code
stringlengths
22
1.05M
apis
sequencelengths
1
3.31k
extract_api
stringlengths
75
3.25M
import numpy as np import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func import datetime as dt from flask import Flask, jsonify engine = create_engine("sqlite:///Resources/hawaii.sqlite") Base = automap_base() Base.prepare(engine, reflect=True) Measurement = Base.classes.measurement Station = Base.classes.station app = Flask(__name__) @app.route("/") def welcome(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/<start_date><br/>" f"/api/v1.0/<start_date>/<end_date><br/>" ) @app.route("/api/v1.0/precipitation") def precipitation(): session = Session(engine) first_date = session.query(Measurement.date).order_by(Measurement.date).first() last_date = session.query(Measurement.date).order_by(Measurement.date.desc()).first() year_ago = dt.date(2017, 8, 23) - dt.timedelta(days=365) date_prcp = session.query(Measurement.date, func.max(Measurement.prcp)).group_by(Measurement.date).\ filter(Measurement.date > year_ago) session.close() # Create a dictionary from the row data and append to a list of all_passengers all_dates = [] for date, prcp in date_prcp: dict = {} dict["date"] = date dict["prcp"] = prcp all_dates.append(dict) return jsonify(all_dates) @app.route("/api/v1.0/stations") def stations(): session = Session(engine) stations = session.query(Station.id, Station.station, Station.name, Station.latitude, Station.longitude, Station.elevation).all() all_stations = [] for id, station, name, latitude, longitude, elevation in stations: dict = {} dict["id"] = id dict["station"] = station dict["name"] = name dict["latitude"] = latitude dict["longitude"] = longitude dict["elevation"] = elevation all_stations.append(dict) return jsonify(all_stations) @app.route("/api/v1.0/tobs") def tobs(): session = Session(engine) year_ago = dt.date(2017, 8, 18) - dt.timedelta(days=365) most_active = session.query(Measurement.date, Measurement.tobs).\ filter(Measurement.station == 'USC00519281').\ filter(Measurement.date > year_ago).all() most_active_tobs = [] for date, tobs in most_active: dict = {} dict['date'] = date dict['tobs'] = tobs most_active_tobs.append(dict) return jsonify(most_active_tobs) @app.route("/api/v1.0/<start_date>") def calc_temps_start(start_date): tobs_stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).all() tobs_stats_all = [] for min, avg, max in tobs_stats: dict = {} dict['min'] = min dict['avg'] = avg dict['max'] = max tobs_stats_all.append(dict) return jsonify(tobs_stats_all) @app.route("/api/v1.0/<start_date>/<end_date>") def calc_temps_start_end(start_date, end_date): tobs_stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= end_date).all() tobs_stats_all = [] for min, avg, max in tobs_stats: dict = {} dict['min'] = min dict['avg'] = avg dict['max'] = max tobs_stats_all.append(dict) return jsonify(tobs_stats_all) if __name__ == '__main__': app.run(debug=True)
[ "sqlalchemy.func.avg", "flask.Flask", "datetime.date", "sqlalchemy.orm.Session", "flask.jsonify", "sqlalchemy.func.min", "datetime.timedelta", "sqlalchemy.create_engine", "sqlalchemy.ext.automap.automap_base", "sqlalchemy.func.max" ]
[((230, 280), 'sqlalchemy.create_engine', 'create_engine', (['"""sqlite:///Resources/hawaii.sqlite"""'], {}), "('sqlite:///Resources/hawaii.sqlite')\n", (243, 280), False, 'from sqlalchemy import create_engine, func\n'), ((288, 302), 'sqlalchemy.ext.automap.automap_base', 'automap_base', ([], {}), '()\n', (300, 302), False, 'from sqlalchemy.ext.automap import automap_base\n'), ((415, 430), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (420, 430), False, 'from flask import Flask, jsonify\n'), ((826, 841), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (833, 841), False, 'from sqlalchemy.orm import Session\n'), ((1496, 1514), 'flask.jsonify', 'jsonify', (['all_dates'], {}), '(all_dates)\n', (1503, 1514), False, 'from flask import Flask, jsonify\n'), ((1579, 1594), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (1586, 1594), False, 'from sqlalchemy.orm import Session\n'), ((2083, 2104), 'flask.jsonify', 'jsonify', (['all_stations'], {}), '(all_stations)\n', (2090, 2104), False, 'from flask import Flask, jsonify\n'), ((2161, 2176), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (2168, 2176), False, 'from sqlalchemy.orm import Session\n'), ((2597, 2622), 'flask.jsonify', 'jsonify', (['most_active_tobs'], {}), '(most_active_tobs)\n', (2604, 2622), False, 'from flask import Flask, jsonify\n'), ((3069, 3092), 'flask.jsonify', 'jsonify', (['tobs_stats_all'], {}), '(tobs_stats_all)\n', (3076, 3092), False, 'from flask import Flask, jsonify\n'), ((3602, 3625), 'flask.jsonify', 'jsonify', (['tobs_stats_all'], {}), '(tobs_stats_all)\n', (3609, 3625), False, 'from flask import Flask, jsonify\n'), ((1031, 1051), 'datetime.date', 'dt.date', (['(2017)', '(8)', '(23)'], {}), '(2017, 8, 23)\n', (1038, 1051), True, 'import datetime as dt\n'), ((1054, 1076), 'datetime.timedelta', 'dt.timedelta', ([], {'days': '(365)'}), '(days=365)\n', (1066, 1076), True, 'import datetime as dt\n'), ((2192, 2212), 'datetime.date', 'dt.date', (['(2017)', '(8)', '(18)'], {}), '(2017, 8, 18)\n', (2199, 2212), True, 'import datetime as dt\n'), ((2215, 2237), 'datetime.timedelta', 'dt.timedelta', ([], {'days': '(365)'}), '(days=365)\n', (2227, 2237), True, 'import datetime as dt\n'), ((1125, 1151), 'sqlalchemy.func.max', 'func.max', (['Measurement.prcp'], {}), '(Measurement.prcp)\n', (1133, 1151), False, 'from sqlalchemy import create_engine, func\n'), ((2726, 2752), 'sqlalchemy.func.min', 'func.min', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (2734, 2752), False, 'from sqlalchemy import create_engine, func\n'), ((2754, 2780), 'sqlalchemy.func.avg', 'func.avg', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (2762, 2780), False, 'from sqlalchemy import create_engine, func\n'), ((2782, 2808), 'sqlalchemy.func.max', 'func.max', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (2790, 2808), False, 'from sqlalchemy import create_engine, func\n'), ((3222, 3248), 'sqlalchemy.func.min', 'func.min', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (3230, 3248), False, 'from sqlalchemy import create_engine, func\n'), ((3250, 3276), 'sqlalchemy.func.avg', 'func.avg', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (3258, 3276), False, 'from sqlalchemy import create_engine, func\n'), ((3278, 3304), 'sqlalchemy.func.max', 'func.max', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (3286, 3304), False, 'from sqlalchemy import create_engine, func\n')]
from django.shortcuts import render, redirect from django.views.generic import TemplateView, ListView, CreateView from django.core.files.storage import FileSystemStorage from django.urls import reverse_lazy from django.core.files import File from .forms import BookForm from .models import Book # Load libraries import pandas as pd from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier from sklearn.model_selection import train_test_split # Import train_test_split function from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation from sklearn.tree import export_graphviz from six import StringIO from IPython.display import Image import os import pydotplus BASE_DIR = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) class Home(TemplateView): template_name = 'home.html' def upload(request): context = {} upload_file_name = "" image_url = "" if request.method == 'POST': uploaded_file = request.FILES['document'] image_url = "Tree_of_"+str(os.path.splitext(uploaded_file.name)[0]) + ".png" dataset_cols_name = [] pima = pd.read_csv(uploaded_file , header=0) dataset_cols_name = pima.columns.values.tolist() transet_cols_name = dataset_cols_name[:len(dataset_cols_name)-1] transet_cols_name.append("decisionCol") pima.columns = transet_cols_name #split dataset in features and target variable feature_cols = transet_cols_name[:len(transet_cols_name)-1] X = pima[feature_cols] # Features y = pima.decisionCol # Target variable # Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% training and 30% test # Create Decision Tree classifer object clf = DecisionTreeClassifier() # Train Decision Tree Classifer clf = clf.fit(X_train,y_train) #Predict the response for test dataset y_pred = clf.predict(X_test) # Model Accuracy, how often is the classifier correct? print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) dot_data = StringIO() export_graphviz(clf, out_file=dot_data, filled=True, rounded=True, special_characters=True,feature_names = feature_cols,class_names=['0','1']) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) graph.write_png(image_url) imge = Image(graph.create_png()) fs = FileSystemStorage() upload_file_name = uploaded_file path_to_generated_image = os.path.abspath(os.path.join(os.getcwd(), os.pardir))+"\\mining-assignment-master\\"+ image_url file = open(path_to_generated_image , "rb") django_file = File(file) name_of_image = "Tree_of_"+str(os.path.splitext(uploaded_file.name)[0]) + ".png" name = fs.save(name_of_image, django_file) print(path_to_generated_image) context['image_name'] = name_of_image return render(request, 'upload.html', context)
[ "django.core.files.storage.FileSystemStorage", "django.core.files.File", "os.getcwd", "sklearn.model_selection.train_test_split", "pandas.read_csv", "sklearn.metrics.accuracy_score", "sklearn.tree.DecisionTreeClassifier", "six.StringIO", "sklearn.tree.export_graphviz", "os.path.splitext", "django.shortcuts.render" ]
[((3114, 3153), 'django.shortcuts.render', 'render', (['request', '"""upload.html"""', 'context'], {}), "(request, 'upload.html', context)\n", (3120, 3153), False, 'from django.shortcuts import render, redirect\n'), ((766, 777), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (775, 777), False, 'import os\n'), ((1154, 1190), 'pandas.read_csv', 'pd.read_csv', (['uploaded_file'], {'header': '(0)'}), '(uploaded_file, header=0)\n', (1165, 1190), True, 'import pandas as pd\n'), ((1732, 1785), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.3)', 'random_state': '(1)'}), '(X, y, test_size=0.3, random_state=1)\n', (1748, 1785), False, 'from sklearn.model_selection import train_test_split\n'), ((1877, 1901), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (1899, 1901), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((2219, 2229), 'six.StringIO', 'StringIO', ([], {}), '()\n', (2227, 2229), False, 'from six import StringIO\n'), ((2238, 2390), 'sklearn.tree.export_graphviz', 'export_graphviz', (['clf'], {'out_file': 'dot_data', 'filled': '(True)', 'rounded': '(True)', 'special_characters': '(True)', 'feature_names': 'feature_cols', 'class_names': "['0', '1']"}), "(clf, out_file=dot_data, filled=True, rounded=True,\n special_characters=True, feature_names=feature_cols, class_names=['0', '1']\n )\n", (2253, 2390), False, 'from sklearn.tree import export_graphviz\n'), ((2599, 2618), 'django.core.files.storage.FileSystemStorage', 'FileSystemStorage', ([], {}), '()\n', (2616, 2618), False, 'from django.core.files.storage import FileSystemStorage\n'), ((2864, 2874), 'django.core.files.File', 'File', (['file'], {}), '(file)\n', (2868, 2874), False, 'from django.core.files import File\n'), ((2158, 2196), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (2180, 2196), False, 'from sklearn import metrics\n'), ((1057, 1093), 'os.path.splitext', 'os.path.splitext', (['uploaded_file.name'], {}), '(uploaded_file.name)\n', (1073, 1093), False, 'import os\n'), ((2723, 2734), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2732, 2734), False, 'import os\n'), ((2915, 2951), 'os.path.splitext', 'os.path.splitext', (['uploaded_file.name'], {}), '(uploaded_file.name)\n', (2931, 2951), False, 'import os\n')]
#!/usr/bin/python36 print("content-type: text/html") print("") import cgi import subprocess as sp form = cgi.FieldStorage() user_name = form.getvalue('user_name') lv_size = form.getvalue('lv_size') print(user_name) print(lv_size) output=sp.getstatusoutput("sudo ansible-playbook ostaas.yml --extra-vars='user_name={u} lv_size={l}'".format(u=user_name, l=lv_size)) if output[0] == 0 : print("<b> NFS-server succesfully created</b>") client_mount=sp.getstatusoutput("sudo ansible-playbook ostaasclient.yml --extra-vars='user_name={u} lv_size={l}'".format(u=user_name, l=lv_size)) if client_mount[0] == 0 : print("<b>Enjoy free cloud storage..</b>") else: print("Sorry, We're facing technical issue. please visit after some time")
[ "cgi.FieldStorage" ]
[((109, 127), 'cgi.FieldStorage', 'cgi.FieldStorage', ([], {}), '()\n', (125, 127), False, 'import cgi\n')]
import tensorflow as tf from tensorflow.python.keras.preprocessing import image as kp_image # Keras is only used to load VGG19 model as a high level API to TensorFlow from keras.applications.vgg19 import VGG19 from keras.models import Model from keras import backend as K # pillow is used for loading and saving images from PIL import Image # numPy is used for manipulation of array of object i.e Image in our case import numpy as np ## ## ## # list of layers to be considered for calculation of Content and Style Loss content_layers = ['block3_conv3'] style_layers = ['block1_conv1','block2_conv2','block4_conv3'] num_content_layers = len(content_layers) num_style_layers = len(style_layers) # path where the content and style images are located content_path = 'content.jpg' style_path = 'style.jpg' # Save the result as save_name = 'generated.jpg' # path to where Vgg19 model weight is located vgg_weights = "vgg_weights/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5" ############################################################################################################ ############################################################################################################ # UTILS ############################################################################################################ ############################################################################################################ def load_img(path_to_img): max_dim = 512 img = Image.open(path_to_img) img_size = max(img.size) scale = max_dim/img_size img = img.resize((round(img.size[0]*scale), round(img.size[1]*scale)), Image.ANTIALIAS) img = kp_image.img_to_array(img) # We need to broadcast the image array such that it has a batch dimension img = np.expand_dims(img, axis=0) # preprocess raw images to make it suitable to be used by VGG19 model out = tf.keras.applications.vgg19.preprocess_input(img) return tf.convert_to_tensor(out) def deprocess_img(processed_img): x = processed_img.copy() # perform the inverse of the preprocessiing step x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x ############################################################################################################ ############################################################################################################ # Loss Function ############################################################################################################ ############################################################################################################ ### Content Loss Function def get_content_loss(content, target): return tf.reduce_mean(tf.square(content - target)) /2 ### Style Loss Fucntion def gram_matrix(input_tensor): # if input tensor is a 3D array of size Nh x Nw X Nc # we reshape it to a 2D array of Nc x (Nh*Nw) channels = int(input_tensor.shape[-1]) a = tf.reshape(input_tensor, [-1, channels]) n = tf.shape(a)[0] # get gram matrix gram = tf.matmul(a, a, transpose_a=True) return gram def get_style_loss(base_style, gram_target): height, width, channels = base_style.get_shape().as_list() gram_style = gram_matrix(base_style) # Original eqn as a constant to divide i.e 1/(4. * (channels ** 2) * (width * height) ** 2) return tf.reduce_mean(tf.square(gram_style - gram_target)) / (channels**2 * width * height) #(4.0 * (channels ** 2) * (width * height) ** 2) ### Use to pass content and style image through it def get_feature_representations(model, content_path, style_path, num_content_layers): # Load our images in content_image = load_img(content_path) style_image = load_img(style_path) # batch compute content and style features content_outputs = model(content_image) style_outputs = model(style_image) # Get the style and content feature representations from our model style_features = [ style_layer[0] for style_layer in style_outputs[num_content_layers:] ] content_features = [ content_layer[0] for content_layer in content_outputs[:num_content_layers] ] return style_features, content_features ### Total Loss def compute_loss(model, loss_weights, generated_output_activations, gram_style_features, content_features, num_content_layers, num_style_layers): generated_content_activations = generated_output_activations[:num_content_layers] generated_style_activations = generated_output_activations[num_content_layers:] style_weight, content_weight = loss_weights style_score = 0 content_score = 0 # Accumulate style losses from all layers # Here, we equally weight each contribution of each loss layer weight_per_style_layer = 1.0 / float(num_style_layers) for target_style, comb_style in zip(gram_style_features, generated_style_activations): temp = get_style_loss(comb_style[0], target_style) style_score += weight_per_style_layer * temp # Accumulate content losses from all layers weight_per_content_layer = 1.0 / float(num_content_layers) for target_content, comb_content in zip(content_features, generated_content_activations): temp = get_content_loss(comb_content[0], target_content) content_score += weight_per_content_layer* temp # Get total loss loss = style_weight*style_score + content_weight*content_score return loss, style_score, content_score ############################################################################################################ ############################################################################################################ # CREATE STYLE TRANFER ############################################################################################################ ############################################################################################################ # Using Keras Load VGG19 model def get_model(content_layers,style_layers): # Load our model. We load pretrained VGG, trained on imagenet data vgg19 = VGG19(weights=None, include_top=False) # We don't need to (or want to) train any layers of our pre-trained vgg model, so we set it's trainable to false. vgg19.trainable = False style_model_outputs = [vgg19.get_layer(name).output for name in style_layers] content_model_outputs = [vgg19.get_layer(name).output for name in content_layers] model_outputs = content_model_outputs + style_model_outputs # Build model return Model(inputs = vgg19.input, outputs = model_outputs), vgg19 def run_style_transfer(content_path, style_path, num_iterations=200, content_weight=0.1, style_weight=0.9): # Create a tensorflow session sess = tf.Session() # Assign keras back-end to the TF session which we created K.set_session(sess) model, vgg19 = get_model(content_layers,style_layers) # Get the style and content feature representations (from our specified intermediate layers) style_features, content_features = get_feature_representations(model, content_path, style_path, num_content_layers) gram_style_features = [gram_matrix(style_feature) for style_feature in style_features] # VGG default normalization norm_means = np.array([103.939, 116.779, 123.68]) min_vals = -norm_means max_vals = 255 - norm_means # In original paper, the initial stylized image is random matrix of same size as that of content image # but in later images content image was used instead on random values for first stylized image # because it proved to help to stylize faster generated_image = load_img(content_path) # generated_image = np.random.randint(0,255, size=generated_image.shape) # Create tensorflow variable to hold a stylized/generated image during the training generated_image = tf.Variable(generated_image, dtype=tf.float32) model_outputs = model(generated_image) # weightages of each content and style images i.e alpha & beta loss_weights = (style_weight, content_weight) # Create our optimizer loss = compute_loss(model, loss_weights, model_outputs, gram_style_features, content_features, num_content_layers, num_style_layers) opt = tf.train.AdamOptimizer(learning_rate=9, beta1=0.9, epsilon=1e-1).minimize( loss[0], var_list = [generated_image]) sess.run(tf.global_variables_initializer()) sess.run(generated_image.initializer) # loading the weights again because tf.global_variables_initializer() resets the weights vgg19.load_weights(vgg_weights) # Put loss as infinity before training starts and Create a variable to hold best image (i.e image with minimum loss) best_loss, best_img = float('inf'), None for i in range(num_iterations): # Do optimization sess.run(opt) # Make sure image values stays in the range of max-min value of VGG norm clipped = tf.clip_by_value(generated_image, min_vals, max_vals) # assign the clipped value to the tensor stylized image generated_image.assign(clipped) # Open the Tuple of tensors total_loss, style_score, content_score = loss total_loss = total_loss.eval(session=sess) if total_loss < best_loss: # Update best loss and best image from total loss. best_loss = total_loss # generated image is of shape (1, h, w, 3) convert it to (h, w, 3) temp_generated_image = sess.run(generated_image)[0] best_img = deprocess_img(temp_generated_image) s_loss = sess.run(style_score) c_loss = sess.run(content_score) # print best loss print('best: iteration: ', i ,'loss: ', total_loss ,' style_loss: ', s_loss,' content_loss: ', c_loss) # Save image after every 100 iterations if (i+1)%100 == 0: output = Image.fromarray(best_img) output.save(str(i+1)+'-'+save_name) # after num_iterations iterations are completed, close the TF session sess.close() return best_img, best_loss best, best_loss = run_style_transfer(content_path, style_path)
[ "tensorflow.clip_by_value", "tensorflow.reshape", "keras.models.Model", "numpy.clip", "tensorflow.matmul", "tensorflow.Variable", "tensorflow.global_variables_initializer", "keras.backend.set_session", "tensorflow.Session", "keras.applications.vgg19.VGG19", "tensorflow.keras.applications.vgg19.preprocess_input", "tensorflow.python.keras.preprocessing.image.img_to_array", "tensorflow.convert_to_tensor", "numpy.expand_dims", "PIL.Image.open", "tensorflow.shape", "numpy.array", "tensorflow.square", "PIL.Image.fromarray", "tensorflow.train.AdamOptimizer" ]
[((1538, 1561), 'PIL.Image.open', 'Image.open', (['path_to_img'], {}), '(path_to_img)\n', (1548, 1561), False, 'from PIL import Image\n'), ((1728, 1754), 'tensorflow.python.keras.preprocessing.image.img_to_array', 'kp_image.img_to_array', (['img'], {}), '(img)\n', (1749, 1754), True, 'from tensorflow.python.keras.preprocessing import image as kp_image\n'), ((1841, 1868), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (1855, 1868), True, 'import numpy as np\n'), ((1950, 1999), 'tensorflow.keras.applications.vgg19.preprocess_input', 'tf.keras.applications.vgg19.preprocess_input', (['img'], {}), '(img)\n', (1994, 1999), True, 'import tensorflow as tf\n'), ((2010, 2035), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['out'], {}), '(out)\n', (2030, 2035), True, 'import tensorflow as tf\n'), ((3120, 3160), 'tensorflow.reshape', 'tf.reshape', (['input_tensor', '[-1, channels]'], {}), '(input_tensor, [-1, channels])\n', (3130, 3160), True, 'import tensorflow as tf\n'), ((3213, 3246), 'tensorflow.matmul', 'tf.matmul', (['a', 'a'], {'transpose_a': '(True)'}), '(a, a, transpose_a=True)\n', (3222, 3246), True, 'import tensorflow as tf\n'), ((6230, 6268), 'keras.applications.vgg19.VGG19', 'VGG19', ([], {'weights': 'None', 'include_top': '(False)'}), '(weights=None, include_top=False)\n', (6235, 6268), False, 'from keras.applications.vgg19 import VGG19\n'), ((6888, 6900), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (6898, 6900), True, 'import tensorflow as tf\n'), ((6965, 6984), 'keras.backend.set_session', 'K.set_session', (['sess'], {}), '(sess)\n', (6978, 6984), True, 'from keras import backend as K\n'), ((7392, 7428), 'numpy.array', 'np.array', (['[103.939, 116.779, 123.68]'], {}), '([103.939, 116.779, 123.68])\n', (7400, 7428), True, 'import numpy as np\n'), ((7970, 8016), 'tensorflow.Variable', 'tf.Variable', (['generated_image'], {'dtype': 'tf.float32'}), '(generated_image, dtype=tf.float32)\n', (7981, 8016), True, 'import tensorflow as tf\n'), ((3167, 3178), 'tensorflow.shape', 'tf.shape', (['a'], {}), '(a)\n', (3175, 3178), True, 'import tensorflow as tf\n'), ((6673, 6721), 'keras.models.Model', 'Model', ([], {'inputs': 'vgg19.input', 'outputs': 'model_outputs'}), '(inputs=vgg19.input, outputs=model_outputs)\n', (6678, 6721), False, 'from keras.models import Model\n'), ((8468, 8501), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8499, 8501), True, 'import tensorflow as tf\n'), ((9004, 9057), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['generated_image', 'min_vals', 'max_vals'], {}), '(generated_image, min_vals, max_vals)\n', (9020, 9057), True, 'import tensorflow as tf\n'), ((2251, 2269), 'numpy.clip', 'np.clip', (['x', '(0)', '(255)'], {}), '(x, 0, 255)\n', (2258, 2269), True, 'import numpy as np\n'), ((2880, 2907), 'tensorflow.square', 'tf.square', (['(content - target)'], {}), '(content - target)\n', (2889, 2907), True, 'import tensorflow as tf\n'), ((3532, 3567), 'tensorflow.square', 'tf.square', (['(gram_style - gram_target)'], {}), '(gram_style - gram_target)\n', (3541, 3567), True, 'import tensorflow as tf\n'), ((8342, 8405), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(9)', 'beta1': '(0.9)', 'epsilon': '(0.1)'}), '(learning_rate=9, beta1=0.9, epsilon=0.1)\n', (8364, 8405), True, 'import tensorflow as tf\n'), ((9890, 9915), 'PIL.Image.fromarray', 'Image.fromarray', (['best_img'], {}), '(best_img)\n', (9905, 9915), False, 'from PIL import Image\n')]
from __future__ import annotations import tkinter as tk from typing import Callable from src.graphics import utils from src.graphics.interfaces import Panel from src.timer import Clock class PanelStyle: """ This class holds the immutable style properties of the TextPanel """ def __init__(self, width: int, height: int, bg_colour: str, font: str): self.width: int = width self.height: int = height self.bg_colour: str = bg_colour self.font: str = font class TextPanel(Panel): """ Represents a canvas containing one or more texts with, possibly, some variable styles and content. """ def __init__(self, root: tk.Tk, clock: Clock, style: PanelStyle, var_callback: Callable[[Clock], str]): self.root: tk.Tk = root self.clock: Clock = clock self.style: PanelStyle = style self.var_callback: Callable = var_callback self.style_var = tk.StringVar(self.root, self.var_callback(self.clock)) def draw(self) -> None: canvas = tk.Canvas(self.root, width=self.style.width, height=self.style.height, bg=self.style.bg_colour, highlightthickness=0) text_id = canvas.create_text(self.style.width / 2, self.style.height / 2, anchor=tk.CENTER, text=self.style_var.get().split(":")[0], fill=self.style_var.get().split(":")[1], font=self.style.font) canvas.pack() def on_change(varname, index, mode): """ The signature of the method must stay as is to work properly with tkinter. It also seems I can't move it from here to a more sensible place. """ canvas.itemconfigure(text_id, text=self.style_var.get().split(":")[0], fill=self.style_var.get().split(":")[1]) self.style_var.trace_add('write', on_change) def tick(self) -> None: self.style_var.set(self.var_callback(self.clock)) class ClockPanel(Panel): """ Represents the canvas containing the clock with the hours and the circle. """ def __init__(self, root: tk.Tk, clock: Clock, style: PanelStyle, var_callback: Callable[[Clock], str]): self.root: tk.Tk = root self.clock: Clock = clock self.style: PanelStyle = style self.var_callback: Callable = var_callback self.style_var = tk.StringVar(self.root, self.var_callback(self.clock)) def draw(self) -> None: canvas = tk.Canvas(self.root, width=self.style.width, height=self.style.height, bg=self.style.bg_colour, highlightthickness=0) text_id = canvas.create_text(self.style.width / 2, self.style.height / 2, anchor=tk.CENTER, text=self.style_var.get().split(":")[0], # fill=self.style_var.get().split(":")[1], # 'white', fill='white', font=self.style.font) utils.draw_circle(canvas, self.style.width // 2, self.style.height // 2, self.style.width // 3, outline='white', width=8) arc_id = utils.draw_circle(canvas, self.style.width // 2, self.style.height // 2, self.style.width // 3, outline='red', width=6, extent=-1 * int(self.style_var.get().split(":")[1]) * 6) canvas.pack() def on_change(varname, index, mode): """ The signature of the method must stay as is to work properly with tkinter. It also seems I can't move it from here to a more sensible place. """ hour = self.style_var.get().split(":")[0] canvas.itemconfigure(text_id, text=hour) minutes = int(self.style_var.get().split(":")[1]) extent = utils.calc_arc_extent(self.clock.day, self.clock.hour, minutes) canvas.itemconfigure(arc_id, extent=extent) self.style_var.trace_add('write', on_change) def tick(self) -> None: self.style_var.set(self.var_callback(self.clock))
[ "src.graphics.utils.calc_arc_extent", "tkinter.Canvas", "src.graphics.utils.draw_circle" ]
[((1033, 1155), 'tkinter.Canvas', 'tk.Canvas', (['self.root'], {'width': 'self.style.width', 'height': 'self.style.height', 'bg': 'self.style.bg_colour', 'highlightthickness': '(0)'}), '(self.root, width=self.style.width, height=self.style.height, bg=\n self.style.bg_colour, highlightthickness=0)\n', (1042, 1155), True, 'import tkinter as tk\n'), ((2638, 2760), 'tkinter.Canvas', 'tk.Canvas', (['self.root'], {'width': 'self.style.width', 'height': 'self.style.height', 'bg': 'self.style.bg_colour', 'highlightthickness': '(0)'}), '(self.root, width=self.style.width, height=self.style.height, bg=\n self.style.bg_colour, highlightthickness=0)\n', (2647, 2760), True, 'import tkinter as tk\n'), ((3209, 3335), 'src.graphics.utils.draw_circle', 'utils.draw_circle', (['canvas', '(self.style.width // 2)', '(self.style.height // 2)', '(self.style.width // 3)'], {'outline': '"""white"""', 'width': '(8)'}), "(canvas, self.style.width // 2, self.style.height // 2, \n self.style.width // 3, outline='white', width=8)\n", (3226, 3335), False, 'from src.graphics import utils\n'), ((4140, 4203), 'src.graphics.utils.calc_arc_extent', 'utils.calc_arc_extent', (['self.clock.day', 'self.clock.hour', 'minutes'], {}), '(self.clock.day, self.clock.hour, minutes)\n', (4161, 4203), False, 'from src.graphics import utils\n')]
import dynet as dy import numpy as np import moire from moire import Expression __all__ = [ 'zeros', 'ones', 'full', 'normal', 'bernoulli', 'uniform', 'gumbel', 'zeros_like', 'ones_like', 'full_like', 'normal_like', 'bernoulli_like', 'uniform_like', 'gumbel_like', 'eye', 'diagonal', 'where', ] def zeros(*dim, batch_size: int = 1) -> Expression: a = np.zeros((*dim, batch_size), dtype=np.float32) return dy.inputTensor(a, batched=True, device=moire.config.device) def zeros_like(x: Expression) -> Expression: dim, batch_size = x.dim() return zeros(*dim, batch_size=batch_size) def ones(*dim, batch_size: int = 1) -> Expression: a = np.ones((*dim, batch_size), dtype=np.float32) return dy.inputTensor(a, batched=True, device=moire.config.device) def ones_like(x: Expression) -> Expression: dim, batch_size = x.dim() return ones(*dim, batch_size=batch_size) def eye(N: int, M: int = None, k: int = 0) -> Expression: return dy.inputTensor(np.eye(N, M, k), batched=False, device=moire.config.device) def diagonal(x: Expression) -> Expression: (dim0, dim1), batch_size = x.dim() return dy.cmult(x, eye(dim0, dim1)) def full(*dim, value, batch_size: int = 1) -> Expression: a = np.full((*dim, batch_size), fill_value=value, dtype=np.float32) return dy.inputTensor(a, batched=True, device=moire.config.device) def full_like(x: Expression, value) -> Expression: dim, batch_size = x.dim() return full(*dim, value=value, batch_size=batch_size) def normal(*dim, mean: float = 0.0, stddev: float = 1.0, batch_size: int = 1) -> Expression: a = np.random.normal(loc=mean, scale=stddev, size=(*dim, batch_size)).astype(np.float32) return dy.inputTensor(a, batched=True, device=moire.config.device) def normal_like(x: Expression, mean: float = 0.0, stddev: float = 1.0) -> Expression: dim, batch_size = x.dim() return normal(*dim, mean=mean, stddev=stddev, batch_size=batch_size) def bernoulli(*dim, p: float, batch_size: int = 1) -> Expression: a = np.random.uniform(low=0, high=1.0, size=(*dim, batch_size)) < p return dy.inputTensor(a.astype(np.int32), batched=True, device=moire.config.device) def bernoulli_like(x: Expression, p: float) -> Expression: dim, batch_size = x.dim() return bernoulli(*dim, p=p, batch_size=batch_size) def uniform(*dim, low: float, high: float, batch_size: int = 1) -> Expression: a = np.random.uniform(low=low, high=high, size=(*dim, batch_size)) return dy.inputTensor(a, batched=True, device=moire.config.device) def uniform_like(x: Expression, low: float, high: float) -> Expression: dim, batch_size = x.dim() return uniform(dim, low=low, high=high, batch_size=batch_size) def gumbel(*dim, mu: float = 0.0, beta: float = 1.0, batch_size: int = 1) -> Expression: a = np.random.gumbel(loc=mu, scale=beta, size=(*dim, batch_size)) return dy.inputTensor(a, batched=True, device=moire.config.device) def gumbel_like(x: Expression, mu: float = 0.0, beta: float = 1.0) -> Expression: dim, batch_size = x.dim() return gumbel(*dim, mu=mu, beta=beta, batch_size=batch_size) def where(cond: Expression, x: Expression, y: Expression) -> Expression: return dy.cmult(cond, x) + dy.cmult(1.0 - cond, y) if __name__ == '__main__': a = dy.inputTensor([[1, 2, 3], [2, 3, 4], ]) moire.debug(f'a :: {a.dim()} => {a.value()}') b = diagonal(a) moire.debug(f'b :: {b.dim()} => {b.value()}')
[ "numpy.full", "numpy.random.uniform", "numpy.random.gumbel", "dynet.inputTensor", "dynet.cmult", "numpy.zeros", "numpy.ones", "numpy.random.normal", "numpy.eye" ]
[((375, 421), 'numpy.zeros', 'np.zeros', (['(*dim, batch_size)'], {'dtype': 'np.float32'}), '((*dim, batch_size), dtype=np.float32)\n', (383, 421), True, 'import numpy as np\n'), ((433, 492), 'dynet.inputTensor', 'dy.inputTensor', (['a'], {'batched': '(True)', 'device': 'moire.config.device'}), '(a, batched=True, device=moire.config.device)\n', (447, 492), True, 'import dynet as dy\n'), ((677, 722), 'numpy.ones', 'np.ones', (['(*dim, batch_size)'], {'dtype': 'np.float32'}), '((*dim, batch_size), dtype=np.float32)\n', (684, 722), True, 'import numpy as np\n'), ((734, 793), 'dynet.inputTensor', 'dy.inputTensor', (['a'], {'batched': '(True)', 'device': 'moire.config.device'}), '(a, batched=True, device=moire.config.device)\n', (748, 793), True, 'import dynet as dy\n'), ((1253, 1316), 'numpy.full', 'np.full', (['(*dim, batch_size)'], {'fill_value': 'value', 'dtype': 'np.float32'}), '((*dim, batch_size), fill_value=value, dtype=np.float32)\n', (1260, 1316), True, 'import numpy as np\n'), ((1328, 1387), 'dynet.inputTensor', 'dy.inputTensor', (['a'], {'batched': '(True)', 'device': 'moire.config.device'}), '(a, batched=True, device=moire.config.device)\n', (1342, 1387), True, 'import dynet as dy\n'), ((1728, 1787), 'dynet.inputTensor', 'dy.inputTensor', (['a'], {'batched': '(True)', 'device': 'moire.config.device'}), '(a, batched=True, device=moire.config.device)\n', (1742, 1787), True, 'import dynet as dy\n'), ((2442, 2504), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': 'low', 'high': 'high', 'size': '(*dim, batch_size)'}), '(low=low, high=high, size=(*dim, batch_size))\n', (2459, 2504), True, 'import numpy as np\n'), ((2516, 2575), 'dynet.inputTensor', 'dy.inputTensor', (['a'], {'batched': '(True)', 'device': 'moire.config.device'}), '(a, batched=True, device=moire.config.device)\n', (2530, 2575), True, 'import dynet as dy\n'), ((2846, 2907), 'numpy.random.gumbel', 'np.random.gumbel', ([], {'loc': 'mu', 'scale': 'beta', 'size': '(*dim, batch_size)'}), '(loc=mu, scale=beta, size=(*dim, batch_size))\n', (2862, 2907), True, 'import numpy as np\n'), ((2919, 2978), 'dynet.inputTensor', 'dy.inputTensor', (['a'], {'batched': '(True)', 'device': 'moire.config.device'}), '(a, batched=True, device=moire.config.device)\n', (2933, 2978), True, 'import dynet as dy\n'), ((3325, 3363), 'dynet.inputTensor', 'dy.inputTensor', (['[[1, 2, 3], [2, 3, 4]]'], {}), '([[1, 2, 3], [2, 3, 4]])\n', (3339, 3363), True, 'import dynet as dy\n'), ((1001, 1016), 'numpy.eye', 'np.eye', (['N', 'M', 'k'], {}), '(N, M, k)\n', (1007, 1016), True, 'import numpy as np\n'), ((2055, 2114), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0)', 'high': '(1.0)', 'size': '(*dim, batch_size)'}), '(low=0, high=1.0, size=(*dim, batch_size))\n', (2072, 2114), True, 'import numpy as np\n'), ((3244, 3261), 'dynet.cmult', 'dy.cmult', (['cond', 'x'], {}), '(cond, x)\n', (3252, 3261), True, 'import dynet as dy\n'), ((3264, 3287), 'dynet.cmult', 'dy.cmult', (['(1.0 - cond)', 'y'], {}), '(1.0 - cond, y)\n', (3272, 3287), True, 'import dynet as dy\n'), ((1632, 1697), 'numpy.random.normal', 'np.random.normal', ([], {'loc': 'mean', 'scale': 'stddev', 'size': '(*dim, batch_size)'}), '(loc=mean, scale=stddev, size=(*dim, batch_size))\n', (1648, 1697), True, 'import numpy as np\n')]
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import torch from nemo.core.classes import Loss, typecheck from nemo.core.neural_types import LossType, NeuralType __all__ = ['AggregatorLoss'] class AggregatorLoss(Loss): """ Sums several losses into one. Args: num_inputs: number of input losses weights: a list of coefficient for merging losses """ @property def input_types(self): """Returns definitions of module input ports. """ input_types = {} for i in range(self._num_losses): input_types["loss_" + str(i + 1)] = NeuralType(elements_type=LossType()) return input_types @property def output_types(self): """Returns definitions of module output ports. """ return {"loss": NeuralType(elements_type=LossType())} def __init__(self, num_inputs: int = 2, weights: List[float] = None): super().__init__() self._num_losses = num_inputs if weights is not None and len(weights) != num_inputs: raise ValueError("Length of weights should be equal to the number of inputs (num_inputs)") self._weights = weights @typecheck() def forward(self, **kwargs): values = [kwargs[x] for x in sorted(kwargs.keys())] loss = torch.zeros_like(values[0]) for loss_idx, loss_value in enumerate(values): if self._weights is not None: loss = loss.add(loss_value, alpha=self._weights[loss_idx]) else: loss = loss.add(loss_value) return loss
[ "nemo.core.classes.typecheck", "torch.zeros_like", "nemo.core.neural_types.LossType" ]
[((1779, 1790), 'nemo.core.classes.typecheck', 'typecheck', ([], {}), '()\n', (1788, 1790), False, 'from nemo.core.classes import Loss, typecheck\n'), ((1899, 1926), 'torch.zeros_like', 'torch.zeros_like', (['values[0]'], {}), '(values[0])\n', (1915, 1926), False, 'import torch\n'), ((1222, 1232), 'nemo.core.neural_types.LossType', 'LossType', ([], {}), '()\n', (1230, 1232), False, 'from nemo.core.neural_types import LossType, NeuralType\n'), ((1421, 1431), 'nemo.core.neural_types.LossType', 'LossType', ([], {}), '()\n', (1429, 1431), False, 'from nemo.core.neural_types import LossType, NeuralType\n')]
import urllib.request from bs4 import BeautifulSoup def get_go(): url = "https://www.mohfw.gov.in/" uClient = urllib.request.urlopen(url) page_html = uClient.read() uClient.close() page_soup = BeautifulSoup(page_html,"html.parser") news = page_soup.find_all('div',class_ = 'update-box') newz = [] for new in news: newz.append([new.strong.text,new.a.text.strip(),new.a['href']]) return newz
[ "bs4.BeautifulSoup" ]
[((217, 256), 'bs4.BeautifulSoup', 'BeautifulSoup', (['page_html', '"""html.parser"""'], {}), "(page_html, 'html.parser')\n", (230, 256), False, 'from bs4 import BeautifulSoup\n')]
# -*- coding: utf-8 -*- import glob import os import re import sys import logging from boto3.session import Session from botocore.exceptions import ClientError from argparse import ArgumentParser TEMPLATES = [ "/scripts/ec2.yml", ] logger = logging.getLogger() formatter = '%(levelname)s : %(asctime)s : %(message)s' logging.basicConfig(level=logging.INFO, format=formatter) class DeployStack: # Option parser. def get_option(self): usage = "python " + sys.argv[0] + " [-h | --help] [-a | --app <APP_NAME>] [-p | --profile <AWS_PROFILE>] [-r | --region <AWS_REGION>]" argparser = ArgumentParser(usage=usage) argparser.add_argument("-a", "--app", type=str, default="snatch", help="Target app name.") argparser.add_argument("-p", "--profile", type=str, default="default", help="~/.aws/config.") argparser.add_argument("-r", "--region", type=str, default="ap-northeast-1", help="AWs regions. e.g. ap-northeast-1, us-east-1, ...") return argparser.parse_args() # Update CFn stacks. def update_stack(self, stack_name, cfn, input): w = cfn.get_waiter("stack_update_complete") try: cfn.update_stack(**input) logger.info("Update %s.", stack_name) w.wait( StackName = stack_name, ) return logger.info("Update %s complete.", stack_name) except ClientError as e: return logger.warning("%s", e.response["Error"]["Message"]) # Create CFn stacks. def create_stack(self, stack_name, cfn, input): w = cfn.get_waiter("stack_create_complete") try: cfn.create_stack(**input) logger.info("Create %s.", stack_name) w.wait( StackName = stack_name, ) return logger.info("Create %s complete.", stack_name) except ClientError as e: if e.response["Error"]["Code"] == "AlreadyExistsException": self.update_stack(stack_name, cfn, input) return else: return logger.warning("%s", e.response["Error"]["Message"]) # Valid CFn template. def valid_template(self, template, body, cfn): logger.info("Validate checks %s", template) try: cfn.validate_template( TemplateBody = body, ) return logger.info("%s is validation OK.", template) except ClientError as e: return logger.warning("%s", e.response["Error"]["Message"]) # Create EC2 keypair. # 秘密鍵は ~/.ssh/ 配下に書き出す(file permission: 0600) def create_keypair(self, app_name, session): logger.info("Create %s KeyPair.", app_name) ec2 = session.client("ec2") try: ec2.describe_key_pairs( KeyNames=[ app_name, ], ) return logger.info("%s KeyPair already exists.", app_name) except ClientError as e: if e.response["Error"]["Code"] == "InvalidKeyPair.NotFound": res = ec2.create_key_pair( KeyName=app_name, ) private_key = res["KeyMaterial"] pem_file = open(os.environ["HOME"] + "/.ssh/" + app_name + ".pem", "w") pem_file.write(private_key) pem_file.close os.chmod(os.environ["HOME"] + "/.ssh/" + app_name + ".pem", 0o600) return logger.info("%s KeyPair created.", app_name) else: return logger.warning("%s", e.response["Error"]["Message"]) # Provisiond stack def provisiond(self, app_name, profile, region): session = Session(profile_name=profile, region_name=region) self.create_keypair(app_name, session) cfn = session.client("cloudformation") for t in TEMPLATES: path = os.getcwd() + t body = open(path).read() stack_name = app_name + "-" + re.sub('\/(.*)\/(.*)\.yml', '\\1-\\2', t) self.valid_template(t, body, cfn) input = { "StackName": stack_name, "TemplateBody": body, "Capabilities": [ 'CAPABILITY_NAMED_IAM', ], "Parameters": [ { "ParameterKey": "AppName", "ParameterValue": app_name, }, ], } try: self.create_stack(stack_name, cfn, input) except ClientError as e: logger.warning("%s", e.response["Error"]["Message"]) return @staticmethod def main(): logger.info("Start provision stacks.") self = DeployStack() options = self.get_option() app_name = options.app profile = options.profile region = options.region self.provisiond(app_name, profile, region) return logger.info("Finish provision stacks.") if __name__ == '__main__': DeployStack.main()
[ "os.chmod", "argparse.ArgumentParser", "logging.basicConfig", "os.getcwd", "boto3.session.Session", "re.sub", "logging.getLogger" ]
[((248, 267), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (265, 267), False, 'import logging\n'), ((324, 381), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': 'formatter'}), '(level=logging.INFO, format=formatter)\n', (343, 381), False, 'import logging\n'), ((613, 640), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'usage': 'usage'}), '(usage=usage)\n', (627, 640), False, 'from argparse import ArgumentParser\n'), ((3929, 3978), 'boto3.session.Session', 'Session', ([], {'profile_name': 'profile', 'region_name': 'region'}), '(profile_name=profile, region_name=region)\n', (3936, 3978), False, 'from boto3.session import Session\n'), ((4122, 4133), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (4131, 4133), False, 'import os\n'), ((4217, 4261), 're.sub', 're.sub', (['"""\\\\/(.*)\\\\/(.*)\\\\.yml"""', '"""\\\\1-\\\\2"""', 't'], {}), "('\\\\/(.*)\\\\/(.*)\\\\.yml', '\\\\1-\\\\2', t)\n", (4223, 4261), False, 'import re\n'), ((3605, 3669), 'os.chmod', 'os.chmod', (["(os.environ['HOME'] + '/.ssh/' + app_name + '.pem')", '(384)'], {}), "(os.environ['HOME'] + '/.ssh/' + app_name + '.pem', 384)\n", (3613, 3669), False, 'import os\n')]
import glob from collections import namedtuple import dateutil.parser import numpy as np import pandas as pd import pymzml import config import lcms.utils as utils def create_spectrum_and_peak_tables(msrun_list, experiment_id): ''' fills the Spectrum table and for each spectrum the Peak table :param msrun_list: :param experiment_id: :return: ''' spectrum = namedtuple('spectrum', 'experiment_id ' + 'spectrum_id ' + 'total_ion_current ' + 'time_passed_since_start ' + 'ms_level ' + 'highest_observed_mz ' + 'lowest_observed_mz ' + 'scan_window_upper_limit ' + 'scan_window_lower_limit') measurement = namedtuple('measurement', 'experiment_id ' + 'spectrum_id' + ' mz' + ' intensity') spectrum_list = [] measurement_list = [] for i, spc in enumerate(msrun_list): if i % 100 == 0: print("Spectrum {}".format(i)) s = spectrum(experiment_id=experiment_id, spectrum_id=spc.ID, total_ion_current=spc['total ion current'], time_passed_since_start=spc['scan start time'], ms_level=spc['ms level'], highest_observed_mz=spc['highest observed m/z'], lowest_observed_mz=spc['lowest observed m/z'], scan_window_upper_limit=spc['scan window upper limit'], scan_window_lower_limit=spc['scan window lower limit']) spectrum_list.append(s) if i == 0: m = measurement(experiment_id=experiment_id, spectrum_id=spc.ID, mz=np.nan, intensity=np.nan) else: m = measurement(experiment_id=experiment_id, spectrum_id=spc.ID, mz=spc.mz, intensity=spc.i) # Fill peak table if experiment_id + spectrum_id do not already exist in table Peak check_peak = config.db_connection.execute( """SELECT experiment_id from "Peak" WHERE experiment_id = '{}' AND spectrum_id = '{}'"""\ .format(experiment_id, spc.ID)).fetchone() if check_peak is not None: print( ("Experiment_id {} + spectrum_id {} combination already exists in Peak table. " + "To avoid duplicates the spectra won't be added to the Peak table").format(experiment_id, spc.ID)) else: peak_table = pd.DataFrame({"mz": spc.mz, "intensity": spc.i}) peak_table['experiment_id'] = experiment_id peak_table['spectrum_id'] = spc.ID peak_table.to_sql('Peak', con=config.db_connection, index=False, if_exists='append') print("Appended to Peak table from experiment_id: {}, spectrum_id: {}".format(experiment_id, spc.ID)) measurement_list.append(m) # check if experiment_id already exists in Spectrum table. If not, append data to Spectrum table check_spectrum = config.db_connection.execute( """SELECT experiment_id from "Spectrum" WHERE experiment_id = '{}' """ .format(experiment_id)).fetchone() if check_spectrum is not None: print(("Experiment_id {} already exists in Spectrum table. " + "To avoid duplicates the spectra won't be added to the Spectrum table") .format(experiment_id)) else: spectrum_table = pd.DataFrame(spectrum_list) spectrum_table.to_sql('Spectrum', con=config.db_connection, index=False, if_exists='append') print("Appended to Spectrum table with info from experiment_id: {}".format(experiment_id)) def create_experiment(msrun_list, filename): """ Create a new experiment structure based on the information in the msrun_list. :param msrun_list: an open pymzml runner :param filename: name of the pymzml file :return: a dictionary containing the initialized experiment """ experiment = dict.fromkeys(['run_id', 'run_start_time', 'human_run_start_time', 'spectra_count', 'experimental_state_id', 'match_type_id', 'filename']) # Todo: waarden in onderstaande tabel moeten nog ingevuld worden experiment['run_id'] = msrun_list.info['run_id'] if "start_time" in msrun_list.info.keys(): start_time_str = msrun_list.info["start_time"] start_time = dateutil.parser.parse(start_time_str) experiment['run_start_time'] = start_time.timestamp() experiment['human_run_start_time'] = start_time else: experiment['run_start_time'] = None experiment['human_run_start_time'] = None experiment['spectra_count'] = msrun_list.info['spectrum_count'] experiment['experimental_state_id'] = None experiment['match_type_id'] = None experiment['filename'] = filename.split('/')[-1] return experiment def create_experiment_table(msrun_list, filename): """ fills the Experiment table. :param msrun_list: an open pymzml runner :param filename: name of the pymzml file :return: """ experiment = create_experiment(msrun_list, filename) utils.append_to_experiment('Experiment', experiment) experiment_id = config.db_connection.execute( """SELECT experiment_id from "Experiment" WHERE filename = '{}' """.format( filename.split('/')[-1])).fetchone()[0] return experiment_id def read_file(filename): msrun = pymzml.run.Reader(filename) msrun_list = list(msrun) # check if filename already in Experiment table check = config.db_connection.execute( """SELECT experiment_id from "Experiment" WHERE filename = '{}' """.format( filename.split('/')[-1])).fetchone() if check is not None: print("File already exists in DB. Continue to filling Spectrum table") experiment_id = check[0] else: # fill the Experiment table with data from file experiment_id = create_experiment_table(msrun_list, filename) # fill the Spectrum and Peak table with data from file create_spectrum_and_peak_tables(msrun_list, experiment_id) if __name__ == "__main__": for n, filename in enumerate(glob.iglob('{}Geconverteerd/*.mzML'.format(config.data_dir))): print("reading file {} ({})".format(n, filename.split('/')[-1])) if '+' in filename.split('/')[-1]: print("Raw data, will be skipped for now") continue read_file(filename)
[ "pandas.DataFrame", "pymzml.run.Reader", "collections.namedtuple", "lcms.utils.append_to_experiment" ]
[((393, 634), 'collections.namedtuple', 'namedtuple', (['"""spectrum"""', "('experiment_id ' + 'spectrum_id ' + 'total_ion_current ' +\n 'time_passed_since_start ' + 'ms_level ' + 'highest_observed_mz ' +\n 'lowest_observed_mz ' + 'scan_window_upper_limit ' +\n 'scan_window_lower_limit')"], {}), "('spectrum', 'experiment_id ' + 'spectrum_id ' +\n 'total_ion_current ' + 'time_passed_since_start ' + 'ms_level ' +\n 'highest_observed_mz ' + 'lowest_observed_mz ' +\n 'scan_window_upper_limit ' + 'scan_window_lower_limit')\n", (403, 634), False, 'from collections import namedtuple\n'), ((875, 961), 'collections.namedtuple', 'namedtuple', (['"""measurement"""', "('experiment_id ' + 'spectrum_id' + ' mz' + ' intensity')"], {}), "('measurement', 'experiment_id ' + 'spectrum_id' + ' mz' +\n ' intensity')\n", (885, 961), False, 'from collections import namedtuple\n'), ((5451, 5503), 'lcms.utils.append_to_experiment', 'utils.append_to_experiment', (['"""Experiment"""', 'experiment'], {}), "('Experiment', experiment)\n", (5477, 5503), True, 'import lcms.utils as utils\n'), ((5755, 5782), 'pymzml.run.Reader', 'pymzml.run.Reader', (['filename'], {}), '(filename)\n', (5772, 5782), False, 'import pymzml\n'), ((3734, 3761), 'pandas.DataFrame', 'pd.DataFrame', (['spectrum_list'], {}), '(spectrum_list)\n', (3746, 3761), True, 'import pandas as pd\n'), ((2780, 2828), 'pandas.DataFrame', 'pd.DataFrame', (["{'mz': spc.mz, 'intensity': spc.i}"], {}), "({'mz': spc.mz, 'intensity': spc.i})\n", (2792, 2828), True, 'import pandas as pd\n')]
from setuptools import setup, find_packages ver = "0.4" setup( name = 'dirutil', version = ver, description = 'High level directory utilities', keywords = ['dir', 'directory', 'workdir', 'tempdir'], author = '<NAME>', author_email = '<EMAIL>', packages = find_packages(), test_suite = 'dirutil.get_tests', url = 'https://github.com/ddolzhenko/dirutil', download_url = 'https://github.com/ddolzhenko/dirutil/archive/v{}.tar.gz'.format(ver), classifiers = [], install_requires = [ # "checksumdir==1.0.5", ], )
[ "setuptools.find_packages" ]
[((317, 332), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (330, 332), False, 'from setuptools import setup, find_packages\n')]
from collections import deque import random import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam class DYNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) self.gamma = 0.95 # discount future rewards less self.exploration_rate = 1 self.exploration_decay = 0.995 self.exploration_min = 0.01 self.model = self._build_model() def _build_model(self): model = Sequential() model.add(Dense(24, input_dim=self.state_size, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(self.action_size, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model
[ "keras.models.Sequential", "keras.layers.Dense", "keras.optimizers.Adam", "collections.deque" ]
[((361, 379), 'collections.deque', 'deque', ([], {'maxlen': '(2000)'}), '(maxlen=2000)\n', (366, 379), False, 'from collections import deque\n'), ((633, 645), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (643, 645), False, 'from keras.models import Sequential\n'), ((664, 719), 'keras.layers.Dense', 'Dense', (['(24)'], {'input_dim': 'self.state_size', 'activation': '"""relu"""'}), "(24, input_dim=self.state_size, activation='relu')\n", (669, 719), False, 'from keras.layers import Dense\n'), ((739, 767), 'keras.layers.Dense', 'Dense', (['(24)'], {'activation': '"""relu"""'}), "(24, activation='relu')\n", (744, 767), False, 'from keras.layers import Dense\n'), ((787, 831), 'keras.layers.Dense', 'Dense', (['self.action_size'], {'activation': '"""linear"""'}), "(self.action_size, activation='linear')\n", (792, 831), False, 'from keras.layers import Dense\n'), ((878, 905), 'keras.optimizers.Adam', 'Adam', ([], {'lr': 'self.learning_rate'}), '(lr=self.learning_rate)\n', (882, 905), False, 'from keras.optimizers import Adam\n')]
#!/usr/bin/env python3 """Test suite for pandas-marc.""" from pandas_marc import MARCDataFrame def test_instantiate_marcdataframe(dataframe): kwargs = { 'dataframe': dataframe, 'occurrence_delimiter': '|', 'subfield_delimiter': '‡' } mdf = MARCDataFrame(**kwargs) for key, value in kwargs.items(): assert getattr(mdf, key) is value def test_marcdataframe_produces_correct_marc_records(dataframe, records): mdf = MARCDataFrame(dataframe) output = [record.as_marc() for record in mdf.records] expected = [record.as_marc() for record in records] assert output == expected def test_marcdataframe_with_other_occurrence_delimiter(dataframe, records): # Find and replace backslashes in original dataframe with pipes dataframe = dataframe.replace(r'\\', '|', regex=True) mdf = MARCDataFrame(dataframe, occurrence_delimiter='|') output = [record.as_marc() for record in mdf.records] expected = [record.as_marc() for record in records] assert output == expected def test_marcdataframe_with_other_subfield_delimiter(dataframe, records): # Find and replace double daggers in original dataframe with dollar signs dataframe = dataframe.replace(r'\$', '‡', regex=True) mdf = MARCDataFrame(dataframe, subfield_delimiter='‡') output = [record.as_marc() for record in mdf.records] expected = [record.as_marc() for record in records] assert output == expected
[ "pandas_marc.MARCDataFrame" ]
[((280, 303), 'pandas_marc.MARCDataFrame', 'MARCDataFrame', ([], {}), '(**kwargs)\n', (293, 303), False, 'from pandas_marc import MARCDataFrame\n'), ((470, 494), 'pandas_marc.MARCDataFrame', 'MARCDataFrame', (['dataframe'], {}), '(dataframe)\n', (483, 494), False, 'from pandas_marc import MARCDataFrame\n'), ((853, 903), 'pandas_marc.MARCDataFrame', 'MARCDataFrame', (['dataframe'], {'occurrence_delimiter': '"""|"""'}), "(dataframe, occurrence_delimiter='|')\n", (866, 903), False, 'from pandas_marc import MARCDataFrame\n'), ((1270, 1318), 'pandas_marc.MARCDataFrame', 'MARCDataFrame', (['dataframe'], {'subfield_delimiter': '"""‡"""'}), "(dataframe, subfield_delimiter='‡')\n", (1283, 1318), False, 'from pandas_marc import MARCDataFrame\n')]
import argparse from tangotest.tangotools import create_vnv_test if __name__ == '__main__': parser = argparse.ArgumentParser(description='Prepare tests for uploading to the V&V platform.') parser.add_argument('tests_path', help='The path to the directory with test files') parser.add_argument('ns_package_path', help='The path to the network service package') parser.add_argument('-t', '--test_package_path', help='The path to generated output folder') parser.add_argument('-p', '--probe_name', help='Probe name') args = parser.parse_args() create_vnv_test(**vars(args))
[ "argparse.ArgumentParser" ]
[((107, 199), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Prepare tests for uploading to the V&V platform."""'}), "(description=\n 'Prepare tests for uploading to the V&V platform.')\n", (130, 199), False, 'import argparse\n')]
# from scripts import tabledef # from scripts import forms # from scripts import helpers from flask import Flask, redirect, url_for, render_template, request, session import json import sys import os # import stripe import pandas as pd from werkzeug.utils import secure_filename from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import Ridge from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import CountVectorizer from tkinter import Tk from tkinter.filedialog import askopenfilename import numpy as np import pandas as pd import jieba import jieba.analyse import csv import ast import sys from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.pdfpage import PDFPage from pdfminer.converter import XMLConverter, HTMLConverter, TextConverter from pdfminer.layout import LAParams import io app = Flask(__name__) # app.secret_key = os.urandom(12) # Generic key for dev purposes only # stripe_keys = { # 'secret_key': os.environ['secret_key'], # 'publishable_key': os.environ['publishable_key'] # } # stripe.api_key = stripe_keys['secret_key'] # Heroku #from flask_heroku import Heroku #heroku = Heroku(app) # ======== Routing =========================================================== # # -------- Login ------------------------------------------------------------- # @app.route('/', methods=['GET', 'POST']) def login(): # creating a pdf file object basepath = os.path.dirname(__file__) file_path = os.path.join(basepath, 'uploads', 'sample.pdf') fp = open(file_path, 'rb') rsrcmgr = PDFResourceManager() retstr = io.StringIO() laparams = LAParams() device = TextConverter(rsrcmgr, retstr, laparams=laparams) # Create a PDF interpreter object. interpreter = PDFPageInterpreter(rsrcmgr, device) # Process each page contained in the document. for page in PDFPage.get_pages(fp): interpreter.process_page(page) data = retstr.getvalue() print(data) return render_template('home.html', user="manoj") # return text def getFile(): Tk().withdraw() filename = askopenfilename() Tk.close() return filename @app.route("/logout") def logout(): session['logged_in'] = False return redirect(url_for('login')) @app.route('/predict', methods=['GET', 'POST']) def upload(): if request.method == 'GET': # f = request.files['file'] basepath = os.path.dirname(__file__) # file_path = os.path.join( # basepath, 'uploads', secure_filename(f.filename)) # f.save(file_path) file_path = os.path.join(basepath, 'uploads', 'test-upload.csv') df = pd.read_csv(file_path) seg_list01 = df['job-description'] seg_list02 = df['your-resume'] item01_list = seg_list01 item01 = ','.join(item01_list) item02_list = seg_list02 item02 = ','.join(item02_list) documents = [item01, item02] count_vectorizer = CountVectorizer() sparse_matrix = count_vectorizer.fit_transform(documents) doc_term_matrix = sparse_matrix.todense() df = pd.DataFrame(doc_term_matrix, columns=count_vectorizer.get_feature_names(), index=['item01', 'item02']) df.to_csv(os.path.join(basepath, 'uploads', 'result.csv')) read_file = pd.read_csv(os.path.join(basepath, 'uploads', 'result.csv')) read_file.to_excel(os.path.join(basepath, 'uploads', 'result.xlsx'), index=None, header=True) answer = cosine_similarity(df, df) print("CSV Created Successfully") answer = pd.DataFrame(answer) answer = answer.iloc[[1], [0]].values[0] answer = round(float(answer), 4) * 100 return "Your resume matched " + str( answer) + " %" + " of the job-description!" return None # ======== Main ============================================================== # if __name__ == "__main__": app.run(debug=True, use_reloader=True)
[ "pandas.DataFrame", "io.StringIO", "tkinter.Tk.close", "sklearn.feature_extraction.text.CountVectorizer", "pdfminer.converter.TextConverter", "sklearn.metrics.pairwise.cosine_similarity", "pandas.read_csv", "os.path.dirname", "flask.Flask", "pdfminer.layout.LAParams", "tkinter.filedialog.askopenfilename", "flask.url_for", "flask.render_template", "pdfminer.pdfpage.PDFPage.get_pages", "pdfminer.pdfinterp.PDFResourceManager", "os.path.join", "tkinter.Tk", "pdfminer.pdfinterp.PDFPageInterpreter" ]
[((996, 1011), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (1001, 1011), False, 'from flask import Flask, redirect, url_for, render_template, request, session\n'), ((1581, 1606), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1596, 1606), False, 'import os\n'), ((1624, 1671), 'os.path.join', 'os.path.join', (['basepath', '"""uploads"""', '"""sample.pdf"""'], {}), "(basepath, 'uploads', 'sample.pdf')\n", (1636, 1671), False, 'import os\n'), ((1718, 1738), 'pdfminer.pdfinterp.PDFResourceManager', 'PDFResourceManager', ([], {}), '()\n', (1736, 1738), False, 'from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter\n'), ((1752, 1765), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1763, 1765), False, 'import io\n'), ((1781, 1791), 'pdfminer.layout.LAParams', 'LAParams', ([], {}), '()\n', (1789, 1791), False, 'from pdfminer.layout import LAParams\n'), ((1805, 1854), 'pdfminer.converter.TextConverter', 'TextConverter', (['rsrcmgr', 'retstr'], {'laparams': 'laparams'}), '(rsrcmgr, retstr, laparams=laparams)\n', (1818, 1854), False, 'from pdfminer.converter import XMLConverter, HTMLConverter, TextConverter\n'), ((1912, 1947), 'pdfminer.pdfinterp.PDFPageInterpreter', 'PDFPageInterpreter', (['rsrcmgr', 'device'], {}), '(rsrcmgr, device)\n', (1930, 1947), False, 'from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter\n'), ((2016, 2037), 'pdfminer.pdfpage.PDFPage.get_pages', 'PDFPage.get_pages', (['fp'], {}), '(fp)\n', (2033, 2037), False, 'from pdfminer.pdfpage import PDFPage\n'), ((2140, 2182), 'flask.render_template', 'render_template', (['"""home.html"""'], {'user': '"""manoj"""'}), "('home.html', user='manoj')\n", (2155, 2182), False, 'from flask import Flask, redirect, url_for, render_template, request, session\n'), ((2253, 2270), 'tkinter.filedialog.askopenfilename', 'askopenfilename', ([], {}), '()\n', (2268, 2270), False, 'from tkinter.filedialog import askopenfilename\n'), ((2275, 2285), 'tkinter.Tk.close', 'Tk.close', ([], {}), '()\n', (2283, 2285), False, 'from tkinter import Tk\n'), ((2397, 2413), 'flask.url_for', 'url_for', (['"""login"""'], {}), "('login')\n", (2404, 2413), False, 'from flask import Flask, redirect, url_for, render_template, request, session\n'), ((2567, 2592), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2582, 2592), False, 'import os\n'), ((2742, 2794), 'os.path.join', 'os.path.join', (['basepath', '"""uploads"""', '"""test-upload.csv"""'], {}), "(basepath, 'uploads', 'test-upload.csv')\n", (2754, 2794), False, 'import os\n'), ((2809, 2831), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {}), '(file_path)\n', (2820, 2831), True, 'import pandas as pd\n'), ((3127, 3144), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {}), '()\n', (3142, 3144), False, 'from sklearn.feature_extraction.text import CountVectorizer\n'), ((3801, 3826), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['df', 'df'], {}), '(df, df)\n', (3818, 3826), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((3887, 3907), 'pandas.DataFrame', 'pd.DataFrame', (['answer'], {}), '(answer)\n', (3899, 3907), True, 'import pandas as pd\n'), ((2222, 2226), 'tkinter.Tk', 'Tk', ([], {}), '()\n', (2224, 2226), False, 'from tkinter import Tk\n'), ((3451, 3498), 'os.path.join', 'os.path.join', (['basepath', '"""uploads"""', '"""result.csv"""'], {}), "(basepath, 'uploads', 'result.csv')\n", (3463, 3498), False, 'import os\n'), ((3533, 3580), 'os.path.join', 'os.path.join', (['basepath', '"""uploads"""', '"""result.csv"""'], {}), "(basepath, 'uploads', 'result.csv')\n", (3545, 3580), False, 'import os\n'), ((3654, 3702), 'os.path.join', 'os.path.join', (['basepath', '"""uploads"""', '"""result.xlsx"""'], {}), "(basepath, 'uploads', 'result.xlsx')\n", (3666, 3702), False, 'import os\n')]
from uuid import uuid4 def generate_player_data(event_name, rating): return { "id": str(uuid4()), "response-queue": "{}-response-queue".format(str(uuid4())), "event-name": event_name, "detail": { "rating": rating, "content": {} } }
[ "uuid.uuid4" ]
[((102, 109), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (107, 109), False, 'from uuid import uuid4\n'), ((169, 176), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (174, 176), False, 'from uuid import uuid4\n')]
"""Tests for the variant of MT2 by <NAME>.""" from typing import Optional, Union import numpy import pytest from .common import mt2_lester, mt2_tombs def test_simple_example(): computed_val = mt2_tombs(100, 410, 20, 150, -210, -300, -200, 280, 100, 100) assert computed_val == pytest.approx(412.628) def test_near_massless(): # This test is based on Fig 5 of https://arxiv.org/pdf/1411.4312.pdf m_vis_a = 0 px_a = -42.017340486 py_a = -146.365340528 m_vis_b = 0.087252259 px_b = -9.625614206 py_b = 145.757295514 px_miss = -16.692279406 py_miss = -14.730240471 chi_a = 0 chi_b = 0 computed_val = mt2_tombs( m_vis_a, px_a, py_a, m_vis_b, px_b, py_b, px_miss, py_miss, chi_a, chi_b ) assert computed_val == pytest.approx(0.09719971) def test_fuzz(): batch_size = 100 num_tests = 1000 numpy.random.seed(42) def _random_batch(min_, max_): return numpy.random.uniform(min_, max_, (batch_size,)) for _ in range(num_tests): m_vis_1 = _random_batch(0, 100) px_vis_1 = _random_batch(-100, 100) py_vis_1 = _random_batch(-100, 100) m_vis_2 = _random_batch(0, 100) px_vis_2 = _random_batch(-100, 100) py_vis_2 = _random_batch(-100, 100) px_miss = _random_batch(-100, 100) py_miss = _random_batch(-100, 100) m_invis_1 = _random_batch(0, 100) m_invis_2 = _random_batch(0, 100) args = ( m_vis_1, px_vis_1, py_vis_1, m_vis_2, px_vis_2, py_vis_2, px_miss, py_miss, m_invis_1, m_invis_2, ) result_lester = mt2_lester(*args) result_tombs = mt2_tombs(*args) numpy.testing.assert_allclose(result_lester, result_tombs, rtol=1e-12) def test_scale_invariance(): example_args = numpy.array((100, 410, 20, 150, -210, -300, -200, 280, 100, 100)) example_val = mt2_tombs(*example_args) # mt2 scales with its arguments; check over some orders of magnitude. for i in range(-100, 100, 10): scale = 10.0 ** i with numpy.errstate(over="ignore"): # Suppress overflow warnings when performing the evaluation; we're happy # so long as we match approximately in the test below. computed_val = mt2_tombs(*(example_args * scale)) assert computed_val == pytest.approx(example_val * scale) def test_negative_masses(): # Any negative mass is unphysical. # These arguments use negative masses to make both initial bounds negative. # Check that the result is neither positive nor an infinite loop. computed_val = mt2_tombs(1, 2, 3, 4, 5, 6, 7, 8, -90, -100) assert not (computed_val > 0)
[ "numpy.random.uniform", "numpy.random.seed", "numpy.errstate", "numpy.array", "numpy.testing.assert_allclose", "pytest.approx" ]
[((880, 901), 'numpy.random.seed', 'numpy.random.seed', (['(42)'], {}), '(42)\n', (897, 901), False, 'import numpy\n'), ((1918, 1983), 'numpy.array', 'numpy.array', (['(100, 410, 20, 150, -210, -300, -200, 280, 100, 100)'], {}), '((100, 410, 20, 150, -210, -300, -200, 280, 100, 100))\n', (1929, 1983), False, 'import numpy\n'), ((290, 312), 'pytest.approx', 'pytest.approx', (['(412.628)'], {}), '(412.628)\n', (303, 312), False, 'import pytest\n'), ((788, 813), 'pytest.approx', 'pytest.approx', (['(0.09719971)'], {}), '(0.09719971)\n', (801, 813), False, 'import pytest\n'), ((953, 1000), 'numpy.random.uniform', 'numpy.random.uniform', (['min_', 'max_', '(batch_size,)'], {}), '(min_, max_, (batch_size,))\n', (973, 1000), False, 'import numpy\n'), ((1797, 1867), 'numpy.testing.assert_allclose', 'numpy.testing.assert_allclose', (['result_lester', 'result_tombs'], {'rtol': '(1e-12)'}), '(result_lester, result_tombs, rtol=1e-12)\n', (1826, 1867), False, 'import numpy\n'), ((2176, 2205), 'numpy.errstate', 'numpy.errstate', ([], {'over': '"""ignore"""'}), "(over='ignore')\n", (2190, 2205), False, 'import numpy\n'), ((2452, 2486), 'pytest.approx', 'pytest.approx', (['(example_val * scale)'], {}), '(example_val * scale)\n', (2465, 2486), False, 'import pytest\n')]
from datetime import datetime pessoa = dict() anohoje = datetime.now().year pessoa['nome'] = str(input('Informe o nome: ')).strip().title() nasc = int(input('Informe o ano de nascimento: ')) pessoa['idade'] = anohoje - nasc pessoa['ctps'] = int(input('Informe a CTPS (0 se não tiver): ')) if pessoa['ctps'] != 0: pessoa['contratacao'] = int(input('Informe o ano de contratação: ')) pessoa['salario'] = float(input('Informe o salário: ')) faltam = 35 - (anohoje - pessoa['contratacao']) pessoa['aposentar'] = pessoa['idade'] + faltam print('-='*15) for k, v in pessoa.items(): print(f' - {k} tem o valor {v}')
[ "datetime.datetime.now" ]
[((58, 72), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (70, 72), False, 'from datetime import datetime\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # dicomgui.py """Main app file that convert DICOM data via a wxPython GUI dialog.""" # Copyright (c) 2018-2020 <NAME> # Copyright (c) 2009-2017 <NAME> # Copyright (c) 2009 <NAME> # This file is part of dicompyler, released under a BSD license. # See the file license.txt included with this distribution, also # available at https://github.com/bastula/dicompyler/ # # It's assumed that the reference (prescription) dose is in cGy. import hashlib, os, threading, functools, json, warnings from logging import getLogger, DEBUG, INFO logger = getLogger('DcmConverter') import wx warnings.filterwarnings("ignore", category=wx.wxPyDeprecationWarning) from wx.xrc import * import numpy as np from dicompylercore import dicomparser from pyDcmConverter import guiutil, util class DcmConverterApp(wx.App): """Prepare to show the dialog that will Import DICOM and DICOM RT files.""" def OnInit(self): wx.GetApp().SetAppName("DicomConverter") # Load the XRC file for our gui resources self.res = XmlResource(util.GetResourcePath('dicomgui.xrc')) dlgDicomImporter = self.res.LoadDialog(None, "DicomImporterDialog") dlgDicomImporter.Init(self.res) # Show the dialog and return the result ret = dlgDicomImporter.ShowModal() # Save configure conf = {} with open('.dcmconverter.conf', 'w') as f: conf['path'] = dlgDicomImporter.path conf['only_export_voldata'] = dlgDicomImporter.only_export_voldata conf['min_slice_num'] = dlgDicomImporter.min_slice_num conf['offset'] = dlgDicomImporter.offset conf['export_mori_format'] = dlgDicomImporter.export_mori_format conf['export_nii_format'] = dlgDicomImporter.export_nii_format conf['output_dir'] = dlgDicomImporter.output_dir conf['output_name'] = dlgDicomImporter.output_name json.dump(conf, f, indent=2, sort_keys=True) # Block until the thread is done before destroying the dialog if dlgDicomImporter: if hasattr(dlgDicomImporter, 't'): dlgDicomImporter.t.join() dlgDicomImporter.Destroy() os.sys.exit(0) return 1 class DicomImporterDialog(wx.Dialog): """Import DICOM RT files and return a dictionary of data.""" def __init__(self): wx.Dialog.__init__(self) def Init(self, res): """Method called after the panel has been initialized.""" # Set window icon if not guiutil.IsMac(): self.SetIcon(guiutil.get_icon()) # Initialize controls self.txtDicomImport = XRCCTRL(self, 'txtDicomImport') self.btnDicomImport = XRCCTRL(self, 'btnDicomImport') self.btnPause = XRCCTRL(self, 'btn_pause') self.checkSearchSubfolders = XRCCTRL(self, 'checkSearchSubfolders') self.lblProgressLabel = XRCCTRL(self, 'lblProgressLabel') self.lblProgress = XRCCTRL(self, 'lblProgress') self.gaugeProgress = XRCCTRL(self, 'gaugeProgress') self.lblProgressPercent = XRCCTRL(self, 'lblProgressPercent') self.lblProgressPercentSym = XRCCTRL(self, 'lblProgressPercentSym') self.tcPatients = XRCCTRL(self, 'tcPatients') self.bmpRxDose = XRCCTRL(self, 'bmpRxDose') self.lblRxDose = XRCCTRL(self, 'lblRxDose') self.txtRxDose = XRCCTRL(self, 'txtRxDose') self.lblRxDoseUnits = XRCCTRL(self, 'lblRxDoseUnits') # Bind interface events to the proper methods self.Bind(wx.EVT_BUTTON, self.OnBrowseDicomImport, id=XRCID('btnDicomImport')) self.Bind(wx.EVT_CHECKBOX, self.OnCheckSearchSubfolders, id=XRCID('checkSearchSubfolders')) self.Bind(wx.EVT_TREE_SEL_CHANGED, self.OnSelectTreeItem, id=XRCID('tcPatients')) #self.Bind(wx.EVT_TREE_ITEM_ACTIVATED, self.OnOK, id=XRCID('tcPatients')) #added by CL.Wang self.Bind(wx.EVT_CHECKBOX, self.OnCheckVolFlag, id=XRCID('check_volume')) self.Bind(wx.EVT_SPINCTRL, self.OnSpinSliceNum, id=XRCID('spin_minslices')) self.Bind(wx.EVT_SPINCTRL, self.OnSpinOffset, id=XRCID('spin_offset')) self.Bind(wx.EVT_CHECKBOX, self.OnCheckMoriFormat, id=XRCID('check_mori')) self.Bind(wx.EVT_CHECKBOX, self.OnCheckNiftiFormat, id=XRCID('check_nifti')) self.Bind(wx.EVT_DIRPICKER_CHANGED, self.OnPickOutdir, id=XRCID('picker_output')) self.Bind(wx.EVT_TEXT, self.OnInputName, id=XRCID('text_output_name')) self.Bind(wx.EVT_BUTTON, self.OnConvert, id=XRCID('btn_convert')) self.Bind(wx.EVT_BUTTON, self.OnPause, id=XRCID('btn_pause')) self.Bind(wx.EVT_BUTTON, self.OnRescan, id=XRCID('btn_rescan')) # Init variables if os.path.isfile('.dcmconverter.conf'): logger.info('Loading previous configuration...') with open('.dcmconverter.conf', 'r') as f: conf = json.load(f) self.path = conf['path'] self.txtDicomImport.SetValue(self.path) self.only_export_voldata = conf['only_export_voldata'] XRCCTRL(self, 'check_mori').SetValue(self.only_export_voldata) self.min_slice_num = conf['min_slice_num'] XRCCTRL(self, 'spin_minslices').SetValue(self.min_slice_num) self.offset = conf['offset'] XRCCTRL(self, 'spin_offset').SetValue(self.offset) self.export_mori_format = conf['export_mori_format'] XRCCTRL(self, 'check_mori').SetValue(self.export_mori_format) self.export_nii_format = conf['export_nii_format'] XRCCTRL(self, 'check_nifti').SetValue(self.export_nii_format) self.output_dir = conf['output_dir'] XRCCTRL(self, 'picker_output').SetPath(self.output_dir) self.output_name = conf['output_name'] XRCCTRL(self, 'text_output_name').SetValue(self.output_name) else: self.path = os.path.expanduser('~') self.only_export_voldata = XRCCTRL(self, 'check_volume').IsChecked() self.min_slice_num = int(XRCCTRL(self, 'spin_minslices').GetValue()) self.offset = int(XRCCTRL(self, 'spin_offset').GetValue()) self.export_mori_format = XRCCTRL(self, 'check_mori').IsChecked() self.export_nii_format = XRCCTRL(self, 'check_nifti').IsChecked() self.output_dir = '' self.output_name = '' # Set the dialog font and bold the font of the directions label font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) if guiutil.IsMac(): self.txtDicomImport.SetFont(font) self.btnDicomImport.SetFont(font) self.checkSearchSubfolders.SetFont(font) self.lblProgressLabel.SetFont(font) self.lblProgress.SetFont(font) self.lblProgressPercent.SetFont(font) self.lblProgressPercentSym.SetFont(font) self.tcPatients.SetFont(font) self.txtRxDose.SetFont(font) self.lblRxDoseUnits.SetFont(font) font.SetWeight(wx.FONTWEIGHT_BOLD) self.lblRxDose.SetFont(font) # Initialize the patients tree control self.root = self.InitTree() # Initialize the patients dictionary self.patients = {} # Search subfolders by default self.import_search_subfolders = True # Set the threading termination status to false intially self.terminate = False # Hide the progress bar until it needs to be shown self.gaugeProgress.Show(False) self.lblProgressPercent.Show(False) self.lblProgressPercentSym.Show(False) # Start the directory search as soon as the panel loads #self.OnDirectorySearch() def OnRescan(self, evt): self.OnDirectorySearch() def OnPause(self, evt): self.terminate = True def OnSpinOffset(self, evt): self.offset = evt.GetPosition() def OnCheckVolFlag(self, evt): self.only_export_voldata = evt.IsChecked() try: self.Check_Export_Files() except: logger.info('Adjusted parameters befor the tree generated.') def OnSpinSliceNum(self, evt): self.min_slice_num = evt.GetPosition() try: self.Check_Export_Files() except: logger.info('Adjusted parameters befor the tree generated.') def OnCheckMoriFormat(self, evt): self.export_mori_format = evt.IsChecked() def OnCheckNiftiFormat(self, evt): self.export_nii_format = evt.IsChecked() def OnPickOutdir(self, evt): self.output_dir = evt.GetPath() def OnInputName(self, evt): self.output_name = evt.GetString() def AlertDialog(self, msg): dialog = wx.MessageDialog(self, msg, 'Error', style=wx.OK) dialog.ShowModal() dialog.Destroy() def ChoiceDialog(self, msg): dialog = wx.MessageDialog(self, msg, 'Warning', style=wx.OK_DEFAULT|wx.CANCEL) self.contiune_export = dialog.ShowModal() dialog.Destroy() def __GetNiftiAffineMatrix__(self, dp): di = float(dp.ds.PixelSpacing[0]) dj = float(dp.ds.PixelSpacing[1]) orientation = dp.ds.ImageOrientationPatient dk = float(dp.ds.SliceThickness) m = np.array( [[float(orientation[0])*di, float(orientation[3])*dj, 0, 0], [float(orientation[1])*di, float(orientation[4])*dj, 0, 0], [float(orientation[2])*di, float(orientation[5])*dj, dk, 0], [0, 0, 0, 1]], dtype=np.float) return m def ExportFunc(self, out_basepath, patient_data, progressFunc=None): if patient_data is None: return # Existence check if self.export_mori_format: out_dir = os.path.join(os.path.dirname(out_basepath), 'LabFormat') if not os.path.isdir(out_dir): os.makedirs(out_dir) mori_fname = os.path.join(out_dir, os.path.basename(out_basepath)) if os.path.isfile(mori_fname+'.raw.gz'): self.ChoiceDialog('File existed! Continue?') if self.contiune_export != wx.ID_OK: return if self.export_nii_format: out_dir = os.path.join(os.path.dirname(out_basepath), 'NiftiFormat') if not os.path.isdir(out_dir): os.makedirs(out_dir) nii_fname = os.path.join(out_dir, os.path.basename(out_basepath)+'.nii.gz') if os.path.isfile(nii_fname): self.ChoiceDialog('File existed! Continue?') if self.contiune_export != wx.ID_OK: return dp = dicomparser.DicomParser(patient_data['images'][0]) reso = [ float(dp.ds.PixelSpacing[0]), float(dp.ds.PixelSpacing[1]), float(dp.ds.SliceThickness)] affine = self.__GetNiftiAffineMatrix__(dp) conv_kernel, hospital, kvp, model_name = dp.ds.ConvolutionKernel, dp.ds.InstitutionName, dp.ds.KVP, dp.ds.ManufacturerModelName img_ori, pat_ori, pat_pos = np.array(dp.ds.ImageOrientationPatient), dp.ds.PatientOrientation, dp.ds.PatientPosition study_date, serise_date, acq_date = dp.ds.StudyDate, dp.ds.SeriesDate, dp.ds.AcquisitionDate if (dp.ds.SamplesPerPixel > 1) or (dp.ds.PhotometricInterpretation == 'RGB'): logger.info('Cannot handle color image!') return if dp.ds.BitsAllocated == 16: image_array = np.zeros([dp.ds.Rows, dp.ds.Columns, len(patient_data['images'])]).astype(np.int16) elif dp.ds.BitsAllocated == 32: image_array = np.zeros([dp.ds.Rows, dp.ds.Columns, len(patient_data['images'])]).astype(np.int32) elif dp.ds.BitsAllocated == 8: image_array = np.zeros([dp.ds.Rows, dp.ds.Columns, len(patient_data['images'])]).astype(np.int8) else: image_array = np.zeros([dp.ds.Rows, dp.ds.Columns, len(patient_data['images'])]) pos = [] for i, img in enumerate(patient_data['images']): dp = dicomparser.DicomParser(img) intercept, slope = dp.GetRescaleInterceptSlope() pos.append(dp.ds.ImagePositionPatient[2]) pixel_array = dp.ds.pixel_array rescaled_image = pixel_array * slope + intercept + self.offset image_array[:,:,i] = rescaled_image wx.CallAfter(progressFunc, (i+image_array.shape[-1])//2, image_array.shape[-1]+1, 'Creating image array...') image_array = np.transpose(image_array, (1,0,2)) if self.export_mori_format: from utils_cw import write_mori, get_mori_header_fields logger.info('Exporting image to %s', mori_fname) header_name = write_mori(image_array, reso, mori_fname, True) with open(header_name, 'r') as f: origin_header_lines = f.read().splitlines() with open(header_name, 'w') as f: for field in origin_header_lines: # \r\n if 'Thickness' in field: f.write('{} {:.6f}\r'.format(field,reso[2])) elif 'ImagePositionBegin' in field: f.write('{} {:.6f}\r'.format(field,np.min(pos))) elif 'ImagePositionEnd' in field: f.write('{} {:.6f}\r'.format(field,np.max(pos))) elif 'Hospital' in field: f.write('{} {}\r'.format(field,hospital)) elif 'KVP' in field: f.write('{} {}\r'.format(field,kvp)) elif 'KernelFunction' in field: f.write('{} {}\r'.format(field,conv_kernel)) elif 'ModelName' in field: f.write('{} {}\r'.format(field,model_name)) elif 'PatientPosition' in field: f.write('{} {}\r'.format(field,pat_pos)) elif 'PatientOrientation' in field: f.write('{} {}\r'.format(field,pat_ori)) elif 'ImageOrientation' in field: f.write('{} {}\r'.format(field,img_ori.tolist())) elif 'StudyDate' in field: f.write('{} {}\r'.format(field,study_date)) elif 'SeriesDate' in field: f.write('{} {}\r'.format(field,serise_date)) elif 'AcquisitionDate' in field: f.write('{} {}\r'.format(field,acq_date)) elif 'Orientation' in field: f.write('{} {}\r'.format(field,'LPF')) elif '' == field: pass else: f.write('{} \r'.format(field)) wx.CallAfter(progressFunc, 97, 100, 'Export RAW image completed') if self.export_nii_format: import nibabel as nib logger.info('Exporting image to %s', nii_fname) nib.save(nib.Nifti1Image(image_array, affine=affine), nii_fname) wx.CallAfter(progressFunc, 98, 100, 'Export Nifti image completed') def OnConvert(self, evt): if not self.selected_exports: self.AlertDialog('No Dicom series have been selected!') return if not self.output_dir: self.AlertDialog('Please enter valid output dir!') return if not self.output_name: self.AlertDialog('Please enter valid output file name!') return if not os.path.isdir(self.output_dir): logger.info("Output dir not exists! Create new dir [%s]", self.output_dir) os.makedirs(self.output_dir) all_export_threads = [] for export in self.selected_exports: info = self.tcPatients.GetItemData(export) filearray, series_no = info['filearray'], info['info']['series_number'] basename = os.path.join(self.output_dir, self.output_name+'-'+str(series_no)+'.512') all_export_threads.append(threading.Thread(target=self.ExportPatientData, args=(self.path, filearray, self.txtRxDose.GetValue(), self.SetThreadStatus, self.OnUpdateProgress, functools.partial(self.ExportFunc, out_basepath=basename)))) [th.start() for th in all_export_threads] #[th.join() for th in all_export_threads] # wait all threads #self.AlertDialog('All exports finished!') def OnCheckSearchSubfolders(self, evt): """Determine whether to search subfolders for DICOM data.""" self.import_search_subfolders = evt.IsChecked() self.terminate = True self.OnDirectorySearch() def OnBrowseDicomImport(self, evt): """Get the directory selected by the user.""" self.terminate = True dlg = wx.DirDialog( self, defaultPath = self.path, message="Choose a directory containing DICOM RT files...") if dlg.ShowModal() == wx.ID_OK: self.path = dlg.GetPath() self.txtDicomImport.SetValue(self.path) dlg.Destroy() #self.OnDirectorySearch() def OnDirectorySearch(self): """Begin directory search.""" self.patients = {} self.tcPatients.DeleteChildren(self.root) self.terminate = False self.gaugeProgress.Show(True) self.lblProgressPercent.Show(True) self.lblProgressPercentSym.Show(True) #self.btnSelect.Enable(False) # Disable Rx dose controls except on GTK due to control placement oddities if not guiutil.IsGtk(): self.EnableRxDose(False) # If a previous search thread exists, block until it is done before # starting a new thread if (hasattr(self, 't')): self.t.join() del self.t self.t=threading.Thread(target=self.DirectorySearchThread, args=(self, self.path, self.import_search_subfolders, self.SetThreadStatus, self.OnUpdateProgress, self.AddPatientTree, self.AddPatientDataTree)) self.t.start() def SetThreadStatus(self): """Tell the directory search thread whether to terminate or not.""" return self.terminate def DirectorySearchThread(self, parent, path, subfolders, terminate, progressFunc, foundFunc, resultFunc): """Thread to start the directory search.""" # Call the progress function to update the gui wx.CallAfter(progressFunc, 0, 0, 'Searching for patients...') patients = {} # Check if the path is valid if os.path.isdir(path): files = [] for root, dirs, filenames in os.walk(path): files += map(lambda f:os.path.join(root, f), filenames) if (self.import_search_subfolders == False): break for n in range(len(files)): # terminate the thread if the value has changed # during the loop duration if terminate(): wx.CallAfter(progressFunc, 0, 0, 'Search terminated.') return if (os.path.isfile(files[n])): try: logger.debug("Reading: %s", files[n]) dp = dicomparser.DicomParser(files[n]) except (AttributeError, EOFError, IOError, KeyError): pass logger.info("%s is not a valid DICOM file.", files[n]) else: patient = dp.GetDemographics() h = hashlib.sha1(patient['id'].encode('utf-8')).hexdigest() if not h in patients: patients[h] = {} patients[h]['demographics'] = patient if not 'studies' in patients[h]: patients[h]['studies'] = {} patients[h]['series'] = {} wx.CallAfter(foundFunc, patient) # Create each Study but don't create one for RT Dose # since some vendors use incorrect StudyInstanceUIDs if not (dp.GetSOPClassUID() == 'rtdose'): stinfo = dp.GetStudyInfo() if not stinfo['id'] in patients[h]['studies']: patients[h]['studies'][stinfo['id']] = stinfo # Create each Series of images if (('ImageOrientationPatient' in dp.ds) and \ not (dp.GetSOPClassUID() == 'rtdose')): seinfo = dp.GetSeriesInfo() try: seinfo['series_number'] = dp.ds.SeriesNumber #added by CL.Wang seinfo['KVP'] = dp.ds.KVP seinfo['PatientPosition'] = dp.ds.PatientPosition seinfo['ModelName'] = dp.ds.ManufacturerModelName seinfo['PixelSpacing'] = dp.ds.PixelSpacing seinfo['Orientation'] = dp.ds.ImageOrientationPatient except: logger.error('Get dcm info error!') seinfo['numimages'] = 0 seinfo['modality'] = dp.ds.SOPClassUID.name if not seinfo['id'] in patients[h]['series']: patients[h]['series'][seinfo['id']] = seinfo if not 'images' in patients[h]: patients[h]['images'] = {} image = {} image['id'] = dp.GetSOPInstanceUID() image['filename'] = files[n] image['series'] = seinfo['id'] image['referenceframe'] = dp.GetFrameOfReferenceUID() patients[h]['series'][seinfo['id']]['numimages'] = \ patients[h]['series'][seinfo['id']]['numimages'] + 1 patients[h]['images'][image['id']] = image # Create each RT Structure Set elif dp.ds.Modality in ['RTSTRUCT']: if not 'structures' in patients[h]: patients[h]['structures'] = {} structure = dp.GetStructureInfo() structure['id'] = dp.GetSOPInstanceUID() structure['filename'] = files[n] structure['series'] = dp.GetReferencedSeries() structure['referenceframe'] = dp.GetFrameOfReferenceUID() patients[h]['structures'][structure['id']] = structure # Create each RT Plan elif dp.ds.Modality in ['RTPLAN']: if not 'plans' in patients[h]: patients[h]['plans'] = {} plan = dp.GetPlan() plan['id'] = dp.GetSOPInstanceUID() plan['filename'] = files[n] plan['series'] = dp.ds.SeriesInstanceUID plan['referenceframe'] = dp.GetFrameOfReferenceUID() plan['beams'] = dp.GetReferencedBeamsInFraction() plan['rtss'] = dp.GetReferencedStructureSet() patients[h]['plans'][plan['id']] = plan # Create each RT Dose elif dp.ds.Modality in ['RTDOSE']: if not 'doses' in patients[h]: patients[h]['doses'] = {} dose = {} dose['id'] = dp.GetSOPInstanceUID() dose['filename'] = files[n] dose['referenceframe'] = dp.GetFrameOfReferenceUID() dose['hasdvh'] = dp.HasDVHs() dose['hasgrid'] = "PixelData" in dp.ds dose['summationtype'] = dp.ds.DoseSummationType dose['beam'] = dp.GetReferencedBeamNumber() dose['rtss'] = dp.GetReferencedStructureSet() dose['rtplan'] = dp.GetReferencedRTPlan() patients[h]['doses'][dose['id']] = dose # Otherwise it is a currently unsupported file else: logger.info("%s is a %s file and is not " + \ "currently supported.", files[n], dp.ds.SOPClassUID.name) # Call the progress function to update the gui wx.CallAfter(progressFunc, n, len(files), 'Searching for patients...') if (len(patients) == 0): progressStr = 'Found 0 patients.' elif (len(patients) == 1): progressStr = 'Found 1 patient. Reading DICOM data...' elif (len(patients) > 1): progressStr = 'Found ' + str(len(patients)) + ' patients. Reading DICOM data...' wx.CallAfter(progressFunc, 0, 1, progressStr) wx.CallAfter(resultFunc, patients) # if the path is not valid, display an error message else: wx.CallAfter(progressFunc, 0, 0, 'Select a valid location.') dlg = wx.MessageDialog( parent, "The DICOM import location does not exist. Please select a valid location.", "Invalid DICOM Import Location", wx.OK|wx.ICON_ERROR) dlg.ShowModal() def OnUpdateProgress(self, num, length, message): """Update the DICOM Import process interface elements.""" if not length: percentDone = 0 else: percentDone = int(100 * (num+1) / length) self.gaugeProgress.SetValue(percentDone) self.lblProgressPercent.SetLabel(str(percentDone)) self.lblProgress.SetLabel(message) if not (percentDone == 100): self.gaugeProgress.Show(True) self.lblProgressPercent.Show(True) self.lblProgressPercentSym.Show(True) else: self.gaugeProgress.Show(False) self.lblProgressPercent.Show(False) self.lblProgressPercentSym.Show(False) # End the dialog since we are done with the import process if (message == 'Importing patient complete.'): self.EndModal(wx.ID_OK) elif (message == 'Importing patient cancelled.'): self.EndModal(wx.ID_CANCEL) def InitTree(self): """Initialize the tree control for use.""" iSize = (16,16) iList = wx.ImageList(iSize[0], iSize[1]) iList.Add( wx.Bitmap( util.GetResourcePath('group.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('user.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('book.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('table_multiple.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('pencil.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('chart_bar.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('chart_curve.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('pencil_error.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('chart_bar_error.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('chart_curve_error.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('table_selected.png'), wx.BITMAP_TYPE_PNG)) self.tcPatients.AssignImageList(iList) root = self.tcPatients.AddRoot('Patients', image=0) return root def AddPatientTree(self, patient): """Add a new patient to the tree control.""" # Create a hash for each patient h = hashlib.sha1(patient['id'].encode('utf-8')).hexdigest() # Add the patient to the tree if they don't already exist if not h in self.patients: self.patients[h] = {} self.patients[h]['demographics'] = patient name = str(patient['name']) + ' (' + patient['id'] + ')' self.patients[h]['treeid'] = \ self.tcPatients.AppendItem(self.root, name, 1) self.tcPatients.SortChildren(self.root) self.tcPatients.ExpandAll() def AddPatientDataTree(self, patients): """Add the patient data to the tree control.""" # Now add the specific item to the tree for key, patient in self.patients.items(): patient.update(patients[key]) if 'studies' in patient: for studyid, study in patient['studies'].items(): name = 'Study: ' + study['description'] study['treeid'] = self.tcPatients.AppendItem(patient['treeid'], name, 2) # Search for series and images if 'series' in patient: for seriesid, series in patient['series'].items(): if 'studies' in patient: for studyid, study in patient['studies'].items(): if (studyid == series['study']): modality = series['modality'].partition(' Image Storage')[0] name = 'Series {}: {}. ({}, {} {})'.format(series['series_number'], series['description'], modality, series['numimages'], 'image' if series['numimages']==1 else 'images') #name = 'Series: ' + series['description'] + ' (' + modality + ', ' #numimages = str(series['numimages']) + ' image)' if (series['numimages'] == 1) else str(series['numimages']) + ' images)' #name = name + numimages series['treeid'] = self.tcPatients.AppendItem(study['treeid'], name, 3) self.EnableItemSelection(patient, series, []) # Search for RT Structure Sets if 'structures' in patient: for structureid, structure in patient['structures'].items(): if 'series' in patient: foundseries = False name = 'RT Structure Set: ' + structure['label'] for seriesid, series in patient['series'].items(): foundseries = False if (seriesid == structure['series']): structure['treeid'] = self.tcPatients.AppendItem(series['treeid'], name, 4) foundseries = True # If no series were found, add the rtss to the study if not foundseries: structure['treeid'] = self.tcPatients.AppendItem(study['treeid'], name, 4) filearray = [structure['filename']] self.EnableItemSelection(patient, structure, filearray) # Search for RT Plans if 'plans' in patient: for planid, plan in patient['plans'].items(): foundstructure = False planname = ' (' + plan['name'] + ')' if len(plan['name']) else "" rxdose = plan['rxdose'] if plan['rxdose'] > 0 else "Unknown" name = 'RT Plan: ' + plan['label'] + planname + \ ' - Dose: ' + str(rxdose) + ' cGy' if 'structures' in patient: for structureid, structure in patient['structures'].items(): foundstructure = False if (structureid == plan['rtss']): plan['treeid'] = self.tcPatients.AppendItem(structure['treeid'], name, 5) foundstructure = True # If no structures were found, add the plan to the study/series instead if not foundstructure: # If there is an image series, add a fake rtss to it foundseries = False for seriesid, series in patient['series'].items(): foundseries = False if (series['referenceframe'] == plan['referenceframe']): badstructure = self.tcPatients.AppendItem( series['treeid'], "RT Structure Set not found", 7) foundseries = True # If no series were found, add the rtss to the study if not foundseries: badstructure = self.tcPatients.AppendItem( patient['treeid'], "RT Structure Set not found", 7) plan['treeid'] = self.tcPatients.AppendItem(badstructure, name, 5) self.tcPatients.SetItemTextColour(badstructure, wx.RED) filearray = [plan['filename']] self.EnableItemSelection(patient, plan, filearray, plan['rxdose']) # Search for RT Doses if 'doses' in patient: for doseid, dose in patient['doses'].items(): foundplan = False if 'plans' in patient: for planid, plan in patient['plans'].items(): foundplan = False if (planid == dose['rtplan']): foundplan = True rxdose = None if dose['hasgrid']: if dose['hasdvh']: name = 'RT Dose with DVH' else: name = 'RT Dose without DVH' else: if dose['hasdvh']: name = 'RT Dose without Dose Grid (DVH only)' else: name = 'RT Dose without Dose Grid or DVH' if (dose['summationtype'] == "BEAM"): name += " (Beam " + str(dose['beam']) + ": " if dose['beam'] in plan['beams']: b = plan['beams'][dose['beam']] name += b['name'] if len(b['description']): name += " - " + b['description'] name += ")" if "dose" in b: name += " - Dose: " + str(int(b['dose'])) + " cGy" rxdose = int(b['dose']) dose['treeid'] = self.tcPatients.AppendItem(plan['treeid'], name, 6) filearray = [dose['filename']] self.EnableItemSelection(patient, dose, filearray, rxdose) # If no plans were found, add the dose to the structure/study instead if not foundplan: if dose['hasgrid']: if dose['hasdvh']: name = 'RT Dose with DVH' else: name = 'RT Dose without DVH' else: if dose['hasdvh']: name = 'RT Dose without Dose Grid (DVH only)' else: name = 'RT Dose without Dose Grid or DVH' foundstructure = False if 'structures' in patient: for structureid, structure in patient['structures'].items(): foundstructure = False if 'rtss' in dose: if (structureid == dose['rtss']): foundstructure = True if (structure['referenceframe'] == dose['referenceframe']): foundstructure = True if foundstructure: badplan = self.tcPatients.AppendItem( structure['treeid'], "RT Plan not found", 8) dose['treeid'] = self.tcPatients.AppendItem(badplan, name, 6) self.tcPatients.SetItemTextColour(badplan, wx.RED) filearray = [dose['filename']] self.EnableItemSelection(patient, dose, filearray) if not foundstructure: # If there is an image series, add a fake rtss to it foundseries = False for seriesid, series in patient['series'].items(): foundseries = False if (series['referenceframe'] == dose['referenceframe']): badstructure = self.tcPatients.AppendItem( series['treeid'], "RT Structure Set not found", 7) foundseries = True # If no series were found, add the rtss to the study if not foundseries: badstructure = self.tcPatients.AppendItem( patient['treeid'], "RT Structure Set not found", 7) self.tcPatients.SetItemTextColour(badstructure, wx.RED) badplan = self.tcPatients.AppendItem( badstructure, "RT Plan not found", 8) dose['treeid'] = self.tcPatients.AppendItem(badplan, name, 5) self.tcPatients.SetItemTextColour(badplan, wx.RED) filearray = [dose['filename']] self.EnableItemSelection(patient, dose, filearray) # No RT Dose files were found else: if 'structures' in patient: for structureid, structure in patient['structures'].items(): if 'plans' in patient: for planid, plan in patient['plans'].items(): name = 'RT Dose not found' baddose = self.tcPatients.AppendItem(plan['treeid'], name, 9) self.tcPatients.SetItemTextColour(baddose, wx.RED) # No RT Plan nor RT Dose files were found else: name = 'RT Plan not found' badplan = self.tcPatients.AppendItem(structure['treeid'], name, 8) self.tcPatients.SetItemTextColour(badplan, wx.RED) name = 'RT Dose not found' baddose = self.tcPatients.AppendItem(badplan, name, 9) self.tcPatients.SetItemTextColour(baddose, wx.RED) #self.btnSelect.SetFocus() self.tcPatients.ExpandAll() self.lblProgress.SetLabel( str(self.lblProgress.GetLabel()).replace(' Reading DICOM data...', '')) #Added by CL.Wang self.Check_Export_Files() def Check_Export_Files(self): def select(child, flag): if flag: self.tcPatients.SetItemImage(child, 10) self.selected_exports.append(child) else: self.tcPatients.SetItemImage(child, 3) def minslice_check(child): info = self.tcPatients.GetItemData(child)['info'] return int(info['numimages'])>self.min_slice_num self.selected_exports = [] first_patient = self.tcPatients.GetFirstChild(self.tcPatients.RootItem)[0] first_study = self.tcPatients.GetFirstChild(first_patient)[0] child, cookie = self.tcPatients.GetFirstChild(first_study) while child.IsOk(): if self.only_export_voldata: title = self.tcPatients.GetItemText(child) flag = 'vol' in title.lower() and minslice_check(child) select(child, flag) else: select(child, minslice_check(child)) child, cookie = self.tcPatients.GetNextChild(child, cookie) logger.info('%d files selected!', len(self.selected_exports)) def EnableItemSelection(self, patient, item, filearray = [], rxdose = None): """Enable an item to be selected in the tree control.""" # Add the respective images to the filearray if they exist if 'images' in patient: for imageid, image in patient['images'].items(): appendImage = False # used for image series if 'id' in item: if (item['id'] == image['series']): appendImage = True # used for RT structure set if 'series' in item: if (item['series'] == image['series']): appendImage = True # used for RT plan / dose if 'referenceframe' in item: if (item['referenceframe'] == image['referenceframe']): if not 'numimages' in item: appendImage = True if appendImage: filearray.append(image['filename']) # Add the respective rtss files to the filearray if they exist if 'structures' in patient: for structureid, structure in patient['structures'].items(): if 'rtss' in item: if (structureid == item['rtss']): filearray.append(structure['filename']) break elif (structure['referenceframe'] == item['referenceframe']): filearray.append(structure['filename']) break # If no referenced rtss, but ref'd rtplan, check rtplan->rtss if 'rtplan' in item: if 'plans' in patient: for planid, plan in patient['plans'].items(): if (planid == item['rtplan']): if 'rtss' in plan: if (structureid == plan['rtss']): filearray.append(structure['filename']) # Add the respective rtplan files to the filearray if they exist if 'plans' in patient: for planid, plan in patient['plans'].items(): if 'rtplan' in item: if (planid == item['rtplan']): filearray.append(plan['filename']) if not rxdose: self.tcPatients.SetItemData(item['treeid'], {'filearray':filearray, 'info':item}) else: self.tcPatients.SetItemData(item['treeid'], {'filearray':filearray, 'info':item, 'rxdose':rxdose}) self.tcPatients.SetItemBold(item['treeid'], True) self.tcPatients.SelectItem(item['treeid']) def OnSelectTreeItem(self, evt): """Update the interface when the selected item has changed.""" item = evt.GetItem() # Disable the rx dose message and select button by default self.EnableRxDose(False) #self.btnSelect.Enable(False) # If the item has data, check to see whether there is an rxdose if not (self.tcPatients.GetItemData(item) == None): data = self.tcPatients.GetItemData(item) #self.btnSelect.Enable() rxdose = 0 parent = self.tcPatients.GetItemParent(item) if 'rxdose' in data: rxdose = data['rxdose'] else: parentdata = self.tcPatients.GetItemData(parent) if not (parentdata == None): if 'rxdose' in parentdata: rxdose = parentdata['rxdose'] # Show the rxdose text box if no rxdose was found # and if it is an RT plan or RT dose file self.txtRxDose.SetValue(rxdose) if (self.tcPatients.GetItemText(item).startswith('RT Plan') or self.tcPatients.GetItemText(parent).startswith('RT Plan')): self.EnableRxDose(True) def EnableRxDose(self, value): """Show or hide the prescription dose message.""" self.bmpRxDose.Show(value) self.lblRxDose.Show(value) self.txtRxDose.Show(value) self.lblRxDoseUnits.Show(value) # if set to hide, reset the rx dose if not value: self.txtRxDose.SetValue(1) def ExportPatientData(self, path, filearray, RxDose, terminate, progressFunc, exportFunc): """Get the data of the selected patient from the DICOM importer dialog.""" msgs = ['Scanning patient. Please wait...','Exporting patient cancelled.','Exporting patient...'] wx.CallAfter(progressFunc, -1, 100, msgs[0]) for n in range(0, len(filearray)): if terminate(): wx.CallAfter(progressFunc, 98, 100, msgs[1]) return dcmfile = str(os.path.join(self.path, filearray[n])) dp = dicomparser.DicomParser(dcmfile) if (n == 0): patient = {} patient['rxdose'] = RxDose if (('ImageOrientationPatient' in dp.ds) and \ not (dp.GetSOPClassUID() == 'rtdose')): if not 'images' in patient: patient['images'] = [] patient['images'].append(dp.ds) elif (dp.ds.Modality in ['RTSTRUCT']): patient['rtss'] = dp.ds elif (dp.ds.Modality in ['RTPLAN']): patient['rtplan'] = dp.ds elif (dp.ds.Modality in ['RTDOSE']): patient['rtdose'] = dp.ds wx.CallAfter(progressFunc, n//2, len(filearray), msgs[0]) # Sort the images based on a sort descriptor: # (ImagePositionPatient, InstanceNumber or AcquisitionNumber) if 'images' in patient: sortedimages = [] unsortednums = [] sortednums = [] images = patient['images'] sort = 'IPP' # Determine if all images in the series are parallel # by testing for differences in ImageOrientationPatient parallel = True for i, item in enumerate(images): if (i > 0): iop0 = np.array(item.ImageOrientationPatient) iop1 = np.array(images[i-1].ImageOrientationPatient) if (np.any(np.array(np.round(iop0 - iop1), dtype=np.int32))): parallel = False break # Also test ImagePositionPatient, as some series # use the same patient position for every slice ipp0 = np.array(item.ImagePositionPatient) ipp1 = np.array(images[i-1].ImagePositionPatient) if not (np.any(np.array(np.round(ipp0 - ipp1), dtype=np.int32))): parallel = False break # If the images are parallel, sort by ImagePositionPatient if parallel: sort = 'IPP' else: # Otherwise sort by Instance Number if not (images[0].InstanceNumber == \ images[1].InstanceNumber): sort = 'InstanceNumber' # Otherwise sort by Acquisition Number elif not (images[0].AcquisitionNumber == \ images[1].AcquisitionNumber): sort = 'AcquisitionNumber' # Add the sort descriptor to a list to be sorted for i, image in enumerate(images): if (sort == 'IPP'): unsortednums.append(image.ImagePositionPatient[2]) else: unsortednums.append(image.data_element(sort).value) # Sort in LPI order! Modified by CL.Wang # Sort image numbers in descending order for head first patients if ('hf' in image.PatientPosition.lower()) and (sort == 'IPP'): sortednums = sorted(unsortednums, reverse=True) # Otherwise sort image numbers in ascending order else: sortednums = sorted(unsortednums, reverse=False) # Add the images to the array based on the sorted order for s, slice in enumerate(sortednums): for i, image in enumerate(images): if (sort == 'IPP'): if (slice == image.ImagePositionPatient[2]): sortedimages.append(image) elif (slice == image.data_element(sort).value): sortedimages.append(image) # Save the images back to the patient dictionary logger.debug('Slices num: %d', len(sortedimages)) patient['images'] = sortedimages wx.CallAfter(progressFunc, 49, 100, msgs[2]) if exportFunc: exportFunc(patient_data=patient, progressFunc=progressFunc) wx.CallAfter(progressFunc, 99, 100, '') def GetPatient(self): """Return the patient data from the DICOM importer dialog.""" return self.patient def OnCancel(self, evt): """Stop the directory search and close the dialog.""" self.terminate = True super().OnCancel(evt) def main(): app = DcmConverterApp(0) app.MainLoop() if __name__ == '__main__': main()
[ "wx.Dialog.__init__", "os.walk", "wx.CallAfter", "os.path.isfile", "os.path.join", "numpy.round", "pyDcmConverter.guiutil.get_icon", "wx.SystemSettings.GetFont", "os.path.dirname", "numpy.transpose", "numpy.max", "wx.DirDialog", "wx.GetApp", "nibabel.Nifti1Image", "threading.Thread", "pyDcmConverter.util.GetResourcePath", "json.dump", "functools.partial", "os.path.basename", "wx.ImageList", "numpy.min", "dicompylercore.dicomparser.DicomParser", "os.sys.exit", "pyDcmConverter.guiutil.IsGtk", "json.load", "os.makedirs", "warnings.filterwarnings", "os.path.isdir", "wx.MessageDialog", "pyDcmConverter.guiutil.IsMac", "utils_cw.write_mori", "numpy.array", "os.path.expanduser", "logging.getLogger" ]
[((592, 617), 'logging.getLogger', 'getLogger', (['"""DcmConverter"""'], {}), "('DcmConverter')\n", (601, 617), False, 'from logging import getLogger, DEBUG, INFO\n'), ((628, 697), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'wx.wxPyDeprecationWarning'}), "('ignore', category=wx.wxPyDeprecationWarning)\n", (651, 697), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((2258, 2272), 'os.sys.exit', 'os.sys.exit', (['(0)'], {}), '(0)\n', (2269, 2272), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((2427, 2451), 'wx.Dialog.__init__', 'wx.Dialog.__init__', (['self'], {}), '(self)\n', (2445, 2451), False, 'import wx\n'), ((4806, 4842), 'os.path.isfile', 'os.path.isfile', (['""".dcmconverter.conf"""'], {}), "('.dcmconverter.conf')\n", (4820, 4842), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((6646, 6696), 'wx.SystemSettings.GetFont', 'wx.SystemSettings.GetFont', (['wx.SYS_DEFAULT_GUI_FONT'], {}), '(wx.SYS_DEFAULT_GUI_FONT)\n', (6671, 6696), False, 'import wx\n'), ((6708, 6723), 'pyDcmConverter.guiutil.IsMac', 'guiutil.IsMac', ([], {}), '()\n', (6721, 6723), False, 'from pyDcmConverter import guiutil, util\n'), ((8925, 8974), 'wx.MessageDialog', 'wx.MessageDialog', (['self', 'msg', '"""Error"""'], {'style': 'wx.OK'}), "(self, msg, 'Error', style=wx.OK)\n", (8941, 8974), False, 'import wx\n'), ((9082, 9153), 'wx.MessageDialog', 'wx.MessageDialog', (['self', 'msg', '"""Warning"""'], {'style': '(wx.OK_DEFAULT | wx.CANCEL)'}), "(self, msg, 'Warning', style=wx.OK_DEFAULT | wx.CANCEL)\n", (9098, 9153), False, 'import wx\n'), ((10857, 10907), 'dicompylercore.dicomparser.DicomParser', 'dicomparser.DicomParser', (["patient_data['images'][0]"], {}), "(patient_data['images'][0])\n", (10880, 10907), False, 'from dicompylercore import dicomparser\n'), ((12686, 12722), 'numpy.transpose', 'np.transpose', (['image_array', '(1, 0, 2)'], {}), '(image_array, (1, 0, 2))\n', (12698, 12722), True, 'import numpy as np\n'), ((17178, 17283), 'wx.DirDialog', 'wx.DirDialog', (['self'], {'defaultPath': 'self.path', 'message': '"""Choose a directory containing DICOM RT files..."""'}), "(self, defaultPath=self.path, message=\n 'Choose a directory containing DICOM RT files...')\n", (17190, 17283), False, 'import wx\n'), ((18200, 18406), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.DirectorySearchThread', 'args': '(self, self.path, self.import_search_subfolders, self.SetThreadStatus, self\n .OnUpdateProgress, self.AddPatientTree, self.AddPatientDataTree)'}), '(target=self.DirectorySearchThread, args=(self, self.path,\n self.import_search_subfolders, self.SetThreadStatus, self.\n OnUpdateProgress, self.AddPatientTree, self.AddPatientDataTree))\n', (18216, 18406), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((18832, 18893), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(0)', '(0)', '"""Searching for patients..."""'], {}), "(progressFunc, 0, 0, 'Searching for patients...')\n", (18844, 18893), False, 'import wx\n'), ((18966, 18985), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (18979, 18985), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((27449, 27481), 'wx.ImageList', 'wx.ImageList', (['iSize[0]', 'iSize[1]'], {}), '(iSize[0], iSize[1])\n', (27461, 27481), False, 'import wx\n'), ((46981, 47025), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(-1)', '(100)', 'msgs[0]'], {}), '(progressFunc, -1, 100, msgs[0])\n', (46993, 47025), False, 'import wx\n'), ((51148, 51192), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(49)', '(100)', 'msgs[2]'], {}), '(progressFunc, 49, 100, msgs[2])\n', (51160, 51192), False, 'import wx\n'), ((51297, 51336), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(99)', '(100)', '""""""'], {}), "(progressFunc, 99, 100, '')\n", (51309, 51336), False, 'import wx\n'), ((1083, 1119), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""dicomgui.xrc"""'], {}), "('dicomgui.xrc')\n", (1103, 1119), False, 'from pyDcmConverter import guiutil, util\n'), ((1969, 2013), 'json.dump', 'json.dump', (['conf', 'f'], {'indent': '(2)', 'sort_keys': '(True)'}), '(conf, f, indent=2, sort_keys=True)\n', (1978, 2013), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((2586, 2601), 'pyDcmConverter.guiutil.IsMac', 'guiutil.IsMac', ([], {}), '()\n', (2599, 2601), False, 'from pyDcmConverter import guiutil, util\n'), ((6078, 6101), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (6096, 6101), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((10194, 10232), 'os.path.isfile', 'os.path.isfile', (["(mori_fname + '.raw.gz')"], {}), "(mori_fname + '.raw.gz')\n", (10208, 10232), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((10675, 10700), 'os.path.isfile', 'os.path.isfile', (['nii_fname'], {}), '(nii_fname)\n', (10689, 10700), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((11237, 11276), 'numpy.array', 'np.array', (['dp.ds.ImageOrientationPatient'], {}), '(dp.ds.ImageOrientationPatient)\n', (11245, 11276), True, 'import numpy as np\n'), ((12232, 12260), 'dicompylercore.dicomparser.DicomParser', 'dicomparser.DicomParser', (['img'], {}), '(img)\n', (12255, 12260), False, 'from dicompylercore import dicomparser\n'), ((12555, 12674), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '((i + image_array.shape[-1]) // 2)', '(image_array.shape[-1] + 1)', '"""Creating image array..."""'], {}), "(progressFunc, (i + image_array.shape[-1]) // 2, image_array.\n shape[-1] + 1, 'Creating image array...')\n", (12567, 12674), False, 'import wx\n'), ((12914, 12961), 'utils_cw.write_mori', 'write_mori', (['image_array', 'reso', 'mori_fname', '(True)'], {}), '(image_array, reso, mori_fname, True)\n', (12924, 12961), False, 'from utils_cw import write_mori, get_mori_header_fields\n'), ((15001, 15066), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(97)', '(100)', '"""Export RAW image completed"""'], {}), "(progressFunc, 97, 100, 'Export RAW image completed')\n", (15013, 15066), False, 'import wx\n'), ((15299, 15366), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(98)', '(100)', '"""Export Nifti image completed"""'], {}), "(progressFunc, 98, 100, 'Export Nifti image completed')\n", (15311, 15366), False, 'import wx\n'), ((15776, 15806), 'os.path.isdir', 'os.path.isdir', (['self.output_dir'], {}), '(self.output_dir)\n', (15789, 15806), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((15907, 15935), 'os.makedirs', 'os.makedirs', (['self.output_dir'], {}), '(self.output_dir)\n', (15918, 15935), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((17939, 17954), 'pyDcmConverter.guiutil.IsGtk', 'guiutil.IsGtk', ([], {}), '()\n', (17952, 17954), False, 'from pyDcmConverter import guiutil, util\n'), ((19052, 19065), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (19059, 19065), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((25856, 25901), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(0)', '(1)', 'progressStr'], {}), '(progressFunc, 0, 1, progressStr)\n', (25868, 25901), False, 'import wx\n'), ((25914, 25948), 'wx.CallAfter', 'wx.CallAfter', (['resultFunc', 'patients'], {}), '(resultFunc, patients)\n', (25926, 25948), False, 'import wx\n'), ((26037, 26097), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(0)', '(0)', '"""Select a valid location."""'], {}), "(progressFunc, 0, 0, 'Select a valid location.')\n", (26049, 26097), False, 'import wx\n'), ((26116, 26282), 'wx.MessageDialog', 'wx.MessageDialog', (['parent', '"""The DICOM import location does not exist. Please select a valid location."""', '"""Invalid DICOM Import Location"""', '(wx.OK | wx.ICON_ERROR)'], {}), "(parent,\n 'The DICOM import location does not exist. Please select a valid location.'\n , 'Invalid DICOM Import Location', wx.OK | wx.ICON_ERROR)\n", (26132, 26282), False, 'import wx\n'), ((47263, 47295), 'dicompylercore.dicomparser.DicomParser', 'dicomparser.DicomParser', (['dcmfile'], {}), '(dcmfile)\n', (47286, 47295), False, 'from dicompylercore import dicomparser\n'), ((961, 972), 'wx.GetApp', 'wx.GetApp', ([], {}), '()\n', (970, 972), False, 'import wx\n'), ((2628, 2646), 'pyDcmConverter.guiutil.get_icon', 'guiutil.get_icon', ([], {}), '()\n', (2644, 2646), False, 'from pyDcmConverter import guiutil, util\n'), ((4983, 4995), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4992, 4995), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((9974, 10003), 'os.path.dirname', 'os.path.dirname', (['out_basepath'], {}), '(out_basepath)\n', (9989, 10003), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((10037, 10059), 'os.path.isdir', 'os.path.isdir', (['out_dir'], {}), '(out_dir)\n', (10050, 10059), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((10078, 10098), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (10089, 10098), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((10147, 10177), 'os.path.basename', 'os.path.basename', (['out_basepath'], {}), '(out_basepath)\n', (10163, 10177), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((10444, 10473), 'os.path.dirname', 'os.path.dirname', (['out_basepath'], {}), '(out_basepath)\n', (10459, 10473), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((10509, 10531), 'os.path.isdir', 'os.path.isdir', (['out_dir'], {}), '(out_dir)\n', (10522, 10531), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((10550, 10570), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (10561, 10570), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((15231, 15274), 'nibabel.Nifti1Image', 'nib.Nifti1Image', (['image_array'], {'affine': 'affine'}), '(image_array, affine=affine)\n', (15246, 15274), True, 'import nibabel as nib\n'), ((19529, 19553), 'os.path.isfile', 'os.path.isfile', (['files[n]'], {}), '(files[n])\n', (19543, 19553), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((27540, 27573), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""group.png"""'], {}), "('group.png')\n", (27560, 27573), False, 'from pyDcmConverter import guiutil, util\n'), ((27670, 27702), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""user.png"""'], {}), "('user.png')\n", (27690, 27702), False, 'from pyDcmConverter import guiutil, util\n'), ((27799, 27831), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""book.png"""'], {}), "('book.png')\n", (27819, 27831), False, 'from pyDcmConverter import guiutil, util\n'), ((27928, 27970), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""table_multiple.png"""'], {}), "('table_multiple.png')\n", (27948, 27970), False, 'from pyDcmConverter import guiutil, util\n'), ((28067, 28101), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""pencil.png"""'], {}), "('pencil.png')\n", (28087, 28101), False, 'from pyDcmConverter import guiutil, util\n'), ((28198, 28235), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""chart_bar.png"""'], {}), "('chart_bar.png')\n", (28218, 28235), False, 'from pyDcmConverter import guiutil, util\n'), ((28332, 28371), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""chart_curve.png"""'], {}), "('chart_curve.png')\n", (28352, 28371), False, 'from pyDcmConverter import guiutil, util\n'), ((28468, 28508), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""pencil_error.png"""'], {}), "('pencil_error.png')\n", (28488, 28508), False, 'from pyDcmConverter import guiutil, util\n'), ((28605, 28648), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""chart_bar_error.png"""'], {}), "('chart_bar_error.png')\n", (28625, 28648), False, 'from pyDcmConverter import guiutil, util\n'), ((28745, 28790), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""chart_curve_error.png"""'], {}), "('chart_curve_error.png')\n", (28765, 28790), False, 'from pyDcmConverter import guiutil, util\n'), ((28887, 28929), 'pyDcmConverter.util.GetResourcePath', 'util.GetResourcePath', (['"""table_selected.png"""'], {}), "('table_selected.png')\n", (28907, 28929), False, 'from pyDcmConverter import guiutil, util\n'), ((47113, 47157), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(98)', '(100)', 'msgs[1]'], {}), '(progressFunc, 98, 100, msgs[1])\n', (47125, 47157), False, 'import wx\n'), ((47207, 47244), 'os.path.join', 'os.path.join', (['self.path', 'filearray[n]'], {}), '(self.path, filearray[n])\n', (47219, 47244), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((10618, 10648), 'os.path.basename', 'os.path.basename', (['out_basepath'], {}), '(out_basepath)\n', (10634, 10648), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((19426, 19480), 'wx.CallAfter', 'wx.CallAfter', (['progressFunc', '(0)', '(0)', '"""Search terminated."""'], {}), "(progressFunc, 0, 0, 'Search terminated.')\n", (19438, 19480), False, 'import wx\n'), ((48556, 48594), 'numpy.array', 'np.array', (['item.ImageOrientationPatient'], {}), '(item.ImageOrientationPatient)\n', (48564, 48594), True, 'import numpy as np\n'), ((48622, 48669), 'numpy.array', 'np.array', (['images[i - 1].ImageOrientationPatient'], {}), '(images[i - 1].ImageOrientationPatient)\n', (48630, 48669), True, 'import numpy as np\n'), ((48985, 49020), 'numpy.array', 'np.array', (['item.ImagePositionPatient'], {}), '(item.ImagePositionPatient)\n', (48993, 49020), True, 'import numpy as np\n'), ((49048, 49092), 'numpy.array', 'np.array', (['images[i - 1].ImagePositionPatient'], {}), '(images[i - 1].ImagePositionPatient)\n', (49056, 49092), True, 'import numpy as np\n'), ((19105, 19126), 'os.path.join', 'os.path.join', (['root', 'f'], {}), '(root, f)\n', (19117, 19126), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((19672, 19705), 'dicompylercore.dicomparser.DicomParser', 'dicomparser.DicomParser', (['files[n]'], {}), '(files[n])\n', (19695, 19705), False, 'from dicompylercore import dicomparser\n'), ((16572, 16629), 'functools.partial', 'functools.partial', (['self.ExportFunc'], {'out_basepath': 'basename'}), '(self.ExportFunc, out_basepath=basename)\n', (16589, 16629), False, 'import hashlib, os, threading, functools, json, warnings\n'), ((20418, 20450), 'wx.CallAfter', 'wx.CallAfter', (['foundFunc', 'patient'], {}), '(foundFunc, patient)\n', (20430, 20450), False, 'import wx\n'), ((48708, 48729), 'numpy.round', 'np.round', (['(iop0 - iop1)'], {}), '(iop0 - iop1)\n', (48716, 48729), True, 'import numpy as np\n'), ((49135, 49156), 'numpy.round', 'np.round', (['(ipp0 - ipp1)'], {}), '(ipp0 - ipp1)\n', (49143, 49156), True, 'import numpy as np\n'), ((13407, 13418), 'numpy.min', 'np.min', (['pos'], {}), '(pos)\n', (13413, 13418), True, 'import numpy as np\n'), ((13534, 13545), 'numpy.max', 'np.max', (['pos'], {}), '(pos)\n', (13540, 13545), True, 'import numpy as np\n')]
import os from os import listdir from argparse import ArgumentParser from os.path import isdir,join middle = '├' pipe = '│' last = '└' scale = 2 def traverse(path, parents='', depth=0, isLast=True): tree = [(path, parents, depth, isLast)] realPath = join(parents,path) files = listdir(realPath) maxFiles = len(files) for idx,file in enumerate(files): curPath = join(realPath,file) isLast = idx == maxFiles -1 if isdir(curPath): tree = tree + (traverse(file,realPath, depth+1, isLast)) else: tree.append((file, parents, depth+1, isLast)) return tree def addDepth(depth,connections,spacer=" "): return "".join([pipe if x in connections else spacer for x in range(0, depth)]) def findConnections(depth, below): depths = [] for (_,_,curDepth,_) in below: if curDepth < depth: depths.append(curDepth) depth=curDepth return depths def prettyPrint(treeInfo): for idx,node in enumerate(treeInfo): (name, parents, depth, isLast) = node prefix = last if isLast else middle connections = [x*scale for x in findConnections(depth,treeInfo[idx:])] print("%s%s %s"%(addDepth(depth*scale,connections), prefix, name)) parser = ArgumentParser(description="list a folder as a tree") parser.add_argument("folder",default="./", type=str) args = parser.parse_args() folderInfo = traverse(args.folder) print(prettyPrint(folderInfo))
[ "os.listdir", "os.path.isdir", "os.path.join", "argparse.ArgumentParser" ]
[((1288, 1341), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""list a folder as a tree"""'}), "(description='list a folder as a tree')\n", (1302, 1341), False, 'from argparse import ArgumentParser\n'), ((267, 286), 'os.path.join', 'join', (['parents', 'path'], {}), '(parents, path)\n', (271, 286), False, 'from os.path import isdir, join\n'), ((298, 315), 'os.listdir', 'listdir', (['realPath'], {}), '(realPath)\n', (305, 315), False, 'from os import listdir\n'), ((398, 418), 'os.path.join', 'join', (['realPath', 'file'], {}), '(realPath, file)\n', (402, 418), False, 'from os.path import isdir, join\n'), ((465, 479), 'os.path.isdir', 'isdir', (['curPath'], {}), '(curPath)\n', (470, 479), False, 'from os.path import isdir, join\n')]
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import gettext import os import sys from keystone.common import logging from keystone.openstack.common import cfg gettext.install('keystone', unicode=1) CONF = cfg.CONF def setup_logging(conf): """ Sets up the logging options for a log with supplied name :param conf: a cfg.ConfOpts object """ if conf.log_config: # Use a logging configuration file for all settings... if os.path.exists(conf.log_config): logging.config.fileConfig(conf.log_config) return else: raise RuntimeError('Unable to locate specified logging ' 'config file: %s' % conf.log_config) root_logger = logging.root if conf.debug: root_logger.setLevel(logging.DEBUG) elif conf.verbose: root_logger.setLevel(logging.INFO) else: root_logger.setLevel(logging.WARNING) formatter = logging.Formatter(conf.log_format, conf.log_date_format) if conf.use_syslog: try: facility = getattr(logging.SysLogHandler, conf.syslog_log_facility) except AttributeError: raise ValueError(_('Invalid syslog facility')) handler = logging.SysLogHandler(address='/dev/log', facility=facility) elif conf.log_file: logfile = conf.log_file if conf.log_dir: logfile = os.path.join(conf.log_dir, logfile) handler = logging.WatchedFileHandler(logfile) else: handler = logging.StreamHandler(sys.stdout) handler.setFormatter(formatter) root_logger.addHandler(handler) def register_str(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_opt(cfg.StrOpt(*args, **kw), group=group) def register_cli_str(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_cli_opt(cfg.StrOpt(*args, **kw), group=group) def register_bool(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_opt(cfg.BoolOpt(*args, **kw), group=group) def register_cli_bool(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_cli_opt(cfg.BoolOpt(*args, **kw), group=group) def register_int(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_opt(cfg.IntOpt(*args, **kw), group=group) def register_cli_int(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_cli_opt(cfg.IntOpt(*args, **kw), group=group) register_str('admin_token', default='ADMIN') register_str('bind_host', default='0.0.0.0') register_str('compute_port', default=8774) register_str('admin_port', default=35357) register_str('public_port', default=5000) register_str('onready') register_str('auth_admin_prefix', default='') #ssl options register_bool('enable', group='ssl', default=False) register_str('certfile', group='ssl', default=None) register_str('keyfile', group='ssl', default=None) register_str('ca_certs', group='ssl', default=None) register_bool('cert_required', group='ssl', default=False) #signing options register_str('token_format', group='signing', default="UUID") register_str('certfile', group='signing', default="/etc/keystone/ssl/certs/signing_cert.pem") register_str('keyfile', group='signing', default="/etc/keystone/ssl/private/signing_key.pem") register_str('ca_certs', group='signing', default="/etc/keystone/ssl/certs/ca.pem") register_int('key_size', group='signing', default=1024) register_int('valid_days', group='signing', default=3650) register_str('ca_password', group='signing', default=None) # sql options register_str('connection', group='sql', default='sqlite:///keystone.db') register_int('idle_timeout', group='sql', default=200) register_str('driver', group='catalog', default='keystone.catalog.backends.sql.Catalog') register_str('driver', group='identity', default='keystone.identity.backends.sql.Identity') register_str('driver', group='policy', default='keystone.policy.backends.rules.Policy') register_str('driver', group='token', default='keystone.token.backends.kvs.Token') register_str('driver', group='ec2', default='keystone.contrib.ec2.backends.kvs.Ec2') register_str('driver', group='stats', default='keystone.contrib.stats.backends.kvs.Stats') #ldap register_str('url', group='ldap', default='ldap://localhost') register_str('user', group='ldap', default='dc=Manager,dc=example,dc=com') register_str('password', group='ldap', default='<PASSWORD>') register_str('suffix', group='ldap', default='cn=example,cn=com') register_bool('use_dumb_member', group='ldap', default=False) register_str('user_name_attribute', group='ldap', default='sn') register_str('user_tree_dn', group='ldap', default=None) register_str('user_objectclass', group='ldap', default='inetOrgPerson') register_str('user_id_attribute', group='ldap', default='cn') register_str('tenant_tree_dn', group='ldap', default=None) register_str('tenant_objectclass', group='ldap', default='groupOfNames') register_str('tenant_id_attribute', group='ldap', default='cn') register_str('tenant_member_attribute', group='ldap', default='member') register_str('tenant_name_attribute', group='ldap', default='ou') register_str('role_tree_dn', group='ldap', default=None) register_str('role_objectclass', group='ldap', default='organizationalRole') register_str('role_id_attribute', group='ldap', default='cn') register_str('role_member_attribute', group='ldap', default='roleOccupant') #pam register_str('url', group='pam', default=None) register_str('userid', group='pam', default=None) register_str('password', group='pam', default=None)
[ "keystone.common.logging.StreamHandler", "keystone.openstack.common.cfg.IntOpt", "os.path.join", "keystone.common.logging.WatchedFileHandler", "os.path.exists", "keystone.openstack.common.cfg.BoolOpt", "keystone.openstack.common.cfg.StrOpt", "keystone.common.logging.SysLogHandler", "keystone.common.logging.Formatter", "keystone.common.logging.config.fileConfig", "gettext.install" ]
[((741, 779), 'gettext.install', 'gettext.install', (['"""keystone"""'], {'unicode': '(1)'}), "('keystone', unicode=1)\n", (756, 779), False, 'import gettext\n'), ((1533, 1589), 'keystone.common.logging.Formatter', 'logging.Formatter', (['conf.log_format', 'conf.log_date_format'], {}), '(conf.log_format, conf.log_date_format)\n', (1550, 1589), False, 'from keystone.common import logging\n'), ((1041, 1072), 'os.path.exists', 'os.path.exists', (['conf.log_config'], {}), '(conf.log_config)\n', (1055, 1072), False, 'import os\n'), ((1848, 1908), 'keystone.common.logging.SysLogHandler', 'logging.SysLogHandler', ([], {'address': '"""/dev/log"""', 'facility': 'facility'}), "(address='/dev/log', facility=facility)\n", (1869, 1908), False, 'from keystone.common import logging\n'), ((2405, 2428), 'keystone.openstack.common.cfg.StrOpt', 'cfg.StrOpt', (['*args'], {}), '(*args, **kw)\n', (2415, 2428), False, 'from keystone.openstack.common import cfg\n'), ((2579, 2602), 'keystone.openstack.common.cfg.StrOpt', 'cfg.StrOpt', (['*args'], {}), '(*args, **kw)\n', (2589, 2602), False, 'from keystone.openstack.common import cfg\n'), ((2746, 2770), 'keystone.openstack.common.cfg.BoolOpt', 'cfg.BoolOpt', (['*args'], {}), '(*args, **kw)\n', (2757, 2770), False, 'from keystone.openstack.common import cfg\n'), ((2922, 2946), 'keystone.openstack.common.cfg.BoolOpt', 'cfg.BoolOpt', (['*args'], {}), '(*args, **kw)\n', (2933, 2946), False, 'from keystone.openstack.common import cfg\n'), ((3089, 3112), 'keystone.openstack.common.cfg.IntOpt', 'cfg.IntOpt', (['*args'], {}), '(*args, **kw)\n', (3099, 3112), False, 'from keystone.openstack.common import cfg\n'), ((3263, 3286), 'keystone.openstack.common.cfg.IntOpt', 'cfg.IntOpt', (['*args'], {}), '(*args, **kw)\n', (3273, 3286), False, 'from keystone.openstack.common import cfg\n'), ((1086, 1128), 'keystone.common.logging.config.fileConfig', 'logging.config.fileConfig', (['conf.log_config'], {}), '(conf.log_config)\n', (1111, 1128), False, 'from keystone.common import logging\n'), ((2106, 2141), 'keystone.common.logging.WatchedFileHandler', 'logging.WatchedFileHandler', (['logfile'], {}), '(logfile)\n', (2132, 2141), False, 'from keystone.common import logging\n'), ((2170, 2203), 'keystone.common.logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (2191, 2203), False, 'from keystone.common import logging\n'), ((2052, 2087), 'os.path.join', 'os.path.join', (['conf.log_dir', 'logfile'], {}), '(conf.log_dir, logfile)\n', (2064, 2087), False, 'import os\n')]
from datetime import datetime, timedelta import pytz from bcrypt_hash import BcryptHash import pytest from src.users import Users from src.events import Events from src.stores import MemoryStore from src.session import Session def test_login_user(): store = MemoryStore() users = Users(store) params = {} params['password'] = 'password' session = Session(params, store, '') password = BcryptHash('password').encrypt() user = users.add('email', 'name', 'alias', password, 'phone', True, True, user_id='test') user.validated = True with pytest.raises(Exception): session.login('') loging_dict = session.login('test') assert loging_dict assert 'user' in loging_dict def test_login_user_bad_password(): store = MemoryStore() users = Users(store) params = {} params['password'] = '<PASSWORD>' session = Session(params, store, '') password = BcryptHash('password').encrypt() user = users.add('email', 'name', 'alias', password, 'phone', True, True, user_id='test') user.validated = True with pytest.raises(Exception): session.login('test') def test_login_user_register(): store = MemoryStore() users = Users(store) events = Events(store) start = datetime.now(pytz.timezone("America/New_York")) dur = timedelta(hours=1) params = {} params['password'] = 'password' password = BcryptHash('password').encrypt() user = users.add('email', 'name', 'alias', password, 'phone', True, True, user_id='test') events.add('test', 'test', 30, start, dur, 'test', 'test', '<EMAIL>', 'test', user) user.validated = True params['register'] = 'test' session = Session(params, store, '') loging_dict = session.login('test') assert loging_dict assert 'user' in loging_dict assert 'register' in loging_dict assert loging_dict['register'] == 'test' def test_login_user_register_bad_event(): store = MemoryStore() users = Users(store) events = Events(store) start = datetime.now(pytz.timezone("America/New_York")) dur = timedelta(hours=1) params = {} params['password'] = 'password' password = BcryptHash('password').encrypt() user = users.add('email', 'name', 'alias', password, 'phone', True, True, user_id='test') events.add('test', 'test', 30, start, dur, 'test', 'test', '<EMAIL>', 'test', user) user.validated = True params['register'] = '' session = Session(params, store, '') with pytest.raises(Exception): session.login('test')
[ "src.session.Session", "bcrypt_hash.BcryptHash", "src.stores.MemoryStore", "src.users.Users", "pytest.raises", "datetime.timedelta", "pytz.timezone", "src.events.Events" ]
[((264, 277), 'src.stores.MemoryStore', 'MemoryStore', ([], {}), '()\n', (275, 277), False, 'from src.stores import MemoryStore\n'), ((290, 302), 'src.users.Users', 'Users', (['store'], {}), '(store)\n', (295, 302), False, 'from src.users import Users\n'), ((369, 395), 'src.session.Session', 'Session', (['params', 'store', '""""""'], {}), "(params, store, '')\n", (376, 395), False, 'from src.session import Session\n'), ((792, 805), 'src.stores.MemoryStore', 'MemoryStore', ([], {}), '()\n', (803, 805), False, 'from src.stores import MemoryStore\n'), ((818, 830), 'src.users.Users', 'Users', (['store'], {}), '(store)\n', (823, 830), False, 'from src.users import Users\n'), ((899, 925), 'src.session.Session', 'Session', (['params', 'store', '""""""'], {}), "(params, store, '')\n", (906, 925), False, 'from src.session import Session\n'), ((1227, 1240), 'src.stores.MemoryStore', 'MemoryStore', ([], {}), '()\n', (1238, 1240), False, 'from src.stores import MemoryStore\n'), ((1253, 1265), 'src.users.Users', 'Users', (['store'], {}), '(store)\n', (1258, 1265), False, 'from src.users import Users\n'), ((1279, 1292), 'src.events.Events', 'Events', (['store'], {}), '(store)\n', (1285, 1292), False, 'from src.events import Events\n'), ((1363, 1381), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (1372, 1381), False, 'from datetime import datetime, timedelta\n'), ((1773, 1799), 'src.session.Session', 'Session', (['params', 'store', '""""""'], {}), "(params, store, '')\n", (1780, 1799), False, 'from src.session import Session\n'), ((2034, 2047), 'src.stores.MemoryStore', 'MemoryStore', ([], {}), '()\n', (2045, 2047), False, 'from src.stores import MemoryStore\n'), ((2060, 2072), 'src.users.Users', 'Users', (['store'], {}), '(store)\n', (2065, 2072), False, 'from src.users import Users\n'), ((2086, 2099), 'src.events.Events', 'Events', (['store'], {}), '(store)\n', (2092, 2099), False, 'from src.events import Events\n'), ((2170, 2188), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (2179, 2188), False, 'from datetime import datetime, timedelta\n'), ((2576, 2602), 'src.session.Session', 'Session', (['params', 'store', '""""""'], {}), "(params, store, '')\n", (2583, 2602), False, 'from src.session import Session\n'), ((594, 618), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (607, 618), False, 'import pytest\n'), ((1125, 1149), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (1138, 1149), False, 'import pytest\n'), ((1318, 1351), 'pytz.timezone', 'pytz.timezone', (['"""America/New_York"""'], {}), "('America/New_York')\n", (1331, 1351), False, 'import pytz\n'), ((2125, 2158), 'pytz.timezone', 'pytz.timezone', (['"""America/New_York"""'], {}), "('America/New_York')\n", (2138, 2158), False, 'import pytz\n'), ((2612, 2636), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (2625, 2636), False, 'import pytest\n'), ((411, 433), 'bcrypt_hash.BcryptHash', 'BcryptHash', (['"""password"""'], {}), "('password')\n", (421, 433), False, 'from bcrypt_hash import BcryptHash\n'), ((942, 964), 'bcrypt_hash.BcryptHash', 'BcryptHash', (['"""password"""'], {}), "('password')\n", (952, 964), False, 'from bcrypt_hash import BcryptHash\n'), ((1450, 1472), 'bcrypt_hash.BcryptHash', 'BcryptHash', (['"""password"""'], {}), "('password')\n", (1460, 1472), False, 'from bcrypt_hash import BcryptHash\n'), ((2257, 2279), 'bcrypt_hash.BcryptHash', 'BcryptHash', (['"""password"""'], {}), "('password')\n", (2267, 2279), False, 'from bcrypt_hash import BcryptHash\n')]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimator.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from tensorflow.contrib.distributions.python.ops import estimator as estimator_lib from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators.head_test import _assert_metrics from tensorflow.contrib.learn.python.learn.estimators.head_test import _assert_no_variables from tensorflow.contrib.learn.python.learn.estimators.head_test import _assert_summary_tags from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.platform import test class EstimatorHeadDistributionRegressionTest(test.TestCase): def _assert_output_alternatives(self, model_fn_ops): self.assertEquals({ None: constants.ProblemType.LINEAR_REGRESSION }, { k: v[0] for k, v in six.iteritems(model_fn_ops.output_alternatives) }) def testNormalLocScaleLogits(self): # We will bias logits[..., 1] so that: logits[..., 1]=0 implies scale=1. scale_bias = np.log(np.expm1(1.)) def softplus(x): return np.log1p(np.exp(x)) def actual_loss(logits, labels): mu = actual_mean(logits) sigma = actual_stddev(logits) labels = np.squeeze(labels, -1) z = (labels - mu) / sigma loss = 0.5 * (z**2. + np.log(2. * np.pi)) + np.log(sigma) return loss.mean() def actual_mean(logits): return logits[..., 0] def actual_stddev(logits): return softplus(logits[..., 1] + scale_bias) def make_distribution_fn(logits): return normal_lib.Normal( loc=logits[..., 0], scale=nn_ops.softplus(logits[..., 1] + scale_bias)) head = estimator_lib.estimator_head_distribution_regression( make_distribution_fn, logits_dimension=2) labels = np.float32([[-1.], [0.], [1.]]) logits = np.float32([[0., -1], [1, 0.5], [-1, 1]]) with ops.Graph().as_default(), session.Session(): # Convert to tensor so we can index into head.distributions. tflogits = ops.convert_to_tensor(logits, name="logits") model_fn_ops = head.create_model_fn_ops( {}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=tflogits) self._assert_output_alternatives(model_fn_ops) _assert_summary_tags(self, ["loss"]) _assert_no_variables(self) loss = actual_loss(logits, labels) _assert_metrics(self, loss, {"loss": loss}, model_fn_ops) # Now we verify the underlying distribution was correctly constructed. expected_mean = logits[..., 0] self.assertAllClose( expected_mean, head.distribution(tflogits).mean().eval(), rtol=1e-6, atol=0.) expected_stddev = softplus(logits[..., 1] + scale_bias) self.assertAllClose( expected_stddev, head.distribution(tflogits).stddev().eval(), rtol=1e-6, atol=0.) # Should have created only one distribution. self.assertEqual(1, len(head.distributions)) if __name__ == "__main__": test.main()
[ "tensorflow.python.platform.test.main", "tensorflow.python.framework.ops.Graph", "tensorflow.python.client.session.Session", "numpy.log", "tensorflow.python.ops.nn_ops.softplus", "numpy.float32", "tensorflow.contrib.learn.python.learn.estimators.head_test._assert_no_variables", "tensorflow.contrib.distributions.python.ops.estimator.estimator_head_distribution_regression", "numpy.expm1", "numpy.exp", "numpy.squeeze", "tensorflow.contrib.learn.python.learn.estimators.head_test._assert_summary_tags", "six.iteritems", "tensorflow.python.framework.ops.convert_to_tensor", "tensorflow.contrib.learn.python.learn.estimators.head_test._assert_metrics" ]
[((4270, 4281), 'tensorflow.python.platform.test.main', 'test.main', ([], {}), '()\n', (4279, 4281), False, 'from tensorflow.python.platform import test\n'), ((2756, 2854), 'tensorflow.contrib.distributions.python.ops.estimator.estimator_head_distribution_regression', 'estimator_lib.estimator_head_distribution_regression', (['make_distribution_fn'], {'logits_dimension': '(2)'}), '(make_distribution_fn,\n logits_dimension=2)\n', (2808, 2854), True, 'from tensorflow.contrib.distributions.python.ops import estimator as estimator_lib\n'), ((2881, 2915), 'numpy.float32', 'np.float32', (['[[-1.0], [0.0], [1.0]]'], {}), '([[-1.0], [0.0], [1.0]])\n', (2891, 2915), True, 'import numpy as np\n'), ((2976, 3018), 'numpy.float32', 'np.float32', (['[[0.0, -1], [1, 0.5], [-1, 1]]'], {}), '([[0.0, -1], [1, 0.5], [-1, 1]])\n', (2986, 3018), True, 'import numpy as np\n'), ((2107, 2120), 'numpy.expm1', 'np.expm1', (['(1.0)'], {}), '(1.0)\n', (2115, 2120), True, 'import numpy as np\n'), ((2296, 2318), 'numpy.squeeze', 'np.squeeze', (['labels', '(-1)'], {}), '(labels, -1)\n', (2306, 2318), True, 'import numpy as np\n'), ((3103, 3120), 'tensorflow.python.client.session.Session', 'session.Session', ([], {}), '()\n', (3118, 3120), False, 'from tensorflow.python.client import session\n'), ((3206, 3250), 'tensorflow.python.framework.ops.convert_to_tensor', 'ops.convert_to_tensor', (['logits'], {'name': '"""logits"""'}), "(logits, name='logits')\n", (3227, 3250), False, 'from tensorflow.python.framework import ops\n'), ((3510, 3546), 'tensorflow.contrib.learn.python.learn.estimators.head_test._assert_summary_tags', '_assert_summary_tags', (['self', "['loss']"], {}), "(self, ['loss'])\n", (3530, 3546), False, 'from tensorflow.contrib.learn.python.learn.estimators.head_test import _assert_summary_tags\n'), ((3553, 3579), 'tensorflow.contrib.learn.python.learn.estimators.head_test._assert_no_variables', '_assert_no_variables', (['self'], {}), '(self)\n', (3573, 3579), False, 'from tensorflow.contrib.learn.python.learn.estimators.head_test import _assert_no_variables\n'), ((3627, 3684), 'tensorflow.contrib.learn.python.learn.estimators.head_test._assert_metrics', '_assert_metrics', (['self', 'loss', "{'loss': loss}", 'model_fn_ops'], {}), "(self, loss, {'loss': loss}, model_fn_ops)\n", (3642, 3684), False, 'from tensorflow.contrib.learn.python.learn.estimators.head_test import _assert_metrics\n'), ((2165, 2174), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (2171, 2174), True, 'import numpy as np\n'), ((2401, 2414), 'numpy.log', 'np.log', (['sigma'], {}), '(sigma)\n', (2407, 2414), True, 'import numpy as np\n'), ((1912, 1959), 'six.iteritems', 'six.iteritems', (['model_fn_ops.output_alternatives'], {}), '(model_fn_ops.output_alternatives)\n', (1925, 1959), False, 'import six\n'), ((2698, 2742), 'tensorflow.python.ops.nn_ops.softplus', 'nn_ops.softplus', (['(logits[..., 1] + scale_bias)'], {}), '(logits[..., 1] + scale_bias)\n', (2713, 2742), False, 'from tensorflow.python.ops import nn_ops\n'), ((3077, 3088), 'tensorflow.python.framework.ops.Graph', 'ops.Graph', ([], {}), '()\n', (3086, 3088), False, 'from tensorflow.python.framework import ops\n'), ((2379, 2398), 'numpy.log', 'np.log', (['(2.0 * np.pi)'], {}), '(2.0 * np.pi)\n', (2385, 2398), True, 'import numpy as np\n')]
# Copyright (c) 2012-2016 Seafile Ltd. import logging from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.authentication import SessionAuthentication from seaserv import ccnet_api from seahub.api2.permissions import IsProVersion from seahub.api2.throttling import UserRateThrottle from seahub.api2.authentication import TokenAuthentication from seahub.api2.utils import api_error from seahub.api2.endpoints.utils import is_org_user from seahub.utils import is_valid_email from seahub.base.accounts import User from seahub.base.templatetags.seahub_tags import email2nickname from seahub.profile.models import Profile logger = logging.getLogger(__name__) def get_user_info(email): profile = Profile.objects.get_profile_by_user(email) info = {} info['email'] = email info['name'] = email2nickname(email) info['contact_email'] = profile.contact_email if profile and profile.contact_email else '' return info class OrgAdminUser(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) throttle_classes = (UserRateThrottle,) permission_classes = (IsProVersion,) def put(self, request, org_id, email): """ update name of an org user. Permission checking: 1. only admin can perform this action. """ # resource check org_id = int(org_id) if not ccnet_api.get_org_by_id(org_id): error_msg = 'Organization %s not found.' % org_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) try: user = User.objects.get(email=email) except User.DoesNotExist: error_msg = 'User %s not found.' % email return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check if not request.user.org.is_staff: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) if request.user.org.org_id != org_id: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) if not is_org_user(email, org_id): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # update user's name name = request.data.get("name", None) if name is not None: name = name.strip() if len(name) > 64: error_msg = 'Name is too long (maximum is 64 characters).' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if "/" in name: error_msg = "Name should not include '/'." return api_error(status.HTTP_400_BAD_REQUEST, error_msg) try: Profile.objects.add_or_update(email, nickname=name) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) # update user's contact email contact_email = request.data.get("contact_email", None) if contact_email is not None: contact_email = contact_email.strip() if contact_email != '' and not is_valid_email(contact_email): error_msg = 'contact_email invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) try: Profile.objects.add_or_update(email, contact_email=contact_email) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) info = get_user_info(email) info['is_active'] = user.is_active return Response(info)
[ "seahub.api2.utils.api_error", "seahub.base.accounts.User.objects.get", "seahub.utils.is_valid_email", "seahub.profile.models.Profile.objects.add_or_update", "seaserv.ccnet_api.get_org_by_id", "seahub.base.templatetags.seahub_tags.email2nickname", "rest_framework.response.Response", "seahub.profile.models.Profile.objects.get_profile_by_user", "seahub.api2.endpoints.utils.is_org_user", "logging.getLogger" ]
[((720, 747), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (737, 747), False, 'import logging\n'), ((790, 832), 'seahub.profile.models.Profile.objects.get_profile_by_user', 'Profile.objects.get_profile_by_user', (['email'], {}), '(email)\n', (825, 832), False, 'from seahub.profile.models import Profile\n'), ((893, 914), 'seahub.base.templatetags.seahub_tags.email2nickname', 'email2nickname', (['email'], {}), '(email)\n', (907, 914), False, 'from seahub.base.templatetags.seahub_tags import email2nickname\n'), ((3892, 3906), 'rest_framework.response.Response', 'Response', (['info'], {}), '(info)\n', (3900, 3906), False, 'from rest_framework.response import Response\n'), ((1460, 1491), 'seaserv.ccnet_api.get_org_by_id', 'ccnet_api.get_org_by_id', (['org_id'], {}), '(org_id)\n', (1483, 1491), False, 'from seaserv import ccnet_api\n'), ((1574, 1621), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_404_NOT_FOUND', 'error_msg'], {}), '(status.HTTP_404_NOT_FOUND, error_msg)\n', (1583, 1621), False, 'from seahub.api2.utils import api_error\n'), ((1655, 1684), 'seahub.base.accounts.User.objects.get', 'User.objects.get', ([], {'email': 'email'}), '(email=email)\n', (1671, 1684), False, 'from seahub.base.accounts import User\n'), ((1973, 2020), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_403_FORBIDDEN', 'error_msg'], {}), '(status.HTTP_403_FORBIDDEN, error_msg)\n', (1982, 2020), False, 'from seahub.api2.utils import api_error\n'), ((2132, 2179), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_403_FORBIDDEN', 'error_msg'], {}), '(status.HTTP_403_FORBIDDEN, error_msg)\n', (2141, 2179), False, 'from seahub.api2.utils import api_error\n'), ((2196, 2222), 'seahub.api2.endpoints.utils.is_org_user', 'is_org_user', (['email', 'org_id'], {}), '(email, org_id)\n', (2207, 2222), False, 'from seahub.api2.endpoints.utils import is_org_user\n'), ((2288, 2335), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_403_FORBIDDEN', 'error_msg'], {}), '(status.HTTP_403_FORBIDDEN, error_msg)\n', (2297, 2335), False, 'from seahub.api2.utils import api_error\n'), ((1791, 1838), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_404_NOT_FOUND', 'error_msg'], {}), '(status.HTTP_404_NOT_FOUND, error_msg)\n', (1800, 1838), False, 'from seahub.api2.utils import api_error\n'), ((2603, 2652), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_400_BAD_REQUEST', 'error_msg'], {}), '(status.HTTP_400_BAD_REQUEST, error_msg)\n', (2612, 2652), False, 'from seahub.api2.utils import api_error\n'), ((2764, 2813), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_400_BAD_REQUEST', 'error_msg'], {}), '(status.HTTP_400_BAD_REQUEST, error_msg)\n', (2773, 2813), False, 'from seahub.api2.utils import api_error\n'), ((2848, 2899), 'seahub.profile.models.Profile.objects.add_or_update', 'Profile.objects.add_or_update', (['email'], {'nickname': 'name'}), '(email, nickname=name)\n', (2877, 2899), False, 'from seahub.profile.models import Profile\n'), ((3444, 3493), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_400_BAD_REQUEST', 'error_msg'], {}), '(status.HTTP_400_BAD_REQUEST, error_msg)\n', (3453, 3493), False, 'from seahub.api2.utils import api_error\n'), ((3528, 3593), 'seahub.profile.models.Profile.objects.add_or_update', 'Profile.objects.add_or_update', (['email'], {'contact_email': 'contact_email'}), '(email, contact_email=contact_email)\n', (3557, 3593), False, 'from seahub.profile.models import Profile\n'), ((3042, 3101), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_500_INTERNAL_SERVER_ERROR', 'error_msg'], {}), '(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg)\n', (3051, 3101), False, 'from seahub.api2.utils import api_error\n'), ((3337, 3366), 'seahub.utils.is_valid_email', 'is_valid_email', (['contact_email'], {}), '(contact_email)\n', (3351, 3366), False, 'from seahub.utils import is_valid_email\n'), ((3736, 3795), 'seahub.api2.utils.api_error', 'api_error', (['status.HTTP_500_INTERNAL_SERVER_ERROR', 'error_msg'], {}), '(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg)\n', (3745, 3795), False, 'from seahub.api2.utils import api_error\n')]
import logging import os from enum import Enum from imageai.Prediction.Custom import CustomImagePrediction # Show only errors in console logging.getLogger("tensorflow").setLevel(logging.ERROR) class MovesEnum(int, Enum): ROCK = 0 PAPER = 1 SCISSORS = 2 class ModelTypeEnum(Enum): """ An helper enum to help for model type choice """ RESNET = 0 SQEEZENET = 1 INCEPTIONV3 = 2 DENSENET = 3 class RockPaperScissorsPredictor: """ This class contains the required code for model training and move prediction using a webcam """ MODEL_TYPE_SET_LOOKUP = { ModelTypeEnum.RESNET: lambda x: x.setModelTypeAsResNet(), ModelTypeEnum.SQEEZENET: lambda x: x.setModelTypeAsSqueezeNet(), ModelTypeEnum.INCEPTIONV3: lambda x: x.setModelTypeAsInceptionV3(), ModelTypeEnum.DENSENET: lambda x: x.setModelTypeAsDenseNet(), } MOVES_LOOKUP = { "rock": MovesEnum.ROCK, "paper": MovesEnum.PAPER, "scissors": MovesEnum.SCISSORS, } def __init__( self, model_type=ModelTypeEnum.RESNET, class_number=3, # We have 3 different objects: "rock", "paper", "scissors" ): self.model_type = model_type self.class_number = class_number self.base_path = os.getcwd() # Instantiate the CustomImagePrediction object that will predict our moves self.predictor = CustomImagePrediction() # Set the model type of the neural network (it must be the same of the training) self._set_proper_model_type(self.model_type) # Set path to the trained model file self.predictor.setModelPath( os.path.join(self.base_path, "data", "move_detector", "model.h5") ) # Set path to the json file that contains our classes and their labels self.predictor.setJsonPath( os.path.join(self.base_path, "data", "move_detector", "model_class.json") ) # Load the trained model and set it to use "class_number" classes self.predictor.loadModel(num_objects=self.class_number) def _set_proper_model_type(self, model_type): self.MODEL_TYPE_SET_LOOKUP[model_type](self.predictor) def detect_move_from_picture(self, picture, sensibility=90): predictions, probabilities = self.predictor.predictImage( picture, result_count=3, input_type="array" ) # Get a tuple (class_predicted, probability) that contains the best # prediction best_prediction = max( zip(predictions, probabilities), key=lambda x: x[1] ) if best_prediction[1] < sensibility: return return self.MOVES_LOOKUP[best_prediction[0]]
[ "os.getcwd", "os.path.join", "logging.getLogger", "imageai.Prediction.Custom.CustomImagePrediction" ]
[((139, 170), 'logging.getLogger', 'logging.getLogger', (['"""tensorflow"""'], {}), "('tensorflow')\n", (156, 170), False, 'import logging\n'), ((1322, 1333), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1331, 1333), False, 'import os\n'), ((1442, 1465), 'imageai.Prediction.Custom.CustomImagePrediction', 'CustomImagePrediction', ([], {}), '()\n', (1463, 1465), False, 'from imageai.Prediction.Custom import CustomImagePrediction\n'), ((1702, 1767), 'os.path.join', 'os.path.join', (['self.base_path', '"""data"""', '"""move_detector"""', '"""model.h5"""'], {}), "(self.base_path, 'data', 'move_detector', 'model.h5')\n", (1714, 1767), False, 'import os\n'), ((1905, 1978), 'os.path.join', 'os.path.join', (['self.base_path', '"""data"""', '"""move_detector"""', '"""model_class.json"""'], {}), "(self.base_path, 'data', 'move_detector', 'model_class.json')\n", (1917, 1978), False, 'import os\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Exercise 18: Cows And Bulls Create a program that will play the “cows and bulls” game with the user. The game works like this: Randomly generate a 4-digit number. Ask the user to guess a 4-digit number. For every digit that the user guessed correctly in the correct place, they have a “cow”. For every digit the user guessed correctly in the wrong place is a “bull.” Every time the user makes a guess, tell them how many “cows” and “bulls” they have. Once the user guesses the correct number, the game is over. Keep track of the number of guesses the user makes throughout teh game and tell the user at the end. Say the number generated by the computer is 1038. An example interaction could look like this: Welcome to the Cows and Bulls Game! Enter a number: >>> 1234 2 cows, 0 bulls >>> 1256 1 cow, 1 bull Until the user guesses the number. """ import random def get_secret_number(): """ Define the secret number and write it to a file. """ secret_number = str(random.randint(1000, 9999)) with open("secret_number.txt", "w") as file: print(secret_number, file=file) return secret_number def get_cows_and_bulls(secret, user): """Calculate the amount of cows and bulls. """ cows = bulls = 0 secret_chars = secret for i in range(len(secret)): if user[i] == secret[i]: cows += 1 if user[i] in secret_chars: bulls += 1 secret_chars = remove_char(secret_chars, user[i]) return cows, bulls def remove_char(s, c): """Remove a char of the string. When a user character exist in a secret_chars, add 1 to bulls and remove it of secret_chars to don't duplicate the count """ list_chars = list(s) list_chars.remove(c) return "".join(list_chars) if __name__ == "__main__": guessed = False attempts = 0 secret = get_secret_number() while not guessed: user = input("Guess a 4-digit number: ") attempts += 1 if user == secret: guessed = True print("%i cows, %i bulls" % (get_cows_and_bulls(secret, user))) print( "Congrats! The number is %s. You did %s attempts." % (secret, attempts))
[ "random.randint" ]
[((1056, 1082), 'random.randint', 'random.randint', (['(1000)', '(9999)'], {}), '(1000, 9999)\n', (1070, 1082), False, 'import random\n')]
''' Created on Apr 12, 2013 @author: <NAME> ''' from lxml import etree from StringIO import StringIO from screensketch.screenspec import model class XMLReader(object): def __init__(self, input_data): self.input_data = input_data self.retval = None; def __parseComponent(self, node, parent): items = node.items() if len(items) > 1: raise ValueError('Incorrect data in component node') name = None if len(items) == 1: name = items[0][1] clazz = { 'EDIT_BOX': model.EditBox, 'BUTTON': model.Button, 'CHECK_BOX': model.CheckBox, 'CHECK_BOXES': model.CheckBoxes, 'COMBO_BOX': model.ComboBox, 'DYNAMIC_TEXT': model.DynamicText, 'EDIT_BOX': model.EditBox, 'IMAGE': model.Image, 'LINK': model.Link, 'LIST': model.List, 'LIST_BOX': model.ListBox, 'PASSWORD': model.Password, 'RADIO_BUTTON': model.RadioButton, 'RADIO_BUTTONS': model.RadioButtons, 'SIMPLE': model.Simple, 'STATIC_TEXT': model.StaticText, 'TABLE': model.Table, 'TEXT_AREA': model.TextArea, }.get(name, model.Entity) if clazz is None: raise ValueError('%s is an unsupported type of component' % name) children = [] values = [] for n in node.getchildren(): if n.tag == 'identifier': identifier = n.text elif n.tag == 'children': children = self.__parseChildren(n, parent) elif n.tag == 'values': values = self.__parseValues(n, parent) else: raise ValueError('%s is an unsupported node in component tag' % n.tag) component = clazz(identifier) for child in children: component.append(child) if values: component._set_static_values(values) return component def __parseValues(self, node, parent): # tag name checked in __parseComponent children = [] for n in node.getchildren(): if n.tag == 'value': selected = False items = n.items() if len(items) == 1 and len(items[0]) == 2: selected = items[0][1] children.append(model.StaticValue(n.text, selected)) else: raise ValueError('%s is an unsupported node in values tag' % n.tag) return children def __parseChildren(self, node, parent): # tag name checked in __parseScreen children = [] for n in node.getchildren(): children.append(self.__parseComponent(n, parent)) return children def __parseScreen(self, node, parent): if node.tag != 'screen': raise ValueError('Tag screen-spec not found') children = [] for n in node.getchildren(): if n.tag == 'name': name = n.text elif n.tag == 'children': children = self.__parseChildren(n, parent) else: raise ValueError('Unknown node in screen tag found') parent.append(model.Screen(name, children)) def __parseScreenSpec(self, node): if node.tag != 'screen-spec': raise ValueError('Tag screen-spec not found') self.retval = model.ScreenSpec() for n in node.getchildren(): self.__parseScreen(n, self.retval) def execute(self): root = etree.fromstring(self.input_data) self.__parseScreenSpec(root) return self.retval
[ "screensketch.screenspec.model.ScreenSpec", "screensketch.screenspec.model.StaticValue", "lxml.etree.fromstring", "screensketch.screenspec.model.Screen" ]
[((2820, 2838), 'screensketch.screenspec.model.ScreenSpec', 'model.ScreenSpec', ([], {}), '()\n', (2836, 2838), False, 'from screensketch.screenspec import model\n'), ((2939, 2972), 'lxml.etree.fromstring', 'etree.fromstring', (['self.input_data'], {}), '(self.input_data)\n', (2955, 2972), False, 'from lxml import etree\n'), ((2655, 2683), 'screensketch.screenspec.model.Screen', 'model.Screen', (['name', 'children'], {}), '(name, children)\n', (2667, 2683), False, 'from screensketch.screenspec import model\n'), ((1950, 1985), 'screensketch.screenspec.model.StaticValue', 'model.StaticValue', (['n.text', 'selected'], {}), '(n.text, selected)\n', (1967, 1985), False, 'from screensketch.screenspec import model\n')]
from discord.ext import commands import discord import datetime class OnError(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_command_error(self, ctx, error): ignore = (commands.CommandNotFound, discord.NotFound, discord.Forbidden) if isinstance(error, ignore): return embed = discord.Embed(color=self.bot.embed_color) if isinstance(error, commands.BotMissingPermissions): perms = ", ".join([f"{x.replace('_', ' ').replace('guild', 'server').title()}" for x in error.missing_permissions]) embed.title = "Bot Missing Permissions" embed.description = f"I am missing the following permissions: {perms}!" await ctx.send(embed=embed) return if isinstance(error, commands.MissingPermissions): perms = ", ".join([f"{x.replace('_', ' ').replace('guild', 'server').title()}" for x in error.missing_permissions]) embed.title = "Missing Permissions" embed.description = f"You are missing the following permissions: {perms}!" await ctx.send(embed=embed) return if isinstance(error, commands.NotOwner): embed.title = "Not Owner" embed.description = f"You're not the owner of this bot!" await ctx.send(embed=embed) return if isinstance(error, commands.MissingRequiredArgument): embed.title = "Missing Argument" embed.description = f"You are missing a required argument for this command to work: `{error.param.name}`!" await ctx.send(embed=embed) return if isinstance(error, commands.CommandOnCooldown): seconds = int(error.retry_after) wait_until_finish = datetime.datetime.now() + datetime.timedelta(seconds=seconds) await ctx.send(f'⏱️ This command is on a cooldown. Use it after <t:{int(datetime.datetime.timestamp(wait_until_finish))}:R>') return if isinstance(error, commands.DisabledCommand): embed.title = "Disabled" embed.description = "This command is disabled by the bot's owner!" await ctx.send(embed=embed) return if isinstance(error, commands.BadArgument): if isinstance(error, commands.MessageNotFound): embed.title = "Message Not Found" embed.description = "The message id/link you provided is invalid or deleted!" await ctx.send(embed=embed) return if isinstance(error, commands.MemberNotFound): embed.title = "Member Not Found" embed.description = "The member id/mention/name you provided is invalid or didn't exist in this server!" await ctx.send(embed=embed) return if isinstance(error, commands.UserNotFound): embed.title = "User Not Found" embed.description = "The user id/mention/name you provided is invalid or I cannot see that User!" await ctx.send(embed=embed) return if isinstance(error, commands.ChannelNotFound): embed.title = "Channel Not Found" embed.description = "The channel id/mention/name you provided is invalid or I access it!" await ctx.send(embed=embed) return if isinstance(error, commands.RoleNotFound): embed.title = "Role Not Found" embed.description = "The role id/mention/name you provided is invalid or I cannot see that role!" await ctx.send(embed=embed) return if isinstance(error, commands.EmojiNotFound): embed.title = "Emoji Not Found" embed.description = "The emoji id/name you provided is invalid or I cannot see that emoji!" await ctx.send(embed=embed) return embed.title = "Unexpected Error" embed.description = error await ctx.send(embed=embed) async def setup(bot): await bot.add_cog(OnError(bot))
[ "discord.Embed", "discord.ext.commands.Cog.listener", "datetime.timedelta", "datetime.datetime.now", "datetime.datetime.timestamp" ]
[((153, 176), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (174, 176), False, 'from discord.ext import commands\n'), ((383, 424), 'discord.Embed', 'discord.Embed', ([], {'color': 'self.bot.embed_color'}), '(color=self.bot.embed_color)\n', (396, 424), False, 'import discord\n'), ((1833, 1856), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1854, 1856), False, 'import datetime\n'), ((1859, 1894), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'seconds'}), '(seconds=seconds)\n', (1877, 1894), False, 'import datetime\n'), ((1983, 2029), 'datetime.datetime.timestamp', 'datetime.datetime.timestamp', (['wait_until_finish'], {}), '(wait_until_finish)\n', (2010, 2029), False, 'import datetime\n')]
def main() -> None: """ >>> from collections import deque >>> queue = deque(["Python", "Java", "C"]) >>> len(queue) 3 >>> queue deque(['Python', 'Java', 'C']) >>> queue.popleft() 'Python' >>> queue.popleft() 'Java' >>> queue.clear() >>> len(queue) 0 >>> queue deque([]) >>> queue.popleft() Traceback (most recent call last): ... IndexError: pop from an empty deque """ if __name__ == "__main__": from doctest import testmod testmod()
[ "doctest.testmod" ]
[((519, 528), 'doctest.testmod', 'testmod', ([], {}), '()\n', (526, 528), False, 'from doctest import testmod\n')]
#!/usr/bin/env python3 from typing import List, Dict from datetime import date, datetime from calendar import monthrange import os from typing import TypeVar, Tuple from benedict import benedict from Events import Event from CalendarErrors import BreakoutError, MainError from Prompt import prompt_user_date, parse_user_date, prompt_user_time """ Should print a calendar to the terminal/console output and prompt the user to input some number of possible commands to: * scroll from month to month * make, read, and modify events on certain days """ DateTypes = TypeVar("DateTypes", date, datetime) class Calendar: """ Calendar class to hold info on all events in our calendar """ WEEKDAYS = ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"] # calendar commands ============================================================================ # scroll --------------------------------------------------------------------------------------- SCROLL = "S" FORWARD = "F" BACKWARD = "B" SCROLLING = [SCROLL, FORWARD, BACKWARD] # Event ---------------------------------------------------------------------------------------- NEW = "N" MODIFY = "C" READ = "R" EVENTS = [NEW, MODIFY, READ] VERB = { NEW: "Made", MODIFY: "Modified", READ: "Read" } # utility -------------------------------------------------------------------------------------- QUIT = "Q" HELP = "H" ALL = "A" UTIL = [QUIT, HELP, ALL] COMMANDS = SCROLLING + EVENTS + UTIL # indicators ----------------------------------------------------------------------------------- DAY = "D" MONTH = "M" YEAR = "Y" EVENT = "E" INDICATORS = [DAY, MONTH, YEAR, EVENT] MONTHS = { 1: "January", 2: "February", 3: "March", 4: "April", 5: "May", 6: "June", 7: "July", 8: "August", 9: "September", 10: "October", 11: "November", 12: "December" } MENU_STRING = f""" Here's how to use the calendar! To scroll to the next day enter : {FORWARD}{DAY} TO scroll to the previous day enter : {BACKWARD}{DAY} To scroll to the the next month enter : {FORWARD}{MONTH} To scroll to the previous month enter : {BACKWARD}{MONTH} To scroll to the next year enter : {FORWARD}{YEAR} To scroll to the previous year enter : {BACKWARD}{YEAR} To scroll to a date enter : {SCROLL} <date in yyyy/mm/dd format> To create an event enter : {NEW} <date in yyyy/mm/dd format> - <name> To modify an event enter : {MODIFY} <date in yyyy/mm/dd format> - <name> To read an event enter : {READ} <date in yyyy/mm/dd format> - <name> To print all events enter : {ALL} (To continue Press enter) """ def __init__(self): """ Constructor for the Calendar Stores events as a nested dictionary with dates as keys, lastly with a names dict. Structure: self.events = { year(str) : { month(str) : { day(str) : { name(str) : (Event) } } } } """ self.events = benedict() self.today = date.today() def command_loop(self): """ Main loop of the calendar. Prompts the user to input commands to modify the calendar or scroll around in time """ command_ms = "Welcome to the calendar, what would you like to do? \n" command_ms += "(Q to quit, H for help) : " ignores = [" ", "\n"] while True: self.print_calendar() user_input = input(command_ms) for ignore in ignores: user_input = user_input.replace(ignore, "") try: cmd = user_input[0].upper() except IndexError: continue try: if cmd == self.QUIT: break elif cmd == self.HELP: input(self.MENU_STRING) elif cmd == self.ALL: self.print_all_events() elif cmd in self.SCROLLING: self.scroll(user_input) elif cmd in self.EVENTS: self.eventing(user_input) else: input(f"{cmd} is not a valid command, please input a valid command\ {self.MENU_STRING}") # MainError is just an indicator that user wants to try and input again except MainError: continue def scroll(self, usr_input: str): """ parse scroll commands from the user and make the correct call to print_calendar() Args: usr_input : string input by the user. Should be led by a valid scroll based command """ cmd = usr_input[0] if len(usr_input) > 1: usr_args = usr_input[1:] else: usr_args = None if cmd == self.SCROLL: calendar_date = parse_user_date(usr_args) self.today = calendar_date elif cmd == self.FORWARD or cmd == self.BACKWARD: # Move forward of backward if cmd == self.FORWARD: sgn = 1 else: sgn = -1 if usr_args is not None: usr_ind = usr_args[0].upper() else: usr_ind = usr_args if usr_ind == self.YEAR: self.today = date(self.today.year+sgn, self.today.month, self.today.day) elif usr_ind == self.DAY: self.today = date(self.today.year, self.today.month, self.today.day+sgn) else: # Scroll by month is default self.today = date(self.today.year, self.today.month+sgn, self.today.day) def eventing(self, usr_input: str): """ parse event commands from the user and edit self.events dict Args: usr_input : string input by the user. Should be led by a valid event based command """ cmd = usr_input[0] if len(usr_input) > 1: usr_args = usr_input[1:] else: usr_args = None if usr_args is None: calendar_date = prompt_user_date("Lets get a date for the event") name = input("Give us a name for the event : ") else: usr_args = usr_args.split("-")[:2] calendar_date = parse_user_date(usr_args[0]) if len(usr_args) >= 2: name = usr_args[1] else: name = input(f"What is the name of the event to be {Calendar.VERB[cmd]}") if cmd == self.NEW: self.add_event(calendar_date, name) input(f"new event created {self.get_event(calendar_date, name)}") if cmd == self.MODIFY or cmd == self.READ: if name in self.find_events(calendar_date).keys(): if cmd == self.MODIFY: mod_event = self.get_event(calendar_date, name) mod_event.modify() self.update_event(mod_event, calendar_date, name) input(f"Modified event : {mod_event}") else: input(self.get_event(calendar_date, name)) else: input("The event you described does not exist. Back to main menu ") def update_event(self, modified_event: Event, old_date: DateTypes, old_name: str): """ Checks event after it's been modified and rewrites it to the dict with updated indeces """ input("Hello There") new_ev = self.get_event(modified_event.date_of_event, modified_event.name) old_ev = self.get_event(old_date, old_name) if new_ev != old_ev: input("General Kenobi") pop_str = f"{old_date.year}.{old_date.month}.{old_date.day}.{old_name}" self.events.pop(pop_str) Calendar.clean_nested_dict(self.events) self.events[ self.ind_from_date(modified_event.date_of_event, modified_event.name) ] = modified_event def print_all_events(self): prnt = "{\n" for year, months in self.events.items(): prnt += f"\t{year} : " + "{\n" for month, days in months.items(): prnt += f"\t\t{month} : " + "{\n" for day, names in days.items(): prnt += f"\t\t\t{day} : " + "{\n" for name, ev in names.items(): ev_str = repr(ev).replace("\n", "\n\t\t\t\t\t") prnt += f"\t\t\t\t{name}\t{ev_str}\n" prnt += "\t\t\t},\n" prnt += "\t\t},\n" prnt += "\t},\n" prnt += "}" input(prnt) @staticmethod def clean_nested_dict(nested_dict): """ Recursively cleans nested_dict to remove empty dicts and subdicts Believe it or not this works. Checkout the Calendar testing ipython notebook. """ # if lowest level item is not an empty dict, don't pop this, or parents if not isinstance(nested_dict, dict): return False # if lowest level item is an empty dict, pop this from the parent and clean up recursively if nested_dict == {}: return True # indicates whether this dict/sub_dict should be "popped" (cleaned up) pop_this = True for key, sub_dict in list(nested_dict.items()): pop_that = Calendar.clean_nested_dict(sub_dict) if pop_that: nested_dict.pop(key) pop_this *= pop_that return pop_this @staticmethod def ind_from_date(calendar_date: DateTypes, name: str = None): """ Args: calendar_date : date to be used for indexing name : optional. Tacked on to return if included Returns: year (int), month (int), day (int), name (str) """ if name is not None: return str(calendar_date.year), str(calendar_date.month), str(calendar_date.day), name else: return str(calendar_date.year), str(calendar_date.month), str(calendar_date.day) def get_event(self, calendar_date: DateTypes, name: str) -> Event: """ Gets an event from a name and a date Args: calendar_date : date of the event name : name of the event: Returns: The event found. Or None if none are found """ try: ev = self.events[self.ind_from_date(calendar_date, name)] except KeyError: ev = None return ev def find_events(self, calendar_date: DateTypes) -> Dict: """ finds all events that occur on calendar_date and returns them Args: calendar_date : date or datetime object where we're looking for events Returns: daily events : dictionary of events occurring on that day, empty dict if there are none """ try: daily_events = self.events[self.ind_from_date(calendar_date)] except KeyError: daily_events = {} return daily_events def add_event(self, calendar_date: DateTypes, name: str): """ Adds an event to the calendar Args: calendar_date : date of the new event name : name of that event """ while name in self.find_events(calendar_date).keys(): overwrite = input( f"Another event is named {name} on that date. Do you wish to overwrite it? (Y/n) : " f"Other event : {self.get_event(calendar_date, name)}\n" ) overwrite = overwrite.upper() != "N" if not overwrite: name = input(f"Please enter a new name for the event : ") else: break description = input("Give us a brief description of the event : \n") if input("Do you wish to specify a time? (y/N)").upper() != "Y": self.events[self.ind_from_date(calendar_date, name)] = Event( calendar_date, name, description, ) else: self.events[self.ind_from_date(calendar_date, name)] = Event( calendar_date, name, description, prompt_user_time("What time do you want to set?") ) def print_calendar(self): """ Prints a calendar to the terminal or command for the month which contains day. """ def color_entry(message: str, txt: str = "normal", bg: str = "normal") -> str: """ turns message into a colorful version of itself Args: message : message to be beautified txt : string indicating color of text bg : string indicating color of background Returns: beautified message """ txt_colors = { "black": "30", "red": "31", "green": "32", "yellow": "33", "blue": "34", "purple": "35", "cyan": "36", "white": "37", "normal": 1 } bg_colors = { "black": f"{37+10}", "red": f"{31 + 10}", "green": f"{32 + 10}", "yellow": f"{33 + 10}", "blue": f"{34 + 10}", "purple": f"{35 + 10}", "cyan": f"{36 + 10}", "white": f"{30 + 10}", "normal": 1 } return f"\033[1;{txt_colors[txt]};{bg_colors[bg]}m{message}\033[0m" os.system('cls') # Find which day of the week the month started on first_day = date(self.today.year, self.today.month, 1).weekday() # Find number of days in month num_days = monthrange(self.today.year, self.today.month)[1] try: monthly_events = list(self.events[str(self.today.year), str(self.today.month)].keys()) monthly_events = [int(dy) for dy in monthly_events] except KeyError: monthly_events = [] cal_string = "" # Print month and year cal_string += color_entry( f"{self.MONTHS[self.today.month]} : {self.today.year}\n", txt="cyan" ) # Print the days of the week for day in self.WEEKDAYS: cal_string += f"{day} " cal_string += "\n" days = 0 while days < num_days: for i, day in enumerate(self.WEEKDAYS): if days == 0 and i < first_day: entry = " " else: days += 1 entry = f"{days:2} " if days in monthly_events and not days == self.today.day: entry = color_entry(entry, txt="green") if days == self.today.day and days not in monthly_events: entry = color_entry(entry, bg="red") if days == self.today.day and days in monthly_events: entry = color_entry(entry, txt="green", bg="red") if days > num_days: entry = " " cal_string += entry cal_string += "\n" print(cal_string) if __name__ == '__main__': cal = Calendar() cal.command_loop()
[ "Prompt.parse_user_date", "Prompt.prompt_user_time", "os.system", "datetime.date.today", "datetime.date", "benedict.benedict", "Events.Event", "Prompt.prompt_user_date", "calendar.monthrange", "typing.TypeVar" ]
[((565, 601), 'typing.TypeVar', 'TypeVar', (['"""DateTypes"""', 'date', 'datetime'], {}), "('DateTypes', date, datetime)\n", (572, 601), False, 'from typing import TypeVar, Tuple\n'), ((2975, 2985), 'benedict.benedict', 'benedict', ([], {}), '()\n', (2983, 2985), False, 'from benedict import benedict\n'), ((3001, 3013), 'datetime.date.today', 'date.today', ([], {}), '()\n', (3011, 3013), False, 'from datetime import date, datetime\n'), ((11394, 11410), 'os.system', 'os.system', (['"""cls"""'], {}), "('cls')\n", (11403, 11410), False, 'import os\n'), ((4398, 4423), 'Prompt.parse_user_date', 'parse_user_date', (['usr_args'], {}), '(usr_args)\n', (4413, 4423), False, 'from Prompt import prompt_user_date, parse_user_date, prompt_user_time\n'), ((5368, 5417), 'Prompt.prompt_user_date', 'prompt_user_date', (['"""Lets get a date for the event"""'], {}), "('Lets get a date for the event')\n", (5384, 5417), False, 'from Prompt import prompt_user_date, parse_user_date, prompt_user_time\n'), ((5534, 5562), 'Prompt.parse_user_date', 'parse_user_date', (['usr_args[0]'], {}), '(usr_args[0])\n', (5549, 5562), False, 'from Prompt import prompt_user_date, parse_user_date, prompt_user_time\n'), ((10205, 10244), 'Events.Event', 'Event', (['calendar_date', 'name', 'description'], {}), '(calendar_date, name, description)\n', (10210, 10244), False, 'from Events import Event\n'), ((11577, 11622), 'calendar.monthrange', 'monthrange', (['self.today.year', 'self.today.month'], {}), '(self.today.year, self.today.month)\n', (11587, 11622), False, 'from calendar import monthrange\n'), ((10386, 10435), 'Prompt.prompt_user_time', 'prompt_user_time', (['"""What time do you want to set?"""'], {}), "('What time do you want to set?')\n", (10402, 10435), False, 'from Prompt import prompt_user_date, parse_user_date, prompt_user_time\n'), ((11477, 11519), 'datetime.date', 'date', (['self.today.year', 'self.today.month', '(1)'], {}), '(self.today.year, self.today.month, 1)\n', (11481, 11519), False, 'from datetime import date, datetime\n'), ((4736, 4797), 'datetime.date', 'date', (['(self.today.year + sgn)', 'self.today.month', 'self.today.day'], {}), '(self.today.year + sgn, self.today.month, self.today.day)\n', (4740, 4797), False, 'from datetime import date, datetime\n'), ((4842, 4903), 'datetime.date', 'date', (['self.today.year', 'self.today.month', '(self.today.day + sgn)'], {}), '(self.today.year, self.today.month, self.today.day + sgn)\n', (4846, 4903), False, 'from datetime import date, datetime\n'), ((4958, 5019), 'datetime.date', 'date', (['self.today.year', '(self.today.month + sgn)', 'self.today.day'], {}), '(self.today.year, self.today.month + sgn, self.today.day)\n', (4962, 5019), False, 'from datetime import date, datetime\n')]
import numpy as np import gym from random import randint from metaworld.benchmarks import ML1 class ReachML1Env(gym.Env): def __init__(self, max_episode_steps=150,out_of_distribution=False, n_train_tasks=50, n_test_tasks=10, **kwargs): super(ReachML1Env, self).__init__() self.train_env = ML1.get_train_tasks('reach-v1', out_of_distribution=out_of_distribution) self.test_env = ML1.get_test_tasks('reach-v1', out_of_distribution=out_of_distribution) self.train_tasks = self.train_env.sample_tasks(n_train_tasks) self.test_tasks = self.test_env.sample_tasks(n_test_tasks) self.tasks = self.train_tasks + self.test_tasks self.env = self.train_env #this env will change depending on the idx self.observation_space = self.env.observation_space self.action_space = self.env.action_space self.goal_space_origin = np.array([0, 0.85, 0.175]) self.current_task_idx = 0 self.episode_steps = 0 self._max_episode_steps = max_episode_steps # self.get_tasks_goals() # self.reset_task() def step(self, action): self.episode_steps += 1 obs, reward, done, info = self.env.step(action) if self.episode_steps >= self._max_episode_steps: done = True return obs, reward, done, info def reset(self): self.episode_steps = 0 return self.env.reset() def seed(self, seed): self.train_env.seed(seed) self.test_env.seed(seed) def get_all_task_idx(self): return range(len(self.tasks)) def set_task(self, idx): self.current_task_idx = idx self.env = self.train_env if idx < len(self.train_tasks) else self.test_env self.env.set_task(self.tasks[idx]) self._goal = self.tasks[idx]['goal'] def get_task(self): return self.tasks[self.current_task_idx]['goal'] # goal_pos def reset_task(self, task=None, test=False): # aparently this is called only without idx, so tasks are always scrambled # we have to set anything only at test time if task is None: if test: task = randint(len(self.train_tasks), len(self.tasks) - 1) else: task = randint(0, len(self.train_tasks) - 1) self.set_task(task) def render(self): self.env.render() def get_tasks_goals(self): for idx in range(len(self.tasks)): self.reset_task(idx) _, _, _, info = self.step(self.action_space.sample()) self.tasks[idx]['goal_pos'] = info['goal']
[ "metaworld.benchmarks.ML1.get_train_tasks", "metaworld.benchmarks.ML1.get_test_tasks", "numpy.array" ]
[((311, 383), 'metaworld.benchmarks.ML1.get_train_tasks', 'ML1.get_train_tasks', (['"""reach-v1"""'], {'out_of_distribution': 'out_of_distribution'}), "('reach-v1', out_of_distribution=out_of_distribution)\n", (330, 383), False, 'from metaworld.benchmarks import ML1\n'), ((408, 479), 'metaworld.benchmarks.ML1.get_test_tasks', 'ML1.get_test_tasks', (['"""reach-v1"""'], {'out_of_distribution': 'out_of_distribution'}), "('reach-v1', out_of_distribution=out_of_distribution)\n", (426, 479), False, 'from metaworld.benchmarks import ML1\n'), ((893, 919), 'numpy.array', 'np.array', (['[0, 0.85, 0.175]'], {}), '([0, 0.85, 0.175])\n', (901, 919), True, 'import numpy as np\n')]
# --- Day 20: Infinite Elves and Infinite Houses --- # # To keep the Elves busy, Santa has them deliver some presents by hand, door-to-door. He sends them down a street with # infinite houses numbered sequentially: 1, 2, 3, 4, 5, and so on. # # Each Elf is assigned a number, too, and delivers presents to houses based on that number: # # The first Elf (number 1) delivers presents to every house: 1, 2, 3, 4, 5, .... # The second Elf (number 2) delivers presents to every second house: 2, 4, 6, 8, 10, .... # Elf number 3 delivers presents to every third house: 3, 6, 9, 12, 15, .... # # There are infinitely many Elves, numbered starting with 1. Each Elf delivers presents equal to ten times his or her # number at each house. # # So, the first nine houses on the street end up like this: # # House 1 got 10 presents. # House 2 got 30 presents. # House 3 got 40 presents. # House 4 got 70 presents. # House 5 got 60 presents. # House 6 got 120 presents. # House 7 got 80 presents. # House 8 got 150 presents. # House 9 got 130 presents. # # The first house gets 10 presents: it is visited only by Elf 1, which delivers 1 * 10 = 10 presents. The fourth house # gets 70 presents, because it is visited by Elves 1, 2, and 4, for a total of 10 + 20 + 40 = 70 presents. # # What is the lowest house number of the house to get at least as many presents as the number in your puzzle input? # # --- Part Two --- # # The Elves decide they don't want to visit an infinite number of houses. Instead, each Elf will stop after delivering # presents to 50 houses. To make up for it, they decide to deliver presents equal to eleven times their number at each # house. # # With these changes, what is the new lowest house number of the house to get at least as many presents as the number # in your puzzle input? from math import sqrt def get_part1_factors(n): factors = set() for x in range(1, int(sqrt(n)) + 1): if n % x == 0: factors.add(x) factors.add(n // x) return factors def get_part2_factors(n): factors = set() for x in range(1, int(sqrt(n)) + 1): if n % x == 0: if x * 50 >= n: factors.add(x) if (n // x) * 50 >= n: factors.add(n // x) return factors data = 33100000 # Part 1 house_no = 1 while True: presents = sum(map(lambda i: i*10, get_part1_factors(house_no))) if presents >= data: print("House no: {0}".format(house_no)) break house_no += 1 # Part 2 house_no = 1 while True: presents = sum(map(lambda i: i*11, get_part2_factors(house_no))) if presents >= data: print("House no: {0}".format(house_no)) break house_no += 1
[ "math.sqrt" ]
[((1895, 1902), 'math.sqrt', 'sqrt', (['n'], {}), '(n)\n', (1899, 1902), False, 'from math import sqrt\n'), ((2085, 2092), 'math.sqrt', 'sqrt', (['n'], {}), '(n)\n', (2089, 2092), False, 'from math import sqrt\n')]
# partymoder xbmc add-on # Copyright 2017 aerth <<EMAIL>> # Released under the terms of the MIT License import xbmc xbmc.executebuiltin('xbmc.PlayerControl(Partymode(music)', True) xbmc.executebuiltin('xbmc.PlayerControl(repeatall)', True) xbmc.executebuiltin("Action(Fullscreen)", True)
[ "xbmc.executebuiltin" ]
[((119, 183), 'xbmc.executebuiltin', 'xbmc.executebuiltin', (['"""xbmc.PlayerControl(Partymode(music)"""', '(True)'], {}), "('xbmc.PlayerControl(Partymode(music)', True)\n", (138, 183), False, 'import xbmc\n'), ((184, 242), 'xbmc.executebuiltin', 'xbmc.executebuiltin', (['"""xbmc.PlayerControl(repeatall)"""', '(True)'], {}), "('xbmc.PlayerControl(repeatall)', True)\n", (203, 242), False, 'import xbmc\n'), ((243, 290), 'xbmc.executebuiltin', 'xbmc.executebuiltin', (['"""Action(Fullscreen)"""', '(True)'], {}), "('Action(Fullscreen)', True)\n", (262, 290), False, 'import xbmc\n')]
from django.contrib import admin from blog.models import Post, BlogComment, Category # Register your models here. admin.site.register((BlogComment,)) # it must be in tupple formate admin.site.register(Category) @admin.register(Post) class PostAdmin(admin.ModelAdmin): class Media: js = ("tinyInject.js",)
[ "django.contrib.admin.register", "django.contrib.admin.site.register" ]
[((115, 150), 'django.contrib.admin.site.register', 'admin.site.register', (['(BlogComment,)'], {}), '((BlogComment,))\n', (134, 150), False, 'from django.contrib import admin\n'), ((182, 211), 'django.contrib.admin.site.register', 'admin.site.register', (['Category'], {}), '(Category)\n', (201, 211), False, 'from django.contrib import admin\n'), ((214, 234), 'django.contrib.admin.register', 'admin.register', (['Post'], {}), '(Post)\n', (228, 234), False, 'from django.contrib import admin\n')]
#!/usr/bin/env python3 # MIT License # # Copyright (c) 2018 <NAME> (<EMAIL>) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from argparse import ArgumentParser import socket from sys import exit, stdout from time import sleep __version__ = '0.1' class RSSrvCore: def __init__(self): """Initialize a shell server""" self.args = None self.arg_parser = ArgumentParser() def get_args(self): """Set argument options""" self.arg_parser.add_argument('--version', action = 'version', version = '%(prog)s ' + str(__version__)) self.arg_parser.add_argument('-f', action = 'store_true', dest = 'force', help = ('bind to sockets that are already in use')) self.arg_parser.add_argument('port', action = 'store', type=int, help = ('set the local port')) self.args = self.arg_parser.parse_args() def main_event(self, force=False): """Connect to an incoming shell""" s = socket.socket() if force: print('Enabling socket address reuse.') s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) print('Binding to port ' + str(self.args.port)) s.bind(('0.0.0.0', self.args.port)) s.listen(1) conn, host = s.accept() print('Received connection from ' + str(host[0]) + \ ':' + str(host[1]) + '.') remotehost, remotepyversion = str( conn.recv(1024))[2:-1].split(':') print('Remote hostname: ' + remotehost + '.\n' + \ 'Remote Python major version: ' + remotepyversion + \ '.\nEnter h for help.') remotepyversion = int(remotepyversion) if remotehost.split('@')[0] == 'root': promptsuffix = ' # ' else: promptsuffix = ' $ ' print('Type exit or enter EOF (ctrl-d) to exit.') while True: try: cmd = input(remotehost + promptsuffix) if cmd == '!': cmd = lastcmd elif cmd == '': cmd = '\n' if cmd == 'exit': conn.send(bytes(cmd, 'utf8')) conn.close() s.close() exit(0) elif cmd == 'drop': conn.send(bytes('exit', 'utf8')) conn.close() s.close() return 0 elif cmd == 'detach': conn.send(bytes(cmd, 'utf8')) conn.close() s.close() exit(0) elif cmd == 'h': self.show_help() else: conn.send(bytes(cmd, 'utf8')) recdata = conn.recv(16834) if remotepyversion == 2: if recdata and recdata != ':': stdout.buffer.write(recdata) else: if recdata and recdata != bytes('\n', 'utf8'): stdout.buffer.write(recdata) lastcmd = cmd except EOFError: conn.send(bytes('exit', 'utf8')) print('exit') conn.close() s.close() exit(0) def show_help(self): """Show help for shell options""" h = [] h.append('\nCommand Description') h.append('-----------------------------') h.append('h show this help menu') h.append('exit close program (local and remote)') h.append('drop close shell, keep server running') h.append('detach close shell, keep client running') h.append('cd DIR change directory') h.append('') print('\n'.join(h)) def run_script(self): """Run the shell server program""" try: self.get_args() self.main_event(force=self.args.force) while True: self.main_event(force=True) except KeyboardInterrupt: print('\nExiting on KeyboardInterrupt') def main(): thing = RSSrvCore() thing.run_script() if __name__ == "__main__": main()
[ "sys.stdout.buffer.write", "socket.socket", "argparse.ArgumentParser", "sys.exit" ]
[((1400, 1416), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (1414, 1416), False, 'from argparse import ArgumentParser\n'), ((2055, 2070), 'socket.socket', 'socket.socket', ([], {}), '()\n', (2068, 2070), False, 'import socket\n'), ((3345, 3352), 'sys.exit', 'exit', (['(0)'], {}), '(0)\n', (3349, 3352), False, 'from sys import exit, stdout\n'), ((4422, 4429), 'sys.exit', 'exit', (['(0)'], {}), '(0)\n', (4426, 4429), False, 'from sys import exit, stdout\n'), ((3705, 3712), 'sys.exit', 'exit', (['(0)'], {}), '(0)\n', (3709, 3712), False, 'from sys import exit, stdout\n'), ((4030, 4058), 'sys.stdout.buffer.write', 'stdout.buffer.write', (['recdata'], {}), '(recdata)\n', (4049, 4058), False, 'from sys import exit, stdout\n'), ((4184, 4212), 'sys.stdout.buffer.write', 'stdout.buffer.write', (['recdata'], {}), '(recdata)\n', (4203, 4212), False, 'from sys import exit, stdout\n')]
# -*- coding: utf-8 -*- from collections import OrderedDict, defaultdict from shardingpy.api.algorithm.sharding.values import ListShardingValue, RangeShardingValue from shardingpy.constant import ShardingOperator from shardingpy.exception import UnsupportedOperationException from shardingpy.parsing.parser.expressionparser import SQLPlaceholderExpression, SQLTextExpression, SQLNumberExpression from shardingpy.util.extype import RangeType, Range from shardingpy.util.strutil import equals_ignore_case class Column: def __init__(self, name, table_name): self.name = name self.table_name = table_name def __eq__(self, other): return other and isinstance(other, Column) and equals_ignore_case(self.name, other.name) and equals_ignore_case( self.table_name, other.table_name) def __hash__(self): return hash(self.name) + 17 * hash(self.table_name) if self.table_name else 0 class Condition: def __init__(self, column, operator, *sql_expressions): if column: assert isinstance(column, Column) if operator: assert isinstance(operator, ShardingOperator) self.column = column self.operator = operator self._position_index_map = OrderedDict() self._values = list() position = 0 for expr in sql_expressions: if isinstance(expr, SQLPlaceholderExpression): self._position_index_map[position] = expr.index elif isinstance(expr, SQLTextExpression): self._values.append(expr.text) elif isinstance(expr, SQLNumberExpression): self._values.append(expr.number) position += 1 # Deprecated def get_sharding_value(self, parameters): condition_values = self.get_condition_values(parameters) if self.operator in [ShardingOperator.EQUAL, ShardingOperator.IN]: return ListShardingValue(self.column.table_name, self.column.name, condition_values) elif self.operator == ShardingOperator.BETWEEN: return RangeShardingValue(self.column.table_name, self.column.name, Range(condition_values[0], RangeType.CLOSED, condition_values[1], RangeType)) else: raise UnsupportedOperationException("sharding condition not support :" + self.operator.value) def get_condition_values(self, parameters): result = self._values[:] for position, param_index in self._position_index_map.items(): parameter = parameters[param_index] if position < len(result): result.insert(position, parameter) else: result.append(parameter) return result class AndCondition(object): def __init__(self): self.conditions = list() def get_conditions_map(self): result = defaultdict(list) for each in self.conditions: result[each.column].append(each) return result def optimize(self): result = AndCondition() result.conditions = [each for each in self.conditions if type(each) == Condition] if not result.conditions: result.conditions.append(NullCondition()) return result class OrCondition(object): def __init__(self, condition=None): self.and_conditions = list() if condition: self.add(condition) def add(self, condition): assert isinstance(condition, Condition) if len(self.and_conditions) == 0: self.and_conditions.append(AndCondition()) self.and_conditions[0].conditions.append(condition) def find(self, column, index): pass class Conditions: def __init__(self, conditions=None): self.or_condition = OrCondition() if conditions: self.or_condition.and_conditions.extend(conditions.or_condition.and_conditions) def add(self, condition, sharding_rule): if sharding_rule.is_sharding_column(condition.column): self.or_condition.add(condition) class NullCondition(Condition): def __init__(self): super().__init__(None, None) class GeneratedKeyCondition(Condition): def __init__(self, column, index, value): super().__init__(column, ShardingOperator.EQUAL, SQLNumberExpression(value)) self.index = index self.value = value def get_condition_values(self, parameters): return [self.value] if self.value is not None else [parameters[self.index]]
[ "shardingpy.api.algorithm.sharding.values.ListShardingValue", "shardingpy.util.extype.Range", "collections.defaultdict", "shardingpy.parsing.parser.expressionparser.SQLNumberExpression", "shardingpy.util.strutil.equals_ignore_case", "shardingpy.exception.UnsupportedOperationException", "collections.OrderedDict" ]
[((1253, 1266), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1264, 1266), False, 'from collections import OrderedDict, defaultdict\n'), ((2938, 2955), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2949, 2955), False, 'from collections import OrderedDict, defaultdict\n'), ((709, 750), 'shardingpy.util.strutil.equals_ignore_case', 'equals_ignore_case', (['self.name', 'other.name'], {}), '(self.name, other.name)\n', (727, 750), False, 'from shardingpy.util.strutil import equals_ignore_case\n'), ((755, 808), 'shardingpy.util.strutil.equals_ignore_case', 'equals_ignore_case', (['self.table_name', 'other.table_name'], {}), '(self.table_name, other.table_name)\n', (773, 808), False, 'from shardingpy.util.strutil import equals_ignore_case\n'), ((1933, 2010), 'shardingpy.api.algorithm.sharding.values.ListShardingValue', 'ListShardingValue', (['self.column.table_name', 'self.column.name', 'condition_values'], {}), '(self.column.table_name, self.column.name, condition_values)\n', (1950, 2010), False, 'from shardingpy.api.algorithm.sharding.values import ListShardingValue, RangeShardingValue\n'), ((4374, 4400), 'shardingpy.parsing.parser.expressionparser.SQLNumberExpression', 'SQLNumberExpression', (['value'], {}), '(value)\n', (4393, 4400), False, 'from shardingpy.parsing.parser.expressionparser import SQLPlaceholderExpression, SQLTextExpression, SQLNumberExpression\n'), ((2339, 2431), 'shardingpy.exception.UnsupportedOperationException', 'UnsupportedOperationException', (["('sharding condition not support :' + self.operator.value)"], {}), "('sharding condition not support :' + self.\n operator.value)\n", (2368, 2431), False, 'from shardingpy.exception import UnsupportedOperationException\n'), ((2185, 2261), 'shardingpy.util.extype.Range', 'Range', (['condition_values[0]', 'RangeType.CLOSED', 'condition_values[1]', 'RangeType'], {}), '(condition_values[0], RangeType.CLOSED, condition_values[1], RangeType)\n', (2190, 2261), False, 'from shardingpy.util.extype import RangeType, Range\n')]
import re import logging from dataclasses import dataclass, field from typing import List, Optional import torch import torch.nn as nn from transformers import BertPreTrainedModel from src.model.decoder import Decoder from src.model.encoders.bert import _BertEncoder from src.model.encoders.ca_mtl_base import CaMtlBaseEncoder from src.model.encoders.ca_mtl_large import CaMtlLargeEncoder logger = logging.getLogger(__name__) @dataclass class CaMtlArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={ "help": "Path to pretrained model or model identifier from: CA-MTL-base, CA-MTL-large, bert-base-cased " "bert-base-uncased, bert-large-cased, bert-large-uncased" } ) encoder_type: str = field( default=None, metadata={ "help": "Identifier of encoder-type to use: CA-MTL-base, CA-MTL-large, bert-base-cased " "bert-base-uncased, bert-large-cased, bert-large-uncased" } ) class CaMtl(BertPreTrainedModel): def __init__( self, config, model_args, data_args, ): super().__init__(config) self.data_args = data_args self.bert = self._create_encoder(model_args.encoder_type) self.decoders = nn.ModuleList() for task in data_args.tasks: self.decoders.append(Decoder(config.hidden_size, task)) self.init_weights() def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, task_id=None, span_locs=None, sample_id=None, ): outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, task_id=task_id, ) sequence_output, pooled_output = outputs[:2] loss_list = [] unique_task_ids = torch.unique(task_id) unique_task_ids_list = ( unique_task_ids.cpu().numpy() if unique_task_ids.is_cuda else unique_task_ids.numpy() ) loss_grouped_per_task = ( torch.zeros_like(task_id[0]).repeat(len(self.data_args.tasks)).float() ) batch_entropy_per_task = torch.zeros(input_ids.shape[0]) batch_entropy_mean_per_task = torch.zeros(input_ids.shape[0]) max_mean_batch_entropy = None logits = None for unique_task_id in unique_task_ids_list: task_id_filter = task_id == unique_task_id decoder_id = unique_task_id logits, current_loss, batch_entropy = self.decoders[decoder_id].forward( sequence_output[task_id_filter], pooled_output[task_id_filter], labels=None if labels is None else labels[task_id_filter], attention_mask=attention_mask[task_id_filter], ) batch_entropy_mean = batch_entropy.mean().item() batch_entropy_per_task[task_id_filter] = batch_entropy batch_entropy_mean_per_task[task_id_filter] = torch.full_like( batch_entropy, batch_entropy_mean ) if ( max_mean_batch_entropy is None or batch_entropy_mean > max_mean_batch_entropy ): max_mean_batch_entropy = batch_entropy_mean if labels is not None: loss_grouped_per_task[unique_task_id] = current_loss loss_list.append(current_loss) outputs = ( (logits,) + outputs[2:] + ( batch_entropy_per_task, batch_entropy_mean_per_task, max_mean_batch_entropy, ) ) if loss_list: loss = torch.stack(loss_list) outputs = (loss.mean(),) + outputs + (loss_grouped_per_task.view(1, -1),) return outputs def _create_encoder(self, encoder_type): if encoder_type == "CA-MTL-large": return CaMtlLargeEncoder(self.config, data_args=self.data_args) elif encoder_type == "CA-MTL-base": return CaMtlBaseEncoder(self.config, data_args=self.data_args) elif encoder_type == "CA-MTL-base-uncased": return CaMtlBaseEncoder(self.config, data_args=self.data_args) elif encoder_type == "CA-MTL-tiny": return CaMtlBaseEncoder(self.config, data_args=self.data_args) else: return _BertEncoder(self.config) @staticmethod def get_base_model(model_name_or_path): if model_name_or_path == "CA-MTL-large": return "bert-large-cased" elif model_name_or_path == "CA-MTL-base": return "bert-base-cased" elif model_name_or_path == "CA-MTL-base-uncased": return "bert-base-uncased" elif model_name_or_path == "CA-MTL-tiny": return 'huawei-noah/TinyBERT_General_6L_768D' else: return model_name_or_path
[ "src.model.encoders.bert._BertEncoder", "src.model.encoders.ca_mtl_base.CaMtlBaseEncoder", "torch.full_like", "torch.unique", "torch.stack", "torch.nn.ModuleList", "torch.zeros_like", "src.model.encoders.ca_mtl_large.CaMtlLargeEncoder", "src.model.decoder.Decoder", "dataclasses.field", "torch.zeros", "logging.getLogger" ]
[((401, 428), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (418, 428), False, 'import logging\n'), ((600, 786), 'dataclasses.field', 'field', ([], {'metadata': "{'help':\n 'Path to pretrained model or model identifier from: CA-MTL-base, CA-MTL-large, bert-base-cased bert-base-uncased, bert-large-cased, bert-large-uncased'\n }"}), "(metadata={'help':\n 'Path to pretrained model or model identifier from: CA-MTL-base, CA-MTL-large, bert-base-cased bert-base-uncased, bert-large-cased, bert-large-uncased'\n })\n", (605, 786), False, 'from dataclasses import dataclass, field\n'), ((861, 1045), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'help':\n 'Identifier of encoder-type to use: CA-MTL-base, CA-MTL-large, bert-base-cased bert-base-uncased, bert-large-cased, bert-large-uncased'\n }"}), "(default=None, metadata={'help':\n 'Identifier of encoder-type to use: CA-MTL-base, CA-MTL-large, bert-base-cased bert-base-uncased, bert-large-cased, bert-large-uncased'\n })\n", (866, 1045), False, 'from dataclasses import dataclass, field\n'), ((1393, 1408), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (1406, 1408), True, 'import torch.nn as nn\n'), ((2239, 2260), 'torch.unique', 'torch.unique', (['task_id'], {}), '(task_id)\n', (2251, 2260), False, 'import torch\n'), ((2586, 2617), 'torch.zeros', 'torch.zeros', (['input_ids.shape[0]'], {}), '(input_ids.shape[0])\n', (2597, 2617), False, 'import torch\n'), ((2656, 2687), 'torch.zeros', 'torch.zeros', (['input_ids.shape[0]'], {}), '(input_ids.shape[0])\n', (2667, 2687), False, 'import torch\n'), ((3415, 3465), 'torch.full_like', 'torch.full_like', (['batch_entropy', 'batch_entropy_mean'], {}), '(batch_entropy, batch_entropy_mean)\n', (3430, 3465), False, 'import torch\n'), ((4126, 4148), 'torch.stack', 'torch.stack', (['loss_list'], {}), '(loss_list)\n', (4137, 4148), False, 'import torch\n'), ((4367, 4423), 'src.model.encoders.ca_mtl_large.CaMtlLargeEncoder', 'CaMtlLargeEncoder', (['self.config'], {'data_args': 'self.data_args'}), '(self.config, data_args=self.data_args)\n', (4384, 4423), False, 'from src.model.encoders.ca_mtl_large import CaMtlLargeEncoder\n'), ((1479, 1512), 'src.model.decoder.Decoder', 'Decoder', (['config.hidden_size', 'task'], {}), '(config.hidden_size, task)\n', (1486, 1512), False, 'from src.model.decoder import Decoder\n'), ((4487, 4542), 'src.model.encoders.ca_mtl_base.CaMtlBaseEncoder', 'CaMtlBaseEncoder', (['self.config'], {'data_args': 'self.data_args'}), '(self.config, data_args=self.data_args)\n', (4503, 4542), False, 'from src.model.encoders.ca_mtl_base import CaMtlBaseEncoder\n'), ((4614, 4669), 'src.model.encoders.ca_mtl_base.CaMtlBaseEncoder', 'CaMtlBaseEncoder', (['self.config'], {'data_args': 'self.data_args'}), '(self.config, data_args=self.data_args)\n', (4630, 4669), False, 'from src.model.encoders.ca_mtl_base import CaMtlBaseEncoder\n'), ((2472, 2500), 'torch.zeros_like', 'torch.zeros_like', (['task_id[0]'], {}), '(task_id[0])\n', (2488, 2500), False, 'import torch\n'), ((4733, 4788), 'src.model.encoders.ca_mtl_base.CaMtlBaseEncoder', 'CaMtlBaseEncoder', (['self.config'], {'data_args': 'self.data_args'}), '(self.config, data_args=self.data_args)\n', (4749, 4788), False, 'from src.model.encoders.ca_mtl_base import CaMtlBaseEncoder\n'), ((4822, 4847), 'src.model.encoders.bert._BertEncoder', '_BertEncoder', (['self.config'], {}), '(self.config)\n', (4834, 4847), False, 'from src.model.encoders.bert import _BertEncoder\n')]
import os from colorama import Fore, init # Current file directory details file = os.path.realpath(__file__) filedir = os.path.dirname(file) parentdir = os.path.dirname(filedir) # Initialise colors for terminal init() # Print out header print(Fore.CYAN + '-' * 13 + Fore.RESET) print('Call Server') print(Fore.CYAN + '-' * 13 + Fore.RESET) # Get variables print() print(Fore.CYAN + 'What is the root FQDN for this machine: ' + Fore.RESET, end='') root_url = input() print(Fore.CYAN + 'On which port should the call server run: ' + Fore.RESET, end='') port = input() # Write out configuration file print() print(Fore.CYAN + 'Writing Call Server configuration...' + Fore.RESET) with open(parentdir + '\\settings.py', 'a+') as f: f.write('# CALL SERVER SETTINGS\n') f.write('ROOT_URL=\'%s\'\n' % root_url.rstrip('/').lstrip('http://').lstrip('https://')) f.write('PORT=%s\n\n' % port) print() print(Fore.GREEN + 'Call Server configuration successfully written!' + Fore.RESET) print()
[ "colorama.init", "os.path.realpath", "os.path.dirname" ]
[((83, 109), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (99, 109), False, 'import os\n'), ((120, 141), 'os.path.dirname', 'os.path.dirname', (['file'], {}), '(file)\n', (135, 141), False, 'import os\n'), ((154, 178), 'os.path.dirname', 'os.path.dirname', (['filedir'], {}), '(filedir)\n', (169, 178), False, 'import os\n'), ((213, 219), 'colorama.init', 'init', ([], {}), '()\n', (217, 219), False, 'from colorama import Fore, init\n')]
import unittest from filter import Filter from differ import Differ from guess_combinator import GuessCombinator class TestGuessCombinator(unittest.TestCase): def test_it_exists(self): self.assertNotEqual(GuessCombinator(), None) def test_it_returns_a_best_guess(self): # solution_unknown corpus = ["abcde", "abcdf", "abcdg", "abcdh", "abcdi", "efghi"] expected_best_guess_pair = ["abcde", "efghi"] # I can't construct good examples. self.assertNotEqual(GuessCombinator.process( corpus, corpus), None) if __name__ == '__main__': unittest.main()
[ "unittest.main", "guess_combinator.GuessCombinator", "guess_combinator.GuessCombinator.process" ]
[((574, 589), 'unittest.main', 'unittest.main', ([], {}), '()\n', (587, 589), False, 'import unittest\n'), ((214, 231), 'guess_combinator.GuessCombinator', 'GuessCombinator', ([], {}), '()\n', (229, 231), False, 'from guess_combinator import GuessCombinator\n'), ((487, 526), 'guess_combinator.GuessCombinator.process', 'GuessCombinator.process', (['corpus', 'corpus'], {}), '(corpus, corpus)\n', (510, 526), False, 'from guess_combinator import GuessCombinator\n')]
# Copyright Contributors to the Tapqir project. # SPDX-License-Identifier: Apache-2.0 """ hmm ^^^ """ import math from typing import Union import torch import torch.distributions.constraints as constraints from pyro.distributions.hmm import _logmatmulexp from pyro.ops.indexing import Vindex from pyroapi import distributions as dist from pyroapi import handlers, infer, pyro from torch.nn.functional import one_hot from tapqir.distributions import KSMOGN, AffineBeta from tapqir.distributions.util import expand_offtarget, probs_m, probs_theta from tapqir.models.cosmos import Cosmos class HMM(Cosmos): r""" **Single-Color Hidden Markov Colocalization Model** .. note:: This model is used for kinetic simulations. Efficient fitting is not yet supported. **Reference**: 1. <NAME>, <NAME>, <NAME>, Theobald DL. Bayesian machine learning analysis of single-molecule fluorescence colocalization images. bioRxiv. 2021 Oct. doi: `10.1101/2021.09.30.462536 <https://doi.org/10.1101/2021.09.30.462536>`_. :param S: Number of distinct molecular states for the binder molecules. :param K: Maximum number of spots that can be present in a single image. :param channels: Number of color channels. :param device: Computation device (cpu or gpu). :param dtype: Floating point precision. :param use_pykeops: Use pykeops as backend to marginalize out offset. :param vectorized: Vectorize time-dimension. """ name = "hmm" def __init__( self, S: int = 1, K: int = 2, channels: Union[tuple, list] = (0,), device: str = "cpu", dtype: str = "double", use_pykeops: bool = True, vectorized: bool = False, ): self.vectorized = vectorized super().__init__(S, K, channels, device, dtype, use_pykeops) self.conv_params = ["-ELBO", "proximity_loc", "gain_loc", "lamda_loc"] self._global_params = ["gain", "proximity", "lamda", "trans"] def model(self): """ **Generative Model** """ # global parameters gain = pyro.sample("gain", dist.HalfNormal(50)) init = pyro.sample( "init", dist.Dirichlet(torch.ones(self.S + 1) / (self.S + 1)) ) init = expand_offtarget(init) trans = pyro.sample( "trans", dist.Dirichlet(torch.ones(self.S + 1, self.S + 1) / (self.S + 1)).to_event( 1 ), ) trans = expand_offtarget(trans) lamda = pyro.sample("lamda", dist.Exponential(1)) proximity = pyro.sample("proximity", dist.Exponential(1)) size = torch.stack( ( torch.full_like(proximity, 2.0), (((self.data.P + 1) / (2 * proximity)) ** 2 - 1), ), dim=-1, ) # spots spots = pyro.plate("spots", self.K) # aoi sites aois = pyro.plate( "aois", self.data.Nt, subsample=self.n, subsample_size=self.nbatch_size, dim=-2, ) # time frames frames = ( pyro.vectorized_markov(name="frames", size=self.data.F, dim=-1) if self.vectorized else pyro.markov(range(self.data.F)) ) with aois as ndx: ndx = ndx[:, None] # background mean and std background_mean = pyro.sample("background_mean", dist.HalfNormal(1000)) background_std = pyro.sample("background_std", dist.HalfNormal(100)) z_prev = None for fdx in frames: if self.vectorized: fsx, fdx = fdx else: fsx = fdx # fetch data obs, target_locs, is_ontarget = self.data.fetch(ndx, fdx, self.cdx) # sample background intensity background = pyro.sample( f"background_{fdx}", dist.Gamma( (background_mean / background_std) ** 2, background_mean / background_std ** 2, ), ) # sample hidden model state (1+S,) z_probs = ( Vindex(init)[..., :, is_ontarget.long()] if isinstance(fdx, int) and fdx < 1 else Vindex(trans)[..., z_prev, :, is_ontarget.long()] ) z_curr = pyro.sample(f"z_{fsx}", dist.Categorical(z_probs)) theta = pyro.sample( f"theta_{fdx}", dist.Categorical( Vindex(probs_theta(self.K, self.device))[ torch.clamp(z_curr, min=0, max=1) ] ), infer={"enumerate": "parallel"}, ) onehot_theta = one_hot(theta, num_classes=1 + self.K) ms, heights, widths, xs, ys = [], [], [], [], [] for kdx in spots: specific = onehot_theta[..., 1 + kdx] # spot presence m = pyro.sample( f"m_{kdx}_{fsx}", dist.Bernoulli(Vindex(probs_m(lamda, self.K))[..., theta, kdx]), ) with handlers.mask(mask=m > 0): # sample spot variables height = pyro.sample( f"height_{kdx}_{fsx}", dist.HalfNormal(10000), ) width = pyro.sample( f"width_{kdx}_{fsx}", AffineBeta( 1.5, 2, 0.75, 2.25, ), ) x = pyro.sample( f"x_{kdx}_{fsx}", AffineBeta( 0, Vindex(size)[..., specific], -(self.data.P + 1) / 2, (self.data.P + 1) / 2, ), ) y = pyro.sample( f"y_{kdx}_{fsx}", AffineBeta( 0, Vindex(size)[..., specific], -(self.data.P + 1) / 2, (self.data.P + 1) / 2, ), ) # append ms.append(m) heights.append(height) widths.append(width) xs.append(x) ys.append(y) # observed data pyro.sample( f"data_{fsx}", KSMOGN( torch.stack(heights, -1), torch.stack(widths, -1), torch.stack(xs, -1), torch.stack(ys, -1), target_locs, background, gain, self.data.offset.samples, self.data.offset.logits.to(self.dtype), self.data.P, torch.stack(torch.broadcast_tensors(*ms), -1), self.use_pykeops, ), obs=obs, ) z_prev = z_curr def guide(self): """ **Variational Distribution** """ # global parameters pyro.sample( "gain", dist.Gamma( pyro.param("gain_loc") * pyro.param("gain_beta"), pyro.param("gain_beta"), ), ) pyro.sample( "init", dist.Dirichlet(pyro.param("init_mean") * pyro.param("init_size")) ) pyro.sample( "trans", dist.Dirichlet( pyro.param("trans_mean") * pyro.param("trans_size") ).to_event(1), ) pyro.sample( "lamda", dist.Gamma( pyro.param("lamda_loc") * pyro.param("lamda_beta"), pyro.param("lamda_beta"), ), ) pyro.sample( "proximity", AffineBeta( pyro.param("proximity_loc"), pyro.param("proximity_size"), 0, (self.data.P + 1) / math.sqrt(12), ), ) # spots spots = pyro.plate("spots", self.K) # aoi sites aois = pyro.plate( "aois", self.data.Nt, subsample=self.n, subsample_size=self.nbatch_size, dim=-2, ) # time frames frames = ( pyro.vectorized_markov(name="frames", size=self.data.F, dim=-1) if self.vectorized else pyro.markov(range(self.data.F)) ) with aois as ndx: ndx = ndx[:, None] pyro.sample( "background_mean", dist.Delta(Vindex(pyro.param("background_mean_loc"))[ndx, 0]), ) pyro.sample( "background_std", dist.Delta(Vindex(pyro.param("background_std_loc"))[ndx, 0]), ) z_prev = None for fdx in frames: if self.vectorized: fsx, fdx = fdx else: fsx = fdx # sample background intensity pyro.sample( f"background_{fsx}", dist.Gamma( Vindex(pyro.param("b_loc"))[ndx, fdx] * Vindex(pyro.param("b_beta"))[ndx, fdx], Vindex(pyro.param("b_beta"))[ndx, fdx], ), ) # sample hidden model state (3,1,1,1) z_probs = ( Vindex(pyro.param("z_trans"))[ndx, fdx, 0] if isinstance(fdx, int) and fdx < 1 else Vindex(pyro.param("z_trans"))[ndx, fdx, z_prev] ) z_curr = pyro.sample( f"z_{fsx}", dist.Categorical(z_probs), infer={"enumerate": "parallel"}, ) for kdx in spots: # spot presence m_probs = Vindex(pyro.param("m_probs"))[z_curr, kdx, ndx, fdx] m = pyro.sample( f"m_{kdx}_{fsx}", dist.Categorical(m_probs), infer={"enumerate": "parallel"}, ) with handlers.mask(mask=m > 0): # sample spot variables pyro.sample( f"height_{kdx}_{fsx}", dist.Gamma( Vindex(pyro.param("h_loc"))[kdx, ndx, fdx] * Vindex(pyro.param("h_beta"))[kdx, ndx, fdx], Vindex(pyro.param("h_beta"))[kdx, ndx, fdx], ), ) pyro.sample( f"width_{kdx}_{fsx}", AffineBeta( Vindex(pyro.param("w_mean"))[kdx, ndx, fdx], Vindex(pyro.param("w_size"))[kdx, ndx, fdx], 0.75, 2.25, ), ) pyro.sample( f"x_{kdx}_{fsx}", AffineBeta( Vindex(pyro.param("x_mean"))[kdx, ndx, fdx], Vindex(pyro.param("size"))[kdx, ndx, fdx], -(self.data.P + 1) / 2, (self.data.P + 1) / 2, ), ) pyro.sample( f"y_{kdx}_{fsx}", AffineBeta( Vindex(pyro.param("y_mean"))[kdx, ndx, fdx], Vindex(pyro.param("size"))[kdx, ndx, fdx], -(self.data.P + 1) / 2, (self.data.P + 1) / 2, ), ) z_prev = z_curr def init_parameters(self): """ Initialize variational parameters. """ device = self.device data = self.data pyro.param( "proximity_loc", lambda: torch.tensor(0.5, device=device), constraint=constraints.interval( 0, (self.data.P + 1) / math.sqrt(12) - torch.finfo(self.dtype).eps, ), ) pyro.param( "proximity_size", lambda: torch.tensor(100, device=device), constraint=constraints.greater_than(2.0), ) pyro.param( "lamda_loc", lambda: torch.tensor(0.5, device=device), constraint=constraints.positive, ) pyro.param( "lamda_beta", lambda: torch.tensor(100, device=device), constraint=constraints.positive, ) pyro.param( "init_mean", lambda: torch.ones(self.S + 1, device=device), constraint=constraints.simplex, ) pyro.param( "init_size", lambda: torch.tensor(2, device=device), constraint=constraints.positive, ) pyro.param( "trans_mean", lambda: torch.ones(self.S + 1, self.S + 1, device=device), constraint=constraints.simplex, ) pyro.param( "trans_size", lambda: torch.full((self.S + 1, 1), 2, device=device), constraint=constraints.positive, ) pyro.param( "gain_loc", lambda: torch.tensor(5, device=device), constraint=constraints.positive, ) pyro.param( "gain_beta", lambda: torch.tensor(100, device=device), constraint=constraints.positive, ) pyro.param( "background_mean_loc", lambda: torch.full( (data.Nt, 1), data.median - self.data.offset.mean, device=device, ), constraint=constraints.positive, ) pyro.param( "background_std_loc", lambda: torch.ones(data.Nt, 1, device=device), constraint=constraints.positive, ) pyro.param( "b_loc", lambda: torch.full( (data.Nt, data.F), data.median - self.data.offset.mean, device=device, ), constraint=constraints.positive, ) pyro.param( "b_beta", lambda: torch.ones(data.Nt, data.F, device=device), constraint=constraints.positive, ) pyro.param( "h_loc", lambda: torch.full((self.K, data.Nt, data.F), 2000, device=device), constraint=constraints.positive, ) pyro.param( "h_beta", lambda: torch.full((self.K, data.Nt, data.F), 0.001, device=device), constraint=constraints.positive, ) pyro.param( "w_mean", lambda: torch.full((self.K, data.Nt, data.F), 1.5, device=device), constraint=constraints.interval( 0.75 + torch.finfo(self.dtype).eps, 2.25 - torch.finfo(self.dtype).eps, ), ) pyro.param( "w_size", lambda: torch.full((self.K, data.Nt, data.F), 100, device=device), constraint=constraints.greater_than(2.0), ) pyro.param( "x_mean", lambda: torch.zeros(self.K, data.Nt, data.F, device=device), constraint=constraints.interval( -(data.P + 1) / 2 + torch.finfo(self.dtype).eps, (data.P + 1) / 2 - torch.finfo(self.dtype).eps, ), ) pyro.param( "y_mean", lambda: torch.zeros(self.K, data.Nt, data.F, device=device), constraint=constraints.interval( -(data.P + 1) / 2 + torch.finfo(self.dtype).eps, (data.P + 1) / 2 - torch.finfo(self.dtype).eps, ), ) pyro.param( "size", lambda: torch.full((self.K, data.Nt, data.F), 200, device=device), constraint=constraints.greater_than(2.0), ) # classification pyro.param( "z_trans", lambda: torch.ones( data.Nt, data.F, 1 + self.S, 1 + self.S, device=device, ), constraint=constraints.simplex, ) pyro.param( "m_probs", lambda: torch.full( (1 + self.S, self.K, self.data.Nt, self.data.F), 0.5, device=device, ), constraint=constraints.unit_interval, ) def TraceELBO(self, jit=False): """ A trace implementation of ELBO-based SVI that supports - exhaustive enumeration over discrete sample sites, and - local parallel sampling over any sample site in the guide. """ if self.vectorized: return ( infer.JitTraceMarkovEnum_ELBO if jit else infer.TraceMarkovEnum_ELBO )(max_plate_nesting=2, ignore_jit_warnings=True) return (infer.JitTraceEnum_ELBO if jit else infer.TraceEnum_ELBO)( max_plate_nesting=2, ignore_jit_warnings=True ) @staticmethod def _sequential_logmatmulexp(logits: torch.Tensor) -> torch.Tensor: """ For a tensor ``x`` whose time dimension is -3, computes:: x[..., 0, :, :] @ x[..., 1, :, :] @ ... @ x[..., T-1, :, :] but does so numerically stably in log space. """ batch_shape = logits.shape[:-3] state_dim = logits.size(-1) sum_terms = [] # up sweep while logits.size(-3) > 1: time = logits.size(-3) even_time = time // 2 * 2 even_part = logits[..., :even_time, :, :] x_y = even_part.reshape( batch_shape + (even_time // 2, 2, state_dim, state_dim) ) x, y = x_y.unbind(-3) contracted = _logmatmulexp(x, y) if time > even_time: contracted = torch.cat((contracted, logits[..., -1:, :, :]), dim=-3) sum_terms.append(logits) logits = contracted else: sum_terms.append(logits) # handle root case sum_term = sum_terms.pop() left_term = HMM._contraction_identity(sum_term) # down sweep while sum_terms: sum_term = sum_terms.pop() new_left_term = HMM._contraction_identity(sum_term) time = sum_term.size(-3) even_time = time // 2 * 2 if time > even_time: new_left_term[..., time - 1 : time, :, :] = left_term[ ..., even_time // 2 : even_time // 2 + 1, :, : ] left_term = left_term[..., : even_time // 2, :, :] left_sum = sum_term[..., :even_time:2, :, :] left_sum_and_term = _logmatmulexp(left_term, left_sum) new_left_term[..., :even_time:2, :, :] = left_term new_left_term[..., 1:even_time:2, :, :] = left_sum_and_term left_term = new_left_term else: alphas = _logmatmulexp(left_term, sum_term) return alphas @staticmethod def _contraction_identity(logits: torch.Tensor) -> torch.Tensor: batch_shape = logits.shape[:-2] state_dim = logits.size(-1) result = torch.eye(state_dim).log() result = result.reshape((1,) * len(batch_shape) + (state_dim, state_dim)) result = result.repeat(batch_shape + (1, 1)) return result @property def z_probs(self) -> torch.Tensor: r""" Probability of there being a target-specific spot :math:`p(z=1)` """ result = self._sequential_logmatmulexp(pyro.param("z_trans").data.log()) return result[..., 0, 1].exp() @property def pspecific(self) -> torch.Tensor: r""" Probability of there being a target-specific spot :math:`p(\mathsf{specific})` """ return self.z_probs @property def m_probs(self) -> torch.Tensor: r""" Posterior spot presence probability :math:`q(m=1)`. """ return torch.einsum( "knf,nf->knf", pyro.param("m_probs").data[1], self.pspecific, )
[ "torch.eye", "torch.broadcast_tensors", "torch.cat", "torch.full", "pyroapi.pyro.param", "tapqir.distributions.util.expand_offtarget", "torch.ones", "tapqir.distributions.util.probs_m", "torch.distributions.constraints.greater_than", "tapqir.distributions.util.probs_theta", "pyroapi.handlers.mask", "torch.zeros", "pyroapi.distributions.Exponential", "math.sqrt", "tapqir.distributions.AffineBeta", "pyroapi.distributions.Gamma", "pyroapi.distributions.HalfNormal", "pyroapi.distributions.Categorical", "torch.clamp", "pyro.ops.indexing.Vindex", "torch.finfo", "torch.full_like", "torch.stack", "pyroapi.pyro.plate", "torch.nn.functional.one_hot", "pyro.distributions.hmm._logmatmulexp", "pyroapi.pyro.vectorized_markov", "torch.tensor" ]
[((2289, 2311), 'tapqir.distributions.util.expand_offtarget', 'expand_offtarget', (['init'], {}), '(init)\n', (2305, 2311), False, 'from tapqir.distributions.util import expand_offtarget, probs_m, probs_theta\n'), ((2509, 2532), 'tapqir.distributions.util.expand_offtarget', 'expand_offtarget', (['trans'], {}), '(trans)\n', (2525, 2532), False, 'from tapqir.distributions.util import expand_offtarget, probs_m, probs_theta\n'), ((2892, 2919), 'pyroapi.pyro.plate', 'pyro.plate', (['"""spots"""', 'self.K'], {}), "('spots', self.K)\n", (2902, 2919), False, 'from pyroapi import handlers, infer, pyro\n'), ((2955, 3051), 'pyroapi.pyro.plate', 'pyro.plate', (['"""aois"""', 'self.data.Nt'], {'subsample': 'self.n', 'subsample_size': 'self.nbatch_size', 'dim': '(-2)'}), "('aois', self.data.Nt, subsample=self.n, subsample_size=self.\n nbatch_size, dim=-2)\n", (2965, 3051), False, 'from pyroapi import handlers, infer, pyro\n'), ((8872, 8899), 'pyroapi.pyro.plate', 'pyro.plate', (['"""spots"""', 'self.K'], {}), "('spots', self.K)\n", (8882, 8899), False, 'from pyroapi import handlers, infer, pyro\n'), ((8935, 9031), 'pyroapi.pyro.plate', 'pyro.plate', (['"""aois"""', 'self.data.Nt'], {'subsample': 'self.n', 'subsample_size': 'self.nbatch_size', 'dim': '(-2)'}), "('aois', self.data.Nt, subsample=self.n, subsample_size=self.\n nbatch_size, dim=-2)\n", (8945, 9031), False, 'from pyroapi import handlers, infer, pyro\n'), ((2141, 2160), 'pyroapi.distributions.HalfNormal', 'dist.HalfNormal', (['(50)'], {}), '(50)\n', (2156, 2160), True, 'from pyroapi import distributions as dist\n'), ((2570, 2589), 'pyroapi.distributions.Exponential', 'dist.Exponential', (['(1)'], {}), '(1)\n', (2586, 2589), True, 'from pyroapi import distributions as dist\n'), ((2636, 2655), 'pyroapi.distributions.Exponential', 'dist.Exponential', (['(1)'], {}), '(1)\n', (2652, 2655), True, 'from pyroapi import distributions as dist\n'), ((3171, 3234), 'pyroapi.pyro.vectorized_markov', 'pyro.vectorized_markov', ([], {'name': '"""frames"""', 'size': 'self.data.F', 'dim': '(-1)'}), "(name='frames', size=self.data.F, dim=-1)\n", (3193, 3234), False, 'from pyroapi import handlers, infer, pyro\n'), ((9151, 9214), 'pyroapi.pyro.vectorized_markov', 'pyro.vectorized_markov', ([], {'name': '"""frames"""', 'size': 'self.data.F', 'dim': '(-1)'}), "(name='frames', size=self.data.F, dim=-1)\n", (9173, 9214), False, 'from pyroapi import handlers, infer, pyro\n'), ((19217, 19236), 'pyro.distributions.hmm._logmatmulexp', '_logmatmulexp', (['x', 'y'], {}), '(x, y)\n', (19230, 19236), False, 'from pyro.distributions.hmm import _logmatmulexp\n'), ((20163, 20197), 'pyro.distributions.hmm._logmatmulexp', '_logmatmulexp', (['left_term', 'left_sum'], {}), '(left_term, left_sum)\n', (20176, 20197), False, 'from pyro.distributions.hmm import _logmatmulexp\n'), ((20406, 20440), 'pyro.distributions.hmm._logmatmulexp', '_logmatmulexp', (['left_term', 'sum_term'], {}), '(left_term, sum_term)\n', (20419, 20440), False, 'from pyro.distributions.hmm import _logmatmulexp\n'), ((2715, 2746), 'torch.full_like', 'torch.full_like', (['proximity', '(2.0)'], {}), '(proximity, 2.0)\n', (2730, 2746), False, 'import torch\n'), ((3482, 3503), 'pyroapi.distributions.HalfNormal', 'dist.HalfNormal', (['(1000)'], {}), '(1000)\n', (3497, 3503), True, 'from pyroapi import distributions as dist\n'), ((3564, 3584), 'pyroapi.distributions.HalfNormal', 'dist.HalfNormal', (['(100)'], {}), '(100)\n', (3579, 3584), True, 'from pyroapi import distributions as dist\n'), ((4966, 5004), 'torch.nn.functional.one_hot', 'one_hot', (['theta'], {'num_classes': '(1 + self.K)'}), '(theta, num_classes=1 + self.K)\n', (4973, 5004), False, 'from torch.nn.functional import one_hot\n'), ((8040, 8063), 'pyroapi.pyro.param', 'pyro.param', (['"""gain_beta"""'], {}), "('gain_beta')\n", (8050, 8063), False, 'from pyroapi import handlers, infer, pyro\n'), ((8532, 8556), 'pyroapi.pyro.param', 'pyro.param', (['"""lamda_beta"""'], {}), "('lamda_beta')\n", (8542, 8556), False, 'from pyroapi import handlers, infer, pyro\n'), ((8669, 8696), 'pyroapi.pyro.param', 'pyro.param', (['"""proximity_loc"""'], {}), "('proximity_loc')\n", (8679, 8696), False, 'from pyroapi import handlers, infer, pyro\n'), ((8714, 8742), 'pyroapi.pyro.param', 'pyro.param', (['"""proximity_size"""'], {}), "('proximity_size')\n", (8724, 8742), False, 'from pyroapi import handlers, infer, pyro\n'), ((13143, 13175), 'torch.tensor', 'torch.tensor', (['(0.5)'], {'device': 'device'}), '(0.5, device=device)\n', (13155, 13175), False, 'import torch\n'), ((13417, 13449), 'torch.tensor', 'torch.tensor', (['(100)'], {'device': 'device'}), '(100, device=device)\n', (13429, 13449), False, 'import torch\n'), ((13474, 13503), 'torch.distributions.constraints.greater_than', 'constraints.greater_than', (['(2.0)'], {}), '(2.0)\n', (13498, 13503), True, 'import torch.distributions.constraints as constraints\n'), ((13580, 13612), 'torch.tensor', 'torch.tensor', (['(0.5)'], {'device': 'device'}), '(0.5, device=device)\n', (13592, 13612), False, 'import torch\n'), ((13735, 13767), 'torch.tensor', 'torch.tensor', (['(100)'], {'device': 'device'}), '(100, device=device)\n', (13747, 13767), False, 'import torch\n'), ((13889, 13926), 'torch.ones', 'torch.ones', (['(self.S + 1)'], {'device': 'device'}), '(self.S + 1, device=device)\n', (13899, 13926), False, 'import torch\n'), ((14047, 14077), 'torch.tensor', 'torch.tensor', (['(2)'], {'device': 'device'}), '(2, device=device)\n', (14059, 14077), False, 'import torch\n'), ((14200, 14249), 'torch.ones', 'torch.ones', (['(self.S + 1)', '(self.S + 1)'], {'device': 'device'}), '(self.S + 1, self.S + 1, device=device)\n', (14210, 14249), False, 'import torch\n'), ((14371, 14416), 'torch.full', 'torch.full', (['(self.S + 1, 1)', '(2)'], {'device': 'device'}), '((self.S + 1, 1), 2, device=device)\n', (14381, 14416), False, 'import torch\n'), ((14538, 14568), 'torch.tensor', 'torch.tensor', (['(5)'], {'device': 'device'}), '(5, device=device)\n', (14550, 14568), False, 'import torch\n'), ((14690, 14722), 'torch.tensor', 'torch.tensor', (['(100)'], {'device': 'device'}), '(100, device=device)\n', (14702, 14722), False, 'import torch\n'), ((14855, 14931), 'torch.full', 'torch.full', (['(data.Nt, 1)', '(data.median - self.data.offset.mean)'], {'device': 'device'}), '((data.Nt, 1), data.median - self.data.offset.mean, device=device)\n', (14865, 14931), False, 'import torch\n'), ((15125, 15162), 'torch.ones', 'torch.ones', (['data.Nt', '(1)'], {'device': 'device'}), '(data.Nt, 1, device=device)\n', (15135, 15162), False, 'import torch\n'), ((15281, 15367), 'torch.full', 'torch.full', (['(data.Nt, data.F)', '(data.median - self.data.offset.mean)'], {'device': 'device'}), '((data.Nt, data.F), data.median - self.data.offset.mean, device=\n device)\n', (15291, 15367), False, 'import torch\n'), ((15544, 15586), 'torch.ones', 'torch.ones', (['data.Nt', 'data.F'], {'device': 'device'}), '(data.Nt, data.F, device=device)\n', (15554, 15586), False, 'import torch\n'), ((15704, 15762), 'torch.full', 'torch.full', (['(self.K, data.Nt, data.F)', '(2000)'], {'device': 'device'}), '((self.K, data.Nt, data.F), 2000, device=device)\n', (15714, 15762), False, 'import torch\n'), ((15881, 15940), 'torch.full', 'torch.full', (['(self.K, data.Nt, data.F)', '(0.001)'], {'device': 'device'}), '((self.K, data.Nt, data.F), 0.001, device=device)\n', (15891, 15940), False, 'import torch\n'), ((16059, 16116), 'torch.full', 'torch.full', (['(self.K, data.Nt, data.F)', '(1.5)'], {'device': 'device'}), '((self.K, data.Nt, data.F), 1.5, device=device)\n', (16069, 16116), False, 'import torch\n'), ((16354, 16411), 'torch.full', 'torch.full', (['(self.K, data.Nt, data.F)', '(100)'], {'device': 'device'}), '((self.K, data.Nt, data.F), 100, device=device)\n', (16364, 16411), False, 'import torch\n'), ((16436, 16465), 'torch.distributions.constraints.greater_than', 'constraints.greater_than', (['(2.0)'], {}), '(2.0)\n', (16460, 16465), True, 'import torch.distributions.constraints as constraints\n'), ((16539, 16590), 'torch.zeros', 'torch.zeros', (['self.K', 'data.Nt', 'data.F'], {'device': 'device'}), '(self.K, data.Nt, data.F, device=device)\n', (16550, 16590), False, 'import torch\n'), ((16853, 16904), 'torch.zeros', 'torch.zeros', (['self.K', 'data.Nt', 'data.F'], {'device': 'device'}), '(self.K, data.Nt, data.F, device=device)\n', (16864, 16904), False, 'import torch\n'), ((17165, 17222), 'torch.full', 'torch.full', (['(self.K, data.Nt, data.F)', '(200)'], {'device': 'device'}), '((self.K, data.Nt, data.F), 200, device=device)\n', (17175, 17222), False, 'import torch\n'), ((17247, 17276), 'torch.distributions.constraints.greater_than', 'constraints.greater_than', (['(2.0)'], {}), '(2.0)\n', (17271, 17276), True, 'import torch.distributions.constraints as constraints\n'), ((17377, 17443), 'torch.ones', 'torch.ones', (['data.Nt', 'data.F', '(1 + self.S)', '(1 + self.S)'], {'device': 'device'}), '(data.Nt, data.F, 1 + self.S, 1 + self.S, device=device)\n', (17387, 17443), False, 'import torch\n'), ((17657, 17736), 'torch.full', 'torch.full', (['(1 + self.S, self.K, self.data.Nt, self.data.F)', '(0.5)'], {'device': 'device'}), '((1 + self.S, self.K, self.data.Nt, self.data.F), 0.5, device=device)\n', (17667, 17736), False, 'import torch\n'), ((19299, 19354), 'torch.cat', 'torch.cat', (['(contracted, logits[..., -1:, :, :])'], {'dim': '(-3)'}), '((contracted, logits[..., -1:, :, :]), dim=-3)\n', (19308, 19354), False, 'import torch\n'), ((20644, 20664), 'torch.eye', 'torch.eye', (['state_dim'], {}), '(state_dim)\n', (20653, 20664), False, 'import torch\n'), ((2225, 2247), 'torch.ones', 'torch.ones', (['(self.S + 1)'], {}), '(self.S + 1)\n', (2235, 2247), False, 'import torch\n'), ((4028, 4123), 'pyroapi.distributions.Gamma', 'dist.Gamma', (['((background_mean / background_std) ** 2)', '(background_mean / background_std ** 2)'], {}), '((background_mean / background_std) ** 2, background_mean / \n background_std ** 2)\n', (4038, 4123), True, 'from pyroapi import distributions as dist\n'), ((4548, 4573), 'pyroapi.distributions.Categorical', 'dist.Categorical', (['z_probs'], {}), '(z_probs)\n', (4564, 4573), True, 'from pyroapi import distributions as dist\n'), ((7974, 7996), 'pyroapi.pyro.param', 'pyro.param', (['"""gain_loc"""'], {}), "('gain_loc')\n", (7984, 7996), False, 'from pyroapi import handlers, infer, pyro\n'), ((7999, 8022), 'pyroapi.pyro.param', 'pyro.param', (['"""gain_beta"""'], {}), "('gain_beta')\n", (8009, 8022), False, 'from pyroapi import handlers, infer, pyro\n'), ((8146, 8169), 'pyroapi.pyro.param', 'pyro.param', (['"""init_mean"""'], {}), "('init_mean')\n", (8156, 8169), False, 'from pyroapi import handlers, infer, pyro\n'), ((8172, 8195), 'pyroapi.pyro.param', 'pyro.param', (['"""init_size"""'], {}), "('init_size')\n", (8182, 8195), False, 'from pyroapi import handlers, infer, pyro\n'), ((8464, 8487), 'pyroapi.pyro.param', 'pyro.param', (['"""lamda_loc"""'], {}), "('lamda_loc')\n", (8474, 8487), False, 'from pyroapi import handlers, infer, pyro\n'), ((8490, 8514), 'pyroapi.pyro.param', 'pyro.param', (['"""lamda_beta"""'], {}), "('lamda_beta')\n", (8500, 8514), False, 'from pyroapi import handlers, infer, pyro\n'), ((8799, 8812), 'math.sqrt', 'math.sqrt', (['(12)'], {}), '(12)\n', (8808, 8812), False, 'import math\n'), ((10611, 10636), 'pyroapi.distributions.Categorical', 'dist.Categorical', (['z_probs'], {}), '(z_probs)\n', (10627, 10636), True, 'from pyroapi import distributions as dist\n'), ((21503, 21524), 'pyroapi.pyro.param', 'pyro.param', (['"""m_probs"""'], {}), "('m_probs')\n", (21513, 21524), False, 'from pyroapi import handlers, infer, pyro\n'), ((4309, 4321), 'pyro.ops.indexing.Vindex', 'Vindex', (['init'], {}), '(init)\n', (4315, 4321), False, 'from pyro.ops.indexing import Vindex\n'), ((4431, 4444), 'pyro.ops.indexing.Vindex', 'Vindex', (['trans'], {}), '(trans)\n', (4437, 4444), False, 'from pyro.ops.indexing import Vindex\n'), ((5414, 5439), 'pyroapi.handlers.mask', 'handlers.mask', ([], {'mask': '(m > 0)'}), '(mask=m > 0)\n', (5427, 5439), False, 'from pyroapi import handlers, infer, pyro\n'), ((7148, 7172), 'torch.stack', 'torch.stack', (['heights', '(-1)'], {}), '(heights, -1)\n', (7159, 7172), False, 'import torch\n'), ((7198, 7221), 'torch.stack', 'torch.stack', (['widths', '(-1)'], {}), '(widths, -1)\n', (7209, 7221), False, 'import torch\n'), ((7247, 7266), 'torch.stack', 'torch.stack', (['xs', '(-1)'], {}), '(xs, -1)\n', (7258, 7266), False, 'import torch\n'), ((7292, 7311), 'torch.stack', 'torch.stack', (['ys', '(-1)'], {}), '(ys, -1)\n', (7303, 7311), False, 'import torch\n'), ((10966, 10991), 'pyroapi.distributions.Categorical', 'dist.Categorical', (['m_probs'], {}), '(m_probs)\n', (10982, 10991), True, 'from pyroapi import distributions as dist\n'), ((11097, 11122), 'pyroapi.handlers.mask', 'handlers.mask', ([], {'mask': '(m > 0)'}), '(mask=m > 0)\n', (11110, 11122), False, 'from pyroapi import handlers, infer, pyro\n'), ((21027, 21048), 'pyroapi.pyro.param', 'pyro.param', (['"""z_trans"""'], {}), "('z_trans')\n", (21037, 21048), False, 'from pyroapi import handlers, infer, pyro\n'), ((2389, 2423), 'torch.ones', 'torch.ones', (['(self.S + 1)', '(self.S + 1)'], {}), '(self.S + 1, self.S + 1)\n', (2399, 2423), False, 'import torch\n'), ((4781, 4814), 'torch.clamp', 'torch.clamp', (['z_curr'], {'min': '(0)', 'max': '(1)'}), '(z_curr, min=0, max=1)\n', (4792, 4814), False, 'import torch\n'), ((5614, 5636), 'pyroapi.distributions.HalfNormal', 'dist.HalfNormal', (['(10000)'], {}), '(10000)\n', (5629, 5636), True, 'from pyroapi import distributions as dist\n'), ((5787, 5817), 'tapqir.distributions.AffineBeta', 'AffineBeta', (['(1.5)', '(2)', '(0.75)', '(2.25)'], {}), '(1.5, 2, 0.75, 2.25)\n', (5797, 5817), False, 'from tapqir.distributions import KSMOGN, AffineBeta\n'), ((7603, 7631), 'torch.broadcast_tensors', 'torch.broadcast_tensors', (['*ms'], {}), '(*ms)\n', (7626, 7631), False, 'import torch\n'), ((8293, 8317), 'pyroapi.pyro.param', 'pyro.param', (['"""trans_mean"""'], {}), "('trans_mean')\n", (8303, 8317), False, 'from pyroapi import handlers, infer, pyro\n'), ((8320, 8344), 'pyroapi.pyro.param', 'pyro.param', (['"""trans_size"""'], {}), "('trans_size')\n", (8330, 8344), False, 'from pyroapi import handlers, infer, pyro\n'), ((9457, 9490), 'pyroapi.pyro.param', 'pyro.param', (['"""background_mean_loc"""'], {}), "('background_mean_loc')\n", (9467, 9490), False, 'from pyroapi import handlers, infer, pyro\n'), ((9609, 9641), 'pyroapi.pyro.param', 'pyro.param', (['"""background_std_loc"""'], {}), "('background_std_loc')\n", (9619, 9641), False, 'from pyroapi import handlers, infer, pyro\n'), ((10338, 10359), 'pyroapi.pyro.param', 'pyro.param', (['"""z_trans"""'], {}), "('z_trans')\n", (10348, 10359), False, 'from pyroapi import handlers, infer, pyro\n'), ((10462, 10483), 'pyroapi.pyro.param', 'pyro.param', (['"""z_trans"""'], {}), "('z_trans')\n", (10472, 10483), False, 'from pyroapi import handlers, infer, pyro\n'), ((10817, 10838), 'pyroapi.pyro.param', 'pyro.param', (['"""m_probs"""'], {}), "('m_probs')\n", (10827, 10838), False, 'from pyroapi import handlers, infer, pyro\n'), ((13277, 13290), 'math.sqrt', 'math.sqrt', (['(12)'], {}), '(12)\n', (13286, 13290), False, 'import math\n'), ((13293, 13316), 'torch.finfo', 'torch.finfo', (['self.dtype'], {}), '(self.dtype)\n', (13304, 13316), False, 'import torch\n'), ((16186, 16209), 'torch.finfo', 'torch.finfo', (['self.dtype'], {}), '(self.dtype)\n', (16197, 16209), False, 'import torch\n'), ((16238, 16261), 'torch.finfo', 'torch.finfo', (['self.dtype'], {}), '(self.dtype)\n', (16249, 16261), False, 'import torch\n'), ((16673, 16696), 'torch.finfo', 'torch.finfo', (['self.dtype'], {}), '(self.dtype)\n', (16684, 16696), False, 'import torch\n'), ((16737, 16760), 'torch.finfo', 'torch.finfo', (['self.dtype'], {}), '(self.dtype)\n', (16748, 16760), False, 'import torch\n'), ((16987, 17010), 'torch.finfo', 'torch.finfo', (['self.dtype'], {}), '(self.dtype)\n', (16998, 17010), False, 'import torch\n'), ((17051, 17074), 'torch.finfo', 'torch.finfo', (['self.dtype'], {}), '(self.dtype)\n', (17062, 17074), False, 'import torch\n'), ((4718, 4750), 'tapqir.distributions.util.probs_theta', 'probs_theta', (['self.K', 'self.device'], {}), '(self.K, self.device)\n', (4729, 4750), False, 'from tapqir.distributions.util import expand_offtarget, probs_m, probs_theta\n'), ((10154, 10174), 'pyroapi.pyro.param', 'pyro.param', (['"""b_beta"""'], {}), "('b_beta')\n", (10164, 10174), False, 'from pyroapi import handlers, infer, pyro\n'), ((5324, 5346), 'tapqir.distributions.util.probs_m', 'probs_m', (['lamda', 'self.K'], {}), '(lamda, self.K)\n', (5331, 5346), False, 'from tapqir.distributions.util import expand_offtarget, probs_m, probs_theta\n'), ((6198, 6210), 'pyro.ops.indexing.Vindex', 'Vindex', (['size'], {}), '(size)\n', (6204, 6210), False, 'from pyro.ops.indexing import Vindex\n'), ((6589, 6601), 'pyro.ops.indexing.Vindex', 'Vindex', (['size'], {}), '(size)\n', (6595, 6601), False, 'from pyro.ops.indexing import Vindex\n'), ((10026, 10045), 'pyroapi.pyro.param', 'pyro.param', (['"""b_loc"""'], {}), "('b_loc')\n", (10036, 10045), False, 'from pyroapi import handlers, infer, pyro\n'), ((10090, 10110), 'pyroapi.pyro.param', 'pyro.param', (['"""b_beta"""'], {}), "('b_beta')\n", (10100, 10110), False, 'from pyroapi import handlers, infer, pyro\n'), ((11493, 11513), 'pyroapi.pyro.param', 'pyro.param', (['"""h_beta"""'], {}), "('h_beta')\n", (11503, 11513), False, 'from pyroapi import handlers, infer, pyro\n'), ((11754, 11774), 'pyroapi.pyro.param', 'pyro.param', (['"""w_mean"""'], {}), "('w_mean')\n", (11764, 11774), False, 'from pyroapi import handlers, infer, pyro\n'), ((11831, 11851), 'pyroapi.pyro.param', 'pyro.param', (['"""w_size"""'], {}), "('w_size')\n", (11841, 11851), False, 'from pyroapi import handlers, infer, pyro\n'), ((12164, 12184), 'pyroapi.pyro.param', 'pyro.param', (['"""x_mean"""'], {}), "('x_mean')\n", (12174, 12184), False, 'from pyroapi import handlers, infer, pyro\n'), ((12241, 12259), 'pyroapi.pyro.param', 'pyro.param', (['"""size"""'], {}), "('size')\n", (12251, 12259), False, 'from pyroapi import handlers, infer, pyro\n'), ((12607, 12627), 'pyroapi.pyro.param', 'pyro.param', (['"""y_mean"""'], {}), "('y_mean')\n", (12617, 12627), False, 'from pyroapi import handlers, infer, pyro\n'), ((12684, 12702), 'pyroapi.pyro.param', 'pyro.param', (['"""size"""'], {}), "('size')\n", (12694, 12702), False, 'from pyroapi import handlers, infer, pyro\n'), ((11339, 11358), 'pyroapi.pyro.param', 'pyro.param', (['"""h_loc"""'], {}), "('h_loc')\n", (11349, 11358), False, 'from pyroapi import handlers, infer, pyro\n'), ((11416, 11436), 'pyroapi.pyro.param', 'pyro.param', (['"""h_beta"""'], {}), "('h_beta')\n", (11426, 11436), False, 'from pyroapi import handlers, infer, pyro\n')]
# imports # ------- import re from werkzeug.routing import BaseConverter from werkzeug.exceptions import NotFound # helpers # ------- MODELS = dict() def class_registry(cls): """ Function for dynamically getting class registry dictionary from specified model. """ try: return dict(cls._sa_registry._class_registry) except: return dict(cls._decl_class_registry) return def gather_models(): """ Inspect sqlalchemy models from current context and set global dictionary to be used in url conversion. """ global MODELS from flask import current_app, has_app_context if not has_app_context(): return if 'sqlalchemy' not in current_app.extensions: return # inspect current models and add to map db = current_app.extensions['sqlalchemy'].db registry = class_registry(db.Model) for cls in registry.values(): if isinstance(cls, type) and issubclass(cls, db.Model): # class name MODELS[cls.__name__] = cls # lowercase name MODELS[cls.__name__.lower()] = cls # snake_case name words = re.findall(r'([A-Z][0-9a-z]+)', cls.__name__) if len(words) > 1: alias = '_'.join(map(lambda x: x.lower(), words)) MODELS[alias] = cls return # converters # ---------- class ModelConverter(BaseConverter): """ For url inputs containing a model identifier, look up the model and return the object. This method simplifies a lot of the boilerplate needed to do model look ups in REST apis. Examples: .. code-block:: python @app.route('/users/<id(User):user>') def get_user(user): return jsonify(user.json()) In addition, this class can be inherited and used for other custom parameter url converters. For instance, here is how you might use it to create a name converter: .. code-block:: python class NameConverter(ModelConverter): __param__ = 'name' app.url_map.converters['name'] = NameConverter # ... handlers ... @app.route('/users/<name(User):user>') def get_user(user): return jsonify(user.json()) """ __param__ = 'id' def __init__(self, map, model): self.map = map self.model = model return @property def models(self): global MODELS if not MODELS: gather_models() return MODELS def to_python(self, value): mapper = self.models # make sure model exists if self.model not in mapper: raise AssertionError( 'Specified model `{}` in url converter ' 'not part of application models.'.format(self.model)) # set up class for conversion cls = mapper[self.model] # search for the object model = cls.get(**{self.__param__: value}) if model is None: raise NotFound return model def to_url(self, value): return super(ModelConverter, self).to_url(getattr(value, self.__param__))
[ "flask.has_app_context", "re.findall" ]
[((648, 665), 'flask.has_app_context', 'has_app_context', ([], {}), '()\n', (663, 665), False, 'from flask import current_app, has_app_context\n'), ((1173, 1217), 're.findall', 're.findall', (['"""([A-Z][0-9a-z]+)"""', 'cls.__name__'], {}), "('([A-Z][0-9a-z]+)', cls.__name__)\n", (1183, 1217), False, 'import re\n')]
import os import json import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, GPT2Config PATH = './models' OUTPUT_PATH = './output/' if __name__ == '__main__': #tokenizer = AutoTokenizer.from_pretrained("./models") # add the EOS token as PAD token to avoid warnings #tokenizer = GPT2Tokenizer(config=GPT2Config(**json.load(open(os.path.join(PATH, 'config.json'))))) model = GPT2LMHeadModel(config=GPT2Config(**json.load(open(os.path.join(PATH, 'config.json'))))) #input_ids = tokenizer.encode('', return_tensors='tf') greedy_output = model.generate(torch.zeros((10, 1), dtype=torch.int), max_length=1024+1, min_length=1024+1) print(list(greedy_output.data[0].numpy())) for file in ('train', 'valid', 'test'): with open(os.path.join(OUTPUT_PATH, f'{file}.txt'), 'w') as fout: data = greedy_output.data for i in range(len(data)): elements = list(data[i].numpy())[1:] for idx, element in enumerate(elements): fout.write(str(int(element))) if idx < len(elements): fout.write(" ") fout.write('\n')
[ "torch.zeros", "os.path.join" ]
[((608, 645), 'torch.zeros', 'torch.zeros', (['(10, 1)'], {'dtype': 'torch.int'}), '((10, 1), dtype=torch.int)\n', (619, 645), False, 'import torch\n'), ((795, 835), 'os.path.join', 'os.path.join', (['OUTPUT_PATH', 'f"""{file}.txt"""'], {}), "(OUTPUT_PATH, f'{file}.txt')\n", (807, 835), False, 'import os\n'), ((474, 507), 'os.path.join', 'os.path.join', (['PATH', '"""config.json"""'], {}), "(PATH, 'config.json')\n", (486, 507), False, 'import os\n')]
#Copyright 2013 <NAME> # #This program is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. # #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. # #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. import time import Quartz from AppKit import NSEvent from .base import PyKeyboardMeta, PyKeyboardEventMeta # Taken from events.h # /System/Library/Frameworks/Carbon.framework/Versions/A/Frameworks/HIToolbox.framework/Versions/A/Headers/Events.h character_translate_table = { 'a': 0x00, 's': 0x01, 'd': 0x02, 'f': 0x03, 'h': 0x04, 'g': 0x05, 'z': 0x06, 'x': 0x07, 'c': 0x08, 'v': 0x09, 'b': 0x0b, 'q': 0x0c, 'w': 0x0d, 'e': 0x0e, 'r': 0x0f, 'y': 0x10, 't': 0x11, '1': 0x12, '2': 0x13, '3': 0x14, '4': 0x15, '6': 0x16, '5': 0x17, '=': 0x18, '9': 0x19, '7': 0x1a, '-': 0x1b, '8': 0x1c, '0': 0x1d, ']': 0x1e, 'o': 0x1f, 'u': 0x20, '[': 0x21, 'i': 0x22, 'p': 0x23, 'l': 0x25, 'j': 0x26, '\'': 0x27, 'k': 0x28, ';': 0x29, '\\': 0x2a, ',': 0x2b, '/': 0x2c, 'n': 0x2d, 'm': 0x2e, '.': 0x2f, '`': 0x32, ' ': 0x31, '\r': 0x24, '\t': 0x30, '\n': 0x24, 'return' : 0x24, 'tab' : 0x30, 'space' : 0x31, 'delete' : 0x33, 'escape' : 0x35, 'command' : 0x37, 'shift' : 0x38, 'capslock' : 0x39, 'option' : 0x3A, 'alternate' : 0x3A, 'control' : 0x3B, 'rightshift' : 0x3C, 'rightoption' : 0x3D, 'rightcontrol' : 0x3E, 'function' : 0x3F, } # Taken from ev_keymap.h # http://www.opensource.apple.com/source/IOHIDFamily/IOHIDFamily-86.1/IOHIDSystem/IOKit/hidsystem/ev_keymap.h special_key_translate_table = { 'KEYTYPE_SOUND_UP': 0, 'KEYTYPE_SOUND_DOWN': 1, 'KEYTYPE_BRIGHTNESS_UP': 2, 'KEYTYPE_BRIGHTNESS_DOWN': 3, 'KEYTYPE_CAPS_LOCK': 4, 'KEYTYPE_HELP': 5, 'POWER_KEY': 6, 'KEYTYPE_MUTE': 7, 'UP_ARROW_KEY': 8, 'DOWN_ARROW_KEY': 9, 'KEYTYPE_NUM_LOCK': 10, 'KEYTYPE_CONTRAST_UP': 11, 'KEYTYPE_CONTRAST_DOWN': 12, 'KEYTYPE_LAUNCH_PANEL': 13, 'KEYTYPE_EJECT': 14, 'KEYTYPE_VIDMIRROR': 15, 'KEYTYPE_PLAY': 16, 'KEYTYPE_NEXT': 17, 'KEYTYPE_PREVIOUS': 18, 'KEYTYPE_FAST': 19, 'KEYTYPE_REWIND': 20, 'KEYTYPE_ILLUMINATION_UP': 21, 'KEYTYPE_ILLUMINATION_DOWN': 22, 'KEYTYPE_ILLUMINATION_TOGGLE': 23 } class PyKeyboard(PyKeyboardMeta): def __init__(self): self.shift_key = 'shift' self.modifier_table = {'Shift':False,'Command':False,'Control':False,'Alternate':False} def press_key(self, key): if key.title() in self.modifier_table: self.modifier_table.update({key.title():True}) if key in special_key_translate_table: self._press_special_key(key, True) else: self._press_normal_key(key, True) def release_key(self, key): # remove the key if key.title() in self.modifier_table: self.modifier_table.update({key.title():False}) if key in special_key_translate_table: self._press_special_key(key, False) else: self._press_normal_key(key, False) def special_key_assignment(self): self.volume_mute_key = 'KEYTYPE_MUTE' self.volume_down_key = 'KEYTYPE_SOUND_DOWN' self.volume_up_key = 'KEYTYPE_SOUND_UP' self.media_play_pause_key = 'KEYTYPE_PLAY' # Doesn't work :( # self.media_next_track_key = 'KEYTYPE_NEXT' # self.media_prev_track_key = 'KEYTYPE_PREVIOUS' def _press_normal_key(self, key, down): try: key_code = character_translate_table[key.lower()] # kCGEventFlagMaskAlternate | kCGEventFlagMaskCommand | kCGEventFlagMaskControl | kCGEventFlagMaskShift event = Quartz.CGEventCreateKeyboardEvent(None, key_code, down) mkeyStr = '' for mkey in self.modifier_table: if self.modifier_table[mkey]: if len(mkeyStr)>1: mkeyStr = mkeyStr+' ^ ' mkeyStr = mkeyStr+'Quartz.kCGEventFlagMask'+mkey if len(mkeyStr)>1: eval('Quartz.CGEventSetFlags(event, '+mkeyStr+')') Quartz.CGEventPost(Quartz.kCGHIDEventTap, event) if key.lower() == "shift": time.sleep(.1) except KeyError: raise RuntimeError("Key {} not implemented.".format(key)) def _press_special_key(self, key, down): """ Helper method for special keys. Source: http://stackoverflow.com/questions/11045814/emulate-media-key-press-on-mac """ key_code = special_key_translate_table[key] ev = NSEvent.otherEventWithType_location_modifierFlags_timestamp_windowNumber_context_subtype_data1_data2_( NSSystemDefined, # type (0,0), # location 0xa00 if down else 0xb00, # flags 0, # timestamp 0, # window 0, # ctx 8, # subtype (key_code << 16) | ((0xa if down else 0xb) << 8), # data1 -1 # data2 ) Quartz.CGEventPost(0, ev.Quartz.CGEvent()) class PyKeyboardEvent(PyKeyboardEventMeta): def run(self): tap = Quartz.CGEventTapCreate( Quartz.kCGSessionEventTap, Quartz.kCGHeadInsertEventTap, Quartz.kCGEventTapOptionDefault, Quartz.CGEventMaskBit(Quartz.kCGEventKeyDown) | Quartz.CGEventMaskBit(Quartz.kCGEventKeyUp), self.handler, None) loopsource = Quartz.CFMachPortCreateRunLoopSource(None, tap, 0) loop = Quartz.CFRunLoopGetCurrent() Quartz.CFRunLoopAddSource(loop, loopsource, Quartz.kCFRunLoopDefaultMode) Quartz.CGEventTapEnable(tap, True) while self.state: Quartz.CFRunLoopRunInMode(Quartz.kCFRunLoopDefaultMode, 5, False) def handler(self, proxy, type, event, refcon): key = Quartz.CGEventGetIntegerValueField(event, Quartz.kCGKeyboardEventKeycode) if type == Quartz.kCGEventKeyDown: self.key_press(key) elif type == Quartz.kCGEventKeyUp: self.key_release(key) if self.capture: Quartz.CGEventSetType(event, Quartz.kCGEventNull) return event
[ "AppKit.NSEvent.otherEventWithType_location_modifierFlags_timestamp_windowNumber_context_subtype_data1_data2_", "Quartz.CFRunLoopAddSource", "Quartz.CGEventGetIntegerValueField", "time.sleep", "Quartz.CGEventCreateKeyboardEvent", "Quartz.CFRunLoopGetCurrent", "Quartz.CFRunLoopRunInMode", "Quartz.CGEventMaskBit", "Quartz.CFMachPortCreateRunLoopSource", "Quartz.CGEventPost", "Quartz.CGEventTapEnable", "Quartz.CGEventSetType" ]
[((5226, 5445), 'AppKit.NSEvent.otherEventWithType_location_modifierFlags_timestamp_windowNumber_context_subtype_data1_data2_', 'NSEvent.otherEventWithType_location_modifierFlags_timestamp_windowNumber_context_subtype_data1_data2_', (['NSSystemDefined', '(0, 0)', '(2560 if down else 2816)', '(0)', '(0)', '(0)', '(8)', '(key_code << 16 | (10 if down else 11) << 8)', '(-1)'], {}), '(\n NSSystemDefined, (0, 0), 2560 if down else 2816, 0, 0, 0, 8, key_code <<\n 16 | (10 if down else 11) << 8, -1)\n', (5327, 5445), False, 'from AppKit import NSEvent\n'), ((6145, 6195), 'Quartz.CFMachPortCreateRunLoopSource', 'Quartz.CFMachPortCreateRunLoopSource', (['None', 'tap', '(0)'], {}), '(None, tap, 0)\n', (6181, 6195), False, 'import Quartz\n'), ((6211, 6239), 'Quartz.CFRunLoopGetCurrent', 'Quartz.CFRunLoopGetCurrent', ([], {}), '()\n', (6237, 6239), False, 'import Quartz\n'), ((6248, 6321), 'Quartz.CFRunLoopAddSource', 'Quartz.CFRunLoopAddSource', (['loop', 'loopsource', 'Quartz.kCFRunLoopDefaultMode'], {}), '(loop, loopsource, Quartz.kCFRunLoopDefaultMode)\n', (6273, 6321), False, 'import Quartz\n'), ((6330, 6364), 'Quartz.CGEventTapEnable', 'Quartz.CGEventTapEnable', (['tap', '(True)'], {}), '(tap, True)\n', (6353, 6364), False, 'import Quartz\n'), ((6536, 6609), 'Quartz.CGEventGetIntegerValueField', 'Quartz.CGEventGetIntegerValueField', (['event', 'Quartz.kCGKeyboardEventKeycode'], {}), '(event, Quartz.kCGKeyboardEventKeycode)\n', (6570, 6609), False, 'import Quartz\n'), ((4334, 4389), 'Quartz.CGEventCreateKeyboardEvent', 'Quartz.CGEventCreateKeyboardEvent', (['None', 'key_code', 'down'], {}), '(None, key_code, down)\n', (4367, 4389), False, 'import Quartz\n'), ((4752, 4800), 'Quartz.CGEventPost', 'Quartz.CGEventPost', (['Quartz.kCGHIDEventTap', 'event'], {}), '(Quartz.kCGHIDEventTap, event)\n', (4770, 4800), False, 'import Quartz\n'), ((6404, 6469), 'Quartz.CFRunLoopRunInMode', 'Quartz.CFRunLoopRunInMode', (['Quartz.kCFRunLoopDefaultMode', '(5)', '(False)'], {}), '(Quartz.kCFRunLoopDefaultMode, 5, False)\n', (6429, 6469), False, 'import Quartz\n'), ((6800, 6849), 'Quartz.CGEventSetType', 'Quartz.CGEventSetType', (['event', 'Quartz.kCGEventNull'], {}), '(event, Quartz.kCGEventNull)\n', (6821, 6849), False, 'import Quartz\n'), ((4854, 4869), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (4864, 4869), False, 'import time\n'), ((5974, 6019), 'Quartz.CGEventMaskBit', 'Quartz.CGEventMaskBit', (['Quartz.kCGEventKeyDown'], {}), '(Quartz.kCGEventKeyDown)\n', (5995, 6019), False, 'import Quartz\n'), ((6034, 6077), 'Quartz.CGEventMaskBit', 'Quartz.CGEventMaskBit', (['Quartz.kCGEventKeyUp'], {}), '(Quartz.kCGEventKeyUp)\n', (6055, 6077), False, 'import Quartz\n')]
""" Hypothesis strategies for generating Axiom-related data. """ from epsilon.extime import Time from hypothesis import strategies as st from hypothesis.extra.datetime import datetimes from axiom.attributes import LARGEST_NEGATIVE, LARGEST_POSITIVE def axiomText(*a, **kw): """ Strategy for generating Axiom-compatible text values. """ return st.text( alphabet=st.characters( blacklist_categories={'Cs'}, blacklist_characters={u'\x00'}), *a, **kw) def textlists(): """ Strategy for generating lists storable with L{axiom.attributes.textlist}. """ return st.lists(st.text( alphabet=st.characters( blacklist_categories={'Cs'}, blacklist_characters={u'\x00', u'\x02', u'\x1f'}))) def axiomIntegers(minValue=LARGEST_NEGATIVE, maxValue=LARGEST_POSITIVE): """ Strategy for generating Axiom-compatible integers. @type minValue: L{int} @param minValue: Minimum value to generate; default is the least value that can be stored in an L{axiom.attributes.integer} attribute. @type manValue: L{int} @param manValue: Maximum value to generate; default is the greatest value that can be stored in an L{axiom.attributes.integer} attribute. """ return st.integers(min_value=minValue, max_value=maxValue) def timestamps(*a, **kw): """ Strategy for generating L{epsilon.extime.Time} objects. """ return st.builds(Time.fromDatetime, datetimes(timezones=[], *a, **kw)) def fixedDecimals(precision, minValue=None, maxValue=None): """ Strategy for generating L{decimal.Decimal} values of a fixed precision. @type precision: L{decimal.Decimal} @param precision: The precision to use; for example, C{Decimal('0.01')} for a L{axiom.attributes.point2decimal} attribute. @type minValue: L{decimal.Decimal} @param minValue: The minimum value to generate, or C{None} for the least possible. @type minValue: L{decimal.Decimal} @param minValue: The maximum value to generate, or C{None} for the greatest possible. """ if minValue is None: minValue = LARGEST_NEGATIVE else: minValue = int(minValue / precision) if maxValue is None: maxValue = LARGEST_POSITIVE else: maxValue = int(maxValue / precision) return st.integers(min_value=minValue, max_value=maxValue).map( lambda v: v * precision) __all__ = [ 'axiomText', 'axiomIntegers', 'fixedDecimals', 'timestamps', 'textlists']
[ "hypothesis.strategies.characters", "hypothesis.strategies.integers", "hypothesis.extra.datetime.datetimes" ]
[((1298, 1349), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': 'minValue', 'max_value': 'maxValue'}), '(min_value=minValue, max_value=maxValue)\n', (1309, 1349), True, 'from hypothesis import strategies as st\n'), ((1495, 1528), 'hypothesis.extra.datetime.datetimes', 'datetimes', (['*a'], {'timezones': '[]'}), '(*a, timezones=[], **kw)\n', (1504, 1528), False, 'from hypothesis.extra.datetime import datetimes\n'), ((389, 463), 'hypothesis.strategies.characters', 'st.characters', ([], {'blacklist_categories': "{'Cs'}", 'blacklist_characters': "{u'\\x00'}"}), "(blacklist_categories={'Cs'}, blacklist_characters={u'\\x00'})\n", (402, 463), True, 'from hypothesis import strategies as st\n'), ((2376, 2427), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': 'minValue', 'max_value': 'maxValue'}), '(min_value=minValue, max_value=maxValue)\n', (2387, 2427), True, 'from hypothesis import strategies as st\n'), ((667, 763), 'hypothesis.strategies.characters', 'st.characters', ([], {'blacklist_categories': "{'Cs'}", 'blacklist_characters': "{u'\\x00', u'\\x02', u'\\x1f'}"}), "(blacklist_categories={'Cs'}, blacklist_characters={u'\\x00',\n u'\\x02', u'\\x1f'})\n", (680, 763), True, 'from hypothesis import strategies as st\n')]
# importing the required libraries import pyautogui, time # delay to switch windows time.sleep(10) # content you want to spam with f = open("idoc.pub_green-lantern-movie-script.txt", 'r') # loop to spam for word in f: # fetch and type each word from the file pyautogui.write(word) # press enter to send the message pyautogui.press('enter')
[ "pyautogui.press", "pyautogui.write", "time.sleep" ]
[((85, 99), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (95, 99), False, 'import pyautogui, time\n'), ((268, 289), 'pyautogui.write', 'pyautogui.write', (['word'], {}), '(word)\n', (283, 289), False, 'import pyautogui, time\n'), ((332, 356), 'pyautogui.press', 'pyautogui.press', (['"""enter"""'], {}), "('enter')\n", (347, 356), False, 'import pyautogui, time\n')]
import tensorflow as tf @tf.function def tensor_scatter_nd_ops_by_name(segment_name, tensor, indices, updates, name=None): """Scatter operation chosen by name that pick tensor_scatter_nd functions. Args: segment_name (str): Operation to update scattered updates. Either 'sum' or 'min' etc. tensor (tf.Tensor): Tensor to scatter updates into. indices (tf.Tensor): Indices to for updates. updates (tf.Tensor): Updates of new entries for tensor. name (str): Name of the tensor. Returns: tf.Tensor: Updates scattered into tensor with different update rules. """ if segment_name in ["segment_sum", "sum", "reduce_sum", "add"]: pool = tf.tensor_scatter_nd_add(tensor, indices, updates, name=name) elif segment_name in ["segment_max", "max", "reduce_max"]: pool = tf.tensor_scatter_nd_max(tensor, indices, updates, name=name) elif segment_name in ["segment_min", "min", "reduce_min"]: pool = tf.tensor_scatter_nd_min(tensor, indices, updates, name=name) else: raise TypeError("Unknown pooling, choose: 'mean', 'sum', ...") return pool
[ "tensorflow.tensor_scatter_nd_min", "tensorflow.tensor_scatter_nd_add", "tensorflow.tensor_scatter_nd_max" ]
[((709, 770), 'tensorflow.tensor_scatter_nd_add', 'tf.tensor_scatter_nd_add', (['tensor', 'indices', 'updates'], {'name': 'name'}), '(tensor, indices, updates, name=name)\n', (733, 770), True, 'import tensorflow as tf\n'), ((849, 910), 'tensorflow.tensor_scatter_nd_max', 'tf.tensor_scatter_nd_max', (['tensor', 'indices', 'updates'], {'name': 'name'}), '(tensor, indices, updates, name=name)\n', (873, 910), True, 'import tensorflow as tf\n'), ((989, 1050), 'tensorflow.tensor_scatter_nd_min', 'tf.tensor_scatter_nd_min', (['tensor', 'indices', 'updates'], {'name': 'name'}), '(tensor, indices, updates, name=name)\n', (1013, 1050), True, 'import tensorflow as tf\n')]
# Utility functions to access azure data storage import json, os from azure.storage.blob import BlockBlobService, PublicAccess def load_text_file(containerName, blobName, accountName, accountKey): ''' load the file specified from azure block blob storage. if the file is not found return an empty dictionary Parameters ---------- containerName: str container in storage account to open blobName: str name of blob in container to open accountName: str name of storage account accountKey access key for storage account Returns ------- dictionary ''' # Create BlockBlockService block_blob_service = BlockBlobService( account_name=accountName, account_key=accountKey ) # try loading data from blob store. if blob is not found return empty dict try: res = block_blob_service.get_blob_to_text(containerName, blobName) blobData = json.loads(res.content) except: blobData = {} return blobData def save_text_file(data, containerName, blobName, accountName, accountKey): ''' save a textfile to azure block blob storage. Parameters ---------- data: str (text)data to upload containerName: str container in storage account blobName: str name of blob in container accountName: str name of storage account accountKey access key for storage account Returns ------- ''' # Create BlockBlockService block_blob_service = BlockBlobService( account_name=accountName, account_key=accountKey ) block_blob_service.create_blob_from_text(containerName, blobName, data)
[ "azure.storage.blob.BlockBlobService", "json.loads" ]
[((755, 821), 'azure.storage.blob.BlockBlobService', 'BlockBlobService', ([], {'account_name': 'accountName', 'account_key': 'accountKey'}), '(account_name=accountName, account_key=accountKey)\n', (771, 821), False, 'from azure.storage.blob import BlockBlobService, PublicAccess\n'), ((1696, 1762), 'azure.storage.blob.BlockBlobService', 'BlockBlobService', ([], {'account_name': 'accountName', 'account_key': 'accountKey'}), '(account_name=accountName, account_key=accountKey)\n', (1712, 1762), False, 'from azure.storage.blob import BlockBlobService, PublicAccess\n'), ((1024, 1047), 'json.loads', 'json.loads', (['res.content'], {}), '(res.content)\n', (1034, 1047), False, 'import json, os\n')]
from curses.textpad import rectangle import curses ORIGIN_Y, ORIGIN_X = 5,2 class EditorManager: def __init__(self,std_scr): self.std_scr = std_scr self.height, self.width = self.std_scr.getmaxyx() self.origin_y, self.origin_x = 5, 2 self.canvas_height, self.canvas_width = self.height//4-1, self.width//4-4 self.all_editors = {} self.is_global_state = False self.navigator = None curses.init_pair(2, curses.COLOR_GREEN, curses.COLOR_BLACK) def left(self): pass def right(self): pass def up(self): pass def down(self): pass def run(self): pass def clear_content(self): for i in range(self.origin_y+2,self.canvas_height): self.std_scr.addstr(i, self.origin_x," "*(self.canvas_width-2)) def show_title(self): self.std_scr.addstr(self.origin_y, self.origin_x+1, "Open Editors") self.std_scr.addstr(self.origin_y, self.canvas_width-3, "▼") rectangle(self.std_scr, self.origin_y - 1, self.origin_x - 1, self.origin_y + 1, self.width // 4 - 4) def show_content(self): self.clear_content() self.all_editors = {} index, editors = self.navigator.context["Manager"].get_all_editor_names() for i, editor in enumerate(editors): self.all_editors[i] = editor rectangle(self.std_scr, self.origin_y+1,self.origin_x-1,self.canvas_height, self.canvas_width) for i, editor in self.all_editors.items(): if i == index: self.std_scr.addstr(self.origin_y + i + 2, self.origin_x + 1, editor, curses.color_pair(2)) else: self.std_scr.addstr(self.origin_y+i+2, self.origin_x+1, editor) self.std_scr.refresh() def display(self): self.show_title() self.show_content() def update_global_status(self,status): self.is_global_state = status def set_navigator(self, navigator): self.navigator = navigator
[ "curses.color_pair", "curses.textpad.rectangle", "curses.init_pair" ]
[((453, 512), 'curses.init_pair', 'curses.init_pair', (['(2)', 'curses.COLOR_GREEN', 'curses.COLOR_BLACK'], {}), '(2, curses.COLOR_GREEN, curses.COLOR_BLACK)\n', (469, 512), False, 'import curses\n'), ((1027, 1132), 'curses.textpad.rectangle', 'rectangle', (['self.std_scr', '(self.origin_y - 1)', '(self.origin_x - 1)', '(self.origin_y + 1)', '(self.width // 4 - 4)'], {}), '(self.std_scr, self.origin_y - 1, self.origin_x - 1, self.origin_y +\n 1, self.width // 4 - 4)\n', (1036, 1132), False, 'from curses.textpad import rectangle\n'), ((1393, 1498), 'curses.textpad.rectangle', 'rectangle', (['self.std_scr', '(self.origin_y + 1)', '(self.origin_x - 1)', 'self.canvas_height', 'self.canvas_width'], {}), '(self.std_scr, self.origin_y + 1, self.origin_x - 1, self.\n canvas_height, self.canvas_width)\n', (1402, 1498), False, 'from curses.textpad import rectangle\n'), ((1652, 1672), 'curses.color_pair', 'curses.color_pair', (['(2)'], {}), '(2)\n', (1669, 1672), False, 'import curses\n')]
from metaphor.common.cli import cli_main from .extractor import TableauExtractor if __name__ == "__main__": cli_main("Tableau metadata extractor", TableauExtractor)
[ "metaphor.common.cli.cli_main" ]
[((114, 170), 'metaphor.common.cli.cli_main', 'cli_main', (['"""Tableau metadata extractor"""', 'TableauExtractor'], {}), "('Tableau metadata extractor', TableauExtractor)\n", (122, 170), False, 'from metaphor.common.cli import cli_main\n')]
#!/usr/bin/env python import re import sys import decimal from mt940m_v2 import ParseMT940 D = decimal.Decimal # read and concatenate entire MT940 contents and add '-ABN' to make sure the last record is captured if len(sys.argv)== 2: argf = sys.argv[1] else: print('please provide a valid MT940 file') exit() text = open(argf).read().splitlines() text = ''.join(text) +'-ABN' payee = '' memo = '' total_amount = D('0') bank_account = '' fn = '' # record: pattern to determine a MT940 record group, note more than one transaction # is possible within a record record_pat = re.compile(r'(?P<record>:\d\d.??:.*?(?=-ABN))') # field_pat: pattern to seperate the fields in the MT940 file :num :field field_pat = re.compile(r':(?P<num>\d\d).??:(?P<field>.*?(?=:\d\d.??:))') # val61_pat: pattern to seperate the values in field 61 #:valuta (date) :date (transaction date and used for date) :sign :amount :code :reference val61_pat = re.compile(r'(?P<valuta>\d{6})(?P<date>\d{4})(?P<sign>\D)' r'(?P<amount>\d+[,.]\d*)(?P<code>\w{4})(?P<reference>\w+$)') for match in re.finditer(record_pat, text): # add token ':99:' to the end of the record to make sure the last field is also captured record = match.group('record') +':99:' # parse the string in a field number 'num' and its corresponding 'field' for match in re.finditer(field_pat,record): num = match.group('num') field = match.group('field') # in case field number is equal to '25' check if it is a new bank_account. If new make new qif file using # the name of the bank account found in field '25'. Field 25 is assumed to be before field 61. if num == '25': # close the qif file if this is not the first instance if field != bank_account and bank_account != '': qif_file.close() end_balance = start_balance + total_amount print ('{}: start balance: {:.2f} / transfers: {:.2f} / end balance: {:.2f}' \ .format(fn, start_balance, total_amount, end_balance)) total_amount = D('0') fn = '' # open a new qif file if a new bank account is encountered if field != bank_account: bank_account = field new_bank_flag = True fn = argf.rsplit('.',1)[0] # make the file name the same as the 1st argument + some changes fn = fn + '_' + bank_account +'.qif' qif_file = open(fn,'w') qif_file.write('!Type:Bank\n') #find the start_balance for a new bank account in field 60 if num == '60' and new_bank_flag: m=re.search(r'(\D)\d{6}.*?(?=[\d])(.*$)',field) start_balance=D(ParseMT940.conv_amount_str(m.group(1),m.group(2))) new_bank_flag = False # in case field number is '61' handle the transaction using the information in field 61 and subsequent 86 if num == '61': f61 = re.match(val61_pat, field) f61_dict = f61.groupdict() # in case field number is '86' handle to payee and memo and write the transaction to QIF if num == '86': date = ParseMT940.transaction_date_conversion(f61_dict['valuta'], f61_dict['date']) amount = ParseMT940.conv_amount_str(f61_dict['sign'], f61_dict['amount']) payee, memo = ParseMT940.code86(field, bank_account, date, amount) total_amount += D(amount) ParseMT940.write_qif_record (qif_file, date, amount, payee, memo) # on finishing the program close the last qif_file if fn !='': qif_file.close() end_balance = start_balance + total_amount print ('{}: start balance: {:.2f} / transfers: {:.2f} / end balance: {:.2f}'.format(fn, start_balance, total_amount, end_balance)) else: print('this is not a valid MT940 file')
[ "mt940m_v2.ParseMT940.conv_amount_str", "mt940m_v2.ParseMT940.transaction_date_conversion", "re.finditer", "mt940m_v2.ParseMT940.code86", "mt940m_v2.ParseMT940.write_qif_record", "re.match", "re.search", "re.compile" ]
[((589, 637), 're.compile', 're.compile', (['"""(?P<record>:\\\\d\\\\d.??:.*?(?=-ABN))"""'], {}), "('(?P<record>:\\\\d\\\\d.??:.*?(?=-ABN))')\n", (599, 637), False, 'import re\n'), ((724, 787), 're.compile', 're.compile', (['""":(?P<num>\\\\d\\\\d).??:(?P<field>.*?(?=:\\\\d\\\\d.??:))"""'], {}), "(':(?P<num>\\\\d\\\\d).??:(?P<field>.*?(?=:\\\\d\\\\d.??:))')\n", (734, 787), False, 'import re\n'), ((944, 1075), 're.compile', 're.compile', (['"""(?P<valuta>\\\\d{6})(?P<date>\\\\d{4})(?P<sign>\\\\D)(?P<amount>\\\\d+[,.]\\\\d*)(?P<code>\\\\w{4})(?P<reference>\\\\w+$)"""'], {}), "(\n '(?P<valuta>\\\\d{6})(?P<date>\\\\d{4})(?P<sign>\\\\D)(?P<amount>\\\\d+[,.]\\\\d*)(?P<code>\\\\w{4})(?P<reference>\\\\w+$)'\n )\n", (954, 1075), False, 'import re\n'), ((1101, 1130), 're.finditer', 're.finditer', (['record_pat', 'text'], {}), '(record_pat, text)\n', (1112, 1130), False, 'import re\n'), ((1363, 1393), 're.finditer', 're.finditer', (['field_pat', 'record'], {}), '(field_pat, record)\n', (1374, 1393), False, 'import re\n'), ((2720, 2768), 're.search', 're.search', (['"""(\\\\D)\\\\d{6}.*?(?=[\\\\d])(.*$)"""', 'field'], {}), "('(\\\\D)\\\\d{6}.*?(?=[\\\\d])(.*$)', field)\n", (2729, 2768), False, 'import re\n'), ((3036, 3062), 're.match', 're.match', (['val61_pat', 'field'], {}), '(val61_pat, field)\n', (3044, 3062), False, 'import re\n'), ((3243, 3319), 'mt940m_v2.ParseMT940.transaction_date_conversion', 'ParseMT940.transaction_date_conversion', (["f61_dict['valuta']", "f61_dict['date']"], {}), "(f61_dict['valuta'], f61_dict['date'])\n", (3281, 3319), False, 'from mt940m_v2 import ParseMT940\n'), ((3341, 3405), 'mt940m_v2.ParseMT940.conv_amount_str', 'ParseMT940.conv_amount_str', (["f61_dict['sign']", "f61_dict['amount']"], {}), "(f61_dict['sign'], f61_dict['amount'])\n", (3367, 3405), False, 'from mt940m_v2 import ParseMT940\n'), ((3432, 3484), 'mt940m_v2.ParseMT940.code86', 'ParseMT940.code86', (['field', 'bank_account', 'date', 'amount'], {}), '(field, bank_account, date, amount)\n', (3449, 3484), False, 'from mt940m_v2 import ParseMT940\n'), ((3535, 3599), 'mt940m_v2.ParseMT940.write_qif_record', 'ParseMT940.write_qif_record', (['qif_file', 'date', 'amount', 'payee', 'memo'], {}), '(qif_file, date, amount, payee, memo)\n', (3562, 3599), False, 'from mt940m_v2 import ParseMT940\n')]
import sys import os import Labyrinth import time import threading class Agent: num = 0 x = 0 y = 0 labyrinth = None callback = None def __init__(self, x, y, labyrinth, callback): self.num = time.time()*1000 self.x = x self.y = y self.labyrinth = labyrinth self.callback = callback print(str(self.num)+': Created new agent. Exploring...') t = threading.Thread(target=self.explore) t.start() def explore(self): self.callback() if self.labyrinth.finished or self.labyrinth.isVisited(self.x, self.y): sys.exit() walkableSpots = [] if (self.labyrinth.isFinish(self.x, self.y)): print(str(self.num)+': Agent found the exit at x: '+str(self.x)+', y: '+str(self.y)) self.labyrinth.finished = True sys.exit() self.labyrinth.visit(self.x, self.y) print('{}: Visiting {} {}'.format(str(self.num), self.x, self.y)) if (self.labyrinth.isWalkable(self.x-1, self.y)): walkableSpots.append({'x': self.x-1, 'y': self.y}) if (self.labyrinth.isWalkable(self.x, self.y-1)): walkableSpots.append({'x': self.x, 'y': self.y-1}) if (self.labyrinth.isWalkable(self.x+1, self.y)): walkableSpots.append({'x': self.x+1, 'y': self.y}) if (self.labyrinth.isWalkable(self.x, self.y+1)): walkableSpots.append({'x': self.x, 'y': self.y+1}) if (len(walkableSpots)==1): self.x = walkableSpots[0]['x'] self.y = walkableSpots[0]['y'] t = threading.Thread(target=self.explore) t.start() if (len(walkableSpots)>1): for num, spot in enumerate(walkableSpots, start = 1): agent = Agent(spot['x'], spot['y'], self.labyrinth, self.callback) self.x = walkableSpots[0]['x'] self.y = walkableSpots[0]['y'] t = threading.Thread(target=self.explore) t.start() if (len(walkableSpots) == 0): print(str(self.num)+': Dead end reached, dying...') sys.exit()
[ "threading.Thread", "sys.exit", "time.time" ]
[((425, 462), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.explore'}), '(target=self.explore)\n', (441, 462), False, 'import threading\n'), ((225, 236), 'time.time', 'time.time', ([], {}), '()\n', (234, 236), False, 'import time\n'), ((621, 631), 'sys.exit', 'sys.exit', ([], {}), '()\n', (629, 631), False, 'import sys\n'), ((865, 875), 'sys.exit', 'sys.exit', ([], {}), '()\n', (873, 875), False, 'import sys\n'), ((1617, 1654), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.explore'}), '(target=self.explore)\n', (1633, 1654), False, 'import threading\n'), ((1963, 2000), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.explore'}), '(target=self.explore)\n', (1979, 2000), False, 'import threading\n'), ((2137, 2147), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2145, 2147), False, 'import sys\n')]
# MIT License # # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: from problem_instance import Problem class ProblemPrinter: def __init__(self, fixture_order_raw, duration_rnd_seed, **kwargs): self.p = Problem(fixture_order_raw = fixture_order_raw, **kwargs) self.fixture_order_raw = fixture_order_raw self.no_grip = None self.no_suction = None self.duration_rnd_seed = duration_rnd_seed def GetFixtureOrderString(self): s = "" current = "" for i in range(len(self.fixture_order_raw)): if self.fixture_order_raw[i] == 0: current = "G" elif self.fixture_order_raw[i] == 1: current = "S" elif self.fixture_order_raw[i] == -1: current = "_" else: current = "ERROR" s = s + current return s def GetNoComp(self): return self.p.no_grip + self.p.no_suction def FilePrint(self, file_name_prefix): """ Printing File Header """ setup_file_name = file_name_prefix + str(self.GetNoComp()) + "_" + self.GetFixtureOrderString() + ".dzn" file1 = open(setup_file_name,"w") file1.write("%-----------------------------------------------------------------------------%\n") file1.write("% Dual Arm Multi Capacity Multi Tool Scheduling / Routing\n") file1.write("% Assembly Configuration\n") file1.write("% Auto Generated by python script, authored by <NAME> \n") file1.write("%-----------------------------------------------------------------------------%\n\n\n") """ Printing durations """ self.p.RandomizeTaskDurations(self.duration_rnd_seed) file1.write("task_durations = ") file1.write(self.p.GetDurationsOfTasksString(str_offset=len("task_durations = ")+1)) file1.write('\n\n\n') """ Printing task sets """ file1.write("TRAY_TASKS = " + self.p.TrayTasksToString() + ";\n") file1.write("CAMERA_TASKS = " + self.p.CameraTasksToString() + ";\n") file1.write("OUTPUT_TASKS = " + self.p.OutputTasksToString() + ";\n") file1.write('\n\n') file1.write("empty_gripper_tasks = " + self.p.PressTasksToString() + ";\n") file1.write('\n\n') """ Printing Tool Pick and Place- orders """ # TODO: last row does not seem to have press - which it does no, since it is output # However, we assume it does! # Fix! file1.write("gripper_pick_tasks_orders = " + self.p.GetPickTaskOrderString(0) + ";\n\n") file1.write("suction_pick_tasks_orders = " + self.p.GetPickTaskOrderString(1) + ";\n\n") file1.write("fixture_task_orders = " + self.p.GetFixtureTaskOrderString() + ";\n\n") file1.close() return setup_file_name
[ "problem_instance.Problem" ]
[((641, 695), 'problem_instance.Problem', 'Problem', ([], {'fixture_order_raw': 'fixture_order_raw'}), '(fixture_order_raw=fixture_order_raw, **kwargs)\n', (648, 695), False, 'from problem_instance import Problem\n')]
# # Configurações da aplicação # import os from os.path import abspath DEBUG = True SECRET_KEY = 'a secret key' # diretório base basedir = os.path.abspath(os.path.dirname(__name__)) # diretório base da aplicação BASE_DIR = basedir # connection string: mysql://usuario:senha@host/nomedobanco SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://root:root@localhost/dbdevweb' # SQLAlchemy monitorará modificações de objetos SQLALCHEMY_TRACK_MODIFICATIONS = True
[ "os.path.dirname" ]
[((158, 183), 'os.path.dirname', 'os.path.dirname', (['__name__'], {}), '(__name__)\n', (173, 183), False, 'import os\n')]
from rest_framework import serializers, status from django_redis import get_redis_connection from rest_framework_jwt.settings import api_settings import logging import re from .models import User from .utils import get_user_by_account from celery_tasks.email.tasks import send_verify_email logger = logging.getLogger('django') class CreateUserSerializer(serializers.ModelSerializer): """ 创建用户序列化器 """ password2 = serializers.CharField(label='确认密码', required=True, allow_null=False, allow_blank=False, write_only=True) sms_code = serializers.CharField(label='短信验证码', required=True, allow_null=False, allow_blank=False, write_only=True) allow = serializers.CharField(label='同意协议', required=True, allow_null=False, allow_blank=False, write_only=True) token = serializers.CharField(label='登录状态token', read_only=True) # 增加token字段 def validate_mobile(self, value): """验证手机号""" if not re.match(r'^1[3-9]\d{9}$', value): raise serializers.ValidationError('手机号格式错误') return value def validate_allow(self, value): """检验用户是否同意协议""" if value != 'true': raise serializers.ValidationError('请同意用户协议') return value def validate(self, attrs): # 判断两次密码 if attrs['password'] != attrs['password2']: raise serializers.ValidationError('两次密码不一致') # 判断短信验证码 redis_conn = get_redis_connection('verify_codes') mobile = attrs['mobile'] real_sms_code = redis_conn.get('sms_%s' % mobile) if real_sms_code is None: raise serializers.ValidationError('无效的短信验证码') if attrs['sms_code'] != real_sms_code.decode(): raise serializers.ValidationError('短信验证码错误') return attrs def create(self, validated_data): """ 创建用户 """ # 移除数据库模型中不存在的属性 del validated_data['password2'] del validated_data['sms_code'] del validated_data['allow'] user = super().create(validated_data) # 调用django的认证系统加密密码 user.set_password(validated_data['password']) user.save() # 补充生成记录登录状态的token jwt_payload_handler = api_settings.JWT_PAYLOAD_HANDLER jwt_encode_handler = api_settings.JWT_ENCODE_HANDLER payload = jwt_payload_handler(user) token = jwt_encode_handler(payload) user.token = token return user class Meta: model = User # 此序列化器用于传入和输出,所以得包含所有要用到的字段 fields = ('id', 'username', 'password', '<PASSWORD>', 'sms_code', 'mobile', 'allow', 'token') extra_kwargs = { 'id': {'read_only': True}, # read_only为True,指明只有输出时才会用到 'username': { 'min_length': 5, 'max_length': 20, 'error_messages': { 'min_length': '仅允许5-20个字符的用户名', 'max_length': '仅允许5-20个字符的用户名', } }, 'password': { 'write_only': True, 'min_length': 8, 'max_length': 20, 'error_messages': { 'min_length': '仅允许8-20个字符的密码', 'max_length': '仅允许8-20个字符的密码', } } } class CheckSMSCodeSerializer(serializers.Serializer): """ 检查sms code """ sms_code = serializers.CharField(min_length=6, max_length=6) def validate_sms_code(self, value): account = self.context['view'].kwargs['account'] # 获取user user = get_user_by_account(account) if user is None: raise serializers.ValidationError('用户不存在') self.user = user # 从redis中取出真实的验证码 redis_conn = get_redis_connection('verify_codes') real_sms_code = redis_conn.get('sms_%s' % user.mobile) if real_sms_code is None: return serializers.ValidationError('无效的短信验证码') if value != real_sms_code.decode(): raise serializers.ValidationError('短信验证码错误') return value class ResetPasswordSerializer(serializers.ModelSerializer): password2 = serializers.CharField(label='确认密码', write_only=True) access_token = serializers.CharField(label='操作token', write_only=True) class Meta: model = User fields = ('id', 'password', 'password2', 'access_token') extra_kwargs = { 'password': { 'write_only': True, 'min_length': 8, 'max_length': 20, 'error_messages': { 'min_length': '仅允许8-20个字符的密码', 'max_length': '仅允许8-20个字符的密码', } } } def validate(self, attrs): """ 校验数据 """ if attrs['password'] != attrs['password2']: raise serializers.ValidationError('两次密码不一致') allow = User.check_set_password_token(self.context['view'].kwargs['pk'], attrs['access_token']) if not allow: raise serializers.ValidationError('无效的access token') return attrs def update(self, instance, validated_data): """ 更新密码 """ instance.set_password(validated_data['password']) instance.save() return instance class UserDetailSerializer(serializers.ModelSerializer): """ 用户详细信息序列化器 """ class Meta: model = User fields = ['id', 'username', 'mobile', 'email', 'email_active'] class EmailSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('id', 'email') extra_kwargs = { 'email': { 'required': True } } def update(self, instance, validated_data): email = validated_data['email'] instance.email = email instance.save() # 生成验证链接 verify_url = instance.generate_verify_email_url() # 发送验证邮件 send_verify_email.delay(email, verify_url) return instance
[ "celery_tasks.email.tasks.send_verify_email.delay", "re.match", "rest_framework.serializers.CharField", "django_redis.get_redis_connection", "logging.getLogger", "rest_framework.serializers.ValidationError" ]
[((301, 328), 'logging.getLogger', 'logging.getLogger', (['"""django"""'], {}), "('django')\n", (318, 328), False, 'import logging\n'), ((433, 541), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'label': '"""确认密码"""', 'required': '(True)', 'allow_null': '(False)', 'allow_blank': '(False)', 'write_only': '(True)'}), "(label='确认密码', required=True, allow_null=False,\n allow_blank=False, write_only=True)\n", (454, 541), False, 'from rest_framework import serializers, status\n'), ((553, 662), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'label': '"""短信验证码"""', 'required': '(True)', 'allow_null': '(False)', 'allow_blank': '(False)', 'write_only': '(True)'}), "(label='短信验证码', required=True, allow_null=False,\n allow_blank=False, write_only=True)\n", (574, 662), False, 'from rest_framework import serializers, status\n'), ((671, 779), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'label': '"""同意协议"""', 'required': '(True)', 'allow_null': '(False)', 'allow_blank': '(False)', 'write_only': '(True)'}), "(label='同意协议', required=True, allow_null=False,\n allow_blank=False, write_only=True)\n", (692, 779), False, 'from rest_framework import serializers, status\n'), ((788, 844), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'label': '"""登录状态token"""', 'read_only': '(True)'}), "(label='登录状态token', read_only=True)\n", (809, 844), False, 'from rest_framework import serializers, status\n'), ((3368, 3417), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'min_length': '(6)', 'max_length': '(6)'}), '(min_length=6, max_length=6)\n', (3389, 3417), False, 'from rest_framework import serializers, status\n'), ((4126, 4178), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'label': '"""确认密码"""', 'write_only': '(True)'}), "(label='确认密码', write_only=True)\n", (4147, 4178), False, 'from rest_framework import serializers, status\n'), ((4198, 4253), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'label': '"""操作token"""', 'write_only': '(True)'}), "(label='操作token', write_only=True)\n", (4219, 4253), False, 'from rest_framework import serializers, status\n'), ((1412, 1448), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""verify_codes"""'], {}), "('verify_codes')\n", (1432, 1448), False, 'from django_redis import get_redis_connection\n'), ((3731, 3767), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""verify_codes"""'], {}), "('verify_codes')\n", (3751, 3767), False, 'from django_redis import get_redis_connection\n'), ((5948, 5990), 'celery_tasks.email.tasks.send_verify_email.delay', 'send_verify_email.delay', (['email', 'verify_url'], {}), '(email, verify_url)\n', (5971, 5990), False, 'from celery_tasks.email.tasks import send_verify_email\n'), ((932, 965), 're.match', 're.match', (['"""^1[3-9]\\\\d{9}$"""', 'value'], {}), "('^1[3-9]\\\\d{9}$', value)\n", (940, 965), False, 'import re\n'), ((985, 1023), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""手机号格式错误"""'], {}), "('手机号格式错误')\n", (1012, 1023), False, 'from rest_framework import serializers, status\n'), ((1154, 1192), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""请同意用户协议"""'], {}), "('请同意用户协议')\n", (1181, 1192), False, 'from rest_framework import serializers, status\n'), ((1333, 1371), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""两次密码不一致"""'], {}), "('两次密码不一致')\n", (1360, 1371), False, 'from rest_framework import serializers, status\n'), ((1592, 1631), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""无效的短信验证码"""'], {}), "('无效的短信验证码')\n", (1619, 1631), False, 'from rest_framework import serializers, status\n'), ((1706, 1744), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""短信验证码错误"""'], {}), "('短信验证码错误')\n", (1733, 1744), False, 'from rest_framework import serializers, status\n'), ((3620, 3656), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""用户不存在"""'], {}), "('用户不存在')\n", (3647, 3656), False, 'from rest_framework import serializers, status\n'), ((3884, 3923), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""无效的短信验证码"""'], {}), "('无效的短信验证码')\n", (3911, 3923), False, 'from rest_framework import serializers, status\n'), ((3986, 4024), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""短信验证码错误"""'], {}), "('短信验证码错误')\n", (4013, 4024), False, 'from rest_framework import serializers, status\n'), ((4830, 4868), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""两次密码不一致"""'], {}), "('两次密码不一致')\n", (4857, 4868), False, 'from rest_framework import serializers, status\n'), ((5014, 5060), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""无效的access token"""'], {}), "('无效的access token')\n", (5041, 5060), False, 'from rest_framework import serializers, status\n')]
import os from flask import Flask from MrLing import ling_blueprint from MrBasicWff import wff_blueprint app = Flask(__name__) app.config['SECRET_KEY'] = 'random string' app.debug = True app.register_blueprint(ling_blueprint) app.register_blueprint(wff_blueprint) @app.route("/") def home(): return '<p><a href="/MrLing">Ling</a></p><p><a href="/MrWff">Wff</a></p>' if __name__ == '__main__': app.run(host = '0.0.0.0', port = int(os.getenv('PORT', 5000)))
[ "flask.Flask", "os.getenv" ]
[((112, 127), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (117, 127), False, 'from flask import Flask\n'), ((442, 465), 'os.getenv', 'os.getenv', (['"""PORT"""', '(5000)'], {}), "('PORT', 5000)\n", (451, 465), False, 'import os\n')]
# Copyright (c) 2018 <NAME> # # Distributed under the Boost Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) from phylanx import Phylanx import numpy as np @Phylanx def foo(x, y): return [x, y] x = np.array([1, 2]) y = np.array([3, 4]) result = foo(x, y) assert((result[0] == x).all() and (result[1] == y).all())
[ "numpy.array" ]
[((282, 298), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (290, 298), True, 'import numpy as np\n'), ((303, 319), 'numpy.array', 'np.array', (['[3, 4]'], {}), '([3, 4])\n', (311, 319), True, 'import numpy as np\n')]
from datetime import timedelta from django.core.management import call_command from django.test import TestCase from django.utils import timezone from django_future.jobs import schedule_job from django_future.models import ScheduledJob class RunScheduledJobsCommandTest(TestCase): def setUp(self): self.schedule_at = timezone.now() - timedelta(days=1) self.jobs = [ schedule_job(self.schedule_at, 'math.pow', args=(2, 3)), schedule_job(self.schedule_at, 'math.pow', args=(5, 2)) ] def test_cmd_noargs(self): """ Test invocation of command with no arguments. Ensure the scheduled jobs are marked as completed. """ self.assertEqual( 2, ScheduledJob.objects.filter( status=ScheduledJob.STATUS_SCHEDULED).count() ) call_command('runscheduledjobs') self.assertEqual( 2, ScheduledJob.objects.filter( status=ScheduledJob.STATUS_COMPLETE).count() ) def test_cmd_delete_completed(self): """ Test invocation of command with '-d' argument to delete completed jobs. Ensure the scheduled jobs are removed after. """ self.assertEqual( 2, ScheduledJob.objects.filter( status=ScheduledJob.STATUS_SCHEDULED).count() ) call_command('runscheduledjobs', '-d') self.assertEqual(0, ScheduledJob.objects.count()) def test_cmd_ignore_errors(self): """ Test invocation of command with '-i' argument to keep processing jobs even if a job fails. Ensure the non-failing jobs are marked as completed and the error job is marked as failed. """ schedule_at = self.schedule_at - timedelta(days=1) error_job = schedule_job(schedule_at, 'math.funky_error') self.assertEqual( 3, ScheduledJob.objects.filter( status=ScheduledJob.STATUS_SCHEDULED).count() ) call_command('runscheduledjobs', '-i') error_job.refresh_from_db() self.assertEqual(error_job.status, ScheduledJob.STATUS_FAILED) self.assertEqual( 2, ScheduledJob.objects.filter( status=ScheduledJob.STATUS_COMPLETE).count() )
[ "django.utils.timezone.now", "django.core.management.call_command", "datetime.timedelta", "django_future.models.ScheduledJob.objects.filter", "django_future.models.ScheduledJob.objects.count", "django_future.jobs.schedule_job" ]
[((870, 902), 'django.core.management.call_command', 'call_command', (['"""runscheduledjobs"""'], {}), "('runscheduledjobs')\n", (882, 902), False, 'from django.core.management import call_command\n'), ((1419, 1457), 'django.core.management.call_command', 'call_command', (['"""runscheduledjobs"""', '"""-d"""'], {}), "('runscheduledjobs', '-d')\n", (1431, 1457), False, 'from django.core.management import call_command\n'), ((1865, 1910), 'django_future.jobs.schedule_job', 'schedule_job', (['schedule_at', '"""math.funky_error"""'], {}), "(schedule_at, 'math.funky_error')\n", (1877, 1910), False, 'from django_future.jobs import schedule_job\n'), ((2075, 2113), 'django.core.management.call_command', 'call_command', (['"""runscheduledjobs"""', '"""-i"""'], {}), "('runscheduledjobs', '-i')\n", (2087, 2113), False, 'from django.core.management import call_command\n'), ((333, 347), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (345, 347), False, 'from django.utils import timezone\n'), ((350, 367), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (359, 367), False, 'from datetime import timedelta\n'), ((403, 458), 'django_future.jobs.schedule_job', 'schedule_job', (['self.schedule_at', '"""math.pow"""'], {'args': '(2, 3)'}), "(self.schedule_at, 'math.pow', args=(2, 3))\n", (415, 458), False, 'from django_future.jobs import schedule_job\n'), ((472, 527), 'django_future.jobs.schedule_job', 'schedule_job', (['self.schedule_at', '"""math.pow"""'], {'args': '(5, 2)'}), "(self.schedule_at, 'math.pow', args=(5, 2))\n", (484, 527), False, 'from django_future.jobs import schedule_job\n'), ((1487, 1515), 'django_future.models.ScheduledJob.objects.count', 'ScheduledJob.objects.count', ([], {}), '()\n', (1513, 1515), False, 'from django_future.models import ScheduledJob\n'), ((1827, 1844), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (1836, 1844), False, 'from datetime import timedelta\n'), ((760, 825), 'django_future.models.ScheduledJob.objects.filter', 'ScheduledJob.objects.filter', ([], {'status': 'ScheduledJob.STATUS_SCHEDULED'}), '(status=ScheduledJob.STATUS_SCHEDULED)\n', (787, 825), False, 'from django_future.models import ScheduledJob\n'), ((957, 1021), 'django_future.models.ScheduledJob.objects.filter', 'ScheduledJob.objects.filter', ([], {'status': 'ScheduledJob.STATUS_COMPLETE'}), '(status=ScheduledJob.STATUS_COMPLETE)\n', (984, 1021), False, 'from django_future.models import ScheduledJob\n'), ((1309, 1374), 'django_future.models.ScheduledJob.objects.filter', 'ScheduledJob.objects.filter', ([], {'status': 'ScheduledJob.STATUS_SCHEDULED'}), '(status=ScheduledJob.STATUS_SCHEDULED)\n', (1336, 1374), False, 'from django_future.models import ScheduledJob\n'), ((1965, 2030), 'django_future.models.ScheduledJob.objects.filter', 'ScheduledJob.objects.filter', ([], {'status': 'ScheduledJob.STATUS_SCHEDULED'}), '(status=ScheduledJob.STATUS_SCHEDULED)\n', (1992, 2030), False, 'from django_future.models import ScheduledJob\n'), ((2276, 2340), 'django_future.models.ScheduledJob.objects.filter', 'ScheduledJob.objects.filter', ([], {'status': 'ScheduledJob.STATUS_COMPLETE'}), '(status=ScheduledJob.STATUS_COMPLETE)\n', (2303, 2340), False, 'from django_future.models import ScheduledJob\n')]
# Copyright 2020 Open Climate Tech Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Training code using Keras for TF2 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from firecam.lib import settings from firecam.lib import collect_args from firecam.lib import goog_helper from firecam.lib import tf_helper import glob import tensorflow as tf from tensorflow import keras import logging import datetime def _parse_function(example_proto): """ Function for converting TFRecordDataset to uncompressed image pixels + labels :return: """ feature_description = { 'image/class/label': tf.io.FixedLenFeature([], tf.int64, default_value=0), 'image/encoded': tf.io.FixedLenFeature([], tf.string, default_value=''), 'image/format': tf.io.FixedLenFeature([], tf.string, default_value=''), 'image/height': tf.io.FixedLenFeature([], tf.int64, default_value=0), 'image/width': tf.io.FixedLenFeature([], tf.int64, default_value=0), } # Parse the input `tf.Example` proto using the dictionary above. example = tf.io.parse_single_example(example_proto, feature_description) image = tf.image.decode_jpeg(example['image/encoded'], channels=3, dct_method='INTEGER_ACCURATE') #Resizing images in training set because they are apprently rectangular much fo the time if example['image/height'] != 299 or example['image/width'] != 299: image = tf.image.resize(tf.reshape(image, [example['image/height'], example['image/width'], 3]), [299, 299]) image = tf.cast(image, tf.uint8) image = tf.reshape(image, [299, 299, 3]) #weird workaround because decode image doesnt get shape label = tf.one_hot(example['image/class/label'], depth=2) image = (tf.cast(image, tf.float32) - 128) / 128.0 return [image, label] class LRTensorBoard(keras.callbacks.TensorBoard): def __init__(self, log_dir, **kwargs): # add other arguments to __init__ if you need super().__init__(log_dir=log_dir, **kwargs) def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs.update({'lr': keras.backend.eval(self.model.optimizer.lr)}) super().on_epoch_end(epoch, logs) def main(): reqArgs = [ ["i", "inputDir", "directory containing TFRecord files"], ["o", "outputDir", "directory to write out checkpoints and tensorboard logs"], ["a", "algorithm", "adam, nadam, or rmsprop"], ] optArgs = [ ["m", "maxEpochs", "(optional) max number of epochs (default 1000)", int], ["r", "resumeModel", "resume training from given saved model"], ["s", "startEpoch", "epoch to resume from (epoch from resumeModel)"], ["t", "stepsPerEpoch", "(optional) number of steps per epoch", int], ["v", "valStepsPerEpoch", "(optional) number of validation steps per epoch", int], ] args = collect_args.collectArgs(reqArgs, optionalArgs=optArgs, parentParsers=[goog_helper.getParentParser()]) batch_size = 64 max_epochs = args.maxEpochs if args.maxEpochs else 1000 steps_per_epoch = args.stepsPerEpoch if args.stepsPerEpoch else 2000 overshoot_epochs = 30 #number of epochs over which validation loss hasnt decreased to stop training at val_steps = args.valStepsPerEpoch if args.valStepsPerEpoch else 200 #val_steps only needed for now because of a bug in tf2.0, which should be fixed in next version #TODO: either set this to # of validation examples /batch size (i.e. figure out num validation examples) #or upgrade to TF2.1 when its ready and automatically go thorugh the whole set train_filenames = glob.glob(os.path.join(args.inputDir, 'firecam_train_*.tfrecord')) val_filenames = glob.glob(os.path.join(args.inputDir, 'firecam_validation_*.tfrecord')) logging.warning('Found %d training files, and %d validation files', len(train_filenames), len(val_filenames)) if (len(train_filenames) == 0) or (len(val_filenames) == 0): logging.error('Could not find data in %s', args.inputDir) exit(1) raw_dataset_train = tf.data.TFRecordDataset(train_filenames) raw_dataset_val = tf.data.TFRecordDataset(val_filenames) dataset_train = raw_dataset_train.map(_parse_function).repeat(max_epochs * steps_per_epoch).shuffle(batch_size * 5).batch(batch_size) dataset_val = raw_dataset_val.map(_parse_function).repeat().batch(batch_size) if args.resumeModel: inception = tf_helper.loadModel(args.resumeModel) assert int(args.startEpoch) > 0 initial_epoch = int(args.startEpoch) else: inception = keras.applications.inception_v3.InceptionV3(weights=None, include_top=True, input_tensor=None, classes=2) initial_epoch = 0 if args.algorithm == "adam": # optimizer = tf.keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False) optimizer = tf.keras.optimizers.Adam(decay=1e-06, amsgrad=True) elif args.algorithm == "nadam": optimizer = tf.keras.optimizers.Nadam() elif args.algorithm == "rmsprop": optimizer = tf.keras.optimizers.RMSprop(decay=1e-06) else: logging.error('Unsupported algo %s', args.algorithm) exit(1) inception.compile(optimizer=optimizer, loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy']) logdir = os.path.join(args.outputDir, datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) callbacks = [keras.callbacks.EarlyStopping(monitor='val_loss', patience=overshoot_epochs), keras.callbacks.ModelCheckpoint(filepath=os.path.join(args.outputDir, 'model_{epoch}'), monitor='val_loss', save_best_only=True), LRTensorBoard(log_dir=logdir)] logging.warning('Start training') inception.fit(dataset_train, validation_data=dataset_val, epochs=max_epochs, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=val_steps, callbacks=callbacks) logging.warning('Done training') if __name__ == "__main__": main()
[ "tensorflow.reshape", "os.path.join", "tensorflow.keras.optimizers.RMSprop", "tensorflow.keras.callbacks.EarlyStopping", "logging.error", "tensorflow.one_hot", "logging.warning", "tensorflow.cast", "tensorflow.keras.optimizers.Adam", "datetime.datetime.now", "firecam.lib.tf_helper.loadModel", "tensorflow.keras.optimizers.Nadam", "tensorflow.data.TFRecordDataset", "tensorflow.keras.applications.inception_v3.InceptionV3", "tensorflow.io.parse_single_example", "tensorflow.keras.losses.BinaryCrossentropy", "tensorflow.keras.backend.eval", "tensorflow.io.FixedLenFeature", "firecam.lib.goog_helper.getParentParser", "tensorflow.image.decode_jpeg" ]
[((1733, 1795), 'tensorflow.io.parse_single_example', 'tf.io.parse_single_example', (['example_proto', 'feature_description'], {}), '(example_proto, feature_description)\n', (1759, 1795), True, 'import tensorflow as tf\n'), ((1808, 1902), 'tensorflow.image.decode_jpeg', 'tf.image.decode_jpeg', (["example['image/encoded']"], {'channels': '(3)', 'dct_method': '"""INTEGER_ACCURATE"""'}), "(example['image/encoded'], channels=3, dct_method=\n 'INTEGER_ACCURATE')\n", (1828, 1902), True, 'import tensorflow as tf\n'), ((2235, 2267), 'tensorflow.reshape', 'tf.reshape', (['image', '[299, 299, 3]'], {}), '(image, [299, 299, 3])\n', (2245, 2267), True, 'import tensorflow as tf\n'), ((2336, 2385), 'tensorflow.one_hot', 'tf.one_hot', (["example['image/class/label']"], {'depth': '(2)'}), "(example['image/class/label'], depth=2)\n", (2346, 2385), True, 'import tensorflow as tf\n'), ((4725, 4765), 'tensorflow.data.TFRecordDataset', 'tf.data.TFRecordDataset', (['train_filenames'], {}), '(train_filenames)\n', (4748, 4765), True, 'import tensorflow as tf\n'), ((4788, 4826), 'tensorflow.data.TFRecordDataset', 'tf.data.TFRecordDataset', (['val_filenames'], {}), '(val_filenames)\n', (4811, 4826), True, 'import tensorflow as tf\n'), ((6474, 6507), 'logging.warning', 'logging.warning', (['"""Start training"""'], {}), "('Start training')\n", (6489, 6507), False, 'import logging\n'), ((6758, 6790), 'logging.warning', 'logging.warning', (['"""Done training"""'], {}), "('Done training')\n", (6773, 6790), False, 'import logging\n'), ((1289, 1341), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.int64'], {'default_value': '(0)'}), '([], tf.int64, default_value=0)\n', (1310, 1341), True, 'import tensorflow as tf\n'), ((1364, 1418), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.string'], {'default_value': '""""""'}), "([], tf.string, default_value='')\n", (1385, 1418), True, 'import tensorflow as tf\n'), ((1440, 1494), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.string'], {'default_value': '""""""'}), "([], tf.string, default_value='')\n", (1461, 1494), True, 'import tensorflow as tf\n'), ((1516, 1568), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.int64'], {'default_value': '(0)'}), '([], tf.int64, default_value=0)\n', (1537, 1568), True, 'import tensorflow as tf\n'), ((1589, 1641), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.int64'], {'default_value': '(0)'}), '([], tf.int64, default_value=0)\n', (1610, 1641), True, 'import tensorflow as tf\n'), ((2197, 2221), 'tensorflow.cast', 'tf.cast', (['image', 'tf.uint8'], {}), '(image, tf.uint8)\n', (2204, 2221), True, 'import tensorflow as tf\n'), ((4290, 4345), 'os.path.join', 'os.path.join', (['args.inputDir', '"""firecam_train_*.tfrecord"""'], {}), "(args.inputDir, 'firecam_train_*.tfrecord')\n", (4302, 4345), False, 'import os\n'), ((4377, 4437), 'os.path.join', 'os.path.join', (['args.inputDir', '"""firecam_validation_*.tfrecord"""'], {}), "(args.inputDir, 'firecam_validation_*.tfrecord')\n", (4389, 4437), False, 'import os\n'), ((4626, 4683), 'logging.error', 'logging.error', (['"""Could not find data in %s"""', 'args.inputDir'], {}), "('Could not find data in %s', args.inputDir)\n", (4639, 4683), False, 'import logging\n'), ((5094, 5131), 'firecam.lib.tf_helper.loadModel', 'tf_helper.loadModel', (['args.resumeModel'], {}), '(args.resumeModel)\n', (5113, 5131), False, 'from firecam.lib import tf_helper\n'), ((5247, 5356), 'tensorflow.keras.applications.inception_v3.InceptionV3', 'keras.applications.inception_v3.InceptionV3', ([], {'weights': 'None', 'include_top': '(True)', 'input_tensor': 'None', 'classes': '(2)'}), '(weights=None, include_top=True,\n input_tensor=None, classes=2)\n', (5290, 5356), False, 'from tensorflow import keras\n'), ((5605, 5656), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'decay': '(1e-06)', 'amsgrad': '(True)'}), '(decay=1e-06, amsgrad=True)\n', (5629, 5656), True, 'import tensorflow as tf\n'), ((6147, 6223), 'tensorflow.keras.callbacks.EarlyStopping', 'keras.callbacks.EarlyStopping', ([], {'monitor': '"""val_loss"""', 'patience': 'overshoot_epochs'}), "(monitor='val_loss', patience=overshoot_epochs)\n", (6176, 6223), False, 'from tensorflow import keras\n'), ((2096, 2167), 'tensorflow.reshape', 'tf.reshape', (['image', "[example['image/height'], example['image/width'], 3]"], {}), "(image, [example['image/height'], example['image/width'], 3])\n", (2106, 2167), True, 'import tensorflow as tf\n'), ((2400, 2426), 'tensorflow.cast', 'tf.cast', (['image', 'tf.float32'], {}), '(image, tf.float32)\n', (2407, 2426), True, 'import tensorflow as tf\n'), ((5713, 5740), 'tensorflow.keras.optimizers.Nadam', 'tf.keras.optimizers.Nadam', ([], {}), '()\n', (5738, 5740), True, 'import tensorflow as tf\n'), ((5976, 6012), 'tensorflow.keras.losses.BinaryCrossentropy', 'tf.keras.losses.BinaryCrossentropy', ([], {}), '()\n', (6010, 6012), True, 'import tensorflow as tf\n'), ((2762, 2805), 'tensorflow.keras.backend.eval', 'keras.backend.eval', (['self.model.optimizer.lr'], {}), '(self.model.optimizer.lr)\n', (2780, 2805), False, 'from tensorflow import keras\n'), ((3600, 3629), 'firecam.lib.goog_helper.getParentParser', 'goog_helper.getParentParser', ([], {}), '()\n', (3627, 3629), False, 'from firecam.lib import goog_helper\n'), ((5799, 5839), 'tensorflow.keras.optimizers.RMSprop', 'tf.keras.optimizers.RMSprop', ([], {'decay': '(1e-06)'}), '(decay=1e-06)\n', (5826, 5839), True, 'import tensorflow as tf\n'), ((5858, 5910), 'logging.error', 'logging.error', (['"""Unsupported algo %s"""', 'args.algorithm'], {}), "('Unsupported algo %s', args.algorithm)\n", (5871, 5910), False, 'import logging\n'), ((6079, 6102), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6100, 6102), False, 'import datetime\n'), ((6283, 6328), 'os.path.join', 'os.path.join', (['args.outputDir', '"""model_{epoch}"""'], {}), "(args.outputDir, 'model_{epoch}')\n", (6295, 6328), False, 'import os\n')]
# Generated by Django 3.0.9 on 2020-08-23 12:27 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('home', '0007_auto_20200823_1340'), ] operations = [ migrations.DeleteModel( name='addPost', ), ]
[ "django.db.migrations.DeleteModel" ]
[((224, 262), 'django.db.migrations.DeleteModel', 'migrations.DeleteModel', ([], {'name': '"""addPost"""'}), "(name='addPost')\n", (246, 262), False, 'from django.db import migrations\n')]
SI = lambda : input() from collections import Counter n = int(input()) a = SI() b = SI() def solve(n,a,b): d = Counter(a)+Counter(b) for i in d: if(d[i]&1): print(-1) return xa = d[a]//2 newa = [] newb = [] for i in range(n): if(a[i]!=b[i]): newa.append((a[i],i)) newb.append((b[i],i)) a,b = newa,newb aux = len(a) if(aux==0): print(0) return canta = 0 for i in a: if(i[0]=='a'): canta+=1 if(canta&1): print(len(a)//2+1) print(a[0][1]+1,a[0][1]+1) a[0],b[0] = b[0],a[0] else: print(len(a)//2) lastA,lastB = -1,-1 for i in range(aux): if(a[i][0]=='a'): if(lastA==-1): lastA=a[i][1] else: print(lastA+1,a[i][1]+1) lastA=-1 else: if(lastB==-1): lastB=a[i][1] else: print(lastB+1,a[i][1]+1) lastB=-1 solve(n,a,b)
[ "collections.Counter" ]
[((114, 124), 'collections.Counter', 'Counter', (['a'], {}), '(a)\n', (121, 124), False, 'from collections import Counter\n'), ((125, 135), 'collections.Counter', 'Counter', (['b'], {}), '(b)\n', (132, 135), False, 'from collections import Counter\n')]
import datetime import discord import pytz from necrobot.botbase import server, discordutil from necrobot.database import matchdb, racedb from necrobot.util import console, timestr, writechannel, strutil, rtmputil from necrobot.botbase.necrobot import Necrobot from necrobot.gsheet.matchgsheetinfo import MatchGSheetInfo from necrobot.match.match import Match from necrobot.match.matchinfo import MatchInfo from necrobot.match.matchroom import MatchRoom from necrobot.race.raceinfo import RaceInfo from necrobot.user.necrouser import NecroUser from necrobot.config import Config match_library = {} # noinspection PyIncorrectDocstring async def make_match(*args, register=False, **kwargs) -> Match: """Create a Match object. There should be no need to call this directly; use matchutil.make_match instead, since this needs to interact with the database. Parameters ---------- racer_1_id: int The DB user ID of the first racer. racer_2_id: int The DB user ID of the second racer. max_races: int The maximum number of races this match can be. (If is_best_of is True, then the match is a best of max_races; otherwise, the match is just repeating max_races.) match_id: int The DB unique ID of this match. suggested_time: datetime.datetime The time the match is suggested for. If no tzinfo, UTC is assumed. r1_confirmed: bool Whether the first racer has confirmed the match time. r2_confirmed: bool Whether the second racer has confirmed the match time. r1_unconfirmed: bool Whether the first racer wishes to unconfirm the match time. r2_unconfirmed: bool Whether the second racer wishes to unconfirm the match time. match_info: MatchInfo The types of races to be run in this match. cawmentator_id: int The DB unique ID of the cawmentator for this match. sheet_id: int The sheetID of the worksheet the match was created from, if any. register: bool Whether to register the match in the database. Returns --------- Match The created match. """ if 'match_id' in kwargs and kwargs['match_id'] in match_library: return match_library[kwargs['match_id']] match = Match(*args, commit_fn=matchdb.write_match, **kwargs) await match.initialize() if register: await match.commit() match_library[match.match_id] = match return match async def get_match_from_id(match_id: int) -> Match or None: """Get a match object from its DB unique ID. Parameters ---------- match_id: int The databse ID of the match. Returns ------- Optional[Match] The match found, if any. """ if match_id is None: return None if match_id in match_library: return match_library[match_id] raw_data = await matchdb.get_raw_match_data(match_id) if raw_data is not None: return await make_match_from_raw_db_data(raw_data) else: return None def get_matchroom_name(match: Match) -> str: """Get a new unique channel name corresponding to the match. Parameters ---------- match: Match The match whose info determines the name. Returns ------- str The name of the channel. """ name_prefix = match.matchroom_name cut_length = len(name_prefix) + 1 largest_postfix = 1 found = False for channel in server.server.channels: if channel.name.startswith(name_prefix): found = True try: val = int(channel.name[cut_length:]) largest_postfix = max(largest_postfix, val) except ValueError: pass return name_prefix if not found else '{0}-{1}'.format(name_prefix, largest_postfix + 1) async def get_upcoming_and_current() -> list: """ Returns ------- list[Match] A list of all upcoming and ongoing matches, in order. """ matches = [] for row in await matchdb.get_channeled_matches_raw_data(must_be_scheduled=True, order_by_time=True): channel_id = int(row[13]) if row[13] is not None else None if channel_id is not None: channel = server.find_channel(channel_id=channel_id) if channel is not None: match = await make_match_from_raw_db_data(row=row) if match.suggested_time is None: console.warning('Found match object {} has no suggested time.'.format(repr(match))) continue if match.suggested_time > pytz.utc.localize(datetime.datetime.utcnow()): matches.append(match) else: match_room = Necrobot().get_bot_channel(channel) if match_room is not None and await match_room.during_races(): matches.append(match) return matches async def get_matches_with_channels(racer: NecroUser = None) -> list: """ Parameters ---------- racer: NecroUser The racer to find channels for. If None, finds all channeled matches. Returns ------- list[Match] A list of all Matches that have associated channels on the server featuring the specified racer. """ matches = [] if racer is not None: raw_data = await matchdb.get_channeled_matches_raw_data( must_be_scheduled=False, order_by_time=False, racer_id=racer.user_id ) else: raw_data = await matchdb.get_channeled_matches_raw_data(must_be_scheduled=False, order_by_time=False) for row in raw_data: channel_id = int(row[13]) channel = server.find_channel(channel_id=channel_id) if channel is not None: match = await make_match_from_raw_db_data(row=row) matches.append(match) else: console.warning('Found Match with channel {0}, but couldn\'t find this channel.'.format(channel_id)) return matches async def delete_all_match_channels(log=False, completed_only=False) -> None: """Delete all match channels from the server. Parameters ---------- log: bool If True, the channel text will be written to a log file before deletion. completed_only: bool If True, will only find completed matches. """ for row in await matchdb.get_channeled_matches_raw_data(): match_id = int(row[0]) channel_id = int(row[13]) channel = server.find_channel(channel_id=channel_id) delete_this = True if channel is not None: if completed_only: match_room = Necrobot().get_bot_channel(channel) if match_room is None or not match_room.played_all_races: delete_this = False if delete_this: if log: await writechannel.write_channel( client=server.client, channel=channel, outfile_name='{0}-{1}'.format(match_id, channel.name) ) await server.client.delete_channel(channel) if delete_this: await matchdb.register_match_channel(match_id, None) async def make_match_room(match: Match, register=False) -> MatchRoom or None: """Create a discord.Channel and a corresponding MatchRoom for the given Match. Parameters ---------- match: Match The Match to create a room for. register: bool If True, will register the Match in the database. Returns ------- Optional[MatchRoom] The created room object. """ # Check to see the match is registered if not match.is_registered: if register: await match.commit() else: console.warning('Tried to make a MatchRoom for an unregistered Match ({0}).'.format(match.matchroom_name)) return None # Check to see if we already have the match channel channel_id = match.channel_id match_channel = server.find_channel(channel_id=channel_id) if channel_id is not None else None # If we couldn't find the channel or it didn't exist, make a new one if match_channel is None: # Create permissions deny_read = discord.PermissionOverwrite(read_messages=False) permit_read = discord.PermissionOverwrite(read_messages=True) racer_permissions = [] for racer in match.racers: if racer.member is not None: racer_permissions.append(discord.ChannelPermissions(target=racer.member, overwrite=permit_read)) # Make a channel for the room # noinspection PyUnresolvedReferences match_channel = await server.client.create_channel( server.server, get_matchroom_name(match), discord.ChannelPermissions(target=server.server.default_role, overwrite=deny_read), discord.ChannelPermissions(target=server.server.me, overwrite=permit_read), *racer_permissions, type=discord.ChannelType.text) if match_channel is None: console.warning('Failed to make a match channel.') return None # Put the match channel in the matches category match_channel_category = server.find_channel(channel_name=Config.MATCH_CHANNEL_CATEGORY_NAME) if match_channel_category is not None: await discordutil.set_channel_category(channel=match_channel, category=match_channel_category) # Make the actual RaceRoom and initialize it match.set_channel_id(int(match_channel.id)) new_room = MatchRoom(match_discord_channel=match_channel, match=match) Necrobot().register_bot_channel(match_channel, new_room) await new_room.initialize() return new_room async def close_match_room(match: Match) -> None: """Close the discord.Channel corresponding to the Match, if any. Parameters ---------- match: Match The Match to close the channel for. """ if not match.is_registered: console.warning('Trying to close the room for an unregistered match.') return channel_id = match.channel_id channel = server.find_channel(channel_id=channel_id) if channel is None: console.warning('Coudn\'t find channel with id {0} in close_match_room ' '(match_id={1}).'.format(channel_id, match.match_id)) return await Necrobot().unregister_bot_channel(channel) await server.client.delete_channel(channel) match.set_channel_id(None) async def get_nextrace_displaytext(match_list: list) -> str: utcnow = pytz.utc.localize(datetime.datetime.utcnow()) if len(match_list) > 1: display_text = 'Upcoming matches: \n' else: display_text = 'Next match: \n' for match in match_list: # noinspection PyUnresolvedReferences display_text += '\N{BULLET} **{0}** - **{1}**'.format( match.racer_1.display_name, match.racer_2.display_name) if match.suggested_time is None: display_text += '\n' continue display_text += ': {0} \n'.format(timestr.timedelta_to_str(match.suggested_time - utcnow, punctuate=True)) match_cawmentator = await match.get_cawmentator() if match_cawmentator is not None: display_text += ' Cawmentary: <http://www.twitch.tv/{0}> \n'.format(match_cawmentator.twitch_name) elif match.racer_1.twitch_name is not None and match.racer_2.twitch_name is not None: display_text += ' Kadgar: {} \n'.format( rtmputil.kadgar_link(match.racer_1.twitch_name, match.racer_2.twitch_name) ) # display_text += ' RTMP: {} \n'.format( # rtmputil.rtmp_link(match.racer_1.rtmp_name, match.racer_2.rtmp_name) # ) display_text += '\nFull schedule: <https://condor.host/schedule>' return display_text async def delete_match(match_id: int) -> None: await matchdb.delete_match(match_id=match_id) if match_id in match_library: del match_library[match_id] async def make_match_from_raw_db_data(row: list) -> Match: match_id = int(row[0]) if match_id in match_library: return match_library[match_id] match_info = MatchInfo( race_info=await racedb.get_race_info_from_type_id(int(row[1])) if row[1] is not None else RaceInfo(), ranked=bool(row[9]), is_best_of=bool(row[10]), max_races=int(row[11]) ) sheet_info = MatchGSheetInfo() sheet_info.wks_id = row[14] sheet_info.row = row[15] new_match = Match( commit_fn=matchdb.write_match, match_id=match_id, match_info=match_info, racer_1_id=int(row[2]), racer_2_id=int(row[3]), suggested_time=row[4], finish_time=row[16], r1_confirmed=bool(row[5]), r2_confirmed=bool(row[6]), r1_unconfirmed=bool(row[7]), r2_unconfirmed=bool(row[8]), cawmentator_id=row[12], channel_id=int(row[13]) if row[13] is not None else None, gsheet_info=sheet_info ) await new_match.initialize() match_library[new_match.match_id] = new_match return new_match async def get_schedule_infotext(): utcnow = pytz.utc.localize(datetime.datetime.utcnow()) matches = await get_upcoming_and_current() max_r1_len = 0 max_r2_len = 0 for match in matches: max_r1_len = max(max_r1_len, len(strutil.tickless(match.racer_1.display_name))) max_r2_len = max(max_r2_len, len(strutil.tickless(match.racer_2.display_name))) schedule_text = '``` \nUpcoming matches: \n' for match in matches: if len(schedule_text) > 1800: break schedule_text += '{r1:>{w1}} v {r2:<{w2}} : '.format( r1=strutil.tickless(match.racer_1.display_name), w1=max_r1_len, r2=strutil.tickless(match.racer_2.display_name), w2=max_r2_len ) if match.suggested_time - utcnow < datetime.timedelta(minutes=0): schedule_text += 'Right now!' else: schedule_text += timestr.str_full_24h(match.suggested_time) schedule_text += '\n' schedule_text += '```' return schedule_text async def get_race_data(match: Match): return await matchdb.get_match_race_data(match.match_id)
[ "discord.ChannelPermissions", "necrobot.database.matchdb.delete_match", "necrobot.match.match.Match", "necrobot.util.rtmputil.kadgar_link", "datetime.datetime.utcnow", "necrobot.database.matchdb.get_raw_match_data", "necrobot.race.raceinfo.RaceInfo", "necrobot.botbase.server.client.delete_channel", "datetime.timedelta", "discord.PermissionOverwrite", "necrobot.util.timestr.str_full_24h", "necrobot.database.matchdb.register_match_channel", "necrobot.database.matchdb.get_channeled_matches_raw_data", "necrobot.util.timestr.timedelta_to_str", "necrobot.database.matchdb.get_match_race_data", "necrobot.util.strutil.tickless", "necrobot.util.console.warning", "necrobot.botbase.server.find_channel", "necrobot.match.matchroom.MatchRoom", "necrobot.gsheet.matchgsheetinfo.MatchGSheetInfo", "necrobot.botbase.discordutil.set_channel_category", "necrobot.botbase.necrobot.Necrobot" ]
[((2289, 2342), 'necrobot.match.match.Match', 'Match', (['*args'], {'commit_fn': 'matchdb.write_match'}), '(*args, commit_fn=matchdb.write_match, **kwargs)\n', (2294, 2342), False, 'from necrobot.match.match import Match\n'), ((9727, 9786), 'necrobot.match.matchroom.MatchRoom', 'MatchRoom', ([], {'match_discord_channel': 'match_channel', 'match': 'match'}), '(match_discord_channel=match_channel, match=match)\n', (9736, 9786), False, 'from necrobot.match.matchroom import MatchRoom\n'), ((10301, 10343), 'necrobot.botbase.server.find_channel', 'server.find_channel', ([], {'channel_id': 'channel_id'}), '(channel_id=channel_id)\n', (10320, 10343), False, 'from necrobot.botbase import server, discordutil\n'), ((12662, 12679), 'necrobot.gsheet.matchgsheetinfo.MatchGSheetInfo', 'MatchGSheetInfo', ([], {}), '()\n', (12677, 12679), False, 'from necrobot.gsheet.matchgsheetinfo import MatchGSheetInfo\n'), ((2910, 2946), 'necrobot.database.matchdb.get_raw_match_data', 'matchdb.get_raw_match_data', (['match_id'], {}), '(match_id)\n', (2936, 2946), False, 'from necrobot.database import matchdb, racedb\n'), ((4082, 4168), 'necrobot.database.matchdb.get_channeled_matches_raw_data', 'matchdb.get_channeled_matches_raw_data', ([], {'must_be_scheduled': '(True)', 'order_by_time': '(True)'}), '(must_be_scheduled=True,\n order_by_time=True)\n', (4120, 4168), False, 'from necrobot.database import matchdb, racedb\n'), ((5753, 5795), 'necrobot.botbase.server.find_channel', 'server.find_channel', ([], {'channel_id': 'channel_id'}), '(channel_id=channel_id)\n', (5772, 5795), False, 'from necrobot.botbase import server, discordutil\n'), ((6437, 6477), 'necrobot.database.matchdb.get_channeled_matches_raw_data', 'matchdb.get_channeled_matches_raw_data', ([], {}), '()\n', (6475, 6477), False, 'from necrobot.database import matchdb, racedb\n'), ((6562, 6604), 'necrobot.botbase.server.find_channel', 'server.find_channel', ([], {'channel_id': 'channel_id'}), '(channel_id=channel_id)\n', (6581, 6604), False, 'from necrobot.botbase import server, discordutil\n'), ((8138, 8180), 'necrobot.botbase.server.find_channel', 'server.find_channel', ([], {'channel_id': 'channel_id'}), '(channel_id=channel_id)\n', (8157, 8180), False, 'from necrobot.botbase import server, discordutil\n'), ((8370, 8418), 'discord.PermissionOverwrite', 'discord.PermissionOverwrite', ([], {'read_messages': '(False)'}), '(read_messages=False)\n', (8397, 8418), False, 'import discord\n'), ((8441, 8488), 'discord.PermissionOverwrite', 'discord.PermissionOverwrite', ([], {'read_messages': '(True)'}), '(read_messages=True)\n', (8468, 8488), False, 'import discord\n'), ((9391, 9459), 'necrobot.botbase.server.find_channel', 'server.find_channel', ([], {'channel_name': 'Config.MATCH_CHANNEL_CATEGORY_NAME'}), '(channel_name=Config.MATCH_CHANNEL_CATEGORY_NAME)\n', (9410, 9459), False, 'from necrobot.botbase import server, discordutil\n'), ((10166, 10236), 'necrobot.util.console.warning', 'console.warning', (['"""Trying to close the room for an unregistered match."""'], {}), "('Trying to close the room for an unregistered match.')\n", (10181, 10236), False, 'from necrobot.util import console, timestr, writechannel, strutil, rtmputil\n'), ((10606, 10643), 'necrobot.botbase.server.client.delete_channel', 'server.client.delete_channel', (['channel'], {}), '(channel)\n', (10634, 10643), False, 'from necrobot.botbase import server, discordutil\n'), ((10769, 10795), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (10793, 10795), False, 'import datetime\n'), ((12134, 12173), 'necrobot.database.matchdb.delete_match', 'matchdb.delete_match', ([], {'match_id': 'match_id'}), '(match_id=match_id)\n', (12154, 12173), False, 'from necrobot.database import matchdb, racedb\n'), ((13438, 13464), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (13462, 13464), False, 'import datetime\n'), ((14476, 14519), 'necrobot.database.matchdb.get_match_race_data', 'matchdb.get_match_race_data', (['match.match_id'], {}), '(match.match_id)\n', (14503, 14519), False, 'from necrobot.database import matchdb, racedb\n'), ((4290, 4332), 'necrobot.botbase.server.find_channel', 'server.find_channel', ([], {'channel_id': 'channel_id'}), '(channel_id=channel_id)\n', (4309, 4332), False, 'from necrobot.botbase import server, discordutil\n'), ((5424, 5536), 'necrobot.database.matchdb.get_channeled_matches_raw_data', 'matchdb.get_channeled_matches_raw_data', ([], {'must_be_scheduled': '(False)', 'order_by_time': '(False)', 'racer_id': 'racer.user_id'}), '(must_be_scheduled=False,\n order_by_time=False, racer_id=racer.user_id)\n', (5462, 5536), False, 'from necrobot.database import matchdb, racedb\n'), ((5590, 5678), 'necrobot.database.matchdb.get_channeled_matches_raw_data', 'matchdb.get_channeled_matches_raw_data', ([], {'must_be_scheduled': '(False)', 'order_by_time': '(False)'}), '(must_be_scheduled=False,\n order_by_time=False)\n', (5628, 5678), False, 'from necrobot.database import matchdb, racedb\n'), ((9226, 9276), 'necrobot.util.console.warning', 'console.warning', (['"""Failed to make a match channel."""'], {}), "('Failed to make a match channel.')\n", (9241, 9276), False, 'from necrobot.util import console, timestr, writechannel, strutil, rtmputil\n'), ((9791, 9801), 'necrobot.botbase.necrobot.Necrobot', 'Necrobot', ([], {}), '()\n', (9799, 9801), False, 'from necrobot.botbase.necrobot import Necrobot\n'), ((11278, 11349), 'necrobot.util.timestr.timedelta_to_str', 'timestr.timedelta_to_str', (['(match.suggested_time - utcnow)'], {'punctuate': '(True)'}), '(match.suggested_time - utcnow, punctuate=True)\n', (11302, 11349), False, 'from necrobot.util import console, timestr, writechannel, strutil, rtmputil\n'), ((14176, 14205), 'datetime.timedelta', 'datetime.timedelta', ([], {'minutes': '(0)'}), '(minutes=0)\n', (14194, 14205), False, 'import datetime\n'), ((14292, 14334), 'necrobot.util.timestr.str_full_24h', 'timestr.str_full_24h', (['match.suggested_time'], {}), '(match.suggested_time)\n', (14312, 14334), False, 'from necrobot.util import console, timestr, writechannel, strutil, rtmputil\n'), ((7271, 7317), 'necrobot.database.matchdb.register_match_channel', 'matchdb.register_match_channel', (['match_id', 'None'], {}), '(match_id, None)\n', (7301, 7317), False, 'from necrobot.database import matchdb, racedb\n'), ((8932, 9019), 'discord.ChannelPermissions', 'discord.ChannelPermissions', ([], {'target': 'server.server.default_role', 'overwrite': 'deny_read'}), '(target=server.server.default_role, overwrite=\n deny_read)\n', (8958, 9019), False, 'import discord\n'), ((9028, 9102), 'discord.ChannelPermissions', 'discord.ChannelPermissions', ([], {'target': 'server.server.me', 'overwrite': 'permit_read'}), '(target=server.server.me, overwrite=permit_read)\n', (9054, 9102), False, 'import discord\n'), ((9525, 9618), 'necrobot.botbase.discordutil.set_channel_category', 'discordutil.set_channel_category', ([], {'channel': 'match_channel', 'category': 'match_channel_category'}), '(channel=match_channel, category=\n match_channel_category)\n', (9557, 9618), False, 'from necrobot.botbase import server, discordutil\n'), ((10553, 10563), 'necrobot.botbase.necrobot.Necrobot', 'Necrobot', ([], {}), '()\n', (10561, 10563), False, 'from necrobot.botbase.necrobot import Necrobot\n'), ((12532, 12542), 'necrobot.race.raceinfo.RaceInfo', 'RaceInfo', ([], {}), '()\n', (12540, 12542), False, 'from necrobot.race.raceinfo import RaceInfo\n'), ((13619, 13663), 'necrobot.util.strutil.tickless', 'strutil.tickless', (['match.racer_1.display_name'], {}), '(match.racer_1.display_name)\n', (13635, 13663), False, 'from necrobot.util import console, timestr, writechannel, strutil, rtmputil\n'), ((13707, 13751), 'necrobot.util.strutil.tickless', 'strutil.tickless', (['match.racer_2.display_name'], {}), '(match.racer_2.display_name)\n', (13723, 13751), False, 'from necrobot.util import console, timestr, writechannel, strutil, rtmputil\n'), ((13963, 14007), 'necrobot.util.strutil.tickless', 'strutil.tickless', (['match.racer_1.display_name'], {}), '(match.racer_1.display_name)\n', (13979, 14007), False, 'from necrobot.util import console, timestr, writechannel, strutil, rtmputil\n'), ((14051, 14095), 'necrobot.util.strutil.tickless', 'strutil.tickless', (['match.racer_2.display_name'], {}), '(match.racer_2.display_name)\n', (14067, 14095), False, 'from necrobot.util import console, timestr, writechannel, strutil, rtmputil\n'), ((7190, 7227), 'necrobot.botbase.server.client.delete_channel', 'server.client.delete_channel', (['channel'], {}), '(channel)\n', (7218, 7227), False, 'from necrobot.botbase import server, discordutil\n'), ((8637, 8707), 'discord.ChannelPermissions', 'discord.ChannelPermissions', ([], {'target': 'racer.member', 'overwrite': 'permit_read'}), '(target=racer.member, overwrite=permit_read)\n', (8663, 8707), False, 'import discord\n'), ((11731, 11805), 'necrobot.util.rtmputil.kadgar_link', 'rtmputil.kadgar_link', (['match.racer_1.twitch_name', 'match.racer_2.twitch_name'], {}), '(match.racer_1.twitch_name, match.racer_2.twitch_name)\n', (11751, 11805), False, 'from necrobot.util import console, timestr, writechannel, strutil, rtmputil\n'), ((4678, 4704), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (4702, 4704), False, 'import datetime\n'), ((6724, 6734), 'necrobot.botbase.necrobot.Necrobot', 'Necrobot', ([], {}), '()\n', (6732, 6734), False, 'from necrobot.botbase.necrobot import Necrobot\n'), ((4804, 4814), 'necrobot.botbase.necrobot.Necrobot', 'Necrobot', ([], {}), '()\n', (4812, 4814), False, 'from necrobot.botbase.necrobot import Necrobot\n')]
import os import os.path from keras.layers import Dense, Flatten, Conv1D, Reshape from keras.optimizers import Nadam from keras.models import Sequential from keras.models import load_model from keras.regularizers import l2 from keras import backend as K from keras.losses import mean_squared_error from sljassbot.player.rl_player.input_handler import InputHandler def huber_loss(a, b, in_keras=True): error = a - b quadratic_term = error * error / 2 linear_term = abs(error) - 1 / 2 use_linear_term = (abs(error) > 1.0) if in_keras: # Keras won't let us multiply floats by booleans, so we explicitly cast the booleans to floats use_linear_term = K.cast(use_linear_term, 'float32') return use_linear_term * linear_term + (1 - use_linear_term) * quadratic_term ''' def build_model(model_path, learning_rate=0.01): if os.path.exists(model_path): # model = load_model(model_path, custom_objects={'huber_loss': huber_loss}) model = load_model(model_path) print('Load existing model.') else: model = Sequential() model.add(Dense(InputHandler.input_size * 2, input_shape=(InputHandler.input_size,), activation='relu',W_regularizer=l2(0.01))) model.add(Reshape((InputHandler.input_size * 2, 1,), input_shape=(InputHandler.input_size * 2,))) #model.add(Dense(InputHandler.input_size, input_shape=(InputHandler.input_size,), activation='relu',W_regularizer=l2(0.01))) model.add(Conv1D(filters=50, kernel_size=18, strides=18, padding='same', activation='relu')) model.add(Conv1D(filters=25, kernel_size=9, strides=9, padding='same', activation='relu')) model.add(Flatten()) model.add(Dense(InputHandler.input_size * 2, activation='relu', W_regularizer=l2(0.01))) model.add(Dense(InputHandler.output_size, activation='linear')) # optimizer = RMSprop(lr=0.00025, rho=0.95, epsilon=0.01) optimizer = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=None, schedule_decay=0.004) # model.compile(loss=huber_loss, optimizer=optimizer) model.compile(loss=mean_squared_error, optimizer=optimizer) print('Create new model.') return model ''' # TODO: first 2 Conv1D then 2 Fully def build_model(model_path, learning_rate=0.01): if os.path.exists(model_path): # model = load_model(model_path, custom_objects={'huber_loss': huber_loss}) model = load_model(model_path) print('Load existing model.') else: model = Sequential() model.add(Dense(InputHandler.input_size * 2, input_shape=(InputHandler.input_size,), activation='relu',W_regularizer=l2(0.01))) model.add(Reshape((InputHandler.input_size * 2, 1,), input_shape=(InputHandler.input_size * 2,))) #model.add(Dense(InputHandler.input_size, input_shape=(InputHandler.input_size,), activation='relu',W_regularizer=l2(0.01))) model.add(Conv1D(filters=50, kernel_size=9, strides=9, padding='same', activation='relu')) model.add(Conv1D(filters=50, kernel_size=18, strides=9, padding='same', activation='relu')) model.add(Conv1D(filters=50, kernel_size=36, strides=9, padding='same', activation='relu')) model.add(Conv1D(filters=25, kernel_size=9, strides=9, padding='same', activation='relu')) model.add(Flatten()) model.add(Dense(InputHandler.input_size * 2, activation='relu', W_regularizer=l2(0.01))) model.add(Dense(InputHandler.output_size, activation='linear')) # optimizer = RMSprop(lr=0.00025, rho=0.95, epsilon=0.01) optimizer = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=None, schedule_decay=0.004) # model.compile(loss=huber_loss, optimizer=optimizer) model.compile(loss=mean_squared_error, optimizer=optimizer) print('Create new model.') return model
[ "keras.models.load_model", "keras.regularizers.l2", "os.path.exists", "keras.layers.Flatten", "keras.layers.Conv1D", "keras.optimizers.Nadam", "keras.layers.Dense", "keras.models.Sequential", "keras.layers.Reshape", "keras.backend.cast" ]
[((2311, 2337), 'os.path.exists', 'os.path.exists', (['model_path'], {}), '(model_path)\n', (2325, 2337), False, 'import os\n'), ((686, 720), 'keras.backend.cast', 'K.cast', (['use_linear_term', '"""float32"""'], {}), "(use_linear_term, 'float32')\n", (692, 720), True, 'from keras import backend as K\n'), ((2439, 2461), 'keras.models.load_model', 'load_model', (['model_path'], {}), '(model_path)\n', (2449, 2461), False, 'from keras.models import load_model\n'), ((2526, 2538), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2536, 2538), False, 'from keras.models import Sequential\n'), ((3596, 3673), 'keras.optimizers.Nadam', 'Nadam', ([], {'lr': '(0.002)', 'beta_1': '(0.9)', 'beta_2': '(0.999)', 'epsilon': 'None', 'schedule_decay': '(0.004)'}), '(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=None, schedule_decay=0.004)\n', (3601, 3673), False, 'from keras.optimizers import Nadam\n'), ((2693, 2783), 'keras.layers.Reshape', 'Reshape', (['(InputHandler.input_size * 2, 1)'], {'input_shape': '(InputHandler.input_size * 2,)'}), '((InputHandler.input_size * 2, 1), input_shape=(InputHandler.\n input_size * 2,))\n', (2700, 2783), False, 'from keras.layers import Dense, Flatten, Conv1D, Reshape\n'), ((2932, 3011), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(50)', 'kernel_size': '(9)', 'strides': '(9)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=50, kernel_size=9, strides=9, padding='same', activation='relu')\n", (2938, 3011), False, 'from keras.layers import Dense, Flatten, Conv1D, Reshape\n'), ((3031, 3116), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(50)', 'kernel_size': '(18)', 'strides': '(9)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=50, kernel_size=18, strides=9, padding='same', activation='relu'\n )\n", (3037, 3116), False, 'from keras.layers import Dense, Flatten, Conv1D, Reshape\n'), ((3131, 3216), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(50)', 'kernel_size': '(36)', 'strides': '(9)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=50, kernel_size=36, strides=9, padding='same', activation='relu'\n )\n", (3137, 3216), False, 'from keras.layers import Dense, Flatten, Conv1D, Reshape\n'), ((3231, 3310), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(25)', 'kernel_size': '(9)', 'strides': '(9)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=25, kernel_size=9, strides=9, padding='same', activation='relu')\n", (3237, 3310), False, 'from keras.layers import Dense, Flatten, Conv1D, Reshape\n'), ((3330, 3339), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (3337, 3339), False, 'from keras.layers import Dense, Flatten, Conv1D, Reshape\n'), ((3456, 3508), 'keras.layers.Dense', 'Dense', (['InputHandler.output_size'], {'activation': '"""linear"""'}), "(InputHandler.output_size, activation='linear')\n", (3461, 3508), False, 'from keras.layers import Dense, Flatten, Conv1D, Reshape\n'), ((2664, 2672), 'keras.regularizers.l2', 'l2', (['(0.01)'], {}), '(0.01)\n', (2666, 2672), False, 'from keras.regularizers import l2\n'), ((3427, 3435), 'keras.regularizers.l2', 'l2', (['(0.01)'], {}), '(0.01)\n', (3429, 3435), False, 'from keras.regularizers import l2\n')]
from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils import formats from django.utils import timezone # Create your models here. class ConventionManager(models.Manager): def next(self): """ The upcoming event """ next_convention = self.exclude(end_time__lt=timezone.now()).order_by('start_time').first() return next_convention class Convention(models.Model): """ A con, festival or event """ name = models.CharField(max_length=100) description = models.TextField() mail_signature = models.TextField() # logo # TODO: logo som sorl-greie location = models.CharField(max_length=500) start_time = models.DateTimeField() end_time = models.DateTimeField() ticket_sales_opens = models.DateTimeField() ticket_sales_closes = models.DateTimeField() program_signup_opens = models.DateTimeField() program_signup_closes = models.DateTimeField() objects = ConventionManager() class Meta: verbose_name = _('Convention') verbose_name_plural = _('Conventions') def __str__(self): return self.name def dates(self): days = (self.end_time.date() - self.start_time.date()).days + 1 dates = [self.start_time.replace(hour=0, minute=0) + timezone.timedelta(days=x) for x in range(days)] return dates def ticket_sales_has_started(self): return timezone.now() > self.ticket_sales_opens def ticket_sales_has_ended(self): return timezone.now() > self.ticket_sales_closes def full_description(self): return '{name}\n{description}\n{start} to {end}'.format( name=self.name, description=self.description, start=formats.date_format(self.start_time, 'SHORT_DATE_FORMAT'), end=formats.date_format(self.end_time, 'SHORT_DATE_FORMAT'), )
[ "django.db.models.TextField", "django.db.models.CharField", "django.utils.timezone.now", "django.utils.formats.date_format", "django.utils.timezone.timedelta", "django.db.models.DateTimeField", "django.utils.translation.ugettext_lazy" ]
[((493, 525), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (509, 525), False, 'from django.db import models\n'), ((544, 562), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (560, 562), False, 'from django.db import models\n'), ((584, 602), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (600, 602), False, 'from django.db import models\n'), ((661, 693), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(500)'}), '(max_length=500)\n', (677, 693), False, 'from django.db import models\n'), ((711, 733), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (731, 733), False, 'from django.db import models\n'), ((749, 771), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (769, 771), False, 'from django.db import models\n'), ((797, 819), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (817, 819), False, 'from django.db import models\n'), ((846, 868), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (866, 868), False, 'from django.db import models\n'), ((896, 918), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (916, 918), False, 'from django.db import models\n'), ((947, 969), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (967, 969), False, 'from django.db import models\n'), ((1045, 1060), 'django.utils.translation.ugettext_lazy', '_', (['"""Convention"""'], {}), "('Convention')\n", (1046, 1060), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1091, 1107), 'django.utils.translation.ugettext_lazy', '_', (['"""Conventions"""'], {}), "('Conventions')\n", (1092, 1107), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1438, 1452), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1450, 1452), False, 'from django.utils import timezone\n'), ((1533, 1547), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1545, 1547), False, 'from django.utils import timezone\n'), ((1312, 1338), 'django.utils.timezone.timedelta', 'timezone.timedelta', ([], {'days': 'x'}), '(days=x)\n', (1330, 1338), False, 'from django.utils import timezone\n'), ((1761, 1818), 'django.utils.formats.date_format', 'formats.date_format', (['self.start_time', '"""SHORT_DATE_FORMAT"""'], {}), "(self.start_time, 'SHORT_DATE_FORMAT')\n", (1780, 1818), False, 'from django.utils import formats\n'), ((1836, 1891), 'django.utils.formats.date_format', 'formats.date_format', (['self.end_time', '"""SHORT_DATE_FORMAT"""'], {}), "(self.end_time, 'SHORT_DATE_FORMAT')\n", (1855, 1891), False, 'from django.utils import formats\n'), ((331, 345), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (343, 345), False, 'from django.utils import timezone\n')]
#!/usr/bin/env python import time from random import choice from string import ascii_lowercase from amqp import connect_get_channel_declare_exchange_and_return_channel, EXCHANGE_NAME APPS = ["foo", "bar", "infrastructure"] LEVELS = ["debug", "info", "warn", "error"] def publish_cyclically(): channel = connect_get_channel_declare_exchange_and_return_channel() for counter in range(1, 1000): routing_key = "%s.%s" % (choice(APPS), choice(LEVELS)) body = "%03d Some random text: %s " % ( counter, ''.join(choice(ascii_lowercase) for _ in range(16)) ) channel.basic_publish( exchange=EXCHANGE_NAME, routing_key=routing_key, body=body ) print("Published '%s' to '%s' with routing-key '%s'." % (body, EXCHANGE_NAME, routing_key)) time.sleep(1) if __name__ == "__main__": try: publish_cyclically() except KeyboardInterrupt: pass
[ "random.choice", "amqp.connect_get_channel_declare_exchange_and_return_channel", "time.sleep" ]
[((311, 368), 'amqp.connect_get_channel_declare_exchange_and_return_channel', 'connect_get_channel_declare_exchange_and_return_channel', ([], {}), '()\n', (366, 368), False, 'from amqp import connect_get_channel_declare_exchange_and_return_channel, EXCHANGE_NAME\n'), ((858, 871), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (868, 871), False, 'import time\n'), ((438, 450), 'random.choice', 'choice', (['APPS'], {}), '(APPS)\n', (444, 450), False, 'from random import choice\n'), ((452, 466), 'random.choice', 'choice', (['LEVELS'], {}), '(LEVELS)\n', (458, 466), False, 'from random import choice\n'), ((558, 581), 'random.choice', 'choice', (['ascii_lowercase'], {}), '(ascii_lowercase)\n', (564, 581), False, 'from random import choice\n')]
import discord from discord.ext import commands from discord.ext import * from discord.ext.commands import * import asyncio class help(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def help(self, ctx): embed = discord.Embed( title="KEKW Bot Help", description="_ _\nThank you for inviting KEKW bot!\nCheck out our other bot, [Essentials](https://essentialsbot.xyz)\n\n[Setup the bot](https://github.com/Fxcilities/KEKWBot/blob/main/README.md)", color=discord.Color.dark_gold() ) embed.add_field(name="Main commands:", value="**```kekw!start (amount, defaults to 50)```**\n**```kekw!emojis```**", inline=False) embed.set_footer(text="Requested by: " + str(ctx.author), icon_url=str(ctx.author.avatar_url)) await ctx.message.delete() await ctx.send(embed=embed, delete_after=30) def setup(bot): bot.add_cog(help(bot))
[ "discord.Color.dark_gold", "discord.ext.commands.command" ]
[((209, 227), 'discord.ext.commands.command', 'commands.command', ([], {}), '()\n', (225, 227), False, 'from discord.ext import commands\n'), ((553, 578), 'discord.Color.dark_gold', 'discord.Color.dark_gold', ([], {}), '()\n', (576, 578), False, 'import discord\n')]
# @author: <NAME> # email: <EMAIL> # -2 # fetch data from kafka producer # doing computation using spark streaming # store back to kafka producer in another topic import argparse import json import logging import atexit from pyspark import SparkContext from pyspark.streaming import StreamingContext from pyspark.streaming.kafka import KafkaUtils from kafka import KafkaProducer from kafka.errors import KafkaError class spark_streaming(): def __init__(self, topic, target_topic, kafka_broker): self.topic = topic self.kafka_broker = kafka_broker self.target_topic = target_topic self.kafka_producer = KafkaProducer(bootrap_servers=kafka_broker) sc = SparkContext("local[2]", "AveragePrice") sc.setLogLevel("INFO") self.ssc = StreamingContext(sc, 5) logging.basicConfig() self.logger = logging.getLogger() self.logger.setLevel(logging.INFO) def process(self, timeobj, rdd): def group(record): data = json.loads(record[1].decode('utf-8'))[0] return data.get("StockSymbol"), (float(data.get("LastTradePrice")), 1) newRDD = rdd.map(group).reduceByKey(lambda x, y: (x[0]+y[0], x[1]+y[1]))\ .map(lambda symbol, price : (symbol, price[0]/price[1])) results = newRDD.collect() for res in results: msg = {"StockSymbol": res[0], "AveragePrice": res[1]} try: self.kafka_producer.send(self.target_topic, value=json.dumps(msg)) self.logger.info("Successfully send processed data to {}, {}".format(self.target_topic, msg)) except KafkaError as KE: self.logger.warning("Failed to send data, the error is {}".format(msg)) def createStream(self): # create space for data computation directKafkaStream = KafkaUtils.createDirectStream(self.ssc, [self.topic], {"metadata.broker.list" : self.kafka_broker}) return directKafkaStream def run(self): direceKafkaStream = self.createStream() direceKafkaStream.foreachRDD(self.process) # transformation with action self.ssc.start() self.ssc.awaitTermination() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("topic", help="this is the topic to receive data from kafka producer") parser.add_argument("target_topic", help="this is the topic to send processed data to kafka broker") parser.add_argument("kafka_broker", help="this is the kafka broker") args = parser.parse_args() topic = args.topic target_topic = args.target_topic kafka_broker = args.kafka_broker KafkaSpark = spark_streaming(topic, target_topic, kafka_broker) KafkaSpark.run()
[ "argparse.ArgumentParser", "logging.basicConfig", "pyspark.SparkContext", "pyspark.streaming.kafka.KafkaUtils.createDirectStream", "kafka.KafkaProducer", "json.dumps", "pyspark.streaming.StreamingContext", "logging.getLogger" ]
[((2318, 2343), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2341, 2343), False, 'import argparse\n'), ((643, 686), 'kafka.KafkaProducer', 'KafkaProducer', ([], {'bootrap_servers': 'kafka_broker'}), '(bootrap_servers=kafka_broker)\n', (656, 686), False, 'from kafka import KafkaProducer\n'), ((700, 740), 'pyspark.SparkContext', 'SparkContext', (['"""local[2]"""', '"""AveragePrice"""'], {}), "('local[2]', 'AveragePrice')\n", (712, 740), False, 'from pyspark import SparkContext\n'), ((791, 814), 'pyspark.streaming.StreamingContext', 'StreamingContext', (['sc', '(5)'], {}), '(sc, 5)\n', (807, 814), False, 'from pyspark.streaming import StreamingContext\n'), ((824, 845), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (843, 845), False, 'import logging\n'), ((868, 887), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (885, 887), False, 'import logging\n'), ((1876, 1979), 'pyspark.streaming.kafka.KafkaUtils.createDirectStream', 'KafkaUtils.createDirectStream', (['self.ssc', '[self.topic]', "{'metadata.broker.list': self.kafka_broker}"], {}), "(self.ssc, [self.topic], {\n 'metadata.broker.list': self.kafka_broker})\n", (1905, 1979), False, 'from pyspark.streaming.kafka import KafkaUtils\n'), ((1523, 1538), 'json.dumps', 'json.dumps', (['msg'], {}), '(msg)\n', (1533, 1538), False, 'import json\n')]
import scrapy from news_spider.items import WallstreetcnItem from news_spider.utils.common import get_category_by_name class WallstreetcnSpider(scrapy.Spider): name = 'wallstreetcn' allowed_domains = ['https://api.wallstcn.com'] start_urls = ['https://api.wallstcn.com/apiv1/content/information-flow?channel=global&accept=article&limit=20&action=upglide'] category_id = get_category_by_name(name) def parse(self, response): json_data = response.json() res_list = json_data["data"]["items"] for res in res_list: item = WallstreetcnItem() resource = res["resource"] title = resource["title"] display_time = resource["display_time"] url = resource["uri"] hot_val = resource["author"]["display_name"] item["title"] = title item["url"] = url item["hot_val"] = hot_val item["rank"] = display_time item["category_id"] = self.category_id yield item
[ "news_spider.items.WallstreetcnItem", "news_spider.utils.common.get_category_by_name" ]
[((389, 415), 'news_spider.utils.common.get_category_by_name', 'get_category_by_name', (['name'], {}), '(name)\n', (409, 415), False, 'from news_spider.utils.common import get_category_by_name\n'), ((578, 596), 'news_spider.items.WallstreetcnItem', 'WallstreetcnItem', ([], {}), '()\n', (594, 596), False, 'from news_spider.items import WallstreetcnItem\n')]
from django.http import HttpResponse from django.template import loader from .models import * from django.conf import settings from django.shortcuts import redirect from utils import dataLayerPDF from utils import dprint from utils import modelUtils import pandas as pd from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.views.decorators.http import require_http_methods from django.utils.dateparse import parse_date import datetime from dateutil.parser import * def homePage(request): template = loader.get_template('base_intro.html') context = { } return HttpResponse(template.render(context, request)) def loginForm(request): context = { 'errors': "", } template = loader.get_template('registration/login.html') return HttpResponse(template.render(context, request)) def loginUser(request): username = request.POST['username'] password = request.POST['password'] user = authenticate(request, username=username, password=password) #print(user) if user is not None: login(request, user) return redirect('systemForms') else: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) @login_required def viewSystemForms(request): pdfforms=PDFForm.objects.all() context = { 'systemforms':pdfforms , } template = loader.get_template('formsList.html') return HttpResponse(template.render(context, request)) @login_required def addFormToProfile(request,form_id): #return HttpResponse(str(form_id)) errorCondition=False loggedUserID=request.user.id UserObject=request.user PDFormObject=PDFForm.objects.get(id=form_id) isFormPresent=GeneratedPDF.objects.filter(user=UserObject, pdf=PDFormObject).count() if(isFormPresent==0): addform=GeneratedPDF(user=UserObject, pdf=PDFormObject) addform.save() modelUtils.addFieldsToProfile(UserObject, PDFormObject) #get all fields in PDF related to PDFID fieldsinPDF=PDFFormField.objects.filter(pdf=form_id).values_list( "field", "field__field_display", "field__field_question", "field__field_state", "field__field_description", named=True ) #get all fields Related to User in UserProfile and that match the fields in the PDFForm userFields=UserProfile.objects.filter(user=loggedUserID).values_list( "field", "field_text", "data_index", named=True ) #print(userFields) #print(fieldsinPDF) #Set the column as index on which the join is to be made in pandas userFieldDF=pd.DataFrame(list(userFields)).set_index('field') PDFFieldsDF=pd.DataFrame(list(fieldsinPDF)).set_index('field') #dprint.dprint(userFieldDF) #dprint.dprint(PDFFieldsDF) #Make the Join combinedDF=PDFFieldsDF.join(userFieldDF, on='field',lsuffix='_left', rsuffix='_right') #remove rows with NA Values. Will happen when the number of rows in the above datasets differ in count. #combinedDF.dropna(0,inplace=True) #sort the Dataframe by Field Page Number, then convert it to a list of dictionaries #dataSet=combinedDF.sort_values(by=['field_page_number']).to_dict('records') #dprint.dprint(combinedDF) missingQuestionsList=combinedDF[combinedDF["field__field_state"]=='DYNAMIC'] missingQuestionsList.fillna(value='',inplace=True) missingQuestionsList.reset_index(inplace=True) #missingQuestionsList['field_str']=missingQuestionsList['field'].astype(str) missingQuestionTuples=list(missingQuestionsList.itertuples()) #print(type(missingQuestionTuples)) fieldIDStr="" for question in missingQuestionTuples: fieldIDStr=fieldIDStr+" " +str(question.field) fieldIDStr=fieldIDStr.strip().replace(" ", ",") #print(fieldIDStr) numberOfMissingQuestions=len(missingQuestionTuples) context = { 'formObject':PDFormObject, "missingQuestions":missingQuestionTuples, 'questionCount':numberOfMissingQuestions, 'form_id':form_id, 'fieldIDS':fieldIDStr } #dprint.dprint(missingQuestionsList) #print(context) template = loader.get_template('process_form.html') return HttpResponse(template.render(context, request)) @login_required @require_http_methods(["POST"]) def saveDynamicFieldData(request,pdfid): recievedDateFormat="" fieldIDs=request.POST["fieldIDs"] fieldIDList=[] fieldData=[] if(fieldIDs is not None): fieldIDList=fieldIDs.split(",") for fieldID in fieldIDList: fieldDict={} fieldDict["ID"]=fieldID fieldDict["userValue"]=request.POST[fieldID] fieldData.append(fieldDict) #print(fieldData) modelUtils.saveUserProfileFields(fieldData, request.user) return redirect('/editPDF/'+str(pdfid)) def logoutUser(request): logout(request) return redirect('login') @login_required def fillForm(request, pdfid): dataSet, formData=modelUtils.getUserFormData(request, pdfid) #print(dataSet) #Use the dataset as input to generate the pdf, recieve a buffer as reponse pdfData=dataLayerPDF.addText(dataSet,formData) # #output=dataLayerPDF.mergePDFs() timestamp=datetime.datetime.now().strftime("%d-%m-%Y-%I-%M-%S") filename=formData.pdf_name +"-"+request.user.first_name+"-" + str(timestamp) +".pdf" metaData = { '/Title': filename, } pdfData.addMetadata(metaData) #Set the httpresponse to download a pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename= "%s"' % filename #response.write(PDFBytes) #write the pdfdata to the responseobject pdfData.write(response) #response.write(pdfData) #return the response return response @login_required def profile(request): # userForms=GeneratedPDF.objects.filter(user=request.user).values("pdf__pdf_name", # "pdf__pdf_description", # "pdf__image", # ) userForms=GeneratedPDF.objects.filter(user=request.user).prefetch_related("pdf") #print(userForms) userData=UserProfile.objects.filter(user=request.user).prefetch_related("field").order_by( "field__category", "field__category_order", "field__field_description") formsCount=userForms.count() #print(userData) template = loader.get_template('base_view_profile.html') context = { "systemforms":userForms, "userData":userData, "formcount":formsCount } #print(context) return HttpResponse(template.render(context, request)) @login_required def editPDFLive(request, pdfid): userFormsCount=GeneratedPDF.objects.filter(user=request.user, pdf=pdfid).count() if(userFormsCount==0): return HttpResponse("Not found"); dataSet, formData=modelUtils.getUserFormData(request, pdfid, False) #dprint.dprint(fieldsinPDF) context = { "userFormDataSet":dataSet, "formData": formData, 'formID':pdfid } #print(formData) template = loader.get_template('editPDF.html') return HttpResponse(template.render(context, request)) @login_required def arrangeFormQuestions(request, pdfid): superUser=request.user.is_superuser if(not superUser): return HttpResponse(status=404) FormFieldQueryset=PDFFormField.objects.filter(pdf=pdfid).prefetch_related('field') context={ "formFields":FormFieldQueryset, 'formID':pdfid } #print(context) template = loader.get_template('rearrangeformquestions.html') return HttpResponse(template.render(context, request))
[ "django.http.HttpResponse", "django.shortcuts.redirect", "utils.modelUtils.saveUserProfileFields", "utils.dataLayerPDF.addText", "datetime.datetime.now", "django.contrib.auth.logout", "django.contrib.auth.authenticate", "utils.modelUtils.addFieldsToProfile", "django.contrib.auth.login", "utils.modelUtils.getUserFormData", "django.views.decorators.http.require_http_methods", "django.template.loader.get_template" ]
[((4341, 4371), 'django.views.decorators.http.require_http_methods', 'require_http_methods', (["['POST']"], {}), "(['POST'])\n", (4361, 4371), False, 'from django.views.decorators.http import require_http_methods\n'), ((589, 627), 'django.template.loader.get_template', 'loader.get_template', (['"""base_intro.html"""'], {}), "('base_intro.html')\n", (608, 627), False, 'from django.template import loader\n'), ((796, 842), 'django.template.loader.get_template', 'loader.get_template', (['"""registration/login.html"""'], {}), "('registration/login.html')\n", (815, 842), False, 'from django.template import loader\n'), ((1009, 1068), 'django.contrib.auth.authenticate', 'authenticate', (['request'], {'username': 'username', 'password': 'password'}), '(request, username=username, password=password)\n', (1021, 1068), False, 'from django.contrib.auth import authenticate, login, logout\n'), ((1375, 1412), 'django.template.loader.get_template', 'loader.get_template', (['"""formsList.html"""'], {}), "('formsList.html')\n", (1394, 1412), False, 'from django.template import loader\n'), ((1876, 1931), 'utils.modelUtils.addFieldsToProfile', 'modelUtils.addFieldsToProfile', (['UserObject', 'PDFormObject'], {}), '(UserObject, PDFormObject)\n', (1905, 1931), False, 'from utils import modelUtils\n'), ((4223, 4263), 'django.template.loader.get_template', 'loader.get_template', (['"""process_form.html"""'], {}), "('process_form.html')\n", (4242, 4263), False, 'from django.template import loader\n'), ((4735, 4792), 'utils.modelUtils.saveUserProfileFields', 'modelUtils.saveUserProfileFields', (['fieldData', 'request.user'], {}), '(fieldData, request.user)\n', (4767, 4792), False, 'from utils import modelUtils\n'), ((4869, 4884), 'django.contrib.auth.logout', 'logout', (['request'], {}), '(request)\n', (4875, 4884), False, 'from django.contrib.auth import authenticate, login, logout\n'), ((4893, 4910), 'django.shortcuts.redirect', 'redirect', (['"""login"""'], {}), "('login')\n", (4901, 4910), False, 'from django.shortcuts import redirect\n'), ((4978, 5020), 'utils.modelUtils.getUserFormData', 'modelUtils.getUserFormData', (['request', 'pdfid'], {}), '(request, pdfid)\n', (5004, 5020), False, 'from utils import modelUtils\n'), ((5127, 5166), 'utils.dataLayerPDF.addText', 'dataLayerPDF.addText', (['dataSet', 'formData'], {}), '(dataSet, formData)\n', (5147, 5166), False, 'from utils import dataLayerPDF\n'), ((5531, 5575), 'django.http.HttpResponse', 'HttpResponse', ([], {'content_type': '"""application/pdf"""'}), "(content_type='application/pdf')\n", (5543, 5575), False, 'from django.http import HttpResponse\n'), ((6438, 6483), 'django.template.loader.get_template', 'loader.get_template', (['"""base_view_profile.html"""'], {}), "('base_view_profile.html')\n", (6457, 6483), False, 'from django.template import loader\n'), ((6865, 6914), 'utils.modelUtils.getUserFormData', 'modelUtils.getUserFormData', (['request', 'pdfid', '(False)'], {}), '(request, pdfid, False)\n', (6891, 6914), False, 'from utils import modelUtils\n'), ((7069, 7104), 'django.template.loader.get_template', 'loader.get_template', (['"""editPDF.html"""'], {}), "('editPDF.html')\n", (7088, 7104), False, 'from django.template import loader\n'), ((7493, 7543), 'django.template.loader.get_template', 'loader.get_template', (['"""rearrangeformquestions.html"""'], {}), "('rearrangeformquestions.html')\n", (7512, 7543), False, 'from django.template import loader\n'), ((1107, 1127), 'django.contrib.auth.login', 'login', (['request', 'user'], {}), '(request, user)\n', (1112, 1127), False, 'from django.contrib.auth import authenticate, login, logout\n'), ((1137, 1160), 'django.shortcuts.redirect', 'redirect', (['"""systemForms"""'], {}), "('systemForms')\n", (1145, 1160), False, 'from django.shortcuts import redirect\n'), ((1180, 1239), 'django.shortcuts.redirect', 'redirect', (["('%s?next=%s' % (settings.LOGIN_URL, request.path))"], {}), "('%s?next=%s' % (settings.LOGIN_URL, request.path))\n", (1188, 1239), False, 'from django.shortcuts import redirect\n'), ((6818, 6843), 'django.http.HttpResponse', 'HttpResponse', (['"""Not found"""'], {}), "('Not found')\n", (6830, 6843), False, 'from django.http import HttpResponse\n'), ((7286, 7310), 'django.http.HttpResponse', 'HttpResponse', ([], {'status': '(404)'}), '(status=404)\n', (7298, 7310), False, 'from django.http import HttpResponse\n'), ((5214, 5237), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5235, 5237), False, 'import datetime\n')]
#!/usr/bin/python # Copyright (C) 2012, <NAME> <<EMAIL>> # http://aravindavk.in # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys import fontforge if __name__ == "__main__": font = fontforge.open("../Gubbi.sfd") # Remove all GSUB lookups for lookup in font.gsub_lookups: font.removeLookup(lookup) # Merge the new featurefile font.mergeFeature("gsub.fea") font.save() font.close()
[ "fontforge.open" ]
[((805, 835), 'fontforge.open', 'fontforge.open', (['"""../Gubbi.sfd"""'], {}), "('../Gubbi.sfd')\n", (819, 835), False, 'import fontforge\n')]
import typing import random import uuid from pydantic import BaseModel, Field class URL(BaseModel): """ FastAPI uses pydantic to validate and represent data. Maybe dive deeper in it. """ id: int = Field(..., title="ID of URL") full_url: str = Field(..., title="Full URL") short_url_code: str = Field(..., title="Redirection code of URL") class Database: """ Fake db When using with real -- all CRUD should be awaited """ def __init__(self): self._items: typing.Dict[int, URL] = {} async def get_random(self) -> int: """ Create list from dict_keys, because it is not supported in random.choice """ ids = list(self._items.keys()) return random.choice(ids) async def get_all(self) -> typing.List[URL]: """ To work with large collections of data better use generators, to give an item one at a time. Combo with asyncio allows async for loop. With real db you will be awaiting reads from it. """ for url in self._items.values(): yield url async def get(self, id: typing.Optional[int] = None, full_url: typing.Optional[str] = None, short_url_code: typing.Optional[str] = None) -> typing.Optional[URL]: """ Simulate get from db like in sqlalchemy, where u can .get by 'key' """ if id: return self._items.get(id) try: return next(item for item in self._items.values() if item.full_url == full_url or item.short_url_code == short_url_code) except StopIteration: return None async def add(self, url: str) -> URL: """ DB create simulation. Better check 'code' in db for duplicate, but not here, cause it`s an example project. """ id = len(self._items) + 1 code = uuid.uuid4().hex[:8] new_url = URL(id=id, full_url=url, short_url_code=code) self._items[id] = new_url return new_url async def delete(self, id: int) -> typing.Union[typing.NoReturn, None]: """ typing.NoReturn means that method raises an error else it returns None as any other method/function with no 'return' specified same as typing.Optional[typing.NoReturn] """ if id in self._items: del self._items[id] else: raise ValueError("URL doesn`t exist")
[ "uuid.uuid4", "pydantic.Field", "random.choice" ]
[((221, 250), 'pydantic.Field', 'Field', (['...'], {'title': '"""ID of URL"""'}), "(..., title='ID of URL')\n", (226, 250), False, 'from pydantic import BaseModel, Field\n'), ((271, 299), 'pydantic.Field', 'Field', (['...'], {'title': '"""Full URL"""'}), "(..., title='Full URL')\n", (276, 299), False, 'from pydantic import BaseModel, Field\n'), ((326, 369), 'pydantic.Field', 'Field', (['...'], {'title': '"""Redirection code of URL"""'}), "(..., title='Redirection code of URL')\n", (331, 369), False, 'from pydantic import BaseModel, Field\n'), ((743, 761), 'random.choice', 'random.choice', (['ids'], {}), '(ids)\n', (756, 761), False, 'import random\n'), ((1921, 1933), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1931, 1933), False, 'import uuid\n')]
#!/usr/bin/env python3 ################################################################ # <NAME> Personality Type Tweets Natural Language Processing # By <NAME> # Project can be found at: # https://www.inertia7.com/projects/109 & # https://www.inertia7.com/projects/110 ################################################################ ################## # Import packages ################## import sys, os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split # Confirm the correct directory; break script and prompt user to move to correct directory otherwise filepath = os.getcwd() if not filepath.endswith('myersBriggsNLPAnalysis'): print('\nYou do not appear to be in the correct directory,\ you must be in the \'myersBriggsNLPAnalysis\' directory\ in order to run these scripts. Type \'pwd\' in the command line\ if you are unsure of your location in the terminal.') sys.exit(1) raw_data = 'data/mbti_1.csv' token_data = 'data/mbti_tokenized.csv' clean_data = 'data/mbti_cleaned.csv' columns = np.array(['type', 'posts']) ################################################## # Make different versions of our data for analysis ################################################## ''' Explanation ----------- Now we will have various versions of our data: - Raw, unfiltered data - Tokenized data with hashtags, mentions, retweets, etc. - Cleaned tokenized data with stopwords removed We will now subset the data into various parts to be used in the other scripts ''' # First check if the data has been generated # If not prompt user to make it token_file_exists = os.path.isfile(token_data) clean_file_exists = os.path.isfile(clean_data) if not token_file_exists or not clean_file_exists: print('It looks like no processed data has been generated.\n', 'Please run the \'data_generation.py\' file and follow the prompts.') sys.exit(1) # Declare different processed and unprocessed objects for further analysis raw_df = pd.read_csv(raw_data, header = 0) raw_type = raw_df['type'] raw_posts = raw_df['posts'] token_df = pd.read_csv(token_data, header = 0) token_type = token_df['type'] token_posts = token_df['posts'] clean_df = pd.read_csv(clean_data, header = 0) clean_type = clean_df['type'] clean_posts = clean_df['posts'] # Split up data into training and testing datasets # To evaluate effectiveness of model training X_train_token, X_test_token, y_train_token, y_test_token = train_test_split( token_posts, token_type, test_size = 0.30, random_state = 42) X_train_clean, X_test_clean, y_train_clean, y_test_clean = train_test_split( clean_posts, clean_type, test_size = 0.30, random_state = 42)
[ "os.getcwd", "sklearn.model_selection.train_test_split", "pandas.read_csv", "os.path.isfile", "numpy.array", "sys.exit" ]
[((615, 626), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (624, 626), False, 'import sys, os\n'), ((1048, 1075), 'numpy.array', 'np.array', (["['type', 'posts']"], {}), "(['type', 'posts'])\n", (1056, 1075), True, 'import numpy as np\n'), ((1616, 1642), 'os.path.isfile', 'os.path.isfile', (['token_data'], {}), '(token_data)\n', (1630, 1642), False, 'import sys, os\n'), ((1663, 1689), 'os.path.isfile', 'os.path.isfile', (['clean_data'], {}), '(clean_data)\n', (1677, 1689), False, 'import sys, os\n'), ((1988, 2019), 'pandas.read_csv', 'pd.read_csv', (['raw_data'], {'header': '(0)'}), '(raw_data, header=0)\n', (1999, 2019), True, 'import pandas as pd\n'), ((2088, 2121), 'pandas.read_csv', 'pd.read_csv', (['token_data'], {'header': '(0)'}), '(token_data, header=0)\n', (2099, 2121), True, 'import pandas as pd\n'), ((2198, 2231), 'pandas.read_csv', 'pd.read_csv', (['clean_data'], {'header': '(0)'}), '(clean_data, header=0)\n', (2209, 2231), True, 'import pandas as pd\n'), ((2453, 2526), 'sklearn.model_selection.train_test_split', 'train_test_split', (['token_posts', 'token_type'], {'test_size': '(0.3)', 'random_state': '(42)'}), '(token_posts, token_type, test_size=0.3, random_state=42)\n', (2469, 2526), False, 'from sklearn.model_selection import train_test_split\n'), ((2597, 2670), 'sklearn.model_selection.train_test_split', 'train_test_split', (['clean_posts', 'clean_type'], {'test_size': '(0.3)', 'random_state': '(42)'}), '(clean_posts, clean_type, test_size=0.3, random_state=42)\n', (2613, 2670), False, 'from sklearn.model_selection import train_test_split\n'), ((920, 931), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (928, 931), False, 'import sys, os\n'), ((1891, 1902), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1899, 1902), False, 'import sys, os\n')]
# -*- coding: utf-8 -*- import os import time import tensorflow as tf from config import FLAGS from model import build_graph from preprocess import train_data_iterator, test_data_helper def train(): with tf.Session() as sess: # initialization graph = build_graph(top_k=1) saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) # multi thread coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # log writer train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph) test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val') # restore model if FLAGS.restore: ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) print("restore from the checkpoint {}".format(ckpt)) # training begins try: while not coord.should_stop(): for step, (x_batch, y_batch) in enumerate(train_data_iterator()): start_time = time.time() feed_dict = {graph['images']: x_batch, graph['labels']: y_batch, graph['keep_prob']: 0.8, graph['is_training']: True} train_opts = [graph['train_op'], graph['loss'], graph['merged_summary_op'], graph['global_step']] _, loss_val, train_summary, step = sess.run(train_opts, feed_dict=feed_dict) train_writer.add_summary(train_summary, step) end_time = time.time() print("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val)) # eval stage if step % FLAGS.eval_steps == 0: x_batch_test, y_batch_test = test_data_helper(128) feed_dict = {graph['images']: x_batch_test, graph['labels']: y_batch_test, graph['keep_prob']: 1.0, graph['is_training']: False} test_opts = [graph['accuracy'], graph['merged_summary_op']] accuracy_test, test_summary = sess.run(test_opts, feed_dict=feed_dict) test_writer.add_summary(test_summary, step) print('===============Eval a batch=======================') print('the step {0} test accuracy: {1}'.format(step, accuracy_test)) print('===============Eval a batch=======================') # save stage if step % FLAGS.save_steps == 0 and step > FLAGS.min_save_steps: saver.save(sess, os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name), global_step=graph['global_step']) except tf.errors.OutOfRangeError: print('==================Train Finished================') saver.save(sess, os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name), global_step=graph['global_step']) finally: coord.request_stop() coord.join(threads) if __name__ == '__main__': train()
[ "preprocess.train_data_iterator", "tensorflow.train.Coordinator", "tensorflow.train.Saver", "model.build_graph", "tensorflow.global_variables_initializer", "tensorflow.Session", "time.time", "tensorflow.train.start_queue_runners", "tensorflow.summary.FileWriter", "tensorflow.train.latest_checkpoint", "preprocess.test_data_helper", "os.path.join" ]
[((212, 224), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (222, 224), True, 'import tensorflow as tf\n'), ((275, 295), 'model.build_graph', 'build_graph', ([], {'top_k': '(1)'}), '(top_k=1)\n', (286, 295), False, 'from model import build_graph\n'), ((312, 328), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (326, 328), True, 'import tensorflow as tf\n'), ((421, 443), 'tensorflow.train.Coordinator', 'tf.train.Coordinator', ([], {}), '()\n', (441, 443), True, 'import tensorflow as tf\n'), ((462, 514), 'tensorflow.train.start_queue_runners', 'tf.train.start_queue_runners', ([], {'sess': 'sess', 'coord': 'coord'}), '(sess=sess, coord=coord)\n', (490, 514), True, 'import tensorflow as tf\n'), ((560, 619), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(FLAGS.log_dir + '/train')", 'sess.graph'], {}), "(FLAGS.log_dir + '/train', sess.graph)\n", (581, 619), True, 'import tensorflow as tf\n'), ((642, 687), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(FLAGS.log_dir + '/val')"], {}), "(FLAGS.log_dir + '/val')\n", (663, 687), True, 'import tensorflow as tf\n'), ((346, 379), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (377, 379), True, 'import tensorflow as tf\n'), ((758, 806), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['FLAGS.checkpoint_dir'], {}), '(FLAGS.checkpoint_dir)\n', (784, 806), True, 'import tensorflow as tf\n'), ((1080, 1101), 'preprocess.train_data_iterator', 'train_data_iterator', ([], {}), '()\n', (1099, 1101), False, 'from preprocess import train_data_iterator, test_data_helper\n'), ((1137, 1148), 'time.time', 'time.time', ([], {}), '()\n', (1146, 1148), False, 'import time\n'), ((1699, 1710), 'time.time', 'time.time', ([], {}), '()\n', (1708, 1710), False, 'import time\n'), ((3140, 3192), 'os.path.join', 'os.path.join', (['FLAGS.checkpoint_dir', 'FLAGS.model_name'], {}), '(FLAGS.checkpoint_dir, FLAGS.model_name)\n', (3152, 3192), False, 'import os\n'), ((1957, 1978), 'preprocess.test_data_helper', 'test_data_helper', (['(128)'], {}), '(128)\n', (1973, 1978), False, 'from preprocess import train_data_iterator, test_data_helper\n'), ((2910, 2962), 'os.path.join', 'os.path.join', (['FLAGS.checkpoint_dir', 'FLAGS.model_name'], {}), '(FLAGS.checkpoint_dir, FLAGS.model_name)\n', (2922, 2962), False, 'import os\n')]
#!/usr/bin/env python3 import bitstring from compression import huffman simple = b"122333" simple_codes = { "1": "11", "2": "10", "3": "0" } simple_tree = bitstring.Bits("0b00100110001100110010100110011") simple_compressed = bitstring.Bits("0x498cca67d0") lorem = (b"Lorem ipsum dolor sit amet, consectetur adipisicing " b"elit, sed do eiusmod tempor incididunt ut labore et dolore magna " b"aliqua. Ut enim ad minim veniam, quis nostrud exercitation " b"ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis " b"aute irure dolor in reprehenderit in voluptate velit esse cillum " b"dolore eu fugiat nulla pariatur. Excepteur sint occaecat " b"cupidatat non proident, sunt in culpa qui officia deserunt " b"mollit anim id est laborum.") lorem_codes = { " ": "001", ",": "1001000", ".": "111111", "D": "100101101", "E": "100101100", "L": "11111011", "U": "11111010", "a": "0111", "b": "1111100", "c": "01001", "d": "00011", "e": "0000", "f": "1001101", "g": "1001100", "h": "10010111", "i": "110", "l": "1110", "m": "01000", "n": "1010", "o": "0110", "p": "11110", "q": "100111", "r": "1011", "s": "00010", "t": "0101", "u": "1000", "v": "1001010", "x": "1001001" } lorem_tree = bitstring.Bits("0x025c532ab62b85b2d25cadc2e2b359c5a144a2dd97" "8965d4586deba2c76d480b25cec, 0b101") lorem_compressed = bitstring.Bits("0x0204b8a6556c570b65a4b95b85c566b38b42" "8945bb2f12cba8b0dbd7458eda90164b9d97edac10778508236e6b22ca5d00b20a5a8" "4095058b2e3dec2c9d530876590440323621a04861950479acea4e1e1c529853cff1a" "c08291b7358143cca72fda787fcfd290ac82e328d59065056744833c611a612dc0c84" "90b4e575cd463b9d0963cff1af08d61630a5fb4f1bc42490729642186c52d4209e1d7" "f32d8c22f0a075c5811b7359d46c3d612e1430bca75194dd1e57503283b2901080a77" "74208db9ac08419b1333a9a8ee73e7bceb17f996494879422c8b52964a5c12ea531ec" "3757534d47d6d8614b208a294ea298ef399e3169b37273918082e294a1bbb297ac838" "6404a79fe35c23f") def test_tree_from_data(): tree = huffman.Node.from_data(simple) codes = {chr(symbol): code.unpack("bin")[0] for symbol, code in tree.codes().items()} assert(codes == simple_codes) tree = huffman.Node.from_data(lorem) codes = {chr(symbol): code.unpack("bin")[0] for symbol, code in tree.codes().items()} assert(codes == lorem_codes) def test_tree_from_binary(): tree = huffman.Node.from_binary(simple_tree) codes = {chr(symbol): code.unpack("bin")[0] for symbol, code in tree.codes().items()} assert(codes == simple_codes) tree = huffman.Node.from_binary(lorem_tree) codes = {chr(symbol): code.unpack("bin")[0] for symbol, code in tree.codes().items()} assert(codes == lorem_codes) def test_compression(): compressed = huffman.compress(simple) assert(bitstring.Bits(compressed) == simple_compressed) compressed = huffman.compress(lorem) assert(bitstring.Bits(compressed) == lorem_compressed) def test_decompression(): data = huffman.decompress(simple_compressed) assert(data == simple) data = huffman.decompress(lorem_compressed) assert(data == lorem) def test_both(): compressed = huffman.compress(simple) data = huffman.decompress(compressed) assert(data == simple) compressed = huffman.compress(lorem) data = huffman.decompress(compressed) assert(data == lorem)
[ "compression.huffman.Node.from_data", "compression.huffman.decompress", "compression.huffman.Node.from_binary", "bitstring.Bits", "compression.huffman.compress" ]
[((170, 219), 'bitstring.Bits', 'bitstring.Bits', (['"""0b00100110001100110010100110011"""'], {}), "('0b00100110001100110010100110011')\n", (184, 219), False, 'import bitstring\n'), ((240, 270), 'bitstring.Bits', 'bitstring.Bits', (['"""0x498cca67d0"""'], {}), "('0x498cca67d0')\n", (254, 270), False, 'import bitstring\n'), ((1341, 1447), 'bitstring.Bits', 'bitstring.Bits', (['"""0x025c532ab62b85b2d25cadc2e2b359c5a144a2dd978965d4586deba2c76d480b25cec, 0b101"""'], {}), "(\n '0x025c532ab62b85b2d25cadc2e2b359c5a144a2dd978965d4586deba2c76d480b25cec, 0b101'\n )\n", (1355, 1447), False, 'import bitstring\n'), ((1464, 2028), 'bitstring.Bits', 'bitstring.Bits', (['"""0x0204b8a6556c570b65a4b95b85c566b38b428945bb2f12cba8b0dbd7458eda90164b9d97edac10778508236e6b22ca5d00b20a5a84095058b2e3dec2c9d530876590440323621a04861950479acea4e1e1c529853cff1ac08291b7358143cca72fda787fcfd290ac82e328d59065056744833c611a612dc0c8490b4e575cd463b9d0963cff1af08d61630a5fb4f1bc42490729642186c52d4209e1d7f32d8c22f0a075c5811b7359d46c3d612e1430bca75194dd1e57503283b2901080a7774208db9ac08419b1333a9a8ee73e7bceb17f996494879422c8b52964a5c12ea531ec3757534d47d6d8614b208a294ea298ef399e3169b37273918082e294a1bbb297ac8386404a79fe35c23f"""'], {}), "(\n '0x0204b8a6556c570b65a4b95b85c566b38b428945bb2f12cba8b0dbd7458eda90164b9d97edac10778508236e6b22ca5d00b20a5a84095058b2e3dec2c9d530876590440323621a04861950479acea4e1e1c529853cff1ac08291b7358143cca72fda787fcfd290ac82e328d59065056744833c611a612dc0c8490b4e575cd463b9d0963cff1af08d61630a5fb4f1bc42490729642186c52d4209e1d7f32d8c22f0a075c5811b7359d46c3d612e1430bca75194dd1e57503283b2901080a7774208db9ac08419b1333a9a8ee73e7bceb17f996494879422c8b52964a5c12ea531ec3757534d47d6d8614b208a294ea298ef399e3169b37273918082e294a1bbb297ac8386404a79fe35c23f'\n )\n", (1478, 2028), False, 'import bitstring\n'), ((2115, 2145), 'compression.huffman.Node.from_data', 'huffman.Node.from_data', (['simple'], {}), '(simple)\n', (2137, 2145), False, 'from compression import huffman\n'), ((2295, 2324), 'compression.huffman.Node.from_data', 'huffman.Node.from_data', (['lorem'], {}), '(lorem)\n', (2317, 2324), False, 'from compression import huffman\n'), ((2502, 2539), 'compression.huffman.Node.from_binary', 'huffman.Node.from_binary', (['simple_tree'], {}), '(simple_tree)\n', (2526, 2539), False, 'from compression import huffman\n'), ((2689, 2725), 'compression.huffman.Node.from_binary', 'huffman.Node.from_binary', (['lorem_tree'], {}), '(lorem_tree)\n', (2713, 2725), False, 'from compression import huffman\n'), ((2904, 2928), 'compression.huffman.compress', 'huffman.compress', (['simple'], {}), '(simple)\n', (2920, 2928), False, 'from compression import huffman\n'), ((3007, 3030), 'compression.huffman.compress', 'huffman.compress', (['lorem'], {}), '(lorem)\n', (3023, 3030), False, 'from compression import huffman\n'), ((3128, 3165), 'compression.huffman.decompress', 'huffman.decompress', (['simple_compressed'], {}), '(simple_compressed)\n', (3146, 3165), False, 'from compression import huffman\n'), ((3205, 3241), 'compression.huffman.decompress', 'huffman.decompress', (['lorem_compressed'], {}), '(lorem_compressed)\n', (3223, 3241), False, 'from compression import huffman\n'), ((3303, 3327), 'compression.huffman.compress', 'huffman.compress', (['simple'], {}), '(simple)\n', (3319, 3327), False, 'from compression import huffman\n'), ((3339, 3369), 'compression.huffman.decompress', 'huffman.decompress', (['compressed'], {}), '(compressed)\n', (3357, 3369), False, 'from compression import huffman\n'), ((3415, 3438), 'compression.huffman.compress', 'huffman.compress', (['lorem'], {}), '(lorem)\n', (3431, 3438), False, 'from compression import huffman\n'), ((3450, 3480), 'compression.huffman.decompress', 'huffman.decompress', (['compressed'], {}), '(compressed)\n', (3468, 3480), False, 'from compression import huffman\n'), ((2940, 2966), 'bitstring.Bits', 'bitstring.Bits', (['compressed'], {}), '(compressed)\n', (2954, 2966), False, 'import bitstring\n'), ((3042, 3068), 'bitstring.Bits', 'bitstring.Bits', (['compressed'], {}), '(compressed)\n', (3056, 3068), False, 'import bitstring\n')]
from deep_rl import register_trainer from deep_rl.core import AbstractTrainer from deep_rl.core import MetricContext from deep_rl.configuration import configuration from environments.gym_house.goal import GoalImageCache import os import torch import numpy as np from torch.utils.data import Dataset,DataLoader from models import AuxiliaryBigGoalHouseModel as Model from torch.optim import Adam import torch.nn.functional as F from experiments.ai2_auxiliary.trainer import compute_auxiliary_target class HouseDataset(Dataset): def __init__(self, deconv_cell_size, transform = None): self.image_cache = GoalImageCache((174,174), configuration.get('house3d.dataset_path')) self.images = list(self.image_cache.all_image_paths(['rgb','depth','segmentation'])) self.transform = transform self.deconv_cell_size = deconv_cell_size def __len__(self): return len(self.images) def __getitem__(self, index): image, depth, segmentation = self.images[index] image = self.image_cache.read_image(image) depth = self.image_cache.read_image(depth) segmentation = self.image_cache.read_image(segmentation) image = torch.from_numpy(np.transpose(image.astype(np.float32), [2,0,1]) / 255.0).unsqueeze(0) depth = torch.from_numpy(np.transpose(depth[:,:,:1].astype(np.float32), [2,0,1]) / 255.0).unsqueeze(0) segmentation = torch.from_numpy(np.transpose(segmentation.astype(np.float32), [2,0,1]) / 255.0).unsqueeze(0) segmentation = compute_auxiliary_target(segmentation.unsqueeze(0), self.deconv_cell_size, (42, 42)).squeeze(0) depth = compute_auxiliary_target(depth.unsqueeze(0), self.deconv_cell_size, (42, 42)).squeeze(0) ret = (image, depth, segmentation) if self.transform: ret = self.transform(ret) return ret @register_trainer(save = True, saving_period = 1) class SupervisedTrained(AbstractTrainer): def __init__(self, name, **kwargs): super().__init__(dict(), dict()) self.name = name self.batch_size = 32 self.main_device = torch.device('cuda') def optimize(self, image, depth, segmentation): image = image.to(self.main_device) depth = depth.to(self.main_device) segmentation = segmentation.to(self.main_device) zeros1 = torch.rand((image.size()[0], 1, 3,174,174), dtype = torch.float32, device = self.main_device) zeros2 = torch.rand((image.size()[0], 1, 3,174,174), dtype = torch.float32, device = self.main_device) (r_depth, r_segmentation, _), _ = self.model.forward_deconv(((image, zeros1), None), None, None) (_, _, r_goal_segmentation), _ = self.model.forward_deconv(((zeros2, image), None,), None, None) loss = F.mse_loss(r_depth, depth) + F.mse_loss(r_segmentation, segmentation) + F.mse_loss(r_goal_segmentation, segmentation) loss = loss / 3.0 self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.item() def save(self, path): super().save(path) torch.save(self.model.state_dict(), os.path.join(path, 'weights.pth')) print('Saving to %s' % os.path.join(path, 'weights.pth')) def process(self, mode = 'train', **kwargs): assert mode == 'train' # Single epoch metric_context = MetricContext() dataloader = DataLoader(self.dataset, batch_size=self.batch_size,shuffle=True, num_workers=4) total_loss = 0 total_updates = 0 for i, item in enumerate(dataloader): loss = self.optimize(*item) print('loss is %s' % loss) total_loss += loss total_updates += 1 print('Epoch done with loss=%s' % (total_loss / total_updates)) return (1, (1, 1), metric_context) def create_dataset(self, deconv_cell_size): return HouseDataset(deconv_cell_size) def _initialize(self): model = Model(3, 6).to(self.main_device) model_path = os.path.join(configuration.get('models_path'),'chouse-auxiliary4-supervised', 'weights.pth') if os.path.isfile(model_path): print('Loading %s' % model_path) model.load_state_dict(torch.load(model_path)) self.dataset = self.create_dataset(model.deconv_cell_size) self.optimizer = Adam(model.parameters()) return model def run(self, process, **kwargs): self.model = self._initialize() for i in range(30): print('Starting epoch %s' % (i + 1)) process() def default_args(): return dict()
[ "torch.utils.data.DataLoader", "torch.load", "torch.nn.functional.mse_loss", "models.AuxiliaryBigGoalHouseModel", "deep_rl.configuration.configuration.get", "os.path.isfile", "deep_rl.core.MetricContext", "torch.device", "deep_rl.register_trainer", "os.path.join" ]
[((1861, 1905), 'deep_rl.register_trainer', 'register_trainer', ([], {'save': '(True)', 'saving_period': '(1)'}), '(save=True, saving_period=1)\n', (1877, 1905), False, 'from deep_rl import register_trainer\n'), ((2114, 2134), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (2126, 2134), False, 'import torch\n'), ((3368, 3383), 'deep_rl.core.MetricContext', 'MetricContext', ([], {}), '()\n', (3381, 3383), False, 'from deep_rl.core import MetricContext\n'), ((3405, 3490), 'torch.utils.data.DataLoader', 'DataLoader', (['self.dataset'], {'batch_size': 'self.batch_size', 'shuffle': '(True)', 'num_workers': '(4)'}), '(self.dataset, batch_size=self.batch_size, shuffle=True,\n num_workers=4)\n', (3415, 3490), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((4152, 4178), 'os.path.isfile', 'os.path.isfile', (['model_path'], {}), '(model_path)\n', (4166, 4178), False, 'import os\n'), ((640, 681), 'deep_rl.configuration.configuration.get', 'configuration.get', (['"""house3d.dataset_path"""'], {}), "('house3d.dataset_path')\n", (657, 681), False, 'from deep_rl.configuration import configuration\n'), ((2850, 2895), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['r_goal_segmentation', 'segmentation'], {}), '(r_goal_segmentation, segmentation)\n', (2860, 2895), True, 'import torch.nn.functional as F\n'), ((3137, 3170), 'os.path.join', 'os.path.join', (['path', '"""weights.pth"""'], {}), "(path, 'weights.pth')\n", (3149, 3170), False, 'import os\n'), ((4052, 4084), 'deep_rl.configuration.configuration.get', 'configuration.get', (['"""models_path"""'], {}), "('models_path')\n", (4069, 4084), False, 'from deep_rl.configuration import configuration\n'), ((2778, 2804), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['r_depth', 'depth'], {}), '(r_depth, depth)\n', (2788, 2804), True, 'import torch.nn.functional as F\n'), ((2807, 2847), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['r_segmentation', 'segmentation'], {}), '(r_segmentation, segmentation)\n', (2817, 2847), True, 'import torch.nn.functional as F\n'), ((3203, 3236), 'os.path.join', 'os.path.join', (['path', '"""weights.pth"""'], {}), "(path, 'weights.pth')\n", (3215, 3236), False, 'import os\n'), ((3985, 3996), 'models.AuxiliaryBigGoalHouseModel', 'Model', (['(3)', '(6)'], {}), '(3, 6)\n', (3990, 3996), True, 'from models import AuxiliaryBigGoalHouseModel as Model\n'), ((4259, 4281), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (4269, 4281), False, 'import torch\n')]
import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash_extensions import Download def create_actions_tab(projname, vername): return [ dbc.Row( dbc.Col(html.H2("Actions")), ), dbc.Row( dbc.Col(html.H4("Project: - Version: - "), id='actions_projver'), ), dbc.Row( [ dbc.Col( dbc.Card( [ dbc.CardHeader("Export SPDX JSON file", style={'classname': 'card-title'}, id='spdxtitle'), dbc.CardBody( [ dcc.Interval( id='spdx_interval', disabled=True, interval=1 * 6000, # in milliseconds n_intervals=0, max_intervals=400 ), dbc.Form( [ dbc.FormGroup( [ dbc.Label("Filename", className="mr-2"), dbc.Input(type="text", id="spdx_file", placeholder="Enter output SPDX file"), ], className="mr-3", ), dbc.FormGroup( [ dbc.Checklist( id="spdx_recursive", options=[ {"label": "Recursive (Projects in Projects)", "value": 1}, ], value=[], switch=True, ) ], className="mr-3", ), dbc.Button("Export SPDX", id="buttons_export_spdx", color="primary"), ], # inline=True, ), html.Div('', id='spdx_status'), dbc.Collapse( [ dbc.Button("Download SPDX", id="button_download_spdx", color="primary"), Download(id="download_spdx"), ], id="spdx_collapse", is_open=False, ), ], ), # dbc.CardFooter(dbc.CardLink('Project Version link', href=projlink)), ], id="spdxcard", ), width=4, ), dbc.Col( dbc.Card( [ dbc.CardHeader("Ignore CVEs with BDSA Mismatch", style={'classname': 'card-title'}, id='fixcvestitle'), dbc.CardBody( [ dcc.Interval( id='fixcves_interval', disabled=True, interval=1 * 6000, # in milliseconds n_intervals=0, max_intervals=400 ), dbc.Form( [ dbc.Button("Ignore CVEs with Mismatched BDSA Versions", id="buttons_fixcves", color="primary"), ], # inline=True, ), html.Div('', id='fixcves_status'), ], ), # dbc.CardFooter(dbc.CardLink('Project Version link', href=projlink)), ], id="fixcvescard", ), width=4, ), ], ) ] def patch_cves(bd, version, vuln_list, vulns): # vulnerable_components_url = hub.get_link(version, "vulnerable-components") + "?limit=9999" # custom_headers = {'Accept':'application/vnd.blackducksoftware.bill-of-materials-6+json'} # response = hub.execute_get(vulnerable_components_url, custom_headers=custom_headers) # vulnerable_bom_components = response.json().get('items', []) active_statuses = ["NEW", "NEEDS_REVIEW", "REMEDIATION_REQUIRED"] status = "IGNORED" comment = "Ignored as linked BDSA has component version as fixed" print("Processing vulnerabilities ...") ignoredcount = 0 alreadyignoredcount = 0 try: for vuln in vulns: vuln_name = vuln['vulnerabilityWithRemediation']['vulnerabilityName'] if vuln_name in vuln_list: if vuln['vulnerabilityWithRemediation']['remediationStatus'] in active_statuses: vuln['remediationStatus'] = status vuln['remediationComment'] = comment # result = hub.execute_put(vuln['_meta']['href'], data=vuln) r = bd.session.put(vuln['_meta']['href'], json=vuln) if r.status_code == 202: ignoredcount += 1 print("{}: marked ignored".format(vuln_name)) else: print("{}: Unable to change status".format(vuln_name)) else: print(vuln_name + ": has BDSA which disgrees on version applicability but not active - no action") alreadyignoredcount += 1 else: print(vuln_name + ": No action") except Exception as e: print("ERROR: Unable to update vulnerabilities via API\n" + str(e)) return 0 print("- {} CVEs already inactive".format(alreadyignoredcount)) print("- {} CVEs newly marked as ignored".format(ignoredcount)) return ignoredcount def check_cves(bd, projverurl, comps, vulns): cve_list = [] num = 0 total = 0 for comp in comps: # print(comp) if 'componentVersionName' not in comp: continue print("- " + comp['componentName'] + '/' + comp['componentVersionName']) for x in comp['_meta']['links']: if x['rel'] == 'vulnerabilities': # custom_headers = {'Accept': 'application/vnd.blackducksoftware.vulnerability-4+json'} # response = hub.execute_get(x['href'] + "?limit=9999", custom_headers=custom_headers) # vulns = response.json().get('items', []) cvulns = bd.get_json(x['href'] + "?limit=3000") for vuln in cvulns['items']: total += 1 if vuln['source'] == 'NVD': for y in vuln['_meta']['links']: if y['rel'] == 'related-vulnerabilities': if y['label'] == 'BDSA': # print("{} has BDSA which disagrees with component version - potential false # positive".format(vuln['name'])) if vuln['name'] not in cve_list: cve_list.append(vuln['name']) num += 1 print("Found {} total vulnerabilities".format(total)) print("Found {} CVEs with associated BDSAs but which do not agree on affected component version\n".format(num)) ret = patch_cves(bd, projverurl, cve_list, vulns) return ret
[ "dash_bootstrap_components.Label", "dash_bootstrap_components.Input", "dash_html_components.H2", "dash_extensions.Download", "dash_html_components.Div", "dash_bootstrap_components.CardHeader", "dash_bootstrap_components.Button", "dash_html_components.H4", "dash_bootstrap_components.Checklist", "dash_core_components.Interval" ]
[((243, 261), 'dash_html_components.H2', 'html.H2', (['"""Actions"""'], {}), "('Actions')\n", (250, 261), True, 'import dash_html_components as html\n'), ((312, 345), 'dash_html_components.H4', 'html.H4', (['"""Project: - Version: - """'], {}), "('Project: - Version: - ')\n", (319, 345), True, 'import dash_html_components as html\n'), ((541, 635), 'dash_bootstrap_components.CardHeader', 'dbc.CardHeader', (['"""Export SPDX JSON file"""'], {'style': "{'classname': 'card-title'}", 'id': '"""spdxtitle"""'}), "('Export SPDX JSON file', style={'classname': 'card-title'},\n id='spdxtitle')\n", (555, 635), True, 'import dash_bootstrap_components as dbc\n'), ((4215, 4321), 'dash_bootstrap_components.CardHeader', 'dbc.CardHeader', (['"""Ignore CVEs with BDSA Mismatch"""'], {'style': "{'classname': 'card-title'}", 'id': '"""fixcvestitle"""'}), "('Ignore CVEs with BDSA Mismatch', style={'classname':\n 'card-title'}, id='fixcvestitle')\n", (4229, 4321), True, 'import dash_bootstrap_components as dbc\n'), ((831, 935), 'dash_core_components.Interval', 'dcc.Interval', ([], {'id': '"""spdx_interval"""', 'disabled': '(True)', 'interval': '(1 * 6000)', 'n_intervals': '(0)', 'max_intervals': '(400)'}), "(id='spdx_interval', disabled=True, interval=1 * 6000,\n n_intervals=0, max_intervals=400)\n", (843, 935), True, 'import dash_core_components as dcc\n'), ((3206, 3236), 'dash_html_components.Div', 'html.Div', (['""""""'], {'id': '"""spdx_status"""'}), "('', id='spdx_status')\n", (3214, 3236), True, 'import dash_html_components as html\n'), ((4517, 4624), 'dash_core_components.Interval', 'dcc.Interval', ([], {'id': '"""fixcves_interval"""', 'disabled': '(True)', 'interval': '(1 * 6000)', 'n_intervals': '(0)', 'max_intervals': '(400)'}), "(id='fixcves_interval', disabled=True, interval=1 * 6000,\n n_intervals=0, max_intervals=400)\n", (4529, 4624), True, 'import dash_core_components as dcc\n'), ((5390, 5423), 'dash_html_components.Div', 'html.Div', (['""""""'], {'id': '"""fixcves_status"""'}), "('', id='fixcves_status')\n", (5398, 5423), True, 'import dash_html_components as html\n'), ((2853, 2921), 'dash_bootstrap_components.Button', 'dbc.Button', (['"""Export SPDX"""'], {'id': '"""buttons_export_spdx"""', 'color': '"""primary"""'}), "('Export SPDX', id='buttons_export_spdx', color='primary')\n", (2863, 2921), True, 'import dash_bootstrap_components as dbc\n'), ((3374, 3445), 'dash_bootstrap_components.Button', 'dbc.Button', (['"""Download SPDX"""'], {'id': '"""button_download_spdx"""', 'color': '"""primary"""'}), "('Download SPDX', id='button_download_spdx', color='primary')\n", (3384, 3445), True, 'import dash_bootstrap_components as dbc\n'), ((3601, 3629), 'dash_extensions.Download', 'Download', ([], {'id': '"""download_spdx"""'}), "(id='download_spdx')\n", (3609, 3629), False, 'from dash_extensions import Download\n'), ((5011, 5110), 'dash_bootstrap_components.Button', 'dbc.Button', (['"""Ignore CVEs with Mismatched BDSA Versions"""'], {'id': '"""buttons_fixcves"""', 'color': '"""primary"""'}), "('Ignore CVEs with Mismatched BDSA Versions', id=\n 'buttons_fixcves', color='primary')\n", (5021, 5110), True, 'import dash_bootstrap_components as dbc\n'), ((1439, 1478), 'dash_bootstrap_components.Label', 'dbc.Label', (['"""Filename"""'], {'className': '"""mr-2"""'}), "('Filename', className='mr-2')\n", (1448, 1478), True, 'import dash_bootstrap_components as dbc\n'), ((1532, 1608), 'dash_bootstrap_components.Input', 'dbc.Input', ([], {'type': '"""text"""', 'id': '"""spdx_file"""', 'placeholder': '"""Enter output SPDX file"""'}), "(type='text', id='spdx_file', placeholder='Enter output SPDX file')\n", (1541, 1608), True, 'import dash_bootstrap_components as dbc\n'), ((2059, 2189), 'dash_bootstrap_components.Checklist', 'dbc.Checklist', ([], {'id': '"""spdx_recursive"""', 'options': "[{'label': 'Recursive (Projects in Projects)', 'value': 1}]", 'value': '[]', 'switch': '(True)'}), "(id='spdx_recursive', options=[{'label':\n 'Recursive (Projects in Projects)', 'value': 1}], value=[], switch=True)\n", (2072, 2189), True, 'import dash_bootstrap_components as dbc\n')]
from view.runnable.Runnable import Runnable class showMultiPlayerBoard(Runnable): def __init__(self,vue, sec): Runnable.__init__(self,vue) self.sec = sec def run(self): self.vue.showMultiPlayerBoard(self.sec)
[ "view.runnable.Runnable.Runnable.__init__" ]
[((125, 153), 'view.runnable.Runnable.Runnable.__init__', 'Runnable.__init__', (['self', 'vue'], {}), '(self, vue)\n', (142, 153), False, 'from view.runnable.Runnable import Runnable\n')]
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import json import requests import time import warnings from .auth import HMACAuth from .compat import imap from .compat import quote from .compat import urljoin from .compat import urlencode from .error import build_api_error from .model import APIObject from .model import new_api_object from .socket import Socket from .util import check_uri_security from .util import encode_params class Client(object): BASE_API_URI = 'https://api.cryptomkt.com/' API_VERSION = 'v2' def __init__(self, api_key, api_secret, base_api_uri=None, api_version=None, debug=False): if not api_key: raise ValueError('Missing `api_key`.') if not api_secret: raise ValueError('Missing `api_secret`.') # Allow passing in a different API base. self.BASE_API_URI = check_uri_security(base_api_uri or self.BASE_API_URI) self.API_VERSION = api_version or self.API_VERSION self.socket = None # Set up a requests session for interacting with the API. self.session = self._build_session(HMACAuth, api_key, api_secret, self.API_VERSION) # a container for the socket if needed. self.socket = None def _build_session(self, auth_class, *args, **kwargs): """Internal helper for creating a requests `session` with the correct authentication handling.""" session = requests.session() session.auth = auth_class(*args, **kwargs) # session.headers.update({'Content-type': 'application/json'}) return session def _create_api_uri(self, *parts, **kwargs): """Internal helper for creating fully qualified endpoint URIs.""" params = kwargs.get("params", None) if params and isinstance(params, dict): url = urljoin(self.BASE_API_URI, '/'.join(imap(quote, parts)) + '?%s' % urlencode(params)) else: url = urljoin(self.BASE_API_URI, '/'.join(imap(quote, parts))) return url def _request(self, method, *relative_path_parts, **kwargs): """Internal helper for creating HTTP requests to the CryptoMarket API. Raises an APIError if the response is not 20X. Otherwise, returns the response object. Not intended for direct use by API consumers. """ uri = self._create_api_uri(*relative_path_parts, **kwargs) data = kwargs.get("data", None) if data and isinstance(data, dict): kwargs['data'] = data response = getattr(self.session, method)(uri, **kwargs) return self._handle_response(response) def _handle_response(self, response): """Internal helper for handling API responses from the CryptoMarket server. Raises the appropriate exceptions when necessary; otherwise, returns the response. """ if not str(response.status_code).startswith('2'): raise build_api_error(response) return response def _get(self, *args, **kwargs): return self._request('get', *args, **kwargs) def _post(self, *args, **kwargs): return self._request('post', *args, **kwargs) def _make_api_object(self, response, model_type=None): blob = response.json() data = blob.get('data', None) # All valid responses have a "data" key. if data is None: raise build_api_error(response, blob) # Warn the user about each warning that was returned. warnings_data = blob.get('warnings', None) for warning_blob in warnings_data or []: message = "%s (%s)" % ( warning_blob.get('message', ''), warning_blob.get('url', '')) warnings.warn(message, UserWarning) pagination = blob.get('pagination', None) kwargs = { 'response': response, 'pagination': pagination and new_api_object(None, pagination, APIObject), 'warnings': warnings_data and new_api_object(None, warnings_data, APIObject), } if isinstance(data, dict): obj = new_api_object(self, data, model_type, **kwargs) else: obj = APIObject(self, **kwargs) obj.data = new_api_object(self, data, model_type) return obj # Public API # ----------------------------------------------------------- def get_markets(self): """Returns a list of the marketpairs as strings available in Cryptomkt as the "data" member of a dict. """ response = self._get(self.API_VERSION, 'market') return self._make_api_object(response, APIObject) def get_ticker(self, market=None): """Returns a general view of the market state as a dict. Shows the actual bid and ask, the volume and price, and the low and high of the market. Stored in the "data" member of a dict. Does not requiere to be authenticated. Optional Arguments: market: A market pair as string, if no market pair is provided, the market state of all the market pairs are returned. e.g: 'EHTARS'. """ params = {} if market: params['market'] = market response = self._get(self.API_VERSION, 'ticker', params=params) return self._make_api_object(response, APIObject) def get_book(self, market, side, page=None, limit=None): """Returns a list of active orders of a given side in a specified market pair. stored in the "data" member of a dict. Required Arguments: market: A market pair as a string. Is the specified market to get the book from. e.g: 'ETHEUR'. side: 'buy' or 'sell'. Optional Arguments: page: Page number to query. Default is 0 limit: Number of orders returned in each page. Default is 20. """ params = dict( market=market, side=side ) if page is not None and isinstance(page, int): params['page'] = page if limit is not None and isinstance(limit, int): params['limit'] = limit response = self._get(self.API_VERSION, 'book', params=params) return self._make_api_object(response, APIObject) def get_trades(self, market, start=None, end=None, page=None, limit=None): """returns a list of all trades (executed orders) of a market between the start date, until the end date. the earlier trades first, and the older last. stored in the "data" member of a dict If no start date is given, returns trades since 2020-02-17. If no end date is given, returns trades until the present moment. Required Arguments: market: A market pair as a string. Is the specified market to get the book from. e.g: 'ETHCLP'. Optional Arguments: start: The older date to get trades from, inclusive. end: The earlier date to get trades from, exclusive. page: Page number to query. Default is 0 limit: Number of orders returned in each page. Default is 20. """ params = dict( market=market ) if start is not None: params['start'] = start if end is not None: params['end'] = end if page is not None: params['page'] = page if limit is not None: params['limit'] = limit response = self._get(self.API_VERSION, 'trades', params=params) return self._make_api_object(response, APIObject) def get_prices(self, market, timeframe, page = None, limit = None): """returns a list of the prices of a market (candles on the market prices graph), given a timeframe. The earlier prices first and the older last. the list is stored in the data member of a dict Required Arguments: market: A market pair as a string. Is the specified market to get the book from. e.g: 'ETHCLP'. timeframe: timelapse between every candle in minutes. accepted values are 1, 5, 15, 60, 240, 1440 and 10080. Optional Arguments: page: Page number to query. Default is 0 limit: Number of orders returned in each page. Default is 20. """ params = dict( market = market, timeframe = timeframe ) if page is not None: params["page"] = page if limit is not None: params["limit"] = limit response = self._get(self.API_VERSION,"prices", params = params) return self._make_api_object(response, APIObject) # Authenticated endpoints #------------------------------------------------------------------- # account def get_account(self): """returns the account information of the user. Name, email, rate and bank accounts. """ response = self._get(self.API_VERSION,"account") return self._make_api_object(response,APIObject) # orders def get_active_orders(self, market, page=None, limit=None): """returns a list of the active orders of the user in a given market. Required Arguments: market: A market pair as a string. Is the specified market to get the book from. e.g: 'ETHCLP'. Optional Arguments: page: Page number to query. Default is 0 limit: Number of orders returned in each page. Default is 20. """ params = dict( market=market ) if page is not None: params['page'] = page if limit is not None: params['limit'] = limit response = self._get(self.API_VERSION, 'orders', 'active', params=params) return self._make_api_object(response, APIObject) def get_executed_orders(self, market, page=None, limit=None): """returns the list of the executed orders of the user on a given market. Required Arguments: market: A market pair as a string. Is the specified market to get the book from. e.g: 'ETHCLP'. Optional Arguments: page: Page number to query. Default is 0 limit: Number of orders returned in each page. Default is 20. """ params = dict( market=market ) if page is not None: params['page'] = page if limit is not None: params['limit'] = limit response = self._get(self.API_VERSION, 'orders', 'executed', params=params) return self._make_api_object(response, APIObject) def create_order(self, market, amount, price, side, type): """creates an orders from the specified argument. Required Arguments: amount: The amount of crypto to be buyed or selled. market: A market pair as a string. Is the specified market to place the order in e.g: 'ETHCLP'. price: The price to ask or bid for one unit of crypto side: 'buy' or 'sell' the crypto type: one of the keywords 'market', 'limit', 'stop_limit' """ params = dict( amount=amount, market=market, price=price, side=side, type=type, ) response = self._post(self.API_VERSION, 'orders', 'create', data=params) return self._make_api_object(response, APIObject) def create_multi_orders(self, order_list): for order in order_list: if ('market' not in order or 'type' not in order or 'side' not in order or 'amount' not in order): return None params = dict( orders=json.dumps(order_list, sort_keys=True, separators=(',',':')), ) response = self._post(self.API_VERSION, 'orders', 'create', 'bulk', data=params) return self._make_api_object(response, APIObject) def get_order_status(self, id): """returns the present status of an order, given the order id. Required Arguments: id: The identification of the order. """ params = dict( id=id ) response = self._get(self.API_VERSION, 'orders', 'status', params=params) return self._make_api_object(response, APIObject) def cancel_order(self, id): """Cancel an order given its id. Required Arguments: id: The identification of the order. """ params = dict( id=id ) response = self._post(self.API_VERSION, 'orders', 'cancel', data=params) return self._make_api_object(response, APIObject) def cancel_multi_orders(self, order_list): for order in order_list: if 'id' not in order: return None params = dict( ids=json.dumps(order_list, sort_keys=True, separators=(',',':')), ) response = self._post(self.API_VERSION, 'orders', 'cancel', 'bulk', data=params) return self._make_api_object(response, APIObject) def get_instant(self,market, side, amount): """If side is sell, returns an estimate of the amount of fiat obtained and the amount of crypto required to obatin it. If side is buy, returns an estimate of the amount ofOrder crypto obtained and the amount of fiat required to obtain it. Required Arguments: market: The market to get the estimate of the transaction. side: 'buy' or 'sell' amount: Is the amount of crypto to 'buy' or 'sell' """ rest = float(amount) book_side = 'sell' if side == 'buy' else 'buy' amount_required = 0.0 amount_obtained = 0.0 page = 0 n_entries = 100 while True: book_page = self.get_book(market, book_side, page=page, limit=n_entries) for entry in book_page['data']: price = float(entry['price']) amount = float(entry['amount']) if rest < amount: amount_obtained += rest * price amount_required += rest rest = 0 break else: amount_obtained += amount * price amount_required += amount rest -= amount if rest == 0 or len(book_page['data']) < n_entries: break else: time.sleep(3) page = page + 1 if book_side == 'sell': temp = amount_required amount_required = amount_obtained amount_obtained = temp instant = dict(obtained=amount_obtained, required=amount_required) return instant #Wallet def get_balance(self): """returns the balance of the user. """ response = self._get(self.API_VERSION, 'balance') return self._make_api_object(response, APIObject) def get_transactions(self, currency, page = None, limit = None): """return all the transactions of a currency of the user. Required Arguments: currency: The currency to get all the user transactions. Optional Arguments: page: Page number to query. Default is 0 limit: Number of orders returned in each page. Default is 20. """ params = dict( currency = currency ) if page is not None: params["page"] = page if limit is not None: params["limit"] = limit response = self._get(self.API_VERSION, "transactions", params=params) return self._make_api_object(response, APIObject) def notify_deposit(self,amount,bank_account, date= None, tracking_code = None, voucher = None): """Notifies a deposit from your bank account to your wallet (fiat). Required Arguments: amount: The amount deposited to your wallet. bank_account: The address (id) of the bank account from which you deposited. Extra Arguments required for Brazil and the European Union: voucher: a file. Extra Arguments required for Mexico: date: The date of the deposit, in format dd/mm/yyyy. tracking_code: The tracking code of the deposit. voucher: a file. """ params = dict( amount = amount, bank_account = bank_account ) if date is not None: params["date"] = date if tracking_code is not None: params["tracking_code"] = tracking_code if voucher is not None: params["voucher"] = voucher response = self._post(self.API_VERSION, "deposit", data = params) return self._make_api_object(response,APIObject) def notify_withdrawal(self, amount, bank_account): """Notifies a withdrawal from fiat wallet to your bank account. Required Arguments: amount: the amount you need to withdraw to your bank account. bank_account: The address(id) of the bank account. """ params = dict( amount = amount, bank_account = bank_account ) response = self._post(self.API_VERSION, "withdrawal", data = params) return self._make_api_object(response, APIObject) def transfer(self,address, amount, currency, memo = None): """transfer money between wallets. Required Arguments: adderss: The address of the wallet to transfer money. amount: The amount of money to transfer into the wallet. currency: The wallet from which to take the money. e.g. 'ETH' memo (optional): memo of the wallet to transfer money. """ params = dict( address = address, amount = amount, currency = currency ) if memo is not None: params["memo"] = memo response = self._post(self.API_VERSION, "transfer", data = params) return self._make_api_object(response, APIObject) def get_auth_socket(self): """returns the userid and the socket ids to permit a socket connection with cryptomkt. """ response = self._get("v2", "socket/auth") return self._make_api_object(response, APIObject) def get_socket(self, debug=False): """returns a socket connection with cryptomkt. """ if self.socket is None: auth = self.get_auth_socket() del auth['verify'] self.socket = Socket(auth, debug=debug) return self.socket
[ "requests.session", "warnings.warn", "json.dumps", "time.sleep" ]
[((1553, 1571), 'requests.session', 'requests.session', ([], {}), '()\n', (1569, 1571), False, 'import requests\n'), ((3852, 3887), 'warnings.warn', 'warnings.warn', (['message', 'UserWarning'], {}), '(message, UserWarning)\n', (3865, 3887), False, 'import warnings\n'), ((12120, 12181), 'json.dumps', 'json.dumps', (['order_list'], {'sort_keys': '(True)', 'separators': "(',', ':')"}), "(order_list, sort_keys=True, separators=(',', ':'))\n", (12130, 12181), False, 'import json\n'), ((13294, 13355), 'json.dumps', 'json.dumps', (['order_list'], {'sort_keys': '(True)', 'separators': "(',', ':')"}), "(order_list, sort_keys=True, separators=(',', ':'))\n", (13304, 13355), False, 'import json\n'), ((14907, 14920), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (14917, 14920), False, 'import time\n')]
from setuptools import setup, find_packages, Extension setup(name='aquila_stlfr', version='1.1', description='assembly and variant calling for stlfr and hybrid assembler for linked-reads', author='XinZhou', author_email='<EMAIL>', packages=['bin',], entry_points={'console_scripts':['Aquila_stLFR_step1=bin.Aquila_stLFR_step1:main','Aquila_step1_hybrid=bin.Aquila_step1_hybrid:main','Aquila_stLFR_step2=bin.Aquila_stLFR_step2:main','Aquila_stLFR_assembly_based_variants_call=bin.Aquila_stLFR_assembly_based_variants_call:main','Aquila_stLFR_phasing_all_variants=bin.Aquila_stLFR_phasing_all_variants:main','Aquila_stLFR_clean=bin.Aquila_stLFR_clean:main','Aquila_step0_sortbam_hybrid=bin.Aquila_step0_sortbam_hybrid:main','Aquila_stLFR_fastq_preprocess=bin.Aquila_stLFR_fastq_preprocess:main']}, zip_safe=False)
[ "setuptools.setup" ]
[((56, 877), 'setuptools.setup', 'setup', ([], {'name': '"""aquila_stlfr"""', 'version': '"""1.1"""', 'description': '"""assembly and variant calling for stlfr and hybrid assembler for linked-reads"""', 'author': '"""XinZhou"""', 'author_email': '"""<EMAIL>"""', 'packages': "['bin']", 'entry_points': "{'console_scripts': ['Aquila_stLFR_step1=bin.Aquila_stLFR_step1:main',\n 'Aquila_step1_hybrid=bin.Aquila_step1_hybrid:main',\n 'Aquila_stLFR_step2=bin.Aquila_stLFR_step2:main',\n 'Aquila_stLFR_assembly_based_variants_call=bin.Aquila_stLFR_assembly_based_variants_call:main'\n ,\n 'Aquila_stLFR_phasing_all_variants=bin.Aquila_stLFR_phasing_all_variants:main'\n , 'Aquila_stLFR_clean=bin.Aquila_stLFR_clean:main',\n 'Aquila_step0_sortbam_hybrid=bin.Aquila_step0_sortbam_hybrid:main',\n 'Aquila_stLFR_fastq_preprocess=bin.Aquila_stLFR_fastq_preprocess:main']}", 'zip_safe': '(False)'}), "(name='aquila_stlfr', version='1.1', description=\n 'assembly and variant calling for stlfr and hybrid assembler for linked-reads'\n , author='XinZhou', author_email='<EMAIL>', packages=['bin'],\n entry_points={'console_scripts': [\n 'Aquila_stLFR_step1=bin.Aquila_stLFR_step1:main',\n 'Aquila_step1_hybrid=bin.Aquila_step1_hybrid:main',\n 'Aquila_stLFR_step2=bin.Aquila_stLFR_step2:main',\n 'Aquila_stLFR_assembly_based_variants_call=bin.Aquila_stLFR_assembly_based_variants_call:main'\n ,\n 'Aquila_stLFR_phasing_all_variants=bin.Aquila_stLFR_phasing_all_variants:main'\n , 'Aquila_stLFR_clean=bin.Aquila_stLFR_clean:main',\n 'Aquila_step0_sortbam_hybrid=bin.Aquila_step0_sortbam_hybrid:main',\n 'Aquila_stLFR_fastq_preprocess=bin.Aquila_stLFR_fastq_preprocess:main']\n }, zip_safe=False)\n", (61, 877), False, 'from setuptools import setup, find_packages, Extension\n')]
from typing import Callable, Union import rx from rx.core import Observable, typing from rx.disposable import SingleAssignmentDisposable, SerialDisposable from rx.internal.utils import is_future def catch_handler(source: Observable, handler: Callable[[Exception, Observable], Observable]) -> Observable: def subscribe(observer, scheduler=None): d1 = SingleAssignmentDisposable() subscription = SerialDisposable() subscription.disposable = d1 def on_error(exception): try: result = handler(exception, source) except Exception as ex: # By design. pylint: disable=W0703 observer.on_error(ex) return result = rx.from_future(result) if is_future(result) else result d = SingleAssignmentDisposable() subscription.disposable = d d.disposable = result.subscribe(observer, scheduler=scheduler) d1.disposable = source.subscribe_( observer.on_next, on_error, observer.on_completed, scheduler ) return subscription return Observable(subscribe) def _catch(handler: Union[Observable, Callable[[Exception, Observable], Observable]] ) -> Callable[[Observable], Observable]: def catch(source: Observable) -> Observable: """Continues an observable sequence that is terminated by an exception with the next observable sequence. Examples: >>> op = catch(ys) >>> op = catch(lambda ex, src: ys(ex)) Args: handler: Second observable sequence used to produce results when an error occurred in the first sequence, or an exception handler function that returns an observable sequence given the error and source observable that occurred in the first sequence. Returns: An observable sequence containing the first sequence's elements, followed by the elements of the handler sequence in case an exception occurred. """ if callable(handler): return catch_handler(source, handler) elif isinstance(handler, typing.Observable): return rx.catch(source, handler) else: raise TypeError('catch operator takes whether an Observable or a callable handler as argument.') return catch
[ "rx.disposable.SingleAssignmentDisposable", "rx.catch", "rx.from_future", "rx.core.Observable", "rx.disposable.SerialDisposable", "rx.internal.utils.is_future" ]
[((1150, 1171), 'rx.core.Observable', 'Observable', (['subscribe'], {}), '(subscribe)\n', (1160, 1171), False, 'from rx.core import Observable, typing\n'), ((365, 393), 'rx.disposable.SingleAssignmentDisposable', 'SingleAssignmentDisposable', ([], {}), '()\n', (391, 393), False, 'from rx.disposable import SingleAssignmentDisposable, SerialDisposable\n'), ((417, 435), 'rx.disposable.SerialDisposable', 'SerialDisposable', ([], {}), '()\n', (433, 435), False, 'from rx.disposable import SingleAssignmentDisposable, SerialDisposable\n'), ((804, 832), 'rx.disposable.SingleAssignmentDisposable', 'SingleAssignmentDisposable', ([], {}), '()\n', (830, 832), False, 'from rx.disposable import SingleAssignmentDisposable, SerialDisposable\n'), ((758, 775), 'rx.internal.utils.is_future', 'is_future', (['result'], {}), '(result)\n', (767, 775), False, 'from rx.internal.utils import is_future\n'), ((732, 754), 'rx.from_future', 'rx.from_future', (['result'], {}), '(result)\n', (746, 754), False, 'import rx\n'), ((2286, 2311), 'rx.catch', 'rx.catch', (['source', 'handler'], {}), '(source, handler)\n', (2294, 2311), False, 'import rx\n')]
# -*- coding: utf-8 -*- ''' This file is part of PyMbs. PyMbs is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PyMbs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PyMbs. If not, see <http://www.gnu.org/licenses/>. Copyright 2011, 2012 <NAME>, <NAME>, <NAME>, <NAME> ''' ''' Created on 13.05.2011 @author: <NAME> Pfade für Visualisierung anpassen !!! ''' ################################# # import PyMbs & Lib. # ################################# from PyMbs.Input import * from PyMbs.Symbolics import Matrix,cos,sin pi = 3.1415926535897932384626433832795 ################################# # set up inertial frame # ################################# world=MbsSystem([0,0,-1]) ################################# # Parameters # ################################# # Länge der Zylinderstangen und Gehäuse hoehe = 0.01 R_AP=0.3 R_BP=0.5 R_Zyl_stange=0.02 R_Zyl_geh=0.04 l_zyl=0.6 m_z_geh = 0.1 m_z_st = 0.1 c=world.addParam('c',10) c1=world.addParam('c1',5) m1=world.addParam('m1', 1.0) R1=world.addParam('R1', R_BP) m2=world.addParam('m2', 50) R2=world.addParam('R2', R_AP) H2=world.addParam('H2',hoehe) I2x=world.addParam( 'I2x', (m2*H2**2)/12) # Traägheit eines Vollzylinders um x die x-Achse I2y=world.addParam( 'I2y', (m2*H2**2)/12) # Traägheit eines Vollzylinders um y die x-Achse I2z=world.addParam( 'I2z', (m2*R2**2)/2) # Traägheit eines Vollzylinders um z die x-Achse ################################################ m_Zyl_Geh=world.addParam('m_Zyl_Geh', 18.6) l_Zyl_Geh=world.addParam('l_Zyl_Geh',0.74) cg_Zyl_Geh_x=world.addParam('cg_Zyl_Geh_x',0.353) I_Zyl_Geh_x=world.addParam( 'I_Zyl_Geh_x', 0.027) I_Zyl_Geh_y=world.addParam( 'I_Zyl_Geh_y', 1.061) I_Zyl_Geh_z=world.addParam( 'I_Zyl_Geh_z', 1.061) m_Zyl_Stange=world.addParam('m_Zyl_Stange', 8.4) l_Zyl_Stange=world.addParam('l_Zyl_Stange',0.66) cg_Zyl_Stange_x=world.addParam('cg_Zyl_Stange_x',-0.347) I_Zyl_Stange_x=world.addParam('I_Zyl_Stange_x', 0.003) I_Zyl_Stange_y=world.addParam('I_Zyl_Stange_y', 0.433) I_Zyl_Stange_z=world.addParam('I_Zyl_Stange_z', 0.432) ############### # Anordnungen # ############### phi_BP_1 = pi/2-pi/18 phi_BP_2 = phi_BP_1 + pi/9 phi_BP_3 = phi_BP_1 + 2*pi/3 phi_BP_4 = phi_BP_2 + 2*pi/3 phi_BP_5 = phi_BP_3 + 2*pi/3 phi_BP_6 = phi_BP_4 + 2*pi/3 phi_AP_1 = pi/6+pi/18 phi_AP_2 = phi_AP_1 + 2*pi/3-pi/9 phi_AP_3 = phi_AP_1 + 2*pi/3 phi_AP_4 = phi_AP_3 + 2*pi/3-pi/9 phi_AP_5 = phi_AP_3 + 2*pi/3 phi_AP_6 = phi_AP_4 + 2*pi/3 ################ # Hexapod # ################ ################################# # Bodies & KS # ################################# Ground = world.addBody(name='Ground',mass=1) Ground.addFrame(name='KS_1',p=[0,0,0]) BP = Ground.KS_1 BP.addFrame(name='BP_visual', p=[0,0,0],R=rotMat(pi/2,'x')) BP.addFrame(name='BP_Anlenkpunkt_1', p=[R1*cos(phi_BP_1),R1*sin(phi_BP_1),0]) BP.addFrame(name='BP_Anlenkpunkt_2', p=[R1*cos(phi_BP_2),R1*sin(phi_BP_2),0]) BP.addFrame(name='BP_Anlenkpunkt_3', p=[R1*cos(phi_BP_3),R1*sin(phi_BP_3),0]) BP.addFrame(name='BP_Anlenkpunkt_4', p=[R1*cos(phi_BP_4),R1*sin(phi_BP_4),0]) BP.addFrame(name='BP_Anlenkpunkt_5', p=[R1*cos(phi_BP_5),R1*sin(phi_BP_5),0]) BP.addFrame(name='BP_Anlenkpunkt_6', p=[R1*cos(phi_BP_6),R1*sin(phi_BP_6),0]) BP.addFrame(name='BP_Feder',p=[0,0,1.1]) ################################################################################ AP = world.addBody(name='Arbeitsplattform', mass=m2,inertia=diag([I2x,I2y,I2z])) AP.addFrame(name='AP_visual', p=[0,0,0],R=rotMat(pi/2,'x')) AP.addFrame(name='AP_Anlenkpunkt_1', p=[R2*cos(phi_AP_1),R2*sin(phi_AP_1),0]) AP.addFrame(name='AP_Anlenkpunkt_2', p=[R2*cos(phi_AP_2),R2*sin(phi_AP_2),0]) AP.addFrame(name='AP_Anlenkpunkt_3', p=[R2*cos(phi_AP_3),R2*sin(phi_AP_3),0]) AP.addFrame(name='AP_Anlenkpunkt_4', p=[R2*cos(phi_AP_4),R2*sin(phi_AP_4),0]) AP.addFrame(name='AP_Anlenkpunkt_5', p=[R2*cos(phi_AP_5),R2*sin(phi_AP_5),0]) AP.addFrame(name='AP_Anlenkpunkt_6', p=[R2*cos(phi_AP_6),R2*sin(phi_AP_6),0]) ################################################################################ ''' #Für Visualisierung im Dymola Zyl_geh_1 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_1') Zyl_geh_1.addFrame('Zyl_geh_1_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_geh_1.addFrame('Zyl_geh_1_cs', p=[0,0,0]) Zyl_geh_1.addFrame('Zyl_geh_1_cs_2', p=[0,0,0]) Zyl_geh_2 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_2') Zyl_geh_2.addFrame('Zyl_geh_2_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_geh_2.addFrame('Zyl_geh_2_cs', p=[0,0,0]) Zyl_geh_2.addFrame('Zyl_geh_2_cs_2', p=[0,0,0]) Zyl_geh_3 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_3') Zyl_geh_3.addFrame('Zyl_geh_3_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_geh_3.addFrame('Zyl_geh_3_cs', p=[0,0,0]) Zyl_geh_3.addFrame('Zyl_geh_3_cs_2', p=[0,0,0]) Zyl_geh_4 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_4') Zyl_geh_4.addFrame('Zyl_geh_4_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_geh_4.addFrame('Zyl_geh_4_cs', p=[0,0,0]) Zyl_geh_4.addFrame('Zyl_geh_4_cs_2', p=[0,0,0]) Zyl_geh_5 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_5') Zyl_geh_5.addFrame('Zyl_geh_5_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_geh_5.addFrame('Zyl_geh_5_cs', p=[0,0,0]) Zyl_geh_5.addFrame('Zyl_geh_5_cs_2', p=[0,0,0]) Zyl_geh_6 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_6') Zyl_geh_6.addFrame('Zyl_geh_6_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_geh_6.addFrame('Zyl_geh_6_cs', p=[0,0,0]) Zyl_geh_6.addFrame('Zyl_geh_6_cs_2', p=[0,0,0]) ################################################################################ Zyl_stange_1 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_1') Zyl_stange_1.addFrame('Zyl_stange_1_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_stange_1.addFrame('Zyl_stange_1_cs', p=[0,0,0]) Zyl_stange_1.addFrame('Zyl_stange_1_cs_2', p=[0,0,0]) Zyl_stange_2 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_2') Zyl_stange_2.addFrame('Zyl_stange_2_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_stange_2.addFrame('Zyl_stange_2_cs', p=[0,0,0]) Zyl_stange_2.addFrame('Zyl_stange_2_cs_2', p=[0,0,0]) Zyl_stange_3 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_3') Zyl_stange_3.addFrame('Zyl_stange_3_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_stange_3.addFrame('Zyl_stange_3_cs', p=[0,0,0]) Zyl_stange_3.addFrame('Zyl_stange_3_cs_2', p=[0,0,0]) Zyl_stange_4 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_4') Zyl_stange_4.addFrame('Zyl_stange_4_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_stange_4.addFrame('Zyl_stange_4_cs', p=[0,0,0]) Zyl_stange_4.addFrame('Zyl_stange_4_cs_2', p=[0,0,0]) Zyl_stange_5 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_5') Zyl_stange_5.addFrame('Zyl_stange_5_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_stange_5.addFrame('Zyl_stange_5_cs', p=[0,0,0]) Zyl_stange_5.addFrame('Zyl_stange_5_cs_2', p=[0,0,0]) Zyl_stange_6 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_6') Zyl_stange_6.addFrame('Zyl_stange_6_visual', p=[0,0,0],R=rotMat(pi/2,'y')*rotMat(pi/2,'x')) Zyl_stange_6.addFrame('Zyl_stange_6_cs', p=[0,0,0]) Zyl_stange_6.addFrame('Zyl_stange_6_cs_2', p=[0,0,0]) ''' # Für Visualisierung im PyMbs Zyl_geh_1 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_1') Zyl_geh_1.addFrame('Zyl_geh_1_visual', p=[0,0,l_zyl/2],R=rotMat(pi/2,'x')) Zyl_geh_1.addFrame('Zyl_geh_1_cs', p=[0,0,0]) Zyl_geh_1.addFrame('Zyl_geh_1_cs_2', p=[0,0,0]) Zyl_geh_2 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_2') Zyl_geh_2.addFrame('Zyl_geh_2_visual', p=[0,0,l_zyl/2],R=rotMat(pi/2,'x')) Zyl_geh_2.addFrame('Zyl_geh_2_cs', p=[0,0,0]) Zyl_geh_2.addFrame('Zyl_geh_2_cs_2', p=[0,0,0]) Zyl_geh_3 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_3') Zyl_geh_3.addFrame('Zyl_geh_3_visual', p=[0,0,l_zyl/2],R=rotMat(pi/2,'x')) Zyl_geh_3.addFrame('Zyl_geh_3_cs', p=[0,0,0]) Zyl_geh_3.addFrame('Zyl_geh_3_cs_2', p=[0,0,0]) Zyl_geh_4 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_4') Zyl_geh_4.addFrame('Zyl_geh_4_visual', p=[0,0,l_zyl/2],R=rotMat(pi/2,'x')) Zyl_geh_4.addFrame('Zyl_geh_4_cs', p=[0,0,0]) Zyl_geh_4.addFrame('Zyl_geh_4_cs_2', p=[0,0,0]) Zyl_geh_5 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_5') Zyl_geh_5.addFrame('Zyl_geh_5_visual', p=[0,0,l_zyl/2],R=rotMat(pi/2,'x')) Zyl_geh_5.addFrame('Zyl_geh_5_cs', p=[0,0,0]) Zyl_geh_5.addFrame('Zyl_geh_5_cs_2', p=[0,0,0]) Zyl_geh_6 = world.addBody( mass=m_Zyl_Geh,cg=[cg_Zyl_Geh_x,0,0], inertia=diag([I_Zyl_Geh_x,I_Zyl_Geh_y,I_Zyl_Geh_z]),name='Zyl_geh_6') Zyl_geh_6.addFrame('Zyl_geh_6_visual', p=[0,0,l_zyl/2],R=rotMat(pi/2,'x')) Zyl_geh_6.addFrame('Zyl_geh_6_cs', p=[0,0,0]) Zyl_geh_6.addFrame('Zyl_geh_6_cs_2', p=[0,0,0]) ################################################################################ Zyl_stange_1 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_1') Zyl_stange_1.addFrame('Zyl_stange_1_visual', p=[0,0,-l_zyl/2],R=rotMat(pi/2,'x')) Zyl_stange_1.addFrame('Zyl_stange_1_cs', p=[0,0,0]) Zyl_stange_1.addFrame('Zyl_stange_1_cs_2', p=[0,0,0]) Zyl_stange_2 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_2') Zyl_stange_2.addFrame('Zyl_stange_2_visual', p=[0,0,-l_zyl/2],R=rotMat(pi/2,'x')) Zyl_stange_2.addFrame('Zyl_stange_2_cs', p=[0,0,0]) Zyl_stange_2.addFrame('Zyl_stange_2_cs_2', p=[0,0,0]) Zyl_stange_3 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_3') Zyl_stange_3.addFrame('Zyl_stange_3_visual', p=[0,0,-l_zyl/2],R=rotMat(pi/2,'x')) Zyl_stange_3.addFrame('Zyl_stange_3_cs', p=[0,0,0]) Zyl_stange_3.addFrame('Zyl_stange_3_cs_2', p=[0,0,0]) Zyl_stange_4 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_4') Zyl_stange_4.addFrame('Zyl_stange_4_visual', p=[0,0,-l_zyl/2],R=rotMat(pi/2,'x')) Zyl_stange_4.addFrame('Zyl_stange_4_cs', p=[0,0,0]) Zyl_stange_4.addFrame('Zyl_stange_4_cs_2', p=[0,0,0]) Zyl_stange_5 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_5') Zyl_stange_5.addFrame('Zyl_stange_5_visual', p=[0,0,-l_zyl/2],R=rotMat(pi/2,'x')) Zyl_stange_5.addFrame('Zyl_stange_5_cs', p=[0,0,0]) Zyl_stange_5.addFrame('Zyl_stange_5_cs_2', p=[0,0,0]) Zyl_stange_6 = world.addBody( mass=m_Zyl_Stange,cg=[cg_Zyl_Stange_x,0,0], inertia=diag([I_Zyl_Stange_x,I_Zyl_Stange_y,I_Zyl_Stange_z]),name='Zyl_stange_6') Zyl_stange_6.addFrame('Zyl_stange_6_visual', p=[0,0,-l_zyl/2],R=rotMat(pi/2,'x')) Zyl_stange_6.addFrame('Zyl_stange_6_cs', p=[0,0,0]) Zyl_stange_6.addFrame('Zyl_stange_6_cs_2', p=[0,0,0]) ################################# # Joints # ################################# #world.addJoint('fix_BP', world, BP) world.addJoint( world, Ground, name='fix_BP') jAP=world.addJoint(world, AP,['Tx', 'Ty', 'Tz','Rx', 'Ry', 'Rz'],[0,0,1,0,0,0],name='free_AP') world.addJoint(BP.BP_Anlenkpunkt_1,Zyl_geh_1.Zyl_geh_1_cs_2,['Rz', 'Ry'],[0,0],name='Zyl_geh_1_an_BP_1') world.addJoint(BP.BP_Anlenkpunkt_2,Zyl_geh_2.Zyl_geh_2_cs_2,['Rz', 'Ry'],[0,0],name='Zyl_geh_1_an_BP_2') world.addJoint(BP.BP_Anlenkpunkt_3,Zyl_geh_3.Zyl_geh_3_cs_2,['Rz', 'Ry'],[0,0],name='Zyl_geh_1_an_BP_3') world.addJoint(BP.BP_Anlenkpunkt_4,Zyl_geh_4.Zyl_geh_4_cs_2,['Rz', 'Ry'],[0,0],name='Zyl_geh_1_an_BP_4') world.addJoint(BP.BP_Anlenkpunkt_5,Zyl_geh_5.Zyl_geh_5_cs_2,['Rz', 'Ry'],[0,0],name='Zyl_geh_1_an_BP_5') world.addJoint(BP.BP_Anlenkpunkt_6,Zyl_geh_6.Zyl_geh_6_cs_2,['Rz', 'Ry'],[0,0],name='Zyl_geh_1_an_BP_6') world.addJoint(Zyl_geh_1.Zyl_geh_1_cs,Zyl_stange_1.Zyl_stange_1_cs_2,'Tz',0,name='Zyl_stange_1_an_Zyl_geh_1') world.addJoint(Zyl_geh_2.Zyl_geh_2_cs,Zyl_stange_2.Zyl_stange_2_cs_2,'Tz',0,name='Zyl_stange_1_an_Zyl_geh_2') world.addJoint(Zyl_geh_3.Zyl_geh_3_cs,Zyl_stange_3.Zyl_stange_3_cs_2,'Tz',0,name='Zyl_stange_1_an_Zyl_geh_3') world.addJoint(Zyl_geh_4.Zyl_geh_4_cs,Zyl_stange_4.Zyl_stange_4_cs_2,'Tz',0,name='Zyl_stange_1_an_Zyl_geh_4') world.addJoint(Zyl_geh_5.Zyl_geh_5_cs,Zyl_stange_5.Zyl_stange_5_cs_2,'Tz',0,name='Zyl_stange_1_an_Zyl_geh_5') world.addJoint(Zyl_geh_6.Zyl_geh_6_cs,Zyl_stange_6.Zyl_stange_6_cs_2,'Tz',0,name='Zyl_stange_1_an_Zyl_geh_6') ######################## # Constraints or Loops # ######################## world.addLoop.Hexapod(AP.AP_Anlenkpunkt_1, Zyl_stange_1.Zyl_stange_1_cs, 'Verbindung_1') world.addLoop.Hexapod(AP.AP_Anlenkpunkt_2, Zyl_stange_2.Zyl_stange_2_cs, 'Verbindung_2') world.addLoop.Hexapod(AP.AP_Anlenkpunkt_3, Zyl_stange_3.Zyl_stange_3_cs, 'Verbindung_3') world.addLoop.Hexapod(AP.AP_Anlenkpunkt_4, Zyl_stange_4.Zyl_stange_4_cs, 'Verbindung_4') world.addLoop.Hexapod(AP.AP_Anlenkpunkt_5, Zyl_stange_5.Zyl_stange_5_cs, 'Verbindung_5') world.addLoop.Hexapod(AP.AP_Anlenkpunkt_6, Zyl_stange_6.Zyl_stange_6_cs, 'Verbindung_6') ##################### # add visualisation # ##################### world.addVisualisation.Cylinder(BP.BP_visual,R_BP, hoehe) world.addVisualisation.Cylinder(AP.AP_visual,R_AP, hoehe) ''' # Für Visualisierung im Dymola world.addVisualisation.File(Zyl_geh_1.Zyl_geh_1_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_geh_001.stl',1,name='Zylinder_geh_1') world.addVisualisation.File(Zyl_geh_2.Zyl_geh_2_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_geh_001.stl',1,name='Zylinder_geh_2') world.addVisualisation.File(Zyl_geh_3.Zyl_geh_3_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_geh_001.stl',1,name='Zylinder_geh_3') world.addVisualisation.File(Zyl_geh_4.Zyl_geh_4_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_geh_001.stl',1,name='Zylinder_geh_4') world.addVisualisation.File(Zyl_geh_5.Zyl_geh_5_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_geh_001.stl',1,name='Zylinder_geh_5') world.addVisualisation.File(Zyl_geh_6.Zyl_geh_6_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_geh_001.stl',1,name='Zylinder_geh_6') world.addVisualisation.File(Zyl_stange_1.Zyl_stange_1_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_stange_001.stl',1,name='Zylinder_stange_1') world.addVisualisation.File(Zyl_stange_2.Zyl_stange_2_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_stange_001.stl',1,name='Zylinder_stange_2') world.addVisualisation.File(Zyl_stange_3.Zyl_stange_3_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_stange_001.stl',1,name='Zylinder_stange_3') world.addVisualisation.File(Zyl_stange_4.Zyl_stange_4_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_stange_001.stl',1,name='Zylinder_stange_4') world.addVisualisation.File(Zyl_stange_5.Zyl_stange_5_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_stange_001.stl',1,name='Zylinder_stange_5') world.addVisualisation.File(Zyl_stange_6.Zyl_stange_6_visual, 'C:\\Users\JeSche\Desktop\Diplom_Arbeit\Hexapod/zyl_stange_001.stl',1,name='Zylinder_stange_6') ''' # Für Visualisierung im Dymola world.addVisualisation.Cylinder(Zyl_geh_1.Zyl_geh_1_visual, R_Zyl_geh,l_zyl) world.addVisualisation.Cylinder(Zyl_geh_2.Zyl_geh_2_visual, R_Zyl_geh,l_zyl) world.addVisualisation.Cylinder(Zyl_geh_3.Zyl_geh_3_visual, R_Zyl_geh,l_zyl) world.addVisualisation.Cylinder(Zyl_geh_4.Zyl_geh_4_visual, R_Zyl_geh,l_zyl) world.addVisualisation.Cylinder(Zyl_geh_5.Zyl_geh_5_visual, R_Zyl_geh,l_zyl) world.addVisualisation.Cylinder(Zyl_geh_6.Zyl_geh_6_visual, R_Zyl_geh,l_zyl) world.addVisualisation.Cylinder(Zyl_stange_1.Zyl_stange_1_visual, R_Zyl_stange,l_zyl) world.addVisualisation.Cylinder(Zyl_stange_2.Zyl_stange_2_visual, R_Zyl_stange,l_zyl) world.addVisualisation.Cylinder(Zyl_stange_3.Zyl_stange_3_visual, R_Zyl_stange,l_zyl) world.addVisualisation.Cylinder(Zyl_stange_4.Zyl_stange_4_visual, R_Zyl_stange,l_zyl) world.addVisualisation.Cylinder(Zyl_stange_5.Zyl_stange_5_visual, R_Zyl_stange,l_zyl) world.addVisualisation.Cylinder(Zyl_stange_6.Zyl_stange_6_visual, R_Zyl_stange,l_zyl) world.addVisualisation.Frame(AP,0.4) #world.addVisualisation.Frame(BP.BP_Feder,1) world.addVisualisation.Frame(Ground,0.6) ################################# # add visualisation # ################################# print("System has been assembled") ################################# # add Sensors # ################################# #world.addSensor.Position(world,AP.AP_Anlenkpunkt_1,"P_AP_1") #world.addSensor.Energy(AP,'E_AP') ##################### # add Imput & Load # ##################### #l = world.addSensor.Distance(AP,BP.BP_Feder, 'l', 'DistanceSensor') #lz = world.addSensor.Distance(BP,AP, 'lz', 'DistanceSensor_Cylinder') #c=50 #F_c = world.addExpression('SpringForce', 'F_c', -c*l[0]) #world.addLoad.PtPForce(AP,BP.BP_Feder, F_c, name='Spring') ################################# # generate equations & sim Code # ################################# world.genEquations.Recursive() #world.genCode.Modelica('hexapod_z_kpl','.\HP_Output',inputsAsInputs=True, debugMode=False) world.show('hexapod_z_kpl')
[ "PyMbs.Symbolics.cos", "PyMbs.Symbolics.sin" ]
[((3328, 3341), 'PyMbs.Symbolics.cos', 'cos', (['phi_BP_1'], {}), '(phi_BP_1)\n', (3331, 3341), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3345, 3358), 'PyMbs.Symbolics.sin', 'sin', (['phi_BP_1'], {}), '(phi_BP_1)\n', (3348, 3358), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3406, 3419), 'PyMbs.Symbolics.cos', 'cos', (['phi_BP_2'], {}), '(phi_BP_2)\n', (3409, 3419), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3423, 3436), 'PyMbs.Symbolics.sin', 'sin', (['phi_BP_2'], {}), '(phi_BP_2)\n', (3426, 3436), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3484, 3497), 'PyMbs.Symbolics.cos', 'cos', (['phi_BP_3'], {}), '(phi_BP_3)\n', (3487, 3497), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3501, 3514), 'PyMbs.Symbolics.sin', 'sin', (['phi_BP_3'], {}), '(phi_BP_3)\n', (3504, 3514), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3562, 3575), 'PyMbs.Symbolics.cos', 'cos', (['phi_BP_4'], {}), '(phi_BP_4)\n', (3565, 3575), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3579, 3592), 'PyMbs.Symbolics.sin', 'sin', (['phi_BP_4'], {}), '(phi_BP_4)\n', (3582, 3592), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3640, 3653), 'PyMbs.Symbolics.cos', 'cos', (['phi_BP_5'], {}), '(phi_BP_5)\n', (3643, 3653), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3657, 3670), 'PyMbs.Symbolics.sin', 'sin', (['phi_BP_5'], {}), '(phi_BP_5)\n', (3660, 3670), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3718, 3731), 'PyMbs.Symbolics.cos', 'cos', (['phi_BP_6'], {}), '(phi_BP_6)\n', (3721, 3731), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((3735, 3748), 'PyMbs.Symbolics.sin', 'sin', (['phi_BP_6'], {}), '(phi_BP_6)\n', (3738, 3748), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4065, 4078), 'PyMbs.Symbolics.cos', 'cos', (['phi_AP_1'], {}), '(phi_AP_1)\n', (4068, 4078), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4082, 4095), 'PyMbs.Symbolics.sin', 'sin', (['phi_AP_1'], {}), '(phi_AP_1)\n', (4085, 4095), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4143, 4156), 'PyMbs.Symbolics.cos', 'cos', (['phi_AP_2'], {}), '(phi_AP_2)\n', (4146, 4156), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4160, 4173), 'PyMbs.Symbolics.sin', 'sin', (['phi_AP_2'], {}), '(phi_AP_2)\n', (4163, 4173), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4221, 4234), 'PyMbs.Symbolics.cos', 'cos', (['phi_AP_3'], {}), '(phi_AP_3)\n', (4224, 4234), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4238, 4251), 'PyMbs.Symbolics.sin', 'sin', (['phi_AP_3'], {}), '(phi_AP_3)\n', (4241, 4251), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4299, 4312), 'PyMbs.Symbolics.cos', 'cos', (['phi_AP_4'], {}), '(phi_AP_4)\n', (4302, 4312), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4316, 4329), 'PyMbs.Symbolics.sin', 'sin', (['phi_AP_4'], {}), '(phi_AP_4)\n', (4319, 4329), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4377, 4390), 'PyMbs.Symbolics.cos', 'cos', (['phi_AP_5'], {}), '(phi_AP_5)\n', (4380, 4390), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4394, 4407), 'PyMbs.Symbolics.sin', 'sin', (['phi_AP_5'], {}), '(phi_AP_5)\n', (4397, 4407), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4455, 4468), 'PyMbs.Symbolics.cos', 'cos', (['phi_AP_6'], {}), '(phi_AP_6)\n', (4458, 4468), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n'), ((4472, 4485), 'PyMbs.Symbolics.sin', 'sin', (['phi_AP_6'], {}), '(phi_AP_6)\n', (4475, 4485), False, 'from PyMbs.Symbolics import Matrix, cos, sin\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- """ <NAME> ISIR - CNRS / Sorbonne Université 02/2018 This file allows to build worlds TODO : replace this file by a .json loader and code worlds in .json """ # WARNING : don't fo (from round_bot_py import round_bot_model) here to avoid mutual imports ! import os def _texture_path(texture_bricks_name): """ Parameter --------- texture_bricks_name : str name of the world main texture Return ------ texture_path: (str) path corresponding to the texture_bricks_name Raises ------ ValueError : raised if texture_bricks_name is unkwnonw """ if texture_bricks_name == 'minecraft': return '/textures/texture_minecraft.png' elif texture_bricks_name == 'graffiti': return '/textures/texture_graffiti.png' elif texture_bricks_name == 'colours': return '/textures/texture_colours.png' else : raise ValueError('Unknown texture name '+ texture_bricks_name + ' in loading world') def _build_square_default_world(model, texture_bricks_name, width=45, depth=45, hwalls=4, dwalls=1, texture_robot='/textures/robot.png', texture_visualisation='/textures/visualisation.png', texture_distractors='/textures/texture_distractors.png', wall_reward=-1, distractors=False, distractors_speed=0.1, sandboxes=False, trigger_button=False, ): """ Builds a simple rectangle planar world with walls around Parameters ---------- - model : (round_bot_model.Model) model to load world in - texture_bricks_name : (str) name of the texture for the bricks - width : (int) width of the world - depth : (int) depth of the world - hwalls : (int) heigh of walls - dwalls: (int) depth of walls - texture_bricks, texture_robot, texture_visualisation : (string) paths for texture image of bricks, robot and visualisation - wall_reward : (float) reward for wall collision - distractors (Bool) : add visual distractors on walls and ground - distractors_speed (float) : speed of visual distractors displacement - sandboxes (Bool) : add sandboxes ont the ground (slowing down the robot when crossed) - trigger_button (Bool) : add a trigger button that will trigger a change in the environment (change to be defined) Returns ------- world information """ texture_bricks = _texture_path(texture_bricks_name) # TODO : better import would be global and without "from" but doesn't work for the moment from gym_round_bot.envs import round_bot_model # create textures coordinates GRASS = round_bot_model.Block.tex_coords((1, 0), (0, 1), (0, 0)) SAND = round_bot_model.Block.tex_coords((1, 1), (1, 1), (1, 1)) BRICK = round_bot_model.Block.tex_coords((2, 0), (2, 0), (2, 0)) BRICK2 = round_bot_model.Block.tex_coords((0, 2), (0, 2), (0, 2)) STONE = round_bot_model.Block.tex_coords((2, 1), (2, 1), (2, 1)) STONE2 = round_bot_model.Block.tex_coords((1, 2), (1, 2), (1, 2)) BUTTON = round_bot_model.Block.tex_coords((2, 2), (2, 2), (2, 2)) DISTRACTORS = [ round_bot_model.Block.tex_coords(t,t,t) for t in [(0,0),(1,0),(2,0),(0,1),(1,1),(2,1),(2,0)] ] nw = width/2.0 # 1/2 width of this world nd = depth/2.0 # 1/2 depth of this world wr = width/3.0 # wr width of reward area wwalls = width # get texture paths in current directory brick_texture_path = os.path.dirname(__file__) + texture_bricks robot_texture_path = os.path.dirname(__file__) + texture_robot visualisation_texture_path = os.path.dirname(__file__) + texture_visualisation distractors_texture_path = os.path.dirname(__file__) + texture_distractors texture_paths = {'brick':brick_texture_path, 'robot':robot_texture_path, 'visualisation':visualisation_texture_path, 'distractors':distractors_texture_path, } # Build gound block ground_block = model.add_block( (0, -3, 0, 2*nd, 6, 2*nw, 0.0, 0.0, 0.0), GRASS, block_type='brick') # Build wall blocks with negative reward on collision #front wall back_wall_block = model.add_block( (0, hwalls/2, -nw, depth, hwalls, dwalls, 0.0, 0.0, 0.0), texture=BRICK, block_type='brick', collision_reward = wall_reward) #back wall front_wall_block = model.add_block( (0, hwalls/2, nw, depth, hwalls, dwalls, 0.0, 0.0, 0.0), texture=STONE2, block_type='brick', collision_reward = wall_reward) #left wall left_wall_block = model.add_block( (-nd, hwalls/2, 0, dwalls, hwalls, wwalls, 0.0, 0.0, 0.0), texture=STONE, block_type='brick', collision_reward = wall_reward) #right wall right_wall_block = model.add_block( (nd, hwalls/2, 0, dwalls, hwalls, wwalls, 0.0, 0.0, 0.0), texture=BRICK2, block_type='brick', collision_reward = wall_reward) if distractors: # add visual distractors on the groud and inner faces of walls if asked # distractor ground block size_ground_distractor = n = min(nw,nd) ground_bb = round_bot_model.BoundingBoxBlock( (0, 0.1, 0), (2*n, 0, 2*n), (0.0, 0.0, 0.0), linked_block=ground_block) model.add_block( components=(0, 0, 0, size_ground_distractor, 0.0, size_ground_distractor, 0.0, 0.0, 0.0), texture=DISTRACTORS[0], block_type='flat_distractor', boundingBox = ground_bb, speed=distractors_speed) model.add_block( components=(0, 0, 0, size_ground_distractor, 0.0, size_ground_distractor, 0.0, 0.0, 0.0), texture=DISTRACTORS[0], block_type='flat_distractor', boundingBox = ground_bb, speed=distractors_speed) # wall distractors : width_wall_distractors = wwalls/2 height_wall_distractors = hwalls*2/3 # distractor back_wall inner face block back_wall_bb = round_bot_model.BoundingBoxBlock( (0, hwalls/2, -nw+dwalls/2+0.1), (wwalls, height_wall_distractors, 0.0), (0.0, 0.0, 0.0), linked_block=ground_block) model.add_block( components=(0, 0, 0, width_wall_distractors, height_wall_distractors, 0.0, 0.0, 0.0, 0.0), texture=DISTRACTORS[1], block_type='flat_distractor', boundingBox = back_wall_bb, speed=distractors_speed) # distractor front_wall inner face block front_wall_bb = round_bot_model.BoundingBoxBlock(( 0, hwalls/2, nw-dwalls/2-0.1), (wwalls, height_wall_distractors, 0.0), (0.0, 0.0, 0.0), linked_block=ground_block) model.add_block( components=(0, 0, 0, width_wall_distractors, height_wall_distractors, 0.0, 0.0, 0.0, 0.0), texture=DISTRACTORS[2], block_type='flat_distractor', boundingBox = front_wall_bb, speed=distractors_speed) # distractor left_wall inner face block left_wall_bb = round_bot_model.BoundingBoxBlock( (-nd+dwalls/2+0.1, hwalls/2, 0), (0.0, height_wall_distractors, wwalls), (0.0, 0.0, 0.0), linked_block=ground_block) model.add_block( components=(0, 0, 0, 0.0, height_wall_distractors, width_wall_distractors, 0.0, 0.0, 0.0), texture=DISTRACTORS[3], block_type='flat_distractor', boundingBox = left_wall_bb, speed=distractors_speed) # distractor right_wall inner face block right_wall_bb = round_bot_model.BoundingBoxBlock(( nd-dwalls/2-0.1, hwalls/2, 0), (0.0, height_wall_distractors, wwalls), (0.0, 0.0, 0.0), linked_block=ground_block) model.add_block( components=(0, 0, 0, 0.0, height_wall_distractors, width_wall_distractors, 0.0, 0.0, 0.0), texture=DISTRACTORS[4], block_type='flat_distractor', boundingBox = right_wall_bb, speed=distractors_speed) if sandboxes : # add sandboxes ont the ground if asked (slowing down the robot when crossed) model.add_block( (0, 0.3, 0, nd/2, 0, nw/2, 0.0, 0.0, 0.0), SAND, block_type='sandbox') if trigger_button : # add a trigger button that will trigger a change in the world when crossed ON / OFF #TRIGGER = round_bot_model.Block.tex_coords((1, 0), (1, 0), (1, 0)) model.add_block( (0, 0.3, 0, nw/3, 0.2, nw/3, 0.0, 0.0, 0.0), BUTTON, block_type='trigger_button') world_info = { 'width' : 2*nw, 'depth' : 2*nd, } return texture_paths, world_info def build_square_world(model, texture, robot_diameter=2 ,width=45, depth=45, hwalls=4, dwalls=1, wall_reward=-1, goal_reward=10, distractors=False, distractors_speed=0.1, sandboxes=False, trigger_button=False, visible_reward=False): """ Builds the square world """ ## first build default world texture_paths, world_info = _build_square_default_world(model, texture, width=width, depth=depth, hwalls=hwalls, dwalls=dwalls, wall_reward=wall_reward, distractors=distractors, distractors_speed=distractors_speed, sandboxes=sandboxes, trigger_button=trigger_button,) ## then add specs from gym_round_bot.envs import round_bot_model BOT = round_bot_model.Block.tex_coords((0, 0), (0, 1), (0, 1)) START = round_bot_model.Block.tex_coords((0, 0), (0, 0), (0, 0)) REWARD = round_bot_model.Block.tex_coords((0, 1), (0, 1), (0, 1)) nw = width/2.0 # 1/2 width of this world nd = depth/2.0 # 1/2 depth of this world wwalls = width # width of walls wr = width/4.0 # wr width of reward area # set robot specifications bot_radius = robot_diameter/2.0 bot_height = bot_radius # Build reward block in the corner rew = model.add_block( (nd-(wr/2+dwalls/2), bot_height/2.0, -nw+(wr/2+dwalls/2), wr, bot_height/3.0, wr, 0.0, 0.0, 0.0), texture=REWARD, block_type='reward', collision_reward = goal_reward, visible=visible_reward) # Build robot block, set initial height to bot_heigh/2 + small offset to avoid ground collision model.add_block( (0, bot_height/2.0+0.1, 0, 2*bot_radius, bot_height, 2*bot_radius, 0.0, 0.0, 0.0), texture=BOT, block_type='robot') # add starting areas (the height=0 of block does not matter here, only area of (hwalls-2*dwalls)^2) model.add_block( (0, bot_height/2.0+0.1, 0, 2*nd-2*dwalls, 0.1, 2*nw-2*dwalls, 0.0, 0.0, 0.0), texture=START, block_type='start') return texture_paths, world_info def build_square_1wall_world(model, texture, robot_diameter=2, width=45, depth=45, hwalls=2, dwalls=2, wall_reward=-1, goal_reward=10, distractors=False, distractors_speed=0.1, sandboxes=False, trigger_button=False, visible_reward=False): """ Builds a simple rectangle planar world with walls around, and 1 wall in the middle """ ## first build default world texture_paths, world_info = _build_square_default_world(model, texture, width=width, depth=depth, hwalls=hwalls, dwalls=dwalls, wall_reward=wall_reward, distractors=distractors, distractors_speed=distractors_speed, sandboxes=sandboxes, trigger_button=trigger_button,) ## then add specs from gym_round_bot.envs import round_bot_model BOT = round_bot_model.Block.tex_coords((0, 0), (0, 1), (0, 1)) START = round_bot_model.Block.tex_coords((0, 0), (0, 0), (0, 0)) REWARD = round_bot_model.Block.tex_coords((0, 1), (0, 1), (0, 1)) SAND = round_bot_model.Block.tex_coords((1, 1), (1, 1), (1, 1)) n = width/2.0 # 1/2 width and depth of world wwalls = 2*n # width of walls wr = width/4.0 # wr width of reward area # set robot specifications bot_radius = robot_diameter/2.0 bot_height = bot_radius # middle wall model.add_block( (n/2, hwalls/2, -n/4, wwalls/2, hwalls, dwalls, 0.0, 0.0, 0.0), SAND, block_type='brick', collision_reward = -1) # Build reward block in the corner model.add_block( (n-(wr/2+dwalls/2), bot_height/2.0, -n+(wr/2+dwalls/2), wr, bot_height/3.0, wr, 0.0, 0.0, 0.0), texture=REWARD, block_type='reward', collision_reward = 1, visible_reward=visible_reward) # Build robot block, set initial height to bot_heigh/2 + small offset to avoid ground collision model.add_block( (0, bot_height/2.0+0.1, 0, 2*bot_radius, bot_height, 2*bot_radius, 0.0, 0.0, 0.0), texture=BOT, block_type='robot') # add starting areas (the height=0 of block does not matter here, only area of (hwalls-2*dwalls)^2) model.add_block( (0, bot_height/2.0+0.1, (wwalls-2*dwalls)/4, wwalls-2*dwalls, 0.1, (wwalls-2*dwalls)/2, 0.0, 0.0, 0.0), texture=START, block_type='start') model.add_block( ( -(wwalls-2*dwalls)/4, bot_height/2.0+0.1, -(wwalls-2*dwalls)/4, (wwalls-2*dwalls)/2, 0.1, (wwalls-2*dwalls)/2, 0.0, 0.0, 0.0), texture=START, block_type='start') return texture_paths, world_info
[ "gym_round_bot.envs.round_bot_model.Block.tex_coords", "os.path.dirname", "gym_round_bot.envs.round_bot_model.BoundingBoxBlock" ]
[((2911, 2967), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(1, 0)', '(0, 1)', '(0, 0)'], {}), '((1, 0), (0, 1), (0, 0))\n', (2943, 2967), False, 'from gym_round_bot.envs import round_bot_model\n'), ((2979, 3035), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(1, 1)', '(1, 1)', '(1, 1)'], {}), '((1, 1), (1, 1), (1, 1))\n', (3011, 3035), False, 'from gym_round_bot.envs import round_bot_model\n'), ((3048, 3104), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(2, 0)', '(2, 0)', '(2, 0)'], {}), '((2, 0), (2, 0), (2, 0))\n', (3080, 3104), False, 'from gym_round_bot.envs import round_bot_model\n'), ((3118, 3174), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(0, 2)', '(0, 2)', '(0, 2)'], {}), '((0, 2), (0, 2), (0, 2))\n', (3150, 3174), False, 'from gym_round_bot.envs import round_bot_model\n'), ((3187, 3243), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(2, 1)', '(2, 1)', '(2, 1)'], {}), '((2, 1), (2, 1), (2, 1))\n', (3219, 3243), False, 'from gym_round_bot.envs import round_bot_model\n'), ((3257, 3313), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(1, 2)', '(1, 2)', '(1, 2)'], {}), '((1, 2), (1, 2), (1, 2))\n', (3289, 3313), False, 'from gym_round_bot.envs import round_bot_model\n'), ((3327, 3383), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(2, 2)', '(2, 2)', '(2, 2)'], {}), '((2, 2), (2, 2), (2, 2))\n', (3359, 3383), False, 'from gym_round_bot.envs import round_bot_model\n'), ((9588, 9644), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(0, 0)', '(0, 1)', '(0, 1)'], {}), '((0, 0), (0, 1), (0, 1))\n', (9620, 9644), False, 'from gym_round_bot.envs import round_bot_model\n'), ((9657, 9713), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(0, 0)', '(0, 0)', '(0, 0)'], {}), '((0, 0), (0, 0), (0, 0))\n', (9689, 9713), False, 'from gym_round_bot.envs import round_bot_model\n'), ((9727, 9783), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(0, 1)', '(0, 1)', '(0, 1)'], {}), '((0, 1), (0, 1), (0, 1))\n', (9759, 9783), False, 'from gym_round_bot.envs import round_bot_model\n'), ((11875, 11931), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(0, 0)', '(0, 1)', '(0, 1)'], {}), '((0, 0), (0, 1), (0, 1))\n', (11907, 11931), False, 'from gym_round_bot.envs import round_bot_model\n'), ((11944, 12000), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(0, 0)', '(0, 0)', '(0, 0)'], {}), '((0, 0), (0, 0), (0, 0))\n', (11976, 12000), False, 'from gym_round_bot.envs import round_bot_model\n'), ((12014, 12070), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(0, 1)', '(0, 1)', '(0, 1)'], {}), '((0, 1), (0, 1), (0, 1))\n', (12046, 12070), False, 'from gym_round_bot.envs import round_bot_model\n'), ((12082, 12138), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['(1, 1)', '(1, 1)', '(1, 1)'], {}), '((1, 1), (1, 1), (1, 1))\n', (12114, 12138), False, 'from gym_round_bot.envs import round_bot_model\n'), ((3404, 3445), 'gym_round_bot.envs.round_bot_model.Block.tex_coords', 'round_bot_model.Block.tex_coords', (['t', 't', 't'], {}), '(t, t, t)\n', (3436, 3445), False, 'from gym_round_bot.envs import round_bot_model\n'), ((3727, 3752), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3742, 3752), False, 'import os\n'), ((3795, 3820), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3810, 3820), False, 'import os\n'), ((3870, 3895), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3885, 3895), False, 'import os\n'), ((3951, 3976), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3966, 3976), False, 'import os\n'), ((5455, 5567), 'gym_round_bot.envs.round_bot_model.BoundingBoxBlock', 'round_bot_model.BoundingBoxBlock', (['(0, 0.1, 0)', '(2 * n, 0, 2 * n)', '(0.0, 0.0, 0.0)'], {'linked_block': 'ground_block'}), '((0, 0.1, 0), (2 * n, 0, 2 * n), (0.0, 0.0,\n 0.0), linked_block=ground_block)\n', (5487, 5567), False, 'from gym_round_bot.envs import round_bot_model\n'), ((6236, 6403), 'gym_round_bot.envs.round_bot_model.BoundingBoxBlock', 'round_bot_model.BoundingBoxBlock', (['(0, hwalls / 2, -nw + dwalls / 2 + 0.1)', '(wwalls, height_wall_distractors, 0.0)', '(0.0, 0.0, 0.0)'], {'linked_block': 'ground_block'}), '((0, hwalls / 2, -nw + dwalls / 2 + 0.1), (\n wwalls, height_wall_distractors, 0.0), (0.0, 0.0, 0.0), linked_block=\n ground_block)\n', (6268, 6403), False, 'from gym_round_bot.envs import round_bot_model\n'), ((6708, 6874), 'gym_round_bot.envs.round_bot_model.BoundingBoxBlock', 'round_bot_model.BoundingBoxBlock', (['(0, hwalls / 2, nw - dwalls / 2 - 0.1)', '(wwalls, height_wall_distractors, 0.0)', '(0.0, 0.0, 0.0)'], {'linked_block': 'ground_block'}), '((0, hwalls / 2, nw - dwalls / 2 - 0.1), (\n wwalls, height_wall_distractors, 0.0), (0.0, 0.0, 0.0), linked_block=\n ground_block)\n', (6740, 6874), False, 'from gym_round_bot.envs import round_bot_model\n'), ((7178, 7345), 'gym_round_bot.envs.round_bot_model.BoundingBoxBlock', 'round_bot_model.BoundingBoxBlock', (['(-nd + dwalls / 2 + 0.1, hwalls / 2, 0)', '(0.0, height_wall_distractors, wwalls)', '(0.0, 0.0, 0.0)'], {'linked_block': 'ground_block'}), '((-nd + dwalls / 2 + 0.1, hwalls / 2, 0), (\n 0.0, height_wall_distractors, wwalls), (0.0, 0.0, 0.0), linked_block=\n ground_block)\n', (7210, 7345), False, 'from gym_round_bot.envs import round_bot_model\n'), ((7650, 7816), 'gym_round_bot.envs.round_bot_model.BoundingBoxBlock', 'round_bot_model.BoundingBoxBlock', (['(nd - dwalls / 2 - 0.1, hwalls / 2, 0)', '(0.0, height_wall_distractors, wwalls)', '(0.0, 0.0, 0.0)'], {'linked_block': 'ground_block'}), '((nd - dwalls / 2 - 0.1, hwalls / 2, 0), (\n 0.0, height_wall_distractors, wwalls), (0.0, 0.0, 0.0), linked_block=\n ground_block)\n', (7682, 7816), False, 'from gym_round_bot.envs import round_bot_model\n')]
import os, sys sys.path.append(os.getcwd()) from PyQt5.QtWidgets import QApplication from src.view.widgets.buttons_cch import ButtonsCCHView from src.controller.base import Base class ButtonsCCHController: def __init__(self, force_show=False): print('C botoes') self.view = ButtonsCCHView() self.view.bt_confirmar.clicked.connect(self.on_bt_confirmare) if force_show: self.view.show() def show(self): return self.view def on_bt_confirmare(self): print(10) def validate_user(self): if True: self.auth = True if __name__ == '__main__': app = QApplication(sys.argv) w = ButtonsCCHController(True) sys.exit(app.exec_())
[ "os.getcwd", "PyQt5.QtWidgets.QApplication", "src.view.widgets.buttons_cch.ButtonsCCHView" ]
[((31, 42), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (40, 42), False, 'import os, sys\n'), ((576, 598), 'PyQt5.QtWidgets.QApplication', 'QApplication', (['sys.argv'], {}), '(sys.argv)\n', (588, 598), False, 'from PyQt5.QtWidgets import QApplication\n'), ((282, 298), 'src.view.widgets.buttons_cch.ButtonsCCHView', 'ButtonsCCHView', ([], {}), '()\n', (296, 298), False, 'from src.view.widgets.buttons_cch import ButtonsCCHView\n')]
#!/usr/bin/python3 from sys import argv import os import math import urllib.request import random import os.path import sqlite3 URL_TEMPLATE = "https://c.tile.openstreetmap.org/%d/%d/%d.png" BBOX = None # [lon_min, lat_min, lon_max, lat_max] or None for whole world ZOOM_MAX = 7 LAYERTYPE = "baselayer" # "baselayer" or "overlay" LAYERNAME = "OSM Low Detail" TILE_FORMAT = "png" def deg2num(lat_deg, lon_deg, zoom): lat_rad = math.radians(lat_deg) n = 2.0 ** zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((1.0 - math.log(math.tan(lat_rad) + (1 / math.cos(lat_rad))) / math.pi) / 2.0 * n) return (xtile, ytile) def download_url(zoom, xtile, ytile, cursor): subdomain = random.randint(1, 4) url = URL_TEMPLATE % (zoom, xtile, ytile) ymax = 1 << zoom yinverted = ymax - ytile - 1 existing = cursor.execute('SELECT count(*) FROM tiles WHERE zoom_level=? AND tile_column=? AND tile_row=?', (zoom, xtile, yinverted)).fetchall() if existing[0][0] > 0: print('Skipping ' + url) return print("downloading %r" % url) request = urllib.request.Request( url, data=None, headers={ 'User-Agent': 'Low-Zoom Downloader' } ) source = urllib.request.urlopen(request) content = source.read() source.close() cursor.execute('INSERT INTO tiles(zoom_level, tile_column, tile_row, tile_data) VALUES(?, ?, ?, ?)', (zoom, xtile, yinverted, content)) def main(argv): db = argv[1] if len(argv) > 1 else 'osm.mbtiles' conn = sqlite3.connect(db) cur = conn.cursor() bboxStr = "-180,-85,180,85" if BBOX is None else ",".join(map(str, BBOX)) cur.executescript(''' CREATE TABLE IF NOT EXISTS tiles ( zoom_level integer, tile_column integer, tile_row integer, tile_data blob); CREATE TABLE IF NOT EXISTS metadata(name text, value text); CREATE UNIQUE INDEX IF NOT EXISTS metadata_name on metadata (name); CREATE UNIQUE INDEX IF NOT EXISTS tile_index on tiles(zoom_level, tile_column, tile_row); INSERT OR REPLACE INTO metadata VALUES('minzoom', '1'); INSERT OR REPLACE INTO metadata VALUES('maxzoom', '{0}'); INSERT OR REPLACE INTO metadata VALUES('name', '{1}'); INSERT OR REPLACE INTO metadata VALUES('type', '{2}'); INSERT OR REPLACE INTO metadata VALUES('format', '{3}'); INSERT OR REPLACE INTO metadata VALUES('bounds', '{4}'); '''.format(ZOOM_MAX, LAYERNAME, LAYERTYPE, TILE_FORMAT, bboxStr)) # from 0 to 6 download all for zoom in range(0, ZOOM_MAX+1): xstart = 0 ystart = 0 xend = 2**zoom-1 yend = 2**zoom-1 if BBOX is not None: xstart, yend = deg2num(BBOX[1], BBOX[0], zoom) xend, ystart = deg2num(BBOX[3], BBOX[2], zoom) for x in range(xstart, xend+1): for y in range(ystart, yend+1): download_url(zoom, x, y, cur) conn.commit() cur.close() conn.close() main(argv)
[ "random.randint", "math.radians", "math.tan", "sqlite3.connect", "math.cos" ]
[((434, 455), 'math.radians', 'math.radians', (['lat_deg'], {}), '(lat_deg)\n', (446, 455), False, 'import math\n'), ((711, 731), 'random.randint', 'random.randint', (['(1)', '(4)'], {}), '(1, 4)\n', (725, 731), False, 'import random\n'), ((1562, 1581), 'sqlite3.connect', 'sqlite3.connect', (['db'], {}), '(db)\n', (1577, 1581), False, 'import sqlite3\n'), ((555, 572), 'math.tan', 'math.tan', (['lat_rad'], {}), '(lat_rad)\n', (563, 572), False, 'import math\n'), ((580, 597), 'math.cos', 'math.cos', (['lat_rad'], {}), '(lat_rad)\n', (588, 597), False, 'import math\n')]
text_dir='VCTK-Corpus/txt/' wav_dir='VCTK-Corpus/wav48/' train_txt='VCTK-Corpus/training.txt' val_txt='VCTK-Corpus/validation.txt' eval_txt='VCTK-Corpus/evaluation.txt' import os all_set=[] train_set=[] val_set=[] eval_set=[] spks=os.listdir(text_dir) spks.sort() for spk in spks: if spk in ['p360', 'p361', 'p362', 'p363']: continue #import pdb;pdb.set_trace() spk_dir=os.path.join(text_dir, spk) txts=os.listdir(spk_dir) txts.sort() for txt in txts[:-20]: iid=os.path.basename(txt).split('.')[0] txt=os.path.join(spk_dir, txt) with open(txt) as f: text=f.readline().strip() train_set.append((iid, text)) for txt in txts[-20:-10]: iid=os.path.basename(txt).split('.')[0] txt=os.path.join(spk_dir, txt) with open(txt) as f: text=f.readline().strip() val_set.append((iid, text)) for txt in txts[-10:]: iid=os.path.basename(txt).split('.')[0] txt=os.path.join(spk_dir, txt) with open(txt) as f: text=f.readline().strip() eval_set.append((iid, text)) with open(train_txt, 'w') as f: for iid, text in train_set: f.write(f'{iid}|{text}\n') with open(val_txt, 'w') as f: for iid, text in val_set: f.write(f'{iid}|{text}\n') with open(eval_txt, 'w') as f: for iid, text in eval_set: f.write(f'{iid}|{text}\n')
[ "os.path.join", "os.listdir", "os.path.basename" ]
[((236, 256), 'os.listdir', 'os.listdir', (['text_dir'], {}), '(text_dir)\n', (246, 256), False, 'import os\n'), ((395, 422), 'os.path.join', 'os.path.join', (['text_dir', 'spk'], {}), '(text_dir, spk)\n', (407, 422), False, 'import os\n'), ((432, 451), 'os.listdir', 'os.listdir', (['spk_dir'], {}), '(spk_dir)\n', (442, 451), False, 'import os\n'), ((555, 581), 'os.path.join', 'os.path.join', (['spk_dir', 'txt'], {}), '(spk_dir, txt)\n', (567, 581), False, 'import os\n'), ((777, 803), 'os.path.join', 'os.path.join', (['spk_dir', 'txt'], {}), '(spk_dir, txt)\n', (789, 803), False, 'import os\n'), ((994, 1020), 'os.path.join', 'os.path.join', (['spk_dir', 'txt'], {}), '(spk_dir, txt)\n', (1006, 1020), False, 'import os\n'), ((507, 528), 'os.path.basename', 'os.path.basename', (['txt'], {}), '(txt)\n', (523, 528), False, 'import os\n'), ((729, 750), 'os.path.basename', 'os.path.basename', (['txt'], {}), '(txt)\n', (745, 750), False, 'import os\n'), ((946, 967), 'os.path.basename', 'os.path.basename', (['txt'], {}), '(txt)\n', (962, 967), False, 'import os\n')]
import unittest from aviation_weather import Pressure from aviation_weather.exceptions import PressureDecodeError class TestPressure(unittest.TestCase): """Unit tests for aviation_weather.components.pressure.Pressure""" def _test_valid(self, raw, indicator, value): p = Pressure(raw) self.assertEqual(raw, p.raw) self.assertEqual(indicator, p.indicator) self.assertEqual(value, p.value) def test_valid_altimeter(self): self._test_valid("A2992", "A", 29.92) def test_valid_QNH(self): self._test_valid("Q1013", "Q", 1013) def test_invalid(self): with self.assertRaises(PressureDecodeError): Pressure("3000") # no unit indicator; more likely visibility
[ "aviation_weather.Pressure" ]
[((289, 302), 'aviation_weather.Pressure', 'Pressure', (['raw'], {}), '(raw)\n', (297, 302), False, 'from aviation_weather import Pressure\n'), ((683, 699), 'aviation_weather.Pressure', 'Pressure', (['"""3000"""'], {}), "('3000')\n", (691, 699), False, 'from aviation_weather import Pressure\n')]
from itertools import cycle import random import sys import pygame from pygame.locals import * FPS = 30 SCREENWIDTH = 512 SCREENHEIGHT = 512 # amount by which base can maximum shift to left PIPEGAPSIZE = 100 # gap between upper and lower part of pipe PIPEHEIGHT = 300 PIPEWIDTH = 50 BASEY = SCREENHEIGHT * 0.79 BASEX = 0 try: xrange except NameError: xrange = range class Player: def __init__(self): self.x = int(SCREENWIDTH * 0.2) self.width = 20 self.height = 20 maxValue = int((SCREENHEIGHT - self.height) / SCREENHEIGHT * 100) minValue = int(self.height / SCREENHEIGHT * 100) self.y = int((SCREENHEIGHT - self.height) * random.randint(minValue, maxValue) / 100 ) # player velocity, max velocity, downward accleration, accleration on flap self.velY = -9 # player's velocity along Y, default same as playerFlapped self.maxVelY = 10 # max vel along Y, max descend speed self.accY = 1 # players downward accleration self.flapAcc = -9 # players speed on flapping self.flapped = False # True when player flaps self.score = 0 def update(self, event): if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP): if self.y > -2 * self.height: self.velY = self.flapAcc self.flapped = True def main(): global SCREEN, FPSCLOCK, myfont pygame.init() FPSCLOCK = pygame.time.Clock() SCREEN = pygame.display.set_mode((SCREENWIDTH, SCREENHEIGHT)) pygame.display.set_caption('Flappy Bird') myfont = pygame.font.SysFont("Comic Sans MS", 30) while True: crashInfo = mainGame() showGameOverScreen(crashInfo) def mainGame(): players = [] for i in range(0,1): players.append(Player()) # get 2 new pipes to add to upperPipes lowerPipes list newPipe1 = getRandomPipe() # newPipe2 = getRandomPipe() # list of upper pipes upperPipes = [ newPipe1[0], # newPipe2[0], ] # list of lowerpipe lowerPipes = [ newPipe1[1], # newPipe2[1], ] pipeVelX = -4 while True: playerEvent = type('', (object,),{ 'type': 0, 'key': 0}) for event in pygame.event.get(): if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): pygame.quit() sys.exit() if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP): playerEvent = event # move pipes to left for uPipe, lPipe in zip(upperPipes, lowerPipes): uPipe['x'] += pipeVelX lPipe['x'] += pipeVelX # add new pipe when first pipe is about to touch left of screen if 0 < upperPipes[0]['x'] < 5: newPipe = getRandomPipe() upperPipes.append(newPipe[0]) lowerPipes.append(newPipe[1]) # remove first pipe if its out of the screen if upperPipes[0]['x'] < -PIPEWIDTH: upperPipes.pop(0) lowerPipes.pop(0) # draw sprites SCREEN.fill((0,0,0)) for uPipe, lPipe in zip(upperPipes, lowerPipes): pygame.draw.rect(SCREEN,(255,255,255), (uPipe['x'], uPipe['y'],PIPEWIDTH,PIPEHEIGHT)) pygame.draw.rect(SCREEN,(255,255,255), (lPipe['x'], lPipe['y'],PIPEWIDTH,PIPEHEIGHT)) pygame.draw.rect(SCREEN,(255,255,255), (BASEX, BASEY,SCREENWIDTH,BASEY)) for player in players: player.update(playerEvent) # check for crash here crashTest = checkCrash(player, upperPipes, lowerPipes) if crashTest[0]: players.remove(player) if len(players) ==0: return { 'player': player, 'upperPipes': upperPipes, 'lowerPipes': lowerPipes, } # check for score playerMidPos = player.x + player.width / 2 for pipe in upperPipes: pipeMidPos = pipe['x'] + PIPEWIDTH / 2 if pipeMidPos <= playerMidPos < pipeMidPos + 4: player.score += 1 # player's movement if player.velY < player.maxVelY and not player.flapped: player.velY += player.accY if player.flapped: player.flapped = False player.y += min(player.velY, BASEY - player.y - player.height) # print score so player overlaps the score showScore(player.score) pygame.draw.ellipse(SCREEN, (255,255,255,200), (player.x, player.y, player.width, player.width), 0) pygame.display.update() FPSCLOCK.tick(FPS) def showGameOverScreen(crashInfo): """crashes the player down ans shows gameover image""" player = crashInfo['player'] upperPipes, lowerPipes = crashInfo['upperPipes'], crashInfo['lowerPipes'] while True: for event in pygame.event.get(): if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): pygame.quit() sys.exit() if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP): return # draw sprites SCREEN.fill((0,0,0)) for uPipe, lPipe in zip(upperPipes, lowerPipes): pygame.draw.rect(SCREEN,(255,255,255), (uPipe['x'], uPipe['y'],PIPEWIDTH, PIPEHEIGHT)) pygame.draw.rect(SCREEN,(255,255,255), (lPipe['x'], lPipe['y'],PIPEWIDTH, PIPEHEIGHT)) pygame.draw.rect(SCREEN,(255,255,255), (BASEX, BASEY,SCREENWIDTH,BASEY)) showScore(player.score) pygame.draw.ellipse(SCREEN, (255,255,255,200), (player.x, player.y, player.width, player.width), 0) FPSCLOCK.tick(FPS) pygame.display.update() def getRandomPipe(): """returns a randomly generated pipe""" # y of gap between upper and lower pipe gapY = random.randrange(0, int(BASEY * 0.6 - PIPEGAPSIZE)) gapY += int(BASEY * 0.2) pipeX = SCREENWIDTH + 10 return [ {'x': pipeX, 'y': gapY - PIPEHEIGHT}, # upper pipe {'x': pipeX, 'y': gapY + PIPEGAPSIZE}, # lower pipe ] def showScore(score): """displays score in center of screen""" label = myfont.render(str(score), 1, (255,255,255)) SCREEN.blit(label, (10, 10)) def checkCrash(player, upperPipes, lowerPipes): """returns True if player collders with base or pipes.""" # if player crashes into ground if player.y + player.height >= BASEY - 1: return [True, True] else: playerRect = pygame.Rect(player.x, player.y, player.width, player.height) for uPipe, lPipe in zip(upperPipes, lowerPipes): # upper and lower pipe rects uPipeRect = pygame.Rect(uPipe['x'], uPipe['y'], PIPEWIDTH, PIPEHEIGHT) lPipeRect = pygame.Rect(lPipe['x'], lPipe['y'], PIPEWIDTH, PIPEHEIGHT) # if bird collided with upipe or lpipe uCollide = pixelCollision(playerRect, uPipeRect) lCollide = pixelCollision(playerRect, lPipeRect) if uCollide or lCollide: return [True, False] return [False, False] def pixelCollision(rect1, rect2): """Checks if two objects collide and not just their rects""" rect = rect1.clip(rect2) if rect.width == 0 or rect.height == 0: return False return True if __name__ == '__main__': main()
[ "pygame.draw.ellipse", "pygame.quit", "random.randint", "pygame.font.SysFont", "pygame.event.get", "pygame.display.set_mode", "pygame.draw.rect", "pygame.Rect", "pygame.init", "pygame.display.update", "pygame.display.set_caption", "pygame.time.Clock", "sys.exit" ]
[((1471, 1484), 'pygame.init', 'pygame.init', ([], {}), '()\n', (1482, 1484), False, 'import pygame\n'), ((1500, 1519), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (1517, 1519), False, 'import pygame\n'), ((1533, 1585), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(SCREENWIDTH, SCREENHEIGHT)'], {}), '((SCREENWIDTH, SCREENHEIGHT))\n', (1556, 1585), False, 'import pygame\n'), ((1590, 1631), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""Flappy Bird"""'], {}), "('Flappy Bird')\n", (1616, 1631), False, 'import pygame\n'), ((1645, 1685), 'pygame.font.SysFont', 'pygame.font.SysFont', (['"""Comic Sans MS"""', '(30)'], {}), "('Comic Sans MS', 30)\n", (1664, 1685), False, 'import pygame\n'), ((2304, 2322), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (2320, 2322), False, 'import pygame\n'), ((3456, 3533), 'pygame.draw.rect', 'pygame.draw.rect', (['SCREEN', '(255, 255, 255)', '(BASEX, BASEY, SCREENWIDTH, BASEY)'], {}), '(SCREEN, (255, 255, 255), (BASEX, BASEY, SCREENWIDTH, BASEY))\n', (3472, 3533), False, 'import pygame\n'), ((4826, 4849), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (4847, 4849), False, 'import pygame\n'), ((5123, 5141), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (5139, 5141), False, 'import pygame\n'), ((5715, 5792), 'pygame.draw.rect', 'pygame.draw.rect', (['SCREEN', '(255, 255, 255)', '(BASEX, BASEY, SCREENWIDTH, BASEY)'], {}), '(SCREEN, (255, 255, 255), (BASEX, BASEY, SCREENWIDTH, BASEY))\n', (5731, 5792), False, 'import pygame\n'), ((5829, 5935), 'pygame.draw.ellipse', 'pygame.draw.ellipse', (['SCREEN', '(255, 255, 255, 200)', '(player.x, player.y, player.width, player.width)', '(0)'], {}), '(SCREEN, (255, 255, 255, 200), (player.x, player.y,\n player.width, player.width), 0)\n', (5848, 5935), False, 'import pygame\n'), ((5965, 5988), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (5986, 5988), False, 'import pygame\n'), ((6772, 6832), 'pygame.Rect', 'pygame.Rect', (['player.x', 'player.y', 'player.width', 'player.height'], {}), '(player.x, player.y, player.width, player.height)\n', (6783, 6832), False, 'import pygame\n'), ((3263, 3357), 'pygame.draw.rect', 'pygame.draw.rect', (['SCREEN', '(255, 255, 255)', "(uPipe['x'], uPipe['y'], PIPEWIDTH, PIPEHEIGHT)"], {}), "(SCREEN, (255, 255, 255), (uPipe['x'], uPipe['y'],\n PIPEWIDTH, PIPEHEIGHT))\n", (3279, 3357), False, 'import pygame\n'), ((3361, 3455), 'pygame.draw.rect', 'pygame.draw.rect', (['SCREEN', '(255, 255, 255)', "(lPipe['x'], lPipe['y'], PIPEWIDTH, PIPEHEIGHT)"], {}), "(SCREEN, (255, 255, 255), (lPipe['x'], lPipe['y'],\n PIPEWIDTH, PIPEHEIGHT))\n", (3377, 3455), False, 'import pygame\n'), ((4717, 4823), 'pygame.draw.ellipse', 'pygame.draw.ellipse', (['SCREEN', '(255, 255, 255, 200)', '(player.x, player.y, player.width, player.width)', '(0)'], {}), '(SCREEN, (255, 255, 255, 200), (player.x, player.y,\n player.width, player.width), 0)\n', (4736, 4823), False, 'import pygame\n'), ((5520, 5614), 'pygame.draw.rect', 'pygame.draw.rect', (['SCREEN', '(255, 255, 255)', "(uPipe['x'], uPipe['y'], PIPEWIDTH, PIPEHEIGHT)"], {}), "(SCREEN, (255, 255, 255), (uPipe['x'], uPipe['y'],\n PIPEWIDTH, PIPEHEIGHT))\n", (5536, 5614), False, 'import pygame\n'), ((5619, 5713), 'pygame.draw.rect', 'pygame.draw.rect', (['SCREEN', '(255, 255, 255)', "(lPipe['x'], lPipe['y'], PIPEWIDTH, PIPEHEIGHT)"], {}), "(SCREEN, (255, 255, 255), (lPipe['x'], lPipe['y'],\n PIPEWIDTH, PIPEHEIGHT))\n", (5635, 5713), False, 'import pygame\n'), ((6978, 7036), 'pygame.Rect', 'pygame.Rect', (["uPipe['x']", "uPipe['y']", 'PIPEWIDTH', 'PIPEHEIGHT'], {}), "(uPipe['x'], uPipe['y'], PIPEWIDTH, PIPEHEIGHT)\n", (6989, 7036), False, 'import pygame\n'), ((7061, 7119), 'pygame.Rect', 'pygame.Rect', (["lPipe['x']", "lPipe['y']", 'PIPEWIDTH', 'PIPEHEIGHT'], {}), "(lPipe['x'], lPipe['y'], PIPEWIDTH, PIPEHEIGHT)\n", (7072, 7119), False, 'import pygame\n'), ((2428, 2441), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (2439, 2441), False, 'import pygame\n'), ((2458, 2468), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2466, 2468), False, 'import sys\n'), ((5247, 5260), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (5258, 5260), False, 'import pygame\n'), ((5277, 5287), 'sys.exit', 'sys.exit', ([], {}), '()\n', (5285, 5287), False, 'import sys\n'), ((710, 744), 'random.randint', 'random.randint', (['minValue', 'maxValue'], {}), '(minValue, maxValue)\n', (724, 744), False, 'import random\n')]
from django.shortcuts import render, get_object_or_404 from .models import About,Appointment,Doctor,Report,Service,History from django.http import HttpResponse,HttpResponseRedirect from django.shortcuts import redirect from django.contrib.auth.decorators import login_required # Create your views here. def home(request): return render(request, "index.html", {}) def about(request): context = { 'about': About.objects.all() } return render(request, "about.html", context) def doctor_list(request): context = { 'doctors': Doctor.objects.all() } return render(request, "doctor_list_booking.html", context) def services(request): context = { 'service': Service.objects.all() } return render(request, "services.html", context) @login_required def appointment_delete(request, appointment_id): appointment = get_object_or_404(Appointment, pk=appointment_id) if request.method == 'POST': appointment.delete() return redirect('appointments_list') return redirect('appointments_list') @login_required def lab_report_delete(request, report_id): lab_report = get_object_or_404(Report, pk=report_id) if request.method == 'POST': lab_report.delete() return redirect('lab_reports') return redirect('lab_reports') @login_required def lab_reports(request): reports = Report.objects.filter(user = request.user) if reports: return render(request, "lab_reports_list.html", {'reports': reports}) else: message = "No records Found" return render(request, "lab_reports_list.html", {'message': message}) @login_required def appointments(request): appointments = Appointment.objects.filter(user = request.user) if appointments: return render(request, "appointments_list.html", {'appointments': appointments}) else: message = "No records Found" return render(request, "appointments_list.html", {'message': message}) def single_report(request, report_id): report = get_object_or_404(Report, pk=report_id) return render(request, "single_report.html", {'report': report}) def single_service(request, service_id): service = get_object_or_404(Service, pk=service_id) return render(request, 'single_service.html', {'service': service, 'services_info' : Service.objects.all()}) def single_doctor(request,doctor_id): doctor = get_object_or_404(Doctor, pk=doctor_id) return render(request, "single_doctor_booking.html", {'doctor': doctor}) @login_required def profile(request): history = History.objects.filter(user = request.user) if history: return render(request, "profile.html", {'history': history}) else: message = "No records Found" return render(request, "profile.html", {'message': message}) @login_required def booking(request, doctor_id): if request.method == 'POST' and request.POST.get('Appointment Date') and request.POST.get('Appointment Time'): disease = request.POST.get('issue') date=request.POST.get('Appointment Date') time=request.POST.get('Appointment Time') doctor = doctor_id user = request.user appointment = Appointment.objects.create(date=date, time=time, user=user, disease_option=disease, doctor = doctor) appointment.save() appointments = Appointment.objects.filter(user = request.user) return render(request, 'appointments_list.html', {'appointments': appointments}) else: appointments = Appointment.objects.filter(user = request.user) return render(request, 'appointments_list.html', {'appointments': appointments}) def contactus(request): pass def patient_info(request): pass
[ "django.shortcuts.render", "django.shortcuts.get_object_or_404", "django.shortcuts.redirect" ]
[((334, 367), 'django.shortcuts.render', 'render', (['request', '"""index.html"""', '{}'], {}), "(request, 'index.html', {})\n", (340, 367), False, 'from django.shortcuts import render, get_object_or_404\n'), ((454, 492), 'django.shortcuts.render', 'render', (['request', '"""about.html"""', 'context'], {}), "(request, 'about.html', context)\n", (460, 492), False, 'from django.shortcuts import render, get_object_or_404\n'), ((589, 641), 'django.shortcuts.render', 'render', (['request', '"""doctor_list_booking.html"""', 'context'], {}), "(request, 'doctor_list_booking.html', context)\n", (595, 641), False, 'from django.shortcuts import render, get_object_or_404\n'), ((736, 777), 'django.shortcuts.render', 'render', (['request', '"""services.html"""', 'context'], {}), "(request, 'services.html', context)\n", (742, 777), False, 'from django.shortcuts import render, get_object_or_404\n'), ((862, 911), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Appointment'], {'pk': 'appointment_id'}), '(Appointment, pk=appointment_id)\n', (879, 911), False, 'from django.shortcuts import render, get_object_or_404\n'), ((1030, 1059), 'django.shortcuts.redirect', 'redirect', (['"""appointments_list"""'], {}), "('appointments_list')\n", (1038, 1059), False, 'from django.shortcuts import redirect\n'), ((1137, 1176), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Report'], {'pk': 'report_id'}), '(Report, pk=report_id)\n', (1154, 1176), False, 'from django.shortcuts import render, get_object_or_404\n'), ((1288, 1311), 'django.shortcuts.redirect', 'redirect', (['"""lab_reports"""'], {}), "('lab_reports')\n", (1296, 1311), False, 'from django.shortcuts import redirect\n'), ((2031, 2070), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Report'], {'pk': 'report_id'}), '(Report, pk=report_id)\n', (2048, 2070), False, 'from django.shortcuts import render, get_object_or_404\n'), ((2082, 2139), 'django.shortcuts.render', 'render', (['request', '"""single_report.html"""', "{'report': report}"], {}), "(request, 'single_report.html', {'report': report})\n", (2088, 2139), False, 'from django.shortcuts import render, get_object_or_404\n'), ((2196, 2237), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Service'], {'pk': 'service_id'}), '(Service, pk=service_id)\n', (2213, 2237), False, 'from django.shortcuts import render, get_object_or_404\n'), ((2403, 2442), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Doctor'], {'pk': 'doctor_id'}), '(Doctor, pk=doctor_id)\n', (2420, 2442), False, 'from django.shortcuts import render, get_object_or_404\n'), ((2454, 2519), 'django.shortcuts.render', 'render', (['request', '"""single_doctor_booking.html"""', "{'doctor': doctor}"], {}), "(request, 'single_doctor_booking.html', {'doctor': doctor})\n", (2460, 2519), False, 'from django.shortcuts import render, get_object_or_404\n'), ((989, 1018), 'django.shortcuts.redirect', 'redirect', (['"""appointments_list"""'], {}), "('appointments_list')\n", (997, 1018), False, 'from django.shortcuts import redirect\n'), ((1253, 1276), 'django.shortcuts.redirect', 'redirect', (['"""lab_reports"""'], {}), "('lab_reports')\n", (1261, 1276), False, 'from django.shortcuts import redirect\n'), ((1443, 1505), 'django.shortcuts.render', 'render', (['request', '"""lab_reports_list.html"""', "{'reports': reports}"], {}), "(request, 'lab_reports_list.html', {'reports': reports})\n", (1449, 1505), False, 'from django.shortcuts import render, get_object_or_404\n'), ((1568, 1630), 'django.shortcuts.render', 'render', (['request', '"""lab_reports_list.html"""', "{'message': message}"], {}), "(request, 'lab_reports_list.html', {'message': message})\n", (1574, 1630), False, 'from django.shortcuts import render, get_object_or_404\n'), ((1778, 1851), 'django.shortcuts.render', 'render', (['request', '"""appointments_list.html"""', "{'appointments': appointments}"], {}), "(request, 'appointments_list.html', {'appointments': appointments})\n", (1784, 1851), False, 'from django.shortcuts import render, get_object_or_404\n'), ((1914, 1977), 'django.shortcuts.render', 'render', (['request', '"""appointments_list.html"""', "{'message': message}"], {}), "(request, 'appointments_list.html', {'message': message})\n", (1920, 1977), False, 'from django.shortcuts import render, get_object_or_404\n'), ((2648, 2701), 'django.shortcuts.render', 'render', (['request', '"""profile.html"""', "{'history': history}"], {}), "(request, 'profile.html', {'history': history})\n", (2654, 2701), False, 'from django.shortcuts import render, get_object_or_404\n'), ((2764, 2817), 'django.shortcuts.render', 'render', (['request', '"""profile.html"""', "{'message': message}"], {}), "(request, 'profile.html', {'message': message})\n", (2770, 2817), False, 'from django.shortcuts import render, get_object_or_404\n'), ((3418, 3491), 'django.shortcuts.render', 'render', (['request', '"""appointments_list.html"""', "{'appointments': appointments}"], {}), "(request, 'appointments_list.html', {'appointments': appointments})\n", (3424, 3491), False, 'from django.shortcuts import render, get_object_or_404\n'), ((3588, 3661), 'django.shortcuts.render', 'render', (['request', '"""appointments_list.html"""', "{'appointments': appointments}"], {}), "(request, 'appointments_list.html', {'appointments': appointments})\n", (3594, 3661), False, 'from django.shortcuts import render, get_object_or_404\n')]
"""Basic test configuration""" from unittest.mock import MagicMock from pytest import fixture from elasticsearch_dsl.connections import add_connection @fixture def mock_client(dummy_response): """Returns elasticsearch mock client""" client = MagicMock() client.search.return_value = dummy_response add_connection("mock", client) yield client @fixture(name="dummy_response") def fixture_dummy_response(): """Returns the dictionary for comparison in tests""" return { "_shards": { "failed": 0, "successful": 10, "total": 10 }, "hits": { "hits": [ { "_index": "blog", "_type": "_doc", "_id": "1", "_score": "10.114", "_source": { "title": "Test elasticsearch", "body": """ Litwo! Ojczyzno moja! Ty jesteś jak zdrowie. Ile cię stracił. Dziś człowieka nie policzę. Opuszczali rodziców i jeszcze dobrze na kozłach niemczysko chude na Ojczyzny łono. Tymczasem na nim się zdawał małpą lub ławę przeskoczyć. Zręcznie między dwie strony: Uciszcie się! woła. Marząc i krwi tonęła, gdy przysięgał na krzaki fijołkowe skłonił oczyma ciekawymi po kryjomu kazał stoły z Paryża a czuł choroby zaród. Krzyczano na waszych polowaniach łowił? Piękna byłaby sława, ażeby nie było gorąca). wachlarz pozłocist powiewając rozlewał deszcz iskier rzęsisty. Głowa do Twych świątyń progi iść za zającami nie został pośmiewiska celem i niesrogi. Odgadnęła sąsiadka powód jego lata wleką w kota się nagle, stronnicy Sokół na kształt deski. Nogi miał głos miły: Witaj nam, że spod ramion wytknął palce i Asesor, razem, jakoby zlewa. I też co się przyciągnąć do dworu uprawne dobrze zachowana sklepienie całe wesoło, lecz w rozmowę lecz lekki. odgadniesz, że jacyś Francuzi wymowny zrobili wynalazek: iż ludzie są architektury. Choć Sędzia jego bok usiadła owa piękność zda się Gorecki, Pac i opisuję, bo tak nas reformować cywilizować będzie wojna u nas starych więcej godni Wojewody względów doszli potem się teraz wzrostem dorodniejsza bo tak pan Wojski na nim ją w ulicę się tajemnie, Ścigany od płaczącej matki pod Turka czy wstydzić, czy na lewo, on rodaków zbiera się w domu dostatek mieszka i panien nie w nieczynności! a Suwarów w posiadłość. """, "published_from": "2013-02-10T10:31:07.851688", "tags": ["g1", "g2"], "lines": "1", }, "highlight": { "title": ["<em>Test</em> elasticsearch"] }, }, { "_index": "blog", "_type": "_doc", "_id": "2", "_score": "12.0", "_source": { "title": "Test elasticsearch numer 2", "body": """ Litwo! Ojczyzno moja! Ty jesteś jak zdrowie. Ile cię stracił. Dziś człowieka nie policzę. Opuszczali rodziców i jeszcze dobrze na kozłach niemczysko chude na Ojczyzny łono. Tymczasem na nim się zdawał małpą lub ławę przeskoczyć. Zręcznie między dwie strony: Uciszcie się! woła. Marząc i krwi tonęła, gdy przysięgał na krzaki fijołkowe skłonił oczyma ciekawymi po kryjomu kazał stoły z Paryża a czuł choroby zaród. Krzyczano na waszych polowaniach łowił? Piękna byłaby sława, ażeby nie było gorąca). wachlarz pozłocist powiewając rozlewał deszcz iskier rzęsisty. Głowa do Twych świątyń progi iść za zającami nie został pośmiewiska celem i niesrogi. Odgadnęła sąsiadka powód jego lata wleką w kota się nagle, stronnicy Sokół na kształt deski. Nogi miał głos miły: Witaj nam, że spod ramion wytknął palce i Asesor, razem, jakoby zlewa. I też co się przyciągnąć do dworu uprawne dobrze zachowana sklepienie całe wesoło, lecz w rozmowę lecz lekki. odgadniesz, że jacyś Francuzi wymowny zrobili wynalazek: iż ludzie są architektury. Choć Sędzia jego bok usiadła owa piękność zda się Gorecki, Pac i opisuję, bo tak nas reformować cywilizować będzie wojna u nas starych więcej godni Wojewody względów doszli potem się teraz wzrostem dorodniejsza bo tak pan Wojski na nim ją w ulicę się tajemnie, Ścigany od płaczącej matki pod Turka czy wstydzić, czy na lewo, on rodaków zbiera się w domu dostatek mieszka i panien nie w nieczynności! a Suwarów w posiadłość. """, "published_from": "2014-02-10T10:31:07.851688", "tags": ["g1", "g2"], "lines": "1", }, "highlight": { "title": ["<em>Test</em> elasticsearch numer 2"] }, }, ] }, "timed_out": False, "took": 123, }
[ "pytest.fixture", "unittest.mock.MagicMock", "elasticsearch_dsl.connections.add_connection" ]
[((369, 399), 'pytest.fixture', 'fixture', ([], {'name': '"""dummy_response"""'}), "(name='dummy_response')\n", (376, 399), False, 'from pytest import fixture\n'), ((254, 265), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (263, 265), False, 'from unittest.mock import MagicMock\n'), ((318, 348), 'elasticsearch_dsl.connections.add_connection', 'add_connection', (['"""mock"""', 'client'], {}), "('mock', client)\n", (332, 348), False, 'from elasticsearch_dsl.connections import add_connection\n')]
from __future__ import print_function import csv import numpy as np import re import Spectrum #import matplotlib.pyplot as plt def ReadCSVRef(filename): with open(filename) as csvfile: reader = csv.reader(csvfile, delimiter=',') headers = list(filter(None, next(reader))) data = [] for row in reader: data.append(row[:-1]) data = np.array(data) data[data == ''] = np.nan data = data.astype(float) dataDict = {} i = 0 columns_per_data = int(np.shape(data[0])[0]/np.shape(headers)[0]) print(columns_per_data) for hh in headers: label = tuple(map(int, re.findall(r'\d+', hh))) dataDict[label] = data[:, i:i+columns_per_data] data[:, i:i+columns_per_data] i+= columns_per_data return dataDict # Add error-checking for entering a non-existent grating/wavelength pair class SystemCorrectionFactor(object): def __init__(self, grating, center_wavelength, wavelengths = None): self.grating = grating self.center_wavelength = center_wavelength if grating >= 1000: self.correction_spectrum = self.ImportIR() elif wavelengths is not None: self.correction_spectrum = self.ImportVis(wavelengths) else: print('No valid reference for system correction!') def ImportIR(self): filename = '/home/isobel/Documents/McMaster/CL/SystemResponseFcns/CorrectionFactorSCAlIRCamera_2015_02_26.csv' dataDict = ReadCSVRef(filename) d = dataDict[self.grating, self.center_wavelength] correction_spectrum = Spectrum.CLSpectrum(d[:,1], d[:,0]) return correction_spectrum def ImportVis(self, wavelengths): filename = '/home/isobel/Documents/McMaster/CL/SystemResponseFcns/SystemResponseVISInterpolated_20150717.csv' dataDict = ReadCSVRef(filename) d = dataDict[(self.grating,)] spectrum_interp = np.interp(wavelengths, d[:, 0], d[:, 1]) correction_spectrum = Spectrum.CLSpectrum(spectrum_interp, wavelengths) return correction_spectrum class WavelengthCorrectionFactor(object): def __init__(self, grating, center_wavelength): self.grating = grating self.center_wavelength = center_wavelength if self.grating in (1250, 1600, 2000): self.wavelength = self.importIRwavelengths() elif self.grating in (500, 800): self.wavelength = self.importVISwavelengths() else: print('No valid reference for wavelength correction!') def importIRwavelengths(self): filename = '/home/isobel/Documents/McMaster/CL/SystemResponseFcns/WinspecCorrWavelengthsIR20150428.csv' dataDict = ReadCSVRef(filename) correction_spectrum = dataDict[self.grating, self.center_wavelength] return correction_spectrum def importVISwavelengths(self): filename = '/home/isobel/Documents/McMaster/CL/SystemResponseFcns/WinspecCorrWavelengthsVis20150309.csv' dataDict = ReadCSVRef(filename) wavelengths = dataDict[self.grating, self.center_wavelength] return wavelengths #wvls = np.linspace(400, 980) #p = SystemCorrectionFactor(800, 750, wvls) #print(np.shape(p.correction_spectrum.SpectrumRange)) #plt.plot(p.correction_spectrum.SpectrumRange, p.correction_spectrum.intensity) #plt.show()
[ "csv.reader", "numpy.shape", "re.findall", "numpy.array", "numpy.interp", "Spectrum.CLSpectrum" ]
[((383, 397), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (391, 397), True, 'import numpy as np\n'), ((207, 241), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (217, 241), False, 'import csv\n'), ((1620, 1657), 'Spectrum.CLSpectrum', 'Spectrum.CLSpectrum', (['d[:, 1]', 'd[:, 0]'], {}), '(d[:, 1], d[:, 0])\n', (1639, 1657), False, 'import Spectrum\n'), ((1960, 2000), 'numpy.interp', 'np.interp', (['wavelengths', 'd[:, 0]', 'd[:, 1]'], {}), '(wavelengths, d[:, 0], d[:, 1])\n', (1969, 2000), True, 'import numpy as np\n'), ((2031, 2080), 'Spectrum.CLSpectrum', 'Spectrum.CLSpectrum', (['spectrum_interp', 'wavelengths'], {}), '(spectrum_interp, wavelengths)\n', (2050, 2080), False, 'import Spectrum\n'), ((513, 530), 'numpy.shape', 'np.shape', (['data[0]'], {}), '(data[0])\n', (521, 530), True, 'import numpy as np\n'), ((534, 551), 'numpy.shape', 'np.shape', (['headers'], {}), '(headers)\n', (542, 551), True, 'import numpy as np\n'), ((638, 660), 're.findall', 're.findall', (['"""\\\\d+"""', 'hh'], {}), "('\\\\d+', hh)\n", (648, 660), False, 'import re\n')]
"""Class containing the generic markdown engine used by evenniq_wiki.""" from bs4 import BeautifulSoup from markdown import Markdown class MarkdownEngine(Markdown): """A special markdown engine for the evennia_wiki. This pre-loads some common extensions and allows some inner processing. """ def __init__(self): super(MarkdownEngine, self).__init__(extensions=[ 'markdown.extensions.fenced_code', 'markdown.extensions.footnotes', 'markdown.extensions.tables', 'markdown.extensions.toc', ]) def convert(self, text): """Convert the text to HTML, changing some classes. 1. Table elements will have classes table table-responsive table-striped 2. Table headers will have the class thead-inverse 3. Links elements will be re-mapped if absolute (beginning by /) """ html = super(MarkdownEngine, self).convert(text) soup = BeautifulSoup(html, 'html.parser') # Add classes to tables for tag in soup.find_all("table"): tag["class"] = "table table-responsive table-striped" # Add classes to table headers for tag in soup.find_all("thead"): tag["class"] = "thead-inverse" # Change link location of pointing to /* . We assume an absolute # URL (/) means a wiki page. for tag in soup.find_all("a"): href = tag.get("href") if href and href.startswith("/"): tag["href"] = "/wiki" + href return str(soup) ENGINE = MarkdownEngine()
[ "bs4.BeautifulSoup" ]
[((981, 1015), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html', '"""html.parser"""'], {}), "(html, 'html.parser')\n", (994, 1015), False, 'from bs4 import BeautifulSoup\n')]
# AUTOGENERATED! DO NOT EDIT! File to edit: 00_roster.ipynb (unless otherwise specified). __all__ = ['ShiftProperties', 'Shift', 'Roster'] # Cell from dataclasses import dataclass from datetime import datetime, timedelta, date, time from ics import Calendar, Event import re from typing import Optional from zoneinfo import ZoneInfo @dataclass class ShiftProperties: name: str starting_hour: timedelta duration: timedelta @dataclass class Shift: properties: ShiftProperties date: datetime def __post_init__(self): self.beginning: datetime = self.date + self.properties.starting_hour # Cell @dataclass class Roster: shifts: list[Shift] name: str = "<NAME>" _year: int = 2022 _month: int = 3 # TODO: Read from Excel _dayp = re.compile(r"MO|DI|MI|DO|FR|SA|SO") _datep = re.compile(r"\d{2}") @classmethod def from_dict( cls, input: dict[str, str], mapper: Optional[dict] = None ) -> "Roster": shifts = [] # TODO: This whole continue stuff is just horrible. Change it future me! for date_str, abbr in input.items(): if abbr == "(/)": continue try: props = mapper[abbr] if not props: print(f"No properties for shift abbrevation: {abbr}") continue except KeyError: print(f"Shift abbrevation not found in mapper: {abbr}") continue date = datetime( year=cls._year, month=cls._month, day=int(cls._datep.search(date_str).group()), tzinfo=ZoneInfo("Europe/Berlin"), ) shift = Shift(props, date=date) shifts.append(shift) return cls(shifts=shifts) def to_ics(self): c = Calendar() for shift in self.shifts: e = Event() e.name = shift.properties.name e.begin = shift.beginning e.duration = shift.properties.duration c.events.add(e) return c
[ "ics.Event", "zoneinfo.ZoneInfo", "ics.Calendar", "re.compile" ]
[((783, 817), 're.compile', 're.compile', (['"""MO|DI|MI|DO|FR|SA|SO"""'], {}), "('MO|DI|MI|DO|FR|SA|SO')\n", (793, 817), False, 'import re\n'), ((832, 852), 're.compile', 're.compile', (['"""\\\\d{2}"""'], {}), "('\\\\d{2}')\n", (842, 852), False, 'import re\n'), ((1858, 1868), 'ics.Calendar', 'Calendar', ([], {}), '()\n', (1866, 1868), False, 'from ics import Calendar, Event\n'), ((1919, 1926), 'ics.Event', 'Event', ([], {}), '()\n', (1924, 1926), False, 'from ics import Calendar, Event\n'), ((1669, 1694), 'zoneinfo.ZoneInfo', 'ZoneInfo', (['"""Europe/Berlin"""'], {}), "('Europe/Berlin')\n", (1677, 1694), False, 'from zoneinfo import ZoneInfo\n')]
import sys import discord from discord.ext import tasks import base.command_base as base import base.DiscordSend as Sendtool import base.ColorPrint as CPrint import base.time_check as CTime import os import collections as cl from datetime import datetime, timedelta from dateutil.relativedelta import relativedelta import json import command.voice_log.Config_Main as CSetting import command.voice_log.chart as Chart import pandas as pd class command(base.command_base) : def __init__(self) : super().__init__() self.test_task: tasks.Loop = None self.now_filepath = CSetting.baseLogFolder + CSetting.JSONPATH_row + CSetting.JSONPATH_now # JSON記入 ## https://qiita.com/KEINOS/items/ea4bda15506bbd3e6913 から勝手に拝借 def append_json_to_file(self, _dict, path_file): try : with open(path_file, 'ab+') as f: # ファイルを開く f.seek(0,2) # ファイルの末尾(2)に移動(フォフセット0) if f.tell() == 0 : # ファイルが空かチェック f.write(json.dumps([_dict],indent=4,ensure_ascii=False).encode()) # 空の場合は JSON 配列を書き込む else : f.seek(-1,2) # ファイルの末尾(2)から -1 文字移動 f.truncate() # 最後の文字を削除し、JSON 配列を開ける(]の削除) f.write(' , '.encode()) # 配列のセパレーターを書き込む f.write(json.dumps(_dict,indent=4,ensure_ascii=False).encode()) # 辞書を JSON 形式でダンプ書き込み f.write(']'.encode()) # JSON 配列を閉じる except OSError as e: CPrint.error_print( path_file + "が、存在しませんでした") print(os.getcwd()) print(e) return f.close() # 連続で追加する場合は都度 Open, Close しない方がいいかも # JSON出力(1ヵ月定期・ファイルチェンジ機能付き) async def MonthOutput(self, client: discord.Client): today = datetime.today() filetime = today - relativedelta(months=1) # Renameするときのファイル名を決定する m_month = datetime.strftime(filetime,'%m') m_year = datetime.strftime(filetime,'%Y') month_filename = '{0}{1}'.format(m_year, m_month) mv_filename = CSetting.baseLogFolder + CSetting.JSONPATH_row + month_filename + ".json" if os.path.exists(self.now_filepath) == False: # ここにエラー文を出して置く return None # Rename os.rename(self.now_filepath, mv_filename ) # now生ログファイルを、空作成しておく with open( self.now_filepath ,"w"):pass # 加工済みデータを作る timeData = await Chart.makeTimeList(client, mv_filename , CSetting.OneMonthOutput_RoleID , mode="NAME") # CSVで加工済みを保存する if timeData is not None : send_fileName = CSetting.baseLogFolder + CSetting.JSONPATH_analysis + month_filename + ".csv" timeData.to_csv( send_fileName ) return send_fileName else : return None #async def on_message(self, config, client: discord.Client, message: discord.Message) : #sendfile = await self.MonthOutput(client=client) #if sendfile is None : # await Sendtool.Send_Member(Data=message, message="ログファイルがありませんでした。", filename=None) #else : # await Sendtool.Send_Member(Data=message, message="MonthOutput!", filename=sendfile) #pass ## 入退室監視 async def on_voice_state_update(self, config, client: discord.Client, member: discord.Member, before: discord.VoiceState , after: discord.VoiceState): data = cl.OrderedDict() if before.channel is None: ## 入ってきたら print( datetime.now().strftime("%Y/%m/%d %H:%M:%S") ,":" , after.channel.name, "から" , member.name , "#" , member.discriminator , "さんが入りました") data["Flag"] = "entry" data["before.channel.name"] = "NULL" data["before.channel.id"] = "NULL" data["after.channel.name"] = after.channel.name data["after.channel.id"] = after.channel.id data["member.name"] = member.name data["member.discriminator"] = member.discriminator data["member.id"] = member.id data["time"] = datetime.now().strftime("%Y/%m/%d %H:%M:%S") elif after.channel is None: ## 抜けたら print(datetime.now().strftime("%Y/%m/%d %H:%M:%S") ,":" , before.channel.name, "から" , member.name , "#" , member.discriminator , "さんが抜けました") data["Flag"] = "exit" data["before.channel.name"] = before.channel.name data["before.channel.id"] = before.channel.id data["after.channel.name"] = "NULL" data["after.channel.id"] = "NULL" data["member.name"] = member.name data["member.discriminator"] = member.discriminator data["member.id"] = member.id data["time"] = datetime.now().strftime("%Y/%m/%d %H:%M:%S") elif after.channel.id != before.channel.id : print(datetime.now().strftime("%Y/%m/%d %H:%M:%S") ,":" , before.channel.name, "から" , member.name , "#" , member.discriminator , "さんが移動しました") data["Flag"] = "move" data["before.channel.name"] = before.channel.name data["before.channel.id"] = before.channel.id data["after.channel.name"] = after.channel.name data["after.channel.id"] = after.channel.id data["member.name"] = member.name data["member.discriminator"] = member.discriminator data["member.id"] = member.id data["time"] = datetime.now().strftime("%Y/%m/%d %H:%M:%S") else : # 特になし pass self.append_json_to_file( data, self.now_filepath ) pass # 定期送信(1ヵ月) async def voice_outputlog(self, config, client: discord.Client): channellist = [] if config.get("on_task") is not None : if config["on_task"].get(sys._getframe().f_code.co_name) is not None : channellist = config["on_task"][sys._getframe().f_code.co_name].get("message-channelID") if channellist is None : return #await Sendtool.Send_ChannelID(client=client, channelID=channellist , message="TASKCheck! - voice_outputlog") ## -------- flag = False # 動作時間決定 # ※ 指定日時に動作できないので、これで代用。 TestFlag = False # --- 定期実行のプログラムテスト以外では、これは、Falseにしてください -------------- if TestFlag == False : # 1日に実行する flag = CTime.check('%d %H', '01 00') else : # 1時に実行する flag = CTime.check('%M', '00') # -- 出力処理 -- if flag : sendfile = await self.MonthOutput(client=client) filetime = today - relativedelta(months=1) m_month = datetime.strftime(filetime,'%m') m_year = datetime.strftime(filetime,'%Y') month_filename = '{0}{1}'.format(m_year, m_month) mv_filename = CSetting.baseLogFolder + CSetting.JSONPATH_row + month_filename + ".json" if sendfile is None : text = "【一か月定期連絡】"+ m_year + "年"+ m_month +"月の音声チャンネルログインはありませんでした" await Sendtool.Send_ChannelID(client=client, channelID=CSetting.OneMonthOutput_ChannelID, message=text, filename=None) else : text = "【一か月定期連絡】"+ m_year + "年"+ m_month +"月の音声チャンネルログイン生データ" await Sendtool.Send_ChannelID(client=client, channelID=CSetting.OneMonthOutput_ChannelID, message=text, filename=mv_filename) text = "【一か月定期連絡】"+ m_year + "年"+ m_month +"月の音声チャンネルログイン加工データ" await Sendtool.Send_ChannelID(client=client, channelID=CSetting.OneMonthOutput_ChannelID, message=text, filename=sendfile) pass pass
[ "datetime.datetime.strftime", "datetime.datetime.today", "command.voice_log.chart.makeTimeList", "base.ColorPrint.error_print", "os.getcwd", "base.DiscordSend.Send_ChannelID", "os.rename", "os.path.exists", "dateutil.relativedelta.relativedelta", "sys._getframe", "json.dumps", "base.time_check.check", "collections.OrderedDict", "datetime.datetime.now" ]
[((1703, 1719), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (1717, 1719), False, 'from datetime import datetime, timedelta\n'), ((1805, 1838), 'datetime.datetime.strftime', 'datetime.strftime', (['filetime', '"""%m"""'], {}), "(filetime, '%m')\n", (1822, 1838), False, 'from datetime import datetime, timedelta\n'), ((1849, 1882), 'datetime.datetime.strftime', 'datetime.strftime', (['filetime', '"""%Y"""'], {}), "(filetime, '%Y')\n", (1866, 1882), False, 'from datetime import datetime, timedelta\n'), ((2122, 2163), 'os.rename', 'os.rename', (['self.now_filepath', 'mv_filename'], {}), '(self.now_filepath, mv_filename)\n', (2131, 2163), False, 'import os\n'), ((3118, 3134), 'collections.OrderedDict', 'cl.OrderedDict', ([], {}), '()\n', (3132, 3134), True, 'import collections as cl\n'), ((1741, 1764), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'months': '(1)'}), '(months=1)\n', (1754, 1764), False, 'from dateutil.relativedelta import relativedelta\n'), ((2030, 2063), 'os.path.exists', 'os.path.exists', (['self.now_filepath'], {}), '(self.now_filepath)\n', (2044, 2063), False, 'import os\n'), ((2268, 2356), 'command.voice_log.chart.makeTimeList', 'Chart.makeTimeList', (['client', 'mv_filename', 'CSetting.OneMonthOutput_RoleID'], {'mode': '"""NAME"""'}), "(client, mv_filename, CSetting.OneMonthOutput_RoleID,\n mode='NAME')\n", (2286, 2356), True, 'import command.voice_log.chart as Chart\n'), ((5646, 5675), 'base.time_check.check', 'CTime.check', (['"""%d %H"""', '"""01 00"""'], {}), "('%d %H', '01 00')\n", (5657, 5675), True, 'import base.time_check as CTime\n'), ((5722, 5745), 'base.time_check.check', 'CTime.check', (['"""%M"""', '"""00"""'], {}), "('%M', '00')\n", (5733, 5745), True, 'import base.time_check as CTime\n'), ((5890, 5923), 'datetime.datetime.strftime', 'datetime.strftime', (['filetime', '"""%m"""'], {}), "(filetime, '%m')\n", (5907, 5923), False, 'from datetime import datetime, timedelta\n'), ((5935, 5968), 'datetime.datetime.strftime', 'datetime.strftime', (['filetime', '"""%Y"""'], {}), "(filetime, '%Y')\n", (5952, 5968), False, 'from datetime import datetime, timedelta\n'), ((1470, 1515), 'base.ColorPrint.error_print', 'CPrint.error_print', (["(path_file + 'が、存在しませんでした')"], {}), "(path_file + 'が、存在しませんでした')\n", (1488, 1515), True, 'import base.ColorPrint as CPrint\n'), ((5853, 5876), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'months': '(1)'}), '(months=1)\n', (5866, 5876), False, 'from dateutil.relativedelta import relativedelta\n'), ((1526, 1537), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1535, 1537), False, 'import os\n'), ((3667, 3681), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3679, 3681), False, 'from datetime import datetime, timedelta\n'), ((6224, 6341), 'base.DiscordSend.Send_ChannelID', 'Sendtool.Send_ChannelID', ([], {'client': 'client', 'channelID': 'CSetting.OneMonthOutput_ChannelID', 'message': 'text', 'filename': 'None'}), '(client=client, channelID=CSetting.\n OneMonthOutput_ChannelID, message=text, filename=None)\n', (6247, 6341), True, 'import base.DiscordSend as Sendtool\n'), ((6424, 6548), 'base.DiscordSend.Send_ChannelID', 'Sendtool.Send_ChannelID', ([], {'client': 'client', 'channelID': 'CSetting.OneMonthOutput_ChannelID', 'message': 'text', 'filename': 'mv_filename'}), '(client=client, channelID=CSetting.\n OneMonthOutput_ChannelID, message=text, filename=mv_filename)\n', (6447, 6548), True, 'import base.DiscordSend as Sendtool\n'), ((6622, 6743), 'base.DiscordSend.Send_ChannelID', 'Sendtool.Send_ChannelID', ([], {'client': 'client', 'channelID': 'CSetting.OneMonthOutput_ChannelID', 'message': 'text', 'filename': 'sendfile'}), '(client=client, channelID=CSetting.\n OneMonthOutput_ChannelID, message=text, filename=sendfile)\n', (6645, 6743), True, 'import base.DiscordSend as Sendtool\n'), ((3188, 3202), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3200, 3202), False, 'from datetime import datetime, timedelta\n'), ((4246, 4260), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4258, 4260), False, 'from datetime import datetime, timedelta\n'), ((3765, 3779), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3777, 3779), False, 'from datetime import datetime, timedelta\n'), ((4852, 4866), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4864, 4866), False, 'from datetime import datetime, timedelta\n'), ((5159, 5174), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (5172, 5174), False, 'import sys\n'), ((996, 1045), 'json.dumps', 'json.dumps', (['[_dict]'], {'indent': '(4)', 'ensure_ascii': '(False)'}), '([_dict], indent=4, ensure_ascii=False)\n', (1006, 1045), False, 'import json\n'), ((1302, 1349), 'json.dumps', 'json.dumps', (['_dict'], {'indent': '(4)', 'ensure_ascii': '(False)'}), '(_dict, indent=4, ensure_ascii=False)\n', (1312, 1349), False, 'import json\n'), ((4348, 4362), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4360, 4362), False, 'from datetime import datetime, timedelta\n'), ((5241, 5256), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (5254, 5256), False, 'import sys\n')]
""" This module exports the 'Hand' class, 'PlayerHand' and 'DealerHand' subclasses, and related methods. """ import time draw_delay = 1 # The pause in seconds between drawn card actions twenty_one = 21 # Ideal score value for both players class Hand: """ A class defining the properties and methods of a hand object. A hand object is a collection of cards associated with either the dealer or a player (each having their own respective subclasses with specialised methods and attributes). Within a round of blackjack, cards are added to a hand when the associated player chooses to 'hit'. The outcome of each round is determined by the relative values of the player's and dealer's hands. """ def __init__(self, holder_name="Player"): """ Initialises an empty hand object for a given participant. Parameters ---------- holder_name : str Defines the owner, or 'holder', of the hand object bseing created: either 'Player' or 'Dealer'. Defaults to 'Player' for this base hand class. """ self._live_hand = ( [] ) # A list of card objects making up the hand; initialised as an empty list self._active = True # The active status communicates whether the hand is still active in the current round self._bust = False # The bust status communicates whether the hand is bust (value > 21) in the current round self._natural = False # The natural status communicates whether the hand is a natural (value = 21 with 2 cards) self._holder_name = holder_name def __iter__(self): """ Allows hand objects to be iterated over, yielding constituent card objects in the order they were added. Yields ------ card : blackjack.card.Card The next card in the hand (within the hand object's '_live_hand' attribute). """ for card in self._live_hand: yield card def __repr__(self): """ Entering the reference for a hand object in the terminal triggers this method, printing all hand details. Returns ------- Output of 'print_hand' method : str Prints the hand's owner followed by shorthand details of all cards currently within the hand. """ return self.print_hand() def __len__(self): """Allows len() to be used on hand objects, returning the number of cards in the hand as the object 'length'.""" return len(self._live_hand) def hand_value(self, bypass_face_down=False): """ Returns the total value(s) of the target hand by summing the values of all constituent card objects. Parameters ---------- bypass_face_down : bool Tells method whether to include face-down cards in calculating the value(s) of the hand. Defaults to False. Returns ------- hand_value_list : list of int / str A list containing all possible values the hand's combination of cards can take with no duplicates. For a hand with all cards face-up: returns a list of integers. For hands with any cards face-down: returns a list of strings. """ ace_count = 0 ace_values = None face_down_count = 0 non_ace_sum = 0 # Loop: counts number of face-down cards in the hand; counts face-up aces; sums face-up cards that aren't an ace for card in self: # Try statement catches AssertionErrors thrown when 'is_ace' method encounters a face-down card try: if card.is_ace(bypass_face_down): ace_count += 1 ace_values = card.card_value(bypass_face_down) else: non_ace_sum += card.card_value(bypass_face_down) except AssertionError: face_down_count += 1 # This if-else block defines a list of possible values associated with all face-up cards in the hand if ace_count > 0: ace_sum_possibilities = self._calculate_ace_values(ace_count, ace_values) ace_sum = [ possibility + non_ace_sum for possibility in ace_sum_possibilities ] hand_value_list = ace_sum else: hand_value_list = [non_ace_sum] # Where the hand contains face-down cards, this block adds the consistent face-down string to the face-up values if face_down_count > 0: hand_value_list = [ str(value) + " + *-*" * face_down_count for value in hand_value_list ] return hand_value_list def best_hand_value(self): """ Returns the best possible value of the hand as an integer. If hand value is bust (> 21), returns None. Returns ------- best_value : int or None The best possible total value of the hand's constituent cards. If no hand value <= 21, 'best_value' = None. """ max_best_value = 21 all_hand_values = self.hand_value(bypass_face_down=True) try: best_value = max([val for val in all_hand_values if val <= max_best_value]) except ValueError: best_value = None return best_value def is_active(self): """ As a boolean, returns the active status of the hand in the current round (bust/stand = False; otherwise = True). A hand is regarded as active in a round while cards can still be added to the hand. Once a player decides to 'stand' at their hand's current value, or if they go bust (> 21), the hands '_active' attribute is set to False signalling that no further actions are required by the player holding the hand in the current round. Returns ------- bool True when hand can still receive cards in the current round; otherwise False. """ return self._active def is_bust(self): """ As a boolean, returns 'bust' status of hand in the current round (value > 21: returns True; otherwise False). Returns ------- bool True when lowest possible hand value exceeds 21; otherwise False. """ return self._bust def is_natural(self): """ As a boolean, returns 'natural' status of hand (2 cards in hand and value = 21: returns True; otherwise False). Returns ------- bool True when card contains two cards with combined value of 21; otherwise False. """ return self._natural def stand(self): """Updates hand status to inactive: triggered when player chooses to draw no more cards in the current round.""" self._active = False def draw_card(self, deck_obj, face_dir="up"): """ Removes one card from the input deck and adds this card to the hand with orientation defined by 'face_dir'. Calls the 'deal_card' method of an input deck object, the deck returns a single card object and deletes this card from the deck. If the 'face_dir' input argument requires the hand to be dealt face-down, the freshly drawn card (face-up by default) calls its 'flip_card' method to ensure the card is correctly face-down before it it is appended to the hand array. Finally, the method calls '_validate_hand_status' that checks whether the hand is now bust and updates all hand statuses accordingly. Parameters ---------- deck_obj : blackjack.deck.Deck The game's 'live' deck object - a card will be removed from this deck and added to the current hand object. face_dir : str Defines whether card is added to the hand face-up or face-down. By default, the card will be added face-up with face_dir = 'up'. Any value of face_dir not spelling 'up' (case-insensitive) will add the card face-down. Raises ------ AssertionError Raised when the hand is inactive (can't accept further cards). """ assert ( self.is_active() ), "Cannot draw a card to this hand: it is marked as inactive in the current round." drawn_card = deck_obj.deal_card() if face_dir.lower() != "up": drawn_card.flip_card() self._live_hand.append(drawn_card) self._verify_hand_status() def print_hand(self, alt_text=None): """ Prints the hand's owner followed by shorthand details of all cards currently within the hand. Parameters ---------- alt_text : str This optional argument will be printed instead of the hand owner's name if provided. Returns ------- empty_string : str An empty string, returned so that the 'print_hand' method can be called by the Hand class' __repr__ method which must return a string-like object. """ empty_string = "" ends_with_s = self._holder_name[-1].lower() == "s" if alt_text is not None: print(alt_text) elif ends_with_s: print(f"\n{self._holder_name}' hand") else: print(f"\n{self._holder_name}'s hand") for idx, single_card in enumerate(self): print(f"Card {idx}: {single_card.short_card_details()}") if ( self.is_active() or self.is_bust() or (self.best_hand_value() == twenty_one and alt_text is not None) ): print(f"Value: {self.hand_value()}") return empty_string def _verify_hand_status(self): """Checks whether the hand is bust, has value equal to 21 or is a natural. Updates hand status accordingly.""" natural_length = 2 if self.best_hand_value() is None: self._bust = True self.stand() elif self.best_hand_value() == twenty_one: self.stand() if len(self) == natural_length: self._natural = True @staticmethod def _calculate_ace_values(ace_count, ace_values): """ Returns the possible values of a collection of ace cards as a sorted list. Parameters ---------- ace_count : int The number of ace cards to calculate possible summed values for. ace_values : tuple A two-element tuple containing the possible card values an ace can take e.g. (1, 11). Returns ------- ace_sum_possibilities : list of int A list containing each value 'ace_count' number of aces can combine to make. TODO: Refactor to allow any number of possible ace values (additional loop over keys of dict?) """ ace_sum_possibilities = [0] for ace_idx in range(ace_count): first_set = [ ace_values[0] + ace_sum_element for ace_sum_element in ace_sum_possibilities ] second_set = [ ace_values[1] + ace_sum_element for ace_sum_element in ace_sum_possibilities ] ace_sum_possibilities = list(set(first_set + second_set)) ace_sum_possibilities.sort() return ace_sum_possibilities class DealerHand(Hand): """ A subclass defining the properties and methods specific to a hand object held by the dealer. The dealer's hand is unique because: the first card dealt to the dealer will always be dealt face-down; the dealer's turn in a single round must be resolved automatically. """ def __init__(self): """Calls the __init__ method of the base Hand class, initialising an empty hand object for the dealer.""" super().__init__("Dealer") def draw_card(self, deck_obj, face_dir=None): """ Removes one card from the input deck and adds this card to the hand with orientation defined by 'face_dir'. Parameters ---------- deck_obj : blackjack.deck.Deck The game's 'live' deck object - a card will be removed from this deck and added to the dealer's hand object. face_dir : None / str Defines whether card is added to the hand face-up or face-down. By default, 'face_dir' is None when method is called against a dealer's hand object. Where None, the orientation of the card is determined by the number of cards currently in the dealer's hand. If the dealer currently has a single card in their hand, the card is dealt face-down; otherwise face-up. If the method is called with face_dir specified, it behaves identically to the equivalent method on the base Hand class. """ if face_dir: super().draw_card(deck_obj, face_dir) elif len(self) == 1: face_dir = "down" super().draw_card(deck_obj, face_dir) else: face_dir = "up" super().draw_card(deck_obj, face_dir) def resolve_hand(self, deck_obj, player_hand, player_score_message): """ This method automatically resolves the dealer's hand: drawing cards until the hand value exceeds seventeen. Method initially checks the dealer's hand value: if its best value > 17, the dealer stands. If < 17, the hand draws cards until its value exceeds 17 or goes bust. The dealer's final hand score is printed to the screen or the player is informed that the dealer has gone bust. Parameters ---------- deck_obj : blackjack.deck.Deck The game's 'live' deck object - cards may be removed from this deck and added to the dealer's hand object. player_hand : blackjack.hand.PlayerHand A player's 'live' hand object. Allows the player's hand to be printed for comparison as the dealer's hand is resolved. player_score_message : str A string that communicates the players score. As the dealer's hand is resolved, the players score is printed each time the dealer's hand is printed so the user can easily compare the relative scores. """ dealer_target = 17 print(player_score_message) if player_hand.best_hand_value() == twenty_one: print("You've got 21!") time.sleep(draw_delay) self._reveal_hand() while self.is_active(): if self.best_hand_value() < dealer_target: self.draw_card(deck_obj) self.print_hand(alt_text="\nDealer hits:") player_hand.print_hand() print(player_score_message) print("\n---") time.sleep(draw_delay) else: self.stand() self.print_hand(alt_text="\nDealer stands:") print(f"Dealer's score = {self.best_hand_value()}") player_hand.print_hand() print(player_score_message) break if self.is_bust(): self.print_hand(alt_text="\nDealer has gone bust!") player_hand.print_hand() print(player_score_message) print("\n---") def _reveal_hand(self): """Turns all cards in the hand face-up and prints hand details to the screen.""" print("\n---------------") for card in self: if not card.is_face_up(): card.flip_card() self.print_hand(alt_text="Dealer reveals hand:") print("---------------") time.sleep(draw_delay) def settle_naturals(self, player_hand, player_obj): """ Method detects naturals and settles any bets as necessary; returns True if round is concluded, otherwise False. A hand is a 'natural' if it contains two cards with a total value of 21. Players and dealers can get naturals upon drawing their first two cards at the start of a round. If the dealer gets a natural, the round is over and they collect the bet of any player who did not also get a natural. If a player gets a natural and the dealer did not, they are immediately paid 1.5x the value of their bet. Parameters ---------- player_hand : blackjack.hand.PlayerHand A player's 'live' hand object. The 'natural' status of this hand is read and compared to the status of the dealer's hand. Where a payout is required, the amount bet against the hand is also read into 'bet_amount'. player_obj : blackjack.player.Player The player object that owns the input 'player_hand'. Where a payout is required, this player's balance will be updated accordingly. Returns ------- round_complete : bool Returns True if no further actions are possible in the current round, following the settling of naturals; otherwise False (and the round continues). """ if not any((self.is_natural(), player_hand.is_natural())): round_complete = False return round_complete else: round_complete = True bet_amount = player_hand.get_bet() if self.is_natural() and not player_hand.is_natural(): # No action, round ends and bet is collected (discarded) automatically with player's hand self._reveal_hand() print("Dealer has a natural!") elif not self.is_natural() and player_hand.is_natural(): # Player wins 1.5x their original bet; multiplier is 2.5x so bet amount is also deposited back into balance print(f"\n{player_obj.get_name()} has a natural (dealer does not)!") payout_multiplier = 2.5 player_obj.update_balance(bet_amount * payout_multiplier) elif all((self.is_natural(), player_hand.is_natural())): # Stand-off between player and dealer: player's bet is deposited back into balance print(f"\n{player_obj.get_name()} has a natural!") self._reveal_hand() print("\nSo does the dealer! It's a stand-off!") payout_multiplier = 1 player_obj.update_balance(bet_amount * payout_multiplier) return round_complete def settle_bet(self, player_hand, player_obj): """ Method settles any bets at the end of the round; where the player loses, the method exits and their bet is lost. The value of the dealer's and player's hands are compared. If the player wins, their player object is payed the value of their bet plus the original bet amount is returned. If it's a draw, the bet is returned to the player's balance but they receive no winnings. If the player loses, the method exits and their balance is uneffected. The bet placed against their hand is lost when a new round starts and new hands are initialised. Parameters ---------- player_hand : blackjack.hand.PlayerHand A player's 'live' hand object. The value of this hand is read and compared to the value of the dealer's hand. Where a payout is required, the amount bet against the hand is also read into 'bet_amount'. player_obj : blackjack.player.Player The player object that owns the input 'player_hand'. Where a payout is required, this player's balance will be updated accordingly. """ assert not any( (self.is_active(), player_hand.is_active()) ), "Bets cannot be settled between the dealer and a player unless both participants have 'stood' or gone bust." if player_hand.is_bust(): return if self.is_bust(): dealer_score = 0 else: dealer_score = self.best_hand_value() if dealer_score > player_hand.best_hand_value(): return else: bet_amount = player_hand.get_bet() if player_hand.best_hand_value() > dealer_score: payout_multiplier = 2 player_obj.update_balance(bet_amount * payout_multiplier) elif player_hand.best_hand_value() == dealer_score: payout_multiplier = 1 player_obj.update_balance(bet_amount * payout_multiplier) class PlayerHand(Hand): """ A subclass defining the properties and methods specific to a hand object held by a player. Players' hands are special because bets can be made against these hands. """ def __init__(self, player_obj): """ Calls the __init__ method of the base Hand class, initialising an empty hand object for the player. Parameters ---------- player_obj : blackjack.player.Player The player object that owns the hand being initialised. The name of this player is queried and set used to define the '_holder_name' attribute on the base class. This name is then displayed when printing hand details to screen. """ self._bet = float( 0 ) # An attribute holding the amount bet by a player against this hand: initially zero player_name = player_obj.get_name() super().__init__(player_name) def add_bet(self, amount): """ Adds a bet made by a player to the current hand object: at the end of a round, the dealer resolves this bet. Parameters ---------- amount : float The amount bet against the hand object. In typical game flow, this bet amount has already been verified as positive and has already been removed from the player's balance. """ self._bet += amount def get_bet(self): """Returns the amount bet against this player's hand as a float.""" return self._bet
[ "time.sleep" ]
[((15691, 15713), 'time.sleep', 'time.sleep', (['draw_delay'], {}), '(draw_delay)\n', (15701, 15713), False, 'import time\n'), ((14469, 14491), 'time.sleep', 'time.sleep', (['draw_delay'], {}), '(draw_delay)\n', (14479, 14491), False, 'import time\n'), ((14841, 14863), 'time.sleep', 'time.sleep', (['draw_delay'], {}), '(draw_delay)\n', (14851, 14863), False, 'import time\n')]
from utils import create_input_files """ To create files that contain all images stored in h5py format and captions stored in json files. Minimum word frequencies to be used as cut-off for removing rare words to be specifiied here. """ if __name__ == '__main__': create_input_files(dataset='coco', karpathy_json_path='path_to___dataset_coco.json', image_folder='path_to__mscoco_folder', captions_per_image=5, min_word_freq=5, output_folder='folder_for_processed_data', max_len=50)
[ "utils.create_input_files" ]
[((269, 500), 'utils.create_input_files', 'create_input_files', ([], {'dataset': '"""coco"""', 'karpathy_json_path': '"""path_to___dataset_coco.json"""', 'image_folder': '"""path_to__mscoco_folder"""', 'captions_per_image': '(5)', 'min_word_freq': '(5)', 'output_folder': '"""folder_for_processed_data"""', 'max_len': '(50)'}), "(dataset='coco', karpathy_json_path=\n 'path_to___dataset_coco.json', image_folder='path_to__mscoco_folder',\n captions_per_image=5, min_word_freq=5, output_folder=\n 'folder_for_processed_data', max_len=50)\n", (287, 500), False, 'from utils import create_input_files\n')]
import pandas as pd class TableManager: def __init__(self,table_file): self.master_table=pd.read_csv(table_file).sort_values("Info",ascending=False) def get_filtered_table(self,low_freq,high_freq,delta_freq,target): low_freq=float(low_freq) high_freq=float(high_freq) delta_freq=float(delta_freq) table=self.master_table[self.master_table["Target"]==target] print(table.columns) table=table[table["Freq 1"]>low_freq] table=table[table["Freq 1"]<high_freq] table=table[table["Freq 2"]>low_freq] table=table[table["Freq 2"]<high_freq] table=table[(table["Freq 1"]-table["Freq 2"]).abs()<delta_freq] return table[["Feature","Info"]]
[ "pandas.read_csv" ]
[((102, 125), 'pandas.read_csv', 'pd.read_csv', (['table_file'], {}), '(table_file)\n', (113, 125), True, 'import pandas as pd\n')]
# -*- coding: utf-8 -*- # @Time : 2022/3/8 14:38 # @Author : jiaopaner import sys sys.path.insert(0, './') import torch from collections import OrderedDict from craft import CRAFT def copyStateDict(state_dict): if list(state_dict.keys())[0].startswith("module"): start_idx = 1 else: start_idx = 0 new_state_dict = OrderedDict() for k, v in state_dict.items(): name = ".".join(k.split(".")[start_idx:]) new_state_dict[name] = v return new_state_dict if __name__ == '__main__': net = CRAFT() net.load_state_dict(copyStateDict(torch.load("/Volumes/storage/resources/models/paddle-ocr-models/craft_mlt_25k.pth", map_location="cpu"))) net.eval() #dynamic shape x = torch.randn((1, 3, 960, 960)) torch.onnx.export(net, x, './pd_model/model.onnx', opset_version=11, input_names=["input"], output_names=["output"], dynamic_axes={'input': [2,3]}) # x2paddle --framework=onnx --model=./pd_model/model.onnx --save_dir=pd_model_dynamic
[ "torch.load", "sys.path.insert", "torch.randn", "craft.CRAFT", "collections.OrderedDict", "torch.onnx.export" ]
[((86, 110), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""./"""'], {}), "(0, './')\n", (101, 110), False, 'import sys\n'), ((347, 360), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (358, 360), False, 'from collections import OrderedDict\n'), ((544, 551), 'craft.CRAFT', 'CRAFT', ([], {}), '()\n', (549, 551), False, 'from craft import CRAFT\n'), ((740, 769), 'torch.randn', 'torch.randn', (['(1, 3, 960, 960)'], {}), '((1, 3, 960, 960))\n', (751, 769), False, 'import torch\n'), ((775, 931), 'torch.onnx.export', 'torch.onnx.export', (['net', 'x', '"""./pd_model/model.onnx"""'], {'opset_version': '(11)', 'input_names': "['input']", 'output_names': "['output']", 'dynamic_axes': "{'input': [2, 3]}"}), "(net, x, './pd_model/model.onnx', opset_version=11,\n input_names=['input'], output_names=['output'], dynamic_axes={'input':\n [2, 3]})\n", (792, 931), False, 'import torch\n'), ((590, 702), 'torch.load', 'torch.load', (['"""/Volumes/storage/resources/models/paddle-ocr-models/craft_mlt_25k.pth"""'], {'map_location': '"""cpu"""'}), "(\n '/Volumes/storage/resources/models/paddle-ocr-models/craft_mlt_25k.pth',\n map_location='cpu')\n", (600, 702), False, 'import torch\n')]
from cloudinary.models import CloudinaryField from django.contrib.auth import get_user_model from django.db import models # Create your models here. from MetioTube.core.validators import validate_image UserModel = get_user_model() class Profile(models.Model): username = models.CharField( max_length=30 ) profile_picture = CloudinaryField( resource_type='image', blank=True, validators=(validate_image,) ) about = models.TextField( blank=True ) user = models.OneToOneField( UserModel, on_delete=models.CASCADE, primary_key=True ) subscribers = models.ManyToManyField( UserModel, related_name='subscribers', blank=True, ) def __str__(self): return self.username
[ "django.db.models.TextField", "django.db.models.OneToOneField", "django.db.models.ManyToManyField", "django.db.models.CharField", "django.contrib.auth.get_user_model", "cloudinary.models.CloudinaryField" ]
[((216, 232), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (230, 232), False, 'from django.contrib.auth import get_user_model\n'), ((279, 310), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)'}), '(max_length=30)\n', (295, 310), False, 'from django.db import models\n'), ((348, 433), 'cloudinary.models.CloudinaryField', 'CloudinaryField', ([], {'resource_type': '"""image"""', 'blank': '(True)', 'validators': '(validate_image,)'}), "(resource_type='image', blank=True, validators=(validate_image,)\n )\n", (363, 433), False, 'from cloudinary.models import CloudinaryField\n'), ((472, 500), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)'}), '(blank=True)\n', (488, 500), False, 'from django.db import models\n'), ((527, 602), 'django.db.models.OneToOneField', 'models.OneToOneField', (['UserModel'], {'on_delete': 'models.CASCADE', 'primary_key': '(True)'}), '(UserModel, on_delete=models.CASCADE, primary_key=True)\n', (547, 602), False, 'from django.db import models\n'), ((652, 725), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['UserModel'], {'related_name': '"""subscribers"""', 'blank': '(True)'}), "(UserModel, related_name='subscribers', blank=True)\n", (674, 725), False, 'from django.db import models\n')]
import warnings from datetime import datetime import numpy as np import xarray as xr import pytest import ecco_v4_py from .test_common import all_mds_datadirs, get_test_ds @pytest.mark.parametrize("mytype",['xda','nparr','list','single']) def test_extract_dates(mytype): dints = [[1991,8,9,13,10,15],[1992,10,20,8,30,5]] dates = [datetime(year=x[0],month=x[1],day=x[2], hour=x[3],minute=x[4],second=x[5]) for x in dints] dates = np.array(dates,dtype='datetime64[s]') dates = [np.datetime64(x) for x in dates] if mytype=='xda': dates = xr.DataArray(np.array(dates)) elif mytype=='nparr': dates = np.array(dates) elif mytype=='single': dints=dints[0] dates = dates[0] test_out = ecco_v4_py.extract_yyyy_mm_dd_hh_mm_ss_from_datetime64(dates) for test,expected in zip(test_out,np.array(dints).T): print('test: ',test) print('exp: ',expected) test = test.values if mytype=='xda' else test assert np.all(test==expected) def test_get_grid(get_test_ds): """make sure we can make a grid ... that's it""" grid = ecco_v4_py.get_llc_grid(get_test_ds)
[ "numpy.datetime64", "ecco_v4_py.extract_yyyy_mm_dd_hh_mm_ss_from_datetime64", "datetime.datetime", "ecco_v4_py.get_llc_grid", "numpy.array", "pytest.mark.parametrize", "numpy.all" ]
[((176, 245), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mytype"""', "['xda', 'nparr', 'list', 'single']"], {}), "('mytype', ['xda', 'nparr', 'list', 'single'])\n", (199, 245), False, 'import pytest\n'), ((469, 507), 'numpy.array', 'np.array', (['dates'], {'dtype': '"""datetime64[s]"""'}), "(dates, dtype='datetime64[s]')\n", (477, 507), True, 'import numpy as np\n'), ((770, 831), 'ecco_v4_py.extract_yyyy_mm_dd_hh_mm_ss_from_datetime64', 'ecco_v4_py.extract_yyyy_mm_dd_hh_mm_ss_from_datetime64', (['dates'], {}), '(dates)\n', (824, 831), False, 'import ecco_v4_py\n'), ((1142, 1178), 'ecco_v4_py.get_llc_grid', 'ecco_v4_py.get_llc_grid', (['get_test_ds'], {}), '(get_test_ds)\n', (1165, 1178), False, 'import ecco_v4_py\n'), ((344, 422), 'datetime.datetime', 'datetime', ([], {'year': 'x[0]', 'month': 'x[1]', 'day': 'x[2]', 'hour': 'x[3]', 'minute': 'x[4]', 'second': 'x[5]'}), '(year=x[0], month=x[1], day=x[2], hour=x[3], minute=x[4], second=x[5])\n', (352, 422), False, 'from datetime import datetime\n'), ((520, 536), 'numpy.datetime64', 'np.datetime64', (['x'], {}), '(x)\n', (533, 536), True, 'import numpy as np\n'), ((1021, 1045), 'numpy.all', 'np.all', (['(test == expected)'], {}), '(test == expected)\n', (1027, 1045), True, 'import numpy as np\n'), ((604, 619), 'numpy.array', 'np.array', (['dates'], {}), '(dates)\n', (612, 619), True, 'import numpy as np\n'), ((663, 678), 'numpy.array', 'np.array', (['dates'], {}), '(dates)\n', (671, 678), True, 'import numpy as np\n'), ((870, 885), 'numpy.array', 'np.array', (['dints'], {}), '(dints)\n', (878, 885), True, 'import numpy as np\n')]
"""The laundrify integration.""" from __future__ import annotations from laundrify_aio import LaundrifyAPI from laundrify_aio.exceptions import ApiConnectionException, UnauthorizedException from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_ACCESS_TOKEN, Platform from homeassistant.core import HomeAssistant from homeassistant.exceptions import ConfigEntryAuthFailed, ConfigEntryNotReady from homeassistant.helpers.aiohttp_client import async_get_clientsession from .const import DEFAULT_POLL_INTERVAL, DOMAIN from .coordinator import LaundrifyUpdateCoordinator PLATFORMS = [Platform.BINARY_SENSOR] async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up laundrify from a config entry.""" session = async_get_clientsession(hass) api_client = LaundrifyAPI(entry.data[CONF_ACCESS_TOKEN], session) try: await api_client.validate_token() except UnauthorizedException as err: raise ConfigEntryAuthFailed("Invalid authentication") from err except ApiConnectionException as err: raise ConfigEntryNotReady("Cannot reach laundrify API") from err coordinator = LaundrifyUpdateCoordinator(hass, api_client, DEFAULT_POLL_INTERVAL) await coordinator.async_config_entry_first_refresh() hass.data.setdefault(DOMAIN, {})[entry.entry_id] = { "api": api_client, "coordinator": coordinator, } hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" if unload_ok := await hass.config_entries.async_unload_platforms(entry, PLATFORMS): hass.data[DOMAIN].pop(entry.entry_id) return unload_ok
[ "homeassistant.exceptions.ConfigEntryAuthFailed", "homeassistant.exceptions.ConfigEntryNotReady", "laundrify_aio.LaundrifyAPI", "homeassistant.helpers.aiohttp_client.async_get_clientsession" ]
[((786, 815), 'homeassistant.helpers.aiohttp_client.async_get_clientsession', 'async_get_clientsession', (['hass'], {}), '(hass)\n', (809, 815), False, 'from homeassistant.helpers.aiohttp_client import async_get_clientsession\n'), ((833, 885), 'laundrify_aio.LaundrifyAPI', 'LaundrifyAPI', (['entry.data[CONF_ACCESS_TOKEN]', 'session'], {}), '(entry.data[CONF_ACCESS_TOKEN], session)\n', (845, 885), False, 'from laundrify_aio import LaundrifyAPI\n'), ((993, 1040), 'homeassistant.exceptions.ConfigEntryAuthFailed', 'ConfigEntryAuthFailed', (['"""Invalid authentication"""'], {}), "('Invalid authentication')\n", (1014, 1040), False, 'from homeassistant.exceptions import ConfigEntryAuthFailed, ConfigEntryNotReady\n'), ((1106, 1155), 'homeassistant.exceptions.ConfigEntryNotReady', 'ConfigEntryNotReady', (['"""Cannot reach laundrify API"""'], {}), "('Cannot reach laundrify API')\n", (1125, 1155), False, 'from homeassistant.exceptions import ConfigEntryAuthFailed, ConfigEntryNotReady\n')]
# Copyright 2017 <NAME> # # Licensed under the MIT License. If the LICENSE file is missing, you # can find the MIT license terms here: https://opensource.org/licenses/MIT from flask import Flask, render_template from config import config def create_app(config_name): app = Flask(__name__) app.config.from_object(config[config_name]) config[config_name].init_app(app) # attach routes and custom error pages here # from .main import main as main_blueprint app.register_blueprint(main_blueprint) return app
[ "flask.Flask" ]
[((279, 294), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (284, 294), False, 'from flask import Flask, render_template\n')]