gzip import re import logging import subprocess import importlib from multiprocessing import Process from multiprocessing import Queue from glob import glob from dlbs.exceptions import ConfigurationError class OpenFile(object): """Class that can work with gzipped and regular textual files.""" def __init__(self, fname, mode='r'): self.__fname = fname self.__flags = ['rb', 'r'] if mode == 'r' else ['wb', 'w'] def __enter__(self): if self.__fname.endswith('.gz'): self.__fobj = gzip.open(self.__fname, self.__flags[0]) else: self.__fobj = open(self.__fname, self.__flags[1]) return self.__fobj def __exit__(self, type, value, traceback): self.__fobj.close() class IOUtils(object): """Container for input/output helpers""" @staticmethod def mkdirf(file_name): """Makes sure that parent folder of this file exists. The file itself may not exist. A typical usage is to ensure that we can write to this file. If path to parent folder does not exist, it will be created. See documentation for :py:func:`os.makedirs` for more details. :param str file_name: A name of the file for which we want to make sure\ its parent directory exists. """ dir_name = os.path.dirname(file_name) if dir_name != '' and not os.path.isdir(dir_name): os.makedirs(dir_name) @staticmethod def find_files(directory, file_name_pattern, recursively=False): """Find files in a directory, possibly, recursively. Find files which names satisfy *file_name_pattern* pattern in folder *directory*. If *recursively* is True, scans subfolders as well. :param str directory: A directory to search files in. :param str file_name_pattern: A file name pattern to search. For instance, is can be '*.log' :param bool recursively: If True, search in subdirectories. :return: List of file names satisfying *file_name_pattern* pattern. """ if not recursively: files = [f for f in glob(os.path.join(directory, file_name_pattern))] else: files = [f for p in os.walk(directory) for f in glob(os.path.join(p[0], file_name_pattern))] return files @staticmethod def gather_files(path_specs, file_name_pattern, recursively=False): """Find/get files specified by an `inputs` parameter. :param list path_specs: A list of file names / directories. :param str file_name_pattern: A file name pattern to search. Only used for entries in path_specs that are directories. :param bool recursively: If True, search in subdirectories. Only used for entries in path_specs that are directories. :return: List of file names satisfying *file_name_pattern* pattern. """ files = [] for path_spec in path_specs: if os.path.isdir(path_spec): files.extend(IOUtils.find_files(path_spec, file_name_pattern, recursively)) elif os.path.isfile(path_spec): files.append(path_spec) return files @staticmethod def get_non_existing_file(file_name, max_attempts = 1000): """Return file name that does not exist. :param str file_name: Input file name. :rtype: str :return: The 'file_name' if this file does not exist else find first file name that file does not exist. """ if not os.path.exists(file_name): return file_name attempt = 0 while True: candidate_file_name = "%s.%d" % (file_name, attempt) if not os.path.exists(candidate_file_name): return candidate_file_name attempt += 1 if attempt >= max_attempts: msg = "Cannot find non existing file from pattern %s" raise ValueError(msg % file_name) @staticmethod def check_file_extensions(fname, extensions): """Checks that fname has one of the provided extensions. :param str fname: The file name to check. :param tuple extensions: A tuple of extensions to use. Raises exception of fname does not end with one of the extensions. """ if fname is None: return assert isinstance(extensions, tuple), "The 'extensions' must be a tuple." if not fname.endswith(extensions): raise ValueError("Invalid file extension (%s). Must be one of %s" % extensions) @staticmethod def read_json(fname, check_extension=False): """Reads JSON object from file 'fname'. :param str fname: File name. :param boolean check_extension: If True, raises exception if fname does not end with '.json' or '.json.gz'. :rtype: None or JSON object :return: None of fname is None else JSON loaded from the file. """ if fname is None: return None if check_extension: IOUtils.check_file_extensions(fname, ('.json', '.json.gz')) with OpenFile(fname, 'r') as fobj: return json.load(fobj) @staticmethod def write_json(fname, data, check_extension=False): """ Dumps *dictionary* as a json object to a file with *file_name* name. :param dict dictionary: Dictionary to serialize. :param any data: A data to dump into a JSON file. :param str file_name: Name of a file to serialie dictionary in. """ if fname is None: raise ValueError("File name is None") if check_extension: IOUtils.check_file_extensions(fname, ('.json', '.json.gz')) IOUtils.mkdirf(fname) with OpenFile(fname, 'w') as fobj: json.dump(data, fobj, indent=4) class DictUtils(object): """Container for dictionary helpers.""" @staticmethod def subdict(dictionary, keys): """Return subdictionary containing only keys from 'keys'. :param dict dictionary: Input dictionary. :param list_or_val keys: Keys to extract :rtype: dict :return: Dictionary that contains key/value pairs for key in keys. """ if keys is None: return dictionary return dict((k, dictionary[k]) for k in keys if k in dictionary) @staticmethod def contains(dictionary, keys): """Checkes if dictionary contains all keys in 'keys' :param dict dictionary: Input dictionary. :param list_or_val keys: Keys to find in dictionary :rtype: boolean :return: True if all keys are in dictionary or keys is None """ if keys is None: return True keys = keys if isinstance(keys, list) else [keys] for key in keys: if key not in dictionary: return False return True @staticmethod def ensure_exists(dictionary, key, default_value=None): """ Ensures that the dictionary *dictionary* contains key *key* If key does not exist, it adds a new item with value *default_value*. The dictionary is modified in-place. :param dict dictionary: Dictionary to check. :param str key: A key that must exist. :param obj default_value: Default value for key if it does not exist. """ if key not in dictionary: dictionary[key] = copy.deepcopy(default_value) @staticmethod def lists_to_strings(dictionary, separator=' '): """ Converts every value in dictionary that is list to strings. For every item in *dictionary*, if type of a value is 'list', converts this list into a string using separator *separator*. The dictictionary is modified in-place. :param dict dictionary: Dictionary to modify. :param str separator: An item separator. """ for key in dictionary: if isinstance(dictionary[key], list): dictionary[key] = separator.join(str(elem) for elem in dictionary[key]) @staticmethod def filter_by_key_prefix(dictionary, prefix, remove_prefix=True): """Creates new dictionary with items which keys start with *prefix*. Creates new dictionary with items from *dictionary* which keys names starts with *prefix*. If *remove_prefix* is True, keys in new dictionary will not contain this prefix. The dictionary *dictionary* is not modified. :param dict dictionary: Dictionary to search keys in. :param str prefix: Prefix of keys to be extracted. :param bool remove_prefix: If True, remove prefix in returned dictionary. :return: New dictionary with items which keys names start with *prefix*. """ return_dictionary = {} for key in dictionary: if key.startswith(prefix): return_key = key[len(prefix):] if remove_prefix else key return_dictionary[return_key] = copy.deepcopy(dictionary[key]) return return_dictionary @staticmethod def dump_json_to_file(dictionary, file_name): """ Dumps *dictionary* as a json object to a file with *file_name* name. :param dict dictionary: Dictionary to serialize. :param str file_name: Name of a file to serialie dictionary in. """ if file_name is not None: IOUtils.mkdirf(file_name) with open(file_name, 'w') as file_obj: json.dump(dictionary, file_obj, indent=4) @staticmethod def add(dictionary, iterable, pattern, must_match=True, add_only_keys=None, ignore_errors=False): """ Updates *dictionary* with items from *iterable* object. This method modifies/updates *dictionary* with items from *iterable* object. This object must support ``for something in iterable`` (list, opened file etc). Only those items in *iterable* are considered, that match *pattern* (it's a regexp epression). If a particular item does not match, and *must_match* is True, *ConfigurationError* exception is thrown. Regexp pattern must return two groups (1 and 2). First group is considered as a key, and second group is considered to be value. Values must be a json-parseable strings. If *add_only_keys* is not None, only those items are added to *dictionary*, that are in this list. Existing items in *dictionary* are overwritten with new ones if key already exists. One use case to use this method is to populate a dictionary with key-values from log files. :param dict dictionary: Dictionary to update in-place. :param obj iterable: Iterable object (list, opened file name etc). :param str patter: A regexp pattern for matching items in ``iterable``. :param bool must_match: Specifies if every element in *iterable* must match\ *pattern*. If True and not match, raises exception. :param list add_only_keys: If not None, specifies keys that are added into\ *dictionary*. Others are ignored. :param boolean ignore_erros: If true, ignore errors. :raises ConfigurationError: If *must_match* is True and not match or if value\ is not a json-parseable string. """ matcher = re.compile(pattern) for line in iterable: match = matcher.match(line) if not match: if must_match: raise ConfigurationError("Cannot match key-value from '%s' with pattern '%s'. Must match is set to true" % (line, pattern)) else: continue key = match.group(1).strip() try: value = match.group(2).strip() value = json.loads(value) if len(value) > 0 else None if add_only_keys is None or key in add_only_keys: dictionary[key] = value logging.debug("Key-value item (%s=%s) has been parsed and added to dictionary", key, str(value)) except ValueError as err: if not ignore_errors: raise ConfigurationError("Cannot parse JSON string '%s' with key '%s' (key-value definition: '%s'). Error is %s" % (value, key, line, str(err))) @staticmethod def match(dictionary, query, policy='relaxed', matches=None): """ Match *query* against *dictionary*. The *query* and *dictionary* are actually dictionaries. If policy is 'strict', every key in query must exist in dictionary with the same value to match. If policy is 'relaxed', dictionary may not contain all keys from query to be matched. In this case, the intersection of keys in dictionary and query is used for matching. It's assuemd we match primitive types such as numbers and strings not lists or dictionaries. If values in query are lists, then condition OR applies. For instance: match(dictionary, query = { "framework": "tensorflow" }, policy='strict') Match dictionary only if it contains key 'framework' with value "tensorflow". match(dictionary, query = { "framework": "tensorflow" }, policy='relaxed') Match dictionary if it does not contain key 'framework' OR contains\ key 'framework' with value "tensorflow". match(dictionary, query = { "framework": ["tensorflow", "caffe2"] }, policy='strict') Match dictionary only if it contains key 'framework' with value "tensorflow" OR\ "caffe2". match(dictionary, query = { "framework": ["tensorflow", "caffe2"], "batch": [16, 32] }, policy='strict') Match dictionary only if it (a) contains key 'framework' with value "tensorflow" OR "caffe2"\ and (b) it contains key 'batch' with value 16 OR 32. :param dict dictionary: Dictionary to match. :param dict query: Query to use. :param ['relaxed', 'strict'] policy: Policy to match. :param dict matches: Dictionary where matches will be stored if match has been identified. :return: True if match or query is None :rtype: bool """ if query is None: return True assert policy in ['relaxed', 'strict'], "" for field, value in query.iteritems(): if field not in dictionary: if policy == 'relaxed': continue else: return False if isinstance(value, list) or not isinstance(value, basestring): values = value if isinstance(value, list) else [value] if dictionary[field] not in values: return False if matches is not None: matches['%s_0' % (field)] = dictionary[field] else: if value == '': # Take special care if value is an empty string if value != dictionary[field]: return False elif matches is not None: matches['%s_0' % (field)] = dictionary[field] continue else: match = re.compile(value).match(dictionary[field]) if not match: return False else: if matches is not None: matches['%s_0' % (field)] = dictionary[field] for index, group in enumerate(match.groups()): matches['%s_%d' % (field, index+1)] = group continue return True class ConfigurationLoader(object): """Loads experimenter configuration from multiple files.""" @staticmethod def load(path, files=None): """Loads configurations (normally in `conigs`) folder. :param str path: Path to load configurations from :param list files: List of file names to load. If None, all files with JSON extension in **path** are loaded. :return: A tuple consisting of a list of config files, configuration object (dictionary) and dictionary of parameters info This method loads configuration files located in 'path'. If `files` is empty, all json files are loaded from that folder. This method fails if one parameter is defined in multiple files. This is intended behaviour for now (this also applies for update_param_info method). """ if path is None: raise ValueError("Configuration load error. The 'path' parameter cannot be None.") if not os.path.isdir(path): raise ValueError("Configuration load error. The 'path' parameter (%s) must point to an existing directory." % path) if files is not None: config_files = [os.path.join(path, f) for f in files] else: config_files = [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.json')] config = {} # Configuration with params/vars/extensions param_info = {} # Information on params such as type and help messages for config_file in config_files: if not os.path.isfile(config_file): raise ValueError("Configuration load error. Configuration data cannot be loaded for not a file (%s)" % config_file) with open(config_file) as file_obj: try: # A part of global configuration from this particular file config_section = json.load(file_obj) # Update parameters info. ConfigurationLoader.update_param_info(param_info, config_section, is_user_config=False) # Joing configuration from this single file. ConfigurationLoader.update(config, ConfigurationLoader.remove_info(config_section)) except ValueError: logging.error("Configuration load error. Invalid JSON configuration in file %s", config_file) raise return (config_files, config, param_info) @staticmethod def update_param_info(param_info, config, is_user_config=False): """Update parameter info dictionary based on configurationi in **config** :param dict param_info: A parameter info dictionary that maps parameter name to its description dictionary that contains such fileds as value, help message, type, constraints etc. :param dict config: A dictionary with configuration section that may contain parameters, variables and extensions. The **config** is a result of parsing a JSON configuration file. :param bool is_user_config: If True, the config object represents user-provided configuration. If False, this is a system configuration. Based on this flag, we deal with parameters in config that redefine parameters in existing param_info differently. See comments below. We are interested here only in parameters section where parameter information is defined. There are two scenarios this method is used: 1. Load standard configuration. In this case, parameter redefinition is prohibited. If `parameters` section in `config` redefines existing parameters in param_info (already loaded params), program terminates. 2. Load user-provided configuration. In this case, we still update parameter info structure, but deal with it in slightly different way. If parameter in `config` exists in param_info, it means user has provided their specific value for this parameter. Types of user defined parameters are defined either by user in a standard way as we define types for standard parameters or induced automatically based on JSON parse result. """ if 'parameters' not in config: return params = config['parameters'] for name in params: val = params[name] if not is_user_config: # If this is not a user-provided configuration, we disallow parameter redefinition. if name in param_info: raise ConfigurationError( "Parameter info update error." " Parameter redefinition is not allowed for non-user configuration." " This is a system configuration error that must not happen." " Parameter %s=%s, new parameter definition (value) is %s" % (name, str(param_info[name]), val) ) if isinstance(val, dict): # This is a complete parameter definition with name, value and description. if 'val' not in val: raise ConfigurationError( "Parameter info update error." " Parameter that is defined by a dictionary must contain 'val' field that" " defines its default value. Found this definition: %s=%s" % (name, val) ) if name not in param_info: param_info[name] = copy.deepcopy(val) # New parameter, set it info object. # TODO what about parameter type and description? else: logging.warn( " Parameter (%s) entirely redefines existing parameter (%s)." " Normally, only value needs to be provided." " We will proceed but you may want to fix this.", json.dumps(val), json.dumps(param_info[name]) ) param_info[name]['val'] = val['val'] # Existing parameter from user configuration, update its value else: # Just parameter value val_type = 'str' if isinstance(val, basestring) or isinstance(val, list) else type(val).__name__ if name not in param_info: param_info[name] = { 'val': val, 'type': val_type, 'desc': "No description for this parameter provided (it was automatically converted from its value)." } else: param_info[name]['val'] = val # Do final validations if 'type' in param_info[name] and param_info[name]['type'] not in ('int', 'str', 'float', 'bool'): raise ConfigurationError( "Parameter info update error." " Parameter has invalid type = '%s'." " Parameter definition is %s = %s" % (param_info[name]['type'], name, param_info[name]) ) if 'type' not in param_info[name] or 'desc' not in param_info[name]: logging.warn( "Parameter definition does not contain type ('type') and/or description ('desc')." " You should fix this. Parameter definition is" " %s = %s", name, param_info[name] ) @staticmethod def remove_info(config): """In parameter section of a **config** the function removes parameter info leaving only their values :param dict config: A dictionary with configuration section that may contain parameters, variables and extensions. The **config** is a result of parsing a JSON configuration file. :return: A copy of **config** with info removed """ clean_config = copy.deepcopy(config) if 'parameters' in clean_config: params = clean_config['parameters'] for name in params: val = params[name] if isinstance(val, dict): # This should not generally happen since we deal with it in update_param_info, but just in case if 'val' not in val: raise ConfigurationError( "Parameter info remove error." " Parameter that is defined by a dictionary must contain 'val' field that" " defines its default value. Found this definition: %s=%s" % (name, val) ) params[name] = val['val'] return clean_config @staticmethod def update(dest, source, is_root=True): """Merge **source** dictionary into **dest** dictionary assuming source and dest are JSON configuration configs or their members. :param dict dest: Merge data to this dictionary. :param dict source: Merge data from this dictionary. :param bool is_root: True if **dest** and *source** are root configuration objects. False if these objects are members. """ def _raise_types_mismatch_config_error(key, dest_val_type, src_val_type, valid_types): raise ConfigurationError( "Configuration update error - expecting value types to be same and one of %s but" " Dest(key=%s, val_type=%s) <- Source(key=%s, val_type=%s)" % (valid_types, key, dest_val_type.__name__, key, src_val_type.__name__) ) # Types and expected key names. Types must always match, else exception is thrown. if is_root: schema = {'types':(dict, list), 'dict':['parameters', 'variables'], 'list':['extensions']} else: schema = {'types':(list, basestring, int, float, long)} for key in source: # Firstly, check that type of value is expected. val_type = type(source[key]).__name__ if not isinstance(source[key], schema['types']): raise ConfigurationError( "Configuration update error - unexpected type of key value: " " is_root=%s, key=%s, value type=%s, expected type is one of %s" % \ (str(is_root), key, val_type, str(schema['types'])) ) # So, the type is expected. Warn if key value is suspicious - we can do it only for root. if is_root and key not in schema[val_type]: logging.warn("The name of a root key is '%s' but expected is one of '%s'", key, schema[val_type]) if key not in dest: # The key in source dictionary is not in destination dictionary. dest[key] = copy.deepcopy(source[key]) else: # The key from source is in dest. both_dicts = isinstance(dest[key], dict) and isinstance(source[key], dict) both_lists = isinstance(dest[key], list) and isinstance(source[key], list) both_primitive = type(dest[key]) is type(source[key]) and isinstance(dest[key], (basestring, int, float, long)) if is_root: if not both_dicts and not both_lists: _raise_types_mismatch_config_error(key, type(dest[key]), type(source[key]), '[dict, list]') if both_dicts: ConfigurationLoader.update(dest[key], source[key], is_root=False) else: dest[key].extend(source[key]) else: if not both_lists and not both_primitive: _raise_types_mismatch_config_error(key, type(dest[key]), type(source[key]), '[list, basestring, int, float, long]') dest[key] = copy.deepcopy(source[key]) if both_lists else source[key] class ResourceMonitor(object): """The class is responsible for launching/shutting down/communicating with external resource manager that monitors system resource consumption. proc_pid date virt res shrd cpu mem power gpus_power """ def __init__(self, launcher, pid_folder, frequency, fields_specs): """Initializes resource monitor but does not create queue and process. :param str launcher: A full path to resource monitor script. :param str pid_folder: A full path to folder where pid file is created. The file name is fixed and its value is `proc.pid`. :param float frequency: A sampling frequency in seconds. Can be something like 0.1 seconds """ self.launcher = launcher self.pid_file = os.path.join(pid_folder, 'proc.pid') self.frequency = frequency self.queue = None self.monitor_process = None # Parse fields specs # time:str:1,mem_virt:float:2,mem_res:float:3,mem_shrd:float:4,cpu:float:5,mem:float:6,power:float:7,gpus:float:8: self.fields = {} raw_fields = fields_specs.split(',') for raw_field in raw_fields: fields_split = raw_field.split(':') assert len(fields_split) in (3, 4),\ "Invalid format of field specification (%s). Must be name:type:index, name:type:index: or name:type:index:count" % raw_field field_name = fields_split[0] assert field_name not in self.fields,\ "Found duplicate timeseries field (%s)" % field_name field_type = fields_split[1] assert field_type in ('str', 'int', 'float', 'bool'),\ "Invalid field type (%s). Must be one of ('str', 'int', 'float', 'bool')" % field_type index = int(fields_split[2]) if len(fields_split) == 3: count = -1 elif fields_split[3] == '': count = 0 else: count = int(fields_split[3]) self.fields[field_name] = { 'type': field_type, 'index': index, 'count': count } @staticmethod def monitor_function(launcher, pid_file, frequency, queue): """A main monitor worker function. :param str launcher: A full path to resource monitor script. :param str pid_folder: A full path to folder where pid file is created. The file name is fixed and its value is `proc.pid`. :param float frequency: A sampling frequency in seconds. Can be something like 0.1 seconds :param multiprocessing.Queue queue: A queue to communicate measurements. A resource monitor is launched as a subprocess. The thread is reading its output and will put the data into a queue. A main thread will then dequeue all data at once once experiment is completed. """ cmd = [ launcher, pid_file, '', str(frequency) ] process = subprocess.Popen(cmd, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while True: output = process.stdout.readline() if output == '' and process.poll() is not None: break if output: # The 'output' is a string printed out by a resource monitor # script. It's a whitespace separated string of numbers. queue.put(output.strip()) @staticmethod def str_to_type(str_val, val_type): if val_type == 'str': return str_val elif val_type == 'int': return int(str_val) elif val_type == 'float': return float(str_val) elif val_type == 'bool': v = str_val.lower() assert v in ('true', 'false', '1', '0', 'on', 'off'),\ "Invalid boolean value in string (%s)" % str_val return v in ('true', 1, 'on') else: assert False, "Invalid value type %s" % val_type def get_measurements(self): """Dequeue all data, put it into lists and return them. time:str:1,mem_virt:float:2,mem_res:float:3,mem_shrd:float:4,cpu:float:5,mem:float:6,power:float:7,gpus:float:8- :return: Dictionary that maps metric field to a time series of its value. """ metrics = {} for key in self.fields.keys(): metrics[key] = [] # What's in output: # proc_pid date virt res shrd cpu mem power gpus_power while not self.queue.empty(): data = self.queue.get().strip().split() for field in self.fields: tp = self.fields[field]['type'] idx = self.fields[field]['index'] count = self.fields[field]['count'] if count == -1: metrics[field].append(ResourceMonitor.str_to_type(data[idx], tp)) elif count == 0: metrics[field].append([ResourceMonitor.str_to_type(data[idx], tp)]) else: metrics[field].append([ ResourceMonitor.str_to_type(data[index], tp) for index in xrange(idx, idx+count) ]) return metrics def remove_pid_file(self): """Deletes pif file from disk.""" try: os.remove(self.pid_file) except OSError: pass def empty_pid_file(self): """Empty pid file.""" try: with open(self.pid_file, 'w'): pass except IOError: pass def write_pid_file(self, pid): """Write the pid into pid file. :param int pid: A pid to write. This is a debugging function and most likely should not be used. """ with open(self.pid_file, 'w') as fhandle: fhandle.write('%d' % pid) def run(self): """Create queue and start resource monitor in background thread. Due to possible execution of benchmarks in containers, we must not delete file here, but create or empty it in host OS. """ self.empty_pid_file() self.queue = Queue() self.monitor_process = Process( target=ResourceMonitor.monitor_function, args=(self.launcher, self.pid_file, self.frequency, self.queue) ) self.monitor_process.start() def stop(self): """Closes queue and waits for resource monitor to finish.""" with open(self.pid_file, 'w') as fhandle: fhandle.write('exit') self.queue.close() self.queue.join_thread() self.monitor_process.join() self.remove_pid_file() class _ModuleImporter(object): """A private class that imports a particular models and return boolean variable indicating if import has been succesfull or not. Used by a Modules class to identify if optional python modules are available. """ @staticmethod def try_import(module_name): """Tries to import module. :param str module_name: A name of a module to try to import, something like 'numpy', 'pandas', 'matplotlib' etc. :return: True if module has been imported, False otherwise. """ have_module = True try: importlib.import_module(module_name) except ImportError: logging.warn("Module '%s' cannot be imported, certain system information will not be available", module_name) have_module = False return have_module class Modules(object): """A class that enumerates non-standard python modules this project depends on. They are optional, so we can disable certain functionality if something is missing. """ HAVE_NUMPY = _ModuleImporter.try_import('numpy') HAVE_PANDAS = _ModuleImporter.try_import('pandas') HAVE_MATPLOTLIB = _ModuleImporter.try_import('matplotlib')
[ "os.remove", "os.walk", "json.dumps", "os.path.isfile", "multiprocessing.Queue", "os.path.join", "logging.error", "json.loads", "os.path.dirname", "os.path.exists", "json.dump", "copy.deepcopy", "subprocess.Popen", "importlib.import_module", "os.listdir", "re.compile", "json.load", "gzip.open", "os.makedirs", "dlbs.exceptions.ConfigurationError", "os.path.isdir", "logging.warn", "multiprocessing.Process" ]
[((2094, 2120), 'os.path.dirname', 'os.path.dirname', (['file_name'], {}), '(file_name)\n', (2109, 2120), False, 'import os\n'), ((12416, 12435), 're.compile', 're.compile', (['pattern'], {}), '(pattern)\n', (12426, 12435), False, 'import re\n'), ((25162, 25183), 'copy.deepcopy', 'copy.deepcopy', (['config'], {}), '(config)\n', (25175, 25183), False, 'import copy\n'), ((30018, 30054), 'os.path.join', 'os.path.join', (['pid_folder', '"""proc.pid"""'], {}), "(pid_folder, 'proc.pid')\n", (30030, 30054), False, 'import os\n'), ((32354, 32454), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {'universal_newlines': '(True)', 'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.STDOUT'}), '(cmd, universal_newlines=True, stdout=subprocess.PIPE,\n stderr=subprocess.STDOUT)\n', (32370, 32454), False, 'import subprocess\n'), ((35572, 35579), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (35577, 35579), False, 'from multiprocessing import Queue\n'), ((35611, 35729), 'multiprocessing.Process', 'Process', ([], {'target': 'ResourceMonitor.monitor_function', 'args': '(self.launcher, self.pid_file, self.frequency, self.queue)'}), '(target=ResourceMonitor.monitor_function, args=(self.launcher, self.\n pid_file, self.frequency, self.queue))\n', (35618, 35729), False, 'from multiprocessing import Process\n'), ((1274, 1314), 'gzip.open', 'gzip.open', (['self.__fname', 'self.__flags[0]'], {}), '(self.__fname, self.__flags[0])\n', (1283, 1314), False, 'import gzip\n'), ((2192, 2213), 'os.makedirs', 'os.makedirs', (['dir_name'], {}), '(dir_name)\n', (2203, 2213), False, 'import os\n'), ((3865, 3889), 'os.path.isdir', 'os.path.isdir', (['path_spec'], {}), '(path_spec)\n', (3878, 3889), False, 'import os\n'), ((4444, 4469), 'os.path.exists', 'os.path.exists', (['file_name'], {}), '(file_name)\n', (4458, 4469), False, 'import os\n'), ((6128, 6143), 'json.load', 'json.load', (['fobj'], {}), '(fobj)\n', (6137, 6143), False, 'import json\n'), ((6762, 6793), 'json.dump', 'json.dump', (['data', 'fobj'], {'indent': '(4)'}), '(data, fobj, indent=4)\n', (6771, 6793), False, 'import json\n'), ((8401, 8429), 'copy.deepcopy', 'copy.deepcopy', (['default_value'], {}), '(default_value)\n', (8414, 8429), False, 'import copy\n'), ((17838, 17857), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (17851, 17857), False, 'import os\n'), ((26564, 26805), 'dlbs.exceptions.ConfigurationError', 'ConfigurationError', (["('Configuration update error - expecting value types to be same and one of %s but Dest(key=%s, val_type=%s) <- Source(key=%s, val_type=%s)'\n % (valid_types, key, dest_val_type.__name__, key, src_val_type.__name__))"], {}), "(\n 'Configuration update error - expecting value types to be same and one of %s but Dest(key=%s, val_type=%s) <- Source(key=%s, val_type=%s)'\n % (valid_types, key, dest_val_type.__name__, key, src_val_type.__name__))\n", (26582, 26805), False, 'from dlbs.exceptions import ConfigurationError\n'), ((34743, 34767), 'os.remove', 'os.remove', (['self.pid_file'], {}), '(self.pid_file)\n', (34752, 34767), False, 'import os\n'), ((36729, 36765), 'importlib.import_module', 'importlib.import_module', (['module_name'], {}), '(module_name)\n', (36752, 36765), False, 'import importlib\n'), ((2155, 2178), 'os.path.isdir', 'os.path.isdir', (['dir_name'], {}), '(dir_name)\n', (2168, 2178), False, 'import os\n'), ((4000, 4025), 'os.path.isfile', 'os.path.isfile', (['path_spec'], {}), '(path_spec)\n', (4014, 4025), False, 'import os\n'), ((4624, 4659), 'os.path.exists', 'os.path.exists', (['candidate_file_name'], {}), '(candidate_file_name)\n', (4638, 4659), False, 'import os\n'), ((9983, 10013), 'copy.deepcopy', 'copy.deepcopy', (['dictionary[key]'], {}), '(dictionary[key])\n', (9996, 10013), False, 'import copy\n'), ((10478, 10519), 'json.dump', 'json.dump', (['dictionary', 'file_obj'], {'indent': '(4)'}), '(dictionary, file_obj, indent=4)\n', (10487, 10519), False, 'import json\n'), ((18046, 18067), 'os.path.join', 'os.path.join', (['path', 'f'], {}), '(path, f)\n', (18058, 18067), False, 'import os\n'), ((18126, 18147), 'os.path.join', 'os.path.join', (['path', 'f'], {}), '(path, f)\n', (18138, 18147), False, 'import os\n'), ((18413, 18440), 'os.path.isfile', 'os.path.isfile', (['config_file'], {}), '(config_file)\n', (18427, 18440), False, 'import os\n'), ((24050, 24230), 'dlbs.exceptions.ConfigurationError', 'ConfigurationError', (['("Parameter info update error. Parameter has invalid type = \'%s\'. Parameter definition is %s = %s"\n % (param_info[name][\'type\'], name, param_info[name]))'], {}), '(\n "Parameter info update error. Parameter has invalid type = \'%s\'. Parameter definition is %s = %s"\n % (param_info[name][\'type\'], name, param_info[name]))\n', (24068, 24230), False, 'from dlbs.exceptions import ConfigurationError\n'), ((24402, 24585), 'logging.warn', 'logging.warn', (['"""Parameter definition does not contain type (\'type\') and/or description (\'desc\'). You should fix this. Parameter definition is %s = %s"""', 'name', 'param_info[name]'], {}), '(\n "Parameter definition does not contain type (\'type\') and/or description (\'desc\'). You should fix this. Parameter definition is %s = %s"\n , name, param_info[name])\n', (24414, 24585), False, 'import logging\n'), ((27817, 27918), 'logging.warn', 'logging.warn', (['"""The name of a root key is \'%s\' but expected is one of \'%s\'"""', 'key', 'schema[val_type]'], {}), '("The name of a root key is \'%s\' but expected is one of \'%s\'",\n key, schema[val_type])\n', (27829, 27918), False, 'import logging\n'), ((28057, 28083), 'copy.deepcopy', 'copy.deepcopy', (['source[key]'], {}), '(source[key])\n', (28070, 28083), False, 'import copy\n'), ((36806, 36925), 'logging.warn', 'logging.warn', (['"""Module \'%s\' cannot be imported, certain system information will not be available"""', 'module_name'], {}), '(\n "Module \'%s\' cannot be imported, certain system information will not be available"\n , module_name)\n', (36818, 36925), False, 'import logging\n'), ((3028, 3046), 'os.walk', 'os.walk', (['directory'], {}), '(directory)\n', (3035, 3046), False, 'import os\n'), ((12589, 12716), 'dlbs.exceptions.ConfigurationError', 'ConfigurationError', (['("Cannot match key-value from \'%s\' with pattern \'%s\'. Must match is set to true"\n % (line, pattern))'], {}), '(\n "Cannot match key-value from \'%s\' with pattern \'%s\'. Must match is set to true"\n % (line, pattern))\n', (12607, 12716), False, 'from dlbs.exceptions import ConfigurationError\n'), ((12887, 12904), 'json.loads', 'json.loads', (['value'], {}), '(value)\n', (12897, 12904), False, 'import json\n'), ((18157, 18173), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (18167, 18173), False, 'import os\n'), ((18759, 18778), 'json.load', 'json.load', (['file_obj'], {}), '(file_obj)\n', (18768, 18778), False, 'import json\n'), ((22304, 22506), 'dlbs.exceptions.ConfigurationError', 'ConfigurationError', (['("Parameter info update error. Parameter that is defined by a dictionary must contain \'val\' field that defines its default value. Found this definition: %s=%s"\n % (name, val))'], {}), '(\n "Parameter info update error. Parameter that is defined by a dictionary must contain \'val\' field that defines its default value. Found this definition: %s=%s"\n % (name, val))\n', (22322, 22506), False, 'from dlbs.exceptions import ConfigurationError\n'), ((22679, 22697), 'copy.deepcopy', 'copy.deepcopy', (['val'], {}), '(val)\n', (22692, 22697), False, 'import copy\n'), ((2937, 2979), 'os.path.join', 'os.path.join', (['directory', 'file_name_pattern'], {}), '(directory, file_name_pattern)\n', (2949, 2979), False, 'import os\n'), ((3061, 3098), 'os.path.join', 'os.path.join', (['p[0]', 'file_name_pattern'], {}), '(p[0], file_name_pattern)\n', (3073, 3098), False, 'import os\n'), ((19157, 19255), 'logging.error', 'logging.error', (['"""Configuration load error. Invalid JSON configuration in file %s"""', 'config_file'], {}), "('Configuration load error. Invalid JSON configuration in file %s'\n , config_file)\n", (19170, 19255), False, 'import logging\n'), ((23116, 23131), 'json.dumps', 'json.dumps', (['val'], {}), '(val)\n', (23126, 23131), False, 'import json\n'), ((23157, 23185), 'json.dumps', 'json.dumps', (['param_info[name]'], {}), '(param_info[name])\n', (23167, 23185), False, 'import json\n'), ((25570, 25772), 'dlbs.exceptions.ConfigurationError', 'ConfigurationError', (['("Parameter info remove error. Parameter that is defined by a dictionary must contain \'val\' field that defines its default value. Found this definition: %s=%s"\n % (name, val))'], {}), '(\n "Parameter info remove error. Parameter that is defined by a dictionary must contain \'val\' field that defines its default value. Found this definition: %s=%s"\n % (name, val))\n', (25588, 25772), False, 'from dlbs.exceptions import ConfigurationError\n'), ((29126, 29152), 'copy.deepcopy', 'copy.deepcopy', (['source[key]'], {}), '(source[key])\n', (29139, 29152), False, 'import copy\n'), ((16354, 16371), 're.compile', 're.compile', (['value'], {}), '(value)\n', (16364, 16371), False, 'import re\n')]
import json import os import requests from client import Submission from settings import API_BASE_URL, ACCESS_TOKEN def get_task_url(task_id: int): return API_BASE_URL + f"/tasks/{task_id}/download_grader/" def get_agent_url(submission_id: int): return API_BASE_URL + f"/submissions/{submission_id}/download/" def start_job(job_id, task_id) -> Submission: worker_name = "unknown_worker" if os.getenv("WORKER_NAME") is not None: worker_name = os.getenv("WORKER_NAME") resp = requests.get(API_BASE_URL + f"/jobs/{job_id}/start_job/", headers={"Authorization": f"Token {ACCESS_TOKEN}"}, data={ "worker_name": worker_name, "task_id": task_id }) if resp.status_code != 200: raise Exception(resp.content) obj = json.loads(resp.content) return Submission(sid=obj["submission"], task_url=get_task_url(obj["task"]), agent_url=get_agent_url(obj["submission"])) def submit_job(job_id, task_id, result): resp = requests.get(API_BASE_URL + f"/jobs/{job_id}/submit_job/", headers={"Authorization": f"Token {ACCESS_TOKEN}"}, data={ "result": result, "task_id": task_id }) return resp
[ "os.getenv", "json.loads", "requests.get" ]
[((510, 683), 'requests.get', 'requests.get', (["(API_BASE_URL + f'/jobs/{job_id}/start_job/')"], {'headers': "{'Authorization': f'Token {ACCESS_TOKEN}'}", 'data': "{'worker_name': worker_name, 'task_id': task_id}"}), "(API_BASE_URL + f'/jobs/{job_id}/start_job/', headers={\n 'Authorization': f'Token {ACCESS_TOKEN}'}, data={'worker_name':\n worker_name, 'task_id': task_id})\n", (522, 683), False, 'import requests\n'), ((885, 909), 'json.loads', 'json.loads', (['resp.content'], {}), '(resp.content)\n', (895, 909), False, 'import json\n'), ((1111, 1275), 'requests.get', 'requests.get', (["(API_BASE_URL + f'/jobs/{job_id}/submit_job/')"], {'headers': "{'Authorization': f'Token {ACCESS_TOKEN}'}", 'data': "{'result': result, 'task_id': task_id}"}), "(API_BASE_URL + f'/jobs/{job_id}/submit_job/', headers={\n 'Authorization': f'Token {ACCESS_TOKEN}'}, data={'result': result,\n 'task_id': task_id})\n", (1123, 1275), False, 'import requests\n'), ((414, 438), 'os.getenv', 'os.getenv', (['"""WORKER_NAME"""'], {}), "('WORKER_NAME')\n", (423, 438), False, 'import os\n'), ((474, 498), 'os.getenv', 'os.getenv', (['"""WORKER_NAME"""'], {}), "('WORKER_NAME')\n", (483, 498), False, 'import os\n')]
import time import logging from extended_networkx_tools import Analytics, AnalyticsGraph from timeit import default_timer as timer from utils import Solvers from utils.GraphUtils import GraphUtils from utils.ServerUtil import ServerUtil from datetime import datetime class GraphThread: @staticmethod def start_thread(base_url, client_name, thread_id, color=None, recalc=False): current_sleep = 10 gt = GraphThread(base_url, client_name, thread_id, color) while True: try: gt.run(recalc) current_sleep = 10 except Exception as e: logging.exception("Failed when running thread") gt.print('Crashed, restarting in %d seconds' % current_sleep, Styles.FAIL) time.sleep(current_sleep) current_sleep += 10 client_name: str server: ServerUtil thread_id: int color: None def __init__(self, base_url, client_name, thread_id, color): self.client_name = client_name self.thread_id = thread_id self.server = ServerUtil(base_url) self.color = color def run(self, recalc=False): # Get a new task from the server task = self.get_task(recalc) self.print("(%d) Received graph (%d nodes), type %s" % (task['Id'], task['NodeCount'], task['SolveType'])) # Solve it and get a graph start = timer() analytics_graph, custom_data = self.solve_task(task=task) end = timer() # Calculate deltatime delta_time = end - start time_minutes = round((delta_time / 60)-0.49) time_seconds = round(delta_time % 60) self.print("(%d) Solved graph (%d nodes) in %sm %ss" % (task['Id'], task['NodeCount'], time_minutes, time_seconds)) # Get the results results = GraphUtils.get_results(analytics_graph=analytics_graph, task=task, custom_data=custom_data) # Upload the results to the server self.upload_results(results=results, analytics_graph=analytics_graph) self.print("(%d) Uploaded results (%d nodes)" % (task['Id'], task['NodeCount'])) def get_task(self, recalc=False): if recalc: task = self.server.get_recalc_task() else: task = self.server.get_task(self.client_name) return task @staticmethod def solve_task(task) -> (AnalyticsGraph, object): solve_type = task['SolveType'] if solve_type == 'diff': return Solvers.Diff.solve(task) elif solve_type == 'spec': return Solvers.Spec.solve(task) elif solve_type == 'random': return Solvers.Random.solve(task) elif solve_type == 'field' or solve_type == 'dfield' or solve_type == 'sfield' or solve_type == 'sfield_fr': return Solvers.Field.solve(task) else: return Solvers.Random.solve(task) def upload_results(self, results, analytics_graph: AnalyticsGraph): worker_id = results['Id'] self.server.upload_results(worker_id, results) self.server.upload_results(worker_id, {'Nodes': Analytics.get_node_dict(analytics_graph.graph())}) self.server.upload_results(worker_id, {'Edges': Analytics.get_edge_dict(analytics_graph.graph())}) def print(self, msg, type=None): start_color = None if type is None: start_color = self.color ts = datetime.now().strftime('%H:%M:%S') print("%s%s%s %s P%d: %s%s" % (Styles.BOLD, ts, Styles.ENDC, start_color, self.thread_id, msg, Styles.ENDC)) class Styles: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m'
[ "utils.Solvers.Diff.solve", "utils.GraphUtils.GraphUtils.get_results", "logging.exception", "utils.Solvers.Random.solve", "timeit.default_timer", "utils.Solvers.Field.solve", "time.sleep", "utils.ServerUtil.ServerUtil", "utils.Solvers.Spec.solve", "datetime.datetime.now" ]
[((1097, 1117), 'utils.ServerUtil.ServerUtil', 'ServerUtil', (['base_url'], {}), '(base_url)\n', (1107, 1117), False, 'from utils.ServerUtil import ServerUtil\n'), ((1424, 1431), 'timeit.default_timer', 'timer', ([], {}), '()\n', (1429, 1431), True, 'from timeit import default_timer as timer\n'), ((1512, 1519), 'timeit.default_timer', 'timer', ([], {}), '()\n', (1517, 1519), True, 'from timeit import default_timer as timer\n'), ((1871, 1966), 'utils.GraphUtils.GraphUtils.get_results', 'GraphUtils.get_results', ([], {'analytics_graph': 'analytics_graph', 'task': 'task', 'custom_data': 'custom_data'}), '(analytics_graph=analytics_graph, task=task,\n custom_data=custom_data)\n', (1893, 1966), False, 'from utils.GraphUtils import GraphUtils\n'), ((2537, 2561), 'utils.Solvers.Diff.solve', 'Solvers.Diff.solve', (['task'], {}), '(task)\n', (2555, 2561), False, 'from utils import Solvers\n'), ((2616, 2640), 'utils.Solvers.Spec.solve', 'Solvers.Spec.solve', (['task'], {}), '(task)\n', (2634, 2640), False, 'from utils import Solvers\n'), ((3465, 3479), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3477, 3479), False, 'from datetime import datetime\n'), ((638, 685), 'logging.exception', 'logging.exception', (['"""Failed when running thread"""'], {}), "('Failed when running thread')\n", (655, 685), False, 'import logging\n'), ((793, 818), 'time.sleep', 'time.sleep', (['current_sleep'], {}), '(current_sleep)\n', (803, 818), False, 'import time\n'), ((2697, 2723), 'utils.Solvers.Random.solve', 'Solvers.Random.solve', (['task'], {}), '(task)\n', (2717, 2723), False, 'from utils import Solvers\n'), ((2860, 2885), 'utils.Solvers.Field.solve', 'Solvers.Field.solve', (['task'], {}), '(task)\n', (2879, 2885), False, 'from utils import Solvers\n'), ((2919, 2945), 'utils.Solvers.Random.solve', 'Solvers.Random.solve', (['task'], {}), '(task)\n', (2939, 2945), False, 'from utils import Solvers\n')]
from django import forms SACCO_DRIVER_STATUS_OPTIONS = [ ('Approved', ('Approved to operate')), ('Suspended', ('Suspended for the time being')), ('Blacklisted', ('Blacklisted from operating')) ] class VehicleForm(forms.Form): # sacco = forms.CharField(label="Sacco", max_length=100) regno = forms.CharField(label="Registration Number", max_length=7) # def get_sacco(self): # """Return the name of the sacco.""" # return self.sacco def get_regno(self): """Return the regno of the vehicle.""" return self.regno class DriverForm(forms.Form): """Viewset for add driver.""" national_id = forms.CharField(max_length=8) # first_name = forms.CharField(max_length=10) # last_name = forms.CharField(max_length=10) # # sacco = forms.CharField(max_length=10) # email = forms.CharField(max_length=15) # phone_number = forms.CharField(max_length=12) class UpdateSaccoDriverStatusForm(forms.Form): """.""" status = forms.CharField( widget=forms.Select(choices=SACCO_DRIVER_STATUS_OPTIONS) ) description = forms.CharField(widget=forms.Textarea) class SearchDriverIdForm(forms.Form): """Search for a driver.""" national_id = forms.CharField(max_length=10, help_text="Enter driver id")
[ "django.forms.CharField", "django.forms.Select" ]
[((314, 372), 'django.forms.CharField', 'forms.CharField', ([], {'label': '"""Registration Number"""', 'max_length': '(7)'}), "(label='Registration Number', max_length=7)\n", (329, 372), False, 'from django import forms\n'), ((658, 687), 'django.forms.CharField', 'forms.CharField', ([], {'max_length': '(8)'}), '(max_length=8)\n', (673, 687), False, 'from django import forms\n'), ((1111, 1149), 'django.forms.CharField', 'forms.CharField', ([], {'widget': 'forms.Textarea'}), '(widget=forms.Textarea)\n', (1126, 1149), False, 'from django import forms\n'), ((1239, 1298), 'django.forms.CharField', 'forms.CharField', ([], {'max_length': '(10)', 'help_text': '"""Enter driver id"""'}), "(max_length=10, help_text='Enter driver id')\n", (1254, 1298), False, 'from django import forms\n'), ((1037, 1086), 'django.forms.Select', 'forms.Select', ([], {'choices': 'SACCO_DRIVER_STATUS_OPTIONS'}), '(choices=SACCO_DRIVER_STATUS_OPTIONS)\n', (1049, 1086), False, 'from django import forms\n')]
from typing import Optional from talon import Context from user.emacs.utils.voicemacs import rpc_call from user.utils.formatting import SurroundingText context = Context() context.matches = r""" tag: user.emacs """ @context.action_class("self") class UserActions: def surrounding_text() -> Optional[SurroundingText]: # TODO: If the voicemacs server is inactive, return nothing. raw_info = rpc_call( "voicemacs-surrounding-text", [":chars-before", 30000, ":chars-after", 30000], # Use a very long timeout timeout=10, ) return SurroundingText( text_before=raw_info["text-before"], text_after=raw_info["text-after"] )
[ "talon.Context", "user.emacs.utils.voicemacs.rpc_call", "user.utils.formatting.SurroundingText" ]
[((166, 175), 'talon.Context', 'Context', ([], {}), '()\n', (173, 175), False, 'from talon import Context\n'), ((416, 519), 'user.emacs.utils.voicemacs.rpc_call', 'rpc_call', (['"""voicemacs-surrounding-text"""', "[':chars-before', 30000, ':chars-after', 30000]"], {'timeout': '(10)'}), "('voicemacs-surrounding-text', [':chars-before', 30000,\n ':chars-after', 30000], timeout=10)\n", (424, 519), False, 'from user.emacs.utils.voicemacs import rpc_call\n'), ((616, 708), 'user.utils.formatting.SurroundingText', 'SurroundingText', ([], {'text_before': "raw_info['text-before']", 'text_after': "raw_info['text-after']"}), "(text_before=raw_info['text-before'], text_after=raw_info[\n 'text-after'])\n", (631, 708), False, 'from user.utils.formatting import SurroundingText\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import zipfile def make_nvz_main(output_file, nvm_file, target_file, pitch_file=None): if pitch_file is not None: files = [nvm_file, target_file, pitch_file] arc_names = ['target.nvm', 'target.pb', 'pitch.pb'] else: files = [nvm_file, target_file] arc_names = ['target.nvm', 'target.pb'] with zipfile.ZipFile(output_file, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip: for file_loop in range(len(arc_names)): new_zip.write(files[file_loop], arcname=arc_names[file_loop]) if __name__ == '__main__': output_file = 'outputs/target.nvz' if len(sys.argv) > 1: output_file = sys.argv[1] nvm_file = 'outputs/target.nvm' target_file = 'outputs/target.pb' pitch_file = 'outputs/pitch.pb' if len(sys.argv) == 5: nvm_file = sys.argv[2] target_file = sys.argv[3] pitch_file = sys.argv[4] make_nvz_main(output_file, nvm_file, target_file, pitch_file)
[ "zipfile.ZipFile" ]
[((417, 484), 'zipfile.ZipFile', 'zipfile.ZipFile', (['output_file', '"""w"""'], {'compression': 'zipfile.ZIP_DEFLATED'}), "(output_file, 'w', compression=zipfile.ZIP_DEFLATED)\n", (432, 484), False, 'import zipfile\n')]
import click from mutacc.mutaccDB.remove_case import remove_case_from_db @click.command('remove') @click.argument('case_id') @click.pass_context def remove_command(context, case_id): """ Deletes case from mutacc DB """ adapter = context.obj['adapter'] remove_case_from_db(adapter, case_id)
[ "mutacc.mutaccDB.remove_case.remove_case_from_db", "click.argument", "click.command" ]
[((76, 99), 'click.command', 'click.command', (['"""remove"""'], {}), "('remove')\n", (89, 99), False, 'import click\n'), ((101, 126), 'click.argument', 'click.argument', (['"""case_id"""'], {}), "('case_id')\n", (115, 126), False, 'import click\n'), ((280, 317), 'mutacc.mutaccDB.remove_case.remove_case_from_db', 'remove_case_from_db', (['adapter', 'case_id'], {}), '(adapter, case_id)\n', (299, 317), False, 'from mutacc.mutaccDB.remove_case import remove_case_from_db\n')]
# encoding: utf-8 # http://www.hexblog.com/?p=120 # Default IDA Pro Paths: # MAC /Applications/IDA\ Pro\ X/idaq.app/Contents/MacOS/plugins/ # Windows C:\Program Files (x86)\IDA X\plugins # to make it autoexec on openfile # add this to plugins.cfg # ; Other plugins #FullColor FullColor.py 0 0 SILENT # thanks @JR0driguezB for help :) from __future__ import print_function from idautils import Heads from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM import idaapi #idaapi.auto_wait() PLUGIN_TEST = 1 class FullColor_t(idaapi.plugin_t): flags = idaapi.PLUGIN_UNL comment = "Set colors :)" help = "No help needed" wanted_name = "FullColor" wanted_hotkey = "" def init(self): #idaapi.msg("init() called!\n") #self.run(0) return idaapi.PLUGIN_OK def run(self, arg=0): print("hell2") idaapi.msg("run() called with %d!\n" % arg) heads = Heads(get_segm_start(get_screen_ea()), get_segm_end(get_screen_ea())) funcCalls = [] xor = [] antiVM = [] for i in heads: # Color the Calls off-white if print_insn_mnem(i) == "call": funcCalls.append(i) # Color Anti-VM instructions Red and print their location elif print_insn_mnem(i) in ("sidt", "sgdt", "sldt", "smsw", "str", "in", "cpuid"): antiVM.append(i) # Color non-zeroing out xor instructions Orange elif print_insn_mnem(i) == "xor" and (print_operand(i,0) != print_operand(i,1)): xor.append(i) print("Number of calls: %d" % (len(funcCalls))) for i in funcCalls: set_color(i, CIC_ITEM, 0xc7fdff) print("Number of potential Anti-VM instructions: %d" % (len(antiVM))) for i in antiVM: print("Anti-VM potential at %x" % i) set_color(i, CIC_ITEM, 0x0000ff) print("Number of xor: %d" % (len(xor))) for i in xor: set_color(i, CIC_ITEM, 0x00a5ff) def term(self): idaapi.msg("term() called!\n") def PLUGIN_ENTRY(): return FullColor_t() if PLUGIN_TEST: # Create form f = PLUGIN_ENTRY() f.init() f.run() f.term()
[ "idaapi.msg", "idc.set_color", "idc.get_screen_ea", "idc.print_operand", "idc.print_insn_mnem" ]
[((952, 995), 'idaapi.msg', 'idaapi.msg', (["('run() called with %d!\\n' % arg)"], {}), "('run() called with %d!\\n' % arg)\n", (962, 995), False, 'import idaapi\n'), ((2142, 2172), 'idaapi.msg', 'idaapi.msg', (['"""term() called!\n"""'], {}), "('term() called!\\n')\n", (2152, 2172), False, 'import idaapi\n'), ((1766, 1798), 'idc.set_color', 'set_color', (['i', 'CIC_ITEM', '(13106687)'], {}), '(i, CIC_ITEM, 13106687)\n', (1775, 1798), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n'), ((1964, 1991), 'idc.set_color', 'set_color', (['i', 'CIC_ITEM', '(255)'], {}), '(i, CIC_ITEM, 255)\n', (1973, 1991), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n'), ((2080, 2109), 'idc.set_color', 'set_color', (['i', 'CIC_ITEM', '(42495)'], {}), '(i, CIC_ITEM, 42495)\n', (2089, 2109), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n'), ((1033, 1048), 'idc.get_screen_ea', 'get_screen_ea', ([], {}), '()\n', (1046, 1048), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n'), ((1064, 1079), 'idc.get_screen_ea', 'get_screen_ea', ([], {}), '()\n', (1077, 1079), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n'), ((1221, 1239), 'idc.print_insn_mnem', 'print_insn_mnem', (['i'], {}), '(i)\n', (1236, 1239), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n'), ((1374, 1392), 'idc.print_insn_mnem', 'print_insn_mnem', (['i'], {}), '(i)\n', (1389, 1392), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n'), ((1563, 1581), 'idc.print_insn_mnem', 'print_insn_mnem', (['i'], {}), '(i)\n', (1578, 1581), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n'), ((1596, 1615), 'idc.print_operand', 'print_operand', (['i', '(0)'], {}), '(i, 0)\n', (1609, 1615), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n'), ((1618, 1637), 'idc.print_operand', 'print_operand', (['i', '(1)'], {}), '(i, 1)\n', (1631, 1637), False, 'from idc import get_segm_start, get_segm_end, print_insn_mnem, get_screen_ea, print_operand, set_color, CIC_ITEM\n')]
import os import random import subprocess MYPATH = './out-of-dropbox-2020-08to12-' FILES = os.listdir(MYPATH) INP = '' while INP != 'q': INP = input('q to quit, enter anything else to continue') file_choice = random.choice(FILES) pathname_choice = MYPATH + '/' + file_choice subprocess.run(["open", pathname_choice])
[ "subprocess.run", "random.choice", "os.listdir" ]
[((92, 110), 'os.listdir', 'os.listdir', (['MYPATH'], {}), '(MYPATH)\n', (102, 110), False, 'import os\n'), ((218, 238), 'random.choice', 'random.choice', (['FILES'], {}), '(FILES)\n', (231, 238), False, 'import random\n'), ((292, 333), 'subprocess.run', 'subprocess.run', (["['open', pathname_choice]"], {}), "(['open', pathname_choice])\n", (306, 333), False, 'import subprocess\n')]
import argparse import json from multiprocessing import Pool from puyotable.canonization import canonize_deals def all_deals(num_deals, num_colors): if not num_deals: return [[]] result = [] for c0 in range(num_colors): for c1 in range(num_colors): for deals in all_deals(num_deals - 1, num_colors): result.append(deals + [(c0, c1)]) return result def for_all_deals(num_deals, num_colors, callback, prefix=[]): if not num_deals: callback(prefix) return for c0 in range(num_colors): for c1 in range(num_colors): for_all_deals( num_deals - 1, num_colors, callback, prefix + [(c0, c1)] ) def unique_deals(num_deals, num_colors, prefix_=[]): canonized = set() def callback(deals): canonized.add(canonize_deals(deals, num_colors)) # Known symmetry reduction prefix = [(0, 0)] + prefix_ for_all_deals(num_deals - 1, num_colors, callback, prefix) prefix = [(0, 1)] + prefix_ for_all_deals(num_deals - 1, num_colors, callback, prefix) return canonized if __name__ == '__main__': parser = argparse.ArgumentParser( description='Tabulate all opening sequences in Puyo Puyo.' ) parser.add_argument( 'num_colors', metavar='colors', type=int, help='Number of available colors' ) parser.add_argument( 'depth', metavar='depth', type=int, help='How many pieces deep to tabulate' ) parser.add_argument( '--outfile', metavar='f', type=str, help='Filename for JSON output' ) args = parser.parse_args() canonized = set() if args.depth > 1: prefixes = [[(c0, c1)] for c0 in range(args.num_colors) for c1 in range(args.num_colors)] # noqa process_args = [ (args.depth - 1, args.num_colors, prefix) for prefix in prefixes ] pool = Pool() subsets = pool.starmap(unique_deals, process_args) for subset in subsets: canonized.update(subset) else: canonized = unique_deals(args.depth, args.num_colors) print("Found", len(canonized), "unique sequences.") if args.outfile: with open(args.outfile, 'w') as f: json.dump(sorted(canonized), f) print("Saved result to", args.outfile)
[ "puyotable.canonization.canonize_deals", "argparse.ArgumentParser", "multiprocessing.Pool" ]
[((1216, 1304), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Tabulate all opening sequences in Puyo Puyo."""'}), "(description=\n 'Tabulate all opening sequences in Puyo Puyo.')\n", (1239, 1304), False, 'import argparse\n'), ((1988, 1994), 'multiprocessing.Pool', 'Pool', ([], {}), '()\n', (1992, 1994), False, 'from multiprocessing import Pool\n'), ((895, 928), 'puyotable.canonization.canonize_deals', 'canonize_deals', (['deals', 'num_colors'], {}), '(deals, num_colors)\n', (909, 928), False, 'from puyotable.canonization import canonize_deals\n')]
import matplotlib.pyplot as plt import numpy as np import numpy.polynomial.polynomial as nppol class Metawalk: def __init__(self, time_intervals=None, nodes=None, ): """ A basic constructor for a ``Metwalks`` object :param times : A list of couples of floats which represents times corresponding to the time intervals :param links : A list of nodes. (first node = source ; last node = destination) """ self.time_intervals = time_intervals self.nodes = nodes def add_link(self, l, t): self.time_intervals.append(t) self.nodes.append(l) def length(self): return len(self.time_intervals) def duration(self): return self.time_intervals[-1][1] - self.time_intervals[0][0] def clone(self): return Metawalk(self.time_intervals[:],self.nodes[:]) def __hash__(self): m = tuple(self.nodes) n = tuple(self.time_intervals) return hash((m,n)) def __str__(self): s = "" for i in range(0,self.length()): s += " " s += str(self.nodes[i]) s += " " s += str(self.time_intervals[i]) s += " " s += str(self.nodes[i+1]) s += " | volume = " s += str(self.volume()) return s def __repr__(self): return self.__str__() def __eq__(self, m): if m == None: return False if m.length() != self.length(): return False if (m.nodes == self.nodes) and (m.time_intervals == self.time_intervals): return True return False def is_instantenous(self): #we check from the last because of the algirothm that uses it add new links to the end of the metawalk b = True if len(self.time_intervals) == 1: return True x = self.time_intervals[-1] for i in range(-2,-len(self.time_intervals)-1,-1): if self.time_intervals[i] != x: return False return True def update_following_last(self,b): #sometimes when adding a metaedge the metawalk has to be cut at some points because some paths are no longer valid. if b == 0: #last edge added ends at same time but starts before self.time_intervals[-1][0] = self.time_intervals[-2][0] else: end = self.time_intervals[-1][1] # last edge starts at same time but ends before for i in range(-2,-len(self.time_intervals)-1,-1): if self.time_intervals[i][1] > end: self.time_intervals[i][1] = end def volume(self): """Normally the link are either exactly the same or disjoint, need to check for inclusion, exclusion of intervals """ time_intervals = self.time_intervals[:] time_intervals.append([-1,-1]) res = [0 for i in range(len(time_intervals)+ 1)] last_x,last_y = time_intervals[0] b = True if len(time_intervals)==1: last_x,last_y = time_intervals[0] if last_x != last_y: b = False res[1] = np.around((last_y - last_x), decimals=2) else: if last_x == last_y: degree = 0 else: degree = 1 for i in range(1,len(time_intervals)): if last_x != last_y: b = False x,y = time_intervals[i] #it should be enough to check one bound no overlap in linkq in fragmented link streams but maybe its ok to generalise it and make it work whenvever later on, update : false, [1,2],[1,1] if x == last_x and y == last_y and degree > 0: degree += 1 else: res[degree] += np.around((last_y - last_x)/np.math.factorial(degree), decimals=2) if x != y: degree = 1 last_x = x last_y = y if b == True: res[0] = 1 res = [np.around(e,decimals=2) for e in res] return nppol.Polynomial(res) def passes_through(self,t,v): if v in self.nodes: indice = self.nodes.index(v) else: return False if indice == 0: if t < self.time_intervals[0][0]: return True else: return False elif indice == len(self.nodes) -1: if t >= self.time_intervals[-1][1]: return True else: return False else: if t >= self.time_intervals[indice-1][1] and t < self.time_intervals[indice][0]: return True else: return False def passes_through_whole_interval(self,v,t1,t2): return False def passes_through_somewhere_interval(self,v,t1,t2): #t1 included, but t2 not return False def add_interval_betweenness(self,t_max,interval_size): res = [] for i in range(0,len(self.time_intervals)-1): left_bound = self.time_intervals[i][1] right_bound = self.time_intervals[i+1][0] nb_interval_contributes_to = (left_bound - right_bound) // interval_size fst_interval_left_bound = left_bound // interval_size for j in range(1,nb_interval_contributes_to+1): res.append((self.nodes[i+1], fst_interval_left_bound, fst_interval_left_bound + j * interval_size )) fst_interval_left_bound = fst_interval_left_bound + j * interval_size return res def fastest_meta_walk(self): if self.time_intervals[0] == self.time_intervals[-1]: return self.clone() else: nodes = self.nodes[:] time_intervals = self.time_intervals[:] time_intervals[0] = (time_intervals[0][1],time_intervals[0][1]) time_intervals[-1] = (time_intervals[-1][0],time_intervals[-1][0]) for i in range(1,len(time_intervals)): if time_intervals[i][0] < time_intervals[0][0]: time_intervals[i] = (time_intervals[0][0],time_intervals[i][1]) if time_intervals[i][1] > time_intervals[-1][1]: time_intervals[i] = (time_intervals[i][0],time_intervals[-1][1]) return Metawalk(time_intervals,nodes) def first_time(self): return self.time_intervals[0][0] def last_departure(self): return self.time_intervals[0][1] def first_arrival(self): return self.time_intervals[-1][0] def first_node(self): return self.nodes[0] def last_node(self): return self.nodes[-1] def plot(self, S, color="#18036f", markersize=10, dag=False, fig=None): """ Draw a path on the ``StreamGraph`` object *S* :param S: :param color: :param markersize: :param dag: :param fig: :return: """ if fig is None: fig, ax = plt.subplots() else: ax = plt.gca() if dag: dag = S.condensation_dag() dag.plot(node_to_label=S.node_to_label, ax=ax) else: S.plot(ax=ax) # Plot Source id_source = S.nodes.index(self.nodes[0]) plt.plot([self.time_intervals[0]], [id_source], color=color, marker='o', alpha=0.8, markersize=markersize) # Plot Destination id_destination = S.nodes.index(self.nodes[-1]) plt.plot([self.time_intervals[-1]], [id_destination], color=color, marker='o', alpha=0.8, markersize=markersize) # Plot Path for i in range(self.length()): l = self.nodes[i] l2 = self.nodes[i+1] t = self.time_intervals[i][0] t2 = self.time_intervals[i][1] id1 = S.nodes.index(l) id2 = S.nodes.index(l2) idmax = max(id1, id2) idmin = min(id1, id2) # verts = [ # (idmin, t), # left, bottom # (idmax, t), # left, top # (idmax, t2), # right, top # (idmin, t2), # right, bottom # ] plt.vlines(t, ymin=idmin, ymax=idmax, linewidth=6, alpha=0.8, color=color) plt.vlines(t2, ymin=idmin, ymax=idmax, linewidth=6, alpha=0.8, color=color) if i != self.length() - 1: plt.hlines(id2, xmin=t, xmax=t2, linewidth=4, alpha=0.8, color=color) plt.hlines(id1, xmin=t, xmax=t2, linewidth=4, alpha=0.8, color=color) # Plot marker # if t != self.times[i + 1]: # plt.plot([t], [id2], color=color, # marker='>', alpha=0.8, markersize=markersize) # if i != 0 and (t, id1) != (self.times[0], id_source) != (self.times[-1], id_destination): # # Plot marker # if id1 == idmin: # plt.plot([t], [id1], color=color, # marker='^', alpha=0.8, markersize=markersize) # else: # plt.plot([t], [id1], color=color, # marker='v', alpha=0.8, markersize=markersize) plt.tight_layout() return fig def check_coherence(self, S): for i in range(self.length()): l = (self.nodes[i],self.nodes[i+1]) inter = self.time_intervals[i] l_ = (self.nodes[i+1],self.nodes[i]) # Inverse the order of the interval if l not in S.links and l_ not in S.links: raise ValueError("Link : " + str(l) + " does not exists in the Stream Graph !") else: t = inter[0] t2 = inter[1] if l in S.links: id_link = S.links.index(l) else: id_link = S.links.index(l_) is_present = False for lt0, lt1 in zip(S.link_presence[id_link][::2], S.link_presence[id_link][1::2]): if (lt0 <= t <= lt1) and (lt0 <= t2 <= lt1) and (t <= t2): is_present = True if not is_present: raise ValueError("Link : " + str(l) + " does not exists at time " + str(t) + " !") print("Check Path Coherence ok !") return
[ "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.plot", "numpy.polynomial.polynomial.Polynomial", "matplotlib.pyplot.vlines", "numpy.around", "numpy.math.factorial", "matplotlib.pyplot.gca", "matplotlib.pyplot.hlines", "matplotlib.pyplot.subplots" ]
[((4201, 4222), 'numpy.polynomial.polynomial.Polynomial', 'nppol.Polynomial', (['res'], {}), '(res)\n', (4217, 4222), True, 'import numpy.polynomial.polynomial as nppol\n'), ((7457, 7567), 'matplotlib.pyplot.plot', 'plt.plot', (['[self.time_intervals[0]]', '[id_source]'], {'color': 'color', 'marker': '"""o"""', 'alpha': '(0.8)', 'markersize': 'markersize'}), "([self.time_intervals[0]], [id_source], color=color, marker='o',\n alpha=0.8, markersize=markersize)\n", (7465, 7567), True, 'import matplotlib.pyplot as plt\n'), ((7671, 7788), 'matplotlib.pyplot.plot', 'plt.plot', (['[self.time_intervals[-1]]', '[id_destination]'], {'color': 'color', 'marker': '"""o"""', 'alpha': '(0.8)', 'markersize': 'markersize'}), "([self.time_intervals[-1]], [id_destination], color=color, marker=\n 'o', alpha=0.8, markersize=markersize)\n", (7679, 7788), True, 'import matplotlib.pyplot as plt\n'), ((9491, 9509), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (9507, 9509), True, 'import matplotlib.pyplot as plt\n'), ((4148, 4172), 'numpy.around', 'np.around', (['e'], {'decimals': '(2)'}), '(e, decimals=2)\n', (4157, 4172), True, 'import numpy as np\n'), ((7166, 7180), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (7178, 7180), True, 'import matplotlib.pyplot as plt\n'), ((7212, 7221), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (7219, 7221), True, 'import matplotlib.pyplot as plt\n'), ((8386, 8460), 'matplotlib.pyplot.vlines', 'plt.vlines', (['t'], {'ymin': 'idmin', 'ymax': 'idmax', 'linewidth': '(6)', 'alpha': '(0.8)', 'color': 'color'}), '(t, ymin=idmin, ymax=idmax, linewidth=6, alpha=0.8, color=color)\n', (8396, 8460), True, 'import matplotlib.pyplot as plt\n'), ((8473, 8548), 'matplotlib.pyplot.vlines', 'plt.vlines', (['t2'], {'ymin': 'idmin', 'ymax': 'idmax', 'linewidth': '(6)', 'alpha': '(0.8)', 'color': 'color'}), '(t2, ymin=idmin, ymax=idmax, linewidth=6, alpha=0.8, color=color)\n', (8483, 8548), True, 'import matplotlib.pyplot as plt\n'), ((3219, 3257), 'numpy.around', 'np.around', (['(last_y - last_x)'], {'decimals': '(2)'}), '(last_y - last_x, decimals=2)\n', (3228, 3257), True, 'import numpy as np\n'), ((8604, 8673), 'matplotlib.pyplot.hlines', 'plt.hlines', (['id2'], {'xmin': 't', 'xmax': 't2', 'linewidth': '(4)', 'alpha': '(0.8)', 'color': 'color'}), '(id2, xmin=t, xmax=t2, linewidth=4, alpha=0.8, color=color)\n', (8614, 8673), True, 'import matplotlib.pyplot as plt\n'), ((8717, 8786), 'matplotlib.pyplot.hlines', 'plt.hlines', (['id1'], {'xmin': 't', 'xmax': 't2', 'linewidth': '(4)', 'alpha': '(0.8)', 'color': 'color'}), '(id1, xmin=t, xmax=t2, linewidth=4, alpha=0.8, color=color)\n', (8727, 8786), True, 'import matplotlib.pyplot as plt\n'), ((3920, 3945), 'numpy.math.factorial', 'np.math.factorial', (['degree'], {}), '(degree)\n', (3937, 3945), True, 'import numpy as np\n')]
from django.db import models from django.core.validators import MaxValueValidator, MinValueValidator from django.db.models.signals import post_delete from django.dispatch import receiver from myauth import models as myauth_models from products.models import Book class CommentProducts(models.Model): profile = models.ForeignKey( myauth_models.Profile, on_delete=models.PROTECT, related_name='comments' ) book = models.ForeignKey( Book, on_delete=models.PROTECT, related_name='comments' ) comment = models.TextField( verbose_name='Комментарий', default='', blank=True, null=True ) date_add = models.DateTimeField( auto_now=False, auto_now_add=True, verbose_name='Дата внесения в каталог' ) date_last_change = models.DateTimeField( auto_now=True, auto_now_add=False, verbose_name='Дата последнего изменения карточки' ) stars = models.IntegerField( validators=[ MinValueValidator(0), MaxValueValidator(5)] ) def __str__(self): return f'Комментарий №{self.pk}, пользователя: {self.profile}, к книге: {self.book}' class Meta: verbose_name = 'Комментарий' verbose_name_plural = 'Комментарии' @receiver(post_delete, sender=CommentProducts) def post_delete_review(sender, instance, **kwargs): avr = instance.book.get_rating() instance.book.avr_rating = avr instance.book.save()
[ "django.db.models.TextField", "django.db.models.ForeignKey", "django.core.validators.MinValueValidator", "django.dispatch.receiver", "django.db.models.DateTimeField", "django.core.validators.MaxValueValidator" ]
[((1334, 1379), 'django.dispatch.receiver', 'receiver', (['post_delete'], {'sender': 'CommentProducts'}), '(post_delete, sender=CommentProducts)\n', (1342, 1379), False, 'from django.dispatch import receiver\n'), ((317, 412), 'django.db.models.ForeignKey', 'models.ForeignKey', (['myauth_models.Profile'], {'on_delete': 'models.PROTECT', 'related_name': '"""comments"""'}), "(myauth_models.Profile, on_delete=models.PROTECT,\n related_name='comments')\n", (334, 412), False, 'from django.db import models\n'), ((450, 524), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Book'], {'on_delete': 'models.PROTECT', 'related_name': '"""comments"""'}), "(Book, on_delete=models.PROTECT, related_name='comments')\n", (467, 524), False, 'from django.db import models\n'), ((569, 648), 'django.db.models.TextField', 'models.TextField', ([], {'verbose_name': '"""Комментарий"""', 'default': '""""""', 'blank': '(True)', 'null': '(True)'}), "(verbose_name='Комментарий', default='', blank=True, null=True)\n", (585, 648), False, 'from django.db import models\n'), ((702, 802), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(False)', 'auto_now_add': '(True)', 'verbose_name': '"""Дата внесения в каталог"""'}), "(auto_now=False, auto_now_add=True, verbose_name=\n 'Дата внесения в каталог')\n", (722, 802), False, 'from django.db import models\n'), ((851, 962), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'auto_now_add': '(False)', 'verbose_name': '"""Дата последнего изменения карточки"""'}), "(auto_now=True, auto_now_add=False, verbose_name=\n 'Дата последнего изменения карточки')\n", (871, 962), False, 'from django.db import models\n'), ((1054, 1074), 'django.core.validators.MinValueValidator', 'MinValueValidator', (['(0)'], {}), '(0)\n', (1071, 1074), False, 'from django.core.validators import MaxValueValidator, MinValueValidator\n'), ((1088, 1108), 'django.core.validators.MaxValueValidator', 'MaxValueValidator', (['(5)'], {}), '(5)\n', (1105, 1108), False, 'from django.core.validators import MaxValueValidator, MinValueValidator\n')]
from urllib.parse import urlparse, urlunparse from functools import wraps from flask import abort, request, current_app from lib.twilio import TwilioClient def validate_twilio_request(f): """Validates that incoming requests genuinely originated from Twilio""" # Adapted from https://www.twilio.com/docs/usage/tutorials/how-to-secure-your-flask-app-by-validating-incoming-twilio-requests?code-sample=code-custom-decorator-for-flask-apps-to-validate-twilio-requests-3&code-language=Python&code-sdk-version=6.x @wraps(f) def decorated_function(*args, **kwargs): twilio_client = TwilioClient( current_app.config['SECRETS'].TWILIO_ACCOUNT_SID, current_app.config['SECRETS'].TWILIO_AUTH_TOKEN ) # save variables from original request as we will be making transformations on it below original_url = request.url original_host_header = request.headers.get('X-Original-Host') # the url parts to be transformed twilio_url_parts = urlparse(original_url) """ Solve issues with NGROK Twilio sees: http://somedomain.ngrok.io App sees: http://localhost:5000 So we replace the domain our app sees with the X-Original-Host header """ if original_host_header: twilio_url_parts = twilio_url_parts._replace(netloc=original_host_header) """ Solve issues with API Gateway custom domains Twilio sees: https://custom-domain.com/bot/validate-next-alert App sees: https://custom-domain.com/{stage}/bot/validate-next-alert So we strip API_GATEWAY_BASE_PATH from the beginning of the path """ api_gateway_base_path = current_app.config['API_GATEWAY_BASE_PATH'] if api_gateway_base_path: # Strip N chars from beginning of path. chars_to_strip = len(f"/{api_gateway_base_path}") new_path = twilio_url_parts.path[chars_to_strip:] twilio_url_parts = twilio_url_parts._replace(path=new_path) # Validate the request using its URL, POST data, and X-TWILIO-SIGNATURE header request_valid = twilio_client.validate_request( urlunparse(twilio_url_parts), request.form, request.headers.get('X-TWILIO-SIGNATURE', '') ) # Continue processing the request if it's valid, return a 403 error if it's not if request_valid: return f(*args, **kwargs) else: return abort(403) return decorated_function
[ "flask.request.headers.get", "urllib.parse.urlunparse", "flask.abort", "functools.wraps", "lib.twilio.TwilioClient", "urllib.parse.urlparse" ]
[((524, 532), 'functools.wraps', 'wraps', (['f'], {}), '(f)\n', (529, 532), False, 'from functools import wraps\n'), ((602, 718), 'lib.twilio.TwilioClient', 'TwilioClient', (["current_app.config['SECRETS'].TWILIO_ACCOUNT_SID", "current_app.config['SECRETS'].TWILIO_AUTH_TOKEN"], {}), "(current_app.config['SECRETS'].TWILIO_ACCOUNT_SID, current_app.\n config['SECRETS'].TWILIO_AUTH_TOKEN)\n", (614, 718), False, 'from lib.twilio import TwilioClient\n'), ((911, 949), 'flask.request.headers.get', 'request.headers.get', (['"""X-Original-Host"""'], {}), "('X-Original-Host')\n", (930, 949), False, 'from flask import abort, request, current_app\n'), ((1020, 1042), 'urllib.parse.urlparse', 'urlparse', (['original_url'], {}), '(original_url)\n', (1028, 1042), False, 'from urllib.parse import urlparse, urlunparse\n'), ((2239, 2267), 'urllib.parse.urlunparse', 'urlunparse', (['twilio_url_parts'], {}), '(twilio_url_parts)\n', (2249, 2267), False, 'from urllib.parse import urlparse, urlunparse\n'), ((2283, 2328), 'flask.request.headers.get', 'request.headers.get', (['"""X-TWILIO-SIGNATURE"""', '""""""'], {}), "('X-TWILIO-SIGNATURE', '')\n", (2302, 2328), False, 'from flask import abort, request, current_app\n'), ((2525, 2535), 'flask.abort', 'abort', (['(403)'], {}), '(403)\n', (2530, 2535), False, 'from flask import abort, request, current_app\n')]
#!/usr/bin/env python3 import os from typing import Union from pathlib import Path import requests from rpicam.utils.logging_utils import get_logger class TelegramPoster: """ Bare-bones class to post videos to a Telegram chat. Uses per default credentials stored in environment. """ API_URL = 'https://api.telegram.org' API_TOKEN_ENV_VAR = 'RPICAM_TG_API_TOKEN' CHAT_ID_ENV_VAR = 'RPICAM_TG_CHAT_ID' def __init__(self, api_token: str = None, chat_id: str = None): if api_token is not None and chat_id is not None: self.api_token = api_token self.chat_id = chat_id else: self.api_token = os.getenv(self.API_TOKEN_ENV_VAR, None) self.chat_id = os.getenv(self.CHAT_ID_ENV_VAR, None) self._logger = get_logger(self.__class__.__name__, verb=True) if self.api_token is None or self.chat_id is None: raise RuntimeError('Could not find Telegram credentials in environment.') def send_video(self, p: Union[Path, str]): """Post the given video to Telegram using stored credentials.""" p = Path(str(p)).resolve() if not p.is_file(): raise RuntimeError(f'file not found: {p}') url = f'{self.API_URL}/bot{self.api_token}/sendVideo' files = { 'chat_id': (None, self.chat_id), 'video': (str(p), open(p, 'rb')) } r = requests.post(url, files=files) if r.status_code != 200: self._logger.error(f'Could not upload file. Exit code was {r.status_code}')
[ "requests.post", "rpicam.utils.logging_utils.get_logger", "os.getenv" ]
[((806, 852), 'rpicam.utils.logging_utils.get_logger', 'get_logger', (['self.__class__.__name__'], {'verb': '(True)'}), '(self.__class__.__name__, verb=True)\n', (816, 852), False, 'from rpicam.utils.logging_utils import get_logger\n'), ((1429, 1460), 'requests.post', 'requests.post', (['url'], {'files': 'files'}), '(url, files=files)\n', (1442, 1460), False, 'import requests\n'), ((678, 717), 'os.getenv', 'os.getenv', (['self.API_TOKEN_ENV_VAR', 'None'], {}), '(self.API_TOKEN_ENV_VAR, None)\n', (687, 717), False, 'import os\n'), ((745, 782), 'os.getenv', 'os.getenv', (['self.CHAT_ID_ENV_VAR', 'None'], {}), '(self.CHAT_ID_ENV_VAR, None)\n', (754, 782), False, 'import os\n')]
""" This module provides a class for interfacing with the Sense HAT add-on board for Raspberry Pi. """ import os from multiprocessing.managers import RemoteError from myDevices.utils.logger import error, exception, info from sensehat.manager import connect_client class SenseHAT(): """Class for interacting with a Sense HAT device""" def __init__(self, use_emulator=False): """Initializes Sense HAT device. Arguments: use_emulator: True if the Sense HAT Emulator should be used. This requires the Emulator to be installed and running on the desktop. """ self.use_emulator = use_emulator self.sense_hat = None self.digital_value = 0 self.analog_value = 0.0 self.image_file = os.path.join('/etc/myDevices/plugins/cayenne-plugin-sensehat/data/image.png') self.call_sense_hat_function('clear') def init_sense_hat(self): """Initializes connection to Sense HAT service and gets a SenseHat shared object.""" if not self.sense_hat: try: self.manager = connect_client() self.manager.use_emulator(self.use_emulator) self.sense_hat = self.manager.SenseHat() except ConnectionRefusedError as e: info('Sense HAT service connection refused') error(e) except RemoteError as e: error('Failed to connect to Sense HAT device') def call_sense_hat_function(self, function_name, *args): """Calls a function of the SenseHat shared object. Arguments: function_name: Name of the function to call. args: Arguments to pass to the function. """ self.init_sense_hat() try: if self.sense_hat is not None: func = getattr(self.sense_hat, function_name) value = func(*args) return value except EOFError as e: error(e) sense_hat = None except AttributeError as e: error(e) sense_hat = None def get_temperature(self): """Gets the temperature as a tuple with type and unit.""" return (self.call_sense_hat_function('get_temperature'), 'temp', 'c') def get_humidity(self): """Gets the humidity as a tuple with type and unit.""" return (self.call_sense_hat_function('get_humidity'), 'rel_hum', 'p') def get_pressure(self): """Gets the pressure as a tuple with type and unit.""" value = self.call_sense_hat_function('get_pressure') if value is not None: return (value * 100, 'bp', 'pa') def get_acclerometer(self): """Gets the g-force as a tuple with type and unit.""" values = self.call_sense_hat_function('get_accelerometer_raw') if values is not None: g_force = [] g_force.append(values['x']) g_force.append(values['y']) g_force.append(values['z']) return (g_force, 'accel', 'g') def get_gyroscope(self): """Gets radians per second from the gyroscope.""" #Not currently supported in Cayenne values = self.call_sense_hat_function('get_gyroscope_raw') if values is not None: rps = [] rps.append(values['x']) rps.append(values['y']) rps.append(values['z']) return rps def get_magnetometer(self): """Gets microteslas from the magnetometer.""" #Not currently supported in Cayenne values = self.call_sense_hat_function('get_compass_raw') if values is not None: gyro = [] gyro.append(values['x']) gyro.append(values['y']) gyro.append(values['z']) return gyro def get_digital(self): """Gets the digital value as a tuple specifying this is a digital actuator.""" return (self.digital_value, 'digital_actuator') def set_digital(self, value): """Displays an image on the Sense HAT LED matrix if the digital value is equal to True.""" self.digital_value = value if self.digital_value: self.call_sense_hat_function('load_image', self.image_file) else: self.call_sense_hat_function('clear') def get_analog(self): """Gets the digital value as a tuple specifying this is an analog actuator.""" return (self.analog_value, 'analog_actuator') def set_analog(self, value): """Displays the analog value on the Sense HAT LED matrix.""" self.analog_value = value self.call_sense_hat_function('show_message', str(self.analog_value))
[ "myDevices.utils.logger.info", "myDevices.utils.logger.error", "os.path.join", "sensehat.manager.connect_client" ]
[((759, 836), 'os.path.join', 'os.path.join', (['"""/etc/myDevices/plugins/cayenne-plugin-sensehat/data/image.png"""'], {}), "('/etc/myDevices/plugins/cayenne-plugin-sensehat/data/image.png')\n", (771, 836), False, 'import os\n'), ((1086, 1102), 'sensehat.manager.connect_client', 'connect_client', ([], {}), '()\n', (1100, 1102), False, 'from sensehat.manager import connect_client\n'), ((1973, 1981), 'myDevices.utils.logger.error', 'error', (['e'], {}), '(e)\n', (1978, 1981), False, 'from myDevices.utils.logger import error, exception, info\n'), ((2059, 2067), 'myDevices.utils.logger.error', 'error', (['e'], {}), '(e)\n', (2064, 2067), False, 'from myDevices.utils.logger import error, exception, info\n'), ((1285, 1329), 'myDevices.utils.logger.info', 'info', (['"""Sense HAT service connection refused"""'], {}), "('Sense HAT service connection refused')\n", (1289, 1329), False, 'from myDevices.utils.logger import error, exception, info\n'), ((1346, 1354), 'myDevices.utils.logger.error', 'error', (['e'], {}), '(e)\n', (1351, 1354), False, 'from myDevices.utils.logger import error, exception, info\n'), ((1408, 1454), 'myDevices.utils.logger.error', 'error', (['"""Failed to connect to Sense HAT device"""'], {}), "('Failed to connect to Sense HAT device')\n", (1413, 1454), False, 'from myDevices.utils.logger import error, exception, info\n')]
#!/usr/bin/env python from isrutils.looper import simpleloop # %% users param P = { "path": "~/data/2015-10-07/isr", "beamid": 64157, "acf": True, "vlimacf": (18, 45), "zlim_pl": [None, None], "vlim_pl": [72, 90], "flim_pl": [3.5, 5.5], "odir": "out/2015-10-07", "vlim": [25, 55], "zlim": (90, None), "verbose": True, } # %% flist = () simpleloop(flist, P)
[ "isrutils.looper.simpleloop" ]
[((383, 403), 'isrutils.looper.simpleloop', 'simpleloop', (['flist', 'P'], {}), '(flist, P)\n', (393, 403), False, 'from isrutils.looper import simpleloop\n')]
"""turbotutorial URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/4.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.views.generic import TemplateView from django.urls import path from chat import views urlpatterns = [ path("admin/", admin.site.urls), # path("", views.RoomList.as_view(), name="room_list"), # path("<slug:pk>/", views.RoomDetail.as_view(), name="room_detail"), # path("create_message/", views.TurboTest.as_view(), name="message_create"), path("quickstart/", TemplateView.as_view(template_name="broadcast_example.html")), ]
[ "django.views.generic.TemplateView.as_view", "django.urls.path" ]
[((789, 820), 'django.urls.path', 'path', (['"""admin/"""', 'admin.site.urls'], {}), "('admin/', admin.site.urls)\n", (793, 820), False, 'from django.urls import path\n'), ((1061, 1121), 'django.views.generic.TemplateView.as_view', 'TemplateView.as_view', ([], {'template_name': '"""broadcast_example.html"""'}), "(template_name='broadcast_example.html')\n", (1081, 1121), False, 'from django.views.generic import TemplateView\n')]
import os # ETL ETL_MODE = os.environ.get('ETL_MODE') ETL_CHUNK_SIZE = int(os.environ.get('ETL_CHUNK_SIZE')) ETL_SYNC_DELAY = int(os.environ.get('ETL_SYNC_DELAY')) ETL_FILE_STATE = os.environ.get('ETL_FILE_STATE') ETL_DEFAULT_DATE = os.environ.get('ETL_DEFAULT_DATE') # Postgres POSTGRES_NAME = os.environ.get('POSTGRES_NAME') POSTGRES_USER = os.environ.get('POSTGRES_USER') POSTGRES_PASSWORD = os.environ.get('POSTGRES_PASSWORD') POSTGRES_HOST = os.environ.get('POSTGRES_HOST') POSTGRES_PORT = os.environ.get('POSTGRES_PORT') # Elasticsearch ELASTICSEARCH_HOST = os.environ.get('ELASTICSEARCH_HOST') ELASTICSEARCH_PORT = os.environ.get('ELASTICSEARCH_PORT')
[ "os.environ.get" ]
[((28, 54), 'os.environ.get', 'os.environ.get', (['"""ETL_MODE"""'], {}), "('ETL_MODE')\n", (42, 54), False, 'import os\n'), ((182, 214), 'os.environ.get', 'os.environ.get', (['"""ETL_FILE_STATE"""'], {}), "('ETL_FILE_STATE')\n", (196, 214), False, 'import os\n'), ((234, 268), 'os.environ.get', 'os.environ.get', (['"""ETL_DEFAULT_DATE"""'], {}), "('ETL_DEFAULT_DATE')\n", (248, 268), False, 'import os\n'), ((297, 328), 'os.environ.get', 'os.environ.get', (['"""POSTGRES_NAME"""'], {}), "('POSTGRES_NAME')\n", (311, 328), False, 'import os\n'), ((345, 376), 'os.environ.get', 'os.environ.get', (['"""POSTGRES_USER"""'], {}), "('POSTGRES_USER')\n", (359, 376), False, 'import os\n'), ((397, 432), 'os.environ.get', 'os.environ.get', (['"""POSTGRES_PASSWORD"""'], {}), "('POSTGRES_PASSWORD')\n", (411, 432), False, 'import os\n'), ((449, 480), 'os.environ.get', 'os.environ.get', (['"""POSTGRES_HOST"""'], {}), "('POSTGRES_HOST')\n", (463, 480), False, 'import os\n'), ((497, 528), 'os.environ.get', 'os.environ.get', (['"""POSTGRES_PORT"""'], {}), "('POSTGRES_PORT')\n", (511, 528), False, 'import os\n'), ((567, 603), 'os.environ.get', 'os.environ.get', (['"""ELASTICSEARCH_HOST"""'], {}), "('ELASTICSEARCH_HOST')\n", (581, 603), False, 'import os\n'), ((625, 661), 'os.environ.get', 'os.environ.get', (['"""ELASTICSEARCH_PORT"""'], {}), "('ELASTICSEARCH_PORT')\n", (639, 661), False, 'import os\n'), ((76, 108), 'os.environ.get', 'os.environ.get', (['"""ETL_CHUNK_SIZE"""'], {}), "('ETL_CHUNK_SIZE')\n", (90, 108), False, 'import os\n'), ((131, 163), 'os.environ.get', 'os.environ.get', (['"""ETL_SYNC_DELAY"""'], {}), "('ETL_SYNC_DELAY')\n", (145, 163), False, 'import os\n')]
#!/usr/bin/env python from __future__ import absolute_import from goonpug import app def main(): app.run(debug=True) if __name__ == '__main__': main()
[ "goonpug.app.run" ]
[((105, 124), 'goonpug.app.run', 'app.run', ([], {'debug': '(True)'}), '(debug=True)\n', (112, 124), False, 'from goonpug import app\n')]
from setuptools import setup, find_packages from Cython.Distutils.extension import Extension from Cython.Build import cythonize, build_ext import numpy import os from glob import glob """ ext_modules = [Extension("traj_dist.cydist.basic_geographical", ["traj_dist/cydist/basic_geographical.pyx"]), Extension("traj_dist.cydist.basic_euclidean", ["traj_dist/cydist/basic_euclidean.pyx"]), Extension("traj_dist.cydist.sspd", ["traj_dist/cydist/sspd.pyx"]), Extension("traj_dist.cydist.dtw", ["traj_dist/cydist/dtw.pyx"]), Extension("traj_dist.cydist.lcss", ["traj_dist/cydist/lcss.pyx"]), Extension("traj_dist.cydist.hausdorff", ["traj_dist/cydist/hausdorff.pyx"]), Extension("traj_dist.cydist.discret_frechet", ["traj_dist/cydist/discret_frechet.pyx"]), Extension("traj_dist.cydist.frechet", ["traj_dist/cydist/frechet.pyx"]), Extension("traj_dist.cydist.segment_distance", ["traj_dist/cydist/segment_distance.pyx"]), Extension("traj_dist.cydist.sowd", ["traj_dist/cydist/sowd.pyx"]), Extension("traj_dist.cydist.erp", ["traj_dist/cydist/erp.pyx"]), Extension("traj_dist.cydist.edr", ["traj_dist/cydist/edr.pyx"])] """ sources = glob('traj_dist/cydist/*.pyx') extensions = [ Extension(filename.split('.')[0].replace(os.path.sep, '.'), sources=[filename], ) for filename in sources] setup( name="trajectory_distance_py3", version="1.0.1", author="<NAME>", author_email="<EMAIL>", cmdclass={'build_ext': build_ext}, # ext_modules=ext_modules, ext_modules=extensions, include_dirs=[numpy.get_include()], install_requires=["numpy>=1.14.0", "cython>=0.27.3", "shapely>=1.6.3", "geohash2>=1.1", 'pandas>=0.20.3', 'scipy>=0.19.1'], description="Distance to compare 2D-trajectories in Cython", packages=find_packages() )
[ "numpy.get_include", "setuptools.find_packages", "glob.glob" ]
[((1294, 1324), 'glob.glob', 'glob', (['"""traj_dist/cydist/*.pyx"""'], {}), "('traj_dist/cydist/*.pyx')\n", (1298, 1324), False, 'from glob import glob\n'), ((1950, 1965), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (1963, 1965), False, 'from setuptools import setup, find_packages\n'), ((1700, 1719), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (1717, 1719), False, 'import numpy\n')]
import pyeccodes.accessors as _ def load(h): h.add(_.Unsigned('numberOfCategories', 1)) with h.list('categories'): for i in range(0, h.get_l('numberOfCategories')): h.add(_.Codetable('categoryType', 1, "4.91.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('codeFigure', 1)) h.add(_.Unsigned('scaleFactorOfLowerLimit', 1)) h.add(_.Unsigned('scaledValueOfLowerLimit', 4)) h.add(_.Unsigned('scaleFactorOfUpperLimit', 1)) h.add(_.Unsigned('scaledValueOfUpperLimit', 4))
[ "pyeccodes.accessors.Unsigned", "pyeccodes.accessors.Get" ]
[((58, 93), 'pyeccodes.accessors.Unsigned', '_.Unsigned', (['"""numberOfCategories"""', '(1)'], {}), "('numberOfCategories', 1)\n", (68, 93), True, 'import pyeccodes.accessors as _\n'), ((306, 333), 'pyeccodes.accessors.Unsigned', '_.Unsigned', (['"""codeFigure"""', '(1)'], {}), "('codeFigure', 1)\n", (316, 333), True, 'import pyeccodes.accessors as _\n'), ((353, 393), 'pyeccodes.accessors.Unsigned', '_.Unsigned', (['"""scaleFactorOfLowerLimit"""', '(1)'], {}), "('scaleFactorOfLowerLimit', 1)\n", (363, 393), True, 'import pyeccodes.accessors as _\n'), ((413, 453), 'pyeccodes.accessors.Unsigned', '_.Unsigned', (['"""scaledValueOfLowerLimit"""', '(4)'], {}), "('scaledValueOfLowerLimit', 4)\n", (423, 453), True, 'import pyeccodes.accessors as _\n'), ((473, 513), 'pyeccodes.accessors.Unsigned', '_.Unsigned', (['"""scaleFactorOfUpperLimit"""', '(1)'], {}), "('scaleFactorOfUpperLimit', 1)\n", (483, 513), True, 'import pyeccodes.accessors as _\n'), ((533, 573), 'pyeccodes.accessors.Unsigned', '_.Unsigned', (['"""scaledValueOfUpperLimit"""', '(4)'], {}), "('scaledValueOfUpperLimit', 4)\n", (543, 573), True, 'import pyeccodes.accessors as _\n'), ((248, 266), 'pyeccodes.accessors.Get', '_.Get', (['"""masterDir"""'], {}), "('masterDir')\n", (253, 266), True, 'import pyeccodes.accessors as _\n'), ((268, 285), 'pyeccodes.accessors.Get', '_.Get', (['"""localDir"""'], {}), "('localDir')\n", (273, 285), True, 'import pyeccodes.accessors as _\n')]
import numpy as np from numba import guvectorize from pygama.dsp.errors import DSPFatal @guvectorize(["void(float32[:], float32, float32, float32, float32[:])", "void(float64[:], float64, float64, float64, float64[:])"], "(n),(),(),()->()", nopython=True, cache=True) def time_point_thresh(w_in, a_threshold, t_start, walk_forward, t_out): """ Find the index where the waveform value crosses the threshold, walking either forward or backward from the starting index. Parameters ---------- w_in : array-like The input waveform a_threshold : float The threshold value t_start : int The starting index walk_forward: int The backward (0) or forward (1) search direction t_out : float The index where the waveform value crosses the threshold Processing Chain Example ------------------------ "tp_0": { "function": "time_point_thresh", "module": "pygama.dsp.processors", "args": ["wf_atrap", "bl_std", "tp_start", 0, "tp_0"], "unit": "ns", "prereqs": ["wf_atrap", "bl_std", "tp_start"] } """ t_out[0] = np.nan if np.isnan(w_in).any() or np.isnan(a_threshold) or np.isnan(t_start) or np.isnan(walk_forward): return if np.floor(t_start) != t_start: raise DSPFatal('The starting index must be an integer') if np.floor(walk_forward) != walk_forward: raise DSPFatal('The search direction must be an integer') if int(t_start) < 0 or int(t_start) >= len(w_in): raise DSPFatal('The starting index is out of range') if int(walk_forward) == 1: for i in range(int(t_start), len(w_in) - 1, 1): if w_in[i] <= a_threshold < w_in[i+1]: t_out[0] = i return else: for i in range(int(t_start), 1, -1): if w_in[i-1] < a_threshold <= w_in[i]: t_out[0] = i return
[ "numpy.floor", "pygama.dsp.errors.DSPFatal", "numba.guvectorize", "numpy.isnan" ]
[((90, 276), 'numba.guvectorize', 'guvectorize', (["['void(float32[:], float32, float32, float32, float32[:])',\n 'void(float64[:], float64, float64, float64, float64[:])']", '"""(n),(),(),()->()"""'], {'nopython': '(True)', 'cache': '(True)'}), "(['void(float32[:], float32, float32, float32, float32[:])',\n 'void(float64[:], float64, float64, float64, float64[:])'],\n '(n),(),(),()->()', nopython=True, cache=True)\n", (101, 276), False, 'from numba import guvectorize\n'), ((1277, 1298), 'numpy.isnan', 'np.isnan', (['a_threshold'], {}), '(a_threshold)\n', (1285, 1298), True, 'import numpy as np\n'), ((1302, 1319), 'numpy.isnan', 'np.isnan', (['t_start'], {}), '(t_start)\n', (1310, 1319), True, 'import numpy as np\n'), ((1323, 1345), 'numpy.isnan', 'np.isnan', (['walk_forward'], {}), '(walk_forward)\n', (1331, 1345), True, 'import numpy as np\n'), ((1374, 1391), 'numpy.floor', 'np.floor', (['t_start'], {}), '(t_start)\n', (1382, 1391), True, 'import numpy as np\n'), ((1418, 1467), 'pygama.dsp.errors.DSPFatal', 'DSPFatal', (['"""The starting index must be an integer"""'], {}), "('The starting index must be an integer')\n", (1426, 1467), False, 'from pygama.dsp.errors import DSPFatal\n'), ((1476, 1498), 'numpy.floor', 'np.floor', (['walk_forward'], {}), '(walk_forward)\n', (1484, 1498), True, 'import numpy as np\n'), ((1530, 1581), 'pygama.dsp.errors.DSPFatal', 'DSPFatal', (['"""The search direction must be an integer"""'], {}), "('The search direction must be an integer')\n", (1538, 1581), False, 'from pygama.dsp.errors import DSPFatal\n'), ((1651, 1697), 'pygama.dsp.errors.DSPFatal', 'DSPFatal', (['"""The starting index is out of range"""'], {}), "('The starting index is out of range')\n", (1659, 1697), False, 'from pygama.dsp.errors import DSPFatal\n'), ((1253, 1267), 'numpy.isnan', 'np.isnan', (['w_in'], {}), '(w_in)\n', (1261, 1267), True, 'import numpy as np\n')]
import tornado import json import uuid import pandas as pd from handler.mlsklearn.util import regqeust_arg_to_sklearn_arg from sklearn.model_selection import train_test_split from data.persistence import * from data.data_source import DataSource from data.data_storage import DataStorage class TrainTestSplitHandler(tornado.web.RequestHandler): def post(self): try: json_data = json.loads(self.request.body) data_id = json_data.get('dataID', None) if data_id == None: raise Exception("please input data_id") data_column_names = json_data.get('dataColumnNames', None) if data_column_names == None: raise Exception("please input dataColumnNames") target_column_name = json_data.get('targetColumnName', None) if target_column_name == None: raise Exception("please input targetColumnName") sklearn_arg = json_data.get('sklearn', None) data_obj = DataStorage.get_data_obj_by_data_id(data_id) if data_obj: data_column_names = data_column_names.split(',') data = data_obj.pandas_data[data_column_names] target = data_obj.pandas_data[target_column_name] data = data.values target = target.values sklearn_arg = regqeust_arg_to_sklearn_arg(sklearn_arg, ['test_size', 'random_state']) arrays = [data, target] X_train, X_test, y_train, y_test = train_test_split(*arrays, **sklearn_arg) X_train = pd.DataFrame(X_train, columns=data_column_names) data_obj_X_train = DataStorage.create_data_obj_by_pandas_data(X_train) X_test = pd.DataFrame(X_test, columns=data_column_names) data_obj_X_test = DataStorage.create_data_obj_by_pandas_data(X_test) y_train = pd.DataFrame(y_train, columns=[target_column_name]) data_obj_y_train = DataStorage.create_data_obj_by_pandas_data(y_train) y_test = pd.DataFrame(y_test, columns=[target_column_name]) data_obj_y_test = DataStorage.create_data_obj_by_pandas_data(y_test) result = {} result_X_train = {} result_X_train['dataID'] = data_obj_X_train.data_id result_X_train['columnNames'] = data_obj_X_train.column_names result_X_test = {} result_X_test['dataID'] = data_obj_X_test.data_id result_X_test['columnNames'] = data_obj_X_test.column_names result_y_train = {} result_y_train['dataID'] = data_obj_y_train.data_id result_y_train['columnNames'] = data_obj_y_train.column_names result_y_test = {} result_y_test['dataID'] = data_obj_y_test.data_id result_y_test['columnNames'] = data_obj_y_test.column_names result['X_train'] = result_X_train result['X_test'] = result_X_test result['y_train'] = result_y_train result['y_test'] = result_y_test self.write(json.dumps(result)) else: raise Exception("invalid source_id") except Exception as e: self.write(str(e))
[ "pandas.DataFrame", "json.loads", "sklearn.model_selection.train_test_split", "json.dumps", "data.data_storage.DataStorage.create_data_obj_by_pandas_data", "handler.mlsklearn.util.regqeust_arg_to_sklearn_arg", "data.data_storage.DataStorage.get_data_obj_by_data_id" ]
[((387, 416), 'json.loads', 'json.loads', (['self.request.body'], {}), '(self.request.body)\n', (397, 416), False, 'import json\n'), ((890, 934), 'data.data_storage.DataStorage.get_data_obj_by_data_id', 'DataStorage.get_data_obj_by_data_id', (['data_id'], {}), '(data_id)\n', (925, 934), False, 'from data.data_storage import DataStorage\n'), ((1178, 1249), 'handler.mlsklearn.util.regqeust_arg_to_sklearn_arg', 'regqeust_arg_to_sklearn_arg', (['sklearn_arg', "['test_size', 'random_state']"], {}), "(sklearn_arg, ['test_size', 'random_state'])\n", (1205, 1249), False, 'from handler.mlsklearn.util import regqeust_arg_to_sklearn_arg\n'), ((1317, 1357), 'sklearn.model_selection.train_test_split', 'train_test_split', (['*arrays'], {}), '(*arrays, **sklearn_arg)\n', (1333, 1357), False, 'from sklearn.model_selection import train_test_split\n'), ((1372, 1420), 'pandas.DataFrame', 'pd.DataFrame', (['X_train'], {'columns': 'data_column_names'}), '(X_train, columns=data_column_names)\n', (1384, 1420), True, 'import pandas as pd\n'), ((1444, 1495), 'data.data_storage.DataStorage.create_data_obj_by_pandas_data', 'DataStorage.create_data_obj_by_pandas_data', (['X_train'], {}), '(X_train)\n', (1486, 1495), False, 'from data.data_storage import DataStorage\n'), ((1509, 1556), 'pandas.DataFrame', 'pd.DataFrame', (['X_test'], {'columns': 'data_column_names'}), '(X_test, columns=data_column_names)\n', (1521, 1556), True, 'import pandas as pd\n'), ((1579, 1629), 'data.data_storage.DataStorage.create_data_obj_by_pandas_data', 'DataStorage.create_data_obj_by_pandas_data', (['X_test'], {}), '(X_test)\n', (1621, 1629), False, 'from data.data_storage import DataStorage\n'), ((1644, 1695), 'pandas.DataFrame', 'pd.DataFrame', (['y_train'], {'columns': '[target_column_name]'}), '(y_train, columns=[target_column_name])\n', (1656, 1695), True, 'import pandas as pd\n'), ((1724, 1775), 'data.data_storage.DataStorage.create_data_obj_by_pandas_data', 'DataStorage.create_data_obj_by_pandas_data', (['y_train'], {}), '(y_train)\n', (1766, 1775), False, 'from data.data_storage import DataStorage\n'), ((1789, 1839), 'pandas.DataFrame', 'pd.DataFrame', (['y_test'], {'columns': '[target_column_name]'}), '(y_test, columns=[target_column_name])\n', (1801, 1839), True, 'import pandas as pd\n'), ((1862, 1912), 'data.data_storage.DataStorage.create_data_obj_by_pandas_data', 'DataStorage.create_data_obj_by_pandas_data', (['y_test'], {}), '(y_test)\n', (1904, 1912), False, 'from data.data_storage import DataStorage\n'), ((2703, 2721), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (2713, 2721), False, 'import json\n')]
import numpy as np import pandas as pd import yfinance as yf import matplotlib.pyplot as plt import datetime from yahoo_fin import stock_info as si plt.rcParams['figure.figsize'] = (15, 10) tickers = si.tickers_dow() individual_stock = input(f"Which of the following stocks would you like to backtest \n{tickers}\n:") num_of_years = 1 start = datetime.date.today() - datetime.timedelta(days = int(365.25*num_of_years)) yf_prices = yf.download(tickers, start=start) # Individual Stock Strategy prices = yf_prices['Adj Close'][individual_stock] rs = prices.apply(np.log).diff(1).fillna(0) w1 = 5 w2 = 22 ma_x = prices.rolling(w1).mean() - prices.rolling(w2).mean() pos = ma_x.apply(np.sign) fig, ax = plt.subplots(2,1) ma_x.plot(ax=ax[0], title=f'{individual_stock} Moving Average Crossovers and Positions') pos.plot(ax=ax[1]) plt.show() my_rs = pos.shift(1)*rs plt.subplots() my_rs.cumsum().apply(np.exp).plot(title=f'{individual_stock} MA Strategy Performance') rs.cumsum().apply(np.exp).plot() plt.legend([f'{individual_stock} MA Performace', f'{individual_stock} Buy and Hold Performnace']) plt.show() print (f'Performance Statistics for {individual_stock} ({num_of_years} years):') print ('Moving Average Return: ' + str(100 * round(my_rs.cumsum().apply(np.exp).tolist()[-1], 4)) + '%') print('Buy and Hold Return: ' + str(100 * round(rs.cumsum().apply(np.exp).tolist()[-1], 4)) + '%') # Full Portfolio Strategy prices = yf_prices['Adj Close'] rs = prices.apply(np.log).diff(1).fillna(0) w1 = 5 w2 = 22 ma_x = prices.rolling(w1).mean() - prices.rolling(w2).mean() pos = ma_x.apply(np.sign) pos /= pos.abs().sum(1).values.reshape(-1,1) fig, ax = plt.subplots(2,1) ma_x.plot(ax=ax[0], title='Individual Moving Average Crossovers and Positions') ax[0].legend(bbox_to_anchor=(1.1, 1.05)) pos.plot(ax=ax[1]) ax[1].legend(bbox_to_anchor=(1.1, 1.05)) plt.show() my_rs = (pos.shift(1)*rs) my_rs.cumsum().apply(np.exp).plot(title='Individual Stocks Strategy Performance') plt.show() print ('-' * 60) print (f'Performance Statistics for {num_of_years} years:') for i in range(len(tickers)): print (f'Moving Average Return for {tickers[i]}: ' + str(100 * round(my_rs.cumsum().apply(np.exp)[tickers[i]].tolist()[-1], 4)) + '%') i = i + 1 plt.subplots() my_rs = (pos.shift(1)*rs).sum(1) my_rs.cumsum().apply(np.exp).plot(title='Full Portfolio Strategy Performance') rs.mean(1).cumsum().apply(np.exp).plot() plt.legend(['Portfolio MA Performace', 'Buy and Hold Performnace']) plt.show() print ('-' * 60) print (f'Performance Statistics for {tickers} ({num_of_years} years):') print ('Moving Average Return: ' + str(100 * round(my_rs.cumsum().apply(np.exp).tolist()[-1], 4)) + '%') print('Buy and Hold Return: ' + str(100 * round(rs.mean(1).cumsum().apply(np.exp).tolist()[-1], 4)) + '%') # Portfolio Tests # Look-Ahead Bias my_rs1 = (pos*rs).sum(1) my_rs2 = (pos.shift(1)*rs).sum(1) plt.subplots() my_rs1.cumsum().apply(np.exp).plot(title='Full Portfolio Performance') my_rs2.cumsum().apply(np.exp).plot() plt.legend(['With Look-Ahead Bias', 'Without Look-Ahead Bias']) plt.show() print ('-' * 60) print (f'Performance Statistics for {tickers} ({num_of_years} years):') print ('With Look-Ahead Bias: ' + str(100 * round(my_rs1.cumsum().apply(np.exp).tolist()[-1], 4)) + '%') print('Without Look-Ahead Bias: ' + str(100 * round(my_rs2.cumsum().apply(np.exp).tolist()[-1], 4)) + '%') # Signal Lags lags = range(1, 11) lagged_rs = pd.Series(dtype=float, index=lags) print ('-' * 60) print (f'Lag Performance Statistics for {tickers} ({num_of_years} years):') for lag in lags: my_rs = (pos.shift(lag)*rs).sum(1) my_rs.cumsum().apply(np.exp).plot() lagged_rs[lag] = my_rs.sum() print (f'Lag {lag} Return: ' + str(100 * round(my_rs.cumsum().apply(np.exp).tolist()[-1], 4)) + '%') plt.title('Full Portfolio Strategy Performance with Lags') plt.legend(lags, bbox_to_anchor=(1.1, 0.95)) plt.show() # Transaction Costs tc_pct = 0.01 delta_pos = pos.diff(1).abs().sum(1) my_tcs = tc_pct*delta_pos my_rs1 = (pos.shift(1)*rs).sum(1) my_rs2 = (pos.shift(1)*rs).sum(1) - my_tcs plt.subplots() my_rs1.cumsum().apply(np.exp).plot() my_rs2.cumsum().apply(np.exp).plot() plt.title('Full Portfolio Performance') plt.legend(['Without Transaction Costs', 'With Transaction Costs']) plt.show() print ('-' * 60) print (f'Performance Statistics for {tickers} ({num_of_years} years):') print ('Without Transaction Costs: ' + str(100 * round(my_rs1.cumsum().apply(np.exp).tolist()[-1], 4)) + '%') print('With Transaction Costs: ' + str(100 * round(my_rs2.cumsum().apply(np.exp).tolist()[-1], 4)) + '%')
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "yfinance.download", "matplotlib.pyplot.legend", "datetime.date.today", "yahoo_fin.stock_info.tickers_dow", "pandas.Series", "matplotlib.pyplot.subplots" ]
[((202, 218), 'yahoo_fin.stock_info.tickers_dow', 'si.tickers_dow', ([], {}), '()\n', (216, 218), True, 'from yahoo_fin import stock_info as si\n'), ((434, 467), 'yfinance.download', 'yf.download', (['tickers'], {'start': 'start'}), '(tickers, start=start)\n', (445, 467), True, 'import yfinance as yf\n'), ((705, 723), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {}), '(2, 1)\n', (717, 723), True, 'import matplotlib.pyplot as plt\n'), ((831, 841), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (839, 841), True, 'import matplotlib.pyplot as plt\n'), ((867, 881), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (879, 881), True, 'import matplotlib.pyplot as plt\n'), ((1002, 1103), 'matplotlib.pyplot.legend', 'plt.legend', (["[f'{individual_stock} MA Performace',\n f'{individual_stock} Buy and Hold Performnace']"], {}), "([f'{individual_stock} MA Performace',\n f'{individual_stock} Buy and Hold Performnace'])\n", (1012, 1103), True, 'import matplotlib.pyplot as plt\n'), ((1100, 1110), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1108, 1110), True, 'import matplotlib.pyplot as plt\n'), ((1659, 1677), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {}), '(2, 1)\n', (1671, 1677), True, 'import matplotlib.pyplot as plt\n'), ((1858, 1868), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1866, 1868), True, 'import matplotlib.pyplot as plt\n'), ((1978, 1988), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1986, 1988), True, 'import matplotlib.pyplot as plt\n'), ((2251, 2265), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2263, 2265), True, 'import matplotlib.pyplot as plt\n'), ((2419, 2486), 'matplotlib.pyplot.legend', 'plt.legend', (["['Portfolio MA Performace', 'Buy and Hold Performnace']"], {}), "(['Portfolio MA Performace', 'Buy and Hold Performnace'])\n", (2429, 2486), True, 'import matplotlib.pyplot as plt\n'), ((2487, 2497), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2495, 2497), True, 'import matplotlib.pyplot as plt\n'), ((2897, 2911), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2909, 2911), True, 'import matplotlib.pyplot as plt\n'), ((3020, 3083), 'matplotlib.pyplot.legend', 'plt.legend', (["['With Look-Ahead Bias', 'Without Look-Ahead Bias']"], {}), "(['With Look-Ahead Bias', 'Without Look-Ahead Bias'])\n", (3030, 3083), True, 'import matplotlib.pyplot as plt\n'), ((3084, 3094), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3092, 3094), True, 'import matplotlib.pyplot as plt\n'), ((3444, 3478), 'pandas.Series', 'pd.Series', ([], {'dtype': 'float', 'index': 'lags'}), '(dtype=float, index=lags)\n', (3453, 3478), True, 'import pandas as pd\n'), ((3808, 3866), 'matplotlib.pyplot.title', 'plt.title', (['"""Full Portfolio Strategy Performance with Lags"""'], {}), "('Full Portfolio Strategy Performance with Lags')\n", (3817, 3866), True, 'import matplotlib.pyplot as plt\n'), ((3871, 3915), 'matplotlib.pyplot.legend', 'plt.legend', (['lags'], {'bbox_to_anchor': '(1.1, 0.95)'}), '(lags, bbox_to_anchor=(1.1, 0.95))\n', (3881, 3915), True, 'import matplotlib.pyplot as plt\n'), ((3916, 3926), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3924, 3926), True, 'import matplotlib.pyplot as plt\n'), ((4105, 4119), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4117, 4119), True, 'import matplotlib.pyplot as plt\n'), ((4194, 4233), 'matplotlib.pyplot.title', 'plt.title', (['"""Full Portfolio Performance"""'], {}), "('Full Portfolio Performance')\n", (4203, 4233), True, 'import matplotlib.pyplot as plt\n'), ((4234, 4301), 'matplotlib.pyplot.legend', 'plt.legend', (["['Without Transaction Costs', 'With Transaction Costs']"], {}), "(['Without Transaction Costs', 'With Transaction Costs'])\n", (4244, 4301), True, 'import matplotlib.pyplot as plt\n'), ((4302, 4312), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4310, 4312), True, 'import matplotlib.pyplot as plt\n'), ((346, 367), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (365, 367), False, 'import datetime\n')]
# -*- coding: utf-8 -*- """ Created on Tue May 22 14:07:42 2018 @author: HORSE """ import logging import logging.handlers import os def ARLogger(log_filename = 'log.txt'): # if not os.path.exists('logs'): # os.makedirs('logs') fmt = '%(asctime)s %(levelname)s %(message)s' datefmt = '%Y-%m-%d %H:%M:%S' ar_logger = logging.getLogger('ARLogger') ar_logger.setLevel(logging.INFO) handler = logging.handlers.RotatingFileHandler( log_filename, maxBytes=10000*4, backupCount=5) formatter = logging.Formatter(fmt, datefmt) handler.setFormatter(formatter) ar_logger.addHandler(handler) return ar_logger
[ "logging.Formatter", "logging.handlers.RotatingFileHandler", "logging.getLogger" ]
[((372, 401), 'logging.getLogger', 'logging.getLogger', (['"""ARLogger"""'], {}), "('ARLogger')\n", (389, 401), False, 'import logging\n'), ((454, 543), 'logging.handlers.RotatingFileHandler', 'logging.handlers.RotatingFileHandler', (['log_filename'], {'maxBytes': '(10000 * 4)', 'backupCount': '(5)'}), '(log_filename, maxBytes=10000 * 4,\n backupCount=5)\n', (490, 543), False, 'import logging\n'), ((570, 601), 'logging.Formatter', 'logging.Formatter', (['fmt', 'datefmt'], {}), '(fmt, datefmt)\n', (587, 601), False, 'import logging\n')]
import unittest from desky.rect import Rect from desky.panel import Panel from enum import Enum from functools import reduce, partial from toolz.dicttoolz import valfilter # | Type of sizing | Maximum extra width allocation # -------------------------------------------------------------- # | Fixed (200 px) | 0px # | Child (use child size) | 0px # | Percentage (30% of width) | 1px # | Custom (custom function) | configurable # | Even (equally divide) | 1px # | Fill (use remaining space) | any # # The types of sizing in the table above are ordered in evalulation priority. # Fixed, Child, and Percentage sizings are evaluated first. Custom is then # evaluated and is given the remaining area size as its argument. Even is # evaluated next. Even panels will split remaining space evenly between # themselves. Fill evaluates last and will take the remaining space. # # If the resulting layout exceeds the bounds of the parent, it is up to the # parent to decide if it should resize. def zero_func(): return 0 class GridLayout: FIXED = 0 CHILD = 1 PERCENTAGE = 2 CUSTOM = 3 EVEN = 4 FILL = 5 def __init__(self, *, column_count = 1, row_count = 1, spacing = 0): self.panels = dict() self.column_sizings = dict() self.row_sizings = dict() self.column_count = column_count self.row_count = row_count self.spacing = spacing def add(self, panel, column, row, column_count=1, row_count=1): self.add_rect(panel, Rect(column, row, column_count, row_count)) def add_rect(self, panel, rect): assert(rect.x >= 0) assert(rect.y >= 0) assert(rect.right <= self.column_count) assert(rect.bottom <= self.row_count) assert(self.area_empty(rect)) self.panels[rect.frozen_copy()] = panel def remove(self, panel): self.panels = valfilter(lambda p: p != panel, self.panels) def clear(self, *, remove_panels): if remove_panels: for panel in self.panels.values(): panel.remove() self.panels = dict() def area_empty(self, rect): for rect_other in self.panels.keys(): if rect.intersects(rect_other): return False return True def set_fixed_column_sizing(self, column, size): self.column_sizings[column] = (self.FIXED, size) def set_fixed_row_sizing(self, row, size): self.row_sizings[row] = (self.FIXED, size) def set_child_column_sizing(self, column): self.column_sizings[column] = (self.CHILD,) def set_child_row_sizing(self, row): self.row_sizings[row] = (self.CHILD,) def set_percentage_column_sizing(self, column, percentage): self.column_sizings[column] = (self.PERCENTAGE, percentage) def set_percentage_row_sizing(self, row, percentage): self.row_sizings[row] = (self.PERCENTAGE, percentage) def set_custom_column_sizing(self, column, sizing_func, extra_func=zero_func): self.column_sizings[column] = (self.CUSTOM, sizing_func, extra_func) def set_custom_row_sizing(self, row, sizing_func, extra_func=zero_func): self.row_sizings[row] = (self.CUSTOM, sizing_func, extra_func) def set_even_column_sizing(self, column): self.column_sizings[column] = (self.EVEN,) def set_even_row_sizing(self, row): self.row_sizings[row] = (self.EVEN,) def set_fill_column_sizing(self, column): self.column_sizings[column] = (self.FILL,) def set_fill_row_sizing(self, row): self.row_sizings[row] = (self.FILL,) def widest_child_in_column(self, column): column_rect = Rect(column, 0, 1, self.row_count) rect_panel_tuples_that_intersect_column = list( filter( lambda rect_panel_tuple: rect_panel_tuple[0].intersects(column_rect), self.panels.items())) def calculate_width(rect_panel_tuple): rect, panel = rect_panel_tuple # In case a panel spans multiple columns, determine the height as a # proportional amount. return int((panel.rect_outer.w - (rect.w - 1) * self.spacing) / rect.w) return reduce(max, map(calculate_width, rect_panel_tuples_that_intersect_column), 0) def tallest_child_in_row(self, row): row_rect = Rect(0, row, self.column_count, 1) rect_panel_tuples_that_intersect_row = list( filter( lambda rect_panel_tuple: rect_panel_tuple[0].intersects(row_rect), self.panels.items())) def calculate_height(rect_panel_tuple): rect, panel = rect_panel_tuple # In case a panel spans multiple rows, determine the height as a # proportional amount. return int((panel.rect_outer.h - (rect.h - 1) * self.spacing) / rect.h) return reduce(max, map(calculate_height, rect_panel_tuples_that_intersect_row), 0) def layout(self, panel): area = (panel.rect_inner .move(-panel.x, -panel.y) .shrink( 0, 0, (self.column_count - 1) * self.spacing, (self.row_count - 1) * self.spacing) ) column_sizings_by_type = dict() row_sizings_by_type = dict() # Group columns and rows by their sizing types while preserving the order. for column in range(self.column_count): sizing = self.column_sizings.get(column, (self.EVEN,)) group = column_sizings_by_type.get(sizing[0], list()) group.append((column, sizing)) column_sizings_by_type[sizing[0]] = group for row in range(self.row_count): sizing = self.row_sizings.get(row, (self.EVEN,)) group = row_sizings_by_type.get(sizing[0], list()) group.append((row, sizing)) row_sizings_by_type[sizing[0]] = group # Determine column widths and row heights. column_widths = [0 for _ in range(self.column_count)] row_heights = [0 for _ in range(self.row_count)] def calculate_fixed_sizes(sizings_by_type, sizes): for sizing_tuple in sizings_by_type.get(self.FIXED, []): column_or_row, sizing = sizing_tuple sizes[column_or_row] = sizing[1] calculate_fixed_sizes(column_sizings_by_type, column_widths) calculate_fixed_sizes(row_sizings_by_type, row_heights) def calculate_child_sizes(sizings_by_type, sizes, largest_func): for sizing_tuple in sizings_by_type.get(self.CHILD, []): column_or_row, _ = sizing_tuple sizes[column_or_row] = largest_func(column_or_row) calculate_child_sizes(column_sizings_by_type, column_widths, self.widest_child_in_column) calculate_child_sizes(row_sizings_by_type, row_heights, self.tallest_child_in_row) def calculate_percentage_sizes(sizings_by_type, sizes, area_size): for sizing_tuple in sizings_by_type.get(self.PERCENTAGE, []): column_or_row, sizing = sizing_tuple sizes[column_or_row] = int(area_size * sizing[1]) calculate_percentage_sizes(column_sizings_by_type, column_widths, area.w) calculate_percentage_sizes(row_sizings_by_type, row_heights, area.h) def calculate_custom_sizes(sizings_by_type, sizes, area_size, remaining_size): for sizing_tuple in sizings_by_type.get(self.CUSTOM, []): column_or_row, sizing = sizing_tuple sizes[column_or_row] = int(sizing[1](area_size, remaining_size)) calculate_custom_sizes(column_sizings_by_type, column_widths, area.w, area.w - sum(column_widths)) calculate_custom_sizes(row_sizings_by_type, row_heights, area.h, area.h - sum(row_heights)) def calculate_even_sizes(sizings_by_type, sizes, remaining_size): size = int(remaining_size / len(sizings_by_type.get(self.EVEN, [1]))) for sizing_tuple in sizings_by_type.get(self.EVEN, []): column_or_row, _ = sizing_tuple sizes[column_or_row] = size calculate_even_sizes( column_sizings_by_type, column_widths, area.w - sum(column_widths)) calculate_even_sizes( row_sizings_by_type, row_heights, area.h - sum(row_heights)) fill_columns = column_sizings_by_type.get(self.FILL, []) if fill_columns: column_widths[fill_columns[0][0]] = area.w - sum(column_widths) fill_rows = row_sizings_by_type.get(self.FILL, []) if fill_rows: row_heights[fill_rows[0][0]] = area.h - sum(row_heights) # Allocate extra width and height to columns and rows. extra_width = max(area.w - sum(column_widths), 0) extra_height = max(area.h - sum(row_heights), 0) def allocate_extra_percentage(sizings_by_type, sizes, extra): for sizing_tuple in sizings_by_type.get(self.PERCENTAGE, []): column_or_row, _ = sizing_tuple amount = min(extra, 1) sizes[column_or_row] += amount extra -= amount return extra extra_width = allocate_extra_percentage(column_sizings_by_type, column_widths, extra_width) extra_height = allocate_extra_percentage(row_sizings_by_type, row_heights, extra_height) def allocate_extra_custom(sizings_by_type, sizes, extra): for sizing_tuple in sizings_by_type.get(self.CUSTOM, []): column_or_row, sizing = sizing_tuple amount = int(sizing[2](extra)) sizes[column_or_row] += amount extra -= amount return extra extra_width = allocate_extra_custom(column_sizings_by_type, column_widths, extra_width) extra_height = allocate_extra_custom(row_sizings_by_type, row_heights, extra_height) def allocate_extra_even(sizings_by_type, sizes, extra): for sizing_tuple in sizings_by_type.get(self.EVEN, []): column_or_row, _ = sizing_tuple amount = min(extra, 1) sizes[column_or_row] += amount extra -= amount return extra extra_width = allocate_extra_even(column_sizings_by_type, column_widths, extra_width) extra_height = allocate_extra_even(row_sizings_by_type, row_heights, extra_height) # Save column widths and row heights for users to access. self.column_widths = column_widths self.row_heights = row_heights # Position child panels. for rect, panel in self.panels.items(): x = area.x + sum(column_widths[:rect.x]) + rect.x * self.spacing y = area.y + sum(row_heights[:rect.y]) + rect.y * self.spacing width = sum(column_widths[rect.x:rect.right]) + (rect.w - 1) * self.spacing height = sum(row_heights[rect.y:rect.bottom]) + (rect.h - 1) * self.spacing panel.rect_outer = Panel.Rect(x, y, width, height) class GridLayoutTest(unittest.TestCase): def setUp(self): from desky.gui import Gui self.gui = Gui() self.parent = self.gui.create(Panel) self.parent.size = (200, 300) self.parent.padding = (2, 3, 4, 5) self.parent.margins = (20, 30, 40, 50) def test_tallest_child_in_column_or_row_1(self): grid = GridLayout(column_count=5, row_count=5, spacing=3) for column in range(grid.column_count): grid.set_child_column_sizing(column) for row in range(grid.row_count): grid.set_child_row_sizing(row) self.assertEqual(0, grid.widest_child_in_column(2)) self.assertEqual(0, grid.tallest_child_in_row(2)) def test_tallest_child_in_column_or_row_2(self): def create_grid(): grid = GridLayout(column_count=5, row_count=5, spacing=3) for column in range(grid.column_count): grid.set_child_column_sizing(column) for row in range(grid.row_count): grid.set_child_row_sizing(row) return grid with self.subTest("column"): grid = create_grid() child = self.gui.create(Panel) child.size = (60, 38) grid.add(child, 2, 1) self.assertEqual(60, grid.widest_child_in_column(2)) with self.subTest("column"): grid = create_grid() child = self.gui.create(Panel) child.size = (38, 60) grid.add(child, 1, 2) self.assertEqual(60, grid.tallest_child_in_row(2)) def test_tallest_child_in_column_or_row_3(self): def create_grid(): grid = GridLayout(column_count=5, row_count=5, spacing=3) for column in range(grid.column_count): grid.set_child_column_sizing(column) for row in range(grid.row_count): grid.set_child_row_sizing(row) return grid with self.subTest("column"): grid = create_grid() child = self.gui.create(Panel) child.size = (66, 38) grid.add_rect(child, Rect(2, 1, 3, 2)) self.assertEqual(20, grid.widest_child_in_column(2)) self.assertEqual(20, grid.widest_child_in_column(3)) self.assertEqual(20, grid.widest_child_in_column(4)) with self.subTest("row"): grid = create_grid() child = self.gui.create(Panel) child.size = (38, 66) grid.add_rect(child, Rect(1, 2, 2, 3)) self.assertEqual(20, grid.tallest_child_in_row(2)) self.assertEqual(20, grid.tallest_child_in_row(3)) self.assertEqual(20, grid.tallest_child_in_row(4)) def test_area_empty(self): scenarios = [ (Rect(2, 0, 4, 2), Rect(1, 1, 9, 9), False), (Rect(10, 2, 4, 4), Rect(1, 1, 9, 9), True), ] for rect_left, rect_right, empty in scenarios: with self.subTest(rect_left=rect_left, rect_right=rect_right, empty=empty): grid = GridLayout(column_count=20, row_count=20, spacing=5) grid.add_rect(self.gui.create(Panel), rect_left) self.assertEqual(empty, grid.area_empty(rect_right)) def test_single_fixed(self): grid = GridLayout(spacing=5) grid.set_fixed_column_sizing(0, 90) grid.set_fixed_row_sizing(0, 120) child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (53, 81) grid.add(child, 0, 0) grid.layout(self.parent) self.assertEqual(Panel.Rect(13, 19, 71, 102), child.rect) def test_multiple_fixed_1(self): grid = GridLayout(column_count=2, row_count=2, spacing=5) grid.set_fixed_column_sizing(0, 101) grid.set_fixed_column_sizing(1, 58) grid.set_fixed_row_sizing(0, 33) grid.set_fixed_row_sizing(1, 93) def create_child(rect): child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (9999, 9999) grid.add_rect(child, rect) return child child_0_0 = create_child(Rect(0, 0, 1, 1)) child_1_0 = create_child(Rect(1, 0, 1, 1)) child_0_1 = create_child(Rect(0, 1, 1, 1)) child_1_1 = create_child(Rect(1, 1, 1, 1)) grid.layout(self.parent) self.assertEqual(Panel.Rect( 2, 3, 101, 33), child_0_0.rect_outer) self.assertEqual(Panel.Rect(108, 3, 58, 33), child_1_0.rect_outer) self.assertEqual(Panel.Rect( 2, 41, 101, 93), child_0_1.rect_outer) self.assertEqual(Panel.Rect(108, 41, 58, 93), child_1_1.rect_outer) def test_multiple_fixed_2(self): grid = GridLayout(column_count=2, row_count=2, spacing=5) grid.set_fixed_column_sizing(0, 101) grid.set_fixed_column_sizing(1, 0) grid.set_fixed_row_sizing(0, 0) grid.set_fixed_row_sizing(1, 93) def create_child(rect): child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (9999, 9999) grid.add_rect(child, rect) return child child_0_0 = create_child(Rect(0, 0, 1, 1)) child_1_0 = create_child(Rect(1, 0, 1, 1)) child_0_1 = create_child(Rect(0, 1, 1, 1)) child_1_1 = create_child(Rect(1, 1, 1, 1)) grid.layout(self.parent) self.assertEqual(Panel.Rect( 2, 3, 101, 18), child_0_0.rect_outer) self.assertEqual(Panel.Rect(108, 3, 19, 18), child_1_0.rect_outer) self.assertEqual(Panel.Rect( 2, 8, 101, 93), child_0_1.rect_outer) self.assertEqual(Panel.Rect(108, 8, 19, 93), child_1_1.rect_outer) def test_single_child(self): grid = GridLayout(spacing=5) grid.set_child_column_sizing(0) grid.set_child_row_sizing(0) child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (53, 81) grid.add(child, 0, 0) grid.layout(self.parent) self.assertEqual(Panel.Rect(13, 19, 53, 81), child.rect) def test_multiple_child_1(self): grid = GridLayout(column_count=2, row_count=2, spacing=5) grid.set_child_column_sizing(0) grid.set_child_column_sizing(1) grid.set_child_row_sizing(0) grid.set_child_row_sizing(1) def create_child(rect, size): child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = size grid.add_rect(child, rect) return child child_0_0 = create_child(Rect(0, 0, 1, 1), (58, 39)) child_1_0 = create_child(Rect(1, 0, 1, 1), (25, 71)) child_0_1 = create_child(Rect(0, 1, 1, 1), (61, 62)) child_1_1 = create_child(Rect(1, 1, 1, 1), (54, 20)) grid.layout(self.parent) self.assertEqual(Panel.Rect( 2, 3, 80, 89), child_0_0.rect_outer) self.assertEqual(Panel.Rect(87, 3, 73, 89), child_1_0.rect_outer) self.assertEqual(Panel.Rect( 2, 97, 80, 80), child_0_1.rect_outer) self.assertEqual(Panel.Rect(87, 97, 73, 80), child_1_1.rect_outer) def test_multiple_child_2(self): grid = GridLayout(column_count=2, row_count=2, spacing=5) grid.set_child_column_sizing(0) grid.set_child_column_sizing(1) grid.set_child_row_sizing(0) grid.set_child_row_sizing(1) def create_child(rect, size): child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = size grid.add_rect(child, rect) return child child_0_0 = create_child(Rect(0, 0, 1, 1), (58, 31)) child_0_1 = create_child(Rect(0, 1, 1, 1), (61, 31)) child_1_0 = create_child(Rect(1, 0, 1, 2), (25, 87)) grid.layout(self.parent) self.assertEqual(Panel.Rect( 2, 3, 80, 50), child_0_0.rect_outer) self.assertEqual(Panel.Rect( 2, 58, 80, 50), child_0_1.rect_outer) self.assertEqual(Panel.Rect(87, 3, 44, 105), child_1_0.rect_outer) def test_single_percentage(self): grid = GridLayout(spacing=5) grid.set_percentage_column_sizing(0, 0.333) grid.set_percentage_row_sizing(0, 0.8) child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (53, 81) grid.add(child, 0, 0) grid.layout(self.parent) width = int(self.parent.rect_inner.w * 0.333) - 19 + 1 height = int(self.parent.rect_inner.h * 0.8) - 18 + 1 self.assertEqual(Panel.Rect(13, 19, width, height), child.rect) def test_multiple_percentage(self): grid = GridLayout(column_count=2, row_count=2, spacing=5) grid.set_percentage_column_sizing(0, 0.333) grid.set_percentage_column_sizing(1, 0.333) grid.set_percentage_row_sizing(0, 0.8139) grid.set_percentage_row_sizing(1, 1 - 0.8139) def create_child(rect): child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (9999, 9999) grid.add_rect(child, rect) return child child_0_0 = create_child(Rect(0, 0, 1, 1)) child_0_1 = create_child(Rect(0, 1, 1, 1)) child_1_0 = create_child(Rect(1, 0, 1, 1)) child_1_1 = create_child(Rect(1, 1, 1, 1)) grid.layout(self.parent) width_0 = int(189 * 0.333) + 1 width_1 = width_0 height_0 = int(287 * 0.8139) + 1 height_1 = int(287 * (1 - 0.8139)) self.assertEqual(Panel.Rect(2, 3, width_0, height_0), child_0_0.rect_outer) self.assertEqual(Panel.Rect(2, 8 + height_0, width_0, height_1), child_0_1.rect_outer) self.assertEqual(Panel.Rect(7 + width_0, 3, width_1, height_0), child_1_0.rect_outer) self.assertEqual(Panel.Rect(7 + width_0, 8 + height_0, width_1, height_1), child_1_1.rect_outer) def test_single_custom(self): def custom_sizing(area_size, remaining_size): return area_size ** 0.5 def custom_extra(extra): return extra / 2 grid = GridLayout(spacing=5) grid.set_custom_column_sizing(0, custom_sizing, custom_extra) grid.set_custom_row_sizing(0, custom_sizing, custom_extra) child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (53, 81) grid.add(child, 0, 0) grid.layout(self.parent) root_width = int(194 ** 0.5) root_height = int(292 ** 0.5) final_width = root_width + int((194 - root_width) / 2) - 19 final_height = root_height + int((292 - root_height) / 2) - 18 self.assertEqual(Panel.Rect(13, 19, final_width, final_height), child.rect) def test_multiple_custom(self): def custom_sizing_1(area_size, remaining_size): return area_size ** 0.8 def custom_sizing_2(area_size, remaining_size): return area_size - area_size ** 0.8 grid = GridLayout(column_count=2, row_count=2, spacing=5) grid.set_custom_column_sizing(0, custom_sizing_1, partial(min, 1)) grid.set_custom_column_sizing(1, custom_sizing_2, partial(min, 1)) grid.set_custom_row_sizing(0, custom_sizing_2, partial(min, 1)) grid.set_custom_row_sizing(1, custom_sizing_1, partial(min, 1)) def create_child(rect): child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (9999, 9999) grid.add_rect(child, rect) return child child_0_0 = create_child(Rect(0, 0, 1, 1)) child_0_1 = create_child(Rect(0, 1, 1, 1)) child_1_0 = create_child(Rect(1, 0, 1, 1)) child_1_1 = create_child(Rect(1, 1, 1, 1)) grid.layout(self.parent) width_0 = int(custom_sizing_1(189, None)) + 1 width_1 = int(custom_sizing_2(189, None)) height_0 = int(custom_sizing_2(287, None)) + 1 height_1 = int(custom_sizing_1(287, None)) self.assertEqual(Panel.Rect(2, 3, width_0, height_0), child_0_0.rect_outer) self.assertEqual(Panel.Rect(2, 8 + height_0, width_0, height_1), child_0_1.rect_outer) self.assertEqual(Panel.Rect(7 + width_0, 3, width_1, height_0), child_1_0.rect_outer) self.assertEqual(Panel.Rect(7 + width_0, 8 + height_0, width_1, height_1), child_1_1.rect_outer) def test_single_even(self): # Since even sizing is the default we should make sure it works even # when we don't excplicitly set the columns and rows to even sizing. for default in (True, False): with self.subTest(default=default): grid = GridLayout(spacing=5) if not default: grid.set_even_column_sizing(0) grid.set_even_row_sizing(0) child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (53, 81) grid.add(child, 0, 0) grid.layout(self.parent) self.assertEqual(Panel.Rect(13, 19, 175, 274), child.rect) def test_multiple_even(self): grid = GridLayout(column_count=2, row_count=2, spacing=5) grid.set_even_column_sizing(0) grid.set_even_column_sizing(1) grid.set_even_row_sizing(0) grid.set_even_row_sizing(1) def create_child(rect): child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (9999, 9999) grid.add_rect(child, rect) return child child_0_0 = create_child(Rect(0, 0, 1, 1)) child_0_1 = create_child(Rect(0, 1, 1, 1)) child_1_0 = create_child(Rect(1, 0, 1, 1)) child_1_1 = create_child(Rect(1, 1, 1, 1)) grid.layout(self.parent) width_0 = int(189 * 0.5) + 1 width_1 = int(189 * 0.5) height_0 = int(287 * 0.5) + 1 height_1 = int(287 * 0.5) self.assertEqual(Panel.Rect(2, 3, width_0, height_0), child_0_0.rect_outer) self.assertEqual(Panel.Rect(2, 8 + height_0, width_0, height_1), child_0_1.rect_outer) self.assertEqual(Panel.Rect(7 + width_0, 3, width_1, height_0), child_1_0.rect_outer) self.assertEqual(Panel.Rect(7 + width_0, 8 + height_0, width_1, height_1), child_1_1.rect_outer) def test_single_fill(self): grid = GridLayout(spacing=5) grid.set_fill_column_sizing(0) grid.set_fill_row_sizing(0) child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (53, 81) grid.add(child, 0, 0) grid.layout(self.parent) self.assertEqual(Panel.Rect(13, 19, 175, 274), child.rect) def test_multiple_fill(self): grid = GridLayout(column_count=2, row_count=2, spacing=5) grid.set_percentage_column_sizing(0, 0.3333) grid.set_fill_column_sizing(1) grid.set_fill_row_sizing(0) grid.set_fixed_row_sizing(1, 100) def create_child(rect): child = self.gui.create(Panel) child.parent = self.parent child.padding = (10, 8, 6, 4) child.margins = (11, 16, 8, 2) child.size = (9999, 9999) grid.add_rect(child, rect) return child child_0_0 = create_child(Rect(0, 0, 1, 1)) child_0_1 = create_child(Rect(0, 1, 1, 1)) child_1_0 = create_child(Rect(1, 0, 1, 1)) child_1_1 = create_child(Rect(1, 1, 1, 1)) grid.layout(self.parent) width_0 = int(189 * 0.3333) width_1 = 189 - int(189 * 0.3333) height_0 = 287 - 100 height_1 = 100 self.assertEqual(Panel.Rect(2, 3, width_0, height_0), child_0_0.rect_outer) self.assertEqual(Panel.Rect(2, 8 + height_0, width_0, height_1), child_0_1.rect_outer) self.assertEqual(Panel.Rect(7 + width_0, 3, width_1, height_0), child_1_0.rect_outer) self.assertEqual(Panel.Rect(7 + width_0, 8 + height_0, width_1, height_1), child_1_1.rect_outer) def grid_example(gui): panel = gui.create(Panel) panel.rect = (50, 50, 500, 500) panel.padding = (8, 16, 24, 32) grid = GridLayout(column_count = 3, row_count = 4, spacing = 4) for row in range(0, grid.row_count): for column in range(0, grid.column_count): child = gui.create(Panel) child.parent = panel grid.add(child, column, row) grid.layout(panel) def main(): from desky.gui import example #example(grid_example) unittest.main() if __name__ == "__main__": main()
[ "unittest.main", "functools.partial", "desky.panel.Panel.Rect", "toolz.dicttoolz.valfilter", "desky.rect.Rect", "desky.gui.Gui" ]
[((29067, 29082), 'unittest.main', 'unittest.main', ([], {}), '()\n', (29080, 29082), False, 'import unittest\n'), ((1911, 1955), 'toolz.dicttoolz.valfilter', 'valfilter', (['(lambda p: p != panel)', 'self.panels'], {}), '(lambda p: p != panel, self.panels)\n', (1920, 1955), False, 'from toolz.dicttoolz import valfilter\n'), ((3700, 3734), 'desky.rect.Rect', 'Rect', (['column', '(0)', '(1)', 'self.row_count'], {}), '(column, 0, 1, self.row_count)\n', (3704, 3734), False, 'from desky.rect import Rect\n'), ((4390, 4424), 'desky.rect.Rect', 'Rect', (['(0)', 'row', 'self.column_count', '(1)'], {}), '(0, row, self.column_count, 1)\n', (4394, 4424), False, 'from desky.rect import Rect\n'), ((11342, 11347), 'desky.gui.Gui', 'Gui', ([], {}), '()\n', (11345, 11347), False, 'from desky.gui import Gui\n'), ((1541, 1583), 'desky.rect.Rect', 'Rect', (['column', 'row', 'column_count', 'row_count'], {}), '(column, row, column_count, row_count)\n', (1545, 1583), False, 'from desky.rect import Rect\n'), ((11193, 11224), 'desky.panel.Panel.Rect', 'Panel.Rect', (['x', 'y', 'width', 'height'], {}), '(x, y, width, height)\n', (11203, 11224), False, 'from desky.panel import Panel\n'), ((14940, 14967), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(13)', '(19)', '(71)', '(102)'], {}), '(13, 19, 71, 102)\n', (14950, 14967), False, 'from desky.panel import Panel\n'), ((15592, 15608), 'desky.rect.Rect', 'Rect', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (15596, 15608), False, 'from desky.rect import Rect\n'), ((15643, 15659), 'desky.rect.Rect', 'Rect', (['(1)', '(0)', '(1)', '(1)'], {}), '(1, 0, 1, 1)\n', (15647, 15659), False, 'from desky.rect import Rect\n'), ((15694, 15710), 'desky.rect.Rect', 'Rect', (['(0)', '(1)', '(1)', '(1)'], {}), '(0, 1, 1, 1)\n', (15698, 15710), False, 'from desky.rect import Rect\n'), ((15745, 15761), 'desky.rect.Rect', 'Rect', (['(1)', '(1)', '(1)', '(1)'], {}), '(1, 1, 1, 1)\n', (15749, 15761), False, 'from desky.rect import Rect\n'), ((15823, 15848), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(3)', '(101)', '(33)'], {}), '(2, 3, 101, 33)\n', (15833, 15848), False, 'from desky.panel import Panel\n'), ((15900, 15926), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(108)', '(3)', '(58)', '(33)'], {}), '(108, 3, 58, 33)\n', (15910, 15926), False, 'from desky.panel import Panel\n'), ((15977, 16003), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(41)', '(101)', '(93)'], {}), '(2, 41, 101, 93)\n', (15987, 16003), False, 'from desky.panel import Panel\n'), ((16054, 16081), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(108)', '(41)', '(58)', '(93)'], {}), '(108, 41, 58, 93)\n', (16064, 16081), False, 'from desky.panel import Panel\n'), ((16715, 16731), 'desky.rect.Rect', 'Rect', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (16719, 16731), False, 'from desky.rect import Rect\n'), ((16766, 16782), 'desky.rect.Rect', 'Rect', (['(1)', '(0)', '(1)', '(1)'], {}), '(1, 0, 1, 1)\n', (16770, 16782), False, 'from desky.rect import Rect\n'), ((16817, 16833), 'desky.rect.Rect', 'Rect', (['(0)', '(1)', '(1)', '(1)'], {}), '(0, 1, 1, 1)\n', (16821, 16833), False, 'from desky.rect import Rect\n'), ((16868, 16884), 'desky.rect.Rect', 'Rect', (['(1)', '(1)', '(1)', '(1)'], {}), '(1, 1, 1, 1)\n', (16872, 16884), False, 'from desky.rect import Rect\n'), ((16946, 16971), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(3)', '(101)', '(18)'], {}), '(2, 3, 101, 18)\n', (16956, 16971), False, 'from desky.panel import Panel\n'), ((17024, 17050), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(108)', '(3)', '(19)', '(18)'], {}), '(108, 3, 19, 18)\n', (17034, 17050), False, 'from desky.panel import Panel\n'), ((17102, 17127), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(8)', '(101)', '(93)'], {}), '(2, 8, 101, 93)\n', (17112, 17127), False, 'from desky.panel import Panel\n'), ((17179, 17205), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(108)', '(8)', '(19)', '(93)'], {}), '(108, 8, 19, 93)\n', (17189, 17205), False, 'from desky.panel import Panel\n'), ((17651, 17677), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(13)', '(19)', '(53)', '(81)'], {}), '(13, 19, 53, 81)\n', (17661, 17677), False, 'from desky.panel import Panel\n'), ((18283, 18299), 'desky.rect.Rect', 'Rect', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (18287, 18299), False, 'from desky.rect import Rect\n'), ((18344, 18360), 'desky.rect.Rect', 'Rect', (['(1)', '(0)', '(1)', '(1)'], {}), '(1, 0, 1, 1)\n', (18348, 18360), False, 'from desky.rect import Rect\n'), ((18405, 18421), 'desky.rect.Rect', 'Rect', (['(0)', '(1)', '(1)', '(1)'], {}), '(0, 1, 1, 1)\n', (18409, 18421), False, 'from desky.rect import Rect\n'), ((18466, 18482), 'desky.rect.Rect', 'Rect', (['(1)', '(1)', '(1)', '(1)'], {}), '(1, 1, 1, 1)\n', (18470, 18482), False, 'from desky.rect import Rect\n'), ((18554, 18578), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(3)', '(80)', '(89)'], {}), '(2, 3, 80, 89)\n', (18564, 18578), False, 'from desky.panel import Panel\n'), ((18629, 18654), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(87)', '(3)', '(73)', '(89)'], {}), '(87, 3, 73, 89)\n', (18639, 18654), False, 'from desky.panel import Panel\n'), ((18704, 18729), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(97)', '(80)', '(80)'], {}), '(2, 97, 80, 80)\n', (18714, 18729), False, 'from desky.panel import Panel\n'), ((18779, 18805), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(87)', '(97)', '(73)', '(80)'], {}), '(87, 97, 73, 80)\n', (18789, 18805), False, 'from desky.panel import Panel\n'), ((19421, 19437), 'desky.rect.Rect', 'Rect', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (19425, 19437), False, 'from desky.rect import Rect\n'), ((19482, 19498), 'desky.rect.Rect', 'Rect', (['(0)', '(1)', '(1)', '(1)'], {}), '(0, 1, 1, 1)\n', (19486, 19498), False, 'from desky.rect import Rect\n'), ((19543, 19559), 'desky.rect.Rect', 'Rect', (['(1)', '(0)', '(1)', '(2)'], {}), '(1, 0, 1, 2)\n', (19547, 19559), False, 'from desky.rect import Rect\n'), ((19631, 19655), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(3)', '(80)', '(50)'], {}), '(2, 3, 80, 50)\n', (19641, 19655), False, 'from desky.panel import Panel\n'), ((19707, 19732), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(58)', '(80)', '(50)'], {}), '(2, 58, 80, 50)\n', (19717, 19732), False, 'from desky.panel import Panel\n'), ((19783, 19809), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(87)', '(3)', '(44)', '(105)'], {}), '(87, 3, 44, 105)\n', (19793, 19809), False, 'from desky.panel import Panel\n'), ((20406, 20439), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(13)', '(19)', 'width', 'height'], {}), '(13, 19, width, height)\n', (20416, 20439), False, 'from desky.panel import Panel\n'), ((21104, 21120), 'desky.rect.Rect', 'Rect', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (21108, 21120), False, 'from desky.rect import Rect\n'), ((21155, 21171), 'desky.rect.Rect', 'Rect', (['(0)', '(1)', '(1)', '(1)'], {}), '(0, 1, 1, 1)\n', (21159, 21171), False, 'from desky.rect import Rect\n'), ((21206, 21222), 'desky.rect.Rect', 'Rect', (['(1)', '(0)', '(1)', '(1)'], {}), '(1, 0, 1, 1)\n', (21210, 21222), False, 'from desky.rect import Rect\n'), ((21257, 21273), 'desky.rect.Rect', 'Rect', (['(1)', '(1)', '(1)', '(1)'], {}), '(1, 1, 1, 1)\n', (21261, 21273), False, 'from desky.rect import Rect\n'), ((21484, 21519), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(3)', 'width_0', 'height_0'], {}), '(2, 3, width_0, height_0)\n', (21494, 21519), False, 'from desky.panel import Panel\n'), ((21589, 21635), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(8 + height_0)', 'width_0', 'height_1'], {}), '(2, 8 + height_0, width_0, height_1)\n', (21599, 21635), False, 'from desky.panel import Panel\n'), ((21694, 21739), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(7 + width_0)', '(3)', 'width_1', 'height_0'], {}), '(7 + width_0, 3, width_1, height_0)\n', (21704, 21739), False, 'from desky.panel import Panel\n'), ((21799, 21855), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(7 + width_0)', '(8 + height_0)', 'width_1', 'height_1'], {}), '(7 + width_0, 8 + height_0, width_1, height_1)\n', (21809, 21855), False, 'from desky.panel import Panel\n'), ((22730, 22775), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(13)', '(19)', 'final_width', 'final_height'], {}), '(13, 19, final_width, final_height)\n', (22740, 22775), False, 'from desky.panel import Panel\n'), ((23149, 23164), 'functools.partial', 'partial', (['min', '(1)'], {}), '(min, 1)\n', (23156, 23164), False, 'from functools import reduce, partial\n'), ((23224, 23239), 'functools.partial', 'partial', (['min', '(1)'], {}), '(min, 1)\n', (23231, 23239), False, 'from functools import reduce, partial\n'), ((23296, 23311), 'functools.partial', 'partial', (['min', '(1)'], {}), '(min, 1)\n', (23303, 23311), False, 'from functools import reduce, partial\n'), ((23368, 23383), 'functools.partial', 'partial', (['min', '(1)'], {}), '(min, 1)\n', (23375, 23383), False, 'from functools import reduce, partial\n'), ((23721, 23737), 'desky.rect.Rect', 'Rect', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (23725, 23737), False, 'from desky.rect import Rect\n'), ((23772, 23788), 'desky.rect.Rect', 'Rect', (['(0)', '(1)', '(1)', '(1)'], {}), '(0, 1, 1, 1)\n', (23776, 23788), False, 'from desky.rect import Rect\n'), ((23823, 23839), 'desky.rect.Rect', 'Rect', (['(1)', '(0)', '(1)', '(1)'], {}), '(1, 0, 1, 1)\n', (23827, 23839), False, 'from desky.rect import Rect\n'), ((23874, 23890), 'desky.rect.Rect', 'Rect', (['(1)', '(1)', '(1)', '(1)'], {}), '(1, 1, 1, 1)\n', (23878, 23890), False, 'from desky.rect import Rect\n'), ((24163, 24198), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(3)', 'width_0', 'height_0'], {}), '(2, 3, width_0, height_0)\n', (24173, 24198), False, 'from desky.panel import Panel\n'), ((24268, 24314), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(8 + height_0)', 'width_0', 'height_1'], {}), '(2, 8 + height_0, width_0, height_1)\n', (24278, 24314), False, 'from desky.panel import Panel\n'), ((24373, 24418), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(7 + width_0)', '(3)', 'width_1', 'height_0'], {}), '(7 + width_0, 3, width_1, height_0)\n', (24383, 24418), False, 'from desky.panel import Panel\n'), ((24478, 24534), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(7 + width_0)', '(8 + height_0)', 'width_1', 'height_1'], {}), '(7 + width_0, 8 + height_0, width_1, height_1)\n', (24488, 24534), False, 'from desky.panel import Panel\n'), ((25972, 25988), 'desky.rect.Rect', 'Rect', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (25976, 25988), False, 'from desky.rect import Rect\n'), ((26023, 26039), 'desky.rect.Rect', 'Rect', (['(0)', '(1)', '(1)', '(1)'], {}), '(0, 1, 1, 1)\n', (26027, 26039), False, 'from desky.rect import Rect\n'), ((26074, 26090), 'desky.rect.Rect', 'Rect', (['(1)', '(0)', '(1)', '(1)'], {}), '(1, 0, 1, 1)\n', (26078, 26090), False, 'from desky.rect import Rect\n'), ((26125, 26141), 'desky.rect.Rect', 'Rect', (['(1)', '(1)', '(1)', '(1)'], {}), '(1, 1, 1, 1)\n', (26129, 26141), False, 'from desky.rect import Rect\n'), ((26346, 26381), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(3)', 'width_0', 'height_0'], {}), '(2, 3, width_0, height_0)\n', (26356, 26381), False, 'from desky.panel import Panel\n'), ((26451, 26497), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(8 + height_0)', 'width_0', 'height_1'], {}), '(2, 8 + height_0, width_0, height_1)\n', (26461, 26497), False, 'from desky.panel import Panel\n'), ((26556, 26601), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(7 + width_0)', '(3)', 'width_1', 'height_0'], {}), '(7 + width_0, 3, width_1, height_0)\n', (26566, 26601), False, 'from desky.panel import Panel\n'), ((26661, 26717), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(7 + width_0)', '(8 + height_0)', 'width_1', 'height_1'], {}), '(7 + width_0, 8 + height_0, width_1, height_1)\n', (26671, 26717), False, 'from desky.panel import Panel\n'), ((27158, 27186), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(13)', '(19)', '(175)', '(274)'], {}), '(13, 19, 175, 274)\n', (27168, 27186), False, 'from desky.panel import Panel\n'), ((27807, 27823), 'desky.rect.Rect', 'Rect', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (27811, 27823), False, 'from desky.rect import Rect\n'), ((27858, 27874), 'desky.rect.Rect', 'Rect', (['(0)', '(1)', '(1)', '(1)'], {}), '(0, 1, 1, 1)\n', (27862, 27874), False, 'from desky.rect import Rect\n'), ((27909, 27925), 'desky.rect.Rect', 'Rect', (['(1)', '(0)', '(1)', '(1)'], {}), '(1, 0, 1, 1)\n', (27913, 27925), False, 'from desky.rect import Rect\n'), ((27960, 27976), 'desky.rect.Rect', 'Rect', (['(1)', '(1)', '(1)', '(1)'], {}), '(1, 1, 1, 1)\n', (27964, 27976), False, 'from desky.rect import Rect\n'), ((28169, 28204), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(3)', 'width_0', 'height_0'], {}), '(2, 3, width_0, height_0)\n', (28179, 28204), False, 'from desky.panel import Panel\n'), ((28274, 28320), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(2)', '(8 + height_0)', 'width_0', 'height_1'], {}), '(2, 8 + height_0, width_0, height_1)\n', (28284, 28320), False, 'from desky.panel import Panel\n'), ((28379, 28424), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(7 + width_0)', '(3)', 'width_1', 'height_0'], {}), '(7 + width_0, 3, width_1, height_0)\n', (28389, 28424), False, 'from desky.panel import Panel\n'), ((28484, 28540), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(7 + width_0)', '(8 + height_0)', 'width_1', 'height_1'], {}), '(7 + width_0, 8 + height_0, width_1, height_1)\n', (28494, 28540), False, 'from desky.panel import Panel\n'), ((13363, 13379), 'desky.rect.Rect', 'Rect', (['(2)', '(1)', '(3)', '(2)'], {}), '(2, 1, 3, 2)\n', (13367, 13379), False, 'from desky.rect import Rect\n'), ((13755, 13771), 'desky.rect.Rect', 'Rect', (['(1)', '(2)', '(2)', '(3)'], {}), '(1, 2, 2, 3)\n', (13759, 13771), False, 'from desky.rect import Rect\n'), ((14034, 14050), 'desky.rect.Rect', 'Rect', (['(2)', '(0)', '(4)', '(2)'], {}), '(2, 0, 4, 2)\n', (14038, 14050), False, 'from desky.rect import Rect\n'), ((14052, 14068), 'desky.rect.Rect', 'Rect', (['(1)', '(1)', '(9)', '(9)'], {}), '(1, 1, 9, 9)\n', (14056, 14068), False, 'from desky.rect import Rect\n'), ((14095, 14112), 'desky.rect.Rect', 'Rect', (['(10)', '(2)', '(4)', '(4)'], {}), '(10, 2, 4, 4)\n', (14099, 14112), False, 'from desky.rect import Rect\n'), ((14114, 14130), 'desky.rect.Rect', 'Rect', (['(1)', '(1)', '(9)', '(9)'], {}), '(1, 1, 9, 9)\n', (14118, 14130), False, 'from desky.rect import Rect\n'), ((25343, 25371), 'desky.panel.Panel.Rect', 'Panel.Rect', (['(13)', '(19)', '(175)', '(274)'], {}), '(13, 19, 175, 274)\n', (25353, 25371), False, 'from desky.panel import Panel\n')]
from distutils.core import setup, Extension def main(): setup(name="seqrepc", version="beta1.0", description="SeqrepC is a module for fundamental operations related to numerical representations of genomic sequences.", author="<NAME>", author_email="<EMAIL>", url="https://github.com/ednilsonlomazi/SeqrepC", license="BSD 3-Clause License", ext_modules=[Extension("seqrepc", ["./src/seqrepc.c"])]) if __name__ == "__main__": main()
[ "distutils.core.Extension" ]
[((429, 470), 'distutils.core.Extension', 'Extension', (['"""seqrepc"""', "['./src/seqrepc.c']"], {}), "('seqrepc', ['./src/seqrepc.c'])\n", (438, 470), False, 'from distutils.core import setup, Extension\n')]
# pylint: disable=no-member,invalid-name,line-too-long,trailing-whitespace """Add IsEnabled column to EventHandlerBASE Revision ID: <KEY> Revises: 6b5369ab5224 Create Date: 2021-02-17 20:15:42.776190 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '6b5369ab5224' branch_labels = None depends_on = None def upgrade(): op.add_column('EventHandlerBASE', sa.Column('IsEnabled', sa.Boolean, nullable=False, default=False)) def downgrade(): op.drop_column('EventHandlerBASE', 'IsEnabled')
[ "alembic.op.drop_column", "sqlalchemy.Column" ]
[((548, 595), 'alembic.op.drop_column', 'op.drop_column', (['"""EventHandlerBASE"""', '"""IsEnabled"""'], {}), "('EventHandlerBASE', 'IsEnabled')\n", (562, 595), False, 'from alembic import op\n'), ((458, 523), 'sqlalchemy.Column', 'sa.Column', (['"""IsEnabled"""', 'sa.Boolean'], {'nullable': '(False)', 'default': '(False)'}), "('IsEnabled', sa.Boolean, nullable=False, default=False)\n", (467, 523), True, 'import sqlalchemy as sa\n')]
from resource_management.libraries.script.script import Script from resource_management.core.resources.packaging import Package class Client(Script): def install(self, env): packages = ['percona-server-client'] Package(packages) self.configure(env) def configure(self, env): import params env.set_params(params) def start(self, env): import params env.set_params(params) def stop(self, env): import params env.set_params(params) def status(self, env): import params env.set_params(params) if __name__ == "__main__": Client().execute()
[ "resource_management.core.resources.packaging.Package" ]
[((233, 250), 'resource_management.core.resources.packaging.Package', 'Package', (['packages'], {}), '(packages)\n', (240, 250), False, 'from resource_management.core.resources.packaging import Package\n')]
# Generated by Django 2.2.1 on 2019-07-19 12:36 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('website', '0035_auto_20190625_0900'), ] operations = [ migrations.RenameField( model_name='verenigingen', old_name='ontgroening', new_name='introductietijd', ), ]
[ "django.db.migrations.RenameField" ]
[((227, 332), 'django.db.migrations.RenameField', 'migrations.RenameField', ([], {'model_name': '"""verenigingen"""', 'old_name': '"""ontgroening"""', 'new_name': '"""introductietijd"""'}), "(model_name='verenigingen', old_name='ontgroening',\n new_name='introductietijd')\n", (249, 332), False, 'from django.db import migrations\n')]
#!/usr/bin/python # Flask is used to create a somewhat lightweight listening server from flask import Flask from requests import get def spawn_proxy(): myproxy = Flask('__name__') # Quick health check override @myproxy.route('/healthcheck', methods=['GET']) def health(): return "OK" # Let's not spam google if we don't get a query, and return a Bad Request. @myproxy.route('/', methods=['GET']) def empty(): return "Empty search string", 400 # This is a very dumb proxy, we're only doing GET. @myproxy.route('/<path:req>', methods=['GET']) def proxy(req): # We're only going to google here, so let's just keep it in the proxy settings for now. target = 'https://www.google.com/' return get(f'{target}/search?q={req}').content return myproxy
[ "flask.Flask", "requests.get" ]
[((170, 187), 'flask.Flask', 'Flask', (['"""__name__"""'], {}), "('__name__')\n", (175, 187), False, 'from flask import Flask\n'), ((774, 805), 'requests.get', 'get', (['f"""{target}/search?q={req}"""'], {}), "(f'{target}/search?q={req}')\n", (777, 805), False, 'from requests import get\n')]
#! /usr/bin/env python import pefile import datetime import os import re from pecli.plugins.base import Plugin from pecli.lib.utils import cli_out ASCII_BYTE = b" !\"#\$%&\'\(\)\*\+,-\./0123456789:;<=>\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\[\]\^_`abcdefghijklmnopqrstuvwxyz\{\|\}\\\~\t" class PluginStrings(Plugin): name = "strings" description = "Extract strings from the PE file" def add_arguments(self, parser): parser.add_argument('--ascii', '-a', action="store_true", help="ASCII strings only") parser.add_argument('--wide', '-w', action="store_true", help="Wide strings only") parser.add_argument('-n', '--min-len', type=int, default=4, help='Print sequences of ' + 'characters that are at least min-len characters long, instead of ' + 'the default 4.') self.parser = parser def get_results(self, data, min_len=4, wide_only=False, ascii_only=False, cli_mode=False): # regular expressions from flare-floss: # https://github.com/fireeye/flare-floss/blob/master/floss/strings.py#L7-L9 re_narrow = re.compile(b'([%s]{%d,})' % (ASCII_BYTE, min_len)) re_wide = re.compile(b'((?:[%s]\x00){%d,})' % (ASCII_BYTE, min_len)) strings = [] # print ascii strings unless we only want wide strings if not wide_only: for match in re_narrow.finditer(data): s = match.group().decode('ascii') strings.append(s) cli_out(s, cli_mode) # print wide strings unless we only want ascii strings if not ascii_only: for match in re_wide.finditer(data): try: s = match.group().decode('utf-16') cli_out(s, cli_mode) strings.append(s) except UnicodeDecodeError: pass return {"strings": strings} def run_cli(self, args, pe, data): if args.ascii and args.wide: print("to print both ascii and wide strings, omit both") else: self.get_results(data, args.min_len, args.wide, args.ascii, cli_mode=True)
[ "pecli.lib.utils.cli_out", "re.compile" ]
[((1130, 1180), 're.compile', 're.compile', (["(b'([%s]{%d,})' % (ASCII_BYTE, min_len))"], {}), "(b'([%s]{%d,})' % (ASCII_BYTE, min_len))\n", (1140, 1180), False, 'import re\n'), ((1199, 1257), 're.compile', 're.compile', (["(b'((?:[%s]\\x00){%d,})' % (ASCII_BYTE, min_len))"], {}), "(b'((?:[%s]\\x00){%d,})' % (ASCII_BYTE, min_len))\n", (1209, 1257), False, 'import re\n'), ((1521, 1541), 'pecli.lib.utils.cli_out', 'cli_out', (['s', 'cli_mode'], {}), '(s, cli_mode)\n', (1528, 1541), False, 'from pecli.lib.utils import cli_out\n'), ((1778, 1798), 'pecli.lib.utils.cli_out', 'cli_out', (['s', 'cli_mode'], {}), '(s, cli_mode)\n', (1785, 1798), False, 'from pecli.lib.utils import cli_out\n')]
from django.core.management.base import BaseCommand from api.models import Country from django.db import transaction from django.db.models import Q from api.logger import logger class Command(BaseCommand): help = 'Update Countries initially to set/revoke their in_search field (probably one-time run only)' @transaction.atomic def handle(self, *args, **options): try: # Update countries which should appear in search inc_c = Country.objects.filter(independent=True, is_deprecated=False, record_type=1).update(in_search=True) # Update countries which should NOT appear in search # independent can be null too thus why negated check exc_c = Country.objects.filter(~Q(independent=True) | Q(is_deprecated=True) | ~Q(record_type=1)).update(in_search=False) logger.info('Successfully set in_search for Countries') except Exception as ex: logger.error(f'Failed to set in_search for Countries. Error: {str(ex)}')
[ "api.logger.logger.info", "django.db.models.Q", "api.models.Country.objects.filter" ]
[((847, 902), 'api.logger.logger.info', 'logger.info', (['"""Successfully set in_search for Countries"""'], {}), "('Successfully set in_search for Countries')\n", (858, 902), False, 'from api.logger import logger\n'), ((472, 548), 'api.models.Country.objects.filter', 'Country.objects.filter', ([], {'independent': '(True)', 'is_deprecated': '(False)', 'record_type': '(1)'}), '(independent=True, is_deprecated=False, record_type=1)\n', (494, 548), False, 'from api.models import Country\n'), ((768, 789), 'django.db.models.Q', 'Q', ([], {'is_deprecated': '(True)'}), '(is_deprecated=True)\n', (769, 789), False, 'from django.db.models import Q\n'), ((793, 809), 'django.db.models.Q', 'Q', ([], {'record_type': '(1)'}), '(record_type=1)\n', (794, 809), False, 'from django.db.models import Q\n'), ((746, 765), 'django.db.models.Q', 'Q', ([], {'independent': '(True)'}), '(independent=True)\n', (747, 765), False, 'from django.db.models import Q\n')]
from django import template from tos.models import CGUItem register = template.Library() @register.simple_tag def get_cgu_items(): return CGUItem.objects.filter(deleted_at__isnull=True)
[ "django.template.Library", "tos.models.CGUItem.objects.filter" ]
[((72, 90), 'django.template.Library', 'template.Library', ([], {}), '()\n', (88, 90), False, 'from django import template\n'), ((145, 192), 'tos.models.CGUItem.objects.filter', 'CGUItem.objects.filter', ([], {'deleted_at__isnull': '(True)'}), '(deleted_at__isnull=True)\n', (167, 192), False, 'from tos.models import CGUItem\n')]
# Copyright 2016 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """This is a factory test to check the brightness of LCD backlight or LEDs.""" from cros.factory.device import device_utils from cros.factory.test.i18n import arg_utils as i18n_arg_utils from cros.factory.test import test_case from cros.factory.test import test_ui from cros.factory.utils.arg_utils import Arg class BrightnessTest(test_case.TestCase): ARGS = [ i18n_arg_utils.I18nArg('msg', 'Message HTML'), Arg('timeout_secs', int, 'Timeout value for the test in seconds.', default=10), Arg('levels', list, 'A sequence of brightness levels.'), Arg('interval_secs', (int, float), 'Time for each brightness level in seconds.') ] def setUp(self): self.dut = device_utils.CreateDUTInterface() self.ui.ToggleTemplateClass('font-large', True) self.ui.BindStandardKeys() self.ui.SetState([self.args.msg, test_ui.PASS_FAIL_KEY_LABEL]) def runTest(self): """Starts an infinite loop to change brightness.""" self.ui.StartFailingCountdownTimer(self.args.timeout_secs) while True: for level in self.args.levels: self._SetBrightnessLevel(level) self.Sleep(self.args.interval_secs) def _SetBrightnessLevel(self, level): raise NotImplementedError
[ "cros.factory.test.i18n.arg_utils.I18nArg", "cros.factory.utils.arg_utils.Arg", "cros.factory.device.device_utils.CreateDUTInterface" ]
[((538, 583), 'cros.factory.test.i18n.arg_utils.I18nArg', 'i18n_arg_utils.I18nArg', (['"""msg"""', '"""Message HTML"""'], {}), "('msg', 'Message HTML')\n", (560, 583), True, 'from cros.factory.test.i18n import arg_utils as i18n_arg_utils\n'), ((591, 669), 'cros.factory.utils.arg_utils.Arg', 'Arg', (['"""timeout_secs"""', 'int', '"""Timeout value for the test in seconds."""'], {'default': '(10)'}), "('timeout_secs', int, 'Timeout value for the test in seconds.', default=10)\n", (594, 669), False, 'from cros.factory.utils.arg_utils import Arg\n'), ((687, 742), 'cros.factory.utils.arg_utils.Arg', 'Arg', (['"""levels"""', 'list', '"""A sequence of brightness levels."""'], {}), "('levels', list, 'A sequence of brightness levels.')\n", (690, 742), False, 'from cros.factory.utils.arg_utils import Arg\n'), ((750, 835), 'cros.factory.utils.arg_utils.Arg', 'Arg', (['"""interval_secs"""', '(int, float)', '"""Time for each brightness level in seconds."""'], {}), "('interval_secs', (int, float), 'Time for each brightness level in seconds.'\n )\n", (753, 835), False, 'from cros.factory.utils.arg_utils import Arg\n'), ((880, 913), 'cros.factory.device.device_utils.CreateDUTInterface', 'device_utils.CreateDUTInterface', ([], {}), '()\n', (911, 913), False, 'from cros.factory.device import device_utils\n')]
import pandas as pd import os import dotenv from dotenv import load_dotenv import datetime import plotly import plotly.graph_objects as go from plotly.subplots import make_subplots from app.other_data_pull import spy_pull, fred_pull from app.port_data_pull import port_data_pull from app.portfolio_import import portfolio_import from app import APP_ENV # ------------------------------------------------------------------------------------- # FUNCTIONS --------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- def to_pct(dec): ''' Converts a numeric value to formatted string for printing and display purposes. Param: dec (int or float) like 0.403321 Example: to_pct(0.403321) Returns: 40.33% ''' return f'{dec:.2%}' def two_dec(dec): ''' Converts a numeric value to formatted string for printing and display purposes. Param: dec (int or float) like 4000.444444 Example: two_dec(4000.444444) Returns: 4,000.44 ''' return f'{dec:,.2f}' def pd_describe(mon_len): ''' Converts a specified number of months to a text description of years and months. Param: mon_len (int) like 17 Example: mon_len(17) Returns: 1 Year and 5 Months ''' full_years = int(mon_len / 12) resid_months = mon_len % 12 if (full_years > 0 and resid_months > 0): join_str = ' and ' else: join_str = '' if full_years == 0: yr_str = '' elif full_years == 1: yr_str = f'{full_years} Year' else: yr_str = f'{full_years} Years' if resid_months == 0: mon_str = '' elif resid_months == 1: mon_str = f'{resid_months} Month' else: mon_str=f'{resid_months} Months' pd_detail=f'{yr_str}{join_str}{mon_str}' return pd_detail def returns(dataset, period_length, min_start, max_end): ''' Calculates various portfolio performance measures and prepares data for data visualization. ''' # Calculate percent returns of individual portfolio positions working_data = dataset working_data['mret'] = working_data.groupby('ticker')['adj close'].pct_change() working_data['mretp1'] = working_data['mret'] + 1 # Calculate share values over time (used to pull analysis period starting portfolio values) working_data['sh val'] = working_data['qty'] * working_data['close'] # Define analysis period length. For now, analysis period start date is # based on the data availability of the individual positions. The most recent # first monthly data point for a given stock in the portfolio becomes the analysis # start date. This is a limitation of the data/API. pd_len = period_length pd_end = max_end pd_start = max(max_end - (pd_len * 12), min_start) # Create dataset of asset values by position at the analysis start date pd_start_val = working_data.loc[working_data['month'] == pd_start] pd_start_val = pd_start_val.set_index('ticker') pd_start_val = pd_start_val['sh val'].rename('start val') # Caclulate cumulative returns and corresponding monthly values of individual # portfolio positions over time cum_ret_set = working_data.loc[(working_data['month'] > pd_start) & (working_data['month'] <= pd_end)] cum_ret_set = cum_ret_set.set_index('ticker') cum_ret_set['cumret'] = cum_ret_set.groupby('ticker')['mretp1'].cumprod() cum_ret_set = cum_ret_set.join(pd_start_val, on='ticker') cum_ret_set['mon val'] = cum_ret_set['start val'] * cum_ret_set['cumret'] # Calculate monthly returns on the total portfolio over time port_ret = cum_ret_set.groupby('month')[['start val', 'mon val']].sum() port_ret['cum ret'] = port_ret['mon val'] / port_ret['start val'] port_ret['mon ret'] = port_ret['mon val'].pct_change() # Replace analysis period start month portfolio return (was na due to # pct_change() function) port_ret.loc[pd_start + 1, 'mon ret'] = port_ret.loc[pd_start + 1, 'cum ret'] - 1 # Merge in S&P 500 data from other_data_pull module port_ret = port_ret.join(spy_join) # Merge in 1Y constant maturity treasury data from other_data_pull module port_ret = port_ret.join(fred_join) # Calculate S&P 500 returns and cumulative return over analysis period port_ret['spretp1'] = port_ret['spret'] + 1 port_ret['cum spret'] = port_ret['spretp1'].cumprod() port_ret = port_ret.drop(columns=['spretp1']) # Calculate portfolio and S&P 500 excess returns over risk free rate port_ret['exret'] = port_ret['mon ret'] - port_ret['rate'] port_ret['exspret'] = port_ret['spret'] - port_ret['rate'] # Calculate average annual and monthly returns months = len(port_ret) years = months / 12 avg_ann_ret = (port_ret.loc[pd_end, 'cum ret'])**(1 / years) - 1 avg_mon_ret = (port_ret.loc[pd_end, 'cum ret'])**(1 / months) - 1 avg_ann_spret = (port_ret.loc[pd_end, 'cum spret'])**(1 / years) - 1 avg_mon_spret = (port_ret.loc[pd_end, 'cum spret'])**(1 / months) - 1 #Calculate return standard deviations mon_sdev = port_ret['mon ret'].std() ann_sdev = mon_sdev * (12 ** .5) mon_sp_sdev = port_ret['spret'].std() ann_sp_sdev = mon_sp_sdev * (12 ** .5) # Calculate portfolio beta (covariance of portfolio and S&P 500 divided by # volatility of S&P 500) beta = port_ret.cov().loc['mon ret', 'spret'] / port_ret.cov().loc['spret', 'spret'] # Calculate sharpe ratios sharpe_port = (port_ret['exret'].mean() / port_ret['exret'].std()) * (12 ** .5) sharpe_sp = (port_ret['exspret'].mean() / port_ret['exspret'].std()) * (12 ** .5) # Assemble dictionary of calculation results ret_calc = {'years_tgt': pd_len, 'years_act': years, 'months_act': months, 'st_date': pd_start.strftime('%Y-%m'), 'end_date': pd_end.strftime('%Y-%m'), 'ann_ret': avg_ann_ret, 'mon_ret': avg_mon_ret, 'ann_sdev': ann_sdev, 'mon_sdev': mon_sdev, 'ann_spret': avg_ann_spret, 'mon_spret': avg_mon_spret, 'ann_sp_sdev': ann_sp_sdev, 'mon_sp_sdev': mon_sp_sdev, 'beta': beta, 'sharpe_port': sharpe_port, 'sharpe_sp': sharpe_sp} # Create total (cumulative) returns dataset for data visualization tot_ret_data = port_ret[['cum ret', 'cum spret']] - 1 app_df = pd.DataFrame([[tot_ret_data.index.min() - 1, 0, 0]], columns=['month', 'cum ret', 'cum spret']).set_index('month') tot_ret_data=tot_ret_data.append(app_df).sort_index() tot_ret_data.index = tot_ret_data.index.to_series().astype(str) tot_ret_dict = tot_ret_data.reset_index().to_dict(orient='list') return ret_calc, tot_ret_dict, port_ret # ------------------------------------------------------------------------------------- # CODE -------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- if __name__=='__main__': # Loan environment variables load_dotenv() port_file_name = os.environ.get('PORTFOLIO_FILE_NAME') ap_api_key = os.environ.get('ALPHAVANTAGE_API_KEY') fred_api_key = os.environ.get('FRED_API_KEY') portfolio = portfolio_import(port_file_name) if APP_ENV == 'development': # Requires that each of other_data_pull and port_data_pull modules be # run separately/individually (i.e., not called from within this program) sub = pd.read_csv(os.path.join(os.path.dirname(os.path.abspath( __file__)), '..', 'data', "working_port.csv"), parse_dates=['timestamp', 'month']) sub['month']=sub['month'].dt.to_period('M') spy_join = pd.read_csv(os.path.join(os.path.dirname(os.path.abspath( __file__)), '..', 'data', "working_spy.csv"), parse_dates=['month']) spy_join['month'] = spy_join['month'].dt.to_period('M') spy_join=spy_join.set_index('month') fred_join = pd.read_csv(os.path.join(os.path.dirname(os.path.abspath( __file__)), '..', 'data', "working_fred.csv"), parse_dates=['month']) fred_join['month'] = fred_join['month'].dt.to_period('M') fred_join=fred_join.set_index('month') maxomin = sub['month'].min() minomax = sub['month'].max() else: # Call on other_data_pull module for S&P 500 and risk free rate data from # Alpha Vantage and FRED (Federal Reserve Economic Data) APIs spy_join = spy_pull(ap_api_key) fred_join = fred_pull(fred_api_key) # Call on port_data_pull module for monthly data on individual portfolio stocks # from Alpha Vantage API sub, minomax, maxomin=port_data_pull(portfolio,ap_api_key) # Collect and store results, datasets, and chart elements for 1, 2, 3, and 5 year analysis periods # (but only if sufficient data exists for all portfolio positions). If data are insufficient, # only store results for complete or near complete periods. For example, if the longest data # sampling period for one stock in the portfolio is 2 years and 7 months, then the 3-year # analysis period will record results for a period of 2 years and 7 months, and the loop # will not bother with the 5-year calculations. results = [] tot_ret=[] x = 0 keep = [] figs = [] for i in [1,2,3,5]: if x==0: temp_returns, temp_tot, temp_review = returns(sub, i, maxomin, minomax) results.append(temp_returns) tot_ret.append(temp_tot) keep.append(i) figs.append({'port line': go.Scatter(x=temp_tot['month'], y=temp_tot['cum ret'], name='Portfolio Cumulative Return', line=dict(color='firebrick', width=4)), 'sp line': go.Scatter(x=temp_tot['month'], y=temp_tot['cum spret'], name='S&P 500 Cumulative Return', line=dict(color='royalblue', width=4))}) if temp_returns['years_tgt'] != temp_returns['years_act']: x = 1 # MAKE CHARTS/TABLES! axis_font = dict(size=16, family='Times New Roman') tick_font = dict(size=12, family='Times New Roman') for i in range(len(figs)): fig = make_subplots(rows=2, cols=1, vertical_spacing=0.03, row_width=[0.75,0.25], specs=[[{'type':'table'}], [{'type':'scatter'}]]) fig.add_trace(figs[i]['port line'], row=2, col=1) fig.add_trace(figs[i]['sp line'], row=2, col=1,) pd_months = results[i]['months_act'] fig.update_layout(title=dict(text=f'Portfolio Performance Report: Monthly Returns over Last {pd_describe(pd_months)}', font=dict(family='Times New Roman', size=20))) fig.update_layout(xaxis=dict(title=dict(text='Month', font=axis_font), ticks='outside', tickfont=tick_font)) fig.update_layout(yaxis=dict(title=dict(text='Cumulative Monthly Returns (%)', font=axis_font), ticks='outside', tickfont=tick_font, tickformat='.1%')) fig.update_layout(legend=dict(orientation='h', font=axis_font)) col1 = ['Avg. Annual Return', 'Std. Dev. (Ann.)', 'Sharpe Ratio', 'Beta'] col2 = [to_pct(results[i]['ann_ret']), to_pct(results[i]['ann_sdev']), two_dec(results[i]['sharpe_port']), two_dec(results[i]['beta'])] col3 = [to_pct(results[i]['ann_spret']), to_pct(results[i]['ann_sp_sdev']), two_dec(results[i]['sharpe_sp']), two_dec(1.00)] fig.add_trace(go.Table(header=dict(values=['Statistic', 'Portfolio', 'S&P 500']), cells=dict(values=[col1, col2, col3])),row=1,col=1) fig.show()
[ "app.port_data_pull.port_data_pull", "os.path.abspath", "app.other_data_pull.fred_pull", "app.other_data_pull.spy_pull", "dotenv.load_dotenv", "os.environ.get", "app.portfolio_import.portfolio_import", "plotly.subplots.make_subplots" ]
[((7076, 7089), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (7087, 7089), False, 'from dotenv import load_dotenv\n'), ((7111, 7148), 'os.environ.get', 'os.environ.get', (['"""PORTFOLIO_FILE_NAME"""'], {}), "('PORTFOLIO_FILE_NAME')\n", (7125, 7148), False, 'import os\n'), ((7166, 7204), 'os.environ.get', 'os.environ.get', (['"""ALPHAVANTAGE_API_KEY"""'], {}), "('ALPHAVANTAGE_API_KEY')\n", (7180, 7204), False, 'import os\n'), ((7224, 7254), 'os.environ.get', 'os.environ.get', (['"""FRED_API_KEY"""'], {}), "('FRED_API_KEY')\n", (7238, 7254), False, 'import os\n'), ((7272, 7304), 'app.portfolio_import.portfolio_import', 'portfolio_import', (['port_file_name'], {}), '(port_file_name)\n', (7288, 7304), False, 'from app.portfolio_import import portfolio_import\n'), ((8520, 8540), 'app.other_data_pull.spy_pull', 'spy_pull', (['ap_api_key'], {}), '(ap_api_key)\n', (8528, 8540), False, 'from app.other_data_pull import spy_pull, fred_pull\n'), ((8561, 8584), 'app.other_data_pull.fred_pull', 'fred_pull', (['fred_api_key'], {}), '(fred_api_key)\n', (8570, 8584), False, 'from app.other_data_pull import spy_pull, fred_pull\n'), ((8737, 8774), 'app.port_data_pull.port_data_pull', 'port_data_pull', (['portfolio', 'ap_api_key'], {}), '(portfolio, ap_api_key)\n', (8751, 8774), False, 'from app.port_data_pull import port_data_pull\n'), ((10210, 10342), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(2)', 'cols': '(1)', 'vertical_spacing': '(0.03)', 'row_width': '[0.75, 0.25]', 'specs': "[[{'type': 'table'}], [{'type': 'scatter'}]]"}), "(rows=2, cols=1, vertical_spacing=0.03, row_width=[0.75, 0.25],\n specs=[[{'type': 'table'}], [{'type': 'scatter'}]])\n", (10223, 10342), False, 'from plotly.subplots import make_subplots\n'), ((7555, 7580), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (7570, 7580), False, 'import os\n'), ((7780, 7805), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (7795, 7805), False, 'import os\n'), ((8049, 8074), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (8064, 8074), False, 'import os\n')]
from keras_tweaks import idseqs_to_mask import tensorflow as tf class AllTests(tf.test.TestCase): def test1(self): idseqs = [[1, 1, 0, 0, 2, 2, 3], [1, 3, 2, 1, 0, 0, 2]] target = tf.sparse.SparseTensor( indices=( [0, 0, 1], [0, 1, 1], [0, 2, 0], [0, 3, 0], [0, 4, 2], [0, 5, 2], [1, 0, 1], [1, 2, 2], [1, 3, 1], [1, 4, 0], [1, 5, 0]), values=[True for _ in range(11)], dense_shape=(2, 6, 3)) masks = idseqs_to_mask( idseqs, n_seqlen=6, n_vocab_sz=3, ignore=[3], dense=False) self.assertAllEqual( tf.sparse.to_dense(masks), tf.sparse.to_dense(target)) self.assertAllEqual(masks.dtype, target.dtype) self.assertAllEqual(masks.shape, target.shape) def test2(self): idseqs = [[1, 1, 0, 0, 2, 2, 3], [1, 3, 2, 1, 0, 0, 2]] target = tf.sparse.SparseTensor( indices=( [0, 0, 1], [0, 1, 1], [0, 2, 0], [0, 3, 0], [0, 4, 2], [0, 5, 2], [1, 0, 1], [1, 2, 2], [1, 3, 1], [1, 4, 0], [1, 5, 0]), values=[1 for _ in range(11)], dense_shape=(2, 6, 3)) masks = idseqs_to_mask( idseqs, n_seqlen=6, n_vocab_sz=3, ignore=[3], dense=False, dtype=tf.uint8) self.assertAllEqual( tf.sparse.to_dense(masks), tf.sparse.to_dense(target)) # self.assertAllEqual(masks.dtype, target.dtype) self.assertAllEqual(masks.shape, target.shape) def test3(self): idseqs = [[1, 1, 0, 0, 2, 2, 3], [1, 3, 2, 1, 0, 0, 2]] target = tf.sparse.SparseTensor( indices=( [0, 0, 1], [0, 1, 1], [0, 2, 0], [0, 3, 0], [0, 4, 2], [0, 5, 2], [1, 0, 1], [1, 2, 2], [1, 3, 1], [1, 4, 0], [1, 5, 0]), values=[1.0 for _ in range(11)], dense_shape=(2, 6, 3)) masks = idseqs_to_mask( idseqs, n_seqlen=6, n_vocab_sz=3, ignore=[3], dense=False, dtype=tf.float64) self.assertAllEqual( tf.sparse.to_dense(masks), tf.sparse.to_dense(target)) # self.assertAllEqual(masks.dtype, target.dtype) self.assertAllEqual(masks.shape, target.shape) def test4(self): idseqs = [[1, 1, 0, 0, 2, 2, 3], [1, 3, 2, 1, 0, 0, 2]] target = tf.sparse.SparseTensor( indices=( [0, 2, 0], [0, 3, 0], [0, 4, 1], [0, 5, 1], [1, 1, 2], [1, 2, 1], [1, 4, 0], [1, 5, 0]), values=[True for _ in range(8)], dense_shape=(2, 6, 3)) masks = idseqs_to_mask( idseqs, n_seqlen=6, ignore=[1], dense=False, dtype=tf.bool) self.assertAllEqual( tf.sparse.to_dense(masks), tf.sparse.to_dense(target)) self.assertAllEqual(masks.dtype, target.dtype) self.assertAllEqual(masks.shape, target.shape) def test5(self): idseqs = [[1, 1, 0, 0, 2, 2, 3], [1, 3, 2, 1, 0, 0, 2]] target = tf.sparse.SparseTensor( indices=( [0, 2, 0], [0, 3, 0], [0, 4, 1], [0, 5, 1], [1, 1, 2], [1, 2, 1], [1, 4, 0], [1, 5, 0]), values=[True for _ in range(8)], dense_shape=(2, 6, 3)) masks = idseqs_to_mask( idseqs, n_seqlen=6, ignore=[1], dense=True, dtype=tf.bool) self.assertAllEqual(masks, tf.sparse.to_dense(target)) self.assertAllEqual(masks.dtype, target.dtype) self.assertAllEqual(masks.shape, target.shape) if __name__ == "__main__": tf.test.main()
[ "tensorflow.test.main", "keras_tweaks.idseqs_to_mask", "tensorflow.sparse.to_dense" ]
[((4219, 4233), 'tensorflow.test.main', 'tf.test.main', ([], {}), '()\n', (4231, 4233), True, 'import tensorflow as tf\n'), ((646, 719), 'keras_tweaks.idseqs_to_mask', 'idseqs_to_mask', (['idseqs'], {'n_seqlen': '(6)', 'n_vocab_sz': '(3)', 'ignore': '[3]', 'dense': '(False)'}), '(idseqs, n_seqlen=6, n_vocab_sz=3, ignore=[3], dense=False)\n', (660, 719), False, 'from keras_tweaks import idseqs_to_mask\n'), ((1483, 1576), 'keras_tweaks.idseqs_to_mask', 'idseqs_to_mask', (['idseqs'], {'n_seqlen': '(6)', 'n_vocab_sz': '(3)', 'ignore': '[3]', 'dense': '(False)', 'dtype': 'tf.uint8'}), '(idseqs, n_seqlen=6, n_vocab_sz=3, ignore=[3], dense=False,\n dtype=tf.uint8)\n', (1497, 1576), False, 'from keras_tweaks import idseqs_to_mask\n'), ((2352, 2447), 'keras_tweaks.idseqs_to_mask', 'idseqs_to_mask', (['idseqs'], {'n_seqlen': '(6)', 'n_vocab_sz': '(3)', 'ignore': '[3]', 'dense': '(False)', 'dtype': 'tf.float64'}), '(idseqs, n_seqlen=6, n_vocab_sz=3, ignore=[3], dense=False,\n dtype=tf.float64)\n', (2366, 2447), False, 'from keras_tweaks import idseqs_to_mask\n'), ((3142, 3216), 'keras_tweaks.idseqs_to_mask', 'idseqs_to_mask', (['idseqs'], {'n_seqlen': '(6)', 'ignore': '[1]', 'dense': '(False)', 'dtype': 'tf.bool'}), '(idseqs, n_seqlen=6, ignore=[1], dense=False, dtype=tf.bool)\n', (3156, 3216), False, 'from keras_tweaks import idseqs_to_mask\n'), ((3913, 3986), 'keras_tweaks.idseqs_to_mask', 'idseqs_to_mask', (['idseqs'], {'n_seqlen': '(6)', 'ignore': '[1]', 'dense': '(True)', 'dtype': 'tf.bool'}), '(idseqs, n_seqlen=6, ignore=[1], dense=True, dtype=tf.bool)\n', (3927, 3986), False, 'from keras_tweaks import idseqs_to_mask\n'), ((775, 800), 'tensorflow.sparse.to_dense', 'tf.sparse.to_dense', (['masks'], {}), '(masks)\n', (793, 800), True, 'import tensorflow as tf\n'), ((802, 828), 'tensorflow.sparse.to_dense', 'tf.sparse.to_dense', (['target'], {}), '(target)\n', (820, 828), True, 'import tensorflow as tf\n'), ((1640, 1665), 'tensorflow.sparse.to_dense', 'tf.sparse.to_dense', (['masks'], {}), '(masks)\n', (1658, 1665), True, 'import tensorflow as tf\n'), ((1667, 1693), 'tensorflow.sparse.to_dense', 'tf.sparse.to_dense', (['target'], {}), '(target)\n', (1685, 1693), True, 'import tensorflow as tf\n'), ((2511, 2536), 'tensorflow.sparse.to_dense', 'tf.sparse.to_dense', (['masks'], {}), '(masks)\n', (2529, 2536), True, 'import tensorflow as tf\n'), ((2538, 2564), 'tensorflow.sparse.to_dense', 'tf.sparse.to_dense', (['target'], {}), '(target)\n', (2556, 2564), True, 'import tensorflow as tf\n'), ((3284, 3309), 'tensorflow.sparse.to_dense', 'tf.sparse.to_dense', (['masks'], {}), '(masks)\n', (3302, 3309), True, 'import tensorflow as tf\n'), ((3311, 3337), 'tensorflow.sparse.to_dense', 'tf.sparse.to_dense', (['target'], {}), '(target)\n', (3329, 3337), True, 'import tensorflow as tf\n'), ((4048, 4074), 'tensorflow.sparse.to_dense', 'tf.sparse.to_dense', (['target'], {}), '(target)\n', (4066, 4074), True, 'import tensorflow as tf\n')]
# apis_v1/test_views_voter_email_address_save.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from django.urls import reverse from django.test import TestCase from email_outbound.models import EmailAddress, EmailManager import json class WeVoteAPIsV1TestsVoterEmailAddressRetrieve(TestCase): databases = ["default", "readonly"] def setUp(self): self.generate_voter_device_id_url = reverse("apis_v1:deviceIdGenerateView") self.voter_create_url = reverse("apis_v1:voterCreateView") self.voter_email_address_save_url = reverse("apis_v1:voterEmailAddressSaveView") self.voter_email_address_retrieve_url = reverse("apis_v1:voterEmailAddressRetrieveView") def test_retrieve_with_no_voter_device_id(self): response = self.client.get(self.voter_email_address_retrieve_url) json_data = json.loads(response.content.decode()) self.assertEqual('status' in json_data, True, "status expected in the json response, and not found") self.assertEqual(json_data['status'], "VALID_VOTER_DEVICE_ID_MISSING", "status = {status} Expected status VALID_VOTER_DEVICE_ID_MISSING" "voter_device_id: {voter_device_id}".format(status=json_data['status'], voter_device_id=json_data['voter_device_id'])) self.assertEqual(len(json_data["email_address_list"]), 0, "Expected email_address_list to have length 0, " "actual length = {length}".format(length=len(json_data['email_address_list']))) def test_retrieve_with_voter_device_id(self): response = self.client.get(self.generate_voter_device_id_url) json_data = json.loads(response.content.decode()) voter_device_id = json_data['voter_device_id'] if 'voter_device_id' in json_data else '' # Create a voter so we can test retrieve response2 = self.client.get(self.voter_create_url, {'voter_device_id': voter_device_id}) json_data2 = json.loads(response2.content.decode()) self.assertEqual('status' in json_data2, True, "status expected in the voterEmailAddressRetrieveView json response but not found") self.assertEqual('voter_device_id' in json_data2, True, "voter_device_id expected in the voterEmailAddressRetrieveView json response but not found")
[ "django.urls.reverse" ]
[((417, 456), 'django.urls.reverse', 'reverse', (['"""apis_v1:deviceIdGenerateView"""'], {}), "('apis_v1:deviceIdGenerateView')\n", (424, 456), False, 'from django.urls import reverse\n'), ((489, 523), 'django.urls.reverse', 'reverse', (['"""apis_v1:voterCreateView"""'], {}), "('apis_v1:voterCreateView')\n", (496, 523), False, 'from django.urls import reverse\n'), ((568, 612), 'django.urls.reverse', 'reverse', (['"""apis_v1:voterEmailAddressSaveView"""'], {}), "('apis_v1:voterEmailAddressSaveView')\n", (575, 612), False, 'from django.urls import reverse\n'), ((661, 709), 'django.urls.reverse', 'reverse', (['"""apis_v1:voterEmailAddressRetrieveView"""'], {}), "('apis_v1:voterEmailAddressRetrieveView')\n", (668, 709), False, 'from django.urls import reverse\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- """ Redundant misc. functions to be eventually removed from AC_tools. """ import os import numpy as np from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt from pandas import DataFrame # time import time import datetime as datetime # math from math import radians, sin, cos, asin, sqrt, pi, atan2 def get_arr_edge_indices(arr, res='4x5', extra_points_point_on_edge=None, verbose=True, debug=False): """ Find indices in a lon, lat (2D) grid, where value does not equal a given value ( e.g. the edge ) """ if verbose: print(('get_arr_edge_indices for arr of shape: ', arr.shape)) # initialise variables lon_c, lat_c, NIU = get_latlonalt4res(res=res, centre=True) lon_e, lat_e, NIU = get_latlonalt4res(res=res, centre=False) lon_diff = lon_e[-5]-lon_e[-6] lat_diff = lat_e[-5]-lat_e[-6] nn, n, = 0, 0 last_lat_box = arr[nn, n] coords = [] last_lon_box = arr[nn, n] need_lon_outer_edge, need_lat_outer_edge = False, False if debug: print((lon_e, lat_e)) # ---- Loop X dimension ( lon ) for nn, lon_ in enumerate(lon_c): # Loop Y dimension ( lat ) and store edges for n, lat_ in enumerate(lat_c): if debug: print((arr[nn, n], last_lat_box, last_lon_box, arr[nn, n] == last_lat_box, arr[nn, n] == last_lon_box)) if arr[nn, n] != last_lat_box: # If 1st lat, selct bottom of box point_lon = lon_e[nn]+lon_diff/2 if need_lat_outer_edge: point_lat = lat_e[n+1] else: point_lat = lat_e[n] need_lat_outer_edge = True need_lat_outer_edge = False # Add mid point to cordinates list if isinstance(extra_points_point_on_edge, type(None)): mid_point = [point_lon, point_lat] coords += [mid_point] # Add given number of points along edge else: coords += [[lon_e[nn]+(lon_diff*i), point_lat] for i in np.linspace(0, 1, extra_points_point_on_edge, endpoint=True)] # temporally save the previous box's value last_lat_box = arr[nn, n] # ---- Loop Y dimension ( lat ) for n, lat_ in enumerate(lat_c): if debug: print((arr[nn, n], last_lat_box, last_lon_box, arr[nn, n] == last_lat_box, arr[nn, n] == last_lon_box)) # Loop X dimension ( lon ) and store edges for nn, lon_ in enumerate(lon_c): # If change in value at to list if arr[nn, n] != last_lon_box: point_lat = lat_e[n]+lat_diff/2 # Make sure we select the edge lon if need_lon_outer_edge: point_lon = lon_e[nn+1] else: point_lon = lon_e[nn] need_lon_outer_edge = True need_lon_outer_edge = False # Add mid point to coordinates list if isinstance(extra_points_point_on_edge, type(None)): mid_point = [point_lon, point_lat] coords += [mid_point] # Add given number of points along edge else: coords += [[point_lon, lat_e[n]+(lat_diff*i)] for i in np.linspace(0, 1, extra_points_point_on_edge, endpoint=True)] # temporally save the previous box's value last_lon_box = arr[nn, n] return coords def split_data_by_days(data=None, dates=None, day_list=None, verbose=False, debug=False): """ Takes a list of datetimes and data and returns a list of data and the bins ( days ) """ if verbose: print('split_data_by_days called') # Create DataFrame of Data and dates df = DataFrame(data, index=dates, columns=['data']) # Add list of dates ( just year, month, day ) <= this is mappable, update? df['days'] = [datetime.datetime(*i.timetuple()[:3]) for i in dates] if debug: print(df) # Get list of unique days if isinstance(day_list, type(None)): day_list = sorted(set(df['days'].values)) # Loop unique days and select data on these days data4days = [] for day in day_list: print((day, df[df['days'] == day])) data4days += [df['data'][df['days'] == day]] # Just return the values ( i.e. not pandas array ) data4days = [i.values.astype(float) for i in data4days] print([type(i) for i in data4days]) # print data4days[0] # sys.exit() if debug: print(('returning data for {} days, with lengths: '.format( len(day_list)), [len(i) for i in data4days])) # Return as list of days (datetimes) + list of data for each day return data4days, day_list def obs2grid(glon=None, glat=None, galt=None, nest='high res global', sites=None, debug=False): """ values that have a given lat, lon and alt Notes ------- - Function flagged for removal """ if isinstance(glon, type(None)): glon, glat, galt = get_latlonalt4res(nest=nest, centre=False, debug=debug) # Assume use of known CAST sites... unless others given. if isinstance(sites, type(None)): loc_dict = get_loc(rtn_dict=True) sites = list(loc_dict.keys()) # Pull out site location indicies indices_list = [] for site in sites: lon, lat, alt = loc_dict[site] vars = get_xy(lon, lat, glon, glat) indices_list += [vars] return indices_list
[ "pandas.DataFrame", "numpy.linspace" ]
[((4158, 4204), 'pandas.DataFrame', 'DataFrame', (['data'], {'index': 'dates', 'columns': "['data']"}), "(data, index=dates, columns=['data'])\n", (4167, 4204), False, 'from pandas import DataFrame\n'), ((2254, 2314), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'extra_points_point_on_edge'], {'endpoint': '(True)'}), '(0, 1, extra_points_point_on_edge, endpoint=True)\n', (2265, 2314), True, 'import numpy as np\n'), ((3607, 3667), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'extra_points_point_on_edge'], {'endpoint': '(True)'}), '(0, 1, extra_points_point_on_edge, endpoint=True)\n', (3618, 3667), True, 'import numpy as np\n')]
from nanome._internal._util._serializers import _ArraySerializer, _StringSerializer, _ColorSerializer from . import _AtomSerializerID from . import _BondSerializer from .. import _Residue from nanome.util import Logs from nanome._internal._util._serializers import _TypeSerializer class _ResidueSerializer(_TypeSerializer): def __init__(self, shallow = False): self.shallow = shallow self.array = _ArraySerializer() self.atom = _AtomSerializerID() self.bond = _BondSerializer() self.color = _ColorSerializer() self.string = _StringSerializer() def version(self): #Version 0 corresponds to Nanome release 1.10 return 1 def name(self): return "Residue" def serialize(self, version, value, context): context.write_long(value._index) self.array.set_type(self.atom) if (self.shallow): context.write_using_serializer(self.array, []) else: context.write_using_serializer(self.array, value._atoms) self.array.set_type(self.bond) if (self.shallow): context.write_using_serializer(self.array, []) else: context.write_using_serializer(self.array, value._bonds) context.write_bool(value._ribboned) context.write_float(value._ribbon_size) context.write_int(value._ribbon_mode) context.write_using_serializer(self.color, value._ribbon_color) if (version > 0): context.write_bool(value._labeled) context.write_using_serializer(self.string, value._label_text) context.write_using_serializer(self.string, value._type) context.write_int(value._serial) context.write_using_serializer(self.string, value._name) context.write_int(value._secondary_structure.value) def deserialize(self, version, context): residue = _Residue._create() residue._index = context.read_long() self.array.set_type(self.atom) residue._set_atoms(context.read_using_serializer(self.array)) self.array.set_type(self.bond) residue._set_bonds(context.read_using_serializer(self.array)) residue._ribboned = context.read_bool() residue._ribbon_size = context.read_float() residue._ribbon_mode = _Residue.RibbonMode.safe_cast(context.read_int()) residue._ribbon_color = context.read_using_serializer(self.color) if (version > 0): residue._labeled = context.read_bool() residue._label_text = context.read_using_serializer(self.string) residue._type = context.read_using_serializer(self.string) residue._serial = context.read_int() residue._name = context.read_using_serializer(self.string) residue._secondary_structure = _Residue.SecondaryStructure.safe_cast(context.read_int()) return residue
[ "nanome._internal._util._serializers._StringSerializer", "nanome._internal._util._serializers._ArraySerializer", "nanome._internal._util._serializers._ColorSerializer" ]
[((419, 437), 'nanome._internal._util._serializers._ArraySerializer', '_ArraySerializer', ([], {}), '()\n', (435, 437), False, 'from nanome._internal._util._serializers import _ArraySerializer, _StringSerializer, _ColorSerializer\n'), ((537, 555), 'nanome._internal._util._serializers._ColorSerializer', '_ColorSerializer', ([], {}), '()\n', (553, 555), False, 'from nanome._internal._util._serializers import _ArraySerializer, _StringSerializer, _ColorSerializer\n'), ((578, 597), 'nanome._internal._util._serializers._StringSerializer', '_StringSerializer', ([], {}), '()\n', (595, 597), False, 'from nanome._internal._util._serializers import _ArraySerializer, _StringSerializer, _ColorSerializer\n')]
#!/usr/bin/env python3 import logging import subprocess from typing import Dict class Agent: name: str image: str environment: Dict[str, str] def __init__(self, name: str, image: str, environment: Dict[str, str]) -> None: self.name = name self.image = image self.environment = environment def run(self) -> None: logging.info("Starting agent '%s' based on image '%s'", self.name, self.image) subprocess.run( [ "docker", "run", "-d", "--rm", "-it", "--name", self.name, self.image, "/bin/sleep", "infinity", ] ) def cleanup(self) -> None: logging.info("Stopping agent '%s'", self.name) subprocess.run(["docker", "stop", self.name]) def get_agent_by_label(name: str, label: str) -> Agent: # TODO: lookup label in config file? return Agent("ci-agent", "ubuntu:20.04", {})
[ "logging.info", "subprocess.run" ]
[((369, 447), 'logging.info', 'logging.info', (['"""Starting agent \'%s\' based on image \'%s\'"""', 'self.name', 'self.image'], {}), '("Starting agent \'%s\' based on image \'%s\'", self.name, self.image)\n', (381, 447), False, 'import logging\n'), ((456, 573), 'subprocess.run', 'subprocess.run', (["['docker', 'run', '-d', '--rm', '-it', '--name', self.name, self.image,\n '/bin/sleep', 'infinity']"], {}), "(['docker', 'run', '-d', '--rm', '-it', '--name', self.name,\n self.image, '/bin/sleep', 'infinity'])\n", (470, 573), False, 'import subprocess\n'), ((807, 853), 'logging.info', 'logging.info', (['"""Stopping agent \'%s\'"""', 'self.name'], {}), '("Stopping agent \'%s\'", self.name)\n', (819, 853), False, 'import logging\n'), ((862, 907), 'subprocess.run', 'subprocess.run', (["['docker', 'stop', self.name]"], {}), "(['docker', 'stop', self.name])\n", (876, 907), False, 'import subprocess\n')]
# -*- coding: utf-8 -*- ################################################################################################# import logging import urllib import requests from resources.lib.util import JSONRPC ################################################################################################## log = logging.getLogger("DINGS."+__name__) ################################################################################################## class Artwork(object): xbmc_host = 'localhost' xbmc_port = None xbmc_username = None xbmc_password = None def __init__(self): if not self.xbmc_port: self._set_webserver_details() def _double_urlencode(self, text): text = self.single_urlencode(text) text = self.single_urlencode(text) return text @classmethod def single_urlencode(cls, text): # urlencode needs a utf- string text = urllib.urlencode({'blahblahblah': text.encode('utf-8')}) text = text[13:] return text.decode('utf-8') #return the result again as unicode def _set_webserver_details(self): # Get the Kodi webserver details - used to set the texture cache get_setting_value = JSONRPC('Settings.GetSettingValue') web_query = { "setting": "services.webserver" } result = get_setting_value.execute(web_query) try: xbmc_webserver_enabled = result['result']['value'] except (KeyError, TypeError): xbmc_webserver_enabled = False if not xbmc_webserver_enabled: # Enable the webserver, it is disabled set_setting_value = JSONRPC('Settings.SetSettingValue') web_port = { "setting": "services.webserverport", "value": 8080 } set_setting_value.execute(web_port) self.xbmc_port = 8080 web_user = { "setting": "services.webserver", "value": True } set_setting_value.execute(web_user) self.xbmc_username = "kodi" else: # Webserver already enabled web_port = { "setting": "services.webserverport" } result = get_setting_value.execute(web_port) try: self.xbmc_port = result['result']['value'] except (TypeError, KeyError): pass web_user = { "setting": "services.webserverusername" } result = get_setting_value.execute(web_user) try: self.xbmc_username = result['result']['value'] except (TypeError, KeyError): pass web_pass = { "setting": "services.webserverpassword" } result = get_setting_value.execute(web_pass) try: self.xbmc_password = result['result']['value'] except (TypeError, KeyError): pass def cache_texture(self, url): # Cache a single image url to the texture cache if url: log.debug("Processing: %s", url) url = self._double_urlencode(url) action_url = "http://%s:%s/image/image://%s" % (self.xbmc_host, self.xbmc_port, url) try: # Add image to texture cache by simply calling it at the http endpoint requests.head(url=(action_url), auth=(self.xbmc_username, self.xbmc_password), timeout=1) except Exception as e: # We don't need the result log.error("Feil ved precaching av fil %s med feilmelding %s", action_url, e.message)
[ "resources.lib.util.JSONRPC", "requests.head", "logging.getLogger" ]
[((317, 355), 'logging.getLogger', 'logging.getLogger', (["('DINGS.' + __name__)"], {}), "('DINGS.' + __name__)\n", (334, 355), False, 'import logging\n'), ((1228, 1263), 'resources.lib.util.JSONRPC', 'JSONRPC', (['"""Settings.GetSettingValue"""'], {}), "('Settings.GetSettingValue')\n", (1235, 1263), False, 'from resources.lib.util import JSONRPC\n'), ((1675, 1710), 'resources.lib.util.JSONRPC', 'JSONRPC', (['"""Settings.SetSettingValue"""'], {}), "('Settings.SetSettingValue')\n", (1682, 1710), False, 'from resources.lib.util import JSONRPC\n'), ((3424, 3515), 'requests.head', 'requests.head', ([], {'url': 'action_url', 'auth': '(self.xbmc_username, self.xbmc_password)', 'timeout': '(1)'}), '(url=action_url, auth=(self.xbmc_username, self.xbmc_password),\n timeout=1)\n', (3437, 3515), False, 'import requests\n')]
#!/usr/bin/env python # Copyright (C) 2004 British Broadcasting Corporation and Kamaelia Contributors(1) # All Rights Reserved. # # You may only modify and redistribute this under the terms of any of the # following licenses(2): Mozilla Public License, V1.1, GNU General # Public License, V2.0, GNU Lesser General Public License, V2.1 # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://kamaelia.sourceforge.net/AUTHORS - please extend this file, # not this notice. # (2) Reproduced in the COPYING file, and at: # http://kamaelia.sourceforge.net/COPYING # Under section 3.5 of the MPL, we are using this text since we deem the MPL # notice inappropriate for this file. As per MPL/GPL/LGPL removal of this # notice is prohibited. # # Please contact us via: <EMAIL> # to discuss alternative licensing. # ------------------------------------------------------------------------- """\ ========================================= Discrete time particle physics simulation ========================================= A discrete time simulator of a system of bonded and unbonded particles, of multiple types. The actual physics calculations are deferred to the particles themselves. You can have as many, or few, spatial dimensions as you like. Example Usage ------------- Create 3 particles, two of which are bonded and move noticeably closer after 5 cycles of simulation:: >>> laws = SimpleLaws(bondLength=5) >>> sim = ParticleSystem(laws) >>> sim.add( Particle(position=(10,10)) ) >>> sim.add( Particle(position=(10,20)) ) >>> sim.add( Particle(position=(30,40)) ) >>> sim.particles[0].makeBond(sim.particles, 1) # bond 1st and 2nd particles >>> for p in sim.particles: print p.getLoc() ... (10, 10) (10, 20) (30, 40) >>> sim.run(cycles=5) >>> for p in sim.particles: print p.getLoc() ... [10.0, 13.940067328] [10.0, 16.059932671999999] [30, 40] >>> How does it work? ----------------- Set up ParticleSystem by instantiating, specifying the laws to act between particles and an (optional) set of initial particles. Particles should be derived from the Particle base class (or have equivalent functionality). Particles can be added or removed from the system by reference, or removed by their ID. ParticleSystem will work for particles in space with any number of dimensions - so long as all particles use the same! Bonds between particles are up to the particles to manage for themselves. The simulation runs in cycles when the run(...) method is called. Each cycle advances the 'tick' count by 1. The tick count starts at zero, unless otherwise specified during initialization. The following attributes store the particles registered in ParticleSystem: - particles -- simple list - particleDict -- dictionary, indexed by particle.ID ParticleSystem uses a SpatialIndexer object to speed up calculations. SpatialIndexer reduce the search space when determining what particles lie within a given region (radius of a point). If your code changes the position of a particle, the simulator must be informed, so it can update its spatial indexing data, by calling updateLoc(...) The actual interactions between particles are calculated by the particles themselves, *not* by ParticleSystem. ParticleSystem calls the doInteractions(...) methods of all particles so they can influence each other. It then calls the update(...) methods of all particles so they can all update their positions and velocities ready for the next cycle. This is a two stage process so that, in a given cycle, all particles see each other at the same positions, irrespective of which particle's doInteractions(...) method is called first. Particles should not apply their velocities to update their position until their update(...) method is called. """ from SpatialIndexer import SpatialIndexer class ParticleSystem(object): """\ ParticleSystem(laws[,initialParticles][,initialTick]) -> new ParticleSystem object Discrete time simulator for a system of particles. Keyword arguments: - initialParticles -- list of particles (default=[]) - initialTick -- start value of the time 'tick' count (default=0) """ def __init__(self, laws, initialParticles = [], initialTick = 0): """x.__init__(...) initializes x; see x.__class__.__doc__ for signature""" self.indexer = SpatialIndexer(laws.maxInteractRadius) self.laws = laws self.particles = [] self.tick = initialTick self.particleDict = {} self.add(*initialParticles) def add(self, *newParticles): """Add the specified particle(s) into the system""" self.particles.extend(newParticles) for p in newParticles: self.particleDict[p.ID] = p self.indexer.updateLoc(*newParticles) def remove(self, *oldParticles): """\ Remove the specified particle(s) from the system. Note that this method does not destroy bonds from other particles to these ones. """ for particle in oldParticles: self.particles.remove(particle) del self.particleDict[particle.ID] self.indexer.remove(*oldParticles) def removeByID(self, *ids): """\ Remove particle(s) as specified by id(s) from the system. Note that this method does not destroy bonds from other particles to these ones. """ particles = [self.particleDict[id] for id in ids] self.remove( *particles ) def updateLoc(self, *particles): """\ Notify this physics system that the specified particle(s) have changed position. Must be called if you change a particle's position, before calling run(). """ self.indexer.updateLoc(*particles) def withinRadius(self, centre, radius, filter=(lambda particle:True)): """\ withinRadius(centre,radius[,filter]) -> list of (particle,distSquared) Returns a list of zero or more (particle,distSquared) tuples. The particles listed are those within the specified radius of the specified centre point, and that passed the (optional) filter function: filter(particle) -> True if the particle is to be included in the list """ return self.indexer.withinRadius(centre, radius, filter) def run(self, cycles = 1): """Run the simulation for a given number of cycles (default=1)""" # optimisation to speed up access to these functions: _indexer = self.indexer _laws = self.laws while cycles > 0: cycles -= 1 self.tick += 1 _tick = self.tick for p in self.particles: p.doInteractions(_indexer, _laws, _tick) for p in self.particles: p.update(_laws) _indexer.updateAll()
[ "SpatialIndexer.SpatialIndexer" ]
[((4558, 4596), 'SpatialIndexer.SpatialIndexer', 'SpatialIndexer', (['laws.maxInteractRadius'], {}), '(laws.maxInteractRadius)\n', (4572, 4596), False, 'from SpatialIndexer import SpatialIndexer\n')]
from rest_framework import parsers, renderers from rest_framework.authtoken.models import Token from rest_framework.authtoken.serializers import AuthTokenSerializer from rest_framework.response import Response from rest_framework.views import APIView from .serializers import ClientTokenSerializer from .models import ClientToken, App class ObtainClientAuth(APIView): throttle_classes = () permission_classes = () parser_classes = (parsers.FormParser, parsers.MultiPartParser, parsers.JSONParser,) renderer_classes = (renderers.JSONRenderer,) serializer_class = ClientTokenSerializer def post(self, request, *args, **kwargs): serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) client_secret = serializer.data['client_secret'] app_id = serializer.data['app_id'] app = App.objects.get(pk=app_id) token, created = ClientToken.objects.get_or_create(client_secret=client_secret, app=app) return Response({'token': token.key}) obtain_client_auth = ObtainClientAuth.as_view()
[ "rest_framework.response.Response" ]
[((1018, 1048), 'rest_framework.response.Response', 'Response', (["{'token': token.key}"], {}), "({'token': token.key})\n", (1026, 1048), False, 'from rest_framework.response import Response\n')]
# !/usr/bin/python from itertools import groupby def compress(data): return ((len(list(group)), name) for name, group in groupby(data)) def decompress(data): return (car * size for size, car in data) my_data = 'get uuuuuuuuuuuuuuuup' print(list(my_data)) compressed = compress(my_data) print(''.join(decompress(compressed)))
[ "itertools.groupby" ]
[((128, 141), 'itertools.groupby', 'groupby', (['data'], {}), '(data)\n', (135, 141), False, 'from itertools import groupby\n')]
import numpy as np import magpie # check cartesian def test_get_xedges(): xedges = magpie.grids.get_xedges(1., 2) xedges = np.round(xedges, decimals=2) assert len(xedges) == 3, "Length of xedges is incorrect." assert xedges[-1] - xedges[0] == 1., "xedges range is incorrect." xedges = magpie.grids.get_xedges(1., 2, xmin=-1.) xedges = np.round(xedges, decimals=2) assert xedges[0]==-1. and xedges[1]==-0.5 and xedges[-1]==0., "xedges with xmin are not as expected." assert xedges[-1] - xedges[0] == 1., "xedges range is incorrect." def test_xedges2mid(): xedges = magpie.grids.get_xedges(1., 10) xmid = magpie.grids.xedges2mid(xedges) xmid = np.round(xmid, decimals=2) assert len(xedges) == len(xmid) + 1, "Length of xmid is incorrect." assert xmid[0] == 0.05 and xmid[1] == 0.15 and xmid[5] == 0.55, "xmid is not as expected." def test_xmid2edges(): xedges = magpie.grids.get_xedges(1., 10) xmid = magpie.grids.xedges2mid(xedges) xedges2 = magpie.grids.xmid2edges(xmid) assert np.round(np.sum(xedges-xedges2), decimals=2), "Conversion from xmid to xedges is not consistent with input xedges." def test_grid1d(): xmid = magpie.grids.grid1d(10., 10) assert np.round(xmid[0], decimals=4) == 0.5 and np.round(xmid[7], decimals=4) == 7.5, "grid1d unexpected results." xmid = magpie.grids.grid1d(10., 10, xmin=10) assert np.round(xmid[0], decimals=4) == 10.5 and np.round(xmid[7], decimals=4) == 17.5, "grid1d unexpected results." xmid, xedges = magpie.grids.grid1d(10., 10, return_edges=True) assert len(xmid)+1 == len(xedges), "Length of xmid and xedges is not as expected." assert np.round(xedges[0], decimals=4) == 0. and np.round(xedges[7], decimals=4) == 7., "grid1d unexpected results." assert np.round(xmid[0], decimals=4) == 0.5 and np.round(xmid[7], decimals=4) == 7.5, "grid1d unexpected results." def test_grid2d(): x2d, y2d = magpie.grids.grid2d(10, 10) assert np.shape(x2d) == (10, 10), "shape is not as expected." assert np.shape(y2d) == (10, 10), "shape is not as expected." x2d, y2d, xmid, ymid = magpie.grids.grid2d(10, 10, return1d=True) assert np.round(xmid[0], decimals=4) == 0.5 and np.round(xmid[7], decimals=4) == 7.5, "grid2d unexpected results." assert np.round(np.sum(np.unique(x2d.flatten())-xmid), decimals=4) == 0., "xmid is inconsistent with x2d." assert np.round(ymid[0], decimals=4) == 0.5 and np.round(ymid[7], decimals=4) == 7.5, "grid2d unexpected results." assert np.round(np.sum(np.unique(y2d.flatten())-ymid), decimals=4) == 0., "ymid is inconsistent with y2d." x2d, y2d, xmid, ymid = magpie.grids.grid2d(10, 10, mins=[10., 20.], return1d=True) assert np.round(xmid[0], decimals=4) == 10.5 and np.round(xmid[7], decimals=4) == 17.5, "grid2d unexpected results." assert np.round(np.sum(np.unique(x2d.flatten())-xmid), decimals=4) == 0., "xmid is inconsistent with x2d." assert np.round(ymid[0], decimals=4) == 20.5 and np.round(ymid[7], decimals=4) == 27.5, "grid2d unexpected results." assert np.round(np.sum(np.unique(y2d.flatten())-ymid), decimals=4) == 0., "ymid is inconsistent with y2d." x2d, y2d = magpie.grids.grid2d(10, [10, 20]) assert np.shape(x2d) == (10, 20), "shape is not as expected." assert np.shape(y2d) == (10, 20), "shape is not as expected." x2d, y2d, xmid, ymid = magpie.grids.grid2d([10, 20], [10, 20], return1d=True) assert np.round(xmid[0], decimals=4) == 0.5 and np.round(xmid[7], decimals=4) == 7.5, "grid2d unexpected results." assert np.round(np.sum(np.unique(x2d.flatten())-xmid), decimals=4) == 0., "xmid is inconsistent with x2d." assert np.round(ymid[0], decimals=4) == 0.5 and np.round(ymid[7], decimals=4) == 7.5, "grid2d unexpected results." assert np.round(np.sum(np.unique(y2d.flatten())-ymid), decimals=4) == 0., "ymid is inconsistent with y2d." x2d, y2d, xmid, ymid = magpie.grids.grid2d([10, 20], [10, 20], mins=[10., 20.], return1d=True) assert np.round(xmid[0], decimals=4) == 10.5 and np.round(xmid[7], decimals=4) == 17.5, "grid2d unexpected results." assert np.round(np.sum(np.unique(x2d.flatten())-xmid), decimals=4) == 0., "xmid is inconsistent with x2d." assert np.round(ymid[0], decimals=4) == 20.5 and np.round(ymid[7], decimals=4) == 27.5, "grid2d unexpected results." assert np.round(np.sum(np.unique(y2d.flatten())-ymid), decimals=4) == 0., "ymid is inconsistent with y2d." def test_grid3d(): x3d, y3d, z3d = magpie.grids.grid3d(10, 10) assert np.shape(x3d) == (10, 10, 10), "shape is not as expected." assert np.shape(y3d) == (10, 10, 10), "shape is not as expected." assert np.shape(z3d) == (10, 10, 10), "shape is not as expected." x3d, y3d, z3d, xmid, ymid, zmid = magpie.grids.grid3d(10, 10, return1d=True) assert np.round(xmid[0], decimals=4) == 0.5 and np.round(xmid[7], decimals=4) == 7.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(x3d.flatten())-xmid), decimals=4) == 0., "xmid is inconsistent with x3d." assert np.round(ymid[0], decimals=4) == 0.5 and np.round(ymid[7], decimals=4) == 7.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(y3d.flatten())-ymid), decimals=4) == 0., "ymid is inconsistent with y3d." assert np.round(zmid[0], decimals=4) == 0.5 and np.round(zmid[7], decimals=4) == 7.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(z3d.flatten())-zmid), decimals=4) == 0., "zmid is inconsistent with z3d." x3d, y3d, z3d, xmid, ymid, zmid = magpie.grids.grid3d(10, 10, mins=[10., 20., 30.], return1d=True) assert np.round(xmid[0], decimals=4) == 10.5 and np.round(xmid[7], decimals=4) == 17.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(x3d.flatten())-xmid), decimals=4) == 0., "xmid is inconsistent with x3d." assert np.round(ymid[0], decimals=4) == 20.5 and np.round(ymid[7], decimals=4) == 27.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(y3d.flatten())-ymid), decimals=4) == 0., "ymid is inconsistent with y3d." assert np.round(zmid[0], decimals=4) == 30.5 and np.round(zmid[7], decimals=4) == 37.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(z3d.flatten())-zmid), decimals=4) == 0., "zmid is inconsistent with z3d." x3d, y3d, z3d = magpie.grids.grid3d(10, [10, 20, 30]) assert np.shape(x3d) == (10, 20, 30), "shape is not as expected." assert np.shape(y3d) == (10, 20, 30), "shape is not as expected." assert np.shape(z3d) == (10, 20, 30), "shape is not as expected." x3d, y3d, z3d, xmid, ymid, zmid = magpie.grids.grid3d([10, 20, 30], [10, 20, 30], return1d=True) assert np.round(xmid[0], decimals=4) == 0.5 and np.round(xmid[7], decimals=4) == 7.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(x3d.flatten())-xmid), decimals=4) == 0., "xmid is inconsistent with x3d." assert np.round(ymid[0], decimals=4) == 0.5 and np.round(ymid[7], decimals=4) == 7.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(y3d.flatten())-ymid), decimals=4) == 0., "ymid is inconsistent with y3d." assert np.round(zmid[0], decimals=4) == 0.5 and np.round(zmid[7], decimals=4) == 7.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(z3d.flatten())-zmid), decimals=4) == 0., "zmid is inconsistent with z3d." x3d, y3d, z3d, xmid, ymid, zmid = magpie.grids.grid3d([10, 20, 30], [10, 20, 30], mins=[10., 20., 30], return1d=True) assert np.round(xmid[0], decimals=4) == 10.5 and np.round(xmid[7], decimals=4) == 17.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(x3d.flatten())-xmid), decimals=4) == 0., "xmid is inconsistent with x3d." assert np.round(ymid[0], decimals=4) == 20.5 and np.round(ymid[7], decimals=4) == 27.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(y3d.flatten())-ymid), decimals=4) == 0., "ymid is inconsistent with y3d." assert np.round(zmid[0], decimals=4) == 30.5 and np.round(zmid[7], decimals=4) == 37.5, "grid3d unexpected results." assert np.round(np.sum(np.unique(z3d.flatten())-zmid), decimals=4) == 0., "zmid is inconsistent with z3d." # check polar def test_polargrid(): r2d, p2d = magpie.grids.polargrid(10, 20) assert np.shape(r2d) == (10, 20), "shape is not as expected." assert np.shape(p2d) == (10, 20), "shape is not as expected." r2d, p2d, rmid, pmid = magpie.grids.polargrid(10, 20, return1d=True) assert np.round(rmid[0], decimals=4) == 0.05 and np.round(rmid[7], decimals=4) == 0.75, "polargrid unexpected results." assert np.round(np.sum(np.unique(r2d.flatten())-rmid), decimals=4) == 0., "rmid is inconsistent with r2d." assert np.round(pmid[0], decimals=4) == np.round(np.pi/20, decimals=4) and np.round(pmid[7], decimals=4) == np.round(15*np.pi/20, decimals=4), "polargrid unexpected results." assert np.round(np.sum(np.unique(p2d.flatten())-pmid), decimals=4) == 0., "pmid is inconsistent with p2d." r2d, p2d, rmid, pmid = magpie.grids.polargrid(10, 10, rmin=10., rmax=20., phimin=np.pi/2., phimax=np.pi, return1d=True) assert np.round(rmid[0], decimals=4) == 10.5 and np.round(rmid[7], decimals=4) == 17.5, "polargrid unexpected results." assert np.round(np.sum(np.unique(r2d.flatten())-rmid), decimals=4) == 0., "rmid is inconsistent with r2d." assert np.round(pmid[0], decimals=4) == np.round((np.pi/2.)/20 + np.pi/2., decimals=4) \ and np.round(pmid[7], decimals=4) == np.round(15*(np.pi/2.)/20 + np.pi/2., decimals=4), "polargrid unexpected results." assert np.round(np.sum(np.unique(p2d.flatten())-pmid), decimals=4) == 0., "pmid is inconsistent with p2d." def test_polargrid(): r2d, p2d = magpie.grids.polargrid(10, 20) assert np.shape(r2d) == (10, 20), "shape is not as expected." assert np.shape(p2d) == (10, 20), "shape is not as expected." r2d, p2d, rmid, pmid = magpie.grids.polargrid(10, 20, return1d=True) assert np.round(rmid[0], decimals=4) == 0.05 and np.round(rmid[7], decimals=4) == 0.75, "polargrid unexpected results." assert np.round(np.sum(np.unique(r2d.flatten())-rmid), decimals=4) == 0., "rmid is inconsistent with r2d." assert np.round(pmid[0], decimals=4) == np.round(np.pi/20, decimals=4) and np.round(pmid[7], decimals=4) == np.round(15*np.pi/20, decimals=4), "polargrid unexpected results." assert np.round(np.sum(np.unique(p2d.flatten())-pmid), decimals=4) == 0., "pmid is inconsistent with p2d." r2d, p2d, rmid, pmid = magpie.grids.polargrid(10, 10, rmin=10., rmax=20., phimin=np.pi/2., phimax=np.pi, return1d=True) assert np.round(rmid[0], decimals=4) == 10.5 and np.round(rmid[7], decimals=4) == 17.5, "polargrid unexpected results." assert np.round(np.sum(np.unique(r2d.flatten())-rmid), decimals=4) == 0., "rmid is inconsistent with r2d." assert np.round(pmid[0], decimals=4) == np.round((np.pi/2.)/20 + np.pi/2., decimals=4) \ and np.round(pmid[7], decimals=4) == np.round(15*(np.pi/2.)/20 + np.pi/2., decimals=4), "polargrid unexpected results." assert np.round(np.sum(np.unique(p2d.flatten())-pmid), decimals=4) == 0., "pmid is inconsistent with p2d." def test_polarEA(): r, p = magpie.grids.polarEA_grid(10) npix = magpie.grids.polarEA_npix(10) assert len(r) == len(p), "PolarEA grid size for r and p are not the same." assert len(r) == npix, "Length of polarEA grid does not match expectations." r, p = magpie.grids.polarEA_grid(6, base_nphi=3) npix = magpie.grids.polarEA_npix(6, base_nphi=3) assert len(r) == len(p), "PolarEA grid size for r and p are not the same." assert len(r) == npix, "Length of polarEA grid does not match expectations." r, p = magpie.grids.polarEA_grid(10, base_nphi=3) npix = magpie.grids.polarEA_npix(10, base_nphi=3) assert len(r) == len(p), "PolarEA grid size for r and p are not the same." assert len(r) == npix, "Length of polarEA grid does not match expectations." assert r[3*4**2] == 0.45, "r values are incorrect." assert r[3*7**2] == 0.75, "r values are incorrect." assert np.round(p[3*4**2], decimals=4) == np.round(np.pi/(3*(2*4+1)), decimals=4), "p values are incorrect." assert np.round(p[3*7**2 + 7], decimals=4) == np.round(15*np.pi/(3*(2*7+1)), decimals=4), "p values are incorrect." area = magpie.grids.polarEA_area(10, rmax=10., base_nphi=4) assert(np.round(area, decimals=4) == np.round(np.pi/4., decimals=4)), "area calculation is incorrect."
[ "magpie.grids.polargrid", "numpy.sum", "magpie.grids.grid1d", "magpie.grids.grid3d", "magpie.grids.xmid2edges", "magpie.grids.get_xedges", "magpie.grids.polarEA_grid", "numpy.shape", "magpie.grids.polarEA_npix", "magpie.grids.polarEA_area", "magpie.grids.xedges2mid", "numpy.round", "magpie.grids.grid2d" ]
[((90, 121), 'magpie.grids.get_xedges', 'magpie.grids.get_xedges', (['(1.0)', '(2)'], {}), '(1.0, 2)\n', (113, 121), False, 'import magpie\n'), ((134, 162), 'numpy.round', 'np.round', (['xedges'], {'decimals': '(2)'}), '(xedges, decimals=2)\n', (142, 162), True, 'import numpy as np\n'), ((308, 350), 'magpie.grids.get_xedges', 'magpie.grids.get_xedges', (['(1.0)', '(2)'], {'xmin': '(-1.0)'}), '(1.0, 2, xmin=-1.0)\n', (331, 350), False, 'import magpie\n'), ((362, 390), 'numpy.round', 'np.round', (['xedges'], {'decimals': '(2)'}), '(xedges, decimals=2)\n', (370, 390), True, 'import numpy as np\n'), ((604, 636), 'magpie.grids.get_xedges', 'magpie.grids.get_xedges', (['(1.0)', '(10)'], {}), '(1.0, 10)\n', (627, 636), False, 'import magpie\n'), ((647, 678), 'magpie.grids.xedges2mid', 'magpie.grids.xedges2mid', (['xedges'], {}), '(xedges)\n', (670, 678), False, 'import magpie\n'), ((690, 716), 'numpy.round', 'np.round', (['xmid'], {'decimals': '(2)'}), '(xmid, decimals=2)\n', (698, 716), True, 'import numpy as np\n'), ((921, 953), 'magpie.grids.get_xedges', 'magpie.grids.get_xedges', (['(1.0)', '(10)'], {}), '(1.0, 10)\n', (944, 953), False, 'import magpie\n'), ((964, 995), 'magpie.grids.xedges2mid', 'magpie.grids.xedges2mid', (['xedges'], {}), '(xedges)\n', (987, 995), False, 'import magpie\n'), ((1010, 1039), 'magpie.grids.xmid2edges', 'magpie.grids.xmid2edges', (['xmid'], {}), '(xmid)\n', (1033, 1039), False, 'import magpie\n'), ((1198, 1227), 'magpie.grids.grid1d', 'magpie.grids.grid1d', (['(10.0)', '(10)'], {}), '(10.0, 10)\n', (1217, 1227), False, 'import magpie\n'), ((1357, 1395), 'magpie.grids.grid1d', 'magpie.grids.grid1d', (['(10.0)', '(10)'], {'xmin': '(10)'}), '(10.0, 10, xmin=10)\n', (1376, 1395), False, 'import magpie\n'), ((1535, 1583), 'magpie.grids.grid1d', 'magpie.grids.grid1d', (['(10.0)', '(10)'], {'return_edges': '(True)'}), '(10.0, 10, return_edges=True)\n', (1554, 1583), False, 'import magpie\n'), ((1945, 1972), 'magpie.grids.grid2d', 'magpie.grids.grid2d', (['(10)', '(10)'], {}), '(10, 10)\n', (1964, 1972), False, 'import magpie\n'), ((2132, 2174), 'magpie.grids.grid2d', 'magpie.grids.grid2d', (['(10)', '(10)'], {'return1d': '(True)'}), '(10, 10, return1d=True)\n', (2151, 2174), False, 'import magpie\n'), ((2662, 2723), 'magpie.grids.grid2d', 'magpie.grids.grid2d', (['(10)', '(10)'], {'mins': '[10.0, 20.0]', 'return1d': '(True)'}), '(10, 10, mins=[10.0, 20.0], return1d=True)\n', (2681, 2723), False, 'import magpie\n'), ((3201, 3234), 'magpie.grids.grid2d', 'magpie.grids.grid2d', (['(10)', '[10, 20]'], {}), '(10, [10, 20])\n', (3220, 3234), False, 'import magpie\n'), ((3394, 3448), 'magpie.grids.grid2d', 'magpie.grids.grid2d', (['[10, 20]', '[10, 20]'], {'return1d': '(True)'}), '([10, 20], [10, 20], return1d=True)\n', (3413, 3448), False, 'import magpie\n'), ((3936, 4009), 'magpie.grids.grid2d', 'magpie.grids.grid2d', (['[10, 20]', '[10, 20]'], {'mins': '[10.0, 20.0]', 'return1d': '(True)'}), '([10, 20], [10, 20], mins=[10.0, 20.0], return1d=True)\n', (3955, 4009), False, 'import magpie\n'), ((4513, 4540), 'magpie.grids.grid3d', 'magpie.grids.grid3d', (['(10)', '(10)'], {}), '(10, 10)\n', (4532, 4540), False, 'import magpie\n'), ((4789, 4831), 'magpie.grids.grid3d', 'magpie.grids.grid3d', (['(10)', '(10)'], {'return1d': '(True)'}), '(10, 10, return1d=True)\n', (4808, 4831), False, 'import magpie\n'), ((5560, 5627), 'magpie.grids.grid3d', 'magpie.grids.grid3d', (['(10)', '(10)'], {'mins': '[10.0, 20.0, 30.0]', 'return1d': '(True)'}), '(10, 10, mins=[10.0, 20.0, 30.0], return1d=True)\n', (5579, 5627), False, 'import magpie\n'), ((6341, 6378), 'magpie.grids.grid3d', 'magpie.grids.grid3d', (['(10)', '[10, 20, 30]'], {}), '(10, [10, 20, 30])\n', (6360, 6378), False, 'import magpie\n'), ((6627, 6689), 'magpie.grids.grid3d', 'magpie.grids.grid3d', (['[10, 20, 30]', '[10, 20, 30]'], {'return1d': '(True)'}), '([10, 20, 30], [10, 20, 30], return1d=True)\n', (6646, 6689), False, 'import magpie\n'), ((7418, 7507), 'magpie.grids.grid3d', 'magpie.grids.grid3d', (['[10, 20, 30]', '[10, 20, 30]'], {'mins': '[10.0, 20.0, 30]', 'return1d': '(True)'}), '([10, 20, 30], [10, 20, 30], mins=[10.0, 20.0, 30],\n return1d=True)\n', (7437, 7507), False, 'import magpie\n'), ((8252, 8282), 'magpie.grids.polargrid', 'magpie.grids.polargrid', (['(10)', '(20)'], {}), '(10, 20)\n', (8274, 8282), False, 'import magpie\n'), ((8442, 8487), 'magpie.grids.polargrid', 'magpie.grids.polargrid', (['(10)', '(20)'], {'return1d': '(True)'}), '(10, 20, return1d=True)\n', (8464, 8487), False, 'import magpie\n'), ((9040, 9145), 'magpie.grids.polargrid', 'magpie.grids.polargrid', (['(10)', '(10)'], {'rmin': '(10.0)', 'rmax': '(20.0)', 'phimin': '(np.pi / 2.0)', 'phimax': 'np.pi', 'return1d': '(True)'}), '(10, 10, rmin=10.0, rmax=20.0, phimin=np.pi / 2.0,\n phimax=np.pi, return1d=True)\n', (9062, 9145), False, 'import magpie\n'), ((9743, 9773), 'magpie.grids.polargrid', 'magpie.grids.polargrid', (['(10)', '(20)'], {}), '(10, 20)\n', (9765, 9773), False, 'import magpie\n'), ((9933, 9978), 'magpie.grids.polargrid', 'magpie.grids.polargrid', (['(10)', '(20)'], {'return1d': '(True)'}), '(10, 20, return1d=True)\n', (9955, 9978), False, 'import magpie\n'), ((10531, 10636), 'magpie.grids.polargrid', 'magpie.grids.polargrid', (['(10)', '(10)'], {'rmin': '(10.0)', 'rmax': '(20.0)', 'phimin': '(np.pi / 2.0)', 'phimax': 'np.pi', 'return1d': '(True)'}), '(10, 10, rmin=10.0, rmax=20.0, phimin=np.pi / 2.0,\n phimax=np.pi, return1d=True)\n', (10553, 10636), False, 'import magpie\n'), ((11227, 11256), 'magpie.grids.polarEA_grid', 'magpie.grids.polarEA_grid', (['(10)'], {}), '(10)\n', (11252, 11256), False, 'import magpie\n'), ((11268, 11297), 'magpie.grids.polarEA_npix', 'magpie.grids.polarEA_npix', (['(10)'], {}), '(10)\n', (11293, 11297), False, 'import magpie\n'), ((11469, 11510), 'magpie.grids.polarEA_grid', 'magpie.grids.polarEA_grid', (['(6)'], {'base_nphi': '(3)'}), '(6, base_nphi=3)\n', (11494, 11510), False, 'import magpie\n'), ((11522, 11563), 'magpie.grids.polarEA_npix', 'magpie.grids.polarEA_npix', (['(6)'], {'base_nphi': '(3)'}), '(6, base_nphi=3)\n', (11547, 11563), False, 'import magpie\n'), ((11735, 11777), 'magpie.grids.polarEA_grid', 'magpie.grids.polarEA_grid', (['(10)'], {'base_nphi': '(3)'}), '(10, base_nphi=3)\n', (11760, 11777), False, 'import magpie\n'), ((11789, 11831), 'magpie.grids.polarEA_npix', 'magpie.grids.polarEA_npix', (['(10)'], {'base_nphi': '(3)'}), '(10, base_nphi=3)\n', (11814, 11831), False, 'import magpie\n'), ((12348, 12401), 'magpie.grids.polarEA_area', 'magpie.grids.polarEA_area', (['(10)'], {'rmax': '(10.0)', 'base_nphi': '(4)'}), '(10, rmax=10.0, base_nphi=4)\n', (12373, 12401), False, 'import magpie\n'), ((1060, 1084), 'numpy.sum', 'np.sum', (['(xedges - xedges2)'], {}), '(xedges - xedges2)\n', (1066, 1084), True, 'import numpy as np\n'), ((1984, 1997), 'numpy.shape', 'np.shape', (['x2d'], {}), '(x2d)\n', (1992, 1997), True, 'import numpy as np\n'), ((2050, 2063), 'numpy.shape', 'np.shape', (['y2d'], {}), '(y2d)\n', (2058, 2063), True, 'import numpy as np\n'), ((3246, 3259), 'numpy.shape', 'np.shape', (['x2d'], {}), '(x2d)\n', (3254, 3259), True, 'import numpy as np\n'), ((3312, 3325), 'numpy.shape', 'np.shape', (['y2d'], {}), '(y2d)\n', (3320, 3325), True, 'import numpy as np\n'), ((4552, 4565), 'numpy.shape', 'np.shape', (['x3d'], {}), '(x3d)\n', (4560, 4565), True, 'import numpy as np\n'), ((4622, 4635), 'numpy.shape', 'np.shape', (['y3d'], {}), '(y3d)\n', (4630, 4635), True, 'import numpy as np\n'), ((4692, 4705), 'numpy.shape', 'np.shape', (['z3d'], {}), '(z3d)\n', (4700, 4705), True, 'import numpy as np\n'), ((6390, 6403), 'numpy.shape', 'np.shape', (['x3d'], {}), '(x3d)\n', (6398, 6403), True, 'import numpy as np\n'), ((6460, 6473), 'numpy.shape', 'np.shape', (['y3d'], {}), '(y3d)\n', (6468, 6473), True, 'import numpy as np\n'), ((6530, 6543), 'numpy.shape', 'np.shape', (['z3d'], {}), '(z3d)\n', (6538, 6543), True, 'import numpy as np\n'), ((8294, 8307), 'numpy.shape', 'np.shape', (['r2d'], {}), '(r2d)\n', (8302, 8307), True, 'import numpy as np\n'), ((8360, 8373), 'numpy.shape', 'np.shape', (['p2d'], {}), '(p2d)\n', (8368, 8373), True, 'import numpy as np\n'), ((9785, 9798), 'numpy.shape', 'np.shape', (['r2d'], {}), '(r2d)\n', (9793, 9798), True, 'import numpy as np\n'), ((9851, 9864), 'numpy.shape', 'np.shape', (['p2d'], {}), '(p2d)\n', (9859, 9864), True, 'import numpy as np\n'), ((12115, 12150), 'numpy.round', 'np.round', (['p[3 * 4 ** 2]'], {'decimals': '(4)'}), '(p[3 * 4 ** 2], decimals=4)\n', (12123, 12150), True, 'import numpy as np\n'), ((12150, 12197), 'numpy.round', 'np.round', (['(np.pi / (3 * (2 * 4 + 1)))'], {'decimals': '(4)'}), '(np.pi / (3 * (2 * 4 + 1)), decimals=4)\n', (12158, 12197), True, 'import numpy as np\n'), ((12228, 12267), 'numpy.round', 'np.round', (['p[3 * 7 ** 2 + 7]'], {'decimals': '(4)'}), '(p[3 * 7 ** 2 + 7], decimals=4)\n', (12236, 12267), True, 'import numpy as np\n'), ((12267, 12319), 'numpy.round', 'np.round', (['(15 * np.pi / (3 * (2 * 7 + 1)))'], {'decimals': '(4)'}), '(15 * np.pi / (3 * (2 * 7 + 1)), decimals=4)\n', (12275, 12319), True, 'import numpy as np\n'), ((12412, 12438), 'numpy.round', 'np.round', (['area'], {'decimals': '(4)'}), '(area, decimals=4)\n', (12420, 12438), True, 'import numpy as np\n'), ((12442, 12475), 'numpy.round', 'np.round', (['(np.pi / 4.0)'], {'decimals': '(4)'}), '(np.pi / 4.0, decimals=4)\n', (12450, 12475), True, 'import numpy as np\n'), ((1238, 1267), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (1246, 1267), True, 'import numpy as np\n'), ((1279, 1308), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (1287, 1308), True, 'import numpy as np\n'), ((1406, 1435), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (1414, 1435), True, 'import numpy as np\n'), ((1448, 1477), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (1456, 1477), True, 'import numpy as np\n'), ((1681, 1712), 'numpy.round', 'np.round', (['xedges[0]'], {'decimals': '(4)'}), '(xedges[0], decimals=4)\n', (1689, 1712), True, 'import numpy as np\n'), ((1723, 1754), 'numpy.round', 'np.round', (['xedges[7]'], {'decimals': '(4)'}), '(xedges[7], decimals=4)\n', (1731, 1754), True, 'import numpy as np\n'), ((1802, 1831), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (1810, 1831), True, 'import numpy as np\n'), ((1843, 1872), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (1851, 1872), True, 'import numpy as np\n'), ((2186, 2215), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (2194, 2215), True, 'import numpy as np\n'), ((2227, 2256), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (2235, 2256), True, 'import numpy as np\n'), ((2416, 2445), 'numpy.round', 'np.round', (['ymid[0]'], {'decimals': '(4)'}), '(ymid[0], decimals=4)\n', (2424, 2445), True, 'import numpy as np\n'), ((2457, 2486), 'numpy.round', 'np.round', (['ymid[7]'], {'decimals': '(4)'}), '(ymid[7], decimals=4)\n', (2465, 2486), True, 'import numpy as np\n'), ((2733, 2762), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (2741, 2762), True, 'import numpy as np\n'), ((2775, 2804), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (2783, 2804), True, 'import numpy as np\n'), ((2965, 2994), 'numpy.round', 'np.round', (['ymid[0]'], {'decimals': '(4)'}), '(ymid[0], decimals=4)\n', (2973, 2994), True, 'import numpy as np\n'), ((3007, 3036), 'numpy.round', 'np.round', (['ymid[7]'], {'decimals': '(4)'}), '(ymid[7], decimals=4)\n', (3015, 3036), True, 'import numpy as np\n'), ((3460, 3489), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (3468, 3489), True, 'import numpy as np\n'), ((3501, 3530), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (3509, 3530), True, 'import numpy as np\n'), ((3690, 3719), 'numpy.round', 'np.round', (['ymid[0]'], {'decimals': '(4)'}), '(ymid[0], decimals=4)\n', (3698, 3719), True, 'import numpy as np\n'), ((3731, 3760), 'numpy.round', 'np.round', (['ymid[7]'], {'decimals': '(4)'}), '(ymid[7], decimals=4)\n', (3739, 3760), True, 'import numpy as np\n'), ((4019, 4048), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (4027, 4048), True, 'import numpy as np\n'), ((4061, 4090), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (4069, 4090), True, 'import numpy as np\n'), ((4251, 4280), 'numpy.round', 'np.round', (['ymid[0]'], {'decimals': '(4)'}), '(ymid[0], decimals=4)\n', (4259, 4280), True, 'import numpy as np\n'), ((4293, 4322), 'numpy.round', 'np.round', (['ymid[7]'], {'decimals': '(4)'}), '(ymid[7], decimals=4)\n', (4301, 4322), True, 'import numpy as np\n'), ((4843, 4872), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (4851, 4872), True, 'import numpy as np\n'), ((4884, 4913), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (4892, 4913), True, 'import numpy as np\n'), ((5073, 5102), 'numpy.round', 'np.round', (['ymid[0]'], {'decimals': '(4)'}), '(ymid[0], decimals=4)\n', (5081, 5102), True, 'import numpy as np\n'), ((5114, 5143), 'numpy.round', 'np.round', (['ymid[7]'], {'decimals': '(4)'}), '(ymid[7], decimals=4)\n', (5122, 5143), True, 'import numpy as np\n'), ((5303, 5332), 'numpy.round', 'np.round', (['zmid[0]'], {'decimals': '(4)'}), '(zmid[0], decimals=4)\n', (5311, 5332), True, 'import numpy as np\n'), ((5344, 5373), 'numpy.round', 'np.round', (['zmid[7]'], {'decimals': '(4)'}), '(zmid[7], decimals=4)\n', (5352, 5373), True, 'import numpy as np\n'), ((5636, 5665), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (5644, 5665), True, 'import numpy as np\n'), ((5678, 5707), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (5686, 5707), True, 'import numpy as np\n'), ((5868, 5897), 'numpy.round', 'np.round', (['ymid[0]'], {'decimals': '(4)'}), '(ymid[0], decimals=4)\n', (5876, 5897), True, 'import numpy as np\n'), ((5910, 5939), 'numpy.round', 'np.round', (['ymid[7]'], {'decimals': '(4)'}), '(ymid[7], decimals=4)\n', (5918, 5939), True, 'import numpy as np\n'), ((6100, 6129), 'numpy.round', 'np.round', (['zmid[0]'], {'decimals': '(4)'}), '(zmid[0], decimals=4)\n', (6108, 6129), True, 'import numpy as np\n'), ((6142, 6171), 'numpy.round', 'np.round', (['zmid[7]'], {'decimals': '(4)'}), '(zmid[7], decimals=4)\n', (6150, 6171), True, 'import numpy as np\n'), ((6701, 6730), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (6709, 6730), True, 'import numpy as np\n'), ((6742, 6771), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (6750, 6771), True, 'import numpy as np\n'), ((6931, 6960), 'numpy.round', 'np.round', (['ymid[0]'], {'decimals': '(4)'}), '(ymid[0], decimals=4)\n', (6939, 6960), True, 'import numpy as np\n'), ((6972, 7001), 'numpy.round', 'np.round', (['ymid[7]'], {'decimals': '(4)'}), '(ymid[7], decimals=4)\n', (6980, 7001), True, 'import numpy as np\n'), ((7161, 7190), 'numpy.round', 'np.round', (['zmid[0]'], {'decimals': '(4)'}), '(zmid[0], decimals=4)\n', (7169, 7190), True, 'import numpy as np\n'), ((7202, 7231), 'numpy.round', 'np.round', (['zmid[7]'], {'decimals': '(4)'}), '(zmid[7], decimals=4)\n', (7210, 7231), True, 'import numpy as np\n'), ((7513, 7542), 'numpy.round', 'np.round', (['xmid[0]'], {'decimals': '(4)'}), '(xmid[0], decimals=4)\n', (7521, 7542), True, 'import numpy as np\n'), ((7555, 7584), 'numpy.round', 'np.round', (['xmid[7]'], {'decimals': '(4)'}), '(xmid[7], decimals=4)\n', (7563, 7584), True, 'import numpy as np\n'), ((7745, 7774), 'numpy.round', 'np.round', (['ymid[0]'], {'decimals': '(4)'}), '(ymid[0], decimals=4)\n', (7753, 7774), True, 'import numpy as np\n'), ((7787, 7816), 'numpy.round', 'np.round', (['ymid[7]'], {'decimals': '(4)'}), '(ymid[7], decimals=4)\n', (7795, 7816), True, 'import numpy as np\n'), ((7977, 8006), 'numpy.round', 'np.round', (['zmid[0]'], {'decimals': '(4)'}), '(zmid[0], decimals=4)\n', (7985, 8006), True, 'import numpy as np\n'), ((8019, 8048), 'numpy.round', 'np.round', (['zmid[7]'], {'decimals': '(4)'}), '(zmid[7], decimals=4)\n', (8027, 8048), True, 'import numpy as np\n'), ((8499, 8528), 'numpy.round', 'np.round', (['rmid[0]'], {'decimals': '(4)'}), '(rmid[0], decimals=4)\n', (8507, 8528), True, 'import numpy as np\n'), ((8541, 8570), 'numpy.round', 'np.round', (['rmid[7]'], {'decimals': '(4)'}), '(rmid[7], decimals=4)\n', (8549, 8570), True, 'import numpy as np\n'), ((8734, 8763), 'numpy.round', 'np.round', (['pmid[0]'], {'decimals': '(4)'}), '(pmid[0], decimals=4)\n', (8742, 8763), True, 'import numpy as np\n'), ((8767, 8799), 'numpy.round', 'np.round', (['(np.pi / 20)'], {'decimals': '(4)'}), '(np.pi / 20, decimals=4)\n', (8775, 8799), True, 'import numpy as np\n'), ((8802, 8831), 'numpy.round', 'np.round', (['pmid[7]'], {'decimals': '(4)'}), '(pmid[7], decimals=4)\n', (8810, 8831), True, 'import numpy as np\n'), ((8835, 8872), 'numpy.round', 'np.round', (['(15 * np.pi / 20)'], {'decimals': '(4)'}), '(15 * np.pi / 20, decimals=4)\n', (8843, 8872), True, 'import numpy as np\n'), ((9148, 9177), 'numpy.round', 'np.round', (['rmid[0]'], {'decimals': '(4)'}), '(rmid[0], decimals=4)\n', (9156, 9177), True, 'import numpy as np\n'), ((9190, 9219), 'numpy.round', 'np.round', (['rmid[7]'], {'decimals': '(4)'}), '(rmid[7], decimals=4)\n', (9198, 9219), True, 'import numpy as np\n'), ((9383, 9412), 'numpy.round', 'np.round', (['pmid[0]'], {'decimals': '(4)'}), '(pmid[0], decimals=4)\n', (9391, 9412), True, 'import numpy as np\n'), ((9416, 9468), 'numpy.round', 'np.round', (['(np.pi / 2.0 / 20 + np.pi / 2.0)'], {'decimals': '(4)'}), '(np.pi / 2.0 / 20 + np.pi / 2.0, decimals=4)\n', (9424, 9468), True, 'import numpy as np\n'), ((9477, 9506), 'numpy.round', 'np.round', (['pmid[7]'], {'decimals': '(4)'}), '(pmid[7], decimals=4)\n', (9485, 9506), True, 'import numpy as np\n'), ((9510, 9569), 'numpy.round', 'np.round', (['(15 * (np.pi / 2.0) / 20 + np.pi / 2.0)'], {'decimals': '(4)'}), '(15 * (np.pi / 2.0) / 20 + np.pi / 2.0, decimals=4)\n', (9518, 9569), True, 'import numpy as np\n'), ((9990, 10019), 'numpy.round', 'np.round', (['rmid[0]'], {'decimals': '(4)'}), '(rmid[0], decimals=4)\n', (9998, 10019), True, 'import numpy as np\n'), ((10032, 10061), 'numpy.round', 'np.round', (['rmid[7]'], {'decimals': '(4)'}), '(rmid[7], decimals=4)\n', (10040, 10061), True, 'import numpy as np\n'), ((10225, 10254), 'numpy.round', 'np.round', (['pmid[0]'], {'decimals': '(4)'}), '(pmid[0], decimals=4)\n', (10233, 10254), True, 'import numpy as np\n'), ((10258, 10290), 'numpy.round', 'np.round', (['(np.pi / 20)'], {'decimals': '(4)'}), '(np.pi / 20, decimals=4)\n', (10266, 10290), True, 'import numpy as np\n'), ((10293, 10322), 'numpy.round', 'np.round', (['pmid[7]'], {'decimals': '(4)'}), '(pmid[7], decimals=4)\n', (10301, 10322), True, 'import numpy as np\n'), ((10326, 10363), 'numpy.round', 'np.round', (['(15 * np.pi / 20)'], {'decimals': '(4)'}), '(15 * np.pi / 20, decimals=4)\n', (10334, 10363), True, 'import numpy as np\n'), ((10639, 10668), 'numpy.round', 'np.round', (['rmid[0]'], {'decimals': '(4)'}), '(rmid[0], decimals=4)\n', (10647, 10668), True, 'import numpy as np\n'), ((10681, 10710), 'numpy.round', 'np.round', (['rmid[7]'], {'decimals': '(4)'}), '(rmid[7], decimals=4)\n', (10689, 10710), True, 'import numpy as np\n'), ((10874, 10903), 'numpy.round', 'np.round', (['pmid[0]'], {'decimals': '(4)'}), '(pmid[0], decimals=4)\n', (10882, 10903), True, 'import numpy as np\n'), ((10907, 10959), 'numpy.round', 'np.round', (['(np.pi / 2.0 / 20 + np.pi / 2.0)'], {'decimals': '(4)'}), '(np.pi / 2.0 / 20 + np.pi / 2.0, decimals=4)\n', (10915, 10959), True, 'import numpy as np\n'), ((10968, 10997), 'numpy.round', 'np.round', (['pmid[7]'], {'decimals': '(4)'}), '(pmid[7], decimals=4)\n', (10976, 10997), True, 'import numpy as np\n'), ((11001, 11060), 'numpy.round', 'np.round', (['(15 * (np.pi / 2.0) / 20 + np.pi / 2.0)'], {'decimals': '(4)'}), '(15 * (np.pi / 2.0) / 20 + np.pi / 2.0, decimals=4)\n', (11009, 11060), True, 'import numpy as np\n')]
from communication import * import socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((socket.gethostname(), 1123)) while True: m = receive_message(s) if m: print(m, "\n") ping(s) print(s.getsockname()) print(socket.gethostbyname(socket.gethostname())) print(socket.get)
[ "socket.gethostname", "socket.socket" ]
[((47, 96), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (60, 96), False, 'import socket\n'), ((108, 128), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (126, 128), False, 'import socket\n'), ((262, 282), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (280, 282), False, 'import socket\n')]
""" dmsetup commands - Command ``dmsetup`` ====================================== Parsers for parsing and extracting data from output of commands related to ``dmsetup``. Parsers contained in this module are: DmsetupInfo - command ``dmsetup info -C`` ----------------------------------------- """ from insights import parser, CommandParser from insights.parsers import parse_delimited_table from insights.specs import Specs @parser(Specs.dmsetup_info) class DmsetupInfo(CommandParser): """ ``dmsetup info -C`` command output Example input:: Name Maj Min Stat Open Targ Event UUID VG00-tmp 253 8 L--w 1 1 0 LVM-gy9uAwD7LuTIApplr2sogbOx5iS0FTax6lLmBji2ueSbX49gxcV76M29cmukQiw4 VG00-home 253 3 L--w 1 1 0 LVM-gy9uAwD7LuTIApplr2sogbOx5iS0FTaxCqXOnbGe2zjhX923dFiIdl1oi7mO9tXp VG00-var 253 6 L--w 1 2 0 LVM-gy9uAwD7LuTIApplr2sogbOx5iS0FTaxicvyvt67113nTb8vMlGfgdEjDx0LKT2O VG00-swap 253 1 L--w 2 1 0 LVM-gy9uAwD7LuTIApplr2sogbOx5iS0FTax3Ll2XhOYZkylx1CjOQi7G4yHgrIOsyqG VG00-root 253 0 L--w 1 1 0 LVM-gy9uAwD7LuTIApplr2sogbOx5iS0FTaxKpnAKYhrYMYMNMwjegkW965bUgtJFTRY VG00-var_log_audit 253 5 L--w 1 1 0 LVM-<KEY> Example data structure produced:: data = [ { 'Stat': 'L--w', 'Name': 'VG00-tmp', 'Min': '8', 'Targ': '1', 'Maj': '253', 'Open': '1', 'Event': '0', 'UUID': 'LVM-gy9uAwD7LuTIApplr2sogbOx5iS0FTax6lLmBji2ueSbX49gxcV76M29cmukQiw4' },... ] Attributes: data (list): List of devices found, in order names (list): Device names, in order found uuids (list): UUID by_name (dict): Access to each device by devicename by_uuid (dict): Access to each device by uuid Example: >>> len(info) 6 >>> info.names[0] 'VG00-tmp' >>> info[1]['Maj'] '253' >>> info[1]['Stat'] 'L--w' """ def parse_content(self, content): self.data = parse_delimited_table(content) self.names = [dm['Name'] for dm in self.data if 'Name' in dm] self.by_name = dict((dm['Name'], dm) for dm in self.data if 'Name' in dm) self.uuids = [dm['UUID'] for dm in self.data if 'UUID' in dm] self.by_uuid = dict((dm['UUID'], dm) for dm in self.data if 'UUID' in dm) def __len__(self): """ The length of the devices list """ return len(self.data) def __iter__(self): """ Iterate through the devices list """ for dm in self.data: yield dm def __getitem__(self, idx): """ Fetch a device by index in devices list """ return self.data[idx]
[ "insights.parsers.parse_delimited_table", "insights.parser" ]
[((430, 456), 'insights.parser', 'parser', (['Specs.dmsetup_info'], {}), '(Specs.dmsetup_info)\n', (436, 456), False, 'from insights import parser, CommandParser\n'), ((2195, 2225), 'insights.parsers.parse_delimited_table', 'parse_delimited_table', (['content'], {}), '(content)\n', (2216, 2225), False, 'from insights.parsers import parse_delimited_table\n')]
import sys, os, random import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from matplotlib.colors import ListedColormap from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.model_selection import StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.linear_model import SGDClassifier from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.metrics import * # find a current file' directory path. try: dirpath = os.path.dirname(__file__) except Exception as inst: dirpath = '' pass f_name1 = os.path.join(dirpath,"../datasets/breast-cancer.npz") f_name2 = os.path.join(dirpath,"../datasets/diabetes.npz") f_name3 = os.path.join(dirpath,"../datasets/digit.npz") f_name4 = os.path.join(dirpath,"../datasets/iris.npz") f_name5 = os.path.join(dirpath,"../datasets/wine.npz") # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) class ClassModels: def __init__(self): self.name = '' self.grid = '' self.param_grid = '' self.cv = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=42) self.scoring = 'neg_log_loss' #'accuracy', 'f1', 'precision', 'recall', 'roc_auc' def trainModel(self, cname): if (cname == "Logistic Regression"): self.trainLogisticRegression() elif (cname == "Linear SVM"): self.trainLinearSVM() elif (cname == "RBF SVM"): self.trainRBFSVM() elif (cname == "Neural Nets"): self.trainNeuralNets() else: print("Please put existing classifier names") pass # run CV according to params for each classifier def trainLogisticRegression(self): # TODO: try different scoring rule such as Accuracy (default), F1-measure, AUC loss_range = ['log'] penalty_range = ['l2','l1','none'] alpha_range = np.geomspace(1.e-07, 1.e+05, num=13) # 13 params self.param_grid = dict(loss=loss_range, penalty=penalty_range, alpha=alpha_range, max_iter=[1000], tol=[1e-3]) self.grid = GridSearchCV(SGDClassifier(), param_grid=self.param_grid, cv=self.cv, n_jobs=-1) pass def trainLinearSVM(self): kernel_range = ['linear'] C_range = np.geomspace(1.e-07, 1.e+05, num=13) # 13 params : self.param_grid = dict(kernel=kernel_range, C=C_range) self.grid = GridSearchCV(SVC(), param_grid=self.param_grid, cv=self.cv, n_jobs=-1) pass def trainRBFSVM(self): # params C / gamma kernel_range = ['rbf'] C_range = np.geomspace(1.e-07, 1.e+05, num=13) # 13 params : gamma_range = np.array([0.001,0.005,0.01,0.05,0.1,0.5,1,2,3]) # 9 params self.param_grid = dict(kernel=kernel_range, gamma=gamma_range, C=C_range) self.grid = GridSearchCV(SVC(), param_grid=self.param_grid, cv=self.cv, n_jobs=-1) pass def trainNeuralNets(self): # early stopping default False, Momentum default 0.9 hidden_layer_sizes_range = np.array([1,2,3,4,5,6,7,8,9,10,16,32]) # 12 params activation_range = ['logistic'] solver_range = ['sgd'] learning_rate_init_range = np.array([1.0e-04,1.0e-03,1.0e-02,1.0e-01]) # 4 params self.param_grid = dict(hidden_layer_sizes=hidden_layer_sizes_range, activation=activation_range,solver=solver_range, learning_rate_init=learning_rate_init_range, max_iter=[1000]) self.grid = GridSearchCV(MLPClassifier(), param_grid=self.param_grid, cv=self.cv, n_jobs=-1) pass class Report: def __init__(self): pass # Loss + Accuracy (training + test) # auc + confusion matrix # cpu computation time def showResult(self, model, predicted_test, target_test, predicted_train, target_train): print("The best parameters are %s with a score of %0.3f" % (model.grid.best_params_, model.grid.best_score_)) print("The Train Log Loss %0.3f Zero one loss %f" % (log_loss(target_train, predicted_train), zero_one_loss(target_train, predicted_train))) print("The test Log Loss %0.3f Zero one loss %f" % (log_loss(target_test, predicted_test), zero_one_loss(target_test, predicted_test))) print("The train Accuracy %0.3f" % (accuracy_score(target_train, predicted_train))) print("The test Accuracy %0.3f" % (accuracy_score(target_test, predicted_test) )) print("The test AUC of %0.3f" % (roc_auc_score(target_test, predicted_test) )) print("The mean training time of %f" % (np.mean(model.grid.cv_results_['mean_fit_time'], axis=0)) ) print("The mean test time of %f" % (np.mean(model.grid.cv_results_['mean_score_time'], axis=0)) ) # confusion matrix print("confusion matrix / precision recall scores") print ( confusion_matrix(target_test, predicted_test) ) print ( classification_report(target_test, predicted_test) ) pass def showPlot(self, model, clfname): if (clfname == "Logistic Regression"): self.showLogisticRegression(model, clfname) elif (clfname == "Linear SVM"): self.showLinearSVM(model, clfname) elif (clfname == "RBF SVM"): self.showRBFSVM(model, clfname) elif (clfname == "Neural Nets"): self.showNeuralNets(model, clfname) else: print("Please put existing classifier names") pass def showLogisticRegression(self, model, clfname): penalty_range = model.param_grid['penalty'] alpha_range = model.param_grid['alpha'] # 13 params scores = np.array(model.grid.cv_results_['mean_test_score']) min_score = scores.min() max_score = scores.max() mean_score = np.mean(scores, axis=0) scores = scores.reshape(len(alpha_range),len(penalty_range)) plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=min_score, vmax=max_score, midpoint=mean_score)) plt.xlabel('penalty') plt.ylabel('alpha (regularization)') plt.colorbar() plt.xticks(np.arange(len(penalty_range)), penalty_range, rotation=45) plt.yticks(np.arange(len(alpha_range)), alpha_range) plt.title('Validation accuracy') # plt.show() pass def showLinearSVM(self, model, clfname): C_range = model.param_grid['C'] scores = np.array(model.grid.cv_results_['mean_test_score']) min_score = scores.min() max_score = scores.max() mean_score = np.mean(scores, axis=0) scores = scores.reshape(len(C_range),1) plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=min_score, vmax=max_score, midpoint=mean_score)) plt.ylabel('C') plt.colorbar() plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') # plt.show() pass def showRBFSVM(self, model, clfname): C_range = model.param_grid['C'] gamma_range = model.param_grid['gamma'] # scores = model.grid.cv_results_['mean_test_score'].reshape(len(C_range), len(gamma_range)) scores = np.array(model.grid.cv_results_['mean_test_score']) min_score = scores.min() max_score = scores.max() mean_score = np.mean(scores, axis=0) scores = scores.reshape(len(C_range), len(gamma_range)) plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) # plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, # norm=MidpointNormalize(vmin=0.2, midpoint=0.92)) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=min_score,vmax=max_score, midpoint=mean_score)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') # plt.show() pass def showNeuralNets(self, model, clfname): hidden_layer_sizes_range = model.param_grid['hidden_layer_sizes'] learning_rate_init_range = model.param_grid['learning_rate_init'] scores = np.array(model.grid.cv_results_['mean_test_score']) min_score = scores.min() max_score = scores.max() mean_score = np.mean(scores, axis=0) scores = scores.reshape(len(learning_rate_init_range), len(hidden_layer_sizes_range)) plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=min_score,vmax=max_score, midpoint=mean_score)) plt.xlabel('hidden_layer_sizes') plt.ylabel('learning_rate_init') plt.colorbar() plt.xticks(np.arange(len(hidden_layer_sizes_range)), hidden_layer_sizes_range, rotation=45) plt.yticks(np.arange(len(learning_rate_init_range)), learning_rate_init_range) plt.title('Validation accuracy') # plt.show() pass def plotLROverTime(data_x, loss_y, acc_y, idx): # Set the style globally # Alternatives include bmh, fivethirtyeight, ggplot, # dark_background, seaborn-deep, etc plt.style.use('ggplot') plt.rcParams['font.family'] = 'serif' plt.rcParams['font.serif'] = 'Ubuntu' plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['font.size'] = 10 plt.rcParams['axes.labelsize'] = 10 plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.titlesize'] = 10 plt.rcParams['xtick.labelsize'] = 8 plt.rcParams['ytick.labelsize'] = 8 plt.rcParams['legend.fontsize'] = 10 plt.rcParams['figure.titlesize'] = 12 # Set an aspect ratio width, height = plt.figaspect(1.68) fig = plt.figure(figsize=(width, height), dpi=400) plt.plot(data_x, loss_y, linewidth=0.5, linestyle=':', marker='o', markersize=2, label='loss') plt.plot(data_x, acc_y, linewidth=0.5, linestyle='--', marker='v', markersize=2, label='accuracy') plt.xlabel('Data Points') plt.ylabel('Score') # Axes alteration to put zero values inside the figure Axes # Avoids axis white lines cutting through zero values - fivethirtyeight style xmin, xmax, ymin, ymax = plt.axis() plt.axis([xmin - 0.1, xmax + 0.1, ymin, ymax]) plt.title('LR performance over time', fontstyle='italic') plt.legend(loc='best', numpoints=1, fancybox=True) # Space plots a bit plt.subplots_adjust(hspace=0.25, wspace=0.40) plt.savefig('./LR_overtime_'+str(idx)+'.png', bbox_inches='tight') pass def batches(l, n): for i in range(0, len(l), n): yield l[i:i+n] def runLROverTime(train_X, train_y, test_X, test_y, idx): clf = SGDClassifier(loss='log') # shuffle=True is useless here shuffledRange = range(train_X.shape[0]) n_iter = 10 data_point = 0 f_loss = open('./LR_overtime_loss_'+str(idx)+'.txt', 'w') f_acc = open('./LR_overtime_acc_'+str(idx)+'.txt', 'w') data_x = [] loss_y = [] acc_y = [] # temp_loss = zero_one_loss(train_y, clf.predict(train_X)) # temp_acc = accuracy_score(train_y, clf.predict(train_X)) # f_loss.write("data_point= " + str(data_point) + " zero_one_loss= " + str(temp_loss) + " \n") # f_acc.write("data_point= " + str(data_point) + " accuracy= " + str(temp_acc) + " \n") # data_x.append(data_point) # loss_y.append(temp_loss) # acc_y.append(temp_acc) for n in range(n_iter): shuffledRange = list(shuffledRange) random.shuffle(shuffledRange) shuffledX = [train_X[i] for i in shuffledRange] shuffledY = [train_y[i] for i in shuffledRange] for batch in batches(range(len(shuffledX)), 10): clf.partial_fit(shuffledX[batch[0]:batch[-1] + 1], shuffledY[batch[0]:batch[-1] + 1], classes=np.unique(train_y)) data_point += len(batch) temp_loss = zero_one_loss(train_y, clf.predict(train_X)) temp_acc = accuracy_score(train_y, clf.predict(train_X)) f_loss.write("data_point= " + str(data_point) + " zero_one_loss= " + str(temp_loss) + " \n") f_acc.write("data_point= " + str(data_point) + " accuracy= " + str(temp_acc) + " \n") data_x.append(data_point) loss_y.append(temp_loss) acc_y.append(temp_acc) f_loss.write("\n===== End of Training / Test Set Results =====\n") f_loss.write("data_point= %d , zero_one_loss= %f\n" % (data_point, zero_one_loss(test_y, clf.predict(test_X)))) f_acc.write("\n===== End of Training / Test Set Results =====\n") f_acc.write("data_point= %d , accuracy= %f\n" % (data_point, accuracy_score(test_y, clf.predict(test_X)))) f_loss.close() f_acc.close() plotLROverTime(data_x, loss_y, acc_y, idx) pass class RunEval: def __init__(self): self.dnames = [f_name1, f_name2, f_name3, f_name4, f_name5] self.train_X = [] self.train_y = [] self.test_X = [] self.test_y = [] def run(self): report = Report() for idx, dname in enumerate(self.dnames): # load data if len(sys.argv) > 1 and int(sys.argv[1]) != idx: continue data = np.load(dname) self.train_y = data['train_Y'] self.test_y = data['test_Y'] # standardize data (mean=0, std=1) self.train_X = StandardScaler().fit_transform(data['train_X']) self.test_X = StandardScaler().fit_transform(data['test_X']) print ("shape of data set ", self.train_X.shape, self.train_y.shape, self.test_X.shape, self.test_y.shape) if len(sys.argv) > 2 and int(sys.argv[2]) == 1: runLROverTime(self.train_X, self.train_y, self.test_X, self.test_y, idx) continue clfnames = ["Logistic Regression", "Linear SVM", "RBF SVM", "Neural Nets"] # clfnames = ["RBF SVM"] # clfnames = ["Linear SVM"] for idx2, clfname in enumerate(clfnames): print("===== %s " %(dname)) print("===== %s" %(clfname)) # (1) train model with CV model = ClassModels() model = ClassModels() model.trainModel(clfname) model.grid.fit(self.train_X, self.train_y) # (2) show results predicted_test = model.grid.predict(self.test_X) predicted_train = model.grid.predict(self.train_X) # Loss + Accuracy (training + test) # auc + confusion matrix # cpu computation time report.showResult(model, predicted_test, self.test_y, predicted_train, self.train_y) report.showPlot(model, clfname) plt.savefig('./'+clfname+'_'+str(idx)+'.png', bbox_inches = 'tight') if __name__ == '__main__': eval = RunEval() eval.run() exit()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.figaspect", "numpy.load", "sklearn.preprocessing.StandardScaler", "random.shuffle", "matplotlib.pyplot.style.use", "matplotlib.pyplot.figure", "numpy.mean", "sklearn.neural_network.MLPClassifier", "sklearn.svm.SVC", "numpy.interp", "os.path.join", "numpy.unique", "sklearn.linear_model.SGDClassifier", "numpy.geomspace", "os.path.dirname", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.legend", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.ylabel", "matplotlib.colors.Normalize.__init__", "matplotlib.pyplot.plot", "matplotlib.pyplot.axis", "sklearn.model_selection.StratifiedShuffleSplit", "numpy.array", "matplotlib.pyplot.xlabel" ]
[((1137, 1191), 'os.path.join', 'os.path.join', (['dirpath', '"""../datasets/breast-cancer.npz"""'], {}), "(dirpath, '../datasets/breast-cancer.npz')\n", (1149, 1191), False, 'import sys, os, random\n'), ((1202, 1251), 'os.path.join', 'os.path.join', (['dirpath', '"""../datasets/diabetes.npz"""'], {}), "(dirpath, '../datasets/diabetes.npz')\n", (1214, 1251), False, 'import sys, os, random\n'), ((1262, 1308), 'os.path.join', 'os.path.join', (['dirpath', '"""../datasets/digit.npz"""'], {}), "(dirpath, '../datasets/digit.npz')\n", (1274, 1308), False, 'import sys, os, random\n'), ((1319, 1364), 'os.path.join', 'os.path.join', (['dirpath', '"""../datasets/iris.npz"""'], {}), "(dirpath, '../datasets/iris.npz')\n", (1331, 1364), False, 'import sys, os, random\n'), ((1375, 1420), 'os.path.join', 'os.path.join', (['dirpath', '"""../datasets/wine.npz"""'], {}), "(dirpath, '../datasets/wine.npz')\n", (1387, 1420), False, 'import sys, os, random\n'), ((1045, 1070), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1060, 1070), False, 'import sys, os, random\n'), ((11083, 11106), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (11096, 11106), True, 'import matplotlib.pyplot as plt\n'), ((11629, 11648), 'matplotlib.pyplot.figaspect', 'plt.figaspect', (['(1.68)'], {}), '(1.68)\n', (11642, 11648), True, 'import matplotlib.pyplot as plt\n'), ((11660, 11704), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(width, height)', 'dpi': '(400)'}), '(figsize=(width, height), dpi=400)\n', (11670, 11704), True, 'import matplotlib.pyplot as plt\n'), ((11712, 11810), 'matplotlib.pyplot.plot', 'plt.plot', (['data_x', 'loss_y'], {'linewidth': '(0.5)', 'linestyle': '""":"""', 'marker': '"""o"""', 'markersize': '(2)', 'label': '"""loss"""'}), "(data_x, loss_y, linewidth=0.5, linestyle=':', marker='o',\n markersize=2, label='loss')\n", (11720, 11810), True, 'import matplotlib.pyplot as plt\n'), ((11826, 11928), 'matplotlib.pyplot.plot', 'plt.plot', (['data_x', 'acc_y'], {'linewidth': '(0.5)', 'linestyle': '"""--"""', 'marker': '"""v"""', 'markersize': '(2)', 'label': '"""accuracy"""'}), "(data_x, acc_y, linewidth=0.5, linestyle='--', marker='v',\n markersize=2, label='accuracy')\n", (11834, 11928), True, 'import matplotlib.pyplot as plt\n'), ((11944, 11969), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Data Points"""'], {}), "('Data Points')\n", (11954, 11969), True, 'import matplotlib.pyplot as plt\n'), ((11975, 11994), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Score"""'], {}), "('Score')\n", (11985, 11994), True, 'import matplotlib.pyplot as plt\n'), ((12175, 12185), 'matplotlib.pyplot.axis', 'plt.axis', ([], {}), '()\n', (12183, 12185), True, 'import matplotlib.pyplot as plt\n'), ((12191, 12237), 'matplotlib.pyplot.axis', 'plt.axis', (['[xmin - 0.1, xmax + 0.1, ymin, ymax]'], {}), '([xmin - 0.1, xmax + 0.1, ymin, ymax])\n', (12199, 12237), True, 'import matplotlib.pyplot as plt\n'), ((12243, 12300), 'matplotlib.pyplot.title', 'plt.title', (['"""LR performance over time"""'], {'fontstyle': '"""italic"""'}), "('LR performance over time', fontstyle='italic')\n", (12252, 12300), True, 'import matplotlib.pyplot as plt\n'), ((12306, 12356), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'numpoints': '(1)', 'fancybox': '(True)'}), "(loc='best', numpoints=1, fancybox=True)\n", (12316, 12356), True, 'import matplotlib.pyplot as plt\n'), ((12389, 12433), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0.25)', 'wspace': '(0.4)'}), '(hspace=0.25, wspace=0.4)\n', (12408, 12433), True, 'import matplotlib.pyplot as plt\n'), ((12672, 12697), 'sklearn.linear_model.SGDClassifier', 'SGDClassifier', ([], {'loss': '"""log"""'}), "(loss='log')\n", (12685, 12697), False, 'from sklearn.linear_model import SGDClassifier\n'), ((1675, 1717), 'matplotlib.colors.Normalize.__init__', 'Normalize.__init__', (['self', 'vmin', 'vmax', 'clip'], {}), '(self, vmin, vmax, clip)\n', (1693, 1717), False, 'from matplotlib.colors import Normalize\n'), ((2037, 2103), 'sklearn.model_selection.StratifiedShuffleSplit', 'StratifiedShuffleSplit', ([], {'n_splits': '(5)', 'test_size': '(0.2)', 'random_state': '(42)'}), '(n_splits=5, test_size=0.2, random_state=42)\n', (2059, 2103), False, 'from sklearn.model_selection import StratifiedShuffleSplit\n'), ((2908, 2945), 'numpy.geomspace', 'np.geomspace', (['(1e-07)', '(100000.0)'], {'num': '(13)'}), '(1e-07, 100000.0, num=13)\n', (2920, 2945), True, 'import numpy as np\n'), ((3294, 3331), 'numpy.geomspace', 'np.geomspace', (['(1e-07)', '(100000.0)'], {'num': '(13)'}), '(1e-07, 100000.0, num=13)\n', (3306, 3331), True, 'import numpy as np\n'), ((3646, 3683), 'numpy.geomspace', 'np.geomspace', (['(1e-07)', '(100000.0)'], {'num': '(13)'}), '(1e-07, 100000.0, num=13)\n', (3658, 3683), True, 'import numpy as np\n'), ((3721, 3776), 'numpy.array', 'np.array', (['[0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 3]'], {}), '([0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 3])\n', (3729, 3776), True, 'import numpy as np\n'), ((4123, 4172), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32]'], {}), '([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32])\n', (4131, 4172), True, 'import numpy as np\n'), ((4283, 4319), 'numpy.array', 'np.array', (['[0.0001, 0.001, 0.01, 0.1]'], {}), '([0.0001, 0.001, 0.01, 0.1])\n', (4291, 4319), True, 'import numpy as np\n'), ((6959, 7010), 'numpy.array', 'np.array', (["model.grid.cv_results_['mean_test_score']"], {}), "(model.grid.cv_results_['mean_test_score'])\n", (6967, 7010), True, 'import numpy as np\n'), ((7101, 7124), 'numpy.mean', 'np.mean', (['scores'], {'axis': '(0)'}), '(scores, axis=0)\n', (7108, 7124), True, 'import numpy as np\n'), ((7206, 7232), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (7216, 7232), True, 'import matplotlib.pyplot as plt\n'), ((7242, 7306), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.2)', 'right': '(0.95)', 'bottom': '(0.15)', 'top': '(0.95)'}), '(left=0.2, right=0.95, bottom=0.15, top=0.95)\n', (7261, 7306), True, 'import matplotlib.pyplot as plt\n'), ((7482, 7503), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""penalty"""'], {}), "('penalty')\n", (7492, 7503), True, 'import matplotlib.pyplot as plt\n'), ((7513, 7549), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""alpha (regularization)"""'], {}), "('alpha (regularization)')\n", (7523, 7549), True, 'import matplotlib.pyplot as plt\n'), ((7559, 7573), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (7571, 7573), True, 'import matplotlib.pyplot as plt\n'), ((7724, 7756), 'matplotlib.pyplot.title', 'plt.title', (['"""Validation accuracy"""'], {}), "('Validation accuracy')\n", (7733, 7756), True, 'import matplotlib.pyplot as plt\n'), ((7900, 7951), 'numpy.array', 'np.array', (["model.grid.cv_results_['mean_test_score']"], {}), "(model.grid.cv_results_['mean_test_score'])\n", (7908, 7951), True, 'import numpy as np\n'), ((8042, 8065), 'numpy.mean', 'np.mean', (['scores'], {'axis': '(0)'}), '(scores, axis=0)\n', (8049, 8065), True, 'import numpy as np\n'), ((8126, 8152), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (8136, 8152), True, 'import matplotlib.pyplot as plt\n'), ((8162, 8226), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.2)', 'right': '(0.95)', 'bottom': '(0.15)', 'top': '(0.95)'}), '(left=0.2, right=0.95, bottom=0.15, top=0.95)\n', (8181, 8226), True, 'import matplotlib.pyplot as plt\n'), ((8402, 8417), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""C"""'], {}), "('C')\n", (8412, 8417), True, 'import matplotlib.pyplot as plt\n'), ((8427, 8441), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (8439, 8441), True, 'import matplotlib.pyplot as plt\n'), ((8505, 8537), 'matplotlib.pyplot.title', 'plt.title', (['"""Validation accuracy"""'], {}), "('Validation accuracy')\n", (8514, 8537), True, 'import matplotlib.pyplot as plt\n'), ((8829, 8880), 'numpy.array', 'np.array', (["model.grid.cv_results_['mean_test_score']"], {}), "(model.grid.cv_results_['mean_test_score'])\n", (8837, 8880), True, 'import numpy as np\n'), ((8971, 8994), 'numpy.mean', 'np.mean', (['scores'], {'axis': '(0)'}), '(scores, axis=0)\n', (8978, 8994), True, 'import numpy as np\n'), ((9071, 9097), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (9081, 9097), True, 'import matplotlib.pyplot as plt\n'), ((9107, 9171), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.2)', 'right': '(0.95)', 'bottom': '(0.15)', 'top': '(0.95)'}), '(left=0.2, right=0.95, bottom=0.15, top=0.95)\n', (9126, 9171), True, 'import matplotlib.pyplot as plt\n'), ((9489, 9508), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""gamma"""'], {}), "('gamma')\n", (9499, 9508), True, 'import matplotlib.pyplot as plt\n'), ((9518, 9533), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""C"""'], {}), "('C')\n", (9528, 9533), True, 'import matplotlib.pyplot as plt\n'), ((9543, 9557), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (9555, 9557), True, 'import matplotlib.pyplot as plt\n'), ((9696, 9728), 'matplotlib.pyplot.title', 'plt.title', (['"""Validation accuracy"""'], {}), "('Validation accuracy')\n", (9705, 9728), True, 'import matplotlib.pyplot as plt\n'), ((9984, 10035), 'numpy.array', 'np.array', (["model.grid.cv_results_['mean_test_score']"], {}), "(model.grid.cv_results_['mean_test_score'])\n", (9992, 10035), True, 'import numpy as np\n'), ((10126, 10149), 'numpy.mean', 'np.mean', (['scores'], {'axis': '(0)'}), '(scores, axis=0)\n', (10133, 10149), True, 'import numpy as np\n'), ((10256, 10282), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (10266, 10282), True, 'import matplotlib.pyplot as plt\n'), ((10292, 10356), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.2)', 'right': '(0.95)', 'bottom': '(0.15)', 'top': '(0.95)'}), '(left=0.2, right=0.95, bottom=0.15, top=0.95)\n', (10311, 10356), True, 'import matplotlib.pyplot as plt\n'), ((10531, 10563), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""hidden_layer_sizes"""'], {}), "('hidden_layer_sizes')\n", (10541, 10563), True, 'import matplotlib.pyplot as plt\n'), ((10573, 10605), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""learning_rate_init"""'], {}), "('learning_rate_init')\n", (10583, 10605), True, 'import matplotlib.pyplot as plt\n'), ((10615, 10629), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (10627, 10629), True, 'import matplotlib.pyplot as plt\n'), ((10828, 10860), 'matplotlib.pyplot.title', 'plt.title', (['"""Validation accuracy"""'], {}), "('Validation accuracy')\n", (10837, 10860), True, 'import matplotlib.pyplot as plt\n'), ((13485, 13514), 'random.shuffle', 'random.shuffle', (['shuffledRange'], {}), '(shuffledRange)\n', (13499, 13514), False, 'import sys, os, random\n'), ((1865, 1887), 'numpy.interp', 'np.interp', (['value', 'x', 'y'], {}), '(value, x, y)\n', (1874, 1887), True, 'import numpy as np\n'), ((3112, 3127), 'sklearn.linear_model.SGDClassifier', 'SGDClassifier', ([], {}), '()\n', (3125, 3127), False, 'from sklearn.linear_model import SGDClassifier\n'), ((3444, 3449), 'sklearn.svm.SVC', 'SVC', ([], {}), '()\n', (3447, 3449), False, 'from sklearn.svm import SVC\n'), ((3898, 3903), 'sklearn.svm.SVC', 'SVC', ([], {}), '()\n', (3901, 3903), False, 'from sklearn.svm import SVC\n'), ((4656, 4671), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {}), '()\n', (4669, 4671), False, 'from sklearn.neural_network import MLPClassifier\n'), ((15267, 15281), 'numpy.load', 'np.load', (['dname'], {}), '(dname)\n', (15274, 15281), True, 'import numpy as np\n'), ((5846, 5902), 'numpy.mean', 'np.mean', (["model.grid.cv_results_['mean_fit_time']"], {'axis': '(0)'}), "(model.grid.cv_results_['mean_fit_time'], axis=0)\n", (5853, 5902), True, 'import numpy as np\n'), ((5966, 6024), 'numpy.mean', 'np.mean', (["model.grid.cv_results_['mean_score_time']"], {'axis': '(0)'}), "(model.grid.cv_results_['mean_score_time'], axis=0)\n", (5973, 6024), True, 'import numpy as np\n'), ((13824, 13842), 'numpy.unique', 'np.unique', (['train_y'], {}), '(train_y)\n', (13833, 13842), True, 'import numpy as np\n'), ((15444, 15460), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (15458, 15460), False, 'from sklearn.preprocessing import StandardScaler\n'), ((15519, 15535), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (15533, 15535), False, 'from sklearn.preprocessing import StandardScaler\n')]
import unittest import maxixe from maxixe.tests import decorators from maxixe.tests import loader from maxixe.tests import parser from maxixe.tests import utils suite = unittest.TestSuite() suite.addTests(unittest.TestLoader().loadTestsFromModule(decorators)) suite.addTests(unittest.TestLoader().loadTestsFromModule(loader)) suite.addTests(unittest.TestLoader().loadTestsFromModule(parser)) suite.addTests(unittest.TestLoader().loadTestsFromModule(utils))
[ "unittest.TestLoader", "unittest.TestSuite" ]
[((171, 191), 'unittest.TestSuite', 'unittest.TestSuite', ([], {}), '()\n', (189, 191), False, 'import unittest\n'), ((207, 228), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (226, 228), False, 'import unittest\n'), ((277, 298), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (296, 298), False, 'import unittest\n'), ((343, 364), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (362, 364), False, 'import unittest\n'), ((409, 430), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (428, 430), False, 'import unittest\n')]
from django.db import models class Blog(models.Model): title = models.CharField("标题", unique=True, max_length=200) class Meta: db_table = 'blog' verbose_name = '文章'
[ "django.db.models.CharField" ]
[((71, 122), 'django.db.models.CharField', 'models.CharField', (['"""标题"""'], {'unique': '(True)', 'max_length': '(200)'}), "('标题', unique=True, max_length=200)\n", (87, 122), False, 'from django.db import models\n')]
from wormer.tools import manager, downloader from wormer.data import strategy import re class Graber: synopsis_pattern = '''(?=lemma-summary")(.*?)(?<=config) ''' text_pattern = '>\s*?([^\&\b\n\[\]]*?)<' href_pattern = '<a target=_blank href="(/item/[\w\d%]*?)">' def __init__(self): self.urlManager = manager.UrlsManager() self.downloader = downloader.DownLoader() self.textManager = manager.TextManager() self.logManager = manager.LogManager() self.threadManager = manager.ThreadManager() self.url_start = '' def get_readme(self): self.downloader.grab_single(self.url_start) tips = self.downloader.get_readme() return tips def grabing_urls(self, limit=100, grab_strategy=strategy.GrabStrategy.BREATH_FIRST): self.urlManager.add_single_url(self.url_start) self.urlManager.add_single_url(self.url_start, 'urls_grabbed') while self.urlManager.has_next_url(): page_source = self.downloader.grab_single_url(self.urlManager.get_url()).content.decode('utf-8') # match need to the beginning of the string, and return is a turple, use [i for i in turple] to change, and findall return list urls = self.textManager.find_urls_by_regex(page_source, Graber.href_pattern) synopsis = self.textManager.find_text_by_regex(page_source, Graber.synopsis_pattern, re.VERBOSE|re.MULTILINE|re.DOTALL) # print(synopsis) page_content = self.textManager.find_text_by_regex(synopsis, Graber.text_pattern, re.VERBOSE|re.MULTILINE|re.DOTALL) if urls and page_content is not None: self.add_urls_head(urls, 'https://baike.baidu.com') self.urlManager.add_urls(urls) self.logManager.collect_data(page_content) self.logManager.save_all_data() @staticmethod def add_urls_head(urls, head): for i, item in enumerate(urls): item = head + item urls[i] = item def get_start(self, url_start): self.url_start = url_start if __name__ == '__main__': # url = input('The website you want:\n') url_python_baike = 'https://baike.baidu.com/item/Python' graber = Graber() graber.get_start(url_python_baike) graber.grabing_urls() # text = graber.get_readme(url) # graber.logManager.log_text(text)
[ "wormer.tools.manager.ThreadManager", "wormer.tools.manager.LogManager", "wormer.tools.manager.TextManager", "wormer.tools.manager.UrlsManager", "wormer.tools.downloader.DownLoader" ]
[((329, 350), 'wormer.tools.manager.UrlsManager', 'manager.UrlsManager', ([], {}), '()\n', (348, 350), False, 'from wormer.tools import manager, downloader\n'), ((377, 400), 'wormer.tools.downloader.DownLoader', 'downloader.DownLoader', ([], {}), '()\n', (398, 400), False, 'from wormer.tools import manager, downloader\n'), ((428, 449), 'wormer.tools.manager.TextManager', 'manager.TextManager', ([], {}), '()\n', (447, 449), False, 'from wormer.tools import manager, downloader\n'), ((476, 496), 'wormer.tools.manager.LogManager', 'manager.LogManager', ([], {}), '()\n', (494, 496), False, 'from wormer.tools import manager, downloader\n'), ((526, 549), 'wormer.tools.manager.ThreadManager', 'manager.ThreadManager', ([], {}), '()\n', (547, 549), False, 'from wormer.tools import manager, downloader\n')]
from telegram.ext import ConversationHandler from telegram.ext import MessageHandler from telegram.ext import Filters from telegram.ext import CallbackQueryHandler from Model.share import Share import Controllers.global_states as states from Utils.logging import get_logger as log import pandas as pd import datetime GETSUMMARY = range(1) class DividendSummary: def __init__(self, dispatcher): self.__dp = dispatcher self.__handler() def __handler(self): ds_handler = ConversationHandler( entry_points=[CallbackQueryHandler( self.get_ticker, pattern='^' + str(states.DIVIDENDINFO) + '$')], states={ GETSUMMARY: [ MessageHandler(Filters.text, self.get_dividend_summary) ], }, fallbacks=[] ) self.__dp.add_handler(ds_handler) @staticmethod def get_ticker(update, context): user = update.effective_user log().info("User %s pressed the dividend summary button.", user.first_name) query = update.callback_query query.answer() query.edit_message_text( text="Enter ticker symbol (e.g D05)") return GETSUMMARY @staticmethod def get_dividend_summary(update, context): ticker = update.message.text user = update.effective_user log().info("User %s entered ticker value %s.", user.first_name, ticker) years = 5 share = Share(ticker) if not share.is_valid: update.message.reply_text("Invalid ticker. Please use /start to go back to the main menu") log().info("User %s entered an invalid ticker value %s.", user.first_name, ticker) return ConversationHandler.END a = share.get_dividend_summary(datetime.datetime.now().year, datetime.datetime.now().year - years) s = '<b>' + share.name + '</b>\n\n' for item in a: s += '<b>' + str(item.year) + ' (' + str(item.total) + ')</b>' + '\n' i = 1 for pay_date, pay_amount in zip(item.pay_date, item.amount): if pay_date == '-': continue s += pd.to_datetime(pay_date).strftime('%d %B') + ': ' + str(pay_amount).replace('SGD', 'SGD ') +'\n' i += 1 s += '\n' update.message.reply_text(s, parse_mode='HTML') return ConversationHandler.END
[ "Model.share.Share", "Utils.logging.get_logger", "telegram.ext.MessageHandler", "pandas.to_datetime", "datetime.datetime.now" ]
[((1496, 1509), 'Model.share.Share', 'Share', (['ticker'], {}), '(ticker)\n', (1501, 1509), False, 'from Model.share import Share\n'), ((994, 999), 'Utils.logging.get_logger', 'log', ([], {}), '()\n', (997, 999), True, 'from Utils.logging import get_logger as log\n'), ((1388, 1393), 'Utils.logging.get_logger', 'log', ([], {}), '()\n', (1391, 1393), True, 'from Utils.logging import get_logger as log\n'), ((1823, 1846), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1844, 1846), False, 'import datetime\n'), ((1657, 1662), 'Utils.logging.get_logger', 'log', ([], {}), '()\n', (1660, 1662), True, 'from Utils.logging import get_logger as log\n'), ((1853, 1876), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1874, 1876), False, 'import datetime\n'), ((726, 781), 'telegram.ext.MessageHandler', 'MessageHandler', (['Filters.text', 'self.get_dividend_summary'], {}), '(Filters.text, self.get_dividend_summary)\n', (740, 781), False, 'from telegram.ext import MessageHandler\n'), ((2218, 2242), 'pandas.to_datetime', 'pd.to_datetime', (['pay_date'], {}), '(pay_date)\n', (2232, 2242), True, 'import pandas as pd\n')]
import gzip import sys import argparse import re import logging import numpy as np import pandas as p from itertools import product, tee from collections import Counter, OrderedDict from Bio import SeqIO def generate_feature_mapping(kmer_len): BASE_COMPLEMENT = {"A":"T","T":"A","G":"C","C":"G"} kmer_hash = {} counter = 0 for kmer in product("ATGC",repeat=kmer_len): if kmer not in kmer_hash: kmer_hash[kmer] = counter rev_compl = tuple([BASE_COMPLEMENT[x] for x in reversed(kmer)]) kmer_hash[rev_compl] = counter counter += 1 return kmer_hash, counter def window(seq,n): els = tee(seq,n) for i,el in enumerate(els): for _ in range(i): next(el, None) return zip(*els) def _calculate_composition(read_file, kmer_len, length_threshold=25): #Generate kmer dictionary feature_mapping, nr_features = generate_feature_mapping(kmer_len) composition = np.zeros(nr_features,dtype=np.int) start_composition = np.zeros(nr_features,dtype=np.int) with gzip.open(read_file, "rt") as handle: for seq in SeqIO.parse(handle,"fastq"): seq_len = len(seq) if seq_len<= length_threshold: continue str_seq = str(seq.seq) # Create a list containing all kmers, translated to integers kmers = [ feature_mapping[kmer_tuple] for kmer_tuple in window(str_seq.upper(), kmer_len) if kmer_tuple in feature_mapping ] # numpy.bincount returns an array of size = max + 1 # so we add the max value and remove it afterwards # numpy.bincount was found to be much more efficient than # counting manually or using collections.Counter kmers.append(nr_features - 1) composition_v = np.bincount(np.array(kmers)) composition_v[-1] -= 1 # Adding pseudo counts before storing in dict composition += composition_v failStart = 0 if seq_len >= kmer_len: startKmer = str_seq[0:kmer_len].upper() startKmerT = tuple(startKmer) if startKmerT in feature_mapping: start_composition[feature_mapping[startKmerT]]+=1 else: failStart+=1 return feature_mapping, composition, start_composition, failStart def main(argv): parser = argparse.ArgumentParser() parser.add_argument("read_file", help="gzipped fastq read file") parser.add_argument("kmer_length", help="kmer length assumed overlap") parser.add_argument("outFileStub", help="stub for output files") args = parser.parse_args() #import ipdb; ipdb.set_trace() (feature_mapping, composition, start_composition,failStart) = _calculate_composition(args.read_file, int(args.kmer_length)) print(str(failStart)) for k in sorted(feature_mapping, key=feature_mapping.get): kidx = feature_mapping[k] print("".join(k) + "," + str(kidx) + "," + str(composition[kidx]) + "," + str(start_composition[kidx]) ) if __name__ == "__main__": main(sys.argv[1:])
[ "gzip.open", "argparse.ArgumentParser", "Bio.SeqIO.parse", "numpy.zeros", "numpy.array", "itertools.product", "itertools.tee" ]
[((355, 387), 'itertools.product', 'product', (['"""ATGC"""'], {'repeat': 'kmer_len'}), "('ATGC', repeat=kmer_len)\n", (362, 387), False, 'from itertools import product, tee\n'), ((664, 675), 'itertools.tee', 'tee', (['seq', 'n'], {}), '(seq, n)\n', (667, 675), False, 'from itertools import product, tee\n'), ((971, 1006), 'numpy.zeros', 'np.zeros', (['nr_features'], {'dtype': 'np.int'}), '(nr_features, dtype=np.int)\n', (979, 1006), True, 'import numpy as np\n'), ((1030, 1065), 'numpy.zeros', 'np.zeros', (['nr_features'], {'dtype': 'np.int'}), '(nr_features, dtype=np.int)\n', (1038, 1065), True, 'import numpy as np\n'), ((2557, 2582), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2580, 2582), False, 'import argparse\n'), ((1079, 1105), 'gzip.open', 'gzip.open', (['read_file', '"""rt"""'], {}), "(read_file, 'rt')\n", (1088, 1105), False, 'import gzip\n'), ((1137, 1165), 'Bio.SeqIO.parse', 'SeqIO.parse', (['handle', '"""fastq"""'], {}), "(handle, 'fastq')\n", (1148, 1165), False, 'from Bio import SeqIO\n'), ((1951, 1966), 'numpy.array', 'np.array', (['kmers'], {}), '(kmers)\n', (1959, 1966), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- ''' <NAME> 1. a. Frequentist confidence intervals do not respect the physical limitations imposed on a system, ie non-negativity of a mass. b. Typically, that the probability to be found outside the interval on both sides of the distribution is 16% (or (100-CL)/2 %). Often constructed with a likelihood function, finding where the likelihood reduces by a half. c. We need a prior PDF to construct the posterior PDF for \mu_t. d. 1/\mu_t. He justifies that this is invariant over changes of power of \mu_t. e. Bayesian methods fail to be objective: they must be injected with a prior PDF to construct the posterior from the likelihood function. Classical intervals fail to consider physical limitations on the measured parameter. Classical limits also handle systematics in a counterintuitive way, such that a bad calibration leads to a tighter confidence interval. It seems that generally people use classical statistics except when it produces things that 'seem' wrong, in which case use Bayesian. f. As Cousins did, perform classical analysis on the mean and statistical error and use a Bayesian analysis of the detector sensitivity. 2. I repeated this entire problem for a quadratic plot. The files ending in "_quad.pdf" are from the second iteration with a quadratic dataset. a. The data are shown in blue, the linear fit in red, and the quadratic fit in blue. b. The symmetry of the histogram reflects unbiased estimators. c. The functional form is: 1/(2^{df/2}\Gamma(df/2)) x^{df/2-1}e^{-x/2} The single parameter, df, is the number of degrees of freedom in the fit. Since we have 15 data points, this is either 12 or 13. For the linear fit, we have two free parameters so df=13; for the quadratic fit with three free parameters, df=12. We expected the reduced chi square to be around 1, and this is the result for both fits. * For comparison I give a normalized reduced Chi2 distribution for df=12 and df=13. Overlaying them was not obviously easy, but comparing by-eye they are identical. I plotted reduced chi squares through because of their goodness-of-fit usefulness, but the conversion between the two statistics is simple. d. In the case of the linear data, the fit gets worse. It is difficult to predict what happens here: if we are lucky enough that we can fit some noise to the new x^2 degree of freedom, the X^2 will lower. However, the ndf has reduced by 1, so if there is overall no noise we can fit away, then the reduced chi square will rise. In the case of the quadratic data, the linear fit is abysmal and the quadratic fit is around 1. This is also expected. 3. a. I sampled the distribution using the cdf; for reference I included both the plot of the distrubution and the cdf. b. Transforming error bars for log data is not entirely trivial because applying the logarithm literally yields asymmetric error bars. Instead, I transformed to first-order (d/dx log x), using \sigma_{D,log}=\sigma_D/D c. It takes a rather long time to run this with a large number of statistics (maybe I am doing something very inefficient). From running the experiment 500 times, I can say that poor sampling of the tails of the distribution leads to underestimation: that is, we can see a bias in the distribution that favors the left side. I verified this by reducing the number of samples taken from the distribution by a factor of 10 and re-running, giving bins that are much less well-populated. I attached outputs for both cases. Rather than wrestle with masking or reassigning garbage datasets post-log, I discarded all results for which the fit failed. ''' import random import math import matplotlib.pyplot as plt import numpy as np import scipy.stats as stat #Samples from the PDF and computes the mean. #Maps random reals in (0,1) to the Poisson distribution using a Poisson lookup table class MeasurementTaker: def __init__(self, resolution): self.theResolution=resolution def GeneratePointWithResolution(self, val): point=np.random.normal(loc=val,scale=self.theResolution) return point class theLine: def __init__(self, degree): self.quadcoeff=1 self.degree=degree self.m=2 self.b=6 self.res=2 self.X=np.linspace(1,15, 15) self.Y=[] self.x=0 self.residuals=0 self.ChiSquare=0 if self.degree == 1: self.BuildLine() else: self.BuildLineQuadratic() self.FitLine() def BuildLine(self): measurer = MeasurementTaker(2) for i, entry in enumerate(self.X): self.Y.append(measurer.GeneratePointWithResolution(self.m*entry+self.b)) def BuildLineQuadratic(self): measurer = MeasurementTaker(2) for i, entry in enumerate(self.X): self.Y.append(measurer.GeneratePointWithResolution(self.quadcoeff*entry**2+self.m*entry+self.b)) def FitLine(self): self.coeffs = np.polyfit(self.X, self.Y, 1) self.ChiSquare=np.sum((((self.coeffs[0]*self.X+self.coeffs[1])-self.Y)/self.res) ** 2) self.quadcoeffs=np.polyfit(self.X, self.Y,2) self.ChiSquareQuad=np.sum((((self.quadcoeffs[0]*self.X**2+self.quadcoeffs[1]*self.X+self.quadcoeffs[2])-self.Y)/self.res)**2) def PlotLine(self, title): plt.errorbar(self.X,self.Y,xerr=0,yerr=2) plt.plot(self.X,self.quadcoeffs[0]*self.X**2+self.quadcoeffs[1]*self.X+self.quadcoeffs[2]) plt.plot(self.X,self.coeffs[0]*self.X+self.coeffs[1]) plt.xlabel("x") plt.ylabel("y") plt.title("The Line") plt.savefig(title) plt.clf() class theExponential: lookup_x=[] lookup_y=[] cdf=[] maxcdf=0 def GenerateSample(self): randomNumber = random.uniform(theExponential.cdf[0],theExponential.maxcdf) index=-1 if randomNumber < theExponential.cdf[0]: index=0 else: for i in range(0,len(theExponential.cdf)-1): if randomNumber > theExponential.cdf[i] and randomNumber < theExponential.cdf[i+1]: index=i+1 if index != -1: self.samples.append(theExponential.lookup_x[index]) def GenerateNSamples(self, numSamples): for i in range(0, numSamples): self.GenerateSample() def AnalyzeDistro(self, index): y,binEdges = np.histogram(self.samples,bins=10) bincenters = 0.5*(binEdges[1:]+binEdges[:-1]) menStd = np.sqrt(y) width = 0.20 plt.clf() if index == 1: plt.bar(bincenters, y, width=width, yerr=menStd, ecolor='g') plt.xlabel("Value") plt.ylabel("Entries") plt.title(str(len(self.samples))+" exponential samples") plt.savefig("3b_exp_samples.png") plt.clf() self.logsamples=np.log(y) logcoeffs = np.polyfit(bincenters, self.logsamples, 1) if index == 1: plt.bar(bincenters,self.logsamples,width=width, yerr=menStd/y, ecolor='g') plt.xlabel("Value") plt.ylabel("log Entries") plt.title(str(len(self.samples))+" exponential samples") theFitX=np.linspace(0,5,1000) theFitY=theFitX*logcoeffs[0]+logcoeffs[1] plt.plot(theFitX,theFitY) plt.savefig("3b_exp_samples_log.png") plt.clf() return -1*logcoeffs[0] def __init__(self, nSamples): self.samples=[] self.logbins=[] self.GenerateNSamples(nSamples) theExponential.lookup_x=np.linspace(0, 5, 10000) theExponential.lookup_y=np.exp(-theExponential.lookup_x) runningAverage=0 for val in theExponential.lookup_y: runningAverage=runningAverage+val theExponential.cdf.append(runningAverage) theExponential.maxcdf=theExponential.cdf[len(theExponential.cdf)-1] plt.clf() print("Running...") plt.plot(theExponential.lookup_x, theExponential.lookup_y) plt.xlabel("x") plt.ylabel("$e^{-x}$") plt.title("Exponential distribution") plt.savefig("3_exponential_dist.png") plt.clf() plt.plot(theExponential.lookup_x, theExponential.cdf) plt.xlabel("x") plt.ylabel("cdf") plt.title("Exponential cdf") plt.savefig("3_exponential_cdf.png") plt.clf() for i in range(0,2): fileEnding=0 degree=i+1 if i == 0: fileEnding=".png" else: fileEnding="_quad.png" Lines=[] slopes=[] intercepts=[] quads=[] chisqs=[] chisqquads=[] for j in range(0,1000): line = theLine(degree) Lines.append(line) if j == 1: line.PlotLine("2a_line"+fileEnding) if i == 0: slopes.append(line.coeffs[0]) intercepts.append(line.coeffs[1]) else: quads.append(line.quadcoeffs[0]) slopes.append(line.quadcoeffs[1]) intercepts.append(line.quadcoeffs[2]) chisqs.append(line.ChiSquare/13) chisqquads.append(line.ChiSquareQuad/12) plt.hist(slopes, bins=100) plt.xlabel("m") plt.ylabel("Entries") plt.title("Slopes histogram") plt.savefig("2b_slopes"+fileEnding) plt.clf() plt.hist(intercepts, bins=100) plt.xlabel("b") plt.ylabel("Entries") plt.title("Intercepts histogram") plt.savefig("2b_intercepts"+fileEnding) plt.clf() if i == 1: plt.hist(intercepts, bins=100) plt.xlabel("a (quadratic coefficient)") plt.ylabel("Entries") plt.title("Quadratic coefficient histogram") plt.savefig("2b_quads"+fileEnding) plt.clf() plt.hist(chisqs, bins=100) plt.xlabel("X^2 / ndf") plt.ylabel("Entries") plt.title("Chi-square of linear fit") plt.savefig("2c_chisq"+fileEnding) plt.clf() plt.hist(chisqquads, bins=100) plt.xlabel("X^2 / ndf") plt.ylabel("Entries") plt.title("Chi-square of quadratic fit") plt.savefig("2d_chisq2"+fileEnding) plt.clf() theNdf=0 if i ==1: theNdf=12 else: theNdf=13 chispace=np.linspace(0,theNdf*3,1000) chidist=stat.chi2(theNdf,1) plt.plot(chispace/theNdf, chidist.pdf(chispace)) plt.xlabel("X^2") plt.ylabel("P") plt.title("Chi-square distribution (ndf ="+str(theNdf)+")") plt.savefig("2d_chisq2pdf"+fileEnding) plt.clf() Taus=[] for i in range(0,500): if i % 100 == 0: print(i) exp = theExponential(500) result=exp.AnalyzeDistro(i) if math.isnan(result) == False: Taus.append(result) print(Taus) plt.hist(Taus, bins=20) plt.xlabel("Tau") plt.ylabel("Entries") plt.title("Estimated Tau") plt.savefig("3c_tau_hist_500samples.png") Taus=[] for i in range(0,500): if i % 100 == 0: print(i) exp = theExponential(50) result=exp.AnalyzeDistro(i) if math.isnan(result) == False: Taus.append(result) print(Taus) plt.hist(Taus, bins=20) plt.xlabel("Tau") plt.ylabel("Entries") plt.title("Estimated Tau") plt.savefig("3c_tau_hist_50samples.png")
[ "matplotlib.pyplot.title", "numpy.sum", "matplotlib.pyplot.clf", "numpy.polyfit", "matplotlib.pyplot.bar", "numpy.histogram", "numpy.exp", "numpy.random.normal", "numpy.linspace", "matplotlib.pyplot.errorbar", "math.isnan", "scipy.stats.chi2", "matplotlib.pyplot.ylabel", "numpy.log", "matplotlib.pyplot.plot", "matplotlib.pyplot.hist", "random.uniform", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((8154, 8178), 'numpy.linspace', 'np.linspace', (['(0)', '(5)', '(10000)'], {}), '(0, 5, 10000)\n', (8165, 8178), True, 'import numpy as np\n'), ((8204, 8236), 'numpy.exp', 'np.exp', (['(-theExponential.lookup_x)'], {}), '(-theExponential.lookup_x)\n', (8210, 8236), True, 'import numpy as np\n'), ((8448, 8457), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (8455, 8457), True, 'import matplotlib.pyplot as plt\n'), ((8482, 8540), 'matplotlib.pyplot.plot', 'plt.plot', (['theExponential.lookup_x', 'theExponential.lookup_y'], {}), '(theExponential.lookup_x, theExponential.lookup_y)\n', (8490, 8540), True, 'import matplotlib.pyplot as plt\n'), ((8542, 8557), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (8552, 8557), True, 'import matplotlib.pyplot as plt\n'), ((8559, 8581), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$e^{-x}$"""'], {}), "('$e^{-x}$')\n", (8569, 8581), True, 'import matplotlib.pyplot as plt\n'), ((8583, 8620), 'matplotlib.pyplot.title', 'plt.title', (['"""Exponential distribution"""'], {}), "('Exponential distribution')\n", (8592, 8620), True, 'import matplotlib.pyplot as plt\n'), ((8622, 8659), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""3_exponential_dist.png"""'], {}), "('3_exponential_dist.png')\n", (8633, 8659), True, 'import matplotlib.pyplot as plt\n'), ((8661, 8670), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (8668, 8670), True, 'import matplotlib.pyplot as plt\n'), ((8674, 8727), 'matplotlib.pyplot.plot', 'plt.plot', (['theExponential.lookup_x', 'theExponential.cdf'], {}), '(theExponential.lookup_x, theExponential.cdf)\n', (8682, 8727), True, 'import matplotlib.pyplot as plt\n'), ((8729, 8744), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (8739, 8744), True, 'import matplotlib.pyplot as plt\n'), ((8746, 8763), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""cdf"""'], {}), "('cdf')\n", (8756, 8763), True, 'import matplotlib.pyplot as plt\n'), ((8766, 8794), 'matplotlib.pyplot.title', 'plt.title', (['"""Exponential cdf"""'], {}), "('Exponential cdf')\n", (8775, 8794), True, 'import matplotlib.pyplot as plt\n'), ((8796, 8832), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""3_exponential_cdf.png"""'], {}), "('3_exponential_cdf.png')\n", (8807, 8832), True, 'import matplotlib.pyplot as plt\n'), ((8834, 8843), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (8841, 8843), True, 'import matplotlib.pyplot as plt\n'), ((11260, 11283), 'matplotlib.pyplot.hist', 'plt.hist', (['Taus'], {'bins': '(20)'}), '(Taus, bins=20)\n', (11268, 11283), True, 'import matplotlib.pyplot as plt\n'), ((11285, 11302), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Tau"""'], {}), "('Tau')\n", (11295, 11302), True, 'import matplotlib.pyplot as plt\n'), ((11304, 11325), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Entries"""'], {}), "('Entries')\n", (11314, 11325), True, 'import matplotlib.pyplot as plt\n'), ((11327, 11353), 'matplotlib.pyplot.title', 'plt.title', (['"""Estimated Tau"""'], {}), "('Estimated Tau')\n", (11336, 11353), True, 'import matplotlib.pyplot as plt\n'), ((11355, 11396), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""3c_tau_hist_500samples.png"""'], {}), "('3c_tau_hist_500samples.png')\n", (11366, 11396), True, 'import matplotlib.pyplot as plt\n'), ((11615, 11638), 'matplotlib.pyplot.hist', 'plt.hist', (['Taus'], {'bins': '(20)'}), '(Taus, bins=20)\n', (11623, 11638), True, 'import matplotlib.pyplot as plt\n'), ((11640, 11657), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Tau"""'], {}), "('Tau')\n", (11650, 11657), True, 'import matplotlib.pyplot as plt\n'), ((11659, 11680), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Entries"""'], {}), "('Entries')\n", (11669, 11680), True, 'import matplotlib.pyplot as plt\n'), ((11682, 11708), 'matplotlib.pyplot.title', 'plt.title', (['"""Estimated Tau"""'], {}), "('Estimated Tau')\n", (11691, 11708), True, 'import matplotlib.pyplot as plt\n'), ((11710, 11750), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""3c_tau_hist_50samples.png"""'], {}), "('3c_tau_hist_50samples.png')\n", (11721, 11750), True, 'import matplotlib.pyplot as plt\n'), ((9619, 9645), 'matplotlib.pyplot.hist', 'plt.hist', (['slopes'], {'bins': '(100)'}), '(slopes, bins=100)\n', (9627, 9645), True, 'import matplotlib.pyplot as plt\n'), ((9651, 9666), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""m"""'], {}), "('m')\n", (9661, 9666), True, 'import matplotlib.pyplot as plt\n'), ((9672, 9693), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Entries"""'], {}), "('Entries')\n", (9682, 9693), True, 'import matplotlib.pyplot as plt\n'), ((9699, 9728), 'matplotlib.pyplot.title', 'plt.title', (['"""Slopes histogram"""'], {}), "('Slopes histogram')\n", (9708, 9728), True, 'import matplotlib.pyplot as plt\n'), ((9734, 9771), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('2b_slopes' + fileEnding)"], {}), "('2b_slopes' + fileEnding)\n", (9745, 9771), True, 'import matplotlib.pyplot as plt\n'), ((9775, 9784), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (9782, 9784), True, 'import matplotlib.pyplot as plt\n'), ((9796, 9826), 'matplotlib.pyplot.hist', 'plt.hist', (['intercepts'], {'bins': '(100)'}), '(intercepts, bins=100)\n', (9804, 9826), True, 'import matplotlib.pyplot as plt\n'), ((9832, 9847), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""b"""'], {}), "('b')\n", (9842, 9847), True, 'import matplotlib.pyplot as plt\n'), ((9853, 9874), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Entries"""'], {}), "('Entries')\n", (9863, 9874), True, 'import matplotlib.pyplot as plt\n'), ((9880, 9913), 'matplotlib.pyplot.title', 'plt.title', (['"""Intercepts histogram"""'], {}), "('Intercepts histogram')\n", (9889, 9913), True, 'import matplotlib.pyplot as plt\n'), ((9919, 9960), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('2b_intercepts' + fileEnding)"], {}), "('2b_intercepts' + fileEnding)\n", (9930, 9960), True, 'import matplotlib.pyplot as plt\n'), ((9964, 9973), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (9971, 9973), True, 'import matplotlib.pyplot as plt\n'), ((10268, 10294), 'matplotlib.pyplot.hist', 'plt.hist', (['chisqs'], {'bins': '(100)'}), '(chisqs, bins=100)\n', (10276, 10294), True, 'import matplotlib.pyplot as plt\n'), ((10300, 10323), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""X^2 / ndf"""'], {}), "('X^2 / ndf')\n", (10310, 10323), True, 'import matplotlib.pyplot as plt\n'), ((10329, 10350), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Entries"""'], {}), "('Entries')\n", (10339, 10350), True, 'import matplotlib.pyplot as plt\n'), ((10356, 10393), 'matplotlib.pyplot.title', 'plt.title', (['"""Chi-square of linear fit"""'], {}), "('Chi-square of linear fit')\n", (10365, 10393), True, 'import matplotlib.pyplot as plt\n'), ((10399, 10435), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('2c_chisq' + fileEnding)"], {}), "('2c_chisq' + fileEnding)\n", (10410, 10435), True, 'import matplotlib.pyplot as plt\n'), ((10439, 10448), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (10446, 10448), True, 'import matplotlib.pyplot as plt\n'), ((10466, 10496), 'matplotlib.pyplot.hist', 'plt.hist', (['chisqquads'], {'bins': '(100)'}), '(chisqquads, bins=100)\n', (10474, 10496), True, 'import matplotlib.pyplot as plt\n'), ((10502, 10525), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""X^2 / ndf"""'], {}), "('X^2 / ndf')\n", (10512, 10525), True, 'import matplotlib.pyplot as plt\n'), ((10531, 10552), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Entries"""'], {}), "('Entries')\n", (10541, 10552), True, 'import matplotlib.pyplot as plt\n'), ((10558, 10598), 'matplotlib.pyplot.title', 'plt.title', (['"""Chi-square of quadratic fit"""'], {}), "('Chi-square of quadratic fit')\n", (10567, 10598), True, 'import matplotlib.pyplot as plt\n'), ((10604, 10641), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('2d_chisq2' + fileEnding)"], {}), "('2d_chisq2' + fileEnding)\n", (10615, 10641), True, 'import matplotlib.pyplot as plt\n'), ((10645, 10654), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (10652, 10654), True, 'import matplotlib.pyplot as plt\n'), ((10757, 10789), 'numpy.linspace', 'np.linspace', (['(0)', '(theNdf * 3)', '(1000)'], {}), '(0, theNdf * 3, 1000)\n', (10768, 10789), True, 'import numpy as np\n'), ((10799, 10819), 'scipy.stats.chi2', 'stat.chi2', (['theNdf', '(1)'], {}), '(theNdf, 1)\n', (10808, 10819), True, 'import scipy.stats as stat\n'), ((10878, 10895), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""X^2"""'], {}), "('X^2')\n", (10888, 10895), True, 'import matplotlib.pyplot as plt\n'), ((10901, 10916), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""P"""'], {}), "('P')\n", (10911, 10916), True, 'import matplotlib.pyplot as plt\n'), ((10987, 11027), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('2d_chisq2pdf' + fileEnding)"], {}), "('2d_chisq2pdf' + fileEnding)\n", (10998, 11027), True, 'import matplotlib.pyplot as plt\n'), ((11031, 11040), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (11038, 11040), True, 'import matplotlib.pyplot as plt\n'), ((4403, 4454), 'numpy.random.normal', 'np.random.normal', ([], {'loc': 'val', 'scale': 'self.theResolution'}), '(loc=val, scale=self.theResolution)\n', (4419, 4454), True, 'import numpy as np\n'), ((4659, 4681), 'numpy.linspace', 'np.linspace', (['(1)', '(15)', '(15)'], {}), '(1, 15, 15)\n', (4670, 4681), True, 'import numpy as np\n'), ((5400, 5429), 'numpy.polyfit', 'np.polyfit', (['self.X', 'self.Y', '(1)'], {}), '(self.X, self.Y, 1)\n', (5410, 5429), True, 'import numpy as np\n'), ((5454, 5531), 'numpy.sum', 'np.sum', (['(((self.coeffs[0] * self.X + self.coeffs[1] - self.Y) / self.res) ** 2)'], {}), '(((self.coeffs[0] * self.X + self.coeffs[1] - self.Y) / self.res) ** 2)\n', (5460, 5531), True, 'import numpy as np\n'), ((5551, 5580), 'numpy.polyfit', 'np.polyfit', (['self.X', 'self.Y', '(2)'], {}), '(self.X, self.Y, 2)\n', (5561, 5580), True, 'import numpy as np\n'), ((5608, 5732), 'numpy.sum', 'np.sum', (['(((self.quadcoeffs[0] * self.X ** 2 + self.quadcoeffs[1] * self.X + self.\n quadcoeffs[2] - self.Y) / self.res) ** 2)'], {}), '(((self.quadcoeffs[0] * self.X ** 2 + self.quadcoeffs[1] * self.X +\n self.quadcoeffs[2] - self.Y) / self.res) ** 2)\n', (5614, 5732), True, 'import numpy as np\n'), ((5766, 5810), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['self.X', 'self.Y'], {'xerr': '(0)', 'yerr': '(2)'}), '(self.X, self.Y, xerr=0, yerr=2)\n', (5778, 5810), True, 'import matplotlib.pyplot as plt\n'), ((5817, 5922), 'matplotlib.pyplot.plot', 'plt.plot', (['self.X', '(self.quadcoeffs[0] * self.X ** 2 + self.quadcoeffs[1] * self.X + self.\n quadcoeffs[2])'], {}), '(self.X, self.quadcoeffs[0] * self.X ** 2 + self.quadcoeffs[1] *\n self.X + self.quadcoeffs[2])\n', (5825, 5922), True, 'import matplotlib.pyplot as plt\n'), ((5917, 5975), 'matplotlib.pyplot.plot', 'plt.plot', (['self.X', '(self.coeffs[0] * self.X + self.coeffs[1])'], {}), '(self.X, self.coeffs[0] * self.X + self.coeffs[1])\n', (5925, 5975), True, 'import matplotlib.pyplot as plt\n'), ((5980, 5995), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (5990, 5995), True, 'import matplotlib.pyplot as plt\n'), ((6005, 6020), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (6015, 6020), True, 'import matplotlib.pyplot as plt\n'), ((6030, 6051), 'matplotlib.pyplot.title', 'plt.title', (['"""The Line"""'], {}), "('The Line')\n", (6039, 6051), True, 'import matplotlib.pyplot as plt\n'), ((6061, 6079), 'matplotlib.pyplot.savefig', 'plt.savefig', (['title'], {}), '(title)\n', (6072, 6079), True, 'import matplotlib.pyplot as plt\n'), ((6089, 6098), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (6096, 6098), True, 'import matplotlib.pyplot as plt\n'), ((6241, 6301), 'random.uniform', 'random.uniform', (['theExponential.cdf[0]', 'theExponential.maxcdf'], {}), '(theExponential.cdf[0], theExponential.maxcdf)\n', (6255, 6301), False, 'import random\n'), ((6895, 6930), 'numpy.histogram', 'np.histogram', (['self.samples'], {'bins': '(10)'}), '(self.samples, bins=10)\n', (6907, 6930), True, 'import numpy as np\n'), ((7007, 7017), 'numpy.sqrt', 'np.sqrt', (['y'], {}), '(y)\n', (7014, 7017), True, 'import numpy as np\n'), ((7054, 7063), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (7061, 7063), True, 'import matplotlib.pyplot as plt\n'), ((7400, 7409), 'numpy.log', 'np.log', (['y'], {}), '(y)\n', (7406, 7409), True, 'import numpy as np\n'), ((7431, 7473), 'numpy.polyfit', 'np.polyfit', (['bincenters', 'self.logsamples', '(1)'], {}), '(bincenters, self.logsamples, 1)\n', (7441, 7473), True, 'import numpy as np\n'), ((10009, 10039), 'matplotlib.pyplot.hist', 'plt.hist', (['intercepts'], {'bins': '(100)'}), '(intercepts, bins=100)\n', (10017, 10039), True, 'import matplotlib.pyplot as plt\n'), ((10053, 10092), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""a (quadratic coefficient)"""'], {}), "('a (quadratic coefficient)')\n", (10063, 10092), True, 'import matplotlib.pyplot as plt\n'), ((10106, 10127), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Entries"""'], {}), "('Entries')\n", (10116, 10127), True, 'import matplotlib.pyplot as plt\n'), ((10141, 10185), 'matplotlib.pyplot.title', 'plt.title', (['"""Quadratic coefficient histogram"""'], {}), "('Quadratic coefficient histogram')\n", (10150, 10185), True, 'import matplotlib.pyplot as plt\n'), ((10199, 10235), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('2b_quads' + fileEnding)"], {}), "('2b_quads' + fileEnding)\n", (10210, 10235), True, 'import matplotlib.pyplot as plt\n'), ((10247, 10256), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (10254, 10256), True, 'import matplotlib.pyplot as plt\n'), ((11188, 11206), 'math.isnan', 'math.isnan', (['result'], {}), '(result)\n', (11198, 11206), False, 'import math\n'), ((11543, 11561), 'math.isnan', 'math.isnan', (['result'], {}), '(result)\n', (11553, 11561), False, 'import math\n'), ((7106, 7166), 'matplotlib.pyplot.bar', 'plt.bar', (['bincenters', 'y'], {'width': 'width', 'yerr': 'menStd', 'ecolor': '"""g"""'}), "(bincenters, y, width=width, yerr=menStd, ecolor='g')\n", (7113, 7166), True, 'import matplotlib.pyplot as plt\n'), ((7180, 7199), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Value"""'], {}), "('Value')\n", (7190, 7199), True, 'import matplotlib.pyplot as plt\n'), ((7213, 7234), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Entries"""'], {}), "('Entries')\n", (7223, 7234), True, 'import matplotlib.pyplot as plt\n'), ((7318, 7351), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""3b_exp_samples.png"""'], {}), "('3b_exp_samples.png')\n", (7329, 7351), True, 'import matplotlib.pyplot as plt\n'), ((7365, 7374), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (7372, 7374), True, 'import matplotlib.pyplot as plt\n'), ((7511, 7589), 'matplotlib.pyplot.bar', 'plt.bar', (['bincenters', 'self.logsamples'], {'width': 'width', 'yerr': '(menStd / y)', 'ecolor': '"""g"""'}), "(bincenters, self.logsamples, width=width, yerr=menStd / y, ecolor='g')\n", (7518, 7589), True, 'import matplotlib.pyplot as plt\n'), ((7599, 7618), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Value"""'], {}), "('Value')\n", (7609, 7618), True, 'import matplotlib.pyplot as plt\n'), ((7632, 7657), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""log Entries"""'], {}), "('log Entries')\n", (7642, 7657), True, 'import matplotlib.pyplot as plt\n'), ((7749, 7772), 'numpy.linspace', 'np.linspace', (['(0)', '(5)', '(1000)'], {}), '(0, 5, 1000)\n', (7760, 7772), True, 'import numpy as np\n'), ((7839, 7865), 'matplotlib.pyplot.plot', 'plt.plot', (['theFitX', 'theFitY'], {}), '(theFitX, theFitY)\n', (7847, 7865), True, 'import matplotlib.pyplot as plt\n'), ((7878, 7915), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""3b_exp_samples_log.png"""'], {}), "('3b_exp_samples_log.png')\n", (7889, 7915), True, 'import matplotlib.pyplot as plt\n'), ((7929, 7938), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (7936, 7938), True, 'import matplotlib.pyplot as plt\n')]
from fontTools.misc.fixedTools import floatToFixed from fontTools.ttLib import TTFont, newTable, registerCustomTableClass from fontTools.varLib.models import VariationModel, allEqual from fontTools.varLib.varStore import OnlineVarStoreBuilder from rcjktools.varco import VarCoFont from rcjktools.table_VarC import ( fixedCoord, getToFixedConverterForNumIntBitsForScale, transformToIntConverters, transformDefaults, VARIDX_KEY, ComponentRecord, CoordinateRecord, TransformRecord, ) def precompileAllComponents(vcData, allLocations, axisTags): precompiled = {} masterModel = VariationModel(allLocations, axisTags) storeBuilder = OnlineVarStoreBuilder(axisTags) for gn in vcData.keys(): components, locations = vcData[gn] sparseMapping = [None] * len(allLocations) for locIndex, loc in enumerate(locations): allIndex = allLocations.index(loc) sparseMapping[allIndex] = locIndex subModel, mapping = masterModel.getSubModel(sparseMapping) storeBuilder.setModel(subModel) # reorder master values according to allLocations components = [[c[i] for i in mapping] for c in components] precompiledGlyph = precompileVarComponents( gn, components, storeBuilder, axisTags ) if precompiledGlyph is not None: # glyph components do not contain data that has to go to the 'VarC' table precompiled[gn] = precompiledGlyph return precompiled, storeBuilder.finish() def precompileVarComponents(glyphName, components, storeBuilder, axisTags): precompiled = [] haveVarCData = False for component in components: coordKeys = sorted({k for coord, transform in component for k in coord}) coordDefaults = {k: 0 for k in coordKeys} coordConverters = {k: fixedCoord for k in coordKeys} dicts = [coord for coord, transform in component] coordDict = compileDicts( dicts, coordDefaults, coordConverters, storeBuilder, allowIndividualVarIdx=True, ) dicts = [transform for coord, transform in component] transformToIntConvertersLocal = dict(transformToIntConverters) numIntBitsForScale = calcNumIntBitsForScale(dicts) scaleConvert = getToFixedConverterForNumIntBitsForScale(numIntBitsForScale) transformToIntConvertersLocal["ScaleX"] = scaleConvert transformToIntConvertersLocal["ScaleY"] = scaleConvert transformDict = compileDicts( dicts, transformDefaults, transformToIntConvertersLocal, storeBuilder ) if coordDict or transformDict: haveVarCData = True precompiled.append( ComponentRecord( CoordinateRecord(coordDict), TransformRecord(transformDict), numIntBitsForScale, ), ) if haveVarCData: return precompiled else: return None def compileDicts( dicts, dictDefaults, dictConverters, storeBuilder, allowIndividualVarIdx=False ): resultDict = {} convertedMasterValues = {} hasVariations = False # True if any key has variations for k, default in dictDefaults.items(): masterValues = [d.get(k, default) for d in dicts] if not allEqual(masterValues): hasVariations = True elif masterValues[0] == default: # No variations, value is default, skip altogether continue resultDict[k] = dict(value=masterValues[0]) convertedMasterValues[k] = [dictConverters[k](value) for value in masterValues] if hasVariations: for k, masterValues in convertedMasterValues.items(): if allowIndividualVarIdx and allEqual( masterValues ): # TODO: Avoid second allEqual() call? continue base, varIdx = storeBuilder.storeMasters(masterValues) assert base == masterValues[0], (k, base, masterValues) resultDict[k][VARIDX_KEY] = varIdx return resultDict def calcNumIntBitsForScale(dicts): minScale, maxScale = _calcMinMaxScale(dicts) numIntBits = _calcNumIntBits(minScale, maxScale) return numIntBits def _calcNumIntBits(minValue, maxValue, maxIntBits=7): # TODO: there must be a better way, but at least this is correct assert minValue <= maxValue for i in range(maxIntBits): precisionBits = 16 - i minIntVal = floatToFixed(minValue, precisionBits) maxIntVal = floatToFixed(maxValue, precisionBits) if -32768 <= minIntVal and maxIntVal <= 32767: return i + 1 # use one more: deltas may be bigger! (this is rather fuzzy) raise ValueError("value does not fit in maxBits") def _calcMinMaxScale(transformDicts): minScale = 0 maxScale = 0 for d in transformDicts: minScale = min(minScale, d.get("ScaleX", 0)) minScale = min(minScale, d.get("ScaleY", 0)) maxScale = max(maxScale, d.get("ScaleX", 0)) maxScale = max(maxScale, d.get("ScaleY", 0)) return minScale, maxScale def remapVarIdxs(precompiled, mapping): for glyphName, components in precompiled.items(): for component in components: for v in component.coord.values(): if VARIDX_KEY in v: v[VARIDX_KEY] = mapping[v[VARIDX_KEY]] for v in component.transform.values(): if VARIDX_KEY in v: v[VARIDX_KEY] = mapping[v[VARIDX_KEY]] def buildVarCTable(ttf, vcData, allLocations): axisTags = [axis.axisTag for axis in ttf["fvar"].axes] varc_table = ttf["VarC"] = newTable("VarC") varc_table.Version = 0x00010000 precompiled, store = precompileAllComponents(vcData, allLocations, axisTags) mapping = store.optimize() remapVarIdxs(precompiled, mapping) varc_table.GlyphData = precompiled varc_table.VarStore = store def buildVarC( designspacePath, ttfPath, outTTFPath, doTTX, saveWoff2, neutralOnly=False ): import pathlib registerCustomTableClass("VarC", "rcjktools.table_VarC", "table_VarC") ttfPath = pathlib.Path(ttfPath) if outTTFPath is None: outTTFPath = ttfPath.parent / (ttfPath.stem + "-varc" + ttfPath.suffix) else: outTTFPath = pathlib.Path(outTTFPath) ttf = TTFont(ttfPath) axisTags = [axis.axisTag for axis in ttf["fvar"].axes] globalAxisNames = {axisTag for axisTag in axisTags if axisTag[0] != "V"} vcFont = VarCoFont(designspacePath) vcData, allLocations, neutralGlyphNames = vcFont.extractVarCoData( globalAxisNames, neutralOnly ) if neutralGlyphNames: gvarTable = ttf["gvar"] for glyphName in neutralGlyphNames: del gvarTable.variations[glyphName] buildVarCTable(ttf, vcData, allLocations) if doTTX: outTTXPath = outTTFPath.parent / (outTTFPath.stem + "-before.ttx") ttf.saveXML(outTTXPath, tables=["VarC"]) ttf.save(outTTFPath) ttf = TTFont(outTTFPath, lazy=True) # Load from scratch if doTTX: outTTXPath = outTTFPath.parent / (outTTFPath.stem + "-after.ttx") ttf.saveXML(outTTXPath, tables=["VarC"]) if saveWoff2: outWoff2Path = outTTFPath.parent / (outTTFPath.stem + ".woff2") ttf.flavor = "woff2" ttf.save(outWoff2Path) def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument("designspace", help="The VarCo .designspace source") parser.add_argument("ttf", help="The input Variable Font") parser.add_argument("--output", help="The output Variable Font") parser.add_argument( "--ttx", action="store_true", help="write TTX dumps for the VarC table." ) parser.add_argument("--no-woff2", action="store_true") parser.add_argument( "--neutral-only", action="store_true", help="hack: build a pseudo static COLRv1 table, that won't respond to the " "non-hidden axes", ) args = parser.parse_args() buildVarC( args.designspace, args.ttf, args.output, args.ttx, not args.no_woff2, args.neutral_only, ) if __name__ == "__main__": main()
[ "fontTools.varLib.models.VariationModel", "fontTools.ttLib.TTFont", "argparse.ArgumentParser", "fontTools.varLib.models.allEqual", "fontTools.ttLib.newTable", "fontTools.varLib.varStore.OnlineVarStoreBuilder", "pathlib.Path", "rcjktools.table_VarC.getToFixedConverterForNumIntBitsForScale", "fontTools.misc.fixedTools.floatToFixed", "rcjktools.table_VarC.CoordinateRecord", "rcjktools.table_VarC.TransformRecord", "fontTools.ttLib.registerCustomTableClass", "rcjktools.varco.VarCoFont" ]
[((615, 653), 'fontTools.varLib.models.VariationModel', 'VariationModel', (['allLocations', 'axisTags'], {}), '(allLocations, axisTags)\n', (629, 653), False, 'from fontTools.varLib.models import VariationModel, allEqual\n'), ((673, 704), 'fontTools.varLib.varStore.OnlineVarStoreBuilder', 'OnlineVarStoreBuilder', (['axisTags'], {}), '(axisTags)\n', (694, 704), False, 'from fontTools.varLib.varStore import OnlineVarStoreBuilder\n'), ((5729, 5745), 'fontTools.ttLib.newTable', 'newTable', (['"""VarC"""'], {}), "('VarC')\n", (5737, 5745), False, 'from fontTools.ttLib import TTFont, newTable, registerCustomTableClass\n'), ((6126, 6196), 'fontTools.ttLib.registerCustomTableClass', 'registerCustomTableClass', (['"""VarC"""', '"""rcjktools.table_VarC"""', '"""table_VarC"""'], {}), "('VarC', 'rcjktools.table_VarC', 'table_VarC')\n", (6150, 6196), False, 'from fontTools.ttLib import TTFont, newTable, registerCustomTableClass\n'), ((6211, 6232), 'pathlib.Path', 'pathlib.Path', (['ttfPath'], {}), '(ttfPath)\n', (6223, 6232), False, 'import pathlib\n'), ((6406, 6421), 'fontTools.ttLib.TTFont', 'TTFont', (['ttfPath'], {}), '(ttfPath)\n', (6412, 6421), False, 'from fontTools.ttLib import TTFont, newTable, registerCustomTableClass\n'), ((6572, 6598), 'rcjktools.varco.VarCoFont', 'VarCoFont', (['designspacePath'], {}), '(designspacePath)\n', (6581, 6598), False, 'from rcjktools.varco import VarCoFont\n'), ((7086, 7115), 'fontTools.ttLib.TTFont', 'TTFont', (['outTTFPath'], {'lazy': '(True)'}), '(outTTFPath, lazy=True)\n', (7092, 7115), False, 'from fontTools.ttLib import TTFont, newTable, registerCustomTableClass\n'), ((7474, 7499), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (7497, 7499), False, 'import argparse\n'), ((2348, 2408), 'rcjktools.table_VarC.getToFixedConverterForNumIntBitsForScale', 'getToFixedConverterForNumIntBitsForScale', (['numIntBitsForScale'], {}), '(numIntBitsForScale)\n', (2388, 2408), False, 'from rcjktools.table_VarC import fixedCoord, getToFixedConverterForNumIntBitsForScale, transformToIntConverters, transformDefaults, VARIDX_KEY, ComponentRecord, CoordinateRecord, TransformRecord\n'), ((4532, 4569), 'fontTools.misc.fixedTools.floatToFixed', 'floatToFixed', (['minValue', 'precisionBits'], {}), '(minValue, precisionBits)\n', (4544, 4569), False, 'from fontTools.misc.fixedTools import floatToFixed\n'), ((4590, 4627), 'fontTools.misc.fixedTools.floatToFixed', 'floatToFixed', (['maxValue', 'precisionBits'], {}), '(maxValue, precisionBits)\n', (4602, 4627), False, 'from fontTools.misc.fixedTools import floatToFixed\n'), ((6371, 6395), 'pathlib.Path', 'pathlib.Path', (['outTTFPath'], {}), '(outTTFPath)\n', (6383, 6395), False, 'import pathlib\n'), ((3360, 3382), 'fontTools.varLib.models.allEqual', 'allEqual', (['masterValues'], {}), '(masterValues)\n', (3368, 3382), False, 'from fontTools.varLib.models import VariationModel, allEqual\n'), ((2809, 2836), 'rcjktools.table_VarC.CoordinateRecord', 'CoordinateRecord', (['coordDict'], {}), '(coordDict)\n', (2825, 2836), False, 'from rcjktools.table_VarC import fixedCoord, getToFixedConverterForNumIntBitsForScale, transformToIntConverters, transformDefaults, VARIDX_KEY, ComponentRecord, CoordinateRecord, TransformRecord\n'), ((2854, 2884), 'rcjktools.table_VarC.TransformRecord', 'TransformRecord', (['transformDict'], {}), '(transformDict)\n', (2869, 2884), False, 'from rcjktools.table_VarC import fixedCoord, getToFixedConverterForNumIntBitsForScale, transformToIntConverters, transformDefaults, VARIDX_KEY, ComponentRecord, CoordinateRecord, TransformRecord\n'), ((3808, 3830), 'fontTools.varLib.models.allEqual', 'allEqual', (['masterValues'], {}), '(masterValues)\n', (3816, 3830), False, 'from fontTools.varLib.models import VariationModel, allEqual\n')]
from unifi.objects.base import UnifiBaseObject from unifi.helper import find_by_attr, json_print class UnifiDeviceObject(UnifiBaseObject): def get_port_profile(self, **filter_kwargs): port = find_by_attr(self.port_table, **filter_kwargs) port_override = find_by_attr(self.port_overrides, port_idx=port['port_idx']) portconf_id = port_override['portconf_id'] if port_override and 'portconf_id' in port_override else port['portconf_id'] portconf = find_by_attr(self.controller.portconf(), _id=portconf_id) return portconf def set_port_profile(self, portconf, **filter_kwargs): port = find_by_attr(self.port_table, **filter_kwargs) port_override = find_by_attr(self.port_overrides, port_idx=port['port_idx']) if port_override: port_override['portconf_id'] = portconf['_id'] else: port_override = { 'port_idx': port['port_idx'], 'portconf_id': portconf['_id'] } self.port_overrides.append(port_override)
[ "unifi.helper.find_by_attr" ]
[((206, 252), 'unifi.helper.find_by_attr', 'find_by_attr', (['self.port_table'], {}), '(self.port_table, **filter_kwargs)\n', (218, 252), False, 'from unifi.helper import find_by_attr, json_print\n'), ((277, 337), 'unifi.helper.find_by_attr', 'find_by_attr', (['self.port_overrides'], {'port_idx': "port['port_idx']"}), "(self.port_overrides, port_idx=port['port_idx'])\n", (289, 337), False, 'from unifi.helper import find_by_attr, json_print\n'), ((642, 688), 'unifi.helper.find_by_attr', 'find_by_attr', (['self.port_table'], {}), '(self.port_table, **filter_kwargs)\n', (654, 688), False, 'from unifi.helper import find_by_attr, json_print\n'), ((713, 773), 'unifi.helper.find_by_attr', 'find_by_attr', (['self.port_overrides'], {'port_idx': "port['port_idx']"}), "(self.port_overrides, port_idx=port['port_idx'])\n", (725, 773), False, 'from unifi.helper import find_by_attr, json_print\n')]
# Copyright 2019 The DMLab2D Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dmlab2d.dmlab2d.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from dm_env import test_utils import numpy as np import dmlab2d from dmlab2d import runfiles_helper class Dmlab2dDmEnvTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): lab2d = dmlab2d.Lab2d(runfiles_helper.find(), {'levelName': 'examples/level_api'}) return dmlab2d.Environment(lab2d, lab2d.observation_names(), 0) class Dmlab2DTest(absltest.TestCase): def _create_env(self, extra_settings=None): settings = extra_settings.copy() if extra_settings else {} settings['levelName'] = 'examples/level_api' return dmlab2d.Lab2d(runfiles_helper.find(), settings) def test_lab2d_environment_name(self): self.assertEqual(self._create_env().name(), 'dmlab2d') def test_lab2d_observation_names(self): env = self._create_env() self.assertEqual(env.observation_names(), ['VIEW' + str(i) for i in range(1, 6)]) def test_lab2d_observation_spec(self): env = self._create_env() self.assertEqual( env.observation_spec('VIEW1'), { 'dtype': np.dtype('uint8'), 'shape': (1,) }) self.assertEqual( env.observation_spec('VIEW2'), { 'dtype': np.dtype('double'), 'shape': (2,) }) self.assertEqual( env.observation_spec('VIEW3'), { 'dtype': np.dtype('int32'), 'shape': (3,) }) self.assertEqual( env.observation_spec('VIEW4'), { 'dtype': np.dtype('int64'), 'shape': (4,) }) # Text is stored in objects. self.assertEqual( env.observation_spec('VIEW5'), { 'dtype': np.dtype('O'), 'shape': () }) def test_lab2d_action_spec(self): env = self._create_env() self.assertEqual(env.action_discrete_names(), ['REWARD_ACT']) self.assertEqual( env.action_discrete_spec('REWARD_ACT'), { 'min': 0, 'max': 4 }) self.assertEqual(env.action_continuous_names(), ['OBSERVATION_ACT']) self.assertEqual( env.action_continuous_spec('OBSERVATION_ACT'), { 'min': -5, 'max': 5 }) self.assertEqual(env.action_text_names(), ['LOG_EVENT']) def test_lab2d_start_environment(self): env = self._create_env() env.start(episode=0, seed=0) def test_lab2d_events_start(self): env = self._create_env() env.start(episode=0, seed=0) events = env.events() self.assertLen(events, 1) event_name, observations = events[0] self.assertEqual(event_name, 'start') self.assertLen(observations, 1) np.testing.assert_array_equal(observations[0], [1, 2, 3]) def test_lab2d_events_cleared_after_advance_not_read(self): env = self._create_env() env.start(episode=0, seed=0) self.assertLen(env.events(), 1) self.assertLen(env.events(), 1) env.advance() self.assertEmpty(env.events()) def test_lab2d_observe(self): env = self._create_env() env.start(episode=0, seed=0) np.testing.assert_array_equal(env.observation('VIEW1'), [1]) np.testing.assert_array_equal(env.observation('VIEW2'), [1, 2]) np.testing.assert_array_equal(env.observation('VIEW3'), [1, 2, 3]) np.testing.assert_array_equal(env.observation('VIEW4'), [1, 2, 3, 4]) self.assertEqual(env.observation('VIEW5'), b'') def test_lab2d_ten_steps_terminate_environment(self): env = self._create_env() env.start(episode=0, seed=0) for _ in range(9): self.assertEqual(env.advance()[0], dmlab2d.RUNNING) self.assertEqual(env.advance()[0], dmlab2d.TERMINATED) def test_lab2d_settings_environment(self): env = self._create_env({'steps': '5'}) env.start(episode=0, seed=0) for _ in range(4): self.assertEqual(env.advance()[0], dmlab2d.RUNNING) self.assertEqual(env.advance()[0], dmlab2d.TERMINATED) def test_lab2d_properties_environment(self): env = self._create_env({'steps': '5'}) properties = env.list_property('') self.assertLen(properties, 1) self.assertEqual(properties[0], ('steps', dmlab2d.PropertyAttribute.READABLE_WRITABLE)) self.assertEqual(env.read_property('steps'), '5') env.write_property('steps', '3') self.assertEqual(env.read_property('steps'), '3') env.start(episode=0, seed=0) for _ in range(2): self.assertEqual(env.advance()[0], dmlab2d.RUNNING) self.assertEqual(env.advance()[0], dmlab2d.TERMINATED) def test_lab2d_act_discrete(self): env = self._create_env({'steps': '5'}) env.start(episode=0, seed=0) env.act_discrete(np.array([2], np.dtype('int32'))) _, reward = env.advance() self.assertEqual(reward, 2) def test_lab2d_act_continuous(self): env = self._create_env({'steps': '5'}) env.start(episode=0, seed=0) np.testing.assert_array_equal(env.observation('VIEW3'), [1, 2, 3]) env.act_continuous([10]) env.advance() np.testing.assert_array_equal(env.observation('VIEW3'), [11, 12, 13]) def test_lab2d_act_text(self): env = self._create_env({'steps': '5'}) env.start(episode=0, seed=0) view = env.observation('VIEW5') self.assertEqual(view, b'') env.act_text(['Hello']) env.advance() view = env.observation('VIEW5') self.assertEqual(view, b'Hello') def test_lab2d_invalid_setting(self): with self.assertRaises(ValueError): self._create_env({'missing': '5'}) def test_lab2d_bad_action_spec_name(self): env = self._create_env() with self.assertRaises(KeyError): env.action_discrete_spec('bad_key') with self.assertRaises(KeyError): env.action_continuous_spec('bad_key') def test_lab2d_bad_observation_spec_name(self): env = self._create_env() with self.assertRaises(KeyError): env.observation_spec('bad_key') def test_lab2d_observe_before_start(self): env = self._create_env() with self.assertRaises(RuntimeError): env.observation('VIEW1') def test_lab2d_act_before_start(self): env = self._create_env() with self.assertRaises(RuntimeError): env.act_discrete([0]) with self.assertRaises(RuntimeError): env.act_continuous([0]) with self.assertRaises(RuntimeError): env.act_text(['']) def test_lab2d_act_bad_shape(self): env = self._create_env() env.start(0, 0) with self.assertRaises(ValueError): env.act_discrete([0, 1]) with self.assertRaises(ValueError): env.act_continuous([0, 1]) def test_lab2d_advance_after_episode_ends(self): env = self._create_env({'steps': '2'}) env.start(0, 0) self.assertEqual(env.advance()[0], dmlab2d.RUNNING) self.assertEqual(env.advance()[0], dmlab2d.TERMINATED) with self.assertRaises(RuntimeError): env.advance() def test_lab2d_missing_properties(self): env = self._create_env({'steps': '5'}) with self.assertRaises(KeyError): env.list_property('missing') with self.assertRaises(KeyError): env.read_property('missing') with self.assertRaises(KeyError): env.write_property('missing', '10') def test_lab2d_invalid_ops_properties(self): env = self._create_env({'steps': '5'}) with self.assertRaises(ValueError): env.list_property('steps') with self.assertRaises(ValueError): env.write_property('steps', 'mouse') if __name__ == '__main__': absltest.main()
[ "dmlab2d.runfiles_helper.find", "absl.testing.absltest.main", "numpy.dtype", "numpy.testing.assert_array_equal" ]
[((8160, 8175), 'absl.testing.absltest.main', 'absltest.main', ([], {}), '()\n', (8173, 8175), False, 'from absl.testing import absltest\n'), ((3413, 3470), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['observations[0]', '[1, 2, 3]'], {}), '(observations[0], [1, 2, 3])\n', (3442, 3470), True, 'import numpy as np\n'), ((1006, 1028), 'dmlab2d.runfiles_helper.find', 'runfiles_helper.find', ([], {}), '()\n', (1026, 1028), False, 'from dmlab2d import runfiles_helper\n'), ((1385, 1407), 'dmlab2d.runfiles_helper.find', 'runfiles_helper.find', ([], {}), '()\n', (1405, 1407), False, 'from dmlab2d import runfiles_helper\n'), ((1855, 1872), 'numpy.dtype', 'np.dtype', (['"""uint8"""'], {}), "('uint8')\n", (1863, 1872), True, 'import numpy as np\n'), ((1996, 2014), 'numpy.dtype', 'np.dtype', (['"""double"""'], {}), "('double')\n", (2004, 2014), True, 'import numpy as np\n'), ((2138, 2155), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (2146, 2155), True, 'import numpy as np\n'), ((2279, 2296), 'numpy.dtype', 'np.dtype', (['"""int64"""'], {}), "('int64')\n", (2287, 2296), True, 'import numpy as np\n'), ((2453, 2466), 'numpy.dtype', 'np.dtype', (['"""O"""'], {}), "('O')\n", (2461, 2466), True, 'import numpy as np\n'), ((5411, 5428), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (5419, 5428), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from json import dumps, loads # for python 2 # from httplib import HTTPConnection # for python 3 from http.client import HTTPConnection # connect with REST server connection = HTTPConnection('127.0.0.1', 80) connection.connect() data = {"ip": "192.168.2.254", "list_of_commands_to_send": "show version" } # Get the method response connection.request( 'POST', '/add_command_raw', dumps(data), {'Content-Type': 'application/json'}, ) print("Waiting for Server response:") response = connection.getresponse() code = response.getcode() headers = response.getheaders() result = loads(response.read()) print(result) print("code: ", code) print("headers: ", headers) print(dir(result)) # close the connection connection.close()
[ "http.client.HTTPConnection", "json.dumps" ]
[((245, 276), 'http.client.HTTPConnection', 'HTTPConnection', (['"""127.0.0.1"""', '(80)'], {}), "('127.0.0.1', 80)\n", (259, 276), False, 'from http.client import HTTPConnection\n'), ((489, 500), 'json.dumps', 'dumps', (['data'], {}), '(data)\n', (494, 500), False, 'from json import dumps, loads\n')]
# coding: utf-8 # Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved. """ NOTE: This class should always comply to the API definition of NfsDatasetClient present in services/dts/src/oci_cli_dts/physical_appliance_control_plane/client/nfs_dataset_client.py """ from oci_cli import cli_util from services.dts.src.oci_cli_dts.appliance_config_manager import ApplianceConfigManager from services.dts.src.oci_cli_dts.appliance_constants import APPLIANCE_CONFIGS_BASE_DIR, APPLIANCE_AUTH_USER, \ APPLIANCE_CERT_FILE_NAME from services.dts.src.oci_cli_dts.physical_appliance_control_plane.client.nfs_dataset_client import NfsDatasetClient class NfsDatasetClientProxy: def __init__(self, ctx, appliance_profile): config_manager = ApplianceConfigManager(APPLIANCE_CONFIGS_BASE_DIR) appliance_config = config_manager.get_config(appliance_profile) self.auth_value = "{}:{}".format(APPLIANCE_AUTH_USER, appliance_config.get_access_token()) self.serial_id = appliance_config.get_appliance_serial_id() config = cli_util.build_config(ctx.obj) host_name = appliance_config.get_appliance_url() self_signed_cert = "{}/{}".format(config_manager.get_config_dir(appliance_profile), APPLIANCE_CERT_FILE_NAME) self.nfs_dataset_client = NfsDatasetClient( config=config, service_endpoint=host_name, self_signed_cert=self_signed_cert) def activate_nfs_dataset(self, dataset_name, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.activate_nfs_dataset(dataset_name, **kwargs) def create_nfs_dataset(self, details, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.create_nfs_dataset(details, **kwargs) def deactivate_nfs_dataset(self, dataset_name, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.deactivate_nfs_dataset(dataset_name, **kwargs) def delete_nfs_dataset(self, dataset_name, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.delete_nfs_dataset(dataset_name, **kwargs) def get_nfs_dataset(self, dataset_name, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.get_nfs_dataset(dataset_name, **kwargs) def get_nfs_dataset_seal_manifest(self, dataset_name, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.get_nfs_dataset_seal_manifest(dataset_name, **kwargs) def get_nfs_dataset_seal_status(self, dataset_name, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.get_nfs_dataset_seal_status(dataset_name, **kwargs) def initiate_seal_on_nfs_dataset(self, dataset_name, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.initiate_seal_on_nfs_dataset(dataset_name, **kwargs) def list_nfs_datasets(self, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.list_nfs_datasets(**kwargs) def reopen_nfs_dataset(self, dataset_name, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.reopen_nfs_dataset(dataset_name, **kwargs) def update_nfs_dataset(self, dataset_name, body, **kwargs): kwargs['auth_value'] = self.auth_value kwargs['serial_id'] = self.serial_id return self.nfs_dataset_client.update_nfs_dataset(dataset_name, body, **kwargs)
[ "oci_cli.cli_util.build_config", "services.dts.src.oci_cli_dts.appliance_config_manager.ApplianceConfigManager", "services.dts.src.oci_cli_dts.physical_appliance_control_plane.client.nfs_dataset_client.NfsDatasetClient" ]
[((769, 819), 'services.dts.src.oci_cli_dts.appliance_config_manager.ApplianceConfigManager', 'ApplianceConfigManager', (['APPLIANCE_CONFIGS_BASE_DIR'], {}), '(APPLIANCE_CONFIGS_BASE_DIR)\n', (791, 819), False, 'from services.dts.src.oci_cli_dts.appliance_config_manager import ApplianceConfigManager\n'), ((1077, 1107), 'oci_cli.cli_util.build_config', 'cli_util.build_config', (['ctx.obj'], {}), '(ctx.obj)\n', (1098, 1107), False, 'from oci_cli import cli_util\n'), ((1317, 1415), 'services.dts.src.oci_cli_dts.physical_appliance_control_plane.client.nfs_dataset_client.NfsDatasetClient', 'NfsDatasetClient', ([], {'config': 'config', 'service_endpoint': 'host_name', 'self_signed_cert': 'self_signed_cert'}), '(config=config, service_endpoint=host_name,\n self_signed_cert=self_signed_cert)\n', (1333, 1415), False, 'from services.dts.src.oci_cli_dts.physical_appliance_control_plane.client.nfs_dataset_client import NfsDatasetClient\n')]
from spreaduler import ParamsSheet from train_attention import train from options import get_parser class YourParamsSheet(ParamsSheet): """ Your model Params Sheet class """ params_sheet_id = '...' client_credentials = { "type": "service_account", "project_id": "....", "private_key_id": "....", "private_key": """-----BEGIN PRIVATE KEY----- ........ -----END PRIVATE KEY-----""", "client_email": "<EMAIL>", "client_id": "....", "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "https://accounts.google.com/o/oauth2/token", "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/" "yourworker%40yourproject.iam.gserviceaccount.com" } def __init__(self, parser, server_name): writable_metrics_and_types = { 'your model precision': float } super(YourParamsSheet, self).__init__( parser, writable_column_types=writable_metrics_and_types, experiment_id_column='exp_hash', server_name=server_name) if __name__ == '__main__': server_name = os.environ.get('SERVERNAME', None) params = YourParamsSheet(get_parser(), server_name) params.exec_loop(train)
[ "options.get_parser" ]
[((1351, 1363), 'options.get_parser', 'get_parser', ([], {}), '()\n', (1361, 1363), False, 'from options import get_parser\n')]
import os import sys import time import torch import utils import logging import argparse import torch.nn as nn import torch.utils from adaptive_augmentor import AdaAug from networks import get_model from networks.projection import Projection from dataset import get_num_class, get_dataloaders, get_label_name, get_dataset_dimension from config import get_warmup_config from warmup_scheduler import GradualWarmupScheduler parser = argparse.ArgumentParser("ada_aug") parser.add_argument('--dataroot', type=str, default='./', help='location of the data corpus') parser.add_argument('--dataset', type=str, default='cifar10', help='name of dataset') parser.add_argument('--train_portion', type=float, default=0.5, help='portion of training data') parser.add_argument('--batch_size', type=int, default=96, help='batch size') parser.add_argument('--num_workers', type=int, default=0, help="num_workers") parser.add_argument('--learning_rate', type=float, default=0.025, help='init learning rate') parser.add_argument('--learning_rate_min', type=float, default=0.0001, help='min learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay') parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping') parser.add_argument('--use_cuda', type=bool, default=True, help="use cuda default True") parser.add_argument('--gpu', type=int, default=0, help='gpu device id') parser.add_argument('--use_parallel', action='store_true', default=False, help="use data parallel default False") parser.add_argument('--model_name', type=str, default='wresnet40_2', help="model name") parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model') parser.add_argument('--cutout', action='store_true', default=False, help='use cutout') parser.add_argument('--cutout_length', type=int, default=16, help='cutout length') parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path probability') parser.add_argument('--epochs', type=int, default=600, help='number of training epochs') parser.add_argument('--report_freq', type=float, default=50, help='report frequency') parser.add_argument('--save', type=str, default='EXP', help='experiment name') parser.add_argument('--seed', type=int, default=0, help='seed') parser.add_argument('--search_dataset', type=str, default='./', help='search dataset name') parser.add_argument('--gf_model_name', type=str, default='./', help='gf_model name') parser.add_argument('--gf_model_path', type=str, default='./', help='gf_model path') parser.add_argument('--h_model_path', type=str, default='./', help='h_model path') parser.add_argument('--k_ops', type=int, default=1, help="number of augmentation applied during training") parser.add_argument('--delta', type=float, default=0.3, help="degree of perturbation in magnitude") parser.add_argument('--temperature', type=float, default=1.0, help="temperature") parser.add_argument('--n_proj_layer', type=int, default=0, help="number of additional hidden layer in augmentation policy projection") parser.add_argument('--n_proj_hidden', type=int, default=128, help="number of hidden units in augmentation policy projection layers") parser.add_argument('--restore_path', type=str, default='./', help='restore model path') parser.add_argument('--restore', action='store_true', default=False, help='restore model default False') args = parser.parse_args() debug = True if args.save == "debug" else False args.save = '{}-{}'.format(time.strftime("%Y%m%d-%H%M%S"), args.save) if debug: args.save = os.path.join('debug', args.save) else: args.save = os.path.join('eval', args.dataset, args.save) utils.create_exp_dir(args.save) log_format = '%(asctime)s %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') fh = logging.FileHandler(os.path.join(args.save, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) torch.cuda.set_device(args.gpu) utils.reproducibility(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) # dataset settings n_class = get_num_class(args.dataset) class2label = get_label_name(args.dataset, args.dataroot) train_queue, valid_queue, _, test_queue = get_dataloaders( args.dataset, args.batch_size, args.num_workers, args.dataroot, args.cutout, args.cutout_length, split=args.train_portion, split_idx=0, target_lb=-1, search=True) logging.info(f'Dataset: {args.dataset}') logging.info(f' |total: {len(train_queue.dataset)}') logging.info(f' |train: {len(train_queue)*args.batch_size}') logging.info(f' |valid: {len(valid_queue)*args.batch_size}') # task model settings task_model = get_model(model_name=args.model_name, num_class=n_class, use_cuda=True, data_parallel=False) logging.info("param size = %fMB", utils.count_parameters_in_MB(task_model)) # task optimization settings optimizer = torch.optim.SGD( task_model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, float(args.epochs), eta_min=args.learning_rate_min) m, e = get_warmup_config(args.dataset) scheduler = GradualWarmupScheduler( optimizer, multiplier=m, total_epoch=e, after_scheduler=scheduler) logging.info(f'Optimizer: SGD, scheduler: CosineAnnealing, warmup: {m}/{e}') criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() # restore setting if args.restore: trained_epoch = utils.restore_ckpt(task_model, optimizer, scheduler, args.restore_path, location=args.gpu) + 1 n_epoch = args.epochs - trained_epoch logging.info(f'Restoring model from {args.restore_path}, starting from epoch {trained_epoch}') else: trained_epoch = 0 n_epoch = args.epochs # load trained adaaug sub models search_n_class = get_num_class(args.search_dataset) gf_model = get_model(model_name=args.gf_model_name, num_class=search_n_class, use_cuda=True, data_parallel=False) h_model = Projection(in_features=gf_model.fc.in_features, n_layers=args.n_proj_layer, n_hidden=args.n_proj_hidden).cuda() utils.load_model(gf_model, f'{args.gf_model_path}/gf_weights.pt', location=args.gpu) utils.load_model(h_model, f'{args.h_model_path}/h_weights.pt', location=args.gpu) for param in gf_model.parameters(): param.requires_grad = False for param in h_model.parameters(): param.requires_grad = False after_transforms = train_queue.dataset.after_transforms adaaug_config = {'sampling': 'prob', 'k_ops': args.k_ops, 'delta': args.delta, 'temp': args.temperature, 'search_d': get_dataset_dimension(args.search_dataset), 'target_d': get_dataset_dimension(args.dataset)} adaaug = AdaAug(after_transforms=after_transforms, n_class=search_n_class, gf_model=gf_model, h_model=h_model, save_dir=args.save, config=adaaug_config) # start training for i_epoch in range(n_epoch): epoch = trained_epoch + i_epoch lr = scheduler.get_last_lr()[0] logging.info('epoch %d lr %e', epoch, lr) train_acc, train_obj = train( train_queue, task_model, criterion, optimizer, epoch, args.grad_clip, adaaug) logging.info('train_acc %f', train_acc) valid_acc, valid_obj, _, _ = infer(valid_queue, task_model, criterion) logging.info('valid_acc %f', valid_acc) scheduler.step() if epoch % args.report_freq == 0: test_acc, test_obj, test_acc5, _ = infer(test_queue, task_model, criterion) logging.info('test_acc %f %f', test_acc, test_acc5) utils.save_ckpt(task_model, optimizer, scheduler, epoch, os.path.join(args.save, 'weights.pt')) adaaug.save_history(class2label) figure = adaaug.plot_history() test_acc, test_obj, test_acc5, _ = infer(test_queue, task_model, criterion) logging.info('test_acc %f %f', test_acc, test_acc5) logging.info(f'save to {args.save}') def train(train_queue, model, criterion, optimizer, epoch, grad_clip, adaaug): objs = utils.AvgrageMeter() top1 = utils.AvgrageMeter() top5 = utils.AvgrageMeter() for step, (input, target) in enumerate(train_queue): target = target.cuda(non_blocking=True) # get augmented training data from adaaug aug_images = adaaug(input, mode='exploit') model.train() optimizer.zero_grad() logits = model(aug_images) loss = criterion(logits, target) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), grad_clip) optimizer.step() prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) objs.update(loss.detach().item(), n) top1.update(prec1.detach().item(), n) top5.update(prec5.detach().item(), n) global_step = step + epoch * len(train_queue) if global_step % args.report_freq == 0: logging.info('train %03d %e %f %f', global_step, objs.avg, top1.avg, top5.avg) # log the policy if step == 0: adaaug.add_history(input, target) return top1.avg, objs.avg def infer(valid_queue, model, criterion): objs = utils.AvgrageMeter() top1 = utils.AvgrageMeter() top5 = utils.AvgrageMeter() model.eval() with torch.no_grad(): for input, target in valid_queue: input = input.cuda() target = target.cuda(non_blocking=True) logits = model(input) loss = criterion(logits, target) prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) objs.update(loss.detach().item(), n) top1.update(prec1.detach().item(), n) top5.update(prec5.detach().item(), n) return top1.avg, objs.avg, top5.avg, objs.avg if __name__ == '__main__': main()
[ "argparse.ArgumentParser", "utils.create_exp_dir", "dataset.get_dataloaders", "dataset.get_dataset_dimension", "time.strftime", "logging.Formatter", "dataset.get_num_class", "utils.AvgrageMeter", "torch.no_grad", "os.path.join", "utils.reproducibility", "config.get_warmup_config", "torch.cuda.set_device", "utils.count_parameters_in_MB", "utils.load_model", "utils.accuracy", "adaptive_augmentor.AdaAug", "utils.restore_ckpt", "torch.cuda.is_available", "networks.get_model", "sys.exit", "logging.basicConfig", "networks.projection.Projection", "torch.nn.CrossEntropyLoss", "logging.info", "warmup_scheduler.GradualWarmupScheduler", "dataset.get_label_name", "logging.getLogger" ]
[((433, 467), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""ada_aug"""'], {}), "('ada_aug')\n", (456, 467), False, 'import argparse\n'), ((3752, 3783), 'utils.create_exp_dir', 'utils.create_exp_dir', (['args.save'], {}), '(args.save)\n', (3772, 3783), False, 'import utils\n'), ((3823, 3934), 'logging.basicConfig', 'logging.basicConfig', ([], {'stream': 'sys.stdout', 'level': 'logging.INFO', 'format': 'log_format', 'datefmt': '"""%m/%d %I:%M:%S %p"""'}), "(stream=sys.stdout, level=logging.INFO, format=\n log_format, datefmt='%m/%d %I:%M:%S %p')\n", (3842, 3934), False, 'import logging\n'), ((3582, 3612), 'time.strftime', 'time.strftime', (['"""%Y%m%d-%H%M%S"""'], {}), "('%Y%m%d-%H%M%S')\n", (3595, 3612), False, 'import time\n'), ((3651, 3683), 'os.path.join', 'os.path.join', (['"""debug"""', 'args.save'], {}), "('debug', args.save)\n", (3663, 3683), False, 'import os\n'), ((3706, 3751), 'os.path.join', 'os.path.join', (['"""eval"""', 'args.dataset', 'args.save'], {}), "('eval', args.dataset, args.save)\n", (3718, 3751), False, 'import os\n'), ((3975, 4009), 'os.path.join', 'os.path.join', (['args.save', '"""log.txt"""'], {}), "(args.save, 'log.txt')\n", (3987, 4009), False, 'import os\n'), ((4027, 4056), 'logging.Formatter', 'logging.Formatter', (['log_format'], {}), '(log_format)\n', (4044, 4056), False, 'import logging\n'), ((4218, 4249), 'torch.cuda.set_device', 'torch.cuda.set_device', (['args.gpu'], {}), '(args.gpu)\n', (4239, 4249), False, 'import torch\n'), ((4254, 4286), 'utils.reproducibility', 'utils.reproducibility', (['args.seed'], {}), '(args.seed)\n', (4275, 4286), False, 'import utils\n'), ((4291, 4333), 'logging.info', 'logging.info', (["('gpu device = %d' % args.gpu)"], {}), "('gpu device = %d' % args.gpu)\n", (4303, 4333), False, 'import logging\n'), ((4338, 4369), 'logging.info', 'logging.info', (['"""args = %s"""', 'args'], {}), "('args = %s', args)\n", (4350, 4369), False, 'import logging\n'), ((4409, 4436), 'dataset.get_num_class', 'get_num_class', (['args.dataset'], {}), '(args.dataset)\n', (4422, 4436), False, 'from dataset import get_num_class, get_dataloaders, get_label_name, get_dataset_dimension\n'), ((4455, 4498), 'dataset.get_label_name', 'get_label_name', (['args.dataset', 'args.dataroot'], {}), '(args.dataset, args.dataroot)\n', (4469, 4498), False, 'from dataset import get_num_class, get_dataloaders, get_label_name, get_dataset_dimension\n'), ((4545, 4732), 'dataset.get_dataloaders', 'get_dataloaders', (['args.dataset', 'args.batch_size', 'args.num_workers', 'args.dataroot', 'args.cutout', 'args.cutout_length'], {'split': 'args.train_portion', 'split_idx': '(0)', 'target_lb': '(-1)', 'search': '(True)'}), '(args.dataset, args.batch_size, args.num_workers, args.\n dataroot, args.cutout, args.cutout_length, split=args.train_portion,\n split_idx=0, target_lb=-1, search=True)\n', (4560, 4732), False, 'from dataset import get_num_class, get_dataloaders, get_label_name, get_dataset_dimension\n'), ((4762, 4802), 'logging.info', 'logging.info', (['f"""Dataset: {args.dataset}"""'], {}), "(f'Dataset: {args.dataset}')\n", (4774, 4802), False, 'import logging\n'), ((5038, 5134), 'networks.get_model', 'get_model', ([], {'model_name': 'args.model_name', 'num_class': 'n_class', 'use_cuda': '(True)', 'data_parallel': '(False)'}), '(model_name=args.model_name, num_class=n_class, use_cuda=True,\n data_parallel=False)\n', (5047, 5134), False, 'from networks import get_model\n'), ((5644, 5675), 'config.get_warmup_config', 'get_warmup_config', (['args.dataset'], {}), '(args.dataset)\n', (5661, 5675), False, 'from config import get_warmup_config\n'), ((5692, 5785), 'warmup_scheduler.GradualWarmupScheduler', 'GradualWarmupScheduler', (['optimizer'], {'multiplier': 'm', 'total_epoch': 'e', 'after_scheduler': 'scheduler'}), '(optimizer, multiplier=m, total_epoch=e,\n after_scheduler=scheduler)\n', (5714, 5785), False, 'from warmup_scheduler import GradualWarmupScheduler\n'), ((5835, 5911), 'logging.info', 'logging.info', (['f"""Optimizer: SGD, scheduler: CosineAnnealing, warmup: {m}/{e}"""'], {}), "(f'Optimizer: SGD, scheduler: CosineAnnealing, warmup: {m}/{e}')\n", (5847, 5911), False, 'import logging\n'), ((5928, 5949), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (5947, 5949), True, 'import torch.nn as nn\n'), ((6422, 6456), 'dataset.get_num_class', 'get_num_class', (['args.search_dataset'], {}), '(args.search_dataset)\n', (6435, 6456), False, 'from dataset import get_num_class, get_dataloaders, get_label_name, get_dataset_dimension\n'), ((6472, 6579), 'networks.get_model', 'get_model', ([], {'model_name': 'args.gf_model_name', 'num_class': 'search_n_class', 'use_cuda': '(True)', 'data_parallel': '(False)'}), '(model_name=args.gf_model_name, num_class=search_n_class, use_cuda\n =True, data_parallel=False)\n', (6481, 6579), False, 'from networks import get_model\n'), ((6819, 6908), 'utils.load_model', 'utils.load_model', (['gf_model', 'f"""{args.gf_model_path}/gf_weights.pt"""'], {'location': 'args.gpu'}), "(gf_model, f'{args.gf_model_path}/gf_weights.pt', location=\n args.gpu)\n", (6835, 6908), False, 'import utils\n'), ((6908, 6994), 'utils.load_model', 'utils.load_model', (['h_model', 'f"""{args.h_model_path}/h_weights.pt"""'], {'location': 'args.gpu'}), "(h_model, f'{args.h_model_path}/h_weights.pt', location=\n args.gpu)\n", (6924, 6994), False, 'import utils\n'), ((7532, 7680), 'adaptive_augmentor.AdaAug', 'AdaAug', ([], {'after_transforms': 'after_transforms', 'n_class': 'search_n_class', 'gf_model': 'gf_model', 'h_model': 'h_model', 'save_dir': 'args.save', 'config': 'adaaug_config'}), '(after_transforms=after_transforms, n_class=search_n_class, gf_model=\n gf_model, h_model=h_model, save_dir=args.save, config=adaaug_config)\n', (7538, 7680), False, 'from adaptive_augmentor import AdaAug\n'), ((8765, 8816), 'logging.info', 'logging.info', (['"""test_acc %f %f"""', 'test_acc', 'test_acc5'], {}), "('test_acc %f %f', test_acc, test_acc5)\n", (8777, 8816), False, 'import logging\n'), ((8821, 8857), 'logging.info', 'logging.info', (['f"""save to {args.save}"""'], {}), "(f'save to {args.save}')\n", (8833, 8857), False, 'import logging\n'), ((8950, 8970), 'utils.AvgrageMeter', 'utils.AvgrageMeter', ([], {}), '()\n', (8968, 8970), False, 'import utils\n'), ((8982, 9002), 'utils.AvgrageMeter', 'utils.AvgrageMeter', ([], {}), '()\n', (9000, 9002), False, 'import utils\n'), ((9014, 9034), 'utils.AvgrageMeter', 'utils.AvgrageMeter', ([], {}), '()\n', (9032, 9034), False, 'import utils\n'), ((10090, 10110), 'utils.AvgrageMeter', 'utils.AvgrageMeter', ([], {}), '()\n', (10108, 10110), False, 'import utils\n'), ((10122, 10142), 'utils.AvgrageMeter', 'utils.AvgrageMeter', ([], {}), '()\n', (10140, 10142), False, 'import utils\n'), ((10154, 10174), 'utils.AvgrageMeter', 'utils.AvgrageMeter', ([], {}), '()\n', (10172, 10174), False, 'import utils\n'), ((4058, 4077), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (4075, 4077), False, 'import logging\n'), ((4118, 4143), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4141, 4143), False, 'import torch\n'), ((4153, 4192), 'logging.info', 'logging.info', (['"""no gpu device available"""'], {}), "('no gpu device available')\n", (4165, 4192), False, 'import logging\n'), ((4201, 4212), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4209, 4212), False, 'import sys\n'), ((5225, 5265), 'utils.count_parameters_in_MB', 'utils.count_parameters_in_MB', (['task_model'], {}), '(task_model)\n', (5253, 5265), False, 'import utils\n'), ((6201, 6305), 'logging.info', 'logging.info', (['f"""Restoring model from {args.restore_path}, starting from epoch {trained_epoch}"""'], {}), "(\n f'Restoring model from {args.restore_path}, starting from epoch {trained_epoch}'\n )\n", (6213, 6305), False, 'import logging\n'), ((7405, 7447), 'dataset.get_dataset_dimension', 'get_dataset_dimension', (['args.search_dataset'], {}), '(args.search_dataset)\n', (7426, 7447), False, 'from dataset import get_num_class, get_dataloaders, get_label_name, get_dataset_dimension\n'), ((7481, 7516), 'dataset.get_dataset_dimension', 'get_dataset_dimension', (['args.dataset'], {}), '(args.dataset)\n', (7502, 7516), False, 'from dataset import get_num_class, get_dataloaders, get_label_name, get_dataset_dimension\n'), ((7922, 7963), 'logging.info', 'logging.info', (['"""epoch %d lr %e"""', 'epoch', 'lr'], {}), "('epoch %d lr %e', epoch, lr)\n", (7934, 7963), False, 'import logging\n'), ((8101, 8140), 'logging.info', 'logging.info', (['"""train_acc %f"""', 'train_acc'], {}), "('train_acc %f', train_acc)\n", (8113, 8140), False, 'import logging\n'), ((8229, 8268), 'logging.info', 'logging.info', (['"""valid_acc %f"""', 'valid_acc'], {}), "('valid_acc %f', valid_acc)\n", (8241, 8268), False, 'import logging\n'), ((9509, 9552), 'utils.accuracy', 'utils.accuracy', (['logits', 'target'], {'topk': '(1, 5)'}), '(logits, target, topk=(1, 5))\n', (9523, 9552), False, 'import utils\n'), ((10201, 10216), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10214, 10216), False, 'import torch\n'), ((6052, 6146), 'utils.restore_ckpt', 'utils.restore_ckpt', (['task_model', 'optimizer', 'scheduler', 'args.restore_path'], {'location': 'args.gpu'}), '(task_model, optimizer, scheduler, args.restore_path,\n location=args.gpu)\n', (6070, 6146), False, 'import utils\n'), ((6646, 6754), 'networks.projection.Projection', 'Projection', ([], {'in_features': 'gf_model.fc.in_features', 'n_layers': 'args.n_proj_layer', 'n_hidden': 'args.n_proj_hidden'}), '(in_features=gf_model.fc.in_features, n_layers=args.n_proj_layer,\n n_hidden=args.n_proj_hidden)\n', (6656, 6754), False, 'from networks.projection import Projection\n'), ((8438, 8489), 'logging.info', 'logging.info', (['"""test_acc %f %f"""', 'test_acc', 'test_acc5'], {}), "('test_acc %f %f', test_acc, test_acc5)\n", (8450, 8489), False, 'import logging\n'), ((8568, 8605), 'os.path.join', 'os.path.join', (['args.save', '"""weights.pt"""'], {}), "(args.save, 'weights.pt')\n", (8580, 8605), False, 'import os\n'), ((9831, 9909), 'logging.info', 'logging.info', (['"""train %03d %e %f %f"""', 'global_step', 'objs.avg', 'top1.avg', 'top5.avg'], {}), "('train %03d %e %f %f', global_step, objs.avg, top1.avg, top5.avg)\n", (9843, 9909), False, 'import logging\n'), ((10453, 10496), 'utils.accuracy', 'utils.accuracy', (['logits', 'target'], {'topk': '(1, 5)'}), '(logits, target, topk=(1, 5))\n', (10467, 10496), False, 'import utils\n')]
import tensorflow as tf sess = tf.Session() #在名字为foo的命名空间内创建名字为v的变量 with tf.variable_scope("foo"): #创建一个常量为1的v v= tf.get_variable('v1',[1],initializer = tf.constant_initializer(1.0)) #因为在foo空间已经创建v的变量,所以下面的代码会报错 #with tf.variable_scope("foo"): # v= tf.get_variable('v',[1]) #在生成上下文管理器时,将参数reuse设置为True。这样tf.get_variable的函数将直接获取已声明的变量 #且调用with tf.variable_scope("foo")必须是定义的foo空间,而不能是with tf.variable_scope("")未命名或者其他空间。 with tf.variable_scope("foo",reuse =tf.AUTO_REUSE): v1= tf.get_variable('v1',[1], initializer = tf.constant_initializer(5.0)) print(v1==v) #输出为True,代表v1与v是相同的变量 init = tf.initialize_all_variables() sess.run(init) print(sess.run(v1)) print(sess.run(v)) with tf.variable_scope("foo1",reuse = False): v1= tf.get_variable('v1',[1], initializer = tf.constant_initializer(5.0)) print(v1==v) #输出为True,代表v1与v是相同的变量 init = tf.initialize_all_variables() sess.run(init) print(sess.run(v1)) print(sess.run(v)) print(foo.v1.name) ''' #获取变量的方式主要有以下两种,实践中tf.get_variable产生的变量一定要搭配tf.variable_scope使用,不然运行脚本会报错 #v = tf.get_variable('v222',shape= [1],initializer = tf.constant_initializer(10.0)) #使用直接定义变量不会报错,可以一直调用 #vc = tf.Variable(tf.constant(1.0,shape = [1]),name = 'v') #print(vc) #以下使用with语法,将tf.get_variable与tf.variable_scope搭配使用,且reuse=True时,之前必须定义V with tf.variable_scope('zdx',reuse = True): v = tf.get_variable('v222',shape= [1],initializer = tf.constant_initializer(100.0)) print(v) v1 = tf.get_variable('v222',shape= [1],initializer = tf.constant_initializer(2.0)) print(v1==v) init = tf.initialize_all_variables() sess.run(init) print(sess.run(v1)) print(sess.run(v)) '''
[ "tensorflow.constant_initializer", "tensorflow.Session", "tensorflow.variable_scope", "tensorflow.initialize_all_variables" ]
[((33, 45), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (43, 45), True, 'import tensorflow as tf\n'), ((75, 99), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""foo"""'], {}), "('foo')\n", (92, 99), True, 'import tensorflow as tf\n'), ((437, 482), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""foo"""'], {'reuse': 'tf.AUTO_REUSE'}), "('foo', reuse=tf.AUTO_REUSE)\n", (454, 482), True, 'import tensorflow as tf\n'), ((612, 641), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (639, 641), True, 'import tensorflow as tf\n'), ((715, 753), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""foo1"""'], {'reuse': '(False)'}), "('foo1', reuse=False)\n", (732, 753), True, 'import tensorflow as tf\n'), ((884, 913), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (911, 913), True, 'import tensorflow as tf\n'), ((163, 191), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(1.0)'], {}), '(1.0)\n', (186, 191), True, 'import tensorflow as tf\n'), ((532, 560), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(5.0)'], {}), '(5.0)\n', (555, 560), True, 'import tensorflow as tf\n'), ((804, 832), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(5.0)'], {}), '(5.0)\n', (827, 832), True, 'import tensorflow as tf\n')]
from collections import namedtuple from typing import Dict, List, Callable Node = namedtuple('Node', 'name parent children data') def make_tree_from_adj_list(adj_list): root = 'COM' nodes: Dict['str', Node] = {root: Node(root, None, [], {})} for parent, child in adj_list: node = Node(child, parent, [], {}) nodes[child] = node # N.B. I modify node_lookup under iteration, so I cast to list and slice, to get a fixed iterator for node in list(nodes.values())[:]: if not (node.parent in nodes.keys()) and node.name != root: parent_node = Node(node.parent, root, [], {}) nodes[node.parent] = parent_node for node in nodes.values(): if node.name != root: nodes[node.parent].children.append(node) return nodes[root] def compute_descendants(tree_root, f_descendants='n_descendants'): topo_sorted_nodes = all_descendants_BFS(tree_root) reverse_topo_sort = reversed(topo_sorted_nodes) for n in reverse_topo_sort: if len(n.children) == 0: n.data[f_descendants] = 0 else: n.data[f_descendants] = len(n.children) + sum(nn.data[f_descendants] for nn in n.children) def all_descendants_BFS(tree_root: Node) -> List[Node]: """All descendents of a node, in Breadth First Search order""" topo_sorted_nodes = [tree_root] for n in topo_sorted_nodes: topo_sorted_nodes += n.children return topo_sorted_nodes def find_DFS(predicate: Callable[[Node], bool], node: Node) -> List[Node]: """Returns the path in the tree from the root node to the first element that fulfils the predicate""" def find_DFS_(predicate,node) -> List[Node]: if predicate(node): return [node] elif len(node.children) == 0: return [] else: for c in node.children: dfs1 = find_DFS_(predicate,c) if len(dfs1) > 0: return [node] + dfs1 return [] path_found = find_DFS_(predicate,node) if len(path_found) > 0: return path_found else: raise ValueError("There is no element in the tree that fulfils the predicate.") def calculate_hops(root: Node) -> int: nodes = all_descendants_BFS(root) bottom_up = reversed(nodes) for node in bottom_up: try: p1 = find_DFS(lambda n: n.name == 'YOU', node) p2 = find_DFS(lambda n: n.name == 'SAN', node) hops_to_santa = len(p1) + len(p2) - 4 #remove both endpoints of both paths return hops_to_santa except ValueError: pass raise ValueError("There is no common object that one can orbit hop through to get to Santa!")
[ "collections.namedtuple" ]
[((83, 130), 'collections.namedtuple', 'namedtuple', (['"""Node"""', '"""name parent children data"""'], {}), "('Node', 'name parent children data')\n", (93, 130), False, 'from collections import namedtuple\n')]
from iotbx import mtz mtz_obj = mtz.object(file_name="3nd4.mtz") # Only works with mtz.object. # Does not work if mtz is read in with iotbx.file_reader. miller_arrays_dict = mtz_obj.as_miller_arrays_dict()
[ "iotbx.mtz.object" ]
[((32, 64), 'iotbx.mtz.object', 'mtz.object', ([], {'file_name': '"""3nd4.mtz"""'}), "(file_name='3nd4.mtz')\n", (42, 64), False, 'from iotbx import mtz\n')]
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from collections import namedtuple from functools import partial import numpy as np import torch import torch.nn as nn from torch import distributed from .initializers import MIN_MAX_INITIALIZERS from .quantize_functions import symmetric_quantize, asymmetric_quantize from ..layer_utils import COMPRESSION_MODULES from ..registry import Registry from ..utils import get_per_channel_scale_shape logger = logging.getLogger(__name__) QUANTIZATION_MODULES = Registry('quantization_modules') BINARIZATION_MODULES = Registry('binarization_modules') class QuantizationMode: SYMMETRIC = "symmetric" ASYMMETRIC = "asymmetric" class BinarizationMode: XNOR = "xnor" DOREFA = "dorefa" QuantizationParams = namedtuple( 'QuantizationParams', ['bits', 'mode', 'signed', 'signed_scope', 'per_channel'] ) QuantizationParams.__new__.__defaults__ = (8, QuantizationMode.SYMMETRIC, False, [], False) class QuantizerConfig: def __init__(self, params: QuantizationParams, input_shape=None, is_weights=False, per_channel=False, within_signed_scope=False): self.params = params self.is_weights = is_weights self.within_signed_scope = within_signed_scope self.per_channel = per_channel self.input_shape = input_shape class BaseQuantizer(nn.Module): def __init__(self, config: QuantizerConfig): super().__init__() self.config = config self.init_stage = False self.initialized = False self.state_dict_name = None class LoadStateListener: """ Check whether a quantization module are going to be updated by new values from state_dict or checkpoint. """ def __init__(self, module): # pylint: disable=protected-access self.hook = module._register_load_state_dict_pre_hook(partial(self.hook_fn, module=module)) def hook_fn(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, module): if module.state_dict_name: for module_key in module.state_dict().keys(): candidate = module.state_dict_name + '.' + module_key if candidate in state_dict: module.initialized = True def close(self): self.hook.remove() self.load_listener = LoadStateListener(self) def forward(self, x): if self.init_stage: return x return self.quantize(x) def quantize(self, x): raise NotImplementedError @COMPRESSION_MODULES.register() @QUANTIZATION_MODULES.register(QuantizationMode.SYMMETRIC) class SymmetricQuantizer(BaseQuantizer): def __init__(self, config): super().__init__(config) self.input_shape = config.input_shape self.per_channel = config.per_channel self.is_weights = config.is_weights self.within_signed_scope = config.within_signed_scope params = config.params self.num_bits = params.bits self.signed_tensor = nn.Parameter(torch.IntTensor([params.signed]), requires_grad=False) self.collect_scale_statistics = False scale_shape = 1 if self.per_channel: scale_shape = get_per_channel_scale_shape(self.input_shape, self.is_weights) self.scale = nn.Parameter(torch.ones(scale_shape), requires_grad=True) self.init_stage = False self.eps = 1e-16 self.level_high = self.level_low = 0 self.levels = 2 ** self.num_bits if self.is_weights: self.levels -= 1 def set_level_ranges(self): if self.signed: self.level_high = 2 ** (self.num_bits - 1) - 1 self.level_low = -(self.level_high + 1) if self.is_weights: self.level_low += 1 else: self.level_high = 2 ** self.num_bits - 1 self.level_low = 0 @property def signed(self): return self.signed_tensor.item() == 1 @signed.setter def signed(self, signed: bool): self.signed_tensor.fill_(signed) def quantize(self, x): self.set_level_ranges() return symmetric_quantize(x, self.levels, self.level_low, self.level_high, self.scale, self.eps) @MIN_MAX_INITIALIZERS.register('SymmetricQuantizer') def _initializer(module, name, min_value, max_value, distributed_): if min_value.item == np.inf or max_value.item() == -np.inf: raise AttributeError('Statistics is not collected for {}'.format(name)) sign = min_value.item() < 0 or module.within_signed_scope if sign != module.signed: logger.warning("signed set incorrectly") module.signed = int(sign) if abs(max_value) > 0.1: module.scale.data.fill_(max_value.item()) if distributed_: distributed.broadcast(module.scale, 0) distributed.broadcast(module.signed_tensor, 0) logger.debug("Statistics: min={:.2f} max={:.2f}".format(min_value.item(), max_value.item())) logger.info( "Set sign: {} and scale: {:04.2f} for {}".format(module.signed, module.scale.item(), name)) @COMPRESSION_MODULES.register() @QUANTIZATION_MODULES.register(QuantizationMode.ASYMMETRIC) class AsymmetricQuantizer(BaseQuantizer): def __init__(self, config): super().__init__(config) self.is_weights = config.is_weights self.input_shape = config.input_shape self.per_channel = config.per_channel params = config.params self.bits = params.bits scale_shape = 1 if self.per_channel: scale_shape = get_per_channel_scale_shape(self.input_shape, self.is_weights) self.input_low = nn.Parameter(torch.zeros(scale_shape), requires_grad=True) self.input_range = nn.Parameter(torch.ones(scale_shape), requires_grad=True) self.eps = 1e-16 @property def signed(self): return True @property def level_high(self): return 2 ** self.bits - 1 @property def level_low(self): return 0 @property def levels(self): return 2 ** self.bits def quantize(self, x): return asymmetric_quantize(x, self.levels, self.level_low, self.level_high, self.input_low, self.input_range, self.eps) @MIN_MAX_INITIALIZERS.register('AsymmetricQuantizer') def _initializer(module, name, min_value, max_value, distributed_): if min_value.item() == np.inf or max_value.item() == -np.inf: raise AttributeError('Statistics is not collected for {}'.format(name)) module.input_low.data.fill_(min_value.item()) range_ = (max_value - min_value).item() if range_ > 0.01: module.input_range.data.fill_(range_) if distributed_: distributed.broadcast(module.input_low, 0) distributed.broadcast(module.input_range, 0) logger.debug("Statistics: min={:.2f} max={:.2f}".format(min_value.item(), max_value.item())) logger.info("Set input_low: {:04.2f} and input_range: {:04.2f} for {}" .format(module.input_low.item(), module.input_range.item(), name))
[ "torch.ones", "functools.partial", "torch.IntTensor", "collections.namedtuple", "torch.zeros", "torch.distributed.broadcast", "logging.getLogger" ]
[((1000, 1027), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1017, 1027), False, 'import logging\n'), ((1314, 1409), 'collections.namedtuple', 'namedtuple', (['"""QuantizationParams"""', "['bits', 'mode', 'signed', 'signed_scope', 'per_channel']"], {}), "('QuantizationParams', ['bits', 'mode', 'signed', 'signed_scope',\n 'per_channel'])\n", (1324, 1409), False, 'from collections import namedtuple\n'), ((5494, 5532), 'torch.distributed.broadcast', 'distributed.broadcast', (['module.scale', '(0)'], {}), '(module.scale, 0)\n', (5515, 5532), False, 'from torch import distributed\n'), ((5541, 5587), 'torch.distributed.broadcast', 'distributed.broadcast', (['module.signed_tensor', '(0)'], {}), '(module.signed_tensor, 0)\n', (5562, 5587), False, 'from torch import distributed\n'), ((7449, 7491), 'torch.distributed.broadcast', 'distributed.broadcast', (['module.input_low', '(0)'], {}), '(module.input_low, 0)\n', (7470, 7491), False, 'from torch import distributed\n'), ((7500, 7544), 'torch.distributed.broadcast', 'distributed.broadcast', (['module.input_range', '(0)'], {}), '(module.input_range, 0)\n', (7521, 7544), False, 'from torch import distributed\n'), ((3744, 3776), 'torch.IntTensor', 'torch.IntTensor', (['[params.signed]'], {}), '([params.signed])\n', (3759, 3776), False, 'import torch\n'), ((4022, 4045), 'torch.ones', 'torch.ones', (['scale_shape'], {}), '(scale_shape)\n', (4032, 4045), False, 'import torch\n'), ((6385, 6409), 'torch.zeros', 'torch.zeros', (['scale_shape'], {}), '(scale_shape)\n', (6396, 6409), False, 'import torch\n'), ((6471, 6494), 'torch.ones', 'torch.ones', (['scale_shape'], {}), '(scale_shape)\n', (6481, 6494), False, 'import torch\n'), ((2467, 2503), 'functools.partial', 'partial', (['self.hook_fn'], {'module': 'module'}), '(self.hook_fn, module=module)\n', (2474, 2503), False, 'from functools import partial\n')]
import curses, sys, os #Servo controller connected to IC2 import Adafruit_PCA9685 pwm = Adafruit_PCA9685.PCA9685() pwm.set_pwm_freq(60) from time import sleep #ESC Brushles motor states: direction, on/off toggleState = 400 throttle = 450 delta = 20 print("toggleState1") pwm.set_pwm(2,0,toggleState) sleep(0.2) for i in range(1,6): pwm_value = throttle -i*delta if pwm_value < toggleState: pwm.set_pwm(2,0,toggleState) sleep(0.2) pwm.set_pwm(2,0, pwm_value) sleep(0.4) print(pwm_value) pwm.set_pwm(2,0,toggleState)
[ "Adafruit_PCA9685.PCA9685", "time.sleep" ]
[((89, 115), 'Adafruit_PCA9685.PCA9685', 'Adafruit_PCA9685.PCA9685', ([], {}), '()\n', (113, 115), False, 'import Adafruit_PCA9685\n'), ((304, 314), 'time.sleep', 'sleep', (['(0.2)'], {}), '(0.2)\n', (309, 314), False, 'from time import sleep\n'), ((494, 504), 'time.sleep', 'sleep', (['(0.4)'], {}), '(0.4)\n', (499, 504), False, 'from time import sleep\n'), ((447, 457), 'time.sleep', 'sleep', (['(0.2)'], {}), '(0.2)\n', (452, 457), False, 'from time import sleep\n')]
import pytropos.internals.values as pv from pytropos.internals.values.builtin_values import * from pytropos.internals.values.python_values.builtin_mutvalues import * from pytropos.internals.values.python_values.wrappers import * from pytropos.internals.values.python_values.python_values import PythonValue, PT exitcode = 1 r = List([pv.int(21)], size=(1, 1)) store = { '_': PythonValue(PT.Top), 'f': r.get_attrs()['append'], 'r': PythonValue(r), }
[ "pytropos.internals.values.int", "pytropos.internals.values.python_values.python_values.PythonValue" ]
[((380, 399), 'pytropos.internals.values.python_values.python_values.PythonValue', 'PythonValue', (['PT.Top'], {}), '(PT.Top)\n', (391, 399), False, 'from pytropos.internals.values.python_values.python_values import PythonValue, PT\n'), ((440, 454), 'pytropos.internals.values.python_values.python_values.PythonValue', 'PythonValue', (['r'], {}), '(r)\n', (451, 454), False, 'from pytropos.internals.values.python_values.python_values import PythonValue, PT\n'), ((336, 346), 'pytropos.internals.values.int', 'pv.int', (['(21)'], {}), '(21)\n', (342, 346), True, 'import pytropos.internals.values as pv\n')]
import re import setuptools def find_version(fname): """Attempts to find the version number in the file names fname. Raises RuntimeError if not found. """ version = '' with open(fname, 'r') as fp: reg = re.compile(r'__version__ = [\'"]([^\'"]*)[\'"]') for line in fp: m = reg.match(line) if m: version = m.group(1) break if not version: raise RuntimeError('Cannot find version information') return version __version__ = find_version('doc_scanner/__init__.py') with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="doc_scanner", version=__version__, author="<NAME>", author_email="<EMAIL>", description="A document scanner based on openCV3 and scikit-image", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Guoli-Lyu/document-scanner", packages=setuptools.find_packages(), classifiers=( 'Development Status :: 4 - Beta', "Programming Language :: Python :: 3.6", "License :: OSI Approved :: MIT License", ), test_suite='tests', project_urls={ 'Bug Reports': 'https://github.com/Guoli-Lyu/document-scanner/issues', }, install_requires=[ 'numpy', 'scikit-image', 'opencv-python', 'pandas', ], )
[ "setuptools.find_packages", "re.compile" ]
[((233, 286), 're.compile', 're.compile', (['"""__version__ = [\\\\\'"]([^\\\\\'"]*)[\\\\\'"]"""'], {}), '(\'__version__ = [\\\\\\\'"]([^\\\\\\\'"]*)[\\\\\\\'"]\')\n', (243, 286), False, 'import re\n'), ((990, 1016), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (1014, 1016), False, 'import setuptools\n')]
#!/usr/bin/python3 import os.path import openpyxl import requests import json import argparse BASE_URL_XIV_API_CHARACTER: str = "https://xivapi.com/character/" GERMAN_TO_ENGLISH_CLASS_DICT: dict = {} SUB_30_MAPPING_DICT: dict = {} CONFIG_LOCATION = os.getcwd() DEBUG_ENABLED = False def main(filepath): """main method, used to process data and update the excel workbook""" workbook: openpyxl.Workbook = openpyxl.load_workbook(filepath) worksheet = workbook.active class_range: tuple = generate_class_range(worksheet) for i in range(worksheet.min_row + 1, worksheet.max_row): current_row: tuple = worksheet[i] if not current_row[0].value and not current_row[1].value: break current_character_name: str = f"{current_row[0].value} {current_row[1].value}" current_character_info: dict = process_class_info(get_character_info(get_character_id(current_character_name))) if not current_character_info: print(f"Cant process data for character: {current_character_name}") continue update_character_info(current_character_info, worksheet, class_range, worksheet[worksheet.min_row], i) workbook.save(filepath.replace(".xlsx", "_updated.xlsx")) print("Finished!") def update_character_info(current_character_info: dict, worksheet: openpyxl.workbook.workbook.Worksheet, class_range: tuple, header_row: tuple, current_row: int): """method to update the character class information in the excel sheet""" for i in range(class_range[0], class_range[1]): # reduce i by one because column index is the actual index, while the header_row is a list, # thus reducing the index by 1 mapped_class_name = GERMAN_TO_ENGLISH_CLASS_DICT.get(header_row[i - 1].value) new_class_val = current_character_info.get(mapped_class_name, 0) if DEBUG_ENABLED: character_name = f"{worksheet.cell(current_row, 1).value} {worksheet.cell(current_row, 2).value}" current_class = header_row[i - 1].value print(f"Setting value {new_class_val} for class {current_class} for character {character_name}") current_cell = worksheet.cell(row=current_row, column=i) current_cell.value = new_class_val def process_class_info(class_info: dict): """method to process the class info of every player, mapping it into a dictionary for easier usage""" if class_info is None: return None data_to_process = class_info.get("Character", {}).get("ClassJobs", None) if not data_to_process: raise IOError out: dict = {SUB_30_MAPPING_DICT.get(entry["UnlockedState"]["Name"], entry["UnlockedState"]["Name"]): entry["Level"] for entry in data_to_process} # special case -> arcanist branching into two main jobs out["Summoner"] = out["Scholar"] if DEBUG_ENABLED: print("MAPPED CLASS VALUES:") print(out) return out def generate_class_range(worksheet: openpyxl.workbook.workbook.Worksheet): """helper method, to create the excel ranges for the player classes""" header_row: tuple = worksheet[worksheet.min_row] end = 0 start = 0 start_set = False for col in header_row: if col.value is None: break if col.value in GERMAN_TO_ENGLISH_CLASS_DICT.keys() and not start_set: start = end start_set = True end += 1 if DEBUG_ENABLED: print("CLASS ROW RANGES:") print(start, end) return start + 1, end + 1 def do_http_get(request_url: str): """helper method to do http requests""" resp: requests.Response = requests.get(request_url) if resp.ok: return resp.json() else: raise ConnectionError def get_character_info(character_id: str): """helper method to receive character info via XIV API""" if not character_id: return None current_request_url: str = f"{BASE_URL_XIV_API_CHARACTER}{character_id}" resp_json: dict = do_http_get(current_request_url) return resp_json def get_character_id(character_name: str): """Help method to get the ID of an character via XIV API""" current_request_url: str = f"{BASE_URL_XIV_API_CHARACTER}search?name={character_name}&server=Moogle" resp_json: dict = do_http_get(current_request_url) print(f"Processing data for: {character_name}") return resp_json["Results"][0]["ID"] if resp_json["Results"] else None def load_config(arguments: argparse.Namespace): global GERMAN_TO_ENGLISH_CLASS_DICT, SUB_30_MAPPING_DICT global CONFIG_LOCATION, DEBUG_ENABLED if arguments.config: CONFIG_LOCATION = arguments.config if arguments.d: DEBUG_ENABLED = arguments.d with open(os.path.join(CONFIG_LOCATION, "eor_config.json")) as file: config = json.load(file) GERMAN_TO_ENGLISH_CLASS_DICT = config.get("class_config", None) SUB_30_MAPPING_DICT = config.get("sub_30_class_config", None) if not GERMAN_TO_ENGLISH_CLASS_DICT or not SUB_30_MAPPING_DICT: raise IOError if __name__ == '__main__': parser = argparse.ArgumentParser(description="Process the EoR Membership excel.") parser.add_argument("--filename", metavar='[path to file]', type=str, help="the location of the file to process") parser.add_argument("--config", type=str, required=False) parser.add_argument("--d", required=False, action='store_true') args = parser.parse_args() load_config(args) main(args.filename)
[ "argparse.ArgumentParser", "json.load", "openpyxl.load_workbook", "requests.get" ]
[((417, 449), 'openpyxl.load_workbook', 'openpyxl.load_workbook', (['filepath'], {}), '(filepath)\n', (439, 449), False, 'import openpyxl\n'), ((3683, 3708), 'requests.get', 'requests.get', (['request_url'], {}), '(request_url)\n', (3695, 3708), False, 'import requests\n'), ((5160, 5232), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Process the EoR Membership excel."""'}), "(description='Process the EoR Membership excel.')\n", (5183, 5232), False, 'import argparse\n'), ((4862, 4877), 'json.load', 'json.load', (['file'], {}), '(file)\n', (4871, 4877), False, 'import json\n')]
import datetime from functools import partial from typing import List, Optional, Union from quickbuild.helpers import ContentType, response2py class Configurations: def __init__(self, quickbuild): self.quickbuild = quickbuild def _get(self, params: dict) -> List[dict]: return self.quickbuild._request( 'GET', 'configurations', callback=response2py, params=params, ) def get(self) -> List[dict]: """ Get all configurations in the system. For performance reason, only brief information of the configuration will be returned here, including `id`, `name`, `description`, `schedule`, `runMode`, `errorMessage`, `parent id`. You may get the full xml representation using id if necessary. Returns: List[dict]: list of configurations. """ return self._get(dict(recursive=True)) def get_child(self, parent_id: int) -> List[dict]: """ Get a list of child configurations. Args: parent_id (int): parent configuration identifier. Returns: List[dict]: list of child configurations. """ return self._get(dict(parent_id=parent_id)) def get_descendent(self, parent_id: int) -> List[dict]: """ Get a list of descendent configurations. Args: parent_id (int): parent configuration identifier. Returns: List[dict]: list of descendent configurations. """ return self._get(dict(recursive=True, parent_id=parent_id)) def get_info(self, configuration_id: int, *, content_type: Optional[ContentType] = None ) -> Union[dict, str]: """ Get full configuration info. Args: configuration_id (int): Configuration identifier. content_type (Optional[ContentType]): Select needed content type if not set, default value of client instance is used. Returns: Union[dict, str]: configuration content. """ return self.quickbuild._request( 'GET', 'configurations/{}'.format(configuration_id), callback=partial(response2py, content_type=content_type), content_type=content_type, ) def get_path(self, configuration_id: int) -> str: """ Get configuration path. Args: configuration_id (int): configuration identifier. Returns: str: configuration path. """ return self.quickbuild._request( 'GET', 'configurations/{}/path'.format(configuration_id), ) def get_id_by_path(self, path: str) -> int: """ Get configuration id by path. Args: path (str): configuration path. Returns: int: configuration identifier. """ return self.quickbuild.identifiers.get_configuration_id_by_path(path) def get_name(self, configuration_id: int) -> str: """ Get configuration name. Args: configuration_id (int): configuration identifier. Returns: str: configuration name. """ return self.quickbuild._request( 'GET', 'configurations/{}/name'.format(configuration_id), ) def get_description(self, configuration_id: int) -> str: """ Get configuration description. Args: configuration_id (int): configuration identifier. Returns: str: configuration description. """ return self.quickbuild._request( 'GET', 'configurations/{}/description'.format(configuration_id), ) def get_error_message(self, configuration_id: int) -> str: """ Get configuration error message. Args: configuration_id (int): configuration identifier. Returns: str: configuration error message. """ return self.quickbuild._request( 'GET', 'configurations/{}/error_message'.format(configuration_id), ) def get_run_mode(self, configuration_id: int) -> str: """ Get configuration run mode. Args: configuration_id (int): configuration identifier. Returns: str: configuration run mode. """ return self.quickbuild._request( 'GET', 'configurations/{}/run_mode'.format(configuration_id), ) def get_schedule(self, configuration_id: int) -> dict: """ Get configuration schedule. Args: configuration_id (int): configuration identifier. Returns: dict: configuration schedule. Raises: QBProcessingError: will be raised if schedule is inherited from parent configuration. """ return self.quickbuild._request( 'GET', 'configurations/{}/schedule'.format(configuration_id), callback=response2py, ) def get_average_duration(self, configuration_id: int, *, from_date: Optional[datetime.date], to_date: Optional[datetime.date] ) -> int: """ Get configuration average duration. Args: configuration_id (int): configuration identifier. Returns: int: milliseconds of average build duration. """ params = dict() if from_date: params['from_date'] = str(from_date) if to_date: params['to_date'] = str(to_date) return self.quickbuild._request( 'GET', 'configurations/{}/average_duration'.format(configuration_id), callback=response2py, params=params, ) def get_success_rate(self, configuration_id: int, *, from_date: Optional[datetime.date], to_date: Optional[datetime.date] ) -> int: """ Get configuration success rate. Args: configuration_id (int): configuration identifier. Returns: int: value in the range of 0~100, with 0 stands for 0%, and 100 stands for 100%. """ params = dict() if from_date: params['from_date'] = str(from_date) if to_date: params['to_date'] = str(to_date) return self.quickbuild._request( 'GET', 'configurations/{}/success_rate'.format(configuration_id), callback=response2py, params=params, ) def get_parent(self, configuration_id: int) -> int: """ Get parent configuration id. Args: configuration_id (int): configuration identifier. Returns: int: id of parent configuration. Raises: QBProcessingError: the configuration is root configuration and does not have parent. """ return self.quickbuild._request( 'GET', 'configurations/{}/parent'.format(configuration_id), callback=response2py, ) def update(self, configuration: str) -> int: """ Update a configuration using XML configuration. Normally you do not need to create the XML from scratch: you may get XML representation of the configuration using `get_info()` method with content_type=ContentType.XML and modify certain parts of the XML. Args: configuration (str): XML document. Returns: int: configuration id being updated. """ return self.quickbuild._request( 'POST', 'configurations', callback=response2py, data=configuration ) def create(self, configuration: str) -> int: """ Create a configuration using XML/JSON configuration. Please note that: - The parent element denotes id of the parent configuration. Normally you do not need to create the xml from scratch: you may retrieve xml representation of a templating configuration using various configuration access methods or `get_info()` with content_type=ContentType.XML, remove the id element, modify certain parts and use it for create() method. - Secret elements (Elements with attribute "secret=encrypt" in XML representation of an existing configuration, typically they are repository passwords, secret variable values, etc.) should not contain the "secret" attribute; otherwise QuickBuild will think that the password has already been encrypted. However if you creating configuration by copying existing one and want to remain the passwords, the "secret" attribute should then be preserved. Args: configuration (str): XML/JSON document. Returns: int: configuration id of newly created configuration. Raises: QBError: XML validation error """ self.quickbuild._validate_for_id(configuration) return self.update(configuration) def delete(self, configuration_id: int) -> None: """ Delete configuration. Args: configuration_id (int): configuration id. Returns: None """ return self.quickbuild._request( 'DELETE', 'configurations/{}'.format(configuration_id), callback=response2py, ) def copy(self, configuration_id: int, parent_id: int, name: str, recursive: bool ) -> int: """ Copy configuration (available since version 4.0.72) Args: configuration_id (int): Configuration id to be copied. parent_id (int): Configuration id of the parent to place newly copied configuration. name (str): Name of the newly copied configuration. recursive (bool): Specify parameter recursive=true to copy specified configuration and all its descendant configurations recursively; otherwise, only the configuration itself will be copied. Returns: int: configuration id of the newly copied configuration. """ params = dict( parent_id=parent_id, name=name, recursive=recursive, ) return self.quickbuild._request( 'GET', 'configurations/{}/copy'.format(configuration_id), callback=response2py, params=params, )
[ "functools.partial" ]
[((2333, 2380), 'functools.partial', 'partial', (['response2py'], {'content_type': 'content_type'}), '(response2py, content_type=content_type)\n', (2340, 2380), False, 'from functools import partial\n')]
from os import path from pathlib import Path def curr_file_path() -> Path: """Get cuurent file path.""" return Path(__file__).absolute() def out_folder_path() -> Path: """Get output folder path.""" return curr_file_path().parents[3].joinpath("out").absolute() def out_geom_path() -> Path: """Get output geometry folder path.""" return path.abspath(out_folder_path().joinpath("geometry").absolute())
[ "pathlib.Path" ]
[((121, 135), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (125, 135), False, 'from pathlib import Path\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import requests, json, base64 def post_cli(auth, command): url_cli = "http://" + auth.ipaddr + "/rest/" + auth.version + "/cli" command_dict = {"cmd": command} try: post_command = requests.post(url_cli, headers=auth.cookie, data=json.dumps(command_dict)) cli_response = post_command.json()['result_base64_encoded'] decoded_response = base64.b64decode(cli_response).decode('utf-8') return decoded_response except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " post_cli: An Error has occurred"
[ "base64.b64decode", "json.dumps" ]
[((297, 321), 'json.dumps', 'json.dumps', (['command_dict'], {}), '(command_dict)\n', (307, 321), False, 'import requests, json, base64\n'), ((418, 448), 'base64.b64decode', 'base64.b64decode', (['cli_response'], {}), '(cli_response)\n', (434, 448), False, 'import requests, json, base64\n')]
from model.group import Group class GroupHelper: def __init__(self, app): self.app = app def create(self, group): wd = self.app.wd self.go_to_group_page() wd.find_element_by_name("new").click() self.fill_form_group(group) # Submit group creation wd.find_element_by_name("submit").click() self.back_to_group_page() self.group_cache = None def select_group_by_index(self, index): wd = self.app.wd wd.find_elements_by_name("selected[]")[index].click() def select_all_groups(self): wd = self.app.wd self.go_to_group_page() for i in range(len(wd.find_elements_by_name("selected[]"))): wd.find_elements_by_name("selected[]")[i].click() def test_delete_all_groups(self): self.select_all_groups() self.delete_groups() def delete_group_by_index(self, index): self.go_to_group_page() self.select_group_by_index(index) self.delete_groups() self.group_cache = None def delete_groups(self): wd = self.app.wd wd.find_element_by_name("delete").click() self.back_to_group_page() def delete_first_group(self): self.delete_group_by_index(0) def update_group_by_index(self, index, new_group_data): wd = self.app.wd self.go_to_group_page() self.select_group_by_index(index) wd.find_element_by_name("edit").click() self.fill_form_group(new_group_data) # Submit group update wd.find_element_by_name("update").click() self.back_to_group_page() self.group_cache = None def update_first_group(self): self.update_group_by_index(0, new_group_data) def select_first_group(self): self.select_group_by_index(0) def go_to_group_page(self): wd = self.app.wd if not (wd.current_url.endswith("/group.php") and len(wd.find_elements_by_name("new")) > 0): wd.find_element_by_link_text("groups").click() def back_to_group_page(self): wd = self.app.wd wd.find_element_by_link_text("group page").click() def change_group_value(self, field_name, text): wd = self.app.wd if text is not None: wd.find_element_by_name(field_name).click() wd.find_element_by_name(field_name).clear() wd.find_element_by_name(field_name).send_keys(text) def fill_form_group(self, group): self.change_group_value("group_name", group.name) self.change_group_value("group_header", group.header) self.change_group_value("group_footer", group.footer) def count(self): wd = self.app.wd self.go_to_group_page() return len(wd.find_elements_by_name("selected[]")) group_cache = None def get_group_list(self): if self.group_cache is None: wd = self.app.wd self.go_to_group_page() self.group_cache = [] for element in wd.find_elements_by_css_selector("span.group"): text = element.text group_id = element.find_element_by_name("selected[]").get_attribute("value") self.group_cache.append(Group(name=text, id=group_id)) return list(self.group_cache)
[ "model.group.Group" ]
[((3260, 3289), 'model.group.Group', 'Group', ([], {'name': 'text', 'id': 'group_id'}), '(name=text, id=group_id)\n', (3265, 3289), False, 'from model.group import Group\n')]
import math def sieve(n): primes = list(range(2, n+1)) i = 0 while i < len(primes): no = primes[i] m = 2 while (no * m) <= max(primes): if primes.count(no * m) > 0: primes.remove(no * m) m+=1 i+=1 return primes def maxPower(n, limit): i = 1 while math.pow(n, i + 1) <= limit: i += 1 return i limit = int(input('Limit: ')) primes = sieve(limit) s = 1 for x in primes: print(math.pow(x, maxPower(x, limit))) s *= math.pow(x, maxPower(x, limit)) print(s)
[ "math.pow" ]
[((348, 366), 'math.pow', 'math.pow', (['n', '(i + 1)'], {}), '(n, i + 1)\n', (356, 366), False, 'import math\n')]
from os import system def ler_qtd(n, msg): n = int(input(msg)) while (n < 1) or (n > 10000): n = int(input(f' - Entrada invalida!{msg}')) return n def preencher_set_cartas(cartas, qtd, p): """ set de cartas, qtd de cartas, p de pessoa """ from time import sleep print() #Pular linha for cont in range(qtd): carta = int(input(f' - Digite a {cont+1} carta de {p}: ')) while (carta < 1) or (carta > 100000): carta = int(input(f' - \033[1;31mEntrada invalida!\033[m Digite a {cont+1} carta de {p}: ')) cartas.append(carta) print(' - OK!') sleep(1) #Espera 1s def retirar_repetidos(lista): l = list() for cont in range(len(lista)): if lista[cont] not in l: l.append(lista[cont]) return l def qtd_trocas(cartasA, cartasB): inter_a = list() inter_b = list() for i in range(len(cartasA)): for j in range(len(cartasB)): if cartasA[i] == cartasB[j]: break elif (j == len(cartasB)-1): inter_a.append(cartasA[i]) inter_a = retirar_repetidos(inter_a) #Pego o conjunto interseccao de a e tiro os repetidos for i in range(len(cartasB)): for j in range(len(cartasA)): if cartasB[i] == cartasA[j]: break elif (j == len(cartasA)-1): inter_b.append(cartasB[i]) inter_b = retirar_repetidos(inter_b) #Pego o conjunto interseccao de b e tiro os repetidos menor = inter_a if len(inter_a) < len(inter_b) else inter_b return len(menor) #Programa principal qa = 0 a = list() #Set cartas Alice qb = 0 b = list() #Set cartas Beatriz system('cls') print('{:=^50}'.format(' TROCA DE CARTAS POKEMON ')) qa = ler_qtd(qa, ' Quantas cartas Alice possui? ') qb = ler_qtd(qb, ' Quantas cartas Beatriz possui? ') preencher_set_cartas(a, qa, 'Alice') preencher_set_cartas(b, qb, 'Beatriz') print(sorted(a)) print(sorted(b)) maximo_trocas = qtd_trocas(a, b) print(f' - Maximo de trocas e igual a {maximo_trocas}')
[ "os.system", "time.sleep" ]
[((1764, 1777), 'os.system', 'system', (['"""cls"""'], {}), "('cls')\n", (1770, 1777), False, 'from os import system\n'), ((641, 649), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (646, 649), False, 'from time import sleep\n')]
import numpy as np import random import numbers import cv2 from PIL import Image import wpcv from wpcv.utils.ops import pil_ops, polygon_ops from wpcv.utils.data_aug.base import Compose, Zip from wpcv.utils.data_aug import img_aug class ToPILImage(object): def __init__(self): self.to = img_aug.ToPILImage() def __call__(self, img, *args): if len(args): return (self.to(img), *args) else: return self.to(img) class BboxesToPoints(object): def __call__(self, img, bboxes): points = np.array(bboxes).reshape((-1, 2, 2)) return img, points class PointsToBboxes(object): def __call__(self, img, points): bboxes = np.array(points).reshape((-1, 4)) return img, bboxes class Reshape(object): def __init__(self, shape): self.target_shape = shape def __call__(self, x): return np.array(x).reshape(self.target_shape) class Limitsize(object): def __init__(self, maxsize): limit = maxsize if isinstance(limit, (tuple, list, set,)): mw, mh = limit else: mw = mh = limit self.size = (mw, mh) def __call__(self, img, points): mw, mh = self.size w, h = img.size rw = w / mw rh = h / mh r = max(rw, rh) if r > 1: nw, nh = int(w / r), int(h / r) img = pil_ops.resize(img, (nw, nh)) points = polygon_ops.scale(points, 1 / r) return img, points class Scale(object): def __init__(self, scales): if isinstance(scales, (tuple, list)): scaleX, scaleY = scales else: scaleX = scaleY = scales self.scaleX, self.scaleY = scaleX, scaleY def __call__(self, img, points): scaleX, scaleY = self.scaleX, self.scaleY img = pil_ops.scale(img, (scaleX, scaleY)) points = polygon_ops.scale(points, (scaleX, scaleY)) return img, points class Resize(object): def __init__(self, size, keep_ratio=False, fillcolor='black'): self.size = size self.keep_ratio = keep_ratio self.fillcolor = fillcolor def __call__(self, img, points): w, h = img.size tw, th = self.size if not self.keep_ratio: scaleX, scaleY = tw / w, th / h img = pil_ops.resize(img, self.size) points = polygon_ops.scale(points, (scaleX, scaleY)) else: if self.fillcolor is 'random': fillcolor = tuple(np.random.choice(range(256), size=3)) else: fillcolor = self.fillcolor img = pil_ops.resize_keep_ratio(img, self.size, fillcolor=fillcolor) rx = w / tw ry = h / th r = max(rx, ry) nw = w / r nh = h / r dw = (tw - nw) // 2 dh = (th - nh) // 2 points = polygon_ops.scale(points, 1 / r) points = polygon_ops.translate(points, (dw, dh)) return img, points class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, points): imw, imh = img.size if random.random() < self.p: img = pil_ops.hflip(img) points = [polygon_ops.hflip(pnts, imw) for pnts in points] return img, points def __repr__(self): return self.__class__.__name__ + '(p={})'.format(self.p) class RandomVerticalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, points): imw, imh = img.size if random.random() < self.p: img = pil_ops.vflip(img) points = [polygon_ops.vflip(pnts, imh) for pnts in points] return img, points def __repr__(self): return self.__class__.__name__ + '(p={})'.format(self.p) class RandomTranslate(object): def __init__(self, max_offset=None, fillcolor='black'): if max_offset is not None and len(max_offset) == 2: mx, my = max_offset max_offset = [-mx, -my, mx, my] self.max_offset = max_offset self.fillcolor = fillcolor def __call__(self, img, points): if self.fillcolor is 'random': fillcolor = tuple(np.random.choice(range(256), size=3)) else: fillcolor = self.fillcolor rang = polygon_ops.get_translate_range(points, img.size) if self.max_offset: def limit_box(box, limits=None): if limits is None: return box if len(limits) == 2: ml, mt = 0, 0 mr, mb = limits else: assert len(limits) == 4 ml, mt, mr, mb = limits l, t, r, b = box l = max(ml, l) t = max(mt, t) r = min(mr, r) b = min(mb, b) if l > r: return None if t > b: return None return [l, t, r, b] rang = limit_box(rang, self.max_offset) if rang is None: return img, points ofx = random.randint(rang[0], rang[2]) ofy = random.randint(rang[1], rang[3]) img = pil_ops.translate(img, offset=(ofx, ofy), fillcolor=fillcolor) points = [polygon_ops.translate(pnts, (ofx, ofy)) for pnts in points] return img, points class RandomRotate(object): def __init__(self, degree, expand=True, fillcolor='black'): self.degree = degree if not isinstance(degree, numbers.Number) else [-degree, degree] self.expand = expand self.fillcolor = fillcolor def __call__(self, img, points): if self.fillcolor is 'random': fillcolor = tuple(np.random.choice(range(256), size=3)) else: fillcolor = self.fillcolor degree = random.random() * (self.degree[1] - self.degree[0]) + self.degree[0] w, h = img.size img = pil_ops.rotate(img, degree, expand=self.expand, fillcolor=fillcolor) points = [polygon_ops.rotate(pnts, degree, (w // 2, h // 2), img_size=(w, h), expand=self.expand) for pnts in points] return img, points class RandomShearX(object): def __init__(self, degree): self.degree = degree if not isinstance(degree, numbers.Number) else [-degree, degree] def __call__(self, img, points): degree = random.random() * (self.degree[1] - self.degree[0]) + self.degree[0] w, h = img.size img = pil_ops.shear_x(img, degree) points = [polygon_ops.shear_x(pnts, degree, img_size=(w, h), expand=True) for pnts in points] return img, points class RandomShearY(object): def __init__(self, degree): self.degree = degree if not isinstance(degree, numbers.Number) else [-degree, degree] def __call__(self, img, points): degree = random.random() * (self.degree[1] - self.degree[0]) + self.degree[0] w, h = img.size img = pil_ops.shear_y(img, degree) points = [polygon_ops.shear_y(pnts, degree, img_size=(w, h), expand=True) for pnts in points] return img, points class RandomShear(object): def __init__(self, xdegree, ydegree=None, fillcolor='balck'): def get_param(param, defualt=None): if param is None: return defualt return param if not isinstance(param, numbers.Number) else [-param, param] self.xdegree = get_param(xdegree) self.ydegree = get_param(ydegree) self.fillcolor = fillcolor def __call__(self, img, points): if self.xdegree: if self.fillcolor is 'random': fillcolor = tuple(np.random.choice(range(256), size=3)) else: fillcolor = self.fillcolor degree = random.random() * (self.xdegree[1] - self.xdegree[0]) + self.xdegree[0] w, h = img.size img = pil_ops.shear_x(img, degree, fillcolor=fillcolor) points = [polygon_ops.shear_x(pnts, degree, img_size=(w, h), expand=True) for pnts in points] if self.ydegree: if self.fillcolor is 'random': fillcolor = tuple(np.random.choice(range(256), size=3)) else: fillcolor = self.fillcolor degree = random.random() * (self.ydegree[1] - self.ydegree[0]) + self.ydegree[0] w, h = img.size img = pil_ops.shear_y(img, degree, fillcolor=fillcolor) points = [polygon_ops.shear_y(pnts, degree, img_size=(w, h), expand=True) for pnts in points] return img, points # class RandomPerspective:
[ "wpcv.utils.ops.pil_ops.vflip", "wpcv.utils.ops.polygon_ops.get_translate_range", "wpcv.utils.ops.pil_ops.resize_keep_ratio", "wpcv.utils.ops.polygon_ops.scale", "random.randint", "wpcv.utils.ops.pil_ops.scale", "wpcv.utils.ops.polygon_ops.translate", "wpcv.utils.data_aug.img_aug.ToPILImage", "wpcv.utils.ops.pil_ops.shear_y", "wpcv.utils.ops.pil_ops.shear_x", "wpcv.utils.ops.pil_ops.resize", "wpcv.utils.ops.polygon_ops.shear_x", "random.random", "wpcv.utils.ops.pil_ops.hflip", "wpcv.utils.ops.pil_ops.translate", "wpcv.utils.ops.polygon_ops.vflip", "wpcv.utils.ops.polygon_ops.rotate", "wpcv.utils.ops.pil_ops.rotate", "wpcv.utils.ops.polygon_ops.shear_y", "numpy.array", "wpcv.utils.ops.polygon_ops.hflip" ]
[((301, 321), 'wpcv.utils.data_aug.img_aug.ToPILImage', 'img_aug.ToPILImage', ([], {}), '()\n', (319, 321), False, 'from wpcv.utils.data_aug import img_aug\n'), ((1855, 1891), 'wpcv.utils.ops.pil_ops.scale', 'pil_ops.scale', (['img', '(scaleX, scaleY)'], {}), '(img, (scaleX, scaleY))\n', (1868, 1891), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((1909, 1952), 'wpcv.utils.ops.polygon_ops.scale', 'polygon_ops.scale', (['points', '(scaleX, scaleY)'], {}), '(points, (scaleX, scaleY))\n', (1926, 1952), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((4390, 4439), 'wpcv.utils.ops.polygon_ops.get_translate_range', 'polygon_ops.get_translate_range', (['points', 'img.size'], {}), '(points, img.size)\n', (4421, 4439), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((5196, 5228), 'random.randint', 'random.randint', (['rang[0]', 'rang[2]'], {}), '(rang[0], rang[2])\n', (5210, 5228), False, 'import random\n'), ((5243, 5275), 'random.randint', 'random.randint', (['rang[1]', 'rang[3]'], {}), '(rang[1], rang[3])\n', (5257, 5275), False, 'import random\n'), ((5290, 5352), 'wpcv.utils.ops.pil_ops.translate', 'pil_ops.translate', (['img'], {'offset': '(ofx, ofy)', 'fillcolor': 'fillcolor'}), '(img, offset=(ofx, ofy), fillcolor=fillcolor)\n', (5307, 5352), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((6032, 6100), 'wpcv.utils.ops.pil_ops.rotate', 'pil_ops.rotate', (['img', 'degree'], {'expand': 'self.expand', 'fillcolor': 'fillcolor'}), '(img, degree, expand=self.expand, fillcolor=fillcolor)\n', (6046, 6100), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((6590, 6618), 'wpcv.utils.ops.pil_ops.shear_x', 'pil_ops.shear_x', (['img', 'degree'], {}), '(img, degree)\n', (6605, 6618), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((7066, 7094), 'wpcv.utils.ops.pil_ops.shear_y', 'pil_ops.shear_y', (['img', 'degree'], {}), '(img, degree)\n', (7081, 7094), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((1404, 1433), 'wpcv.utils.ops.pil_ops.resize', 'pil_ops.resize', (['img', '(nw, nh)'], {}), '(img, (nw, nh))\n', (1418, 1433), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((1455, 1487), 'wpcv.utils.ops.polygon_ops.scale', 'polygon_ops.scale', (['points', '(1 / r)'], {}), '(points, 1 / r)\n', (1472, 1487), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((2351, 2381), 'wpcv.utils.ops.pil_ops.resize', 'pil_ops.resize', (['img', 'self.size'], {}), '(img, self.size)\n', (2365, 2381), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((2403, 2446), 'wpcv.utils.ops.polygon_ops.scale', 'polygon_ops.scale', (['points', '(scaleX, scaleY)'], {}), '(points, (scaleX, scaleY))\n', (2420, 2446), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((2655, 2717), 'wpcv.utils.ops.pil_ops.resize_keep_ratio', 'pil_ops.resize_keep_ratio', (['img', 'self.size'], {'fillcolor': 'fillcolor'}), '(img, self.size, fillcolor=fillcolor)\n', (2680, 2717), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((2925, 2957), 'wpcv.utils.ops.polygon_ops.scale', 'polygon_ops.scale', (['points', '(1 / r)'], {}), '(points, 1 / r)\n', (2942, 2957), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((2979, 3018), 'wpcv.utils.ops.polygon_ops.translate', 'polygon_ops.translate', (['points', '(dw, dh)'], {}), '(points, (dw, dh))\n', (3000, 3018), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((3211, 3226), 'random.random', 'random.random', ([], {}), '()\n', (3224, 3226), False, 'import random\n'), ((3255, 3273), 'wpcv.utils.ops.pil_ops.hflip', 'pil_ops.hflip', (['img'], {}), '(img)\n', (3268, 3273), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((3625, 3640), 'random.random', 'random.random', ([], {}), '()\n', (3638, 3640), False, 'import random\n'), ((3669, 3687), 'wpcv.utils.ops.pil_ops.vflip', 'pil_ops.vflip', (['img'], {}), '(img)\n', (3682, 3687), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((5371, 5410), 'wpcv.utils.ops.polygon_ops.translate', 'polygon_ops.translate', (['pnts', '(ofx, ofy)'], {}), '(pnts, (ofx, ofy))\n', (5392, 5410), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((6119, 6211), 'wpcv.utils.ops.polygon_ops.rotate', 'polygon_ops.rotate', (['pnts', 'degree', '(w // 2, h // 2)'], {'img_size': '(w, h)', 'expand': 'self.expand'}), '(pnts, degree, (w // 2, h // 2), img_size=(w, h), expand=\n self.expand)\n', (6137, 6211), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((6637, 6700), 'wpcv.utils.ops.polygon_ops.shear_x', 'polygon_ops.shear_x', (['pnts', 'degree'], {'img_size': '(w, h)', 'expand': '(True)'}), '(pnts, degree, img_size=(w, h), expand=True)\n', (6656, 6700), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((7113, 7176), 'wpcv.utils.ops.polygon_ops.shear_y', 'polygon_ops.shear_y', (['pnts', 'degree'], {'img_size': '(w, h)', 'expand': '(True)'}), '(pnts, degree, img_size=(w, h), expand=True)\n', (7132, 7176), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((7994, 8043), 'wpcv.utils.ops.pil_ops.shear_x', 'pil_ops.shear_x', (['img', 'degree'], {'fillcolor': 'fillcolor'}), '(img, degree, fillcolor=fillcolor)\n', (8009, 8043), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((8490, 8539), 'wpcv.utils.ops.pil_ops.shear_y', 'pil_ops.shear_y', (['img', 'degree'], {'fillcolor': 'fillcolor'}), '(img, degree, fillcolor=fillcolor)\n', (8505, 8539), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((554, 570), 'numpy.array', 'np.array', (['bboxes'], {}), '(bboxes)\n', (562, 570), True, 'import numpy as np\n'), ((704, 720), 'numpy.array', 'np.array', (['points'], {}), '(points)\n', (712, 720), True, 'import numpy as np\n'), ((898, 909), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (906, 909), True, 'import numpy as np\n'), ((3296, 3324), 'wpcv.utils.ops.polygon_ops.hflip', 'polygon_ops.hflip', (['pnts', 'imw'], {}), '(pnts, imw)\n', (3313, 3324), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((3710, 3738), 'wpcv.utils.ops.polygon_ops.vflip', 'polygon_ops.vflip', (['pnts', 'imh'], {}), '(pnts, imh)\n', (3727, 3738), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((5925, 5940), 'random.random', 'random.random', ([], {}), '()\n', (5938, 5940), False, 'import random\n'), ((6483, 6498), 'random.random', 'random.random', ([], {}), '()\n', (6496, 6498), False, 'import random\n'), ((6959, 6974), 'random.random', 'random.random', ([], {}), '()\n', (6972, 6974), False, 'import random\n'), ((8066, 8129), 'wpcv.utils.ops.polygon_ops.shear_x', 'polygon_ops.shear_x', (['pnts', 'degree'], {'img_size': '(w, h)', 'expand': '(True)'}), '(pnts, degree, img_size=(w, h), expand=True)\n', (8085, 8129), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((8562, 8625), 'wpcv.utils.ops.polygon_ops.shear_y', 'polygon_ops.shear_y', (['pnts', 'degree'], {'img_size': '(w, h)', 'expand': '(True)'}), '(pnts, degree, img_size=(w, h), expand=True)\n', (8581, 8625), False, 'from wpcv.utils.ops import pil_ops, polygon_ops\n'), ((7876, 7891), 'random.random', 'random.random', ([], {}), '()\n', (7889, 7891), False, 'import random\n'), ((8372, 8387), 'random.random', 'random.random', ([], {}), '()\n', (8385, 8387), False, 'import random\n')]
# coding: utf-8 """ IbIocProfile.py The Clear BSD License Copyright (c) – 2016, NetApp, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of NetApp, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from pprint import pformat from six import iteritems class IbIocProfile(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ IbIocProfile - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'ioc_guid': 'str', # (required parameter) 'vendor_id': 'str', # (required parameter) 'io_device_id': 'int', # (required parameter) 'device_version': 'int', # (required parameter) 'subsystem_vendor_id': 'str', # (required parameter) 'subsystem_id': 'int', # (required parameter) 'io_class': 'int', # (required parameter) 'io_subclass': 'int', # (required parameter) 'protocol': 'int', # (required parameter) 'protocol_version': 'int', # (required parameter) 'send_message_queue_depth': 'int', # (required parameter) 'rdma_read_queue_depth': 'int', # (required parameter) 'send_message_size': 'int', # (required parameter) 'rdma_transfer_size': 'int', # (required parameter) 'controller_ops_capability_mask': 'int', # (required parameter) 'service_entries': 'int', # (required parameter) 'id_string': 'str' } self.attribute_map = { 'ioc_guid': 'iocGuid', # (required parameter) 'vendor_id': 'vendorId', # (required parameter) 'io_device_id': 'ioDeviceId', # (required parameter) 'device_version': 'deviceVersion', # (required parameter) 'subsystem_vendor_id': 'subsystemVendorId', # (required parameter) 'subsystem_id': 'subsystemId', # (required parameter) 'io_class': 'ioClass', # (required parameter) 'io_subclass': 'ioSubclass', # (required parameter) 'protocol': 'protocol', # (required parameter) 'protocol_version': 'protocolVersion', # (required parameter) 'send_message_queue_depth': 'sendMessageQueueDepth', # (required parameter) 'rdma_read_queue_depth': 'rdmaReadQueueDepth', # (required parameter) 'send_message_size': 'sendMessageSize', # (required parameter) 'rdma_transfer_size': 'rdmaTransferSize', # (required parameter) 'controller_ops_capability_mask': 'controllerOpsCapabilityMask', # (required parameter) 'service_entries': 'serviceEntries', # (required parameter) 'id_string': 'idString' } self._ioc_guid = None self._vendor_id = None self._io_device_id = None self._device_version = None self._subsystem_vendor_id = None self._subsystem_id = None self._io_class = None self._io_subclass = None self._protocol = None self._protocol_version = None self._send_message_queue_depth = None self._rdma_read_queue_depth = None self._send_message_size = None self._rdma_transfer_size = None self._controller_ops_capability_mask = None self._service_entries = None self._id_string = None @property def ioc_guid(self): """ Gets the ioc_guid of this IbIocProfile. The EUI-64 GUID used to uniquely identify the I/O controller. :return: The ioc_guid of this IbIocProfile. :rtype: str :required/optional: required """ return self._ioc_guid @ioc_guid.setter def ioc_guid(self, ioc_guid): """ Sets the ioc_guid of this IbIocProfile. The EUI-64 GUID used to uniquely identify the I/O controller. :param ioc_guid: The ioc_guid of this IbIocProfile. :type: str """ self._ioc_guid = ioc_guid @property def vendor_id(self): """ Gets the vendor_id of this IbIocProfile. The I/O controller vendor ID in IEEE format. :return: The vendor_id of this IbIocProfile. :rtype: str :required/optional: required """ return self._vendor_id @vendor_id.setter def vendor_id(self, vendor_id): """ Sets the vendor_id of this IbIocProfile. The I/O controller vendor ID in IEEE format. :param vendor_id: The vendor_id of this IbIocProfile. :type: str """ self._vendor_id = vendor_id @property def io_device_id(self): """ Gets the io_device_id of this IbIocProfile. A number assigned by vendor to identify the type of I/O controller :return: The io_device_id of this IbIocProfile. :rtype: int :required/optional: required """ return self._io_device_id @io_device_id.setter def io_device_id(self, io_device_id): """ Sets the io_device_id of this IbIocProfile. A number assigned by vendor to identify the type of I/O controller :param io_device_id: The io_device_id of this IbIocProfile. :type: int """ self._io_device_id = io_device_id @property def device_version(self): """ Gets the device_version of this IbIocProfile. A number assigned by the vendor to identify the device version. :return: The device_version of this IbIocProfile. :rtype: int :required/optional: required """ return self._device_version @device_version.setter def device_version(self, device_version): """ Sets the device_version of this IbIocProfile. A number assigned by the vendor to identify the device version. :param device_version: The device_version of this IbIocProfile. :type: int """ self._device_version = device_version @property def subsystem_vendor_id(self): """ Gets the subsystem_vendor_id of this IbIocProfile. The ID of the enclosure vendor in IEEE format, or else all zeros if there is no vendor ID. :return: The subsystem_vendor_id of this IbIocProfile. :rtype: str :required/optional: required """ return self._subsystem_vendor_id @subsystem_vendor_id.setter def subsystem_vendor_id(self, subsystem_vendor_id): """ Sets the subsystem_vendor_id of this IbIocProfile. The ID of the enclosure vendor in IEEE format, or else all zeros if there is no vendor ID. :param subsystem_vendor_id: The subsystem_vendor_id of this IbIocProfile. :type: str """ self._subsystem_vendor_id = subsystem_vendor_id @property def subsystem_id(self): """ Gets the subsystem_id of this IbIocProfile. A number identifying the subsystem where the I/O controller resides. :return: The subsystem_id of this IbIocProfile. :rtype: int :required/optional: required """ return self._subsystem_id @subsystem_id.setter def subsystem_id(self, subsystem_id): """ Sets the subsystem_id of this IbIocProfile. A number identifying the subsystem where the I/O controller resides. :param subsystem_id: The subsystem_id of this IbIocProfile. :type: int """ self._subsystem_id = subsystem_id @property def io_class(self): """ Gets the io_class of this IbIocProfile. The I/O class of the controller. 0x0000 -0xFFFE is reserved for I/O classes encompassed by the InfiniBand architecture. 0xFFFF is vendor-specific. :return: The io_class of this IbIocProfile. :rtype: int :required/optional: required """ return self._io_class @io_class.setter def io_class(self, io_class): """ Sets the io_class of this IbIocProfile. The I/O class of the controller. 0x0000 -0xFFFE is reserved for I/O classes encompassed by the InfiniBand architecture. 0xFFFF is vendor-specific. :param io_class: The io_class of this IbIocProfile. :type: int """ self._io_class = io_class @property def io_subclass(self): """ Gets the io_subclass of this IbIocProfile. The I/O sub-class of the controller. 0x0000 -0xFFFE is reserved for I/O sub-classes encompassed by the InfiniBand architecture. 0xFFFF is vendor-specific. :return: The io_subclass of this IbIocProfile. :rtype: int :required/optional: required """ return self._io_subclass @io_subclass.setter def io_subclass(self, io_subclass): """ Sets the io_subclass of this IbIocProfile. The I/O sub-class of the controller. 0x0000 -0xFFFE is reserved for I/O sub-classes encompassed by the InfiniBand architecture. 0xFFFF is vendor-specific. :param io_subclass: The io_subclass of this IbIocProfile. :type: int """ self._io_subclass = io_subclass @property def protocol(self): """ Gets the protocol of this IbIocProfile. The I/O protocol of the controller. 0x0000 -0xFFFE is reserved for I/O protocols encompassed by the InfiniBand architecture. 0xFFFF is vendor-specific. :return: The protocol of this IbIocProfile. :rtype: int :required/optional: required """ return self._protocol @protocol.setter def protocol(self, protocol): """ Sets the protocol of this IbIocProfile. The I/O protocol of the controller. 0x0000 -0xFFFE is reserved for I/O protocols encompassed by the InfiniBand architecture. 0xFFFF is vendor-specific. :param protocol: The protocol of this IbIocProfile. :type: int """ self._protocol = protocol @property def protocol_version(self): """ Gets the protocol_version of this IbIocProfile. The protocol version (protocol-specific). :return: The protocol_version of this IbIocProfile. :rtype: int :required/optional: required """ return self._protocol_version @protocol_version.setter def protocol_version(self, protocol_version): """ Sets the protocol_version of this IbIocProfile. The protocol version (protocol-specific). :param protocol_version: The protocol_version of this IbIocProfile. :type: int """ self._protocol_version = protocol_version @property def send_message_queue_depth(self): """ Gets the send_message_queue_depth of this IbIocProfile. The maximum depth of the Send Message Queue. :return: The send_message_queue_depth of this IbIocProfile. :rtype: int :required/optional: required """ return self._send_message_queue_depth @send_message_queue_depth.setter def send_message_queue_depth(self, send_message_queue_depth): """ Sets the send_message_queue_depth of this IbIocProfile. The maximum depth of the Send Message Queue. :param send_message_queue_depth: The send_message_queue_depth of this IbIocProfile. :type: int """ self._send_message_queue_depth = send_message_queue_depth @property def rdma_read_queue_depth(self): """ Gets the rdma_read_queue_depth of this IbIocProfile. The maximum depth of the per-channel RDMA Read Queue :return: The rdma_read_queue_depth of this IbIocProfile. :rtype: int :required/optional: required """ return self._rdma_read_queue_depth @rdma_read_queue_depth.setter def rdma_read_queue_depth(self, rdma_read_queue_depth): """ Sets the rdma_read_queue_depth of this IbIocProfile. The maximum depth of the per-channel RDMA Read Queue :param rdma_read_queue_depth: The rdma_read_queue_depth of this IbIocProfile. :type: int """ self._rdma_read_queue_depth = rdma_read_queue_depth @property def send_message_size(self): """ Gets the send_message_size of this IbIocProfile. The maximum size of Send Messages in bytes. :return: The send_message_size of this IbIocProfile. :rtype: int :required/optional: required """ return self._send_message_size @send_message_size.setter def send_message_size(self, send_message_size): """ Sets the send_message_size of this IbIocProfile. The maximum size of Send Messages in bytes. :param send_message_size: The send_message_size of this IbIocProfile. :type: int """ self._send_message_size = send_message_size @property def rdma_transfer_size(self): """ Gets the rdma_transfer_size of this IbIocProfile. The maximum size of outbound RDMA transfers initiated by the controller. :return: The rdma_transfer_size of this IbIocProfile. :rtype: int :required/optional: required """ return self._rdma_transfer_size @rdma_transfer_size.setter def rdma_transfer_size(self, rdma_transfer_size): """ Sets the rdma_transfer_size of this IbIocProfile. The maximum size of outbound RDMA transfers initiated by the controller. :param rdma_transfer_size: The rdma_transfer_size of this IbIocProfile. :type: int """ self._rdma_transfer_size = rdma_transfer_size @property def controller_ops_capability_mask(self): """ Gets the controller_ops_capability_mask of this IbIocProfile. Supported operation types of this controller.: Bit 0 on = Send Messages to IOCs Bit 1 on = Send Messages from IOCs Bit 2 on = RDMA Read Requests to IOCs Bit 3 on = RDMA Read Requests from IOCs Bit 4 on = RDMA Write Requests to IOCs Bit 5 on = RDMA Write Requests from IOCs Bit 6 on = Atomic operations to IOCs Bit 7 on = Atomic operations from IOCs :return: The controller_ops_capability_mask of this IbIocProfile. :rtype: int :required/optional: required """ return self._controller_ops_capability_mask @controller_ops_capability_mask.setter def controller_ops_capability_mask(self, controller_ops_capability_mask): """ Sets the controller_ops_capability_mask of this IbIocProfile. Supported operation types of this controller.: Bit 0 on = Send Messages to IOCs Bit 1 on = Send Messages from IOCs Bit 2 on = RDMA Read Requests to IOCs Bit 3 on = RDMA Read Requests from IOCs Bit 4 on = RDMA Write Requests to IOCs Bit 5 on = RDMA Write Requests from IOCs Bit 6 on = Atomic operations to IOCs Bit 7 on = Atomic operations from IOCs :param controller_ops_capability_mask: The controller_ops_capability_mask of this IbIocProfile. :type: int """ self._controller_ops_capability_mask = controller_ops_capability_mask @property def service_entries(self): """ Gets the service_entries of this IbIocProfile. The number of entries in the service entries table :return: The service_entries of this IbIocProfile. :rtype: int :required/optional: required """ return self._service_entries @service_entries.setter def service_entries(self, service_entries): """ Sets the service_entries of this IbIocProfile. The number of entries in the service entries table :param service_entries: The service_entries of this IbIocProfile. :type: int """ self._service_entries = service_entries @property def id_string(self): """ Gets the id_string of this IbIocProfile. A UTF-8 encoded string for identifying the controller to user. :return: The id_string of this IbIocProfile. :rtype: str :required/optional: required """ return self._id_string @id_string.setter def id_string(self, id_string): """ Sets the id_string of this IbIocProfile. A UTF-8 encoded string for identifying the controller to user. :param id_string: The id_string of this IbIocProfile. :type: str """ self._id_string = id_string def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ if self is None: return None return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if self is None or other is None: return None return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
[ "six.iteritems" ]
[((18511, 18540), 'six.iteritems', 'iteritems', (['self.swagger_types'], {}), '(self.swagger_types)\n', (18520, 18540), False, 'from six import iteritems\n')]
from csv import reader from sklearn import preprocessing from plotly import graph_objects def import_data(path): return [[float(f) for f in r] for r in reader(open(path, "r"))] def normalize_data(dataset): scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) normalized = scaler.fit_transform(dataset) return normalized.tolist() def cross_validation_split(dataset, cross_validation_k): size = len(dataset) splits = [int(size / cross_validation_k) for _ in range(cross_validation_k)] splits[cross_validation_k - 1] = size - sum(splits[0:cross_validation_k-1]) sets = list() offset = 0 for s in splits: sets.append([dataset[i] for i in range(offset, offset + s)]) offset += s return sets def compute_y(model, row): m = len(row) y = 0.0 for i in range(m): y += row[i] * model[i] return y + model[m] def compute_grad_mse(model, row, actual): m = len(row) grad = [0.0 for _ in range(m + 1)] diff = compute_y(model, row) - actual for i in range(m): grad[i] += 2.0 * row[i] * diff grad[m] += 2.0 * diff return grad def learn_stochastic_gradient_decent_mse(fold, actuals, learning_rate, iterations_count): m = len(fold[0]) model = [0.0 for _ in range(m + 1)] for i in range(iterations_count): for j in range(len(fold)): row = fold[j] actual = actuals[j] grad = compute_grad_mse(model, row, actual) model = [model[k] - learning_rate / (1 + i) * grad[k] for k in range(m + 1)] return model def compute_rmse(prediction, actual): mse = 0.0 n = len(prediction) for i in range(n): mse += ((prediction[i] - actual[i]) ** 2) / float(n) return mse ** 0.5 def compute_r2(prediction, actual): nominator = 0.0 denominator = 0.0 expect = 0.0 for i in range(len(actual)): nominator += (actual[i] - prediction[i]) ** 2 for i in range(len(actual)): expect += actual[i] / float(len(actual)) for i in range(len(actual)): denominator += (actual[i] - expect) ** 2 return 1 - float(nominator) / float(denominator) def run_learning(sets, learning_rate, iterations_count): models = [] rmses = [] r2s = [] rmses_test = [] r2s_test = [] for set in sets: fold = list(sets) fold.remove(set) fold = sum(fold, []) test = set fold_actual = [r[-1] for r in fold] fold = [r[0:-1] for r in fold] test_actual = [r[-1] for r in test] test = [r[0:-1] for r in test] model = learn_stochastic_gradient_decent_mse(fold, fold_actual, learning_rate, iterations_count) fold_pred = [compute_y(model, row) for row in fold] test_pred = [compute_y(model, row) for row in test] rmses.append(compute_rmse(fold_pred, fold_actual)) r2s.append(compute_r2(fold_pred, fold_actual)) rmses_test.append(compute_rmse(test_pred, test_actual)) r2s_test.append(compute_r2(test_pred, test_actual)) models.append(model) return models, rmses, r2s, rmses_test, r2s_test def compute_stat(data): n = len(data) expectation = 0.0 for d in data: expectation += d / float(n) sd = 0.0 for d in data: sd += ((d - expectation) ** 2) / float(n) return expectation, sd ** 0.5 filepath = "features_var_1.csv" cv_k = 5 learn_rate = 0.01 iterations = 50 dataset = normalize_data(import_data(filepath)) sets = cross_validation_split(dataset, cv_k) models, rmse_train, r2_train, rmse_test, r2_test = run_learning(sets, learn_rate, iterations) models_tr = [[models[i][j] for i in range(cv_k)] for j in range(len(dataset[0]))] stats = [compute_stat(data) for data in [rmse_train, r2_train, rmse_test, r2_test] + models_tr] values = ["X"] + ["Fold" + str(i) for i in range(cv_k)] + ["E","SD"] cells = [ ["RMSE (train)", "R2 (train)", "RMSE (test)", "R2 (test)"] + ["f" + str(i) for i in range(len(dataset[0]))] ] + \ [ [rmse_train[i], r2_train[i], rmse_test[i], r2_test[i]] + models[i] for i in range(cv_k) ] + \ [ [stats[j][i] for j in range(len(stats))] for i in range(2) ] table = graph_objects.Table(header=dict(values=values), cells=dict(values=cells)) figure = graph_objects.Figure(data=[table]) figure.show()
[ "plotly.graph_objects.Figure", "sklearn.preprocessing.MinMaxScaler" ]
[((4307, 4341), 'plotly.graph_objects.Figure', 'graph_objects.Figure', ([], {'data': '[table]'}), '(data=[table])\n', (4327, 4341), False, 'from plotly import graph_objects\n'), ((227, 275), 'sklearn.preprocessing.MinMaxScaler', 'preprocessing.MinMaxScaler', ([], {'feature_range': '(0, 1)'}), '(feature_range=(0, 1))\n', (253, 275), False, 'from sklearn import preprocessing\n')]
#!/bin/python3 from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import NoSuchElementException import sys,os options = webdriver.ChromeOptions() options.add_argument('--ignore-certificate-errors') options.add_argument('--headless') options.add_argument('--no-sandbox') options.add_argument('--disable-gpu') browser = webdriver.Chrome(options=options) browser.get("http://172.16.31.10/") try: browser.find_element_by_xpath('//*[@id="logout"]') print('网络已连接!') browser.quit() sys.exit() except NoSuchElementException: pass username_='2020xxxxxxxxxxx' password_='<PASSWORD>' # 输入用户名,密码 username = browser.find_element_by_xpath('//*[@id="username"]') password = browser.find_element_by_xpath('//*[@id="password"]') username.clear() username.send_keys(username_) password.clear() password.send_keys(password_) login_btn = browser.find_element_by_xpath('//*[@id="login-account"]') login_btn.click() try: # 页面一直循环,直到显示连接成功 element = WebDriverWait(browser, 10).until( EC.presence_of_element_located((By.XPATH, '//*[@id="logout"]')) ) print("网络已连接!") finally: browser.quit() browser.quit()
[ "selenium.webdriver.support.expected_conditions.presence_of_element_located", "selenium.webdriver.ChromeOptions", "selenium.webdriver.Chrome", "selenium.webdriver.support.ui.WebDriverWait", "sys.exit" ]
[((299, 324), 'selenium.webdriver.ChromeOptions', 'webdriver.ChromeOptions', ([], {}), '()\n', (322, 324), False, 'from selenium import webdriver\n'), ((499, 532), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'options': 'options'}), '(options=options)\n', (515, 532), False, 'from selenium import webdriver\n'), ((673, 683), 'sys.exit', 'sys.exit', ([], {}), '()\n', (681, 683), False, 'import sys, os\n'), ((1183, 1246), 'selenium.webdriver.support.expected_conditions.presence_of_element_located', 'EC.presence_of_element_located', (['(By.XPATH, \'//*[@id="logout"]\')'], {}), '((By.XPATH, \'//*[@id="logout"]\'))\n', (1213, 1246), True, 'from selenium.webdriver.support import expected_conditions as EC\n'), ((1141, 1167), 'selenium.webdriver.support.ui.WebDriverWait', 'WebDriverWait', (['browser', '(10)'], {}), '(browser, 10)\n', (1154, 1167), False, 'from selenium.webdriver.support.ui import WebDriverWait\n')]
# Generated by Django 2.2.4 on 2019-09-11 14:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0004_auto_20190907_1334'), ] operations = [ migrations.AddField( model_name='pic', name='classification152', field=models.TextField(blank=True), ), migrations.AddField( model_name='pic', name='classification18', field=models.TextField(blank=True), ), migrations.AddField( model_name='pic', name='transfer', field=models.ImageField(blank=True, upload_to=''), ), ]
[ "django.db.models.ImageField", "django.db.models.TextField" ]
[((340, 368), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)'}), '(blank=True)\n', (356, 368), False, 'from django.db import migrations, models\n'), ((495, 523), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)'}), '(blank=True)\n', (511, 523), False, 'from django.db import migrations, models\n'), ((642, 685), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'upload_to': '""""""'}), "(blank=True, upload_to='')\n", (659, 685), False, 'from django.db import migrations, models\n')]
# Copyright 2019 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The trainer of EGTA for mean field game.""" from open_spiel.python.mfg.algorithms import distribution from open_spiel.python.mfg.algorithms.EGTA import meta_strategies from open_spiel.python.mfg.algorithms.EGTA import inner_loop from open_spiel.python.mfg.algorithms.EGTA import init_oracle class MFGMetaTrainer(object): """ Empirical game-theoretic analysis (EGTA) for MFGs. """ def __init__(self, mfg_game, oracle_type, num_inner_iters=None, initial_policy=None, meta_strategy_method="nash", **kwargs): """ Initialize the MFG Trainer. :param mfg_game: a mean-field game. :param oracle_type: "BR" exact best response or "DQN" RL approximate best response. :param num_inner_iters: the number of iterations for the inner loop (finding BR target based on the empirical game) if needed. :param initial_policies: initial policies. Uniform policies by default. :param meta_strategy_method: method for the inner loop. """ self._mfg_game = mfg_game self._oracle_type = oracle_type self._num_players = mfg_game.num_players() self._num_inner_iters = num_inner_iters self._initial_policy = initial_policy self._meta_strategy_method = meta_strategy_method self.initialize_policies_and_distributions() #TODO: check if policy and dist are being updated. self._meta_strategy_method = meta_strategies.MFG_META_STRATEGY_METHODS[meta_strategy_method](mfg_game=mfg_game, policies=self._policies, distributions=self._distributions, num_iterations=num_inner_iters) self._inner_loop = inner_loop.InnerLoop(self._meta_strategy_method) self._output_policy = None self._current_outer_iter = 0 def initialize_policies_and_distributions(self): """ Initialize policies and corresponding distributions. """ if self._oracle_type == "BR": self._oracle, self._policies, self._distributions = init_oracle.init_br_oracle(game=self._mfg_game, initial_policy=self._initial_policy) elif self._oracle_type == "DQN": raise NotImplementedError else: raise ValueError("Suggested oracle has not been implemented.") def reset(self): """ Reset the trainer. """ self._current_outer_iter = 0 self.initialize_policies_and_distributions() self._meta_strategy_method = meta_strategies.MFG_META_STRATEGY_METHODS[self._meta_strategy_method](mfg_game=self._mfg_game, policies=self._policies, distributions=self._distributions, num_iterations=self._num_inner_iters) self._inner_loop = inner_loop.InnerLoop(self._meta_strategy_method) self._output_policy = None def iteration(self): """ Main training iteration. """ self._current_outer_iter += 1 self._meta_strategy_method.reset() self._output_policy = self._inner_loop.run_inner_loop() self.update_policies(self._output_policy) def final_step(self): """ Final analysis of all generated policies. """ self._meta_strategy_method.reset() self._output_policy = self._inner_loop.run_inner_loop() def update_policies(self, output_merged_policy): """ Adding new best-response policies to the empirical game. :param output_merged_policy: a merged policy induced by inner loop. :return: """ output_distribution = distribution.DistributionPolicy(self._mfg_game, output_merged_policy) greedy_pi = self._oracle(self._mfg_game, output_distribution) self._policies.append(greedy_pi) self._distributions.append(distribution.DistributionPolicy(self._mfg_game, greedy_pi)) def get_original_policies_and_weights(self): """ Return original policies in the empirical game and corresponding output mixed strategies. """ weights = self._meta_strategy_method.get_weights_on_orig_policies() return self._policies, weights def get_merged_policy(self): """ Return the output merged policy. Equivalent to merge policies and weights from get_original_policies_and_weights(). """ return self._output_policy def get_policies(self): return self._policies def get_distrbutions(self): return self._distributions
[ "open_spiel.python.mfg.algorithms.distribution.DistributionPolicy", "open_spiel.python.mfg.algorithms.EGTA.init_oracle.init_br_oracle", "open_spiel.python.mfg.algorithms.EGTA.inner_loop.InnerLoop" ]
[((2652, 2700), 'open_spiel.python.mfg.algorithms.EGTA.inner_loop.InnerLoop', 'inner_loop.InnerLoop', (['self._meta_strategy_method'], {}), '(self._meta_strategy_method)\n', (2672, 2700), False, 'from open_spiel.python.mfg.algorithms.EGTA import inner_loop\n'), ((4084, 4132), 'open_spiel.python.mfg.algorithms.EGTA.inner_loop.InnerLoop', 'inner_loop.InnerLoop', (['self._meta_strategy_method'], {}), '(self._meta_strategy_method)\n', (4104, 4132), False, 'from open_spiel.python.mfg.algorithms.EGTA import inner_loop\n'), ((4907, 4976), 'open_spiel.python.mfg.algorithms.distribution.DistributionPolicy', 'distribution.DistributionPolicy', (['self._mfg_game', 'output_merged_policy'], {}), '(self._mfg_game, output_merged_policy)\n', (4938, 4976), False, 'from open_spiel.python.mfg.algorithms import distribution\n'), ((3016, 3105), 'open_spiel.python.mfg.algorithms.EGTA.init_oracle.init_br_oracle', 'init_oracle.init_br_oracle', ([], {'game': 'self._mfg_game', 'initial_policy': 'self._initial_policy'}), '(game=self._mfg_game, initial_policy=self.\n _initial_policy)\n', (3042, 3105), False, 'from open_spiel.python.mfg.algorithms.EGTA import init_oracle\n'), ((5124, 5182), 'open_spiel.python.mfg.algorithms.distribution.DistributionPolicy', 'distribution.DistributionPolicy', (['self._mfg_game', 'greedy_pi'], {}), '(self._mfg_game, greedy_pi)\n', (5155, 5182), False, 'from open_spiel.python.mfg.algorithms import distribution\n')]
# encoding:utf-8 import os, sys basepath = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.join(basepath, 'FaceDetector')) import requests import base64 import cv2 import numpy as np import urllib.request import base64 def fetchImageFromHttp(image_url, timeout_s=1): # 该函数是读取url图片 if image_url: resp = urllib.request.urlopen(image_url, timeout=timeout_s) image = np.asarray(bytearray(resp.read()), dtype="uint8") image = cv2.imdecode(image, cv2.IMREAD_COLOR) return image else: return [] def FaceExtract(img: str, imgtype: str, imgpos: str, facenum=120): # 该函数的作用是提取图中人脸 message = {} # client_id 为官网获取的AK, client_secret 为官网获取的SK host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=DXN8o5eNaheZahxK558I8GOs&client_secret=<KEY>' response = requests.get(host) if response: # print(response.json()['access_token']) access_token = response.json()['access_token'] request_url = "https://aip.baidubce.com/rest/2.0/face/v3/detect" if imgtype == 'Local': with open(img, "rb") as f: # 转为二进制格式 base64_data = base64.b64encode(f.read()) # 使用base64进行加密 base64_data = base64_data.decode() params = "\"image\":\"{}\",\"image_type\":\"BASE64\", \"max_face_num\":\"120\"".format(base64_data) params = '{' + params + '}' elif imgtype == 'url': params = "\"image\":\"{}\",\"image_type\":\"URL\", \"max_face_num\":\"120\"".format(img) params = '{' + params + '}' # print(params['image']) request_url = request_url + "?access_token=" + access_token headers = {'content-type': 'application/json'} response = requests.post(request_url, data=params, headers=headers) if response: print (response.json()) # 提取检测到的所有人脸信息 if response.json()['error_code'] != 0: message['Error Code'] = response.json()['error_code'] message['Error Message'] = response.json()['error_msg'] message['Data'] = None return message # raise Exception('人脸检测失败,失败码为{},失败信息为:{}'.format(response.json()['error_code'], response.json()['error_msg'])) face_number = response.json()['result']['face_num'] face_List = [] for num in range(face_number): face_loc_left = int(response.json()['result']['face_list'][num]['location']['left']) face_loc_top = int(response.json()['result']['face_list'][num]['location']['top']) face_loc_width = int(response.json()['result']['face_list'][num]['location']['width']) face_loc_height = int(response.json()['result']['face_list'][num]['location']['height']) face_List.append([face_loc_left, face_loc_top, face_loc_width, face_loc_height]) # 这里是读取图像并画框 if imgtype == 'Local': image = cv2.imread(img) elif imgtype == 'url': image = fetchImageFromHttp(img) # 图片编号起始 search_all_path = [] num = 0 for pos in face_List: lefttopx = pos[0] lefttopy = pos[1] rightbottomx = lefttopx + pos[2] rightbottomy = lefttopy + pos[3] # print(lefttopx, lefttopy, rightbottomx, rightbottomy) cv2.rectangle(image, (lefttopx, lefttopy), (rightbottomx, rightbottomy), (0, 255, 0), 2) if imgpos == 'Example': savepath = os.path.join(basepath, 'FaceStatic', 'ExampleFace', 'example_face_' + str(num) + '.jpg') elif imgpos == 'Search': pos_name = ','.join([str(lefttopx), str(lefttopy), str(rightbottomx), str(rightbottomy)]) savepath = os.path.join(basepath, 'FaceStatic', 'SearchFace', pos_name + '.jpg') search_all_path.append(savepath) # cv2.imwrite("C:/WorkSpace/test/detect_face_"+str(num)+'.jpg', image[lefttopy:rightbottomy, lefttopx:rightbottomx]) cv2.imwrite(savepath, image[lefttopy:rightbottomy, lefttopx:rightbottomx]) num += 1 message['Error Code'] = response.json()['error_code'] message['Error Message'] = message['Error Message'] = response.json()['error_msg'] if imgpos == 'Example': full_face_path = os.path.join(basepath, 'FaceStatic', 'FullFace', 'Result.jpg') cv2.imwrite(full_face_path, image) message['Data'] = {'ExampleFaces': savepath, 'FacesNum': num, 'FullFace': full_face_path} elif imgpos == 'Search': # full_face_path = os.path.join(basepath, 'FaceStatic', 'FullFace', 'Search.jpg') # cv2.imwrite(full_face_path, image) message['Data'] = {'ExampleFaces': search_all_path, 'FacesNum': num, 'FullFace': None} return message if __name__ == "__main__": # imgpath = 'http://xinan.ziqiang.net.cn/ThreeFace.jpeg' imgpath = 'http://xinan.ziqiang.net.cn/Fq-PpUCF25C61q0muvXAHCok0uK2' wycpath = 'http://xinan.ziqiang.net.cn/AsFace.jpg' fetchImageFromHttp(wycpath) # result = FaceExtract(imgpath, 'url') # result = FaceExtract(imgpath, 'Local', 'Search') # cv2.imshow('image', result) # cv2.waitKey(0)
[ "os.path.abspath", "cv2.imwrite", "cv2.imdecode", "cv2.imread", "requests.get", "cv2.rectangle", "requests.post", "os.path.join" ]
[((119, 157), 'os.path.join', 'os.path.join', (['basepath', '"""FaceDetector"""'], {}), "(basepath, 'FaceDetector')\n", (131, 157), False, 'import os, sys\n'), ((886, 904), 'requests.get', 'requests.get', (['host'], {}), '(host)\n', (898, 904), False, 'import requests\n'), ((1739, 1795), 'requests.post', 'requests.post', (['request_url'], {'data': 'params', 'headers': 'headers'}), '(request_url, data=params, headers=headers)\n', (1752, 1795), False, 'import requests\n'), ((75, 100), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (90, 100), False, 'import os, sys\n'), ((491, 528), 'cv2.imdecode', 'cv2.imdecode', (['image', 'cv2.IMREAD_COLOR'], {}), '(image, cv2.IMREAD_COLOR)\n', (503, 528), False, 'import cv2\n'), ((2852, 2867), 'cv2.imread', 'cv2.imread', (['img'], {}), '(img)\n', (2862, 2867), False, 'import cv2\n'), ((3217, 3309), 'cv2.rectangle', 'cv2.rectangle', (['image', '(lefttopx, lefttopy)', '(rightbottomx, rightbottomy)', '(0, 255, 0)', '(2)'], {}), '(image, (lefttopx, lefttopy), (rightbottomx, rightbottomy), (0,\n 255, 0), 2)\n', (3230, 3309), False, 'import cv2\n'), ((3856, 3930), 'cv2.imwrite', 'cv2.imwrite', (['savepath', 'image[lefttopy:rightbottomy, lefttopx:rightbottomx]'], {}), '(savepath, image[lefttopy:rightbottomy, lefttopx:rightbottomx])\n', (3867, 3930), False, 'import cv2\n'), ((4146, 4208), 'os.path.join', 'os.path.join', (['basepath', '"""FaceStatic"""', '"""FullFace"""', '"""Result.jpg"""'], {}), "(basepath, 'FaceStatic', 'FullFace', 'Result.jpg')\n", (4158, 4208), False, 'import os, sys\n'), ((4217, 4251), 'cv2.imwrite', 'cv2.imwrite', (['full_face_path', 'image'], {}), '(full_face_path, image)\n', (4228, 4251), False, 'import cv2\n'), ((3608, 3677), 'os.path.join', 'os.path.join', (['basepath', '"""FaceStatic"""', '"""SearchFace"""', "(pos_name + '.jpg')"], {}), "(basepath, 'FaceStatic', 'SearchFace', pos_name + '.jpg')\n", (3620, 3677), False, 'import os, sys\n')]
# # INF 552 Homework 3 # Part 2: Fast Map # Group Members: <NAME> (zhan198), <NAME> (minyihua), <NAME> (jeffyjac) # Date: 2/27/2018 # Programming Language: Python 3.6 # import numpy as np import matplotlib.pyplot as plt DIMENSION = 2 DATA_SIZE = 10 # WORDS = ["acting", "activist", "compute", "coward","forward","interaction","activity","odor","order","international"] WORDS = [] data_file_name = "fastmap-data.txt" words_file_name = 'fastmap-wordlist.txt' table = np.zeros(shape=(DATA_SIZE, DATA_SIZE)) cood = np.zeros(shape=(DATA_SIZE, DIMENSION)) pivot = [] def main(): readFile(data_file_name) print("\nOriginal table:") readWords(words_file_name) print(WORDS) printTable() for i in range(DIMENSION): print("\n\nThe {i}st cood: ".format(i=i+1)) pickLongestPair() calculateCoordinate(i) print("\nUpdate table: ") updateTable(i) printTable() plotResult() def readFile(filename): with open(filename, "r") as file: print("Original input:") for line in file: line_array = line.split() print(line_array) table[int(line_array[0]) - 1][int(line_array[1]) - 1] = \ table[int(line_array[1]) - 1][int(line_array[0]) - 1] = float(line_array[2]) def readWords(filename): global WORDS with open(filename) as file: WORDS = file.read().splitlines() def printTable(): for row in table: print(row) def pickLongestPair(): max = np.amax(table) indices = list(zip(*np.where(table == max))) print("The longest distance pair is {pair}".format(pair = indices[0])) print("Pivot is piont {piv}".format(piv = indices[0][0])) pivot.append(indices[0]) def calculateCoordinate(dimen): a = pivot[dimen][0] b = pivot[dimen][1] print("The coordinate table") for i in range(len(table)): cood[i][dimen] = (np.power(table[a][i],2) + np.power(table[a][b],2) - np.power(table[i][b],2))/ (2 * table[a][b]) print ("{i}\t({x}, {y})".format(i=i, x= round(cood[i][0], 3),y=round(cood[i][1], 3))) def updateTable(dimen): for i in range(0, DATA_SIZE): for j in range(0, DATA_SIZE): table[i][j] = np.sqrt(np.power(table[i][j],2) - np.power((cood[i][dimen] - cood[j][dimen]),2)) def plotResult(): x = cood[:, 0] y = cood[:, 1] fig, ax = plt.subplots() ax.set_xlabel('X axis') ax.set_ylabel('Y axis') ax.scatter(x, y) plt.scatter(x, y, color="red", s=30) plt.title("Fast Map Result") for i, txt in enumerate(WORDS): ax.annotate(txt, (x[i], y[i])) plt.show() main()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.scatter", "numpy.power", "numpy.zeros", "numpy.amax", "numpy.where", "matplotlib.pyplot.subplots" ]
[((470, 508), 'numpy.zeros', 'np.zeros', ([], {'shape': '(DATA_SIZE, DATA_SIZE)'}), '(shape=(DATA_SIZE, DATA_SIZE))\n', (478, 508), True, 'import numpy as np\n'), ((516, 554), 'numpy.zeros', 'np.zeros', ([], {'shape': '(DATA_SIZE, DIMENSION)'}), '(shape=(DATA_SIZE, DIMENSION))\n', (524, 554), True, 'import numpy as np\n'), ((1503, 1517), 'numpy.amax', 'np.amax', (['table'], {}), '(table)\n', (1510, 1517), True, 'import numpy as np\n'), ((2371, 2385), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2383, 2385), True, 'import matplotlib.pyplot as plt\n'), ((2467, 2503), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'color': '"""red"""', 's': '(30)'}), "(x, y, color='red', s=30)\n", (2478, 2503), True, 'import matplotlib.pyplot as plt\n'), ((2508, 2536), 'matplotlib.pyplot.title', 'plt.title', (['"""Fast Map Result"""'], {}), "('Fast Map Result')\n", (2517, 2536), True, 'import matplotlib.pyplot as plt\n'), ((2617, 2627), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2625, 2627), True, 'import matplotlib.pyplot as plt\n'), ((1542, 1564), 'numpy.where', 'np.where', (['(table == max)'], {}), '(table == max)\n', (1550, 1564), True, 'import numpy as np\n'), ((1958, 1982), 'numpy.power', 'np.power', (['table[i][b]', '(2)'], {}), '(table[i][b], 2)\n', (1966, 1982), True, 'import numpy as np\n'), ((1906, 1930), 'numpy.power', 'np.power', (['table[a][i]', '(2)'], {}), '(table[a][i], 2)\n', (1914, 1930), True, 'import numpy as np\n'), ((1932, 1956), 'numpy.power', 'np.power', (['table[a][b]', '(2)'], {}), '(table[a][b], 2)\n', (1940, 1956), True, 'import numpy as np\n'), ((2227, 2251), 'numpy.power', 'np.power', (['table[i][j]', '(2)'], {}), '(table[i][j], 2)\n', (2235, 2251), True, 'import numpy as np\n'), ((2253, 2297), 'numpy.power', 'np.power', (['(cood[i][dimen] - cood[j][dimen])', '(2)'], {}), '(cood[i][dimen] - cood[j][dimen], 2)\n', (2261, 2297), True, 'import numpy as np\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' import os import glob from app.backend.core.utils import getDirectorySizeInBytes, humanReadableSize if __name__ == '__main__': path='../../../data/datasets' for ii,pp in enumerate(glob.glob('%s/*' % path)): tbn=os.path.basename(pp) tsize = getDirectorySizeInBytes(pp) tsizeHuman = humanReadableSize(tsize) print ('[%d] %s : %s (%d)' % (ii, tbn, tsizeHuman, tsize))
[ "app.backend.core.utils.getDirectorySizeInBytes", "os.path.basename", "app.backend.core.utils.humanReadableSize", "glob.glob" ]
[((250, 274), 'glob.glob', 'glob.glob', (["('%s/*' % path)"], {}), "('%s/*' % path)\n", (259, 274), False, 'import glob\n'), ((289, 309), 'os.path.basename', 'os.path.basename', (['pp'], {}), '(pp)\n', (305, 309), False, 'import os\n'), ((326, 353), 'app.backend.core.utils.getDirectorySizeInBytes', 'getDirectorySizeInBytes', (['pp'], {}), '(pp)\n', (349, 353), False, 'from app.backend.core.utils import getDirectorySizeInBytes, humanReadableSize\n'), ((375, 399), 'app.backend.core.utils.humanReadableSize', 'humanReadableSize', (['tsize'], {}), '(tsize)\n', (392, 399), False, 'from app.backend.core.utils import getDirectorySizeInBytes, humanReadableSize\n')]
# # Copyright (c) 2019 UAVCAN Development Team # This software is distributed under the terms of the MIT License. # Author: <NAME> <<EMAIL>> # import pytest import subprocess from ._subprocess import run_cli_tool def _unittest_trivial() -> None: run_cli_tool('show-transport', timeout=2.0) with pytest.raises(subprocess.CalledProcessError): run_cli_tool(timeout=2.0) with pytest.raises(subprocess.CalledProcessError): run_cli_tool('invalid-command', timeout=2.0) with pytest.raises(subprocess.CalledProcessError): run_cli_tool('dsdl-gen-pkg', 'nonexistent/path', timeout=2.0) with pytest.raises(subprocess.CalledProcessError): # Look-up of a nonexistent package requires large timeout run_cli_tool('pub', 'nonexistent.data.Type.1.0', '{}', '--tr=Loopback(None)', timeout=5.0)
[ "pytest.raises" ]
[((307, 351), 'pytest.raises', 'pytest.raises', (['subprocess.CalledProcessError'], {}), '(subprocess.CalledProcessError)\n', (320, 351), False, 'import pytest\n'), ((397, 441), 'pytest.raises', 'pytest.raises', (['subprocess.CalledProcessError'], {}), '(subprocess.CalledProcessError)\n', (410, 441), False, 'import pytest\n'), ((506, 550), 'pytest.raises', 'pytest.raises', (['subprocess.CalledProcessError'], {}), '(subprocess.CalledProcessError)\n', (519, 550), False, 'import pytest\n'), ((632, 676), 'pytest.raises', 'pytest.raises', (['subprocess.CalledProcessError'], {}), '(subprocess.CalledProcessError)\n', (645, 676), False, 'import pytest\n')]
import time import numpy as np import torch import torch.nn as nn import torch.optim as optim import queue from insomnia.utils import empty_torch_queue from insomnia.explores.gaussian_noise import GaussianActionNoise from insomnia.numeric_models import d4pg from insomnia.numeric_models.misc import l2_projection class LearnerD4PG(object): """Policy and value network update routine. """ def __init__(self, policy_net, target_policy_net, learner_w_queue, alpha, beta, input_dims, n_actions, fc1_dims, fc2_dims, name, v_min, v_max, n_atoms=51): self.v_min = v_min self.v_max = v_max self.num_atoms = n_atoms self.num_train_steps = 10000 self.batch_size = 256 self.tau = 0.001 self.gamma = 0.998 self.prioritized_replay = 0 self.learner_w_queue = learner_w_queue self.delta_z = (self.v_max - self.v_min) / (self.num_atoms - 1) self.device = 'cuda' if torch.cuda.is_available() else 'cpu' # Noise process self.noise = GaussianActionNoise(mu=np.zeros(n_actions)) # Value and policy nets self.value_net = d4pg.CriticNetwork(beta, input_dims, fc1_dims, fc2_dims, n_actions, name, self.v_min, self.v_max, self.num_atoms) self.policy_net = policy_net self.target_value_net = d4pg.CriticNetwork(beta, input_dims, fc1_dims, fc2_dims, n_actions, name, self.v_min, self.v_max, self.num_atoms) self.target_policy_net = target_policy_net for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(param.data) for target_param, param in zip(self.target_policy_net.parameters(), self.policy_net.parameters()): target_param.data.copy_(param.data) self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=beta) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=alpha) self.value_criterion = nn.BCELoss(reduction='none') def _update_step(self, batch, replay_priority_queue, update_step): update_time = time.time() state, action, reward, next_state, done, gamma, weights, inds = batch state = np.asarray(state) action = np.asarray(action) reward = np.asarray(reward) next_state = np.asarray(next_state) done = np.asarray(done) weights = np.asarray(weights) inds = np.asarray(inds).flatten() state = torch.from_numpy(state).float().to(self.device) next_state = torch.from_numpy(next_state).float().to(self.device) action = torch.from_numpy(action).float().to(self.device) reward = torch.from_numpy(reward).float().to(self.device) done = torch.from_numpy(done).float().to(self.device) # ------- Update critic ------- # Predict next actions with target policy network next_action = self.target_policy_net(next_state) # Predict Z distribution with target value network target_value = self.target_value_net.get_probs(next_state, next_action.detach()) # Get projected distribution target_z_projected = l2_projection._l2_project(next_distr_v=target_value, rewards_v=reward, dones_mask_t=done, gamma=self.gamma ** 5, n_atoms=self.num_atoms, v_min=self.v_min, v_max=self.v_max, delta_z=self.delta_z) target_z_projected = torch.from_numpy(target_z_projected).float().to(self.device) critic_value = self.value_net.get_probs(state, action) critic_value = critic_value.to(self.device) value_loss = self.value_criterion(critic_value, target_z_projected) value_loss = value_loss.mean(axis=1) # Update priorities in buffer td_error = value_loss.cpu().detach().numpy().flatten() priority_epsilon = 1e-4 if self.prioritized_replay: weights_update = np.abs(td_error) + priority_epsilon replay_priority_queue.put((inds, weights_update)) value_loss = value_loss * torch.tensor(weights).float().to(self.device) # Update step value_loss = value_loss.mean() self.value_optimizer.zero_grad() value_loss.backward() self.value_optimizer.step() # -------- Update actor ----------- policy_loss = self.value_net.get_probs(state, self.policy_net(state)) policy_loss = policy_loss * torch.from_numpy(self.value_net.z_atoms).float().to(self.device) policy_loss = torch.sum(policy_loss, dim=1) policy_loss = -policy_loss.mean() self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_( target_param.data * (1.0 - self.tau) + param.data * self.tau ) for target_param, param in zip(self.target_policy_net.parameters(), self.policy_net.parameters()): target_param.data.copy_( target_param.data * (1.0 - self.tau) + param.data * self.tau ) # Send updated learner to the queue if update_step.value % 100 == 0: try: params = [p.data.cpu().detach().numpy() for p in self.policy_net.parameters()] self.learner_w_queue.put(params) except: pass def run(self, training_on, batch_queue, replay_priority_queue, update_step): while update_step.value < self.num_train_steps: try: batch = batch_queue.get_nowait() except queue.Empty: continue self._update_step(batch, replay_priority_queue, update_step) update_step.value += 1 if update_step.value % 1000 == 0: print("Training step ", update_step.value) training_on.value = 0 empty_torch_queue(self.learner_w_queue) empty_torch_queue(replay_priority_queue) print("Exit learner.")
[ "torch.from_numpy", "numpy.abs", "torch.nn.BCELoss", "insomnia.utils.empty_torch_queue", "insomnia.numeric_models.d4pg.CriticNetwork", "numpy.asarray", "numpy.zeros", "time.time", "torch.cuda.is_available", "torch.sum", "torch.tensor", "insomnia.numeric_models.misc.l2_projection._l2_project" ]
[((1153, 1270), 'insomnia.numeric_models.d4pg.CriticNetwork', 'd4pg.CriticNetwork', (['beta', 'input_dims', 'fc1_dims', 'fc2_dims', 'n_actions', 'name', 'self.v_min', 'self.v_max', 'self.num_atoms'], {}), '(beta, input_dims, fc1_dims, fc2_dims, n_actions, name,\n self.v_min, self.v_max, self.num_atoms)\n', (1171, 1270), False, 'from insomnia.numeric_models import d4pg\n'), ((1380, 1497), 'insomnia.numeric_models.d4pg.CriticNetwork', 'd4pg.CriticNetwork', (['beta', 'input_dims', 'fc1_dims', 'fc2_dims', 'n_actions', 'name', 'self.v_min', 'self.v_max', 'self.num_atoms'], {}), '(beta, input_dims, fc1_dims, fc2_dims, n_actions, name,\n self.v_min, self.v_max, self.num_atoms)\n', (1398, 1497), False, 'from insomnia.numeric_models import d4pg\n'), ((2102, 2130), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {'reduction': '"""none"""'}), "(reduction='none')\n", (2112, 2130), True, 'import torch.nn as nn\n'), ((2225, 2236), 'time.time', 'time.time', ([], {}), '()\n', (2234, 2236), False, 'import time\n'), ((2333, 2350), 'numpy.asarray', 'np.asarray', (['state'], {}), '(state)\n', (2343, 2350), True, 'import numpy as np\n'), ((2368, 2386), 'numpy.asarray', 'np.asarray', (['action'], {}), '(action)\n', (2378, 2386), True, 'import numpy as np\n'), ((2404, 2422), 'numpy.asarray', 'np.asarray', (['reward'], {}), '(reward)\n', (2414, 2422), True, 'import numpy as np\n'), ((2444, 2466), 'numpy.asarray', 'np.asarray', (['next_state'], {}), '(next_state)\n', (2454, 2466), True, 'import numpy as np\n'), ((2482, 2498), 'numpy.asarray', 'np.asarray', (['done'], {}), '(done)\n', (2492, 2498), True, 'import numpy as np\n'), ((2517, 2536), 'numpy.asarray', 'np.asarray', (['weights'], {}), '(weights)\n', (2527, 2536), True, 'import numpy as np\n'), ((3285, 3488), 'insomnia.numeric_models.misc.l2_projection._l2_project', 'l2_projection._l2_project', ([], {'next_distr_v': 'target_value', 'rewards_v': 'reward', 'dones_mask_t': 'done', 'gamma': '(self.gamma ** 5)', 'n_atoms': 'self.num_atoms', 'v_min': 'self.v_min', 'v_max': 'self.v_max', 'delta_z': 'self.delta_z'}), '(next_distr_v=target_value, rewards_v=reward,\n dones_mask_t=done, gamma=self.gamma ** 5, n_atoms=self.num_atoms, v_min\n =self.v_min, v_max=self.v_max, delta_z=self.delta_z)\n', (3310, 3488), False, 'from insomnia.numeric_models.misc import l2_projection\n'), ((4892, 4921), 'torch.sum', 'torch.sum', (['policy_loss'], {'dim': '(1)'}), '(policy_loss, dim=1)\n', (4901, 4921), False, 'import torch\n'), ((6349, 6388), 'insomnia.utils.empty_torch_queue', 'empty_torch_queue', (['self.learner_w_queue'], {}), '(self.learner_w_queue)\n', (6366, 6388), False, 'from insomnia.utils import empty_torch_queue\n'), ((6397, 6437), 'insomnia.utils.empty_torch_queue', 'empty_torch_queue', (['replay_priority_queue'], {}), '(replay_priority_queue)\n', (6414, 6437), False, 'from insomnia.utils import empty_torch_queue\n'), ((968, 993), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (991, 993), False, 'import torch\n'), ((1074, 1093), 'numpy.zeros', 'np.zeros', (['n_actions'], {}), '(n_actions)\n', (1082, 1093), True, 'import numpy as np\n'), ((2552, 2568), 'numpy.asarray', 'np.asarray', (['inds'], {}), '(inds)\n', (2562, 2568), True, 'import numpy as np\n'), ((4294, 4310), 'numpy.abs', 'np.abs', (['td_error'], {}), '(td_error)\n', (4300, 4310), True, 'import numpy as np\n'), ((2596, 2619), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (2612, 2619), False, 'import torch\n'), ((2665, 2693), 'torch.from_numpy', 'torch.from_numpy', (['next_state'], {}), '(next_state)\n', (2681, 2693), False, 'import torch\n'), ((2735, 2759), 'torch.from_numpy', 'torch.from_numpy', (['action'], {}), '(action)\n', (2751, 2759), False, 'import torch\n'), ((2801, 2825), 'torch.from_numpy', 'torch.from_numpy', (['reward'], {}), '(reward)\n', (2817, 2825), False, 'import torch\n'), ((2865, 2887), 'torch.from_numpy', 'torch.from_numpy', (['done'], {}), '(done)\n', (2881, 2887), False, 'import torch\n'), ((3796, 3832), 'torch.from_numpy', 'torch.from_numpy', (['target_z_projected'], {}), '(target_z_projected)\n', (3812, 3832), False, 'import torch\n'), ((4805, 4845), 'torch.from_numpy', 'torch.from_numpy', (['self.value_net.z_atoms'], {}), '(self.value_net.z_atoms)\n', (4821, 4845), False, 'import torch\n'), ((4430, 4451), 'torch.tensor', 'torch.tensor', (['weights'], {}), '(weights)\n', (4442, 4451), False, 'import torch\n')]
import logging from wrapper import * logger = logging.getLogger(__name__) # noinspection PyUnusedLocal def get_user(url='', key='', timeout=60, **kwargs): return get(url + '/user', headers={'Authorization': "Bearer " + key}, timeout=timeout).json() # noinspection PyUnusedLocal def get_user_tokens(url='', key='', timeout=60, **kwargs): return get(url + '/user/tokens', headers={'Authorization': "Bearer " + key}, timeout=timeout).json() # noinspection PyUnusedLocal def create_user_token(url='', key='', token_name='', timeout=60, **kwargs): return post(url + '/user/tokens', headers={'Authorization': "Bearer " + key}, data={'name': token_name}, timeout=timeout).json() # noinspection PyUnusedLocal def delete_user_token(url='', key='', token_name='', timeout=60, **kwargs): return delete(url + '/user/tokens/' + token_name, headers={'Authorization': "Bearer " + key}, timeout=timeout)
[ "logging.getLogger" ]
[((47, 74), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (64, 74), False, 'import logging\n')]
from __future__ import absolute_import # Need to import lwr_client absolutely. from ..objectstore import ObjectStore try: from galaxy.jobs.runners.lwr_client.manager import ObjectStoreClientManager except ImportError: from lwr.lwr_client.manager import ObjectStoreClientManager class LwrObjectStore(ObjectStore): """ Object store implementation that delegates to a remote LWR server. This may be more aspirational than practical for now, it would be good to Galaxy to a point that a handler thread could be setup that doesn't attempt to access the disk files returned by a (this) object store - just passing them along to the LWR unmodified. That modification - along with this implementation and LWR job destinations would then allow Galaxy to fully manage jobs on remote servers with completely different mount points. This implementation should be considered beta and may be dropped from Galaxy at some future point or significantly modified. """ def __init__(self, config, config_xml): self.lwr_client = self.__build_lwr_client(config_xml) def exists(self, obj, **kwds): return self.lwr_client.exists(**self.__build_kwds(obj, **kwds)) def file_ready(self, obj, **kwds): return self.lwr_client.file_ready(**self.__build_kwds(obj, **kwds)) def create(self, obj, **kwds): return self.lwr_client.create(**self.__build_kwds(obj, **kwds)) def empty(self, obj, **kwds): return self.lwr_client.empty(**self.__build_kwds(obj, **kwds)) def size(self, obj, **kwds): return self.lwr_client.size(**self.__build_kwds(obj, **kwds)) def delete(self, obj, **kwds): return self.lwr_client.delete(**self.__build_kwds(obj, **kwds)) # TODO: Optimize get_data. def get_data(self, obj, **kwds): return self.lwr_client.get_data(**self.__build_kwds(obj, **kwds)) def get_filename(self, obj, **kwds): return self.lwr_client.get_filename(**self.__build_kwds(obj, **kwds)) def update_from_file(self, obj, **kwds): return self.lwr_client.update_from_file(**self.__build_kwds(obj, **kwds)) def get_store_usage_percent(self): return self.lwr_client.get_store_usage_percent() def get_object_url(self, obj, extra_dir=None, extra_dir_at_root=False, alt_name=None): return None def __build_kwds(self, obj, **kwds): kwds['object_id'] = obj.id return kwds pass def __build_lwr_client(self, config_xml): url = config_xml.get("url") private_token = config_xml.get("private_token", None) transport = config_xml.get("transport", None) manager_options = dict(transport=transport) client_options = dict(url=url, private_token=private_token) lwr_client = ObjectStoreClientManager(**manager_options).get_client(client_options) return lwr_client def shutdown(self): pass
[ "lwr.lwr_client.manager.ObjectStoreClientManager" ]
[((2814, 2857), 'lwr.lwr_client.manager.ObjectStoreClientManager', 'ObjectStoreClientManager', ([], {}), '(**manager_options)\n', (2838, 2857), False, 'from lwr.lwr_client.manager import ObjectStoreClientManager\n')]
""" Demo of json_required decorator for API input validation/error handling """ import inspect import functools import json from traceback import format_exception from flask import jsonify, request import sys from flask.exceptions import JSONBadRequest from flask import Flask import re app = Flask(__name__) def api_error_response(code=404, message="Requested resource was not found", errors=list()): """ Convenience function for returning a JSON response that includes appropriate error messages and code. """ response = jsonify(dict(code=code, message=message, errors=errors, success=False)) response.status_code = code return response def bad_json_error_response(): """ Convenience function for returning an error message related to malformed/missing JSON data. """ return api_error_response(code=400, message="There was a problem parsing the supplied JSON data. Please send valid JSON.") def json_required(func=None, required_fields={}, validations=[]): """ Decorator used to validate JSON input to an API request """ if func is None: return functools.partial(json_required, required_fields=required_fields, validations=validations) @functools.wraps(func) def decorated_function(*args, **kwargs): try: #If no JSON was supplied (or it didn't parse correctly) try: if request.json is None: return bad_json_error_response() except JSONBadRequest: return bad_json_error_response() #Check for specific fields errors = [] def check_required_fields(data, fields): for field, requirements in fields.iteritems(): nested_fields = type(requirements) == dict if data.get(field) in (None, ''): if nested_fields: error_msg = requirements.get('message') else: error_msg = requirements errors.append({'field': field, 'message': error_msg}) elif nested_fields: check_required_fields(data[field], requirements.get('fields', {})) check_required_fields(request.json, required_fields) for validation_field, validation_message, validation_func in validations: func_args = inspect.getargspec(validation_func).args func_params = [] for arg in func_args: func_params.append(request.json.get(arg)) if not validation_func(*func_params): errors.append({'field': validation_field, 'message': validation_message}) if errors: return api_error_response(code=422, message="JSON Validation Failed", errors=errors) except Exception: #For internal use, nice to have the traceback in the API response for debugging #Probably don't want to include for public APIs etype, value, tb = sys.exc_info() error_info = ''.join(format_exception(etype, value, tb)) return api_error_response(code=500, message="Internal Error validating API input", errors=[{'message':error_info}]) return func(*args, **kwargs) return decorated_function EMAIL_REGEX = re.compile(r"[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?\.)+[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?") def verify_account_available(email): """ Check to see if this email is already registered """ #Run a query, use an ORM, use Twilio to call someone and ask them :-) return True def valid_date_of_birth(date_of_birth): """ Does the supplied date string meet our criteria for a date of birth """ #Do whatever you need to do... return True @app.route("/do/something", methods=['POST']) @json_required( required_fields={ 'first_name':"Please provide your first name.", 'last_name':"Please provide your last name.", 'email':'Please specify a valid email address', 'date_of_birth':'Please provide your date of birth' }, validations=[ ('email', 'Please provide a valid email address', lambda email: email is not None and EMAIL_REGEX.match(email)), ('email', "This email is already in use. Please try a different email address.", verify_account_available), ('date_of_birth', 'Please provide a valid date of birth', valid_date_of_birth) ] ) def do_something_useful(): #Confidently use the data in request.json... return jsonify(dict(status='OK')) if __name__ == "__main__": with app.test_client() as client: response = client.post( '/do/something', data=json.dumps({ "first_name": "Brian", "last_name": "Corbin", "email": "<EMAIL>", "date_of_birth": "01/01/1970" }), follow_redirects=True, content_type='application/json') response_dict = json.loads(response.data) assert response_dict['status'] == 'OK' response = client.post( '/do/something', data=json.dumps({ "last_name": "Corbin", "email": "<EMAIL>", "date_of_birth": "01/01/1970" }), follow_redirects=True, content_type='application/json') response_dict = json.loads(response.data) assert response.status_code == 422 assert response_dict['code'] == 422 assert response_dict['message'] == "JSON Validation Failed" assert len(response_dict['errors']) == 1 assert response_dict['errors'][0]['field'] == 'first_name' assert response_dict['errors'][0]['message'] == 'Please provide your first name.'
[ "functools.partial", "traceback.format_exception", "json.loads", "flask.Flask", "json.dumps", "inspect.getargspec", "functools.wraps", "sys.exc_info", "flask.request.json.get", "re.compile" ]
[((300, 315), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (305, 315), False, 'from flask import Flask\n'), ((3436, 3619), 're.compile', 're.compile', (['"""[A-Za-z0-9!#$%&\'*+/=?^_`{|}~-]+(?:\\\\.[A-Za-z0-9!#$%&\'*+/=?^_`{|}~-]+)*@(?:[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?\\\\.)+[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?"""'], {}), '(\n "[A-Za-z0-9!#$%&\'*+/=?^_`{|}~-]+(?:\\\\.[A-Za-z0-9!#$%&\'*+/=?^_`{|}~-]+)*@(?:[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?\\\\.)+[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?"\n )\n', (3446, 3619), False, 'import re\n'), ((1257, 1278), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (1272, 1278), False, 'import functools\n'), ((1161, 1255), 'functools.partial', 'functools.partial', (['json_required'], {'required_fields': 'required_fields', 'validations': 'validations'}), '(json_required, required_fields=required_fields,\n validations=validations)\n', (1178, 1255), False, 'import functools\n'), ((5233, 5258), 'json.loads', 'json.loads', (['response.data'], {}), '(response.data)\n', (5243, 5258), False, 'import json\n'), ((5640, 5665), 'json.loads', 'json.loads', (['response.data'], {}), '(response.data)\n', (5650, 5665), False, 'import json\n'), ((3140, 3154), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (3152, 3154), False, 'import sys\n'), ((4925, 5038), 'json.dumps', 'json.dumps', (["{'first_name': 'Brian', 'last_name': 'Corbin', 'email': '<EMAIL>',\n 'date_of_birth': '01/01/1970'}"], {}), "({'first_name': 'Brian', 'last_name': 'Corbin', 'email':\n '<EMAIL>', 'date_of_birth': '01/01/1970'})\n", (4935, 5038), False, 'import json\n'), ((5385, 5475), 'json.dumps', 'json.dumps', (["{'last_name': 'Corbin', 'email': '<EMAIL>', 'date_of_birth': '01/01/1970'}"], {}), "({'last_name': 'Corbin', 'email': '<EMAIL>', 'date_of_birth':\n '01/01/1970'})\n", (5395, 5475), False, 'import json\n'), ((2482, 2517), 'inspect.getargspec', 'inspect.getargspec', (['validation_func'], {}), '(validation_func)\n', (2500, 2517), False, 'import inspect\n'), ((3188, 3222), 'traceback.format_exception', 'format_exception', (['etype', 'value', 'tb'], {}), '(etype, value, tb)\n', (3204, 3222), False, 'from traceback import format_exception\n'), ((2633, 2654), 'flask.request.json.get', 'request.json.get', (['arg'], {}), '(arg)\n', (2649, 2654), False, 'from flask import jsonify, request\n')]
import torch from ..math.cross import * from ..math.normvec import * class CameraExtrinsic(object): """ A class representing the camera extrinsic properties Attributes ---------- position : Tensor the camera position target : Tensor the camera target up_vector : Tensor the camera up vector device : str or torch.device the device to store the tensors to Methods ------- look_at(target) sets the camera target look_from(position) sets the camera position direction() returns the camera direction view_matrix() returns the current view matrix to(**kwargs) changes extrinsic dtype and/or device """ def __init__(self, position=(0, 0, 0), target=(0, 0, 1), up_vector=(0, 1, 0), device='cuda:0'): """ Parameters ---------- position : list or tuple (optional) the camera position (default is (0, 0, 0)) target : list or tuple (optional) the camera target (default is (0, 0, 1)) up_vector : list or tuple (optional) the camera up vector (default is (0, 1, 0)) device : str or torch.device (optional) the device to store the tensors to (default is 'cuda:0') """ self.position = torch.tensor(position, dtype=torch.float, device=device) self.target = torch.tensor(target, dtype=torch.float, device=device) self.up_vector = torch.tensor(up_vector, dtype=torch.float, device=device) self._device = device def look_at(self, target): """ Sets the camera target Parameters ---------- target : Tensor the (3,) target tensor Returns ------- CameraExtrinsic the extrinsic itself """ self.target = target return self def look_from(self, position): """ Sets the camera position Parameters ---------- position : Tensor the (3,) position tensor Returns ------- CameraExtrinsic the extrinsic itself """ self.position = position return self def direction(self): """ Returns the camera direction Returns ------- Tensor the (3,) direction tensor """ return self.target - self.position def view_matrix(self): """ Returns the current view matrix Returns ------- Tensor a (4,4,) view matrix """ z = normr(self.direction().unsqueeze(0)) x = normr(cross(self.up_vector.unsqueeze(0), z)) y = cross(z, x) p = self.position.unsqueeze(0) M = torch.cat((torch.cat((x.t(), y.t(), z.t(), -p.t()), dim=1), torch.tensor([[0, 0, 0, 1]], dtype=torch.float, device=self.device)), dim=0) return M def to(self, **kwargs): """ Changes the extrinsic dtype and/or device Parameters ---------- kwargs : ... Returns ------- CameraExtrinsic the extrinsic itself """ if 'device' in kwargs: self._device = kwargs['device'] self.position = self.position.to(**kwargs) self.target = self.target.to(**kwargs) self.up_vector = self.up_vector.to(**kwargs) return self @property def device(self): return self._device @device.setter def device(self, value): self._device = value self.position = self.position.to(self.device) self.target = self.target.to(self.device) self.up_vector = self.up_vector.to(self.device)
[ "torch.tensor" ]
[((1340, 1396), 'torch.tensor', 'torch.tensor', (['position'], {'dtype': 'torch.float', 'device': 'device'}), '(position, dtype=torch.float, device=device)\n', (1352, 1396), False, 'import torch\n'), ((1423, 1477), 'torch.tensor', 'torch.tensor', (['target'], {'dtype': 'torch.float', 'device': 'device'}), '(target, dtype=torch.float, device=device)\n', (1435, 1477), False, 'import torch\n'), ((1506, 1563), 'torch.tensor', 'torch.tensor', (['up_vector'], {'dtype': 'torch.float', 'device': 'device'}), '(up_vector, dtype=torch.float, device=device)\n', (1518, 1563), False, 'import torch\n'), ((2915, 2982), 'torch.tensor', 'torch.tensor', (['[[0, 0, 0, 1]]'], {'dtype': 'torch.float', 'device': 'self.device'}), '([[0, 0, 0, 1]], dtype=torch.float, device=self.device)\n', (2927, 2982), False, 'import torch\n')]
import uuid from textwrap import dedent from IPython.core.display import display, HTML from string import Template import numpy as np # function to initialize a scatter plot def init_chart(data,features): chart_id = 'mychart-' + str(uuid.uuid4()) feature_types = {} # map each feature to type num_feature_ranges = {} for x in features: if data[x].dtype in ["int64", "float64"]: feature_domain = [min(data[x].dropna()), max(data[x].dropna())] if feature_domain[1] == feature_domain[0]: feature_types[x] = "categorical" else: feature_types[x] = data[x].dtype.name num_feature_ranges[x] = feature_domain else: feature_types[x] = "categorical" display(HTML('<script src="/static/components/requirejs/require.js"></script>')) display(HTML(Template(dedent(''' <style> body { font: 11px sans-serif; color: #2A3F5E } .chart { background-color: #E5ECF6; display: relative; } .axis path, .axis line { fill: none; stroke: #2A3F5E; shape-rendering: crispEdges; } .label { color: #2A3F5E; } .selection { margin-bottom: 20px; } .dot { stroke: #fff; opacity: 0.8; } .grid line { stroke: #fff; stroke-opacity: 0.7; stroke-width: 2px; shape-rendering: crispEdges; } .grid path { stroke-width: 0; } .tooltip { position: absolute; font-size: 12px; width: auto; height: auto; pointer-events: none; background-color: white; padding: 5px; } .legend { background-color: white; position: absolute; left: 650px; top: 20px; width: auto; height: 500px; } </style> <script> require.config({ paths: { 'd3': 'https://cdnjs.cloudflare.com/ajax/libs/d3/5.16.0/d3.min', } }) // If we configure mychart via url, we can eliminate this define here define($chart_id, ['d3'], function(d3) { return function (figure_id, legend_id, select_id, data, xCat, yCat, sizeCat, axes) { var initialFeature = d3.select("#" + select_id).property("value") var margin = {top: 40, right: 10, bottom: 50, left: 50}, width = 650 - margin.left - margin.right, height = 400 - margin.top - margin.bottom; // append the svg object to the body of the page var svg = d3.select('#' + figure_id) .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); // X and Y scales and Axis var x = d3.scaleLinear() .domain(axes["x"]) .range([0, width]); var y = d3.scaleLinear() .domain(axes["y"]) .range([height, 0]); // Add X-axis and label svg .append('g') .attr("class", "x axis") .attr("transform", "translate(0," + height + ")") .call(d3.axisBottom(x)) svg.append("text") .attr("class", "label") .attr("x", width / 2) .attr("y", height + 35) .style("text-anchor", "end") .text(xCat); // Add Y-axis and label svg .append('g') .call(d3.axisLeft(y)); svg.append("text") .attr("class", "label") .attr("x", -(height - 15)/ 2 ) .attr("y", -30) .attr("transform", "rotate(-90)") .style("text-anchor", "end") .text(yCat); // gridlines in x axis function function make_x_gridlines() { return d3.axisBottom(x) .ticks(5) } // gridlines in y axis function function make_y_gridlines() { return d3.axisLeft(y) .ticks(5) } // add grid lines // add the X gridlines svg.append("g") .attr("class", "grid") .attr("transform", "translate(0," + height + ")") .call(make_x_gridlines() .tickSize(-height) .tickFormat("") ) // add the Y gridlines svg.append("g") .attr("class", "grid") .call(make_y_gridlines() .tickSize(-width) .tickFormat("") ) // Add the datapoints var dots = svg .selectAll() .data(data) .enter() .append("circle") // Add the tooltip container to the body container // it's invisible and its position/contents are defined during mouseover var tooltip = d3.select("body").append("div") .attr("class", "tooltip") .style("opacity", 0); // Add the legend container to the body container var legend = d3.select("#" + legend_id).attr("y", 0); // tooltip mouseover event handler var tipMouseover = d => { // x and y numeric labels let html = xCat + ": " + Number((d[xCat]).toFixed(3)) + "<br>" + yCat + ": " + Number((d[yCat]).toFixed(3)) + "<br><br>" // color feature label html += colorFeature + ": " + d[colorFeature] tooltip.html(html) .style("left", (d3.event.pageX + 10) + "px") .style("top", (d3.event.pageY - 15) + "px") .transition() .style("opacity", .9) }; function updateLegendCat(featureColors) { // create the categorical legend var legend = d3.select("#" + legend_id).html("") // clear current legend content legend.append("text") .attr("x", 15) .attr("y", 10) .text(colorFeature) .attr("font-size", "14px") let i = 0 Object.keys(featureColors).forEach(feature => { legend.append("circle") .attr("cx",20) .attr("cy",30 + 20*i) .attr("r", 4) .style("fill", featureColors[feature]) legend.append("text") .attr("x", 40) .attr("y", 30 + 20*i ) .text(feature) .style("font-size", "14px") .attr("alignment-baseline","middle") i += 1 }) } function updateLegendNum(domain) { // create the continuous (numerical) legend var legend = d3.select("#" + legend_id).html("") var width = 30, height = 300; // add legend title legend.append("text") .attr("x", 15) .attr("y", 10) .text(colorFeature) .attr("font-size", "14px") var textHeight = 1; var linearGradient = legend.append("defs") .append("linearGradient") .attr("id", "linear-gradient") .attr("gradientTransform", "rotate(90)"); var color = d3.scaleSequential(d3.interpolatePlasma).domain([0,100]) for (let i = 0; i <= 100; i += 5) linearGradient.append("stop") .attr("offset", i + "%") .attr("stop-color", color(100-i)); // to get the right orientation of gradient const legendScale = num => { var scale = d3.scaleLinear() .domain([5, 0]) .range(domain) return Number((scale(num))).toFixed(0) } legend.append("rect") .attr("x", 20) .attr("y", 30) .attr("width", width) .attr("height", height) .style("fill", "url(#linear-gradient)"); for (let i = 0; i <= 5; i += 1) { legend.append("text") .attr("x", 55) .attr("y", 30 + textHeight/2 + ((height-textHeight*6)/5)*i) .text(legendScale(i)) .style("font-size", "14px") .attr("alignment-baseline","middle"); } } // tooltip mouseout event handler var tipMouseout = d => { tooltip.transition() .duration(0) // ms .style("opacity", 0); // don't care about position! }; var sizeScale = d3.scaleLinear() .domain(sizeCat["range"]) .range([3,7]) dots.attr("class", "dot") .attr("cx", d => x(d[xCat]) ) .attr("cy", d => y(d[yCat]) ) .attr("r", d => sizeScale(d[sizeCat["label"]])) .on("mouseover", tipMouseover) .on("mouseout", tipMouseout) update(initialFeature) // A function that update the chart with the new color coding scheme function update(feature) { colorFeature = feature var colors = ['#636EFA', '#EF553B', '#00CC96', '#AB63FA', '#FFA15A', '#19D3F3', '#FF6692', '#B6E880', '#FF97FF', '#FECB52'] var color; let type = $feature_types[feature]; if (type === "categorical") { color = d3.scaleOrdinal(colors); let featureColors = {} dots .attr("fill", d => { let dotColor = color(d[feature]) featureColors[d[feature]] = dotColor return dotColor }) updateLegendCat(featureColors) // update the legend with the new color map } else { let feature_domain = $num_feature_ranges[feature] color = d3.scaleSequential(d3.interpolatePlasma).domain(feature_domain) dots .attr("fill", d => { let dotColor = color(d[feature]) return dotColor }) updateLegendNum(feature_domain) } } d3.select("#" + select_id).on("change", function(d) { // recover the option that has been chosen var selectedOption = d3.select(this).property("value") // run the updateChart function with this selected option update(selectedOption) }); } }) </script> ''')).substitute({ 'chart_id': repr(chart_id), 'feature_types': repr(feature_types), 'num_feature_ranges': repr(num_feature_ranges)}))) return chart_id def scatter_plot(data,x_cat,y_cat,axes,features): chart_id = init_chart(data,features) features_html_options = "".join([ f"<option value ='{x}'>{x}</option>" for x in features ]) dict_data = data.replace(np.nan, "N/A").to_dict("records") size_cat = { "label": "n_reads", "range": [min(data["n_reads"]), max(data["n_reads"])] } display(HTML(Template(dedent(''' <div class="selection"> <label for="colorFeature" style="display: inline-block; width: 240px; text-align: right"> <span> Color by feature: </span> </label> <select id=$select_id> $options </select> </div> <div style="position: relative"> <svg id=$figure_id class='chart'></svg> <div class="legend"><svg id=$legend_id height=500 width=400></svg></div> </div> <script> require([$chart_id], function(mychart) { mychart($figure_id, $legend_id, $select_id, $data, $x_cat, $y_cat, $size_cat, $axes ) }) </script> ''')).substitute({ 'chart_id': repr(chart_id), 'figure_id': repr('fig-' + str(uuid.uuid4())), 'legend_id': repr('leg-' + str(uuid.uuid4())), 'select_id': repr('sel-' + str(uuid.uuid4())), 'data': repr(dict_data), 'axes': repr(axes), 'x_cat': repr(x_cat), 'y_cat': repr(y_cat), 'size_cat': repr(size_cat), 'options': repr(features_html_options) })))
[ "IPython.core.display.HTML", "uuid.uuid4", "textwrap.dedent" ]
[((782, 853), 'IPython.core.display.HTML', 'HTML', (['"""<script src="/static/components/requirejs/require.js"></script>"""'], {}), '(\'<script src="/static/components/requirejs/require.js"></script>\')\n', (786, 853), False, 'from IPython.core.display import display, HTML\n'), ((238, 250), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (248, 250), False, 'import uuid\n'), ((881, 11018), 'textwrap.dedent', 'dedent', (['"""\n <style>\n body {\n font: 11px sans-serif;\n color: #2A3F5E\n }\n .chart {\n background-color: #E5ECF6;\n display: relative;\n }\n .axis path,\n .axis line {\n fill: none;\n stroke: #2A3F5E;\n shape-rendering: crispEdges;\n }\n .label {\n color: #2A3F5E;\n }\n .selection {\n margin-bottom: 20px;\n }\n .dot {\n stroke: #fff;\n opacity: 0.8;\n }\n .grid line {\n stroke: #fff;\n stroke-opacity: 0.7;\n stroke-width: 2px;\n shape-rendering: crispEdges;\n }\n .grid path {\n stroke-width: 0;\n }\n .tooltip {\n position: absolute;\n font-size: 12px;\n width: auto;\n height: auto;\n pointer-events: none;\n background-color: white;\n padding: 5px;\n }\n .legend {\n background-color: white;\n position: absolute;\n left: 650px;\n top: 20px;\n width: auto;\n height: 500px;\n }\n </style>\n <script>\n require.config({\n paths: {\n \'d3\': \'https://cdnjs.cloudflare.com/ajax/libs/d3/5.16.0/d3.min\',\n }\n })\n\n // If we configure mychart via url, we can eliminate this define here\n define($chart_id, [\'d3\'], function(d3) {\n return function (figure_id, legend_id, select_id, data, xCat, yCat, sizeCat, axes) {\n\n var initialFeature = d3.select("#" + select_id).property("value")\n\n var margin = {top: 40, right: 10, bottom: 50, left: 50},\n width = 650 - margin.left - margin.right,\n height = 400 - margin.top - margin.bottom;\n\n // append the svg object to the body of the page\n var svg = d3.select(\'#\' + figure_id)\n .attr("width", width + margin.left + margin.right)\n .attr("height", height + margin.top + margin.bottom)\n .append("g")\n .attr("transform",\n "translate(" + margin.left + "," + margin.top + ")");\n\n // X and Y scales and Axis\n var x = d3.scaleLinear()\n .domain(axes["x"])\n .range([0, width]);\n\n var y = d3.scaleLinear()\n .domain(axes["y"])\n .range([height, 0]);\n\n // Add X-axis and label\n svg\n .append(\'g\')\n .attr("class", "x axis")\n .attr("transform", "translate(0," + height + ")")\n .call(d3.axisBottom(x))\n\n svg.append("text")\n .attr("class", "label")\n .attr("x", width / 2)\n .attr("y", height + 35)\n .style("text-anchor", "end")\n .text(xCat);\n\n // Add Y-axis and label\n\n svg\n .append(\'g\')\n .call(d3.axisLeft(y));\n\n svg.append("text")\n .attr("class", "label")\n .attr("x", -(height - 15)/ 2 )\n .attr("y", -30)\n .attr("transform", "rotate(-90)")\n .style("text-anchor", "end")\n .text(yCat);\n\n\n // gridlines in x axis function\n function make_x_gridlines() {\n return d3.axisBottom(x)\n .ticks(5)\n }\n // gridlines in y axis function\n function make_y_gridlines() {\n return d3.axisLeft(y)\n .ticks(5)\n }\n\n // add grid lines\n\n // add the X gridlines\n svg.append("g")\n .attr("class", "grid")\n .attr("transform", "translate(0," + height + ")")\n .call(make_x_gridlines()\n .tickSize(-height)\n .tickFormat("")\n )\n\n // add the Y gridlines\n svg.append("g")\n .attr("class", "grid")\n .call(make_y_gridlines()\n .tickSize(-width)\n .tickFormat("")\n )\n\n // Add the datapoints\n var dots = svg\n .selectAll()\n .data(data)\n .enter()\n .append("circle")\n\n // Add the tooltip container to the body container\n // it\'s invisible and its position/contents are defined during mouseover\n var tooltip = d3.select("body").append("div")\n .attr("class", "tooltip")\n .style("opacity", 0);\n\n // Add the legend container to the body container\n var legend = d3.select("#" + legend_id).attr("y", 0);\n\n // tooltip mouseover event handler\n var tipMouseover = d => {\n // x and y numeric labels\n let html = xCat + ": " + Number((d[xCat]).toFixed(3)) + "<br>" + yCat + ": " + Number((d[yCat]).toFixed(3)) + "<br><br>"\n // color feature label\n html += colorFeature + ": " + d[colorFeature]\n tooltip.html(html)\n .style("left", (d3.event.pageX + 10) + "px")\n .style("top", (d3.event.pageY - 15) + "px")\n .transition()\n .style("opacity", .9)\n\n };\n\n function updateLegendCat(featureColors) { // create the categorical legend\n\n var legend = d3.select("#" + legend_id).html("") // clear current legend content\n\n legend.append("text")\n .attr("x", 15)\n .attr("y", 10)\n .text(colorFeature)\n .attr("font-size", "14px")\n\n let i = 0\n Object.keys(featureColors).forEach(feature => {\n legend.append("circle")\n .attr("cx",20)\n .attr("cy",30 + 20*i)\n .attr("r", 4)\n .style("fill", featureColors[feature])\n legend.append("text")\n .attr("x", 40)\n .attr("y", 30 + 20*i )\n .text(feature)\n .style("font-size", "14px")\n .attr("alignment-baseline","middle")\n i += 1\n })\n\n }\n\n function updateLegendNum(domain) { // create the continuous (numerical) legend\n\n var legend = d3.select("#" + legend_id).html("")\n var width = 30,\n height = 300;\n\n // add legend title\n legend.append("text")\n .attr("x", 15)\n .attr("y", 10)\n .text(colorFeature)\n .attr("font-size", "14px")\n\n var textHeight = 1;\n\n var linearGradient = legend.append("defs")\n .append("linearGradient")\n .attr("id", "linear-gradient")\n .attr("gradientTransform", "rotate(90)");\n\n var color = d3.scaleSequential(d3.interpolatePlasma).domain([0,100])\n\n\n for (let i = 0; i <= 100; i += 5)\n linearGradient.append("stop")\n .attr("offset", i + "%")\n .attr("stop-color", color(100-i)); // to get the right orientation of gradient\n\n\n const legendScale = num => {\n var scale = d3.scaleLinear()\n .domain([5, 0])\n .range(domain)\n return Number((scale(num))).toFixed(0)\n\n }\n\n legend.append("rect")\n .attr("x", 20)\n .attr("y", 30)\n .attr("width", width)\n .attr("height", height)\n .style("fill", "url(#linear-gradient)");\n\n for (let i = 0; i <= 5; i += 1) {\n legend.append("text")\n .attr("x", 55)\n .attr("y", 30 + textHeight/2 + ((height-textHeight*6)/5)*i)\n .text(legendScale(i))\n .style("font-size", "14px")\n .attr("alignment-baseline","middle");\n }\n\n }\n\n // tooltip mouseout event handler\n var tipMouseout = d => {\n tooltip.transition()\n .duration(0) // ms\n .style("opacity", 0); // don\'t care about position!\n };\n\n var sizeScale = d3.scaleLinear()\n .domain(sizeCat["range"])\n .range([3,7])\n\n dots.attr("class", "dot")\n .attr("cx", d => x(d[xCat]) )\n .attr("cy", d => y(d[yCat]) )\n .attr("r", d => sizeScale(d[sizeCat["label"]]))\n .on("mouseover", tipMouseover)\n .on("mouseout", tipMouseout)\n\n update(initialFeature)\n\n // A function that update the chart with the new color coding scheme\n function update(feature) {\n colorFeature = feature\n var colors = [\'#636EFA\', \'#EF553B\', \'#00CC96\', \'#AB63FA\', \'#FFA15A\', \'#19D3F3\', \'#FF6692\', \'#B6E880\', \'#FF97FF\', \'#FECB52\']\n\n var color;\n let type = $feature_types[feature];\n if (type === "categorical") {\n color = d3.scaleOrdinal(colors);\n let featureColors = {}\n dots\n .attr("fill", d => {\n let dotColor = color(d[feature])\n featureColors[d[feature]] = dotColor\n return dotColor\n })\n updateLegendCat(featureColors) // update the legend with the new color map\n\n } else {\n let feature_domain = $num_feature_ranges[feature]\n color = d3.scaleSequential(d3.interpolatePlasma).domain(feature_domain)\n\n dots\n .attr("fill", d => {\n let dotColor = color(d[feature])\n return dotColor\n })\n updateLegendNum(feature_domain)\n\n }\n\n }\n\n d3.select("#" + select_id).on("change", function(d) {\n // recover the option that has been chosen\n var selectedOption = d3.select(this).property("value")\n // run the updateChart function with this selected option\n update(selectedOption)\n });\n }\n })\n </script>\n\n """'], {}), '(\n """\n <style>\n body {\n font: 11px sans-serif;\n color: #2A3F5E\n }\n .chart {\n background-color: #E5ECF6;\n display: relative;\n }\n .axis path,\n .axis line {\n fill: none;\n stroke: #2A3F5E;\n shape-rendering: crispEdges;\n }\n .label {\n color: #2A3F5E;\n }\n .selection {\n margin-bottom: 20px;\n }\n .dot {\n stroke: #fff;\n opacity: 0.8;\n }\n .grid line {\n stroke: #fff;\n stroke-opacity: 0.7;\n stroke-width: 2px;\n shape-rendering: crispEdges;\n }\n .grid path {\n stroke-width: 0;\n }\n .tooltip {\n position: absolute;\n font-size: 12px;\n width: auto;\n height: auto;\n pointer-events: none;\n background-color: white;\n padding: 5px;\n }\n .legend {\n background-color: white;\n position: absolute;\n left: 650px;\n top: 20px;\n width: auto;\n height: 500px;\n }\n </style>\n <script>\n require.config({\n paths: {\n \'d3\': \'https://cdnjs.cloudflare.com/ajax/libs/d3/5.16.0/d3.min\',\n }\n })\n\n // If we configure mychart via url, we can eliminate this define here\n define($chart_id, [\'d3\'], function(d3) {\n return function (figure_id, legend_id, select_id, data, xCat, yCat, sizeCat, axes) {\n\n var initialFeature = d3.select("#" + select_id).property("value")\n\n var margin = {top: 40, right: 10, bottom: 50, left: 50},\n width = 650 - margin.left - margin.right,\n height = 400 - margin.top - margin.bottom;\n\n // append the svg object to the body of the page\n var svg = d3.select(\'#\' + figure_id)\n .attr("width", width + margin.left + margin.right)\n .attr("height", height + margin.top + margin.bottom)\n .append("g")\n .attr("transform",\n "translate(" + margin.left + "," + margin.top + ")");\n\n // X and Y scales and Axis\n var x = d3.scaleLinear()\n .domain(axes["x"])\n .range([0, width]);\n\n var y = d3.scaleLinear()\n .domain(axes["y"])\n .range([height, 0]);\n\n // Add X-axis and label\n svg\n .append(\'g\')\n .attr("class", "x axis")\n .attr("transform", "translate(0," + height + ")")\n .call(d3.axisBottom(x))\n\n svg.append("text")\n .attr("class", "label")\n .attr("x", width / 2)\n .attr("y", height + 35)\n .style("text-anchor", "end")\n .text(xCat);\n\n // Add Y-axis and label\n\n svg\n .append(\'g\')\n .call(d3.axisLeft(y));\n\n svg.append("text")\n .attr("class", "label")\n .attr("x", -(height - 15)/ 2 )\n .attr("y", -30)\n .attr("transform", "rotate(-90)")\n .style("text-anchor", "end")\n .text(yCat);\n\n\n // gridlines in x axis function\n function make_x_gridlines() {\n return d3.axisBottom(x)\n .ticks(5)\n }\n // gridlines in y axis function\n function make_y_gridlines() {\n return d3.axisLeft(y)\n .ticks(5)\n }\n\n // add grid lines\n\n // add the X gridlines\n svg.append("g")\n .attr("class", "grid")\n .attr("transform", "translate(0," + height + ")")\n .call(make_x_gridlines()\n .tickSize(-height)\n .tickFormat("")\n )\n\n // add the Y gridlines\n svg.append("g")\n .attr("class", "grid")\n .call(make_y_gridlines()\n .tickSize(-width)\n .tickFormat("")\n )\n\n // Add the datapoints\n var dots = svg\n .selectAll()\n .data(data)\n .enter()\n .append("circle")\n\n // Add the tooltip container to the body container\n // it\'s invisible and its position/contents are defined during mouseover\n var tooltip = d3.select("body").append("div")\n .attr("class", "tooltip")\n .style("opacity", 0);\n\n // Add the legend container to the body container\n var legend = d3.select("#" + legend_id).attr("y", 0);\n\n // tooltip mouseover event handler\n var tipMouseover = d => {\n // x and y numeric labels\n let html = xCat + ": " + Number((d[xCat]).toFixed(3)) + "<br>" + yCat + ": " + Number((d[yCat]).toFixed(3)) + "<br><br>"\n // color feature label\n html += colorFeature + ": " + d[colorFeature]\n tooltip.html(html)\n .style("left", (d3.event.pageX + 10) + "px")\n .style("top", (d3.event.pageY - 15) + "px")\n .transition()\n .style("opacity", .9)\n\n };\n\n function updateLegendCat(featureColors) { // create the categorical legend\n\n var legend = d3.select("#" + legend_id).html("") // clear current legend content\n\n legend.append("text")\n .attr("x", 15)\n .attr("y", 10)\n .text(colorFeature)\n .attr("font-size", "14px")\n\n let i = 0\n Object.keys(featureColors).forEach(feature => {\n legend.append("circle")\n .attr("cx",20)\n .attr("cy",30 + 20*i)\n .attr("r", 4)\n .style("fill", featureColors[feature])\n legend.append("text")\n .attr("x", 40)\n .attr("y", 30 + 20*i )\n .text(feature)\n .style("font-size", "14px")\n .attr("alignment-baseline","middle")\n i += 1\n })\n\n }\n\n function updateLegendNum(domain) { // create the continuous (numerical) legend\n\n var legend = d3.select("#" + legend_id).html("")\n var width = 30,\n height = 300;\n\n // add legend title\n legend.append("text")\n .attr("x", 15)\n .attr("y", 10)\n .text(colorFeature)\n .attr("font-size", "14px")\n\n var textHeight = 1;\n\n var linearGradient = legend.append("defs")\n .append("linearGradient")\n .attr("id", "linear-gradient")\n .attr("gradientTransform", "rotate(90)");\n\n var color = d3.scaleSequential(d3.interpolatePlasma).domain([0,100])\n\n\n for (let i = 0; i <= 100; i += 5)\n linearGradient.append("stop")\n .attr("offset", i + "%")\n .attr("stop-color", color(100-i)); // to get the right orientation of gradient\n\n\n const legendScale = num => {\n var scale = d3.scaleLinear()\n .domain([5, 0])\n .range(domain)\n return Number((scale(num))).toFixed(0)\n\n }\n\n legend.append("rect")\n .attr("x", 20)\n .attr("y", 30)\n .attr("width", width)\n .attr("height", height)\n .style("fill", "url(#linear-gradient)");\n\n for (let i = 0; i <= 5; i += 1) {\n legend.append("text")\n .attr("x", 55)\n .attr("y", 30 + textHeight/2 + ((height-textHeight*6)/5)*i)\n .text(legendScale(i))\n .style("font-size", "14px")\n .attr("alignment-baseline","middle");\n }\n\n }\n\n // tooltip mouseout event handler\n var tipMouseout = d => {\n tooltip.transition()\n .duration(0) // ms\n .style("opacity", 0); // don\'t care about position!\n };\n\n var sizeScale = d3.scaleLinear()\n .domain(sizeCat["range"])\n .range([3,7])\n\n dots.attr("class", "dot")\n .attr("cx", d => x(d[xCat]) )\n .attr("cy", d => y(d[yCat]) )\n .attr("r", d => sizeScale(d[sizeCat["label"]]))\n .on("mouseover", tipMouseover)\n .on("mouseout", tipMouseout)\n\n update(initialFeature)\n\n // A function that update the chart with the new color coding scheme\n function update(feature) {\n colorFeature = feature\n var colors = [\'#636EFA\', \'#EF553B\', \'#00CC96\', \'#AB63FA\', \'#FFA15A\', \'#19D3F3\', \'#FF6692\', \'#B6E880\', \'#FF97FF\', \'#FECB52\']\n\n var color;\n let type = $feature_types[feature];\n if (type === "categorical") {\n color = d3.scaleOrdinal(colors);\n let featureColors = {}\n dots\n .attr("fill", d => {\n let dotColor = color(d[feature])\n featureColors[d[feature]] = dotColor\n return dotColor\n })\n updateLegendCat(featureColors) // update the legend with the new color map\n\n } else {\n let feature_domain = $num_feature_ranges[feature]\n color = d3.scaleSequential(d3.interpolatePlasma).domain(feature_domain)\n\n dots\n .attr("fill", d => {\n let dotColor = color(d[feature])\n return dotColor\n })\n updateLegendNum(feature_domain)\n\n }\n\n }\n\n d3.select("#" + select_id).on("change", function(d) {\n // recover the option that has been chosen\n var selectedOption = d3.select(this).property("value")\n // run the updateChart function with this selected option\n update(selectedOption)\n });\n }\n })\n </script>\n\n """\n )\n', (887, 11018), False, 'from textwrap import dedent\n'), ((11599, 12270), 'textwrap.dedent', 'dedent', (['"""\n <div class="selection">\n <label for="colorFeature"\n style="display: inline-block; width: 240px; text-align: right">\n <span> Color by feature: </span>\n </label>\n <select id=$select_id>\n $options\n </select>\n </div>\n <div style="position: relative">\n <svg id=$figure_id class=\'chart\'></svg>\n <div class="legend"><svg id=$legend_id height=500 width=400></svg></div>\n </div>\n <script>\n require([$chart_id], function(mychart) {\n mychart($figure_id, $legend_id, $select_id, $data, $x_cat, $y_cat, $size_cat, $axes )\n })\n </script>\n """'], {}), '(\n """\n <div class="selection">\n <label for="colorFeature"\n style="display: inline-block; width: 240px; text-align: right">\n <span> Color by feature: </span>\n </label>\n <select id=$select_id>\n $options\n </select>\n </div>\n <div style="position: relative">\n <svg id=$figure_id class=\'chart\'></svg>\n <div class="legend"><svg id=$legend_id height=500 width=400></svg></div>\n </div>\n <script>\n require([$chart_id], function(mychart) {\n mychart($figure_id, $legend_id, $select_id, $data, $x_cat, $y_cat, $size_cat, $axes )\n })\n </script>\n """\n )\n', (11605, 12270), False, 'from textwrap import dedent\n'), ((12350, 12362), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (12360, 12362), False, 'import uuid\n'), ((12405, 12417), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (12415, 12417), False, 'import uuid\n'), ((12460, 12472), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (12470, 12472), False, 'import uuid\n')]
############################################################################## # Copyright (c) 2017 Huawei Technologies Co.,Ltd and others. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 ############################################################################## import logging from yardstick.benchmark.scenarios import base from yardstick.common import openstack_utils from yardstick.common import exceptions LOG = logging.getLogger(__name__) class CreateImage(base.Scenario): """Create an OpenStack image""" __scenario_type__ = "CreateImage" def __init__(self, scenario_cfg, context_cfg): self.scenario_cfg = scenario_cfg self.context_cfg = context_cfg self.options = self.scenario_cfg["options"] self.name = self.options["image_name"] self.file_name = self.options.get("file_name") self.container = self.options.get("container", 'images') self.md5 = self.options.get("md5") self.sha256 = self.options.get("sha256") self.disk_format = self.options.get("disk_format") self.container_format = self.options.get("container_format",) self.disable_vendor_agent = self.options.get("disable_vendor_agent", True) self.wait = self.options.get("wait", True) self.timeout = self.options.get("timeout", 3600) self.allow_duplicates = self.options.get("allow_duplicates", False) self.meta = self.options.get("meta") self.volume = self.options.get("volume") self.shade_client = openstack_utils.get_shade_client() self.setup_done = False def setup(self): """scenario setup""" self.setup_done = True def run(self, result): """execute the test""" if not self.setup_done: self.setup() image_id = openstack_utils.create_image( self.shade_client, self.name, filename=self.file_name, container=self.container, md5=self.md5, sha256=self.sha256, disk_format=self.disk_format, container_format=self.container_format, disable_vendor_agent=self.disable_vendor_agent, wait=self.wait, timeout=self.timeout, allow_duplicates=self.allow_duplicates, meta=self.meta, volume=self.volume) if not image_id: result.update({"image_create": 0}) LOG.error("Create image failed!") raise exceptions.ScenarioCreateImageError result.update({"image_create": 1}) LOG.info("Create image successful!") keys = self.scenario_cfg.get("output", '').split() values = [image_id] return self._push_to_outputs(keys, values)
[ "yardstick.common.openstack_utils.create_image", "yardstick.common.openstack_utils.get_shade_client", "logging.getLogger" ]
[((619, 646), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (636, 646), False, 'import logging\n'), ((1721, 1755), 'yardstick.common.openstack_utils.get_shade_client', 'openstack_utils.get_shade_client', ([], {}), '()\n', (1753, 1755), False, 'from yardstick.common import openstack_utils\n'), ((2009, 2406), 'yardstick.common.openstack_utils.create_image', 'openstack_utils.create_image', (['self.shade_client', 'self.name'], {'filename': 'self.file_name', 'container': 'self.container', 'md5': 'self.md5', 'sha256': 'self.sha256', 'disk_format': 'self.disk_format', 'container_format': 'self.container_format', 'disable_vendor_agent': 'self.disable_vendor_agent', 'wait': 'self.wait', 'timeout': 'self.timeout', 'allow_duplicates': 'self.allow_duplicates', 'meta': 'self.meta', 'volume': 'self.volume'}), '(self.shade_client, self.name, filename=self.\n file_name, container=self.container, md5=self.md5, sha256=self.sha256,\n disk_format=self.disk_format, container_format=self.container_format,\n disable_vendor_agent=self.disable_vendor_agent, wait=self.wait, timeout\n =self.timeout, allow_duplicates=self.allow_duplicates, meta=self.meta,\n volume=self.volume)\n', (2037, 2406), False, 'from yardstick.common import openstack_utils\n')]
#!/usr/bin/env python # # Copyright © 2022 Github Lzhiyong # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pylint: disable=not-callable, line-too-long, no-else-return import time import argparse import subprocess from pathlib import Path def format_time(seconds): minute, sec = divmod(seconds, 60) hour, minute = divmod(minute, 60) if hour > 0: return "{}h{:02d}m{:02d.2f}s".format(hour, minute, sec) elif minute > 0: return "{}m{:02d.2f}s".format(minute, sec) else: return "{:.2f}s".format(sec) def build(cc, cxx, args): command = ["cmake", "-GNinja", "-B {}".format(args.build), "-DCMAKE_C_COMPILER={}".format(cc), "-DCMAKE_CXX_COMPILER={}".format(cxx), "-DTARGET_ABI={}".format(args.arch), "-DCMAKE_BUILD_TYPE=Release"] if args.protoc is not None and len(str(args.protoc)) > 0: command.append("-DPROTOC_PATH={}".format(args.protoc)) result = subprocess.run(command) start = time.time() if result.returncode == 0: if args.target == "all": result = subprocess.run(["ninja", "-C", args.build, "-j {}".format(args.job)]) else: result = subprocess.run(["ninja", "-C", args.build, args.target, "-j {}".format(args.job)]) if result.returncode == 0: end = time.time() print("\033[1;32mbuild success cost time: {}\033[0m".format(format_time(end - start))) def configure(args): ndk = Path(args.ndk) if not ndk.exists() or not ndk.is_dir(): raise ValueError("cannot find the ndk") toolchain = ndk / "toolchains/llvm/prebuilt/linux-x86_64" cc: Path = Path() cxx: Path = Path() if args.arch == "aarch64": cc = toolchain / "bin" / "aarch64-linux-android{}-clang".format(args.api) cxx = toolchain / "bin" / "aarch64-linux-android{}-clang++".format(args.api) elif args.arch == "arm": cc = toolchain / "bin" / "armv7a-linux-androideabi{}-clang".format(args.api) cxx = toolchain / "bin" / "armv7a-linux-androideabi{}-clang++".format(args.api) elif args.arch == "x86": cc = toolchain / "bin" / "i686-linux-android{}-clang".format(args.api) cxx = toolchain / "bin" / "i686-linux-android{}-clang++".format(args.api) else: cc = toolchain / "bin" / "x86_64-linux-android{}-clang".format(args.api) cxx = toolchain / "bin" / "x86_64-linux-android{}-clang++".format(args.api) if not cc.exists() or not cxx.exists(): print("cc is {}".format(cc)) print("cxx is {}".format(cxx)) raise ValueError("error: cannot find the clang compiler") # start building build(str(cc), str(cxx), args) def main(): parser = argparse.ArgumentParser() parser.add_argument("--ndk", required=True, help="set the ndk toolchain path") parser.add_argument("--arch", choices=["aarch64", "arm", "x86", "x86_64"], required=True, help="build for the specified architecture") parser.add_argument("--api", default=30, help="set android platform level, min api is 30") parser.add_argument("--build", default="build", help="the build directory") parser.add_argument("--job", default=16, help="run N jobs in parallel, default is 16") parser.add_argument("--target", default="all", help="build specified targets such as aapt2 adb fastboot, etc") parser.add_argument("--protoc", help="set the host protoc path") args = parser.parse_args() configure(args) if __name__ == "__main__": main()
[ "subprocess.run", "pathlib.Path", "argparse.ArgumentParser", "time.time" ]
[((1459, 1482), 'subprocess.run', 'subprocess.run', (['command'], {}), '(command)\n', (1473, 1482), False, 'import subprocess\n'), ((1495, 1506), 'time.time', 'time.time', ([], {}), '()\n', (1504, 1506), False, 'import time\n'), ((1965, 1979), 'pathlib.Path', 'Path', (['args.ndk'], {}), '(args.ndk)\n', (1969, 1979), False, 'from pathlib import Path\n'), ((2152, 2158), 'pathlib.Path', 'Path', ([], {}), '()\n', (2156, 2158), False, 'from pathlib import Path\n'), ((2175, 2181), 'pathlib.Path', 'Path', ([], {}), '()\n', (2179, 2181), False, 'from pathlib import Path\n'), ((3222, 3247), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3245, 3247), False, 'import argparse\n'), ((1826, 1837), 'time.time', 'time.time', ([], {}), '()\n', (1835, 1837), False, 'import time\n')]
import pathlib from datetime import timedelta from airflow import DAG from airflow.operators.python import PythonOperator import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle from sklearn.metrics import accuracy_score, f1_score, roc_auc_score import json from airflow.utils.dates import days_ago def _preprocess_data(): data_df = pd.read_csv("/opt/airflow/data/raw/{{ ds }}/data.csv") target_df = pd.read_csv("/opt/airflow/data/raw/{{ ds }}/target.csv") print(f"data before transform: {data_df}") data_df.drop(columns=["fbs"], inplace=True) data_df["target"] = target_df print(f"data after transform: {data_df}") pathlib.Path("/opt/airflow/data/processed/{{ ds }}").mkdir(parents=True, exist_ok=True) processed_path = "/opt/airflow/data/processed/{{ ds }}/data.csv" print(f"saving processed data to {processed_path}") data_df.to_csv(processed_path, index=False) def _train_val_split(): data = pd.read_csv("/opt/airflow/data/processed/{{ ds }}/data.csv") train_data, test_data = train_test_split(data, train_size=0.8) train_data.to_csv("/opt/airflow/data/processed/{{ ds }}/train.csv", index=False) test_data.to_csv("/opt/airflow/data/processed/{{ ds }}/test.csv", index=False) def _train_model(): train_data = pd.read_csv("/opt/airflow/data/processed/{{ ds }}/train.csv") target = train_data["target"] train_data.drop(columns=["target"], inplace=True) transformer = ColumnTransformer( [ ( 'num', Pipeline([('scaler', StandardScaler())]), ["age", "trestbps", "chol", "thalach", "oldpeak"], ), ( 'cat', Pipeline([('onehot', OneHotEncoder(handle_unknown='ignore'))]), ["sex", "cp", "restecg", "exang", "slope", "ca", "thal"], ), ] ) transformer.fit_transform(train_data) model = LogisticRegression() model.fit(train_data, target) pathlib.Path("/opt/airflow/data/models/{{ ds }}").mkdir(parents=True, exist_ok=True) with open("/opt/airflow/data/models/{{ ds }}/model.pkl", "wb") as f: pickle.dump(model, f) with open("/opt/airflow/data/models/{{ ds }}/transformer.pkl", "wb") as f: pickle.dump(transformer, f) def _test_model(): test_data = pd.read_csv("/opt/airflow/data/processed/{{ ds }}/test.csv") target = test_data["target"] test_data.drop(columns=["target"], inplace=True) model = pickle.load(open("/opt/airflow/data/models/{{ ds }}/model.pkl", "rb")) transformer = pickle.load(open("/opt/airflow/data/models/{{ ds }}/transformer.pkl", "rb")) transformer.transform(test_data) predicts = model.predict(test_data) metrics = { "accuracy": accuracy_score(target, predicts), "f1": f1_score(target, predicts), "roc_auc": roc_auc_score(target, predicts), } pathlib.Path("/opt/airflow/data/metrics/{{ ds }}").mkdir(parents=True, exist_ok=True) with open("/opt/airflow/data/metrics/{{ ds }}/metrics.json", "w") as metric_file: json.dump(metrics, metric_file) with DAG( dag_id="model_train", description="This DAG trains model on synthetic data", start_date=days_ago(0), schedule_interval=timedelta(days=1), ) as dag: preprocess_data = PythonOperator( task_id="data_preprocessing", python_callable=_preprocess_data, dag=dag, ) train_val_split = PythonOperator( task_id="split_data", python_callable=_train_val_split, dag=dag ) train_model = PythonOperator( task_id="train_model", python_callable=_train_model, dag=dag ) test_model = PythonOperator( task_id="test_model", python_callable=_test_model, dag=dag ) preprocess_data >> train_val_split >> train_model >> test_model
[ "json.dump", "pickle.dump", "sklearn.preprocessing.StandardScaler", "airflow.operators.python.PythonOperator", "pandas.read_csv", "sklearn.model_selection.train_test_split", "sklearn.metrics.accuracy_score", "sklearn.preprocessing.OneHotEncoder", "sklearn.metrics.roc_auc_score", "sklearn.linear_model.LogisticRegression", "sklearn.metrics.f1_score", "pathlib.Path", "datetime.timedelta", "airflow.utils.dates.days_ago" ]
[((621, 675), 'pandas.read_csv', 'pd.read_csv', (['"""/opt/airflow/data/raw/{{ ds }}/data.csv"""'], {}), "('/opt/airflow/data/raw/{{ ds }}/data.csv')\n", (632, 675), True, 'import pandas as pd\n'), ((693, 749), 'pandas.read_csv', 'pd.read_csv', (['"""/opt/airflow/data/raw/{{ ds }}/target.csv"""'], {}), "('/opt/airflow/data/raw/{{ ds }}/target.csv')\n", (704, 749), True, 'import pandas as pd\n'), ((1245, 1305), 'pandas.read_csv', 'pd.read_csv', (['"""/opt/airflow/data/processed/{{ ds }}/data.csv"""'], {}), "('/opt/airflow/data/processed/{{ ds }}/data.csv')\n", (1256, 1305), True, 'import pandas as pd\n'), ((1335, 1373), 'sklearn.model_selection.train_test_split', 'train_test_split', (['data'], {'train_size': '(0.8)'}), '(data, train_size=0.8)\n', (1351, 1373), False, 'from sklearn.model_selection import train_test_split\n'), ((1587, 1648), 'pandas.read_csv', 'pd.read_csv', (['"""/opt/airflow/data/processed/{{ ds }}/train.csv"""'], {}), "('/opt/airflow/data/processed/{{ ds }}/train.csv')\n", (1598, 1648), True, 'import pandas as pd\n'), ((2257, 2277), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (2275, 2277), False, 'from sklearn.linear_model import LogisticRegression\n'), ((2670, 2730), 'pandas.read_csv', 'pd.read_csv', (['"""/opt/airflow/data/processed/{{ ds }}/test.csv"""'], {}), "('/opt/airflow/data/processed/{{ ds }}/test.csv')\n", (2681, 2730), True, 'import pandas as pd\n'), ((3701, 3793), 'airflow.operators.python.PythonOperator', 'PythonOperator', ([], {'task_id': '"""data_preprocessing"""', 'python_callable': '_preprocess_data', 'dag': 'dag'}), "(task_id='data_preprocessing', python_callable=\n _preprocess_data, dag=dag)\n", (3715, 3793), False, 'from airflow.operators.python import PythonOperator\n'), ((3847, 3926), 'airflow.operators.python.PythonOperator', 'PythonOperator', ([], {'task_id': '"""split_data"""', 'python_callable': '_train_val_split', 'dag': 'dag'}), "(task_id='split_data', python_callable=_train_val_split, dag=dag)\n", (3861, 3926), False, 'from airflow.operators.python import PythonOperator\n'), ((3980, 4056), 'airflow.operators.python.PythonOperator', 'PythonOperator', ([], {'task_id': '"""train_model"""', 'python_callable': '_train_model', 'dag': 'dag'}), "(task_id='train_model', python_callable=_train_model, dag=dag)\n", (3994, 4056), False, 'from airflow.operators.python import PythonOperator\n'), ((4109, 4183), 'airflow.operators.python.PythonOperator', 'PythonOperator', ([], {'task_id': '"""test_model"""', 'python_callable': '_test_model', 'dag': 'dag'}), "(task_id='test_model', python_callable=_test_model, dag=dag)\n", (4123, 4183), False, 'from airflow.operators.python import PythonOperator\n'), ((2488, 2509), 'pickle.dump', 'pickle.dump', (['model', 'f'], {}), '(model, f)\n', (2499, 2509), False, 'import pickle\n'), ((2601, 2628), 'pickle.dump', 'pickle.dump', (['transformer', 'f'], {}), '(transformer, f)\n', (2612, 2628), False, 'import pickle\n'), ((3120, 3152), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['target', 'predicts'], {}), '(target, predicts)\n', (3134, 3152), False, 'from sklearn.metrics import accuracy_score, f1_score, roc_auc_score\n'), ((3169, 3195), 'sklearn.metrics.f1_score', 'f1_score', (['target', 'predicts'], {}), '(target, predicts)\n', (3177, 3195), False, 'from sklearn.metrics import accuracy_score, f1_score, roc_auc_score\n'), ((3217, 3248), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['target', 'predicts'], {}), '(target, predicts)\n', (3230, 3248), False, 'from sklearn.metrics import accuracy_score, f1_score, roc_auc_score\n'), ((3446, 3477), 'json.dump', 'json.dump', (['metrics', 'metric_file'], {}), '(metrics, metric_file)\n', (3455, 3477), False, 'import json\n'), ((938, 990), 'pathlib.Path', 'pathlib.Path', (['"""/opt/airflow/data/processed/{{ ds }}"""'], {}), "('/opt/airflow/data/processed/{{ ds }}')\n", (950, 990), False, 'import pathlib\n'), ((2320, 2369), 'pathlib.Path', 'pathlib.Path', (['"""/opt/airflow/data/models/{{ ds }}"""'], {}), "('/opt/airflow/data/models/{{ ds }}')\n", (2332, 2369), False, 'import pathlib\n'), ((3264, 3314), 'pathlib.Path', 'pathlib.Path', (['"""/opt/airflow/data/metrics/{{ ds }}"""'], {}), "('/opt/airflow/data/metrics/{{ ds }}')\n", (3276, 3314), False, 'import pathlib\n'), ((3608, 3619), 'airflow.utils.dates.days_ago', 'days_ago', (['(0)'], {}), '(0)\n', (3616, 3619), False, 'from airflow.utils.dates import days_ago\n'), ((3648, 3665), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (3657, 3665), False, 'from datetime import timedelta\n'), ((1865, 1881), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1879, 1881), False, 'from sklearn.preprocessing import StandardScaler\n'), ((2047, 2085), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'handle_unknown': '"""ignore"""'}), "(handle_unknown='ignore')\n", (2060, 2085), False, 'from sklearn.preprocessing import OneHotEncoder\n')]